National Library of Energy BETA

Sample records for west valley site

  1. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    2001-08-31

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  2. West Valley Site History, Cleanup Status, and Role of the West...

    Office of Environmental Management (EM)

    Site History, Cleanup Status, and Role of the West Valley Citizen Task Force West Valley Site History, Cleanup Status, and Role of the West Valley Citizen Task Force Presentation...

  3. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    2002-09-30

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  4. West Valley Demonstration Project site environmental report, calendar year 1999

    SciTech Connect (OSTI)

    None Available

    2000-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  5. West Valley Demonstration Project site environmental report calendar year 1998

    SciTech Connect (OSTI)

    1999-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  6. West Valley Demonstration Project site environmental report, calendar year 1997

    SciTech Connect (OSTI)

    1998-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  7. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company and URS Group, Inc.

    2005-09-30

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  8. Workers at EM's West Valley Site Surpass 1 Million Hours without...

    Broader source: Energy.gov (indexed) [DOE]

    West Valley Accomplishments: Year in Review BWCS employees from all departments of the DUF6 project at the Portsmouth site come together to mark five years without a lost-time...

  9. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC and URS - Washington Division

    2008-12-17

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

  10. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company and URS Group, Inc.

    2007-09-27

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

  11. West Valley Demonstration Project Annual Site Environmental Report Calendard Year 2005

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company and URS Group, Inc.

    2006-09-21

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs.

  12. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    SciTech Connect (OSTI)

    Rendall, John D.; Steiner, Alison F.; Klenk, David P.

    2013-09-19

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  13. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    SciTech Connect (OSTI)

    None, None

    2011-09-28

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  14. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    SciTech Connect (OSTI)

    none,

    2012-09-27

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  15. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    SciTech Connect (OSTI)

    Rendall, John D.; Steiner, Alison F.; Pendl, Michael P.

    2014-09-16

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  16. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2014

    SciTech Connect (OSTI)

    Rendall, John D.; Steiner, Alison F.; Pendl, Michael P.; Biedermann, Charles A.; Steiner, II, Robert E.; Fox, James R.; Hoch, Jerald J.; Werchowski, Rebecca L.

    2015-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2014. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2014. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2014 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  17. West Valley Demonstration Project site environmental report for calendar year 1996

    SciTech Connect (OSTI)

    1997-06-01

    The West Valley Demonstration Project (WVDP), the site of a US Department of Energy environmental cleanup activity operated by West Valley Nuclear Services Co., Inc., (WVNS), is in the process of solidifying liquid high-level radioactive waste remaining at the site after commercial nuclear fuel reprocessing was discontinued. The Project is located in Western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1996 by environmental monitoring personnel. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. Appendix A is a summary of the site environmental monitoring schedule. Appendix B lists the environmental permits and regulations pertaining to the WVDP. Appendices C through F contain summaries of data obtained during 1996 and are intended for those interested in more detail than is provided in the main body of the report.

  18. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    Jackson, J. P.; Pastor, R. S.

    2002-02-28

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.

  19. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    SciTech Connect (OSTI)

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.

  20. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC and URS - Washington Division

    2009-09-24

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  1. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

  2. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000...

  3. Workers at EM’s West Valley Site Surpass 1 Million Hours without Lost-Time Accident

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. – EM’s cleanup contractor at the West Valley Demonstration Project (WVDP) recently marked 1 million work hours without a lost-time accident or illness.

  4. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  5. West Valley Demonstration Project Waste Management Environmental...

    Office of Environmental Management (EM)

    3 7-SA-O1 West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis Revised Final U.S. Department of Energy West Valley Demonstration...

  6. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  7. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security (HSS). This independent review of the emergency management program at the West Valley Demonstration Project (WVDP) was conducted prior to the creation of EA. HSS...

  8. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish...

  9. Waste-Incidental-to-Reprocessing Evaluation for the West Valley...

    Office of Environmental Management (EM)

    Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter Waste-Incidental-to-Reprocessing Evaluation for the West Valley...

  10. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June...

  11. The Way Ahead - West Valley Demonstration Project

    Office of Environmental Management (EM)

    Project Update Project Update The Way Ahead The Way Ahead West Valley Demonstration Project Not to be Considered as a Regulatory Submittal Pre-decisional Draft 198171 The Way...

  12. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  13. West Valley Demonstration Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest CoastWest ValleyWest

  14. West Valley Demonstration Project | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest CoastWest Valley

  15. DOE Issues RFP for West Valley Demonstration Project Probabilistic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that will provide support to the DOE, West Valley Demonstration Project, and the New York State Energy Research and Development Authority in performing a probabilistic...

  16. Voluntary Protection Program Onsite Review, West Valley Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    June 2008 Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review...

  17. DOE Awards Contract for the West Valley Demonstration Project...

    Energy Savers [EERE]

    to the U.S. Department of Energy (DOE) West Valley Demonstration Project (WVDP), and the New York State Energy Research and Development Authority (NYSERDA) in performing a...

  18. When Emergency Rooms Close: Ambulance Diversion in the West San Fernando Valley

    E-Print Network [OSTI]

    Natasha Mihal; Renee Moilanen

    2005-01-01

    of diversion on the West Valley, identifies major problemsa working group of the five West Valley hospitals to exposehigh diversion rates in the West Valley and proposed ways to

  19. VWA-0033- In the Matter of Gretencord v. West Valley Nuclear Services Co., Inc.

    Broader source: Energy.gov [DOE]

    This decision considers a Complaint filed by John L. Gretencord (Gretencord) against West Valley Nuclear Services, Inc. (West Valley) under the Department of Energy's (DOE) Contractor Employee...

  20. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    SciTech Connect (OSTI)

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs.

  1. DOE Awards Small Business Contract for West Valley NY Services

    Broader source: Energy.gov [DOE]

    CINCINNATI – The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

  2. West Valley Demonstration Project Food Drive Delivers Food for 700 Families

    Office of Energy Efficiency and Renewable Energy (EERE)

    WEST VALLEY, N.Y. – EM employees at West Valley Demonstration Project (WVDP) helped collect and deliver 114,843 pounds of food, including 360 turkeys, to nine food pantries in the West Valley area, just in time to benefit about 700 families in need during the holidays.

  3. West Valley Demonstration Project Transportation Emergency Management Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherize » Air SealingDepartmentWest CoastWest Valley

  4. EIS-0337: West Valley Demonstration Project Waste Management

    Broader source: Energy.gov [DOE]

    The purpose of the Final West Valley Demonstration Project Waste Management Environmental Impact Statement is to provide information on the environmental impacts of the Department of Energy’s proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities.

  5. Voluntary Protection Program Onsite Review, West Valley Demonstration Project- November 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  6. Independent Oversight Review, Hanford Site K-West Annex Facility...

    Energy Savers [EERE]

    Review, Hanford Site K-West Annex Facility - April 2014 Independent Oversight Review, Hanford Site K-West Annex Facility - April 2014 April 2014 Review of the Hanford Site K-West...

  7. Technical Services Contract Awarded for West Valley Demonstration Project Support Services

    Broader source: Energy.gov [DOE]

    Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value.

  8. Evolution of extensional basins and basin and range topography west of Death Valley, California

    E-Print Network [OSTI]

    Hodges, K. V.; McKenna, L. W.; Stock, J.; Knapp, J.; Page, L.; Sternlof, K.; Silverberg, D.; Wust, G.; Walker, J. Douglas

    1989-06-01

    complex in late Miocene (?) – early Pliocene time. The principal growth structure for the basin was the Emigrant detachment, which initiated and moved at a low angle. Modern Panamint Valley, west of the range, developed as a consequence of Late Pliocene...

  9. Environmental Compliance at the West Valley Demonstration Project: The Vitrification Permitting Program

    SciTech Connect (OSTI)

    L. C. Salvatori; C. B. Banzer; W. T. Watters

    1996-05-28

    The major environmental laws that apply to the West Valley Demonstration Project (WVDP) are the: Resource Conservation and Recovery Act (RCRA), Clean Air Act (CAA), Clean Water Act (CWA), Safe Drinking Water Act (SDWA), Toxic Substances Control Act (TSCA), National Environmental Policy Act (NEPA), and Emergency Planning and Community Right-To-Know Act (EPCRA). Regulations developed in accordance with these laws are administered by the New York State Department of Environmental Conservation (NYSDEC) and the U.S. Environmental Protection Agency (EPA) through state and federal programs, and regulatory requirements such as permitting. The Environmental Permits & Reports (EP&R) Group of the Environmental Affairs (EA) Department has the primary responsibility for developing a site-wide permitting program for the WVDP and obtaining the necessary permits. This report discusses the permits and the permitting process associated with the Vitrification Facility (VF).

  10. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  11. West Valley Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWe EnergyInformationHoltStevensWestWest

  12. West Valley Melter Draft Waste Evaluation Released for Public Comment |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest CoastWest

  13. Summary of the engineering assessment of inactive uranium mill tailings: Monument Valley site, Monument Valley, Arizona

    SciTech Connect (OSTI)

    none,

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching, treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be more than $500/lb of U/sub 3/O/sub 8/ by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is economically unattractive.

  14. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  15. West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects atWe WantinOfficeWest

  16. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    SciTech Connect (OSTI)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  17. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems.

  18. West Valley Demolition Marks Important Accomplishment for EM | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.Projects atWe WantinOfficeWest Palmof Energy

  19. West Valley Accomplishments: Year in Review | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest Coast Port

  20. West Valley Site History, Cleanup Status, and Role of the West Valley Citizen Task Force

    Broader source: Energy.gov [DOE]

    Presentation made by Raymond C. Vaughan for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY. 

  1. Location of the M 2.0 Earthquake on 08/22/2010 that Occurred 25 km North of West Valley, New York.

    E-Print Network [OSTI]

    1 Location of the M 2.0 Earthquake on 08/22/2010 that Occurred 25 km North of West Valley, New York at 16:41:47 (UTC) about 25 km north of West Valley, New York. There were no felt reports by residents and their distribution is plotted in Figure 2. 22 August 2010, Md 2.0 Earthquake 15 miles north of West Valley, NY -78

  2. Department of Energy Manual 435.1-1 Waste Incidental To Reprocessing Determination For The West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank

    Broader source: Energy.gov [DOE]

    Department of Energy Manual 435.1-1 Waste Incidental To Reprocessing Determination For The West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank

  3. Voluntary Protection Program Onsite Review, West Valley Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | Department ofVPV-SiteTestingOfficeU.S.Energy -Project - June 2008 |

  4. West Valley

    Office of Environmental Management (EM)

    was 100 mRem per person 2011 - BRC* estimate 620 mRem per person Naturally occurring radioactive elements Additions accumulate - from fall-out, excursions * Blue Ribbon Commission...

  5. Phase 1 Final status survey plan for the West Valley demonstration project.

    SciTech Connect (OSTI)

    Johnson, R. L. (Environmental Science Division)

    2011-05-31

    This plan provides the technical basis and associated protocols to support Phase 1 final status survey (FSS) data collection and interpretation as part of the West Valley Demonstration Project Phase 1 Decommissioning Plan process. This plan is consistent with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). The Phase 1 Decommissioning Plan provides the relevant derived concentration guideline levels (DCGLs) for the Phase 1 radionuclides of interest. This plan includes protocols that will be applied to the deep excavations planned for Waste Management Area (WMA) 1 and WMA 2, for surface soils outside the WMA 1 and WMA 2 excavations that do not have contamination impacts at depths greater than one meter, and for areas that are used for Phase 1 contaminated soil lay-down purposes. All excavated and lay-down areas will be classified as MARSSIM Class 1 areas. Surface soils that have not been excavated, are not expected to exceed DCGLs, and do not have contamination impacts at depths greater than one meter will be divided into either Class 1 or Class 2 areas depending on the expected potential for surface soil contamination in those areas. The plan uses gamma scans combined with biased soil samples to address DCGLemc concerns. The plan uses systematic soil sampling combined with area factors to address DCGLw and DCGLemc concerns. The Sign test will be used to statistically evaluate DCGLw compliance. If the results from the characterization sampling and analysis plan (CSAP) data collection indicate that background may be a significant issue for Sign test implementation, the Wilcoxon rank sum (WRS) test will be used instead to demonstrate DCGLw compliance. A reference area will be selected on the basis of CSAP data results if the WRS test becomes a necessity. The WMA 1 excavation footprint includes approximately 476 foundation pilings that will be trimmed and left in place. Piling-specific systematic and biased sampling will be conducted to address concerns that these pilings may have served as preferential flow pathways into the underlying Lavery till. Phase 1 FSS data collection results will be summarized, presented, and interpreted in one or more FSS reports.

  6. West Valley Demonstration Project Annual Site Environmental Report...

    Office of Scientific and Technical Information (OSTI)

    of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep...

  7. West Valley Demonstration Project Annual Site Environmental Report Calendar

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonfor DirectSciTech ConnectConnect Wavecoordinates usingYear

  8. West Valley Demonstration Project Annual Site Environmental Report Calendar

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonfor DirectSciTech ConnectConnect Wavecoordinates

  9. FTCP Site Specific Information - West Valley Demonstration Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111, 2015Energy NevadaDepartment of Energy

  10. Site Programs & Cooperative Agreements: West Valley Demonstration Project |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant toPower Wind AwardsDepartment of Energy

  11. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    SciTech Connect (OSTI)

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The screening method was also useful in identifying unnecessary items that were not significant given the site-specific geology and proposed scale of the Ohio River Valley CO{sub 2} Storage Project. Overall, the FEP database approach provides a comprehensive methodology for assessing potential risk for a practical CO{sub 2} storage application. An integrated numerical fate and transport model was developed to enable risk and consequence assessment at field scale. Results show that such an integrated modeling effort would be helpful in meeting the project objectives (such as site characterization, engineering, permitting, monitoring and closure) during different stages. A reservoir-scale numerical model was extended further to develop an integrated assessment framework which can address the risk and consequence assessment, monitoring network design and permitting guidance needs. The method was used to simulate sequestration of CO{sub 2} in moderate quantities at the Mountaineer Power Plant. Results indicate that at the relatively low injection volumes planned for pilot scale demonstration at this site, the risks involved are minor to negligible, owing to a thick, low permeability caprock and overburden zones. Such integrated modeling approaches coupled with risk and consequence assessment modeling are valuable to project implementation, permitting, monitoring as well as site closure.

  12. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    SciTech Connect (OSTI)

    NONE

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP`s mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP`s LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility.

  13. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

  14. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    SciTech Connect (OSTI)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

  15. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez; Charles R. Lindsay; and Jay A. Sampson

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near the southeastern RM-SM CAU boundary with the southwestern YF CAU, and also in the northern YF CAU. The purpose of this report is to release the MT data at those 14 stations shown in figure 1. No interpretation of the data is included here.

  16. TARZAN: A REMOTE TOOL DEPLOYMENT SYSTEM FOR THE WEST VALLEY DEVELOPMENT PROJECT

    SciTech Connect (OSTI)

    Bruce R. Thompson; James Veri

    1999-09-30

    RedZone Robotics, Inc. undertook a development project to build Tarzan, a Remote Tool Delivery system to work inside nuclear waste storage tanks 8D-1 and 8D-2 at the West Valley Demonstration Project (WVDP). The removal of waste deposits from large storage tanks poses significant challenges during tank operations and closure. Limited access, the presence of chemical, radiological, and /or explosive hazards, and the need to deliver retrieval equipment to all regions of the tank exceed the capabilities of most conventional methods and equipment. Remotely operated devices for mobilizing and retrieving waste materials are needed. Some recent developments have been made in this area. However, none of these developments completely and cost-effectively address tanks that are congested with internal structures (e.g., support columns, cooling coils, fixed piping, etc.). The Tarzan system consists of the following parts: Locomotor which is deployed in the tank for inspection and cleanup; Hydraulic power unit providing system power for the locomotor and deployment unit; and Control system providing the man machine interface to control, coordinate and monitor the system. This document presents the final report on the Tarzan project.

  17. A COMPLETE HISTORY OF THE HIGH-LEVEL WASTE PLANT AT THE WEST VALLEY DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Petkus, Lawrence L.; Paul, James; Valenti, Paul J.; Houston, Helene; May, Joseph

    2003-02-27

    The West Valley Demonstration Project (WVDP) vitrification melter was shut down in September 2002 after being used to vitrify High Level Waste (HLW) and process system residuals for six years. Processing of the HLW occurred from June 1996 through November 2001, followed by a program to flush the remaining HLW through to the melter. Glass removal and shutdown followed. The facility and process equipment is currently in a standby mode awaiting deactivation. During HLW processing operations, nearly 24 million curies of radioactive material were vitrified into 275 canisters of HLW glass. At least 99.7% of the curies in the HLW tanks at the WVDP were vitrified using the melter. Each canister of HLW holds approximately 2000 kilograms of glass with an average contact dose rate of over 2600 rem per hour. After vitrification processing ended, two more cans were filled using the Evacuated Canister Process to empty the melter at shutdown. This history briefly summarizes the initial stages of process development and earlier WVDP experience in the design and operation of the vitrification systems, followed by a more detailed discussion of equipment availability and failure rates during six years of operation. Lessons learned operating a system that continued to function beyond design expectations also are highlighted.

  18. Influence of uplift on oil migration: Tulare heavy oil accumulations, west side San Joaquin Valley, California

    SciTech Connect (OSTI)

    Chamberlain, E.R.; Madrid, V.M.

    1986-07-01

    Shallow (2000 ft), heavy (11/sup 0/-14/sup 0/ API) oil accumulations within the Pleistocene, nonmarine, Tulare sands along the west side of the San Joaquin Valley represent major thermal enhanced oil recovery (EOR) objectives. These low-pressure reservoirs display a variety of petrophysical characteristics indicating a complex history of oil migration resulting from uplift of the Tulare reservoirs above the regional ground-water table (RGT). In the Cymric-McKittrick area, it is possible to correlate Tulare outcrops with subsurface log data and determine the relationship between oil saturation, structural elevation, and proximity to the present RGT. The observed relationship is that economic oil saturations (S/sub 0/ = 30-75%) occur in structural lows and grade updip to reduced oil saturations (S/sub 0/ = 0-30%). The equivalent sands above the RGT exhibit formation density log-compensated neutron log (FDC/CNL) cross-over. Basinward, as the entire Tulare reservoir dips below the RGT, it exhibits characteristics of conventional reservoirs, such as high water saturations in structural lows, grading upward to increased oil saturations in structural highs. The authors present the following model to explain these observations. (1) Oil migrated into Tulare sands and originally filled all stratigraphic/structural traps below the paleo-RGT. (2) Subsequent uplift of the Tulare reservoirs above the paleo-RGT resulted in gravity drainage of original accumulations into structural lows. (3) Washing of the oils by repeated ground-water fluctuations along with biodegradation resulted in the essentially immobile Tulare heavy oil accumulations observed today.

  19. Phase 1 Characterization sampling and analysis plan West Valley demonstration project.

    SciTech Connect (OSTI)

    Johnson, R. L. (Environmental Science Division)

    2011-06-30

    The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

  20. Lessons learned at West Valley during facility decontamination for re-use (1982--1988)

    SciTech Connect (OSTI)

    Tundo, D.; Gessner, R.F.; Lawrence, R.E.

    1988-11-01

    The primary mission of the West Valley Demonstration Project (WVDP) is to solidify a large volume of high-level liquid waste (2.3 million liters -- 600,000 gallons) produced during reprocessing plant operations and stored in underground tanks. This is to be accomplished through the maximum use of existing facilities. This required a significant effort to remove existing equipment and to decontaminate areas for installation of liquid and cement processing systems in a safe environment while maintaining exposure to workers as low as reasonably achievable. The reprocessing plant occupied a building of about 33,000 m/sup 2/ (350,000 ft/sup 2/). When the WVDP was initiated, approximately 6 percent of the plant area was in a non-contaminated condition where personnel could function without protective clothing or radiological controls. From 1982 to 1988, an additional 64 percent of the plant was cleaned up and much of this converted to low- and high-level waste processing areas. The high-level liquid and resulting low-level liquids are now being treated in these areas using an Integrated Radwaste Treatment System (IRTS). The Project has now focused attention on installation, qualification and operation of a vitrification system which will convert the remaining high-level waste into borosilicate glass logs. The stabilized waste will be sent to a Federal Repository for long-term storage. From 1982 to 1988, about 70 technical reports were dealing with specific tasks and cleanup efforts. This report provides an overview of the decontamination and decommissioning work done in that period. The report emphasizes lessons learned during that effort. Significant advances were made in: remote and contact decontamination technology; personnel protection and training; planning and procedures; and radiological controls. 62 refs., 35 figs., 5 tabs.

  1. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  2. Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter - 12167

    SciTech Connect (OSTI)

    McNeil, Jim; Kurasch, David; Sullivan, Dan; Crandall, Thomas

    2012-07-01

    The Department of Energy (DOE) has determined that the vitrification melter used in the West Valley Demonstration Project can be disposed of as low-level waste (LLW) after completion of a waste-incidental-to-reprocessing evaluation performed in accordance with the evaluation process of DOE Manual 435.1-1, Radioactive Waste Management Manual. The vitrification melter - which consists of a ceramic lined, electrically heated box structure - was operated for more than 5 years melting and fusing high-level waste (HLW) slurry and glass formers and pouring the molten glass into 275 stainless steel canisters. Prior to shutdown, the melter was decontaminated by processing low-activity decontamination flush solutions and by extracting molten glass from the melter cavity. Because it could not be completely emptied, residual radioactivity conservatively estimated at approximately 170 TBq (4,600 Ci) remained in the vitrification melter. To establish whether the melter was incidental to reprocessing, DOE prepared an evaluation to demonstrate that the vitrification melter: (1) had been processed to remove key radionuclides to the maximum extent technically and economically practical; (2) would be managed to meet safety requirements comparable to the performance objectives for LLW established by the Nuclear Regulatory Commission (NRC); and (3) would be managed by DOE in accordance with DOE's requirements for LLW after it had been incorporated in a solid physical form with radionuclide concentrations that do not exceed the NRC concentration limits for Class C LLW. DOE consulted with the NRC on the draft evaluation and gave other stakeholders an opportunity to submit comments before the determination was made. The NRC submitted a request for additional information in connection with staff review of the draft evaluation; DOE provided the additional information and made improvements to the evaluation, which was issued in January 2012. DOE considered the NRC Technical Evaluation Report as well as comments received from other stakeholders prior to making its determination that the vitrification melter is not HLW, does not require permanent isolation in a geologic repository, and can be disposed of as LLW. (authors)

  3. Agriculture, irrigation, and drainage on the west side of the San Joaquin Valley, California: Unified perspective on hydrogeology, geochemistry and management

    SciTech Connect (OSTI)

    Narasimhan, T.N.; Quinn, N.W.T.

    1996-03-01

    The purpose of this report is to provide a broad understanding of water-related issues of agriculture and drainage on the west side of the San Joaquin Valley. To this end, an attempt is made to review available literature on land and water resources of the San Joaquin Valley and to generate a process-oriented framework within which the various physical-, chemical-, biological- and economic components of the system and their interactions are placed in mutual perspective.

  4. Voluntary Protection Program Onsite Review, CH2M HILL B&W West...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CH2M HILL B&W West Valley LLC, West Valley Demonstration Project - October 2013 Voluntary Protection Program Onsite Review, CH2M HILL B&W West Valley LLC, West Valley Demonstration...

  5. Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-08-29

    A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

  6. EIS-0081: Long-Term Management of Liquid High-Level Radioactive Waste Stored at Western New York Nuclear Service Center, West Valley, New York

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Terminal Waste Disposal and Remedial Action prepared this environmental impact statement to analyze the environmental and socioeconomic impacts resulting from the Department’s proposed action to construct and operate facilities necessary to solidify the liquid high-level wastes currently stored in underground tanks at West Valley, New York.

  7. DOE - Office of Legacy Management -- South Valley Superfund Site - 021

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co - OH 51SavannahMill SiteSlickSouth

  8. Analysis of cavern stability at the West Hackberry SPR site.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Sobolik, Steven Ronald

    2009-05-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressuization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 ft of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage is predicted under the ledge that forms the lower lobe in the cavern. The remaining caverns have no significant issues regarding cavern stability and may be safely enlarged during subsequent oil drawdowns. Predicted well strains and subsidence are significant and consequently future remedial actions may be necessary. These predicted well strains certainly suggest appropriate monitoring through a well-logging program. Subsidence is currently being monitored.

  9. Voluntary Protection Program Onsite Review, CH2M HILL B&W West Valley LLC, West Valley Demonstration Project Â… October 2013

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | Department ofVPV-SiteTestingOfficeU.S. DepartmentVPPPAM HILL B&W

  10. Death Valley TronaWestend

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nevada Test Site East Mormon Mountain Gold Point Delamar Valley Amargosa Valley Millers Dry Lake Dry Lake

  11. Closure Report for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-12-31

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 366 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended).

  12. West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest Coast PortReprocessing

  13. West Valley Demonstration Project Prepares to Relocate High-Level Waste |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest Coast

  14. West Valley Demonstration Project Low-Level Waste Shipment | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherize » Air SealingDepartmentWest Coast

  15. HISTORICAL VEGETATION AND DRAINAGE PATTERNS OF WESTERN SANTA CLARA VALLEY

    E-Print Network [OSTI]

    describing landscape ecology in Lower Peninsula, West Valley, and Guadalupe Watershed Management Areas San

  16. Revised Hydrogeology for the Suprabasalt Aquifer System, 200-West Area and Vicinity, Hanford Site, Washington

    SciTech Connect (OSTI)

    Williams, Bruce A.; Bjornstad, Bruce N.; Schalla, Ronald; Webber, William D.

    2002-05-14

    The primary objective of this study was to refine the conceptual groundwater flow model for the 200-West Area and vicinity. This is the second of two reports that combine to cover the 200 Area Plateau, an area that holds the largest inventory of radionuclide and chemical waste on the Hanford Site.

  17. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2004-03-02

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Previous Semi-Annual Technical Progress Reports presented the following: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Analyses of data conducted during the period from April 1, 2003 through September 30, 2003 are presented in this Semi-Annual Technical Progress Report. Report Revision No. 1 includes the additions or removals of text presented in the previous version of this report.

  18. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5)DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2003-04-30

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Analysis of data collected to date show that: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites, and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Data analysis focusing on relating the aerometric measurements to local and regional scale emissions of sources of primary and secondary fine particles using receptor-based air quality models will follow.

  19. Corrective Action Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996 as amended). CAU 366 consists of the following six Corrective Action Sites (CASs) located in Area 11 of the Nevada National Security Site: · CAS 11-08-01, Contaminated Waste Dump #1 · CAS 11-08-02, Contaminated Waste Dump #2 · CAS 11-23-01, Radioactively Contaminated Area A · CAS 11-23-02, Radioactively Contaminated Area B · CAS 11-23-03, Radioactively Contaminated Area C · CAS 11-23-04, Radioactively Contaminated Area D Site characterization activities were performed in 2011 and 2012, and the results are presented in Appendix A of the Corrective Action Decision Document (CADD) for CAU 366 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2012a). The following closure alternatives were recommended in the CADD: · No further action for CAS 11-23-01 · Closure in place for CASs 11-08-01, 11-08-02, 11-23-02, 11-23-03, and 11-23-04 The scope of work required to implement the recommended closure alternatives includes the following: · Non-engineered soil covers approximately 3 feet thick will be constructed at CAS 11-08-01 over contaminated waste dump (CWD) #1 and at CAS 11-08-02 over CWD #2. · FFACO use restrictions (URs) will be implemented for the areas where the total effective dose (TED) exceeds the final action level (FAL) of 25 millirems per Occasional Use Area year (mrem/OU-yr). The FAL is based on an assumption that the future use of the site includes occasional work activities and that workers will not be assigned to the area on a regular basis. A site worker under this scenario is assumed to be on site for a maximum of 80 hours per year for 5 years. The FFACO UR boundaries will encompass the areas where a worker would be exposed to 25 millirems of radioactivity per year if they are present for 80 hours per year. These boundaries will be defined as follows: – It is assumed that radiological contaminants are present at CAS 11-08-01 and CAS 11-08-02 within CWDs #1 and #2 at levels exceeding the FAL. Therefore, UR boundaries will be established around the perimeters of the soil covers that will be constructed at CWD #1 and CWD #2. A geophysical survey revealed buried metallic debris outside the fence and adjacent to CWD #1. Therefore, the UR boundary for CWD #1 will be expanded to include the mound containing buried material. – It is assumed that radiological contaminants are present at CAS 11-23-02, CAS 11-23-03, and CAS 11-23-04, within the three High Contamination Area (HCA) boundaries associated with the 11b, 11c, and 11d test areas at levels exceeding the FAL. Therefore, the UR boundaries will be established around the perimeters of the HCAs. The TED at an area of soil impacted by radiological debris outside the fence and adjacent to the 11c test area HCA exceeds the FAL of 25 mrem/OU-yr. Because the radiological impact from the debris at this location is visible on the aerial flyover radiological survey, all other areas within this isopleth of the flyover survey are conservatively also assumed to exceed the FAL. Therefore, the UR boundaries for the 11b, 11c, and 11d test areas will be expanded to include the areas within this isopleth. · The FFACO URs will all be located within the large Contamination Area (CA) that encompasses Plutonium Valley. Because access to the CA is limited and entry into the CA for post-closure inspections and maintenance would be impractical, UR warning signs will be posted along the existing CA fence. In accordance with the Soils Risk-Based Corrective Action Evaluation Process (NNSA/NSO, 2012b), an administrative UR will be implemented as a best management practice for the areas where the TED exceeds 25 millirems per Industrial Area year. This limit is based on continuous industrial use of the site and addresses exposure to industrial workers who would regularly be assigned to the work area for an entire career (250 days

  20. EM's Top Official Visits West Valley Site, Seneca Nation of Indians |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementof EnergyQuality'Lean' System |Oakof Energy

  1. Selection of area and specific site for drilling a horizontal well in Calhoun County, West Virginia

    SciTech Connect (OSTI)

    Reeves, T.K.; Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1992-03-01

    This report discusses the data collection and analysis procedures used to establish criteria for geologic and engineering studies conducted by BDM to select a general area for more detailed study and a specific site for the drilling of a cooperative well with an industry partner, the Consolidated Natural Gas Development Company (CNGD). The results of detailed geologic studies are presented for two areas in Calhoun County, West Virginia, and one area along the Logan-Boone County line in West Virginia. The effects of Appalachian Basin tectonics and the Rome Trough Rift system were identified on seismic lines made available by (CNGD). These helped to identify and define the trapping mechanisms which had been effective in each area. Engineering analyses of past production histories provided data to support selection of target areas and then to select a specific site that met the project requirements for production, reservoir pressure, and risk. A final site was selected in Lee District at the southwestern margin of the Sand Ridge gas field based on the combination of a geologic trapping mechanism and reservoir pressures which were projected as 580 psi with a stress ratio of 0.53.

  2. Site: Contract Name: Contractor: Contract Number: Contract Type...

    Office of Environmental Management (EM)

    33,802,034 Fee Information August 29, 2011 - March 9, 2020 0 NA EM Contractor Fee West Valley Demonstration Project - West Valley, NY West Valley Demonstration Project Phase 1...

  3. An Archaeological Survey of the Site of the Proposed Onalaska Junior/Senior High School in West-Central Polk, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-25

    A Phase I archaeological survey of a 75 acre tract in west-central Polk County, Texas was conducted in January of 2002 by Brazos Valley Research Associates (BVRA) in Bryan, Texas under Antiquities Permit 2783 issued by the Archeology Division, Texas...

  4. Corrective Action Decision Document for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-09-01

    CAU 366 comprises six corrective action sites (CASs): • 11-08-01, Contaminated Waste Dump #1 • 11-08-02, Contaminated Waste Dump #2 • 11-23-01, Radioactively Contaminated Area A • 11-23-02, Radioactively Contaminated Area B • 11-23-03, Radioactively Contaminated Area C • 11-23-04, Radioactively Contaminated Area D The purpose of this CADD is to identify and provide the rationale for the recommendation of corrective action alternatives (CAA) for the six CASs within CAU 366. Corrective action investigation (CAI) activities were performed from October 12, 2011, to May 14, 2012, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites.

  5. EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York

    Broader source: Energy.gov [DOE]

    The Naval Nuclear Propulsion Program (NNPP) intent to prepare an Environmental Assessment for a radiological work and storage building at the Knolls Atomic Power Laboratory (Kesselring Site in West Milton, New York. A new facility is needed to streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors.

  6. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site—10281

    SciTech Connect (OSTI)

    Waugh, W.J. [S.M. Stoller Corporation, Grand Junction, CO; Miller, D.E. [S.M. Stoller Corporation, Grand Junction, CO; Morris, S.A. [S.M. Stoller Corporation, Grand Junction, CO; Sheader, L.R. [S.M. Stoller Corporation, Grand Junction, CO; Glenn, E.P. [University of Arizona, Tucson, AZ; Moore, D. [University of Arizona, Tucson, AZ; Carroll, K.C. [University of Arizona, Tucson, AZ; Benally, L. [Navajo Nation, Window Rock, AZ; Roanhorse, M. [Navajo Nation, Window Rock, AZ; Bush, R.P. [U.S. Department of Energy, Grand Junction, CO; none,

    2010-03-07

    The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial groundwater plume spreading from the soil source where tailings were removed. Planting and irrigating two native shrubs, fourwing saltbush and black greasewood, markedly reduced both nitrate and ammonium in the source area over an 8-year period. Total nitrogen dropped from 350 mg/kg in 2000 to less than 200 mg/kg in 2008. Most of the reduction is attributable to irrigation-enhanced microbial denitrification rather than plant uptake. However, soil moisture and percolation flux monitoring show that the plantings control the soil water balance in the source area, preventing additional leaching of nitrogen compounds. Enhanced denitrification and phytoremediation also look promising for plume remediation. Microcosm experiments, nitrogen isotopic fractionation analysis, and solute transport modeling results suggest that (1) up to 70 percent of nitrate in the plume has been lost through natural denitrification since the mill was closed in 1968, and (2) injection of ethanol may accelerate microbial denitrification in plume hot spots. A field-scale ethanol injection pilot study is underway. Landscape-scale remote sensing methods developed for the project suggest that transpiration from restored native phreatophyte populations rooted in the aquifer could limit further expansion of the plume. An evaluation of landfarm phytoremediation, the irrigation of native shrub plantings with high nitrate water pumped from the alluvial aquifer, is also underway.

  7. Assessment of microbial processes on radionuclide mobility in shallow land burial. [West Valley, NY; Beatty, Nevada; Maxey Flats, Kentucky

    SciTech Connect (OSTI)

    Colombo, P.; Tate, R.L. III; Weiss, A.J.

    1982-07-01

    The impact of microbial metabolism of the organic substituents of low level radioactive wastes on radionuclide mobility in disposal sites, the nature of the microbial transformations involved in this metabolism and the effect of the prevailing environmental parameters on the quantities and types of metabolic intermediates accumulated were examined. Since both aerobic and anaerobic periods can occur during trench ecosystem development, oxidation capacities of the microbial community in the presence and absence of oxygen were analyzed. Results of gas studies performed at three commercial low level radioactive waste disposal sites were reviewed. Several deficiencies in available data were determined. Further research needs are suggested. This assessment has demonstrated that the biochemical capabilities expressed within the low level radioactive waste disposal site are common to a wide variety of soil bacteria. Hence, assuming trenches would not be placed in sites with such extreme abiotic conditions that all microbial activity is precluded, the microbial populations needed for colonization and decomposition of the organic waste substances are readily provided from the waste itself and from the soil of existing and any proposed disposal sites. Indeed, considering the ubiquity of occurrence of the microorganisms responsible for waste decomposition and the chemical nature of the organic waste material, long-term prevention of biodecomposition is difficult, if not impossible.

  8. Foraminifera and paleoenvironments in the Etchegoin and lower San Joaquin Formations, west-central San Joaquin valley, California

    SciTech Connect (OSTI)

    Lagoe, M.B.; Tenison, J.A.; Buehring, R. (Univ. of Texas, Austin (United States))

    1991-02-01

    The Etchegoin and San Joaquin formations preserve a rich stratigraphic record of paleoenvironments, deposition, and tectonics during the late Miocene-Pliocene development of the San Joaquin basin. The distribution of foraminifera within these formations can help constrain this record, which includes final filling of the basin, facies responses to sea level changes, and active movement on the San Andreas fault system. The distribution of foraminifera in core samples is analyzed from seven wells along the west-central San joaquin basin - four from Buena Vista oil field, one from western Elk Hills oil field, and two from an area just south of South Belridge oil field. A model of modern, shallow- to marginal-marine foraminiferal biofacies is used to interpret the Etchegoin-San Joaquin faunal distributions. This modern model distinguishes marsh, tidal channel, intertidal, lagoonal, littoral, and shallow sublittoral environments. Ongoing work calibrating this foraminiferal record to the lithologic and macrofossil records in addition to interpreted depositional systems within these formations will further define relationships between paleoenvironments, relative sea level, and tectonics.

  9. Startup of the New 200 West Pump-and-Treat, Hanford Site, Richland, Washington - 13214

    SciTech Connect (OSTI)

    Byrnes, Mark E.; Simmons, Sally; Morse, John

    2013-07-01

    On June 28, 2012, CH2M HILL Plateau Remediation Company (CHPRC) completed the construction and acceptance testing for a new 2,500 gallon-per-minute (gpm) pump-and-treat (P and T) system in the 200 West Area of the Hanford Site in Washington State. This system is designed to remove Tc-99, carbon tetrachloride, trichloroethene (TCE), nitrate, and total and hexavalent chromium from groundwater using ion exchange, anoxic and aerobic bioreactors, and air stripping. The system will eventually remove uranium from groundwater using ion exchange as well. The startup of the P and T system is important because it will ensure that contaminants from the 200 West Area never reach the Columbia River. When fully operational, the 200 West P and T will include approximately 23 extraction wells and 21 injection wells. The extraction wells are 8 inches in diameter, are completed with well screens 100 feet or more in length, and are distributed throughout the central portion of the 5-square-mile carbon tetrachloride plume. The injection wells are also 8 inches in diameter and are installed up-gradient of the plumes to recharge the aquifer and down-gradient of the plumes for flow-path control. Groundwater in the 200 West Area is approximately 250 feet below ground surface, and the aquifer is 200 feet or more in thickness. All of the contaminants (except nitrate) are found within the perimeter of the carbon tetrachloride plume and occur at various depths throughout the aquifer. The 200 West P and T consists of two separate buildings to conduct groundwater treatment. The RAD building contains an ion exchange system to remove Tc-99 from groundwater at a maximum flow rate of 600 gpm. The RAD building only accepts water from those extraction wells showing elevated Tc-99 concentrations. Groundwater initially fills an influent tank, is then pumped through particulate filters (to remove suspended materials), and then passes through two parallel treatment trains containing Purolite{sup R} A530E resin (which has been proven effective in removing Tc-99). The water is then transferred to the biological treatment building for further treatment. When the lead vessel in each of the two treatment trains becomes fully loaded with Tc-99, the Purolite A530E resin is transferred to a separate tank where it is heated to 160 deg. F to remove volatile organics prior to disposal at the Environmental Restoration Disposal Facility. The biological treatment building has a maximum flow capacity of 2,500 gpm. Groundwater from the nonradiological extraction wells and treated groundwater from the RAD building are initially pumped into an equalization tank and then into two parallel fluidized bed reactors (FBRs). The FBRs contain granulated activated carbon in suspension for microbes to populate, a carbon-based food source for the microbes to eat (e.g., MicroCg{sup TM}, molasses, or sodium lactate), and nitrate for the microbes to breathe (represents 'anoxic' conditions that contain little or no dissolved oxygen). The FBRs are maintained at a temperature between 55 deg. F and 90 deg. F, and at a pH between 6.5 and 6.8, to maximize microbial growth. The FBRs break down the nitrate, reduce the hexavalent chromium to trivalent chromium, and break down a good portion of the carbon tetrachloride and TCE. From the FBRs, groundwater is pumped through a carbon separation tank, then through a splitter box that divides the water evenly between four membrane bioreactors (MBRs) that further break down the contaminants. The MBRs have aeration capacity to provide sufficient oxygen for maintaining the aerobic biological process. The MBRs use submerged membranes for filtration. Vertically strung fibers are found in the membrane zone where a vacuum draws water through tiny pores in the fibers. The liquid is then pumped to air strippers to remove any volatile organics that have passed through the bioreactors. Solids from the MBRs are pumped to rotary drum thickeners and centrifuges for dewatering prior to lime being added to kill the bacteria and control odor. The conditioned sludge is then

  10. A Phase I Archaeological Survey of the Proposed Villa West Park in Central Brazos County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-08

    An archaeological survey of a 10.592 acre tract, the site of the proposed Villa West Park, was conducted in February 1998 by Brazos Valley Research Associates (BVRA) of Bryan, Texas with William E. Moore acting as Principal Investigator under...

  11. North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox

    E-Print Network [OSTI]

    Sacks, Benjamin N.; Statham, Mark J.; Perrine, John D.; Wisely, Samantha M.; Aubry, Keith B.

    2010-01-01

    to the Valley via transcontinental railway, after it reachedthe West along the transcontinental railway (e.g. , Wyoming,

  12. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  13. Long-term hydrologic monitoring program. Rulison Event Site, Grand Valley, Colorado

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The Hydrologic Program Advisory Group reviewed the Long-Term Hydrologic Monitoring Program proposed for the Rulison site at their December 12, 1971, meeting. Samples are collected annually, at about the same dates each year. The hydraulic head, temperature in /sup 0/C, pH, and electrical conductance are recorded at the time of sample collection. Prior to October 1, 1979, each sample was analyzed for gamma emitters and tritium. Gross alpha and beta radioactivity measurements were made on all samples collected. After October 1, 1979, these analyses were discontinued in favor of high-resolution gamma spectrometry using a GeLi detector. For each sample location, samples of raw water and filtered and acidified watar are collected. The raw water samples are analyzed for tritium by the conventional method. Those samples with concentrations that are below the detection level for this method are then analyzed by the enrichment method. Portions of the filtered and acidified samples are analyzed for gamma emitters.

  14. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  15. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-10-15

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day.

  16. An Archaeological Survey of the the Fire Lane Tank Project for the West Bell County Water Supply Corporation in Bell County Texas 

    E-Print Network [OSTI]

    Moore, William; Baxter, Edward

    2015-07-28

    An archaeological survey along a proposed pipeline (1.83 miles) and the site of two proposed ground water storage tanks (1/4 acre) in Bell County, Texas was performed by Brazos Valley Research Associates (BVRA) for the West Bell County Water Supply...

  17. Probabilistic Modeling and Phase 2 Decision Making at the West...

    Office of Environmental Management (EM)

    and Phase 2 Decision Making at the West Valley Demonstration Project and the Western New York Nuclear Service Center Probabilistic Modeling and Phase 2 Decision Making at the...

  18. Fatal Flaw Analysis of Utility-Scale Wind Turbine Generators at the West Haymarket Joint Public Agency. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-08-01

    Fatal flaw analysis of utility-scale wind turbines at the West Haymarket Joint Public Agency brownfields site in Lincoln, Nebraska, funded by EPA.

  19. Relationship between selenium body burdens and tissue concentrations in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site

    SciTech Connect (OSTI)

    Mathews, Teresa J; Fortner, Allison M; Jett, Robert T; Peterson, Mark J; Carriker, Neil; Morris, Jesse G; Gable, Jennifer

    2014-01-01

    In December 2008, 4.1 million m3 of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority (TVA) Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary, rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4-9 g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 g/g. In the present study we examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. While Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the five year period since the spill. Our results are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, our results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.

  20. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-04-15

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This semi-annual Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 2003 through March 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

  1. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-12-27

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This Final Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 1998 through December 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

  2. Phase I Archaeological Survey of Parcel ED-3 and Historic Assessement of the Happy Valley Worker Camp Roane County, Tennessee

    SciTech Connect (OSTI)

    New South Associates

    2009-08-17

    Parcel ED-3 was the location of a portion of 'Happy Valley', a temporary worker housing area occupied from 1943 to 1947 during the construction of the K-25 Oak Ridge Gaseous Diffusion Plant. The project was carried out under subcontract for the Department of Energy. The survey report will be used in the preparation of an Environmental Assessment under the National Environmental Policy Act (NEPA). New South Associates conducted a Phase I Archaeological Survey of Parcel ED-3 at the US Department of Energy's Oak Ridge Reservation in Roane County, Tennessee. The survey was conducted in two parts. The first survey was carried out in 2008 and covered an area measuring approximately 110 acres. The second survey took place in 2009 and focused on 72 acres west of the first survey area. The objective of the surveys was to identify any archaeological remains associated with Happy Valley and any additional sites on the property and to assess these sites for National Register eligibility. New South Associates also conducted a historic assessment to gather information on Happy Valley. This historic assessment was used in conjunction with the archaeological survey to evaluate the significance of the Happy Valley site. Archaeological remains of Happy Valley were located throughout the parcel, but no additional sites were located. The official state site number for Happy Valley is 40RE577. During the two surveys a total of 13 artifact concentrations, 14 isolated finds, and 75 structural features were located. Due to the Happy Valley's stron gassociation with the Manhattan Project, the site is recommended eligible for the National Register of Historic Places under Criterion A.

  3. Tanks Focus Area site needs assessment FY 2000

    SciTech Connect (OSTI)

    RW Allen

    2000-04-11

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). During the past year, the TFA established a link with DOE's Fernald site to exchange, on a continuing basis, mutually beneficial technical information and assistance.

  4. Analysis of cavern and well stability at the West Hackberry SPR site using a full-dome model.

    SciTech Connect (OSTI)

    Sobolik, Steven R.

    2015-08-01

    This report presents computational analyses that simulate the structural response of caverns at the Strategic Petroleum Reserve (SPR) West Hackberry site. The cavern field comprises 22 caverns. Five caverns (6, 7, 8, 9, 11) were acquired from industry and have unusual shapes and a history dating back to 1946. The other 17 caverns (101-117) were leached according to SPR standards in the mid-1980s and have tall cylindrical shapes. The history of the caverns and their shapes are simulated in a three-dimensional geomechanics model of the site that predicts deformations, strains, and stresses. Future leaching scenarios corresponding to oil drawdowns using fresh water are also simulated by increasing the volume of the caverns. Cavern pressures are varied in the model to capture operational practices in the field. The results of the finite element model are interpreted to provide information on the current and future status of subsidence, well integrity, and cavern stability. The most significant results in this report are relevant to Cavern 6. The cavern is shaped like a bowl with a large ceiling span and is in close proximity to Cavern 9. The analyses predict tensile stresses at the edge of the ceiling during repressurization of Cavern 6 following workover conditions. During a workover the cavern is at low pressure to service a well. The wellhead pressures are atmospheric. When the workover is complete, the cavern is repressurized. The resulting elastic stresses are sufficient to cause tension around the edge of the large ceiling span. With time, these stresses relax to a compressive state because of salt creep. However, the potential for salt fracture and propagation exists, particularly towards Cavern 9. With only 200 feet of salt between the caverns, the operational consequences must be examined if the two caverns become connected. A critical time may be during a workover of Cavern 9 in part because of the operational vulnerabilities, but also because dilatant damage is predicted under the ledge that forms the lower lobe in the cavern. The remaining caverns have no significant issues regarding cavern stability and may be safely enlarged during subsequent oil drawdowns. Predicted well strains and subsidence are significant and consequently future remedial actions may be necessary. These predicted well strains certainly suggest appropriate monitoring through a well-logging program. Subsidence is currently being monitored.

  5. Determining Mountaintop Mining Locations in West Virginia Using Elevation Datasets

    E-Print Network [OSTI]

    Rowland, Danny

    2009-11-18

    NED Orthoimagry downloaded from http://datagateway.nrcs.usda.gov/GatewayHome.html Orthoimagery of Area West Virginia Valley Fills & Forested Area ... NED Orthoimagry downloaded from http://datagateway.nrcs.usda.gov/GatewayHome.html Orthoimagery of Area West Virginia Valley Fills & Forested Area ...

  6. Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-09-01

    Corrective Action Unit 366 comprises the six corrective action sites (CASs) listed below: (1) 11-08-01, Contaminated Waste Dump No.1; (2) 11-08-02, Contaminated Waste Dump No.2; (3) 11-23-01, Radioactively Contaminated Area A; (4) 11-23-02, Radioactively Contaminated Area B; (5) 11-23-03, Radioactively Contaminated Area C; and (6) 11-23-04, Radioactively Contaminated Area D. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed July 6, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 366. The presence and nature of contamination at CAU 366 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated by summing the estimates of internal and external dose. Results from the analysis of soil samples collected from sample plots will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at each sample location will be used to measure external radiological dose. Based on historical documentation of the releases associated with the nuclear tests, it was determined that CASs 11-23-02, 11-23-03, and 11-23-04 will be investigated as one release site. The three test areas associated with these CASs are in close proximity; the devices tested were all composed of plutonium and enriched uranium; and the ground zeroes are all posted high contamination areas (HCAs). Because the device tested at CAS 11-23-01 was composed primarily of enriched uranium and the ground zero is not a posted HCA, the CAS will be investigated as a separate release. The DQO process also resulted in an assumption that TED within the HCAs and contaminated waste dumps exceeds the FAL and requires corrective action. A field investigation will be performed to define where TED exceeds the FAL and to determine whether other contaminants of concern are present at the site associated with other activities that took place at the site or from spills or waste discovered during the investigation. The presence and nature of contamination from other types of releases (such as migration and any potential releases discovered during the investigation) will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  7. Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation

    SciTech Connect (OSTI)

    None

    1982-01-01

    The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

  8. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stops on her tour was the site's largest groundwater treatment facility. The 200 West Pump and Treat System removes multiple chemical and radiological contaminants from...

  9. North Slope action holds West Coast spotlight

    SciTech Connect (OSTI)

    Wilson, H.M.

    1981-05-25

    The first oil from a North Slope reservoir outside Prudhoe Bay will begin flowing next year at rate of 80,000 bpd from Kuparuk field now under development by Atlantic Richfield Co. west of Prudhoe Bay. Just north of the Kuparuk development, Conoco Inc. has found a commercial reservoir in the Milne Point unit and will be drilling confirmation and delineation wells later this year and in 1982. Another area which very likely will be developed for production is located northeast of Prudhoe Bay, where Sohio Alaska Petroleum Co. has announced discoveries in 2 Sag Delta wells. In California's San Joaquin Valley, 3 Kern County fields - South Belridge, Elk Hills, and Lost Hills - are the sites of intensive drilling. Seven rigs are working in the Santa Barbara Channel, 3 of them developing known fields from permanent platforms.

  10. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Unknown

    2002-04-30

    The report discusses the following conclusions: (1) The TEOM equipment performed as well as the sequential filter samplers in accounting for ambient PM{sub 2.5} levels; however, the FRM-obtained data was consistently lower than the averages from the TEOM/DRI-SFS measurements; (2) The trending in the PM{sub 2.5} levels was similar for Lawrenceville and Holbrook, which represent an urban and a rural site sixty-five miles apart. This implies that the PM{sub 2.5} levels appear to be impacted more by regional than by local effects; (3) The absolute median PM{sub 2.5} levels were slightly higher for Lawrenceville than for Holbrook, implying that local urban environmental contributions had a minor but measurable effect on total PM{sub 2.5} mass concentration; (4) PM{sub 2.5} and PM{sub 10} mass concentration levels were consistently higher in summer than in winter, with intermediate levels observed in the spring and fall; (5) Sulfate levels predominated in the speciation data obtained from both the Holbrook and the Lawrenceville sites during winter and summer intensive sampling. Sulfate level measured at Holbrook were higher than those taken at Lawrenceville regardless of the season; (6) Ammonium levels remained relatively constant between seasons and between sites; (7) Nitrate levels measured at Lawrenceville were higher than those measured at Holbrook during winter intensive sampling. Nitrate levels measured during the summer intensive period were found to be very low at both locations; (8) In general, the predominant inorganic fraction of the samples analyzed could be described as being composed of a mixture of ammonium bisulfate and ammonium sulfate with minor amounts of ammonium nitrate; (9) The PM10 fraction had a larger percentage of geological material and a smaller percentage of condensable material (ammonium bisulfate, ammonium sulfate, ammonium nitrate and total carbon species) than the PM{sub 2.5} fraction for samples collected in winter at Lawrenceville; and (10) Most high PM{sub 2.5} episodes occurred when the predominating wind direction was from the South-West. (11) Plots of ozone vs. NO{sub x} suggest chemical reaction between these molecules since a high concentration of one always results in a low concentration of the other. The analysis of the acquired data has so far addressed three of the four scientific questions originally posed. More data analysis is on-going including the correlation between O{sub 3} and PM{sub 2.5} levels and the correlation of mass data with meteorological observations.

  11. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    to determine the most environmentally beneficial corrective measure(s) for each solid waste management unit. ESTABLISHING MILESTONES * Schedules and time limits for requirements...

  12. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    and technologies pursuant to Section 3021(b) of RCRA. C. In the event that the terms and conditions of this Order are inconsistent with those of the Plan Volume, the terms...

  13. West Valley Demonstration Project Transportation Emergency Management...

    Office of Environmental Management (EM)

    though the road is approximately 200 meters from the release point, and the projected dose is 1 rem at 500 meters. Discretionary footnotes for all EALs and a procedural step in...

  14. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    beneath the facility, including: i) ii) iii) iv) Regional and facility specific stratigraphy: description of strata including strike and dip, identification of stratigraphic...

  15. Coalition on West Valley Nuclear Wastes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation made by Joanne Hameister for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY.

  16. Independent Oversight Review, West Valley Demonstration Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformation Resources » GeothermalPerformance withtoof

  17. Enterprise Assessments Review, West Valley Demonstration Project -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartmentApril2014 | Department of Energy2014

  18. Enterprise Assessments Review, West Valley Demonstration Project -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartmentApril2014 | Department of

  19. Categorical Exclusion Determinations: West Valley Demonstration Project |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouth Dakota. DOCUMENTSEnergy Washington,

  20. Evidence for Multiple Glacial Advances and Ice Loading From a Buried Valley in Southern Manhattan

    E-Print Network [OSTI]

    Merguerian, Charles

    of unraveling glacial history. A site in lower Manhattan near the Brooklyn Bridge occupies a bedrock valley

  1. Geothermal Literature Review At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS exploration...

  2. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West...

  3. West Virginia University | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergy InformationWest CoastWestWest ValleyWest

  4. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    SciTech Connect (OSTI)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2002-01-17

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern zone of fractures is within Quaternary alluvial sediments, but no bedrock was encountered in trenches and soil pits in this part of the prospective surface facilities site; thus, the direct association of this zone with one or more bedrock faults is uncertain. No displacement of lithologic contacts and soil horizons could be detected in the fractured Quaternary deposits. The results of these investigations imply the absence of any appreciable late Quaternary faulting activity at the prospective surface-facilities site.

  5. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    84 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler...

  6. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boiler 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West...

  7. Tanks Focus Area (TFA) Site Needs Assessment FY 1999

    SciTech Connect (OSTI)

    RW Allen

    1999-05-03

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). This is the fifth edition of the TFA site needs assessment. As with previous editions, this edition serves to provide the basis for accurately defining the TFA program for the upcoming fiscal year (FY), and adds definition to the program for up to 4 additional outyears. Therefore, this version distinctly defines the FY 2000 progrti and adds further definition to the FY 2001- FY 2004 program. Each year, the TFA reviews and amends its program in response to site users' science and technology needs.

  8. Environmental monitoring report for commercial low-level radioactive waste disposal sites (1960`s through 1990`s)

    SciTech Connect (OSTI)

    1996-11-01

    During the time period covered in this report (1960`s through early 1990`s), six commercial low-level radioactive waste (LLRW) disposal facilities have been operated in the US. This report provides environmental monitoring data collected at each site. The report summarizes: (1) each site`s general design, (2) each site`s inventory, (3) the environmental monitoring program for each site and the data obtained as the program has evolved, and (4) what the program has indicated about releases to off-site areas, if any, including a statement of the actual health and safety significance of any release. A summary with conclusions is provided at the end of each site`s chapter. The six commercial LLRW disposal sites discussed are located near: Sheffield, Illinois; Maxey Flats, Kentucky; Beatty, Nevada; West Valley, New York; Barnwell, South Carolina; Richland, Washington.

  9. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  10. Low velocity zone under Long Valley as determined from teleseismic events

    E-Print Network [OSTI]

    Steeples, Don W.; Lyer, H. M.

    1976-02-10

    A temporary seismograph station network was used to estimate teleseismic P wave residuals in the vicinity of Long Valley geothermal area, California. Relative P wave delays of 0.3 s persist at stations in the west central part of the Long Valley...

  11. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284...

  12. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    SciTech Connect (OSTI)

    Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States)] [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)] [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  13. West Texas Rain 

    E-Print Network [OSTI]

    Supercinski, Danielle

    2006-01-01

    Commission, Culberson County Underground Water District and county officials to install a 2,500-gallon rainwater harvesting tank at the Culberson County Courthouse. West Texas Rain Rainwater harvesting demonstration sites save water and money (Above... Left) One of the three rainwater harvesting demonstrations is located at the Culberson County Courthouse in Van Horn. This 2,500-gallon tank has been installed to catch and store the rainwater. (Above Right) Landscape irrigation using the harvested...

  14. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model

    SciTech Connect (OSTI)

    Pohlmann Karl,Ye Ming

    2012-03-01

    Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

  15. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    2015-04-13

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  16. Surprise Valley water geochmical data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicolas Spycher

    Chemical analyses of thermal and cold ground waters from Surprise Valley, compiled from publicly available sources.

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    NM (United States) Weldon Spring Site Remedial Action Project, MO (United States) West Valley Demonstration Project, West Valley, NY (United States) Western Area Power...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Pilot Plant (WIPP), Carlsbad, NM (United States) Weldon Spring Site Remedial Action Project, MO (United States) West Valley Demonstration Project, West Valley, NY (United...

  19. Geometry of Valley Growth

    E-Print Network [OSTI]

    Petroff, Alexander P; Abrams, Daniel M; Lobkovsky, Alexander E; Kudrolli, Arshad; Rothman, Daniel H

    2011-01-01

    Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi.

  20. Harlequin Duck Histrionicus histrionicus distribution and stonefly nymph availability in the Maligne Valley

    E-Print Network [OSTI]

    Harlequin Duck Histrionicus histrionicus distribution and stonefly nymph availability and stonefly (Plecoptera) nymph availability in the Maligne Valley watershed, Jasper National Park, Canada the two sites with high nymph availability (MLO and Lower Maligne) than the site with low nymph

  1. NV PFA - Steptoe Valley

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  2. A Phase I Archaeological Survey of the 10 Inch Force Main Relocation Project in West Central Polk County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-11

    A Phase I archaeological survey of approximately 6400 linear feet of rerouted force main in west-central Polk County, Texas was conducted in October 1999 by Brazos Valley Research Associates under antiquities permit 2266 issued by the Division...

  3. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  4. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basin K West Demoltion K West Demoltion Silo Demolition After Silo Demolition After Drilling Groundwater Well 200 West Area Drilling Groundwater Well 200 West Area 74155-8...

  5. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.jpg Gallery: 284 West Boiler Demolition Title: 284 West Boiler Demolition 284 West Boiler Demolition Name: 284 West Boiler Demolition Document Date: 09012011 Keywords:...

  6. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.jpg Gallery: 284 West Boiler Demolition Title: 284 West Boiler Demolition 284 West Boiler Demolition Name: 284 West Boiler Demolition Document Date: 09012011 Keywords:...

  7. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.jpg Gallery: 284 West Boiler Demolition Title: 284 West Boiler Demolition 284 West Boiler Demolition Name: 284 West Boiler Demolition Document Date: 09012011 Keywords:...

  8. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.jpg Gallery: 284 West Boiler Demolition Title: 284 West Boiler Demolition 284 West Boiler Demolition Name: 284 West Boiler Demolition Document Date: 09012011 Keywords:...

  9. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6.jpg Gallery: 284 West Boiler Demolition Title: 284 West Boiler Demolition 284 West Boiler Demolition Name: 284 West Boiler Demolition Document Date: 09012011 Keywords:...

  10. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Mass Laboratory Demolition 209-E Critical Mass Laboratory Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler Demolition 284 West Boiler...

  11. Monument Valley, Arizona, Processing Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the Weldon Spring, Missouri,MSEReportyGWSHP

  12. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    SciTech Connect (OSTI)

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  13. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    SciTech Connect (OSTI)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  14. Session: Long Valley Exploratory Well

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

  15. Elk Valley Rancheria- 2010 Project

    Broader source: Energy.gov [DOE]

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  16. Environmental consequences of postulated radionuclide releases from the Battelle Memorial Institute Columbus Laboratories JN-1b Building at the West Jefferson site as a result of severe natural phenomena

    SciTech Connect (OSTI)

    Jamison, J.D.; Watson, E.C.

    1982-02-01

    Potential environmental consequences in terms of radiation dose to people are presented for postulated radionuclide releases caused by severe natural phenomena at the Battelle Memorial Institute Columbus Laboratories JN-1b Building at the West Jefferson site. The severe natural phenomena considered are earthquakes, tornadoes, and high straight-line winds. Maximum radioactive material deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum radioactive material deposition values likely to occur offsite are also given. The most likely calculated 50-year collective committed dose equivalents are all much lower than the collective dose equivalent expected from 50 years of exposure to natural background radiation and medical x-rays. The most likely maximum residual plutonium contamination estimated to be deposited offsite following the events are well below the Environmental Protection Agency's (EPA) proposed guideline for plutonium in the general environment of 0.2 ..mu..Ci/m/sup 2/. The likely maximum residual contamination from beta and gamma emitters are far below the background produced by fallout from nuclear weapons tests in the atmosphere.

  17. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SitllwaterCarpenter Drilling Groundwater Well 200 West Area Drilling Groundwater Well 200 West Area...

  18. West Puente Valley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources JumpChicago,Islip,Point Treatment PlantPuente

  19. Office of Enterprse Assessments Review of the West Valley Demonstratio...

    Broader source: Energy.gov (indexed) [DOE]

    Deputy Director, Office of Enterprise Assessments Thomas R. Staker, Director, Office of Environment, Safety and Health Assessments Quality Review Board William A. Eckroade Thomas...

  20. Incidental-to-Reprocessing Evaluation for the West Valley Demonstratio...

    Office of Environmental Management (EM)

    is consulting with the NRC before finalizing the Evaluation. The CFMT and MFHT are two vessels (also referred to as "the vessels") that were used as part of DOE's process to...

  1. West Valley Demonstration Project: A Short History and Status

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation made by Bryan C. Bower for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY.

  2. Fate of Contaminants in Contact with West Valley Grouts

    SciTech Connect (OSTI)

    Fuhrmann,M.; Gillow, J.

    2009-07-01

    The objective of the work described here is to determine to what extent a variety of contaminants, including fission products, actinides, and RCRA elements are sequestered by the two grout formulations. The conceptual model for this study is as follows: a large mass of grout having been poured into a high-level waste tank is in the process of aging and weathering for thousands of years. The waste remaining in the tank will contain radionuclides and other contaminants, much of which will adhere to tank walls and internal structures. The grout will encapsulate the contaminants. Initially the grout will be well sequestered, but over time rainwater and groundwater will gain access to it. Ultimately, the grout/waste environment will be an open system. In this condition water will move through the grout, exposing it to O{sub 2} and CO{sub 2} from the air and HCO{sub 3}{sup -} from the groundwater. Thus we are considering an oxic environment containing HCO{sub 3}{sup -}. Initially the solubility of many contaminants, but not all, will be constrained by chemistry dominated by the grout, primarily by the high pH, around 11.8. This is controlled and buffered by the portland cement and blast furnace slag components of the grout, which by themselves maintain a solution pH of about 12.5. Slowly the pH will diminish as Ca(OH){sub 2} and KOH dissolve, are carried away by water, and CaCO{sub 3} forms. As these conditions develop, the behavior of these elements comes into question. In our conceptual model, although the grout is formulated to provide some reducing capacity, in order to be conservative this mechanism is not considered. In addition to solubility constraints imposed by pH, the various contaminants may be incorporated into a variety of solid phases. Some may be incorporated into newly forming compounds as the grout sets and cures. Others (like soddyite, (UO{sub 2}){sub 2}SiO{sub 4}(H{sub 2}O){sub 2}) are the result of slower reactions but may become important over time as contaminants are exposed to evolving chemistry in the grout. Still other solid phases may form from reactions between the waste and grout components, not only the cementitious materials, but also the additives used in the grout. Another process that may exert some control on contaminant concentrations is adsorption onto solids within the grout. These may be additives such as the fluorapatite or zeolite that are substantial percentages of the grouts or they may be minerals, typically Ca-Al-Si materials, that form in the grout system as cement sets. In addition, as the grout weathers over time, CaCO{sub 3} minerals, such as calcite and aragonite, will form as a rind on the grout and as a fracture filling mineral. Some contaminants are likely to be incorporated into these minerals, to a greater or lesser extent, as they precipitate. For some elements, such as U, there is a significant literature exploring the incorporation into CaCO{sub 3}, but for others there is essentially no information. This is also the case for much of the chemical regime of the grouts. Initial conditions are at pH values around 12 and information is often sparse.

  3. West Valley Demonstration Project High-Level Waste Management

    Office of Environmental Management (EM)

    Future Successes Alternate Canister Storage. Various commercially available dry storage systems exist with potential applicability for the passive dry storage of WVDP HLW...

  4. DOE - Office of Legacy Management -- West Valley Demonstration Project - NY

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers Co -VA 03WashingtonLake Landfill

  5. West Valley Demonstration Project Phase I Decommissioning - Facility

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions | DepartmentResidentialJeannieEnergyofFrom< BackofDisposition

  6. DOE Releases Request for Information for the West Valley Demonstration

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics »Application for RefundEnergy CyborgeGrows |Recovery Act FieldProject

  7. Enforcement Letter, West Valley Nuclear Services - March 30, 1998 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartmentApril 13, 2010 |Department of Energy

  8. Independent Activity Report, West Valley Demonstration Project - July 2012

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OF DESIGN CODES TOSummaryPlantMarch 2013 | Department|

  9. DOE Issues RFP for West Valley Demonstration Project Probabilistic

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal AviationSynchrophasor Engineeringof

  10. DOE Awards Contract for the West Valley Demonstration Project Probabilistic

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pState Efficiency,Energy News Media ContactAs part of its

  11. 2012 Annual Planning Summary for West Valley Demonstration Project |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t aReliabilityDepartment

  12. 2014 Annual Planning Summary for the West Valley Demonstration Project |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof Energy determined that no newDepartment

  13. Thanksgiving Goodwill: West Valley Demonstration Project Food Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearchEnergy2 DOE Hydrogen

  14. Waste-Incidental-to-Reprocessing Evaluation for the West Valley

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington , DC 20585

  15. Urban carbon dioxide cycles within the Salt Lake Valley: A multiplebox model validated by observations

    E-Print Network [OSTI]

    Ehleringer, Jim

    Urban carbon dioxide cycles within the Salt Lake Valley: A multiplebox model validated within Salt Lake Valley, Utah, USA. The model was forced by observed winds, soundingderived mixing depths, and ecosystem type. The model was validated using hourly CO2 mole fractions measured at five sites in the urban

  16. Ground-water flow and recharge in the Mahomet Bedrock Valley Aquifer, east-central Illinois: A conceptual model based on hydrochemistry

    SciTech Connect (OSTI)

    Panno, S.V.; Hackley, K.C.; Cartwright, K.; Liu, C.L. (Illinois State Geological Survey, Champaign, IL (United States))

    1994-04-01

    Major-ion and isotopic analyses of ground water have been used to develop a conceptual model of flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA). The MVA is composed of clean, permeable sands and gravels and forms a basal'' fill up to 60 m thick in a buried, west-trending bedrock valley. A thick succession of glacial tills, some containing interbedded lenses of sand and gravel, covers the MVA. Three regions within the MVA have hydrochemically distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west.

  17. West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report

    SciTech Connect (OSTI)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J.

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West 200 West Facility Under Construction 200 West Facility Under Construction Bio-Process Building under construction Bio-Process Building under construction Placing a tank in the...

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Facility Aerial Photo of 200 West Groundwater Treatment Facility Drilling a Well Drilling a Well 200 West Facility Under Construction 200 West Facility Under...

  20. Modeling of Carbon Tetrachloride Flow and Transport in the Subsurface of the 200 West Disposal Sites: Large-Scale Model Configuration and Prediction of Future Carbon Tetrachloride Distribution Beneath the 216-Z-9 Disposal Site

    SciTech Connect (OSTI)

    Oostrom, Mart; Thorne, Paul D.; Zhang, Z. F.; Last, George V.; Truex, Michael J.

    2008-12-17

    Three-dimensional simulations considered migration of dense, nonaqueous phase liquid (DNAPL) consisting of CT and co disposed organics in the subsurface as a function of the properties and distribution of subsurface sediments and of the properties and disposal history of the waste. Simulations of CT migration were conducted using the Water-Oil-Air mode of Subsurface Transport Over Multiple Phases (STOMP) simulator. A large-scale model was configured to model CT and waste water discharge from the major CT and waste-water disposal sites.

  1. Pennsylvania Nuclear Profile - Beaver Valley

    U.S. Energy Information Administration (EIA) Indexed Site

    Beaver Valley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  2. Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chelsea Lancelle

    2013-09-10

    Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.

  3. Metadata for PoroTomo Project Subtask 3.2 DAS at Garner Valley

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chelsea Lancelle

    Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.

  4. West Windsor Grad College

    E-Print Network [OSTI]

    PTS Apartments West Windsor Campus MarketFair Princeton Station PTS Main Campus & Grad College Friend Center Woodrow Wilson PTS Main Campus & Grad College Princeton Station PTS Apartments West Windsor

  5. Ward Valley status report: Science versus politics. Which will win?

    SciTech Connect (OSTI)

    Pasternak, A.D.

    1996-10-01

    The State of California has issued a license to US Ecology, Inc. to construct and operate a disposal facility for low-level radioactive waste (LLRW) at the remote, arid Ward Valley site in the Mojave Desert. The license and certification of the associated environmental documentation have been upheld by the California courts. The Ward Valley license is the first and, so far, only license to be issued for a new LLRW disposal facility pursuant to the Low-Level Radioactive Waste Policy Act enacted in 1980 and amended in 1985. However, the dates of construction and operation of the disposal facility are uncertain because the federal government has refused to sell land in Ward Valley to the State of California for the site of the Southwestern Compact`s regional disposal facility. The Clinton Administration`s repeated excuses for delaying the land transfer, and the circumstances of these delays, indicate that prospects for success of the Ward Valley project, and perhaps the Policy Act itself, depend on the outcome of a battle between science and politics. In view of these delays by the administration, Congressional action to Transfer the Ward Valley lands to California will serve both state and federal goals for safe disposal of LLRW.

  6. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W Pump & Treat March 24 216.jpg Gallery: 200 West Pump and Treat Title: 200 West Facility Under Construction 200 West Facility Under Construction Name: 200 West Facility Under...

  7. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    200 West Pump and Treat Aerial.jpg Gallery: Groundwater Treatment Record Title: 200 West Pump and Treat System 200 West Pump and Treat System Name: 200 West Pump and Treat System...

  8. Spring Valley Public Utilities - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    LED Lighting Program Info Sector Name Utility Administrator Spring Valley Public Utilities Website http:www.SaveEnergyInSpringValley.com State Minnesota Program Type Rebate...

  9. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -ZP-1 Drilling Groundwater Well 200 West Area Drilling Groundwater Well 200 West Area Soil & Groundwater Remediation Soil & Groundwater Remediation...

  10. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powerhouse Walk Down Powerhouse Walk Down Drilling Groundwater Well 200 West Area Drilling Groundwater Well 200 West Area...

  11. Parkersburg, West Virginia, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TACe - .'pJ3u ;;;:: A' 3

  12. Middle Valley, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO isMickeyWest Energy JumpValley, Tennessee:

  13. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds,convection defined by theNiamey, Niger, WestGanges Valley,

  14. Soil Dynamics and Earthquake Eng., 38, pp. 15-24, 2012 http://dx.doi.org/10.1016/j.soildyn.2012.02.001 Site effects in an alpine valley with strong velocity gradient

    E-Print Network [OSTI]

    Boyer, Edmond

    velocity gradient between surface geological structures. In the framework of a numerical benchmark [21 alternative for future 3D simulations. 1. Introduction The local geological structure of a site can strongly ones. Both experimental and numerical approaches allow the characterization of site effects. Various

  15. Aquatic Ecosystem Enhancement at Mountaintop Mining Sites Symposium

    SciTech Connect (OSTI)

    Black, D. Courtney; Lawson, Peter; Morgan, John; Maggard, Randy; Schor, Horst; Powell, Rocky; Kirk, Ed. J.

    2000-01-12

    Welcome to this symposium which is part of the ongoing effort to prepare an Environmental Impact Statement (EIS) regarding mountaintop mining and valley fills. The EIS is being prepared by the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, U.S. Office of Surface Mining, and U.S. Fish and Wildlife Service, in cooperation with the State of West Virginia. Aquatic Ecosystem Enhancement (AEE) at mountaintop mining sites is one of fourteen technical areas identified for study by the EIS Interagency Steering Committee. Three goals were identified in the AEE Work Plan: 1. Assess mining and reclamation practices to show how mining operations might be carried out in a way that minimizes adverse impacts to streams and other environmental resources and to local communities. Clarify economic and technical constraints and benefits. 2. Help citizens clarify choices by showing whether there are affordable ways to enhance existing mining, reclamation, mitigation processes and/or procedures. 3. Ide identify data needed to improve environmental evaluation and design of mining projects to protect the environment. Today’s symposium was proposed in the AEE Team Work Plans but coordinated planning for the event began September 15, 1999 when representatives from coal industry, environmental groups and government regulators met in Morgantown. The meeting participants worked with a facilitator from the Canaan Valley Institute to outline plans for the symposium. Several teams were formed to carry out the plans we outlined in the meeting.

  16. Climate Response to Irrigation in the American West Benjamin J. Wauer

    E-Print Network [OSTI]

    Maryland at College Park, University of

    Plains, and concentrated in the valleys of the Sacramento River in California, and Columbia and Snake suggests that in the western plains the dominance of positive or negative feedback is determined West has undergone significant changes over the last 200 years. A rough terrain of woodlands, plains

  17. Aerial photographic interpretation of lineaments and faults in late cenozoic deposits in the Eastern part of the Benton Range 1:100,000 quadrangle and the Goldfield, Last Chance Range, Beatty, and Death Valley Junction 1:100,000 quadrangles, Nevada and California

    SciTech Connect (OSTI)

    Reheis, M.C.; Noller, J.S.

    1991-09-01

    Lineaments and faults in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous with respect to the typical fault patterns in most of the Great Basin. Little work has been done to identify and characterize these faults, with the exception of those in the Death Valley-Furnace Creek (DVFCFZ) fault system and those in and near the Nevada Test Site. Four maps at a scale of 1:100,000 summarize the existing knowledge about these lineaments and faults based on extensive aerial-photo interpretation, limited field investigations, and published geologic maps. The lineaments and faults in all four maps can be divided geographically into two groups. The first group includes west- to north-trending lineaments and faults associated with the DVFCFZ and with the Pahrump fault zone in the Death Valley Junction quadrangle. The second group consists of north- to east-northeast-trending lineaments and faults in a broad area that lies east of the DVFCFZ and north of the Pahrump fault zone. Preliminary observations of the orientations and sense of slip of the lineaments and faults suggest that the least principle stress direction is west-east in the area of the first group and northwest-southeast in the area of the second group. The DVFCFZ appears to be part of a regional right-lateral strike-slip system. The DVFCFZ steps right, accompanied by normal faulting in an extensional zone, to the northern part of the Walker Lane a the northern end of Fish Lake Valley (Goldfield quadrangle), and appears to step left, accompanied by faulting and folding in a compressional zone, to the Pahrump fault zone in the area of Ash Meadows (Death Valley Junction quadrangle). 25 refs.

  18. Retrofitting the Tennessee Valley Authority

    E-Print Network [OSTI]

    Zeiber, Kristen (Kristen Ann)

    2013-01-01

    As the flagship of the New Deal, the Tennessee Valley Authority (TVA) was a triumph of regional and environmental design that has since fallen on hard times. When writer James Agee toured the region in 1935, he described ...

  19. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

  20. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect (OSTI)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  1. Environmental geophysics of the Pilot Plant on the west branch of Canal Creek, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    McGinnis, L.D.; Miller, S.F.; Daudt, C.R.; Thompson, M.D.; Borden, H.; Benson, M.; Wrobel, J.

    1994-05-01

    Plans to demolish and remediate the Pilot Plant complex in the Edgewood Area of Aberdeen Proving Ground have served to initiate a series of nonintrusive, environmental-geophysical studies. The studies are assisting in the location and identification of pipes, tanks, trenches, and liquid waste in the subsurface. Multiple databases have been integrated to provide support for detection of underground utilities and to determine the stratigraphy and lithology of the subsurface. The studies were conducted within the double security fence and exterior to the double fence, down gradient toward the west branch of Canal Creek. To determine if contaminants found in the creek were associated with the Pilot Plant, both the east and west banks were included in the study area. Magnetic, conductivity, inductive emf, and ground-penetrating-radar anomalies outline buried pipes, trenches, and various pieces of hardware associated with building activities. Ground-penetrating-radar imagery also defines a paleovalley cut 30 ft into Potomac Group sediments of Cretaceous age. The paleovalley crosses the site between Building E5654 and the Pilot Plant fence. The valley is environmentally significant because it may control the pathways of contaminants. The Pilot Plant complex was used to manufacture CC2 Impregnite and incapacitating agents; it also served as a production facility for nerve agents.

  2. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect (OSTI)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  3. Geoarchaeology in the Current River Valley, Ozark National Scenic Riverways, Southeast Missouri

    E-Print Network [OSTI]

    Dempsey, Erin Caitlin

    2012-08-31

    valley landform sediment assemblage…………………. 24 3.1 Pre-Clovis sites and their ages, issues with acceptance, and references……………….. 44 4.1 Quantification of horizon properties for calculating horizon morphology index (HDI) values... in the Current River valley with the goal of locating pre-Clovis deposits (Mandel 2009; Ray and Mandel 2010). The research presented in this dissertation was designed to supplement ODYSSEY’s work. In this dissertation, I determined the geologic potential...

  4. Detection of CO2 Seepage From Geological Sequestration Sites Using an Array of Downhole Pressure Gauges Jalal Jalali, Shahab D. Mohaghegh, Dept. of Petroleum & Natural Gas Engineering, West Virginia University

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Gauges Jalal Jalali, Shahab D. Mohaghegh, Dept. of Petroleum & Natural Gas Engineering, West Virginia performance, and CO2 breakthrough. Installation and usage of PDGs has become common in oil and gas field and amount of gas CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION ObjectiveObjectiveObjectiveObjective The objective

  5. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Name: 284 West Boiler Demolition Document Date: 09012011 Keywords: demolition, Recovery Act, Central Plateau, 284 West, boiler, industrial Official Building Numbers: 284...

  6. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility 200 West Facility Under Construction 200 West Facility Under Construction Bio-Process Building under construction Bio-Process Building under construction Placing a tank in...

  7. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    treatment 200 West Facility Under Construction 200 West Facility Under Construction Bio-Process Building under construction Bio-Process Building under construction Placing a tank...

  8. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    200 West Facility Under Construction 200 West Facility Under Construction Bio-Process Building under construction Bio-Process Building under construction Placing a tank in the...

  9. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    183 KW Sedimentation Basin 183 KW Debris Removal 183 KW Debris Removal Soil Removal Soil Removal Drilling Groundwater Well 200 West Area Drilling Groundwater Well 200 West Area...

  10. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BC-5 100 BC Soil Sampling 100 BC Soil Sampling Drilling Groundwater Well 200 West Area Drilling Groundwater Well 200 West Area...

  11. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallery: Secretary Ernest Moniz Visits Hanford Title: Sectretary Moniz Tours 200 West Pump and Treat Sectretary Moniz Tours 200 West Pump and Treat Name: Sectretary Moniz Tours...

  12. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pump and treat 200 West Facility Under Construction 200 West Facility Under Construction Bio-Process Building under construction Bio-Process Building under construction Placing a...

  13. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31.jpg Gallery: 200 West Pump and Treat Title: Keywords: 200 West, pump and treat, groundwater Description: Structural steel is hoisted for placement...

  14. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Pump and Treat All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K West Sludge Retrieval Search Search Search Filter: K West Sludge Retrieval All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility...

  16. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    groundwater 200 West Facility Under Construction 200 West Facility Under Construction Bio-Process Building under construction Bio-Process Building under construction Placing a tank...

  17. EVIDENCE OF ELEVATED OZONE CONCENTRATIONS ON FORESTED SLOPES OF THE LOWER FRASER VALLEY, BRITISH

    E-Print Network [OSTI]

    McKendry, Ian

    EVIDENCE OF ELEVATED OZONE CONCENTRATIONS ON FORESTED SLOPES OF THE LOWER FRASER VALLEY, BRITISH, hourly average ozone concentrations were mea- sured at three sites of differing elevation (188, 588. Sites experienced ozone concentrations ranging from 0 to 88 ppb in 2001, and 0 to 96 ppb in 2002. Daily

  18. Explosion at Hapton Valley Colliery, Lancashire 

    E-Print Network [OSTI]

    Stephenson, H. S.

    MINISTRY OF POWER EXPLOSION AT HAPTON VALLEY COLLIERY, LANCASHIRE REPORT On the causes of, and circumstances attending, the Explosion which occurred at Hapton Valley Colliery, Lancashire, on 22nd March, 1962 By H. S. ...

  19. City of Sunset Valley- PV Rebate Program

    Broader source: Energy.gov [DOE]

    The Sunset Valley rebate is $1.00 per watt (W) up to 3,000 W. In order to qualify for the Sunset Valley rebate, the system must first qualify for an Austin Energy rebate. In addition, the system...

  20. Microearthquakes in and near Long Valley, California

    E-Print Network [OSTI]

    Steeples, Don W.; Pitt, A. M.

    1976-02-10

    Sixteen portable seismograph stations were deployed in the vicinity of the Long Valley geothermal area, California, from April 27 to June 2, 1973. Only minor microearthquake activity was detected in the Long Valley caldera, but a high level...

  1. Charleston folio, West Virginia 

    E-Print Network [OSTI]

    Campbell, Marius R. (Marius Robinson), 1858-1940.

    1901-01-01

    The Virginia Military Institute, along with other Southern military colleges, is almost always historically viewed within the context of their contributions during the Civil War. VMI, and other "West Points of the Confederacy," were founded long...

  2. Water in the West

    E-Print Network [OSTI]

    Fahlund, Andrew; Choy, Min L. Janny; Szeptycki, Leon

    2014-01-01

    faced with the imperative that water is vital to all life onChoy* and Leon Szeptycki Water in the West Keywords: climategreen infrastructure; water; water-energy; water governance;

  3. Buckhannon folio, West Virginia 

    E-Print Network [OSTI]

    Taff, Joseph A. (Joseph Alexander), b. 1862.; Brooks, Alfred H. (Alfred Hulse), 1871-1924.

    1896-01-01

    of spiders throughout the state. Misumenops spp. were most abundant in West and Northwest Texas, with M. celer (Hentz) the most common species in these areas. Oxyopes saiticus was the most abundant spider in all areas of the state except West, Northwest... could then be eliminated as an important factor in predicting the dynamics of other arthropods. The cotton fleahopper (Pseudatomoscelis seriatus [Reuter]) model (Hartstack and Sterling 1986) uses numbers of six spider species to predict fleahopper...

  4. A Secret Alpine Valley Jerry R. Hobbs

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    A Secret Alpine Valley Jerry R. Hobbs Years ago when I was hiking through the Alps in Switzerland, I reached the top of the high pass called Bonderkrinde, just before the town of Kan­ dersteg valley and 1100 feet above, there is another, smaller, secret valley---the Gasterntal. Flat green fields

  5. A Secret Alpine Valley Jerry R. Hobbs

    E-Print Network [OSTI]

    Hobbs, Jerry R.

    A Secret Alpine Valley Jerry R. Hobbs Years ago when I was hiking through the Alps in Switzerland, I reached the top of the high pass called Bonderkrinde, just before the town of Kan- dersteg valley and 1100 feet above, there is another, smaller, secret valley--the Gasterntal. Flat green fields

  6. MANAGEMENT OF AGRICULTURAL WASTES LOWER FRASER VALLEY

    E-Print Network [OSTI]

    #12;MANAGEMENT OF AGRICULTURAL WASTES IN THE LOWER FRASER VALLEY SUMMARY REPORT - A WORKING DOCUMENT Presented on Behalf of: The Management of Agricultural Wastes in the Lower Fraser Valley Program of the Agricultural Nutrient Management in the Lower Fraser Valley program. The ideas and opinions expressed herein do

  7. An Archaeological Survey for the Las Palmas Wastewater Collection System Improvement Project in West-Central Zapata County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-30

    An archaeological survey of the route of a proposed sanitary sewer line in west-central Zapata County, Texas was performed by Brazos Valley Research Associates (BVRA) on March 23, 2010 under Antiquities Permit 5581 for the County of Zapata. Two...

  8. Charleston, West Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing World Technologies JumpChaplin,ValleyWest

  9. TAILINGS FANS AND VALLEY-SPUR CUTOFFS 869 Copyright 2004 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms 29, 869882 (2004)

    E-Print Network [OSTI]

    James, L. Allan

    2004-01-01

    of natural earthfill dam spillway not prone to catastrophic failures. Tailing fans, valley-spur cutoffs Superfund cleanup site to remove mercury. Some large tailings fans dammed main channels resulting in lakesTAILINGS FANS AND VALLEY-SPUR CUTOFFS 869 Copyright © 2004 John Wiley & Sons, Ltd. Earth Surf

  10. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    SciTech Connect (OSTI)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; McCurdy, Greg; Campbell, Scott

    2013-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4 Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of conveying soil from areas of surface contamination offers the most efficient means to confirm that surface runoff may transport radioactive contamination as a result of ambient precipitation/runoff events. Closure plans being developed for the CAUs on the NNSS may include post-closure monitoring for possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient meteorological conditions will facilitate an appropriate closure design and post-closure monitoring program.

  11. Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee

    SciTech Connect (OSTI)

    Birdwell, Kevin R [ORNL

    2011-05-01

    This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds flowed on-axis only 40% of the time. The Great Smoky Mountains helped create down-valley pressure-driven winds, downslope mountain breezes, and divergent air flow. The Cumberland Mountains and Plateau were associated with wind speed reductions in the Central Great Valley, Emory Gap Flow, weak thermally-driven winds, and northwesterly down sloping. Ridge-and-valley terrain enhanced wind direction reversals, pressure-driven winds, as well as locally and regionally produced thermally-driven flow.

  12. West Virginia University 1 Governance and Administration

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University 1 Governance and Administration In this Section: · Governor of West · West Virginia University Administration · Senior Administration · Deans · Directors Governor of West, religion, sexual orientation, color, or national origin in the administration of any of its educational

  13. The Hunter Valley Access Undertaking

    E-Print Network [OSTI]

    Bordignon, Stephen; Littlechild, Stephen

    2012-04-25

      13  FERC  staff  play  a  similar  role  with  respect  to  rate  applications  by  interstate  pipeline  and  transmission networks in the US. (Littlechild 2011)  EPRG No.1206...  coal from mines in the Hunter Valley region to  the Port of Newcastle  for export. Approximately 16  coal producers have either  existing or planned operations in the region, and it has been estimated that the  coal  shipped  on  the  network  equates  to  around  $9  billion  worth  of  export...

  14. San Angelo- West Texas 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    is measured by National Centers for Environmental Prediction (NCEP) reanalysis 100 hPa temperatures and 50-200 hPa zonal wind shear, respectively. When partitioned by QBO east and west phases, zonal monthly mean anomalies and anomalous monthly mean difference...

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Special Photos from First Fuel Removal at K-West Basin, December 2000 Special Photos from First Fuel Removal at K-West Basin, December 2000 Special Photos from First Fuel Removal...

  16. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical Moniz Tours Groundwater System Moniz Tours Groundwater System Secretary Moniz at the 200 West Pump and Treat System Secretary Moniz at the 200 West Pump and Treat System...

  17. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demolition (212-P) 200 North Area Facility Demolition (212-P) U Plant D&D U Plant D&D Drilling Groundwater Well 200 West Area Drilling Groundwater Well 200 West Area Drilling...

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallery: Secretary Ernest Moniz Visits Hanford Title: Secretary Moniz at the 200 West Pump and Treat System Secretary Moniz at the 200 West Pump and Treat System Name: Secretary...

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Treatment Facility 200 West Groundwater Treatment LEED Facility 200 West Pump and Treat 200W Pump and Treat Event 2010 Fire Season 2013 Safety EXPO 209-E Critical...

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tours Groundwater System Moniz Tours Groundwater System Secretary Moniz at the 200 West Pump and Treat System Secretary Moniz at the 200 West Pump and Treat System Secretary Moniz...

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    44.jpg Gallery: 200 West Pump and Treat Title: Keywords: 200 West, pump and treat, groundwater Description: A team of CH2M HILL Plateau Remediation Company and subcontractor...

  2. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28.jpg Gallery: 200 West Pump and Treat Title: Keywords: 200 West, pump and treat, groundwater Description: Workers guide a section of structural steel as it is lifted for...

  3. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    200 West Description: DOE Secretary Ernest Moniz tours the 200 West Pump and Treat System. The facility is treating an area of groundwater equal to 4,500 football fields in size...

  4. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    SciTech Connect (OSTI)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  5. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  6. Tracing the History of Nuclear Releases: Determination of 129I in

    E-Print Network [OSTI]

    Fehn, Udo

    in tree rings and bark samples from four trees at West Valley, NY, and from one tree at Rochester, NY. West Valley was the site of short-lived nuclear fuel reprocessing activities (1966-1972), while

  7. Slide 1

    Office of Environmental Management (EM)

    site history, cleanup status, and role of the West Valley Citizen Task Force Raymond C. Vaughan, Ph.D. West Valley Citizen Task Force DOE National Transportation Stakeholders Forum...

  8. 2015-07-21 EM Current Project Performance.xls

    Office of Environmental Management (EM)

    West Valley D&D CD-2 385,000,000 9302011 0 West Valley 15-D-401 KW Basin Sludge Removal Project CD-3 308,273,000 3312018 0 Hanford Site OR-0040.C5 K-31 Facility...

  9. Valley Electric Association- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  10. Poudre Valley REA- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers residential energy efficiency rebate programs for qualified residential water heaters, heat pumps, space...

  11. Poudre Valley REA- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley Rural Electric Association (PVREA), a Touchstone Energy Cooperative, offers a variety of lighting rebates to commercial customers. Rebates are available on commercial lighting...

  12. Golden Valley Electric Association - Sustainable Natural Alternative...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Tidal Wave Wind (Small) Hydroelectric (Small) Maximum Rebate 1.50kWh Program Info Sector Name Utility Administrator Golden Valley Electric Association Website http:...

  13. Solar Goes Big: Launching the California Valley Solar Ranch ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley...

  14. Ecology of Owens Valley vole 

    E-Print Network [OSTI]

    Nelson, Fletcher Chris

    2005-08-29

    of vegetative cover types (sites 1 and 5 consisted of Rabbitbrush Meadow, sites 2 and 4 consisted of Riparian Forest, sites 3 and 7 consisted of Rush/Sedge Meadow, site 6 consisted of Irrigated Pasture [ungrazed], site 8 consisted of Riparian Scrub.... These mesic areas, including riparian corridors, meadows, and agricultural lands, are subject to more intensive and concentrated use (i.e., livestock grazing, recreation) than drier areas. Mesic environments are likely to support small mammal...

  15. MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER Find mountain valley circulation patterns that indicate mountain-valley flow, e.g.,

    E-Print Network [OSTI]

    MOUNTAIN-VALLEY AND KATABATIC FLOW IN BOULDER TASK: Find mountain valley circulation patterns that indicate mountain-valley flow, e.g., in the Boulder Canyon or katabatic flow between the mountain ranges and the lower terrains around Denver and Colorado. MOTIVATION: Mountain-valley flow is a common well understood

  16. West Berkeley Public Library

    High Performance Buildings Database

    Berkeley, CA The West Berkeley Public Library, first opened in December 2013, is the first publicly funded Zero Net Energy public library in California. The library takes advantage of many innovative technologies and passive design strategies to achieve its Zero Net Energy goals. The project's Building Team, led by Harley Ellis Deveraux, partnered with PG&E's Savings By Design program to perform early-stage design analyses including climate modeling, computational fluid dynamics, daylighting, solar modeling, and energy simulations.

  17. Single-valley engineering in graphene superlattices (Journal...

    Office of Scientific and Technical Information (OSTI)

    Single-valley engineering in graphene superlattices This content will become publicly available on June 14, 2016 Prev Next Title: Single-valley engineering in graphene...

  18. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

  19. A Study of Visitor Bicycle Use in Yosemite Valley

    E-Print Network [OSTI]

    Co, Sean; Kurani, Ken; Turrentine, Tom

    2000-01-01

    Merced to better understand bicycle use in Yosemite Valley.A Study of Visitor Bicycle Use in Yosemite Valley UCD-ITS-V Bicycle rental

  20. Arkansas Valley Elec Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOil and Gas Commission Jump to:Valley

  1. Hunger In Los Angeles County Affects Over 200,000 Low-Income Adults, Another 560,000 At Risk

    E-Print Network [OSTI]

    DiSogra, Charles A.; Yen, Wei; Flood, Michael; Ramirez, Anthony

    2004-01-01

    Fernando SPA East Valley West Valley San Fernando GlendaleTorrance 84 = West 86 = West Valley 91 = Whittier Hunger In

  2. The Hidden Valley-Langdraney

    E-Print Network [OSTI]

    Lhundup

    2001-01-01

    , is now in Ngayabling (the land of the Yak's Tail). May the fortunate living beings of this world be guided to the palace of Zangdog Pelri (the peak of Copper Mountain) by you Lord Ugyen. Journal of Bhutan Studies 66 Living in this era... ) who is surrounded by Manaka the daughters of Amitabhs. They entertain and preach while on auspicious days the celestial beings (Amitabhs) from heaven and serpents (klu) bathe in the pond formed at the inner most part of the valley. On the slope...

  3. Spring Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpion Kop JumpValley Jump to:

  4. Magic Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New York:MagicValley Jump

  5. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreek WindInsulatedCrater, Long

  6. Species visitation at free-choice quail feeders in west Texas 

    E-Print Network [OSTI]

    Henson, Kelly Diane

    2006-08-16

    at 4 sites in West Texas (Coke, Fisher and Stonewall counties). Quail feeders were monitored using active-infrared sensing camera systems and passive-infrared video systems, to compare data obtained via these 2 surveillance techniques. I tested 2...

  7. A Comparison of Vegetation in Artificially Isolated Wetlands on West Galveston Island 

    E-Print Network [OSTI]

    Wilson, Ashley

    2012-07-16

    The purpose of this study was to compare vegetation systems among three artificially isolated wetlands on the west end of Galveston Island. Sample sites were identified as isolated wetlands and anthropogenic impact was observed. Wetland plant...

  8. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  9. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow Compensation Claim Process Presentations Related Information Vocational Rehabilitation Visitor Control Site Access Beryllium Program Beryllium Program Beryllium...

  10. Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications

    SciTech Connect (OSTI)

    Caskey, S.J.

    1991-08-01

    Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region.

  11. A Phase I Archaeological Survey of a 20 Acre Tract, The Proposed Krum City Park Project in West Central County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-09

    A Phase I archeological assessment of a 20 acre tract in west-central Denton County, Texas was performed on November 11 and 12, 1998 by Brazos Valley Research Associates of Bryan, Texas. This project was conducted under Antiquities Permit 2078...

  12. Remediation of the Melton Valley Watershed at Oak Ridge National Lab: An Accelerated Closure Success Story

    SciTech Connect (OSTI)

    Johnson, Ch.; Cange, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Skinner, R. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States); Adams, V. [U.S. DOE, Office of Groundwater and Soil Remediation, Washington, DC (United States)

    2008-07-01

    The Melton Valley (MV) Watershed at the U. S. Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) encompasses approximately 430 hectares (1062 acres). Historic operations at ORNL produced a diverse legacy of contaminated facilities and waste disposal areas in the valley. In addition, from 1955 to 1963, ORNL served as a major disposal site for wastes from over 50 off-site government-sponsored installations, research institutions, and other isotope users. Contaminated areas in the watershed included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pits/trenches, hydro-fracture wells, leak and spill sites, inactive surface structures, and contaminated soil and sediment. Remediation of the watershed in accordance with the requirements specified in the Melton Valley Record of Decision (ROD) for Interim Actions in Melton Valley, which estimated that remedial actions specified in the ROD would occur over a period of 14 years, with completion by FY 2014. Under the terms of the Accelerated Closure Contract between DOE and its contractor, Bechtel Jacobs Company, LLC, the work was subdivided into 14 separate sub-projects which were completed between August 2001 and September 2006, 8 years ahead of the original schedule. (authors)

  13. West Gate - 1 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    to Asian nations: a Philippine paper company installing a second-hand newsprint paper mill relocated from Quebec Canada; an Indian mill in West Bengal with plans to purchase a used de-inking line from a UK printer; an Indian company in Maharashtra... and Paper." October 1996. World Wide Web: http://www.oit.doe.gov. 15. Payne, Pulp Paper International. June I, 1994. 16. Reuters European Business Report. August 29, 1996. 17. Reuters Financial Service. November 3, 1992. 18. Salmon-Cox, Peter...

  14. Lower Rio Grande Valley transboundary air pollution project (TAPP). Project report 1996--1997

    SciTech Connect (OSTI)

    Mukerjee, S.; Shadwick, D.S.; Dean, K.E.; Carmichael, L.Y.; Bowser, J.J.

    1999-04-01

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a US-Mexico Border XXI project to find out if air pollutants were moving across the border from Mexico into the Lower Rio Grande Valley of Texas and to see what levels of air pollutants were present. Ambient measurements and meteorology were collected data for a year (March 1996-March 1997) at three fixed sites in and near Brownsville, Texas very close to the US-Mexico border on a continuous and 24-h internal basis. Overall levels of air pollution were similar to or lower than other areas in Texas and elsewhere. Based on wind sector analyses, transport of air pollution across the border did not appear to adversely impact air quality on the US side of the Valley. Southeasterly winds from the Gulf of Mexico were largely responsible for the clean air conditions.

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 Fire Season All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  16. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Drilling All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  17. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moniz Tours Groundwater System Name: Moniz Tours Groundwater System Keywords: 200 West, pump, treat, pump and treat, chemical, CHPRC, groundwater, Secretary of Energy Official...

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W Pump and Treat Event All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Facility Construction 200 West Groundwater Treatment LEED Facility 200W Pump and Treat Event 2010 Fire Season 2013 Safety EXPO 209-E Critical Mass Laboratory...

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    284 West Explosive Demolition 300 Area Explosive Demolition 300 Area North 308 Building Demolition 324 Building 327 Building Demolition 340 Vault Removal 618-10 Burial...

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demolition 284 West Explosive Demolition 300 Area Explosive Demolition 300 Area North 308 Building Demolition 324 Building 327 Building Demolition 340 Vault Removal 618-10...

  2. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  3. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  4. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    68.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  5. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    46.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  6. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  7. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  8. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3s.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED Gold Facility Document Date: 05082012...

  9. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 West Groundwater Treatment LEED Facility All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility...

  10. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    042512 0151.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Construction Material Reuse Construction Material Reuse Name: Construction Material Reuse Document...

  11. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B Reactor All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater Treatment...

  12. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tribal Program All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  13. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2010 All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  14. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    324 Building All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  15. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ERDF Expansion All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  16. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Outreach All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  17. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Corridor All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VPP Program All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater Treatment...

  19. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  20. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zone Initiative All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Removal All Galleries 284 East Explosive Demolition Settlers B Reactor 100DX Groundwater Treatment Facility 100HX Groundwater Treatment Facility 200 West Groundwater...

  2. Independent Oversight Review, Portsmouth Gaseous Diffusion Plant...

    Broader source: Energy.gov (indexed) [DOE]

    Review, Paducah Site - April 2013 Independent Oversight Review, Hanford Site - September 2013 Enterprise Assessments Review, West Valley Demonstration Project - December 2014...

  3. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

  4. Gulf of Mexico -West Florida

    E-Print Network [OSTI]

    Gulf of Mexico - Alabama - West Florida - Louisiana - Mississippi - Texas #12;Regional Summary Gulf of Mexico Region Management Context The Gulf of Mexico Region includes Alabama, Louisiana, Mississippi, Texas, and West Florida. Federal fisheries in this region are managed by the Gulf of Mexico Fishery

  5. Radioactive material in the West Lake Landfill: Summary report

    SciTech Connect (OSTI)

    none,

    1988-06-01

    The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. This report summarizes the circumstances of the radioactive material in the West Lake Landfill. The radioactive material resulted from the processing of uranium ores and the subsequent by the AEC of processing residues. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. It is concluded that remedial action is called for. 8 refs., 2 figs., 1 tab.

  6. Bear Valley Electric Service- Solar Initiative Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bear Valley Electric Service is providing an incentive for their residential customers to install photovoltaic (PV) systems. Systems must be sized to provide no more than 90% of the calculated or...

  7. VALMET-A valley air pollution model

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  8. Poudre Valley REA- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Poudre Valley REA (PVREA) is providing rebates to their residential customers who install photovoltaic (PV) systems on their homes. The consumer agrees to assign all Renewable Energy Credits (RECs)...

  9. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    E-Print Network [OSTI]

    Miller, N.L.

    2009-01-01

    Eastside San Joaquin Tulare Central Valley Base Period (m/y)Eastside Delta San Joaquin Tulare Central Valley BaseSacramento Eastside San Joaquin Tulare Central Valley Severe

  10. Blue oak stump sprouting evaluated after firewood harvest in northern Sacramento Valley

    E-Print Network [OSTI]

    Standiford, Richard B.; McCreary, Douglas D.; Barry, Sheila J; Forero, Larry C.

    2011-01-01

    California’s northern Sacramento Valley* DBH class, inches†woodlands in the northern Sacramento Valley. In: Proc Sympfirewood harvest in northern Sacramento Valley by Richard B.

  11. Local diffusion networks act as pathways?to sustainable agriculture in the Sacramento River Valley

    E-Print Network [OSTI]

    Lubell, Mark; Fulton, Allan

    2007-01-01

    agriculture in the Sacramento River Valley by Mark Lubellquality management in the Sacramento River Valley. Data fromencourage growers in the Sacramento River Valley to

  12. Potential economic impacts of irrigation-water reductions estimated for Sacramento Valley

    E-Print Network [OSTI]

    Lee, Hyunok; Sumner, Daniel A.; Howtt, Richard

    2001-01-01

    Water Cuts in the Sacramento Valley. UC Agricultural Issuesare also the poorest in the Sacramento Valley. All of thereductions estimated for Sacramento Valley Hyunok Lee u

  13. The Pahrump Valley Museum Yucca Mountain History Exhibit - 12389

    SciTech Connect (OSTI)

    Voegele, Michael; McCracken, Robert [Consultant, Nye County Nuclear Waste Repository Project Office (United States); Herrera, Troy [Sambooka Group, Reno, NV. (United States)

    2012-07-01

    As part of its management of the Yucca Mountain project, the Department of Energy maintained several information centers to provide public access to information about the status of the Yucca Mountain project. Those information centers contained numerous displays, historical information, and served as the location for the Department's outreach activities. As the Department of Energy dealt with reduced budgets in 2009 following the Obama Administration's intent to terminate the program, it shut down its information centers. Nye County considered it important to maintain a public information center where people would be able to find information about what was happening with the Yucca Mountain project. Initially the Nye County assumed responsibility for the information center in Pahrump; eventually the County made a decision to move that information center into an expansion of the existing Pahrump Valley Museum. Nye County undertook an effort to update the information about the Yucca Mountain project and modernize the displays. A parallel effort to create a source of historical information where people could find out about the Yucca Mountain project was undertaken. To accompany the Yucca Mountain exhibits in the Pahrump Valley Museum, Nye County also sponsored a series of interviews to document, through oral histories, as much information about the Yucca Mountain project as could be found in these interviews. The paper presents an overview of the Yucca Mountain exhibits in the Pahrump Valley Museum, and the accompanying oral histories. An important conclusion that can be drawn from the interviews is that construction of a repository in Nevada should have been conceptualized as but the first step in transforming the economy of central Nevada by turning part of the Nevada National Security Site and adjoining area into a world-class energy production and energy research center. (authors)

  14. Resource intensification in pre-contact central California: a bioarchaeological perspective on diet and health patterns among hunter-gatherers from the lower Sacramento Valley and San Francisco Bay 

    E-Print Network [OSTI]

    Bartelink, Eric John

    2006-08-16

    of sedentism. I test the hypothesis that health status, as measured by childhood stress and disease indicators, declined during the late Holocene in central California. I analyzed 511 human skeletons from ten archaeological sites in the Sacramento Valley...

  15. GeoPowering the West

    SciTech Connect (OSTI)

    Not Available

    2007-02-01

    Summary brochure of GeoPowering the West (GPW) activities, and areas of technology transfer and market transformation. It also provides current contact information for key DOE and national laboratory staff representing the GPW program.

  16. Mapping Transmission Risk of Lassa Fever in West Africa: The Importance of Quality Control, Sampling Bias, and Error Weighting

    E-Print Network [OSTI]

    Peterson, A. Townsend; Moses, Lina M.; Bausch, Daniel G.

    2014-08-08

    Lassa fever is a disease that has been reported from sites across West Africa; it is caused by an arenavirus that is hosted by the rodent M. natalensis. Although it is confined to West Africa, and has been documented in detail in some well...

  17. An Archaeological Survey for the Bastille Pipline and Gulag Well Site in Fort Bend County Texas 

    E-Print Network [OSTI]

    Moore, William; Baxter, Edward

    2015-07-28

    An archaeological survey of a proposed natural gas pipeline (2500 feet) and well site (three acres) on the Central Unit of the Texas Department of Criminal Justice in Fort Bend County, Texas was performed by Brazos Valley Research Associates (BVRA...

  18. An Archaeological Survey of a Proposed School Site in Central Montgomery County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-07

    An archaeological evaluation of a proposed school site (17 acres) in central Montgomery County, Texas was performed by Brazos Valley Research Associates (BVRA) in April 2003 with William E. Moore the Principal Investigator. This project falls under...

  19. An archaeological survey of the 12.536 acre proposed Tiffany Park site, Brazos County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-06-04

    An archaeological survey of the 12.536 acre site of the proposed Tiffany Park in Brazos County, Texas was conducted by Brazos Valley Research Associates in August of 1993 under Texas Antiquities Committee permit number 1293. During the course...

  20. Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    E-Print Network [OSTI]

    Torgersen, Christian

    Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley. Because of this danger, the U.S. Forest Service has had to close parts of the Hot Creek Geologic Site the region. The attractions of Hot Creek, however, also harbor danger. The locations, dis- charge rates

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area: 200 West Description: Workers will fill U Canyon with more than 20,000 cubic yards of cement-like grout this summer, the last step in preparing the structure for demolition...

  2. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    well Crew Drilling a Well Crew Drilling a Well Drilling a Well Drilling a Well 100 D Well 100 D Well Well Construction Well Construction Drilling Groundwater Well 200 West Area...

  3. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-4-11.jpg Gallery: 200 West Pump and Treat Title: Aerial of construction (March 2011) Aerial of construction (March 2011) Name: Aerial of construction (March 2011) Document Date:...

  4. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W P&T Bio-Process bldg construction 3-11-11.jpg Gallery: 200 West Pump and Treat Title: Bio-Process Building under construction Bio-Process Building under construction Name:...

  5. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    placement 2-18-11.jpg Gallery: 200 West Pump and Treat Title: Placing a tank in the treatment facility Placing a tank in the treatment facility Name: Placing a tank in the...

  6. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    prep for lift 2-18-11.jpg Gallery: 200 West Pump and Treat Title: Preparing to lift tank Preparing to lift tank Name: Preparing to lift tank Document Date: 02212011 Keywords: 200...

  7. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8-13-10.jpg Gallery: 200 West Pump and Treat Title: Aerial of construction (August 2010) Aerial of construction (August 2010) Name: Aerial of construction (August 2010) Document...

  8. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    120106OutsideViewBioBldg200WP&T02.jpg Gallery: 200 West Groundwater Treatment LEED Facility Title: Hanford LEED Gold Facility Hanford LEED Gold Facility Name: Hanford LEED...

  9. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pump and Treat System Secretary Moniz at the 200 West Pump and Treat System Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold Facility Hanford LEED Gold...

  10. Proceedings of the second workshop on hydrologic and geochemical monitoring in the Long Valley Caldera

    SciTech Connect (OSTI)

    Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A. (eds.)

    1986-12-01

    A workshop was held to review the results of hydrologic and geochemical monitoring and scientific drilling in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and techonic processes. Data from a 2400-ft deep core hole completed in June 1986 were presented at the 1986 workshop and participants discussed the need and rationale for siting locations for future scientific drilling in the caldera.

  11. Response to West Cumbria MRWS consultation: Why a deep nuclear waste repository should not be

    E-Print Network [OSTI]

    Response to West Cumbria MRWS consultation: Why a deep nuclear waste repository should not be sited geological nuclear waste repository. There a suspicion of predetermination because the only district that has. National and international guidance on how best to select potential sites for deep geological nuclear waste

  12. House of Lords questions on MRWS and alternative sites Three questions down for answer in the House of Lords Business

    E-Print Network [OSTI]

    of nuclear waste; and whether those arrangements have been communicated to the civic leaders of West Cumbria sites for constructing nuclear waste disposal facilities; how many sites they have considered; where of potential sites in West Cumbria for the disposal of nuclear waste against those available elsewhere

  13. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect (OSTI)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin; Wellman, Dawn; Deeb, Rula; Hawley, Elisabeth

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

  14. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top Scientific ImpactTechnologies |Site Index Site Index

  15. Water Availability and Subsidence in California's Central Valley

    E-Print Network [OSTI]

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    Z. 2015. Progress report: subsidence in the Central Valley,Ingebritsen SE. 1999. Land subsidence in the United States.Ireland RL. 1986. Land subsidence in the San Joaquin Valley,

  16. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  17. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  18. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect (OSTI)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  19. The Evolution and Life Cycle of Valley Cold Pools

    E-Print Network [OSTI]

    Wilson, Travis Harold

    2015-01-01

    drainage flows undercut the preexisting valley air and liftof drainage flows is their ability to undercut and lift

  20. Micro-Earthquake At Long Valley Caldera Geothermal Area (Foulger...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Additional References Retrieved from "http:en.openei.orgw...

  1. Project Reports for Elk Valley Rancheria- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Elk Valley Rancheria will perform a comprehensive Energy Efficiency and Alternatives Study for tribal properties on the Rancheria.

  2. Projections toward the cultivation of a site by the Sinepuxent Bay

    E-Print Network [OSTI]

    Schoellkopf, Jeff (Jeffrey Herbert)

    1984-01-01

    These design projections are for a site in West Ocean City, Maryland. The scenario is that an oceanographic research institution wishes to master plan the site to accommodate their activities and to expand the nearby harbor ...

  3. Commercial Scale Photovoltaic Development at the Bluewater, New Mexico, Site

    Broader source: Energy.gov [DOE]

    The Bluewater Disposal Site is located about 9 air miles northwest of Grants, New Mexico, in Cibola County (approximately 80 miles west of Albuquerque). Anaconda Copper Company constructed the...

  4. Site 4.7. Thornhill Drumlin Jane K. Hart

    E-Print Network [OSTI]

    Hart, Jane

    1 Site 4.7. Thornhill Drumlin Jane K. Hart Introduction The drumlins in the West of Ireland deforming bed, and Hart (1997) outlined a drumlin structure continuum comprising depositional, deformational

  5. Structural geology of the French Peak accommodation zone, Nevada Test Site, southwestern Nevada

    SciTech Connect (OSTI)

    Hudson, M.R.

    1997-12-31

    The French Peak accommodation zone (FPAZ) forms an east-trending bedrock structural high in the Nevada Test Site region of southwestern Nevada that formed during Cenozoic Basin and Range extension. The zone separates areas of opposing directions of tilt and downthrow on faults in the Yucca Flat and Frenchman Flat areas. Paleomagnetic data show that rocks within the accommodation zone adjacent to Yucca Flat were not strongly affected by vertical-axis rotation and thus that the transverse strikes of fault and strata formed near their present orientation. Both normal- and oblique strike-slip faulting in the FPAZ largely occurred under a normal-fault stress regime, with least principal stress oriented west-northwest. The normal and sinistral faults in the Puddle Peka segment transfers extension between the Plutonium Valley normal fault zone and the Cane Spring sinistral fault. Recognition of sinistral shear across the Puddle Peak segment allows the Frenchman Flat basin to be interpreted as an asymmetric pull-apart basin developed between the FPAZ and a zone of east-northeast-striking faults to the south that include the Rock Valley fault. The FPAZ has the potential to influence ground-water flow in the region in several ways. Fracture density and thus probably fracture conductivity is high within the FPAZ due to the abundant fault splays present. Moreover,, fractures oriented transversely to the general southward flow of ground water through Yucca Flat area are significant and have potential to laterally divert ground water. Finally, the FPAZ forms a faulted structural high whose northern and southern flanks may permit intermixing of ground waters from different aquifer levels, namely the lower carbonate, welded tuff, and alluvial aquifers. 42 refs.

  6. Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA

    SciTech Connect (OSTI)

    Brown, Shaun; Kennedy, Burton; DePaolo, Donald; Evans, William

    2008-08-01

    A spatial survey of the chemical and isotopic composition of fluids from the Long Valley hydrothermal system was conducted. Starting at the presumed hydrothermal upwelling zone in the west moat of the caldera, samples were collected from the Casa Diablo geothermal field and a series of monitoring wells defining a nearly linear, ~;;14 km long, west-to-east trend along the proposed fluid flow path (Sorey et al., 1991). Samples were analyzed for the isotopes of water, Sr, Ca, and noble gases, the concentrations of major cations and anions and total CO2. Our data confirm earlier models in which the variations in water isotopes along the flow path reflect mixing of a single hydrothermal fluid with local groundwater. Variations in Sr data are poorly constrained and reflect fluid mixing, multiple fluid-pathways or water-rock exchange along the flow path as suggested by Goff et al. (1991). Correlated variations among total CO2, noble gases and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2, noble gases) driving calcite precipitation as the fluid flows west-to-east across the caldera. This is the first evidence that Ca isotopes may trace and provide definitive evidence of calcite precipitation along fluid flow paths in geothermal systems.

  7. West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Class C low-level waste as set out in 10 CFR 61.55, Waste Classification. Click below to view related documentation Final Vitrification Melter and Vessels Evaluation Documentation...

  8. Workers Complete Asbestos Removal at West Valley to Prepare Facility for Demolition

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers safely cleared asbestos from more than 5,500 feet of piping in the Main Plant Process Building. Project completion is an important step in preparing...

  9. 2012 Annual Workforce Analysis and Staffing Plan Report- West Valley Demonstration Project

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  10. Preliminary Notice of Violation, West Valley Nuclear Services - EA-1999-09

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary AreasDepartment of Energy 8 IssuedofEA-2003-07 |

  11. EM's West Valley Cleanup Finds Success in History-Making Waste Relocation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLCConfidentiality Agreement3,River | Department|

  12. Probabilistic Modeling and Phase 2 Decision Making at the West Valley

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYSDepartment of EnergyAct

  13. Gravity survey of Dixie Valley, west-central Nevada | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGooglePrograms JumpGratiot Jump

  14. Voluntary Protection Program Onsite Review, CH2M HILL B&W West Valley LLC,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities. TheEnergyEnergy mostJeff Ericksonto 40%

  15. EM Employees at West Valley Help Beat Goal for Food Banks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatement |toDepartmentContributes toDepartment of|Energy at

  16. TEAM CUMBERLAND Tennessee Valley Authority 400 West Summit Hill Drive, Knoxville, TN 37902

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority SustainXSystem for39: Debian189 -September

  17. West Valley Seeks Comment on Draft Waste Evaluation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department of EnergyData compiled byPatricia A. Hoffmanspend

  18. Veteran's Affairs Health Care System, West Haven, Connecticut...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Veteran's Affairs Health Care System, West Haven, Connecticut Veteran's Affairs Health Care System, West Haven, Connecticut Overview The West Haven (Connecticut) Campus of the...

  19. K-East and K-West Reactors - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask 4Photo4 | National Nuclear65K isEast and

  20. West African crude production diversifies

    SciTech Connect (OSTI)

    Aalund, L.

    1983-06-01

    Nigeria, with its seven crude-oil export streams, dominated West African production and accounted for over 70% of the depressed 1.8 million b/d output from the region last year. However, during the 1970s a flurry of new producing fields, primarily off the African coast, diversified production among a number of countries and touched off a wave of oil activity. The Journal takes a close look at the quality of West African oil in this installment of assays on world export crudes. This issue covers, in alphabetical order, Bonny Light (Nigeria) to Espoir (Ivory Coast). A following issue will wrap up West Africa by presenting assays on crudes from Forcados Blend (Nigeria) to Zaire Crude (Zaire).

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation Test Site Simulation Test Site Sen. Murray Press Conference Sen. Murray Press Conference Sen. Murray Press Conference Sen. Murray Press Conference Sen. Murray Press...

  2. West Virginia University -Main Campus Headcount Enrollment

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University - Main Campus Headcount Enrollment Comparison of Fall 2013 to Fall 2014's Student files submission *FTE includes courses taken by Main Campus Students at PSC West Virginia

  3. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚—34October 201422T Office36ZHanfordWest300284 West

  4. In Situ Stabilization of Inactive Low Level Waste Pipelines in the Melton Valley Watershed at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Cange, J.; Cox, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Coye, St. [Sevenson Environmental Services, Inc., Niagara Falls, NY (United States); Skinner, R. [US DOE Oak Ridge Operations, Oak Ridge, TN (United States); Shaw, K. [Restoration Services, Inc., Oak Ridge, TN (United States); McGinley, S. [Pro2Serve, Oak Ridge, TN (United States)

    2008-07-01

    The Melton Valley watershed at Oak Ridge National Laboratory (ORNL) contained an inactive waste pipeline system consisting of approximately 12 kilometers of buried waste pipelines and over 142 m{sup 3} in surface/subsurface appurtenances (e.g., vents, valve pits, pump vaults, etc.). Historically, the system was used to transport liquid low level and process waste between generator facilities in Melton Valley, storage and disposal sites in Melton Valley, and storage/treatment facilities in Bethel Valley. The selected remedy in the Melton Valley Record of Decision (ROD) for inactive pipelines was isolation, removal, or stabilization. Pipeline remediation activities began in the summer of 2005 and were completed in the spring of 2006. The task entailed an iterative process of selecting pipeline access points, excavating and exposing pipelines, performing tapping, draining and cutting activities, either installing fittings for grouting or plugging and capping the lines. Grouting was accomplished using paired access points, with one location serving as the grout injection point and the other as vent/drain and grout confirmation point. Grouting was conducted by pumping a cement-bentonite grout into the specially installed fittings and typically proceeded from a low point to a high point to ensure complete filling of the pipeline (i.e., no void space). The project successfully grouted a total of 8,454 meters (linear distance) of pipeline; another 3,573 meters of pipeline was stabilized through isolation. (authors)

  5. DOE's Worker-Focused Safety Program Honors Contractors Across...

    Energy Savers [EERE]

    EM participate in VPP, including six from the Hanford site and the others from the West Valley Demonstration Project, Waste Isolation Pilot Plant, and the Savannah River, Idaho,...

  6. Slide 1

    Office of Environmental Management (EM)

    Nuclear Service Center History Paul J. Bembia, Director NYSERDA's West Valley Site Management Program 2 * 3,330 acres in northern Cattaraugus County * 15 acres in southern Erie...

  7. South Belridge fields, Borderland basin, U. S. , San Joaquin Valley

    SciTech Connect (OSTI)

    Miller, D.D. (Mobil Exploration and Producing U.S., Inc., Denver, CO (United States)); McPherson, J.G. (Mobil Research and Development Corp., Dallas, TX (United States))

    1991-03-01

    South Belridge is a giant field in the west San Joaquin Valley, Kern County. Cumulative field production is approximately 700 MMBO and 220 BCFG, with remaining recoverable reserves of approximately 500 MMBO. The daily production is nearly 180 MBO from over 6100 active wells. The focus of current field development and production is the shallow Tulare reservoir. Additional probable diatomite reserves have been conservatively estimated at 550 MMBO and 550 BCFG. South Belridge field has two principal reservoir horizons; the Mio-Pliocene Belridge diatomite of the upper Monterey Formation, and the overlying Plio-Pleistocene Tulare Formation. The field lies on the crest of a large southeast-plunging anticline, sub-parallel to the nearby San Andreas fault system. The reservoir trap in both the Tulare and diatomite reservoir horizons is a combination of structure, stratigraphic factors, and tar seals; the presumed source for the oil is the deeper Monterey Formation. The diatomite reservoir produces light oil (20-32{degree} API gravity) form deep-marine diatomite and diatomaceous shales with extremely high porosity (average 60%) and low permeability (average 1 md). In contrast, the shallow ({lt}1000 ft (305 m) deep) overlying Tulare reservoir produces heavy oil (13-14{degree} API gravity) from unconsolidated, arkosic, fluviodeltaic sands of high porosity (average 35%) and permeability (average 3000 md). The depositional model is that of a generally prograding fluviodeltaic system sourced in the nearby basin-margin highlands. More than 6000 closely spaced, shallow wells are the key to steamflood production from hundreds of layered and laterally discontinuous reservoir sands which create laterally and vertically discontinuous reservoir flow units.

  8. Whirlwind Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland: EnergyWexfordSouthValley Geothermal Project Jump

  9. Hudson Valley Clean Energy Office and Warehouse

    High Performance Buildings Database

    Rhinebeck, NY Hudson Valley Clean Energy's new head office and warehouse building in Rhinebeck, New York, achieved proven net-zero energy status on July 2, 2008, upon completing its first full year of operation. The building consists of a lobby, meeting room, two offices, cubicles for eight office workers, an attic space for five additional office workers, ground- and mezzanine-level parts and material storage, and indoor parking for three contractor trucks.

  10. Community Leadership: Best Practices for Brazos Valley 

    E-Print Network [OSTI]

    Reed, Johnathan; Harlow, Evan; Dorshaw, Carlie; Brower, David

    2008-01-01

    . #0;? Foster the creation networks between community and university entities 5. Nonprofit Resource Center #0;? Participate in efforts to organize and develop a nonprofit resource center The implementation of these action steps can help strengthen... by the Brazos Community Foundation and the Brazos Valley at large. These roles received wide support, were feasible - based on available resources, and aligned with the mission and purpose of BCF. Students developed a series of action steps to provide...

  11. Tees Valley Biofuels | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)ModelTalbottsInformationOpenTees Valley Biofuels Jump

  12. River Valley Technology Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York:Virginia:Riva, Maryland: Energy ResourcesValley

  13. Sites for Gamma-ray Astronomy in Argentina

    E-Print Network [OSTI]

    A. C. Rovero; G. E. Romero; I. Allekotte; X. Bertou; E. Colombo; A. Etchegoyen; B. Garcia; D. Garcia-Lambas; H. Levato; M. C. Medina; H. Muriel; P. Recabarren

    2008-10-03

    We have searched for possible sites in Argentina for the installation of large air Cherenkov telescope arrays and water Cherenkov systems. At present seven candidates are identified at altitudes from 2500 to 4500 m. The highest sites are located at the Northwest of the country, in La Puna. Sites at 2500 and 3100 m are located in the West at El Leoncito Observatory, with excellent infrastructure. A description of these candidate sites is presented with emphasis on infrastructure and climatology.

  14. Chariot, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    2013-01-16

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  15. Geoarchaeology of the Kostenki Borshchevo Sites, Don River

    E-Print Network [OSTI]

    Holliday, Vance T.

    Geoarchaeology of the Kostenki­ Borshchevo Sites, Don River Valley, Russia Vance T. Holliday,1 of the Don River, near Voronezh on the central East European Plain. Geoarchaeological research from 2001 archaeological horizons sealed within two sets of thin lenses of silt, car- bonate, chalk fragments, and organic

  16. VALMET: a valley air pollution model. Final report. Revision 1

    SciTech Connect (OSTI)

    Whiteman, C.D.; Allwine, K.J.

    1985-04-01

    An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

  17. Citrus Production in the Lower Rio Grande Valley of Texas. 

    E-Print Network [OSTI]

    Traub, Hamilton Paul; Friend, W. H. (William Heartsill)

    1930-01-01

    . TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS - BULLETIN NO. 419 DIVISION OF HORTICULTURE Citrus Production in the Lower Rio Grande Valley of Texas AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS.... . Citrus fruit production in the Lower Rio Grande Valley, especially grapefruit, has increased at a rather rapid rate dur- ing the past few years. More than 5,000,000 citrus trees were set in orchard form in the Lower Rio Grande Valley up to July, 1929...

  18. 20% Wind by 2030: Overcoming the Challenges in West Virginia

    SciTech Connect (OSTI)

    Patrick Mann; Christine Risch

    2012-02-15

    Final Report for '20% Wind by 2030: Overcoming the Challenges in West Virginia'. The objective of this project was to examine the obstacles and constraints to the development of wind energy in West Virginia as well as the obstacles and constraints to the achievement of the national goal of 20% wind by 2030. For the portion contracted with WVU, there were four tasks in this examination of obstacles and constraints. Task 1 involved the establishment of a Wind Resource Council. Task 2 involved conducting limited research activities. These activities involved an ongoing review of wind energy documents including documents regarding the potential for wind farms being located on reclaimed surface mining sites as well as other brownfield sites. The Principal Investigator also examined the results of the Marshall University SODAR assessment of the potential for placing wind farms on reclaimed surface mining sites. Task 3 involved the conducting of outreach activities. These activities involved working with the members of the Wind Resource Council, the staff of the Regional Wind Energy Institute, and the staff of Penn Future. This task also involved the examination of the importance of transmission for wind energy development. The Principal Investigator kept informed as to transmission developments in the Eastern United States. The Principal Investigator coordinated outreach activities with the activities at the Center for Business and Economic Research at Marshall University. Task 4 involved providing technical assistance. This task involved the provision of information to various parties interested in wind energy development. The Principal Investigator was available to answer requests from interested parties regarding in formation regarding both utility scale as well as small wind development in West Virginia. Most of the information requested regarded either the permitting process for wind facilities of various sizes in the state or information regarding the wind potential in various parts of the state. This report describes four sub-categories of work done by the Center for Business and Economic Research (CBER) at Marshall University under this contract. The four sub-projects are: (1) research on the impacts of wind turbines on residential property values; (2) research on the integration of wind energy in regional transmission systems; (3) review of state-based wind legislation in consideration of model new policy options for West Virginia; and (4) promotion of wind facilities on former surface mine sites through development of a database of potential sites.

  19. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    SciTech Connect (OSTI)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

  20. TRACKING SITE

    Energy Science and Technology Software Center (OSTI)

    003235MLTPL00 AASG Geothermal Data submissions tracking application and site.  https://github.com/usgin/aasgtrack 

  1. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    SciTech Connect (OSTI)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

  2. Time-Domain Electromagnetics At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    were designed to assess the Long Valley hydrothermal system and to identify possible deep geothermal drilling targets beneath the western portion of the caldera. Notes The...

  3. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area, Nevada- Structural Controls, Hydrothermal Alteration and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  4. Hyperspectral Imaging At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    Kennedy-Bowdoin, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Area...

  5. Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...

    Open Energy Info (EERE)

    Ground Gravity Survey At Dixie Valley Geothermal Area (Allis, Et Al., 2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  6. Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate...

    Open Energy Info (EERE)

    conducted at the Dixie Valley, Nevada, geothermal reservoir in order to determine fluid-flow processes and to evaluate candidate tracers for use in hydrothermal systems. These...

  7. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  8. Water geochemistry study of Indian Wells Valley, Inyo and Kern...

    Open Energy Info (EERE)

    Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement. Isotope geochemistry and Appendix H. Final report Jump to: navigation, search...

  9. Water Sampling At Long Valley Caldera Geothermal Area (Evans...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Evans, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  10. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling...

  11. Water Sampling At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Water Sampling At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At...

  12. Injectivity Test At Long Valley Caldera Geothermal Area (Morin...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At...

  13. Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test...

  14. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  15. Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic...

  16. Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova...

    Open Energy Info (EERE)

    Micro-Earthquake At Long Valley Caldera Geothermal Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  17. Modeling-Computer Simulations At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    surrounding a vertically dipping prolate spheroid source during an active period of time-dependent deformation between 1995 and 2000 at Long Valley caldera. We model a rapid...

  18. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  19. Conceptual Model At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Conceptual Model Activity Date 2003 - 2003...

  20. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 - 2002...

  1. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in...

  2. Static Temperature Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1998 - 2002...

  3. The Mechanics of Unrest at Long Valley Caldera, California. 2...

    Open Energy Info (EERE)

    gravity change determinations are used to estimate the intrusion geometry, assuming a vertical prolate ellipsoidal source. The U.S. Geological Survey occupied the Long Valley...

  4. Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...

    Open Energy Info (EERE)

    Hyperspectral Imaging At Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging...

  5. Static Temperature Survey At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Static Temperature Survey At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature...

  6. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  7. Geographic Information System At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geographic Information System At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  8. Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and...

  9. Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

  10. Sulphur Springs Valley EC- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    Sulphur Springs Valley Electric Cooperative (SSVEC) is a Touchstone Energy Cooperative. SSVEC's residential rebate program offers a $500 rebate for the installation of 15 SEER or higher electric...

  11. Compound and Elemental Analysis At Buffalo Valley Hot Springs...

    Open Energy Info (EERE)

    Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated...

  12. Verdigris Valley Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are available for room air conditioners, electric water...

  13. Guadalupe Valley Electric Cooperative- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guadalupe Valley Electric Cooperative (GVC) offers a variety of incentives to help residential customers save energy. Rebates are available for energy efficient new homes and improvements to...

  14. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

  15. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    over the Dixie Valley hydrothermal convection system, and if so, are they related with soil geochemical, vegetal-spectral, soil spectral, and biogeochemical anomalies. Other goals...

  16. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    Soil Sampling At Long Valley Caldera Geothermal Area (Klusman & Landress, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At...

  17. New Evidence On The Hydrothermal System In Long Valley Caldera...

    Open Energy Info (EERE)

    Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Jump to: navigation,...

  18. Update On Geothermal Exploration At Fort Bidwell, Surprise Valley...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Update On Geothermal Exploration At Fort Bidwell, Surprise Valley California Abstract A...

  19. Multiple Ruptures For Long Valley Microearthquakes- A Link To...

    Open Energy Info (EERE)

    Tremor(Question) Abstract Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not...

  20. Clean Cities: Clean Cities Coachella Valley Region coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    achievements, and from DOE for outstanding public outreach. Through his leadership, hydrogen fueling infrastructure and vehicles were also implemented in the Coachella Valley. In...

  1. Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Cuttings Analysis At Long Valley Caldera Geothermal Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings...

  2. Exploration and Development at Dixie Valley, Nevada- Summary...

    Open Energy Info (EERE)

    at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir...

  3. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At...

  4. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  5. Geothermometry At Long Valley Caldera Geothermal Area (Farrar...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  6. Compound and Elemental Analysis At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    stages of hydrothermal activity, flow, and recharge in the Long Valley caldera groundwater system. Fluids were sampled from LVEW during flow testing in May 2000, July 2000,...

  7. Non-Double-Couple Microearthquakes At Long Valley Caldera, California...

    Open Energy Info (EERE)

    Microearthquakes At Long Valley Caldera, California, Provide Evidence For Hydraulic Fracturing Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  8. Kennebec Valley Community College's State of the Art Solar Lab

    Broader source: Energy.gov [DOE]

    Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

  9. Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  10. Possible Magmatic Input to the Dixie Valley Geothermal Field...

    Open Energy Info (EERE)

    fault zone-like structure extending from the baseof Dixie Valley to a broad, deep crustal conductor beneaththe Stillwater-Humboldt Range area. The deep conductor...

  11. Isotopic Composition of Carbon in Fluids from the Long Valley...

    Open Energy Info (EERE)

    Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of the Second Workshop on Hydrologic and Geochemical Monitoring in the...

  12. Direct-Current Resistivity Survey At Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Dixie Valley Geothermal Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  13. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    System. Geothermics. () . Related Geothermal Exploration Activities Activities (4) Direct-Current Resistivity Survey At Dixie Valley Geothermal Area (Laney, 2005) Isotopic...

  14. Direct-Current Resistivity Survey At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Long Valley Caldera Geothermal Area (Pribnow, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  15. Geothermometry At Long Valley Caldera Geothermal Area (Mariner...

    Open Energy Info (EERE)

    Mariner & Willey, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Long Valley Caldera Geothermal Area (Mariner & Willey,...

  16. Santa Clara Valley Transportation Authority and San Mateo County...

    Energy Savers [EERE]

    Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

  17. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Additional References Retrieved from...

  18. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  19. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  20. Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Long Valley Caldera Geothermal Area (Newman, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  1. Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...

    Open Energy Info (EERE)

    W. Younker, C. Dan Miller, Grant H. Heiken, Kenneth H. Wohletz (1988) Structure and Stratigraphy Beneath a Young Phreatic Vent: South Inyo Crater, Long Valley Caldera, California...

  2. Volcanism, Structure, and Geochronology of Long Valley Caldera...

    Open Energy Info (EERE)

    Volcanism, Structure, and Geochronology of Long Valley Caldera, Mono County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  3. Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

  4. Lower Valley Energy- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lower Valley Energy offers numerous rebates for residential customers who wish to increase the energy efficiency of eligible homes. Rebates are available for weatherization measures, water heaters,...

  5. Regional hydrology of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  6. Chemical Logging At Dixie Valley Geothermal Area (Los Alamos...

    Open Energy Info (EERE)

    Chemical Logging At Dixie Valley Geothermal Area (Los Alamos National Laboratory, NM, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  7. Inhomogeneity smoothing using density valley formed by ion beam...

    Office of Scientific and Technical Information (OSTI)

    Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet Citation Details In-Document Search Title: Inhomogeneity smoothing using density...

  8. Farmscape ecology of a native stink bug in the Sacramento Valley

    E-Print Network [OSTI]

    2002-01-01

    to rural roadsides in the Sacramento Valley of Cali­ fornia:tomato, a major crop in the Sacramento Valley. This is notLPJM Prop-am. In the Sacramento Valley, there are several

  9. Beyond Density: Measuring Neighborhood Form in New England's Upper Connecticut River Valley

    E-Print Network [OSTI]

    Owens, Peter Marshall

    2005-01-01

    in New England’s Upper Connecticut River Valley by Peterin New England’s Upper Connecticut River Valley by Peterof New England’s Upper Connecticut River Valley encompassing

  10. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    SciTech Connect (OSTI)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  11. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  12. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  13. Visitor center at the Antelope Valley California Poppy Reserve, Lancaster, California

    SciTech Connect (OSTI)

    Colyer, R.D.; Freeman, S.P.

    1981-01-01

    The Antelope Valley California Poppy Reserve contains the largest remaining stand of the California Poppy (Eschschozia Californica), the state flower of California. To welcome the thousands of people viewing the desert wildflowers each spring, the State of California decided to build a visitor/interpretive center. This building deals primarily with the question of fit; a building's fit aesthetically with its site and the fit of a building's design response to the climate of the site. In this case, both aspects of this question led the client and architects to seek an earth sheltered solution using materials at least metaphorically indigenous to the region. On both a technical and formal level, this building seeks to fit the unique climate and historical heritage of its site.

  14. Dynamic Pricing with Limited Supply Moshe Babaioff, Microsoft Research Silicon Valley, Mountain View CA, USA

    E-Print Network [OSTI]

    Fiat, Amos

    Dynamic Pricing with Limited Supply Moshe Babaioff, Microsoft Research Silicon Valley, Mountain University, Ithaca NY, USA Aleksandrs Slivkins, Microsoft Research Silicon Valley, Mountain View CA, USA We

  15. Social Capital, ICT Use and Company Performance: Findings from the Medicon Valley Biotech Cluster

    E-Print Network [OSTI]

    Steinfield, Charles

    Social Capital, ICT Use and Company Performance: Findings from the Medicon Valley Biotech Cluster Valley biotech region located in Denmark and Southern Sweden. Responding companies included established

  16. West Virginia University -Main Campus Program Accreditations

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University - Main Campus Program Accreditations Updated 2013-14 School, College University - Main Campus Program Accreditations Updated 2013-14 School, College, or Program Accreditation

  17. Unalakleet Valley Elec Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S. EPAEnergyUltraUnalakleet Valley Elec Coop

  18. Grass Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: Energy Resources JumpSouth,GrapeGrass Valley

  19. Great Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia:Oregon: EnergyGreat Basin GeothermalValley Ethanol

  20. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)DisplacementTudorOpenApplicationDixie Valley

  1. North Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source HistoryRoyalton, Ohio:St. Paul,Valley

  2. Chippewa Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:ChangingCNE JumpChippewa Valley Electric Coop Place:

  3. All Valley Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendoMassachusetts:RenewableIncAlcornNRELAlineasolarValley

  4. Penoyer Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3 ofAltosPenoyer Valley Electric Coop Jump

  5. Powell Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono SolarPlexusJumpPowder RiverValley

  6. Tennessee Valley Authority (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley Authority (Kentucky)

  7. Tennessee Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarketMemberI PLLCsourceValley AuthorityTennessee

  8. Valley Electric Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtility Rates API VersionVadiumNevada) JumpValley

  9. Valley View Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to:Valley Rural Electric

  10. Antelope Valley Neset | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola on theAnselmo, Nebraska:AnsonNebraska:Valley

  11. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen Energy Information Geothermal AreaAire Valley

  12. Imperial Valley Geothermal Area | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORKof71CommercialThisImperial Valley Geothermal project

  13. Lighthouse Solar Diablo Valley | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds JumpOxiranchem IncLighthouse Solar Address:Valley

  14. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList ofBalanceLittle Valley Geothermal

  15. Blue Valley Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass Facility JumpIICalifornia:BlueBioStarValley

  16. Bolton Valley Resort | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac Biomass FacilityBluegrass Ridge Wind2BoeingBolton Valley

  17. Clayton Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla,ThermalCubaParker,GeorgiaValley Geothermal Project Jump to:

  18. Bear Creek Valley Watershed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUS SERVICE SUBSIDIESDepartment of585Bear Creek Valley

  19. Bethel Valley Watershed | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p uBUSEnergy| DepartmentBethel Valley Watershed. Topics

  20. CALIFORNIA VALLEY SOLAR RANCH | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | DepartmentEnergyofC3ECALIFORNIA VALLEY