National Library of Energy BETA

Sample records for west texas crude

  1. Benchmark West Texas Intermediate crude assayed

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1994-08-15

    The paper gives an assay of West Texas Intermediate, one of the world's market crudes. The price of this crude, known as WTI, is followed by market analysts, investors, traders, and industry managers around the world. WTI price is used as a benchmark for pricing all other US crude oils. The 41[degree] API < 0.34 wt % sulfur crude is gathered in West Texas and moved to Cushing, Okla., for distribution. The WTI posted prices is the price paid for the crude at the wellhead in West Texas and is the true benchmark on which other US crudes are priced. The spot price is the negotiated price for short-term trades of the crude. And the New York Mercantile Exchange, or Nymex, price is a futures price for barrels delivered at Cushing.

  2. Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas State Offshore Crude ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 TX, State Offshore Crude ...

  3. ,"Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Crude Oil Reserves in Nonproducing ... "Back to Contents","Data 1: Texas--State Offshore Crude Oil Reserves in Nonproducing ...

  4. ,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas State Offshore Crude Oil + Lease Condensate Proved ... "Back to Contents","Data 1: Texas State Offshore Crude Oil + Lease Condensate Proved ...

  5. Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Proved Reserves ... as of Dec. 31 Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease Condensate ...

  6. Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore ... Referring Pages: Proved Nonproducing Reserves of Crude Oil TX, State Offshore Proved ...

  7. West Virginia Crude Oil Reserves in Nonproducing Reservoirs ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) West Virginia Crude Oil Reserves in ... Referring Pages: Proved Nonproducing Reserves of Crude Oil West Virginia Proved ...

  8. ,"West Virginia Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Crude Oil Reserves in Nonproducing Reservoirs ... to Contents","Data 1: West Virginia Crude Oil Reserves in Nonproducing Reservoirs ...

  9. Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  10. ,"Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  11. Gulf of Mexico Federal Offshore - Texas Crude Oil Reserves in...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Gulf of Mexico Federal Offshore - ... Proved Nonproducing Reserves of Crude Oil Federal Offshore, Gulf of Mexico, Texas Proved ...

  12. New Mexico - West Crude Oil + Lease Condensate Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  13. West Virginia Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  14. ,"New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--West Crude Oil Reserves in ... 8:48:09 AM" "Back to Contents","Data 1: New Mexico--West Crude Oil Reserves in ...

  15. Texas

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas

  16. New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs...

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  17. Texas - RRC District 1 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 1 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 96 2010's 263 893 2,031 2,360 2,887 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  18. Texas - RRC District 10 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 10 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 198 2010's 243 290 347 351 363 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  19. Texas - RRC District 5 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 5 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 24 2010's 22 28 65 47 62 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  20. Texas - RRC District 6 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 6 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 224 2010's 240 232 252 267 299 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  1. Texas - RRC District 8 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 8 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,985 2010's 2,254 2,709 3,304 3,356 4,142 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude

  2. Texas - RRC District 9 Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 9 Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 149 2010's 155 181 177 195 209 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  3. Texas (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 448 565 2000's 750 719 753 613 625 828 1,077 1,186 1,186 1,455 2010's 1,883 2,456 4,293 4,065 5,060 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  4. West Lake Hills, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Lake Hills is a city in Travis County, Texas. It falls under Texas's 10th congressional...

  5. West University Place, Texas: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. West University Place is a city in Harris County, Texas. It falls under Texas's 7th congressional district.12 References ...

  6. New Mexico - West Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. New Mexico - West Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  8. New Mexico - West Crude Oil + Lease Condensate Reserves Extensions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. New Mexico - West Crude Oil + Lease Condensate Reserves Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  10. New Mexico - West Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  11. New Mexico - West Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  12. Relationship Between Crude Oil and Natural Gas Prices, The

    Reports and Publications (EIA)

    2006-01-01

    This paper examines the time series econometric relationship between the Henry Hub natural gas price and the West Texas Intermediate (WTI) crude oil price.

  13. McLennan County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lorena, Texas Mart, Texas McGregor, Texas Moody, Texas Riesel, Texas Robinson, Texas Ross, Texas Valley Mills, Texas Waco, Texas West, Texas Woodway, Texas Retrieved from...

  14. Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 66 2010's 154 691 1,508 1,857 2,110 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude

  15. Texas - RRC District 3 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 3 Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 257 2010's 272 261 428 500 613 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  16. Texas - RRC District 4 Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 4 Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 92 2010's 207 222 203 256 257 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil

  17. Texas - RRC District 7B Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 7B Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 102 2010's 102 126 134 113 148 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  18. Texas - RRC District 7C Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 7C Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 509 2010's 618 672 891 964 1,298 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  19. Texas - RRC District 8A Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas - RRC District 8A Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,790 2010's 1,822 1,800 1,758 1,736 1,668 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude

  20. ,"Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  1. Texas--RRC District 1 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 1 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 13 2000's 12 9 11 14 9 15 26 27 34 26 2010's 144 436 1,266 1,324 1,427 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  2. Texas--RRC District 10 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 10 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 6 5 2000's 7 8 7 6 5 6 9 12 16 29 2010's 35 51 70 70 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  3. Texas--RRC District 2 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 2 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 5 7 2000's 9 12 14 12 13 16 16 16 8 14 2010's 53 242 711 615 825 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  4. Texas--RRC District 3 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 3 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 24 26 2000's 34 29 41 37 21 19 18 22 18 26 2010's 37 19 118 163 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  5. Texas--RRC District 4 Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 4 Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 7 9 2000's 8 8 5 7 4 17 4 2 2 1 2010's 80 3 1 7 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  6. Texas--RRC District 5 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 5 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 5 5 2000's 6 4 4 2 1 1 1 1 0 1 2010's 0 1 29 12 28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  7. Texas--RRC District 6 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 6 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 60 10 2000's 9 20 14 16 15 3 17 18 10 12 2010's 11 16 32 18 40 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  8. Texas--RRC District 7B Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 7B Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 12 6 2000's 5 1 2 5 5 3 5 1 9 8 2010's 8 13 19 12 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  9. Texas--RRC District 7C Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 7C Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 10 33 2000's 34 45 36 12 14 31 120 137 156 221 2010's 286 301 438 400 642 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  10. Texas--RRC District 8 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 8 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 168 234 2000's 280 237 258 165 218 333 466 454 537 679 2010's 790 934 1,144 1,057 1,441 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  11. Texas--RRC District 9 Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--RRC District 9 Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 4 2000's 11 11 16 16 9 9 9 12 8 25 2010's 21 20 32 20 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  12. ,"NM, West Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. Orange County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Texas Mauriceville, Texas Orange, Texas Pine Forest, Texas Pinehurst, Texas Port Arthur, Texas Rose City, Texas Vidor, Texas West Orange, Texas Retrieved from "http:...

  14. Hidalgo County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas San Juan, Texas San Manuel-Linn, Texas Scissors, Texas South Alamo, Texas Sullivan City, Texas Villa Verde, Texas Weslaco, Texas West Sharyland, Texas Retrieved from...

  15. Fact #933: July 11, 2016 Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production

  16. ,"West Virginia Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West...

  17. West Virginia Crude Oil + Lease Condensate Reserves New Field...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0...

  18. Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels

    Reports and Publications (EIA)

    2003-01-01

    This paper presents a short-term monthly forecasting model of West Texas Intermediate crude oil spot price using Organization for Economic Cooperation and Development (OECD) petroleum inventory levels.

  19. Crosswell seismic imaging in the Permian Basin, West Texas, USA

    SciTech Connect (OSTI)

    Langan, R.T.; Harris, J.M.; Jensen, T.L.

    1995-12-31

    Crosswell seismic imaging technology has advanced rapidly over the last three years as the processing methods have become more robust, the cost of data acquisition has fallen, and the interwell distances of operation have increased. The Permian Basin of west Texas, USA is proving to be an ideal environment in which to develop this technology because of the relatively low seismic attenuation of the carbonate-dominated lithology, the moderate well spacings in the large number of mature fields, and the unusually high number of reflecting horizons. Current technology permits us to operate in carbonates at well spacings on the order of 2000 ft (650 m) and to image P- and S-wave reflecting horizons on a scale of 8 to 25 ft (2.4 to 7.6 m). Crosswell technology is not limited to carbonates, although the majority of recent applications have been in this environment. We are involved in three separate crosswell experiments in the Permian Basin, each with unique objectives. The first experiment involves a CO{sub 2} pilot project in a Grayburg Formation reservoir on the eastern edge of the Central Basin Platform. Here we are attempting to characterize the reservoir at a scale unobtainable from 3-D surface seismic data and to image CO{sub 2} fronts directly. The second experiment deals with a waterflood in a Middle Clearfork Formation reservoir on the Eastern Shelf, where we are trying to explain the erratic response of adjacent wells to water injection. In the third project we are trying to image the structure and stratigraphy of subtle {open_quotes}anomalies{close_quotes} in 3-D surface seismic images of the Wolfcamp Formation.

  20. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    SciTech Connect (OSTI)

    1999-03-01

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

  1. ,"West Virginia Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  2. Sequence stratigraphic analysis of the Lower Permian Hueco Group, northern Sierra Diablo, west Texas

    SciTech Connect (OSTI)

    Starcher, M.A. )

    1992-04-01

    The upper Wolfcamp Hueco Group in the northern Sierra Diablo of west Texas was deposited in a shelf setting on the western margin of the Delaware basin. This outcrop study subdivides the Hueco Group, including the Powwow Formation, into a sequence stratigraphic framework. Two depositional sequences and component system tracts within the Hueco have been defined on the basis of cycle stacking patterns and the recognition of unconformities. This study serves as a framework for cycle and sequence recognition in the remainder of the Delaware basin for the upper Wolfcamp.

  3. Ector County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype B. Places in Ector County, Texas Gardendale, Texas Goldsmith, Texas Odessa, Texas West Odessa, Texas Retrieved from "http:en.openei.orgw...

  4. Oil and gas developments in west Texas and eastern New Mexico in 1983

    SciTech Connect (OSTI)

    Adams, D.R.; Collier, W.W.; Gail, G.J.; Gaines, G.B.; Gibson, W.R.; Miller, H.A. Jr.; Pause, P.H.; Robbins, L.D.

    1984-10-01

    7034 wells were drilled in west Texas and eastern New Mexico in 1983, 17.2% less than in 1982. The success rate for all wells was 79.8% up 1.1% from 1982. The exploratory success rate decreased to 25.4% in 1983 from 26.4% in 1982. The number of exploratory wells drilled in 1983 decreased 27.1% from 1982, and total exploratory footage decreased 30.1%. The severe decline in exploratory drilling during 1983 was anticipated because seismic crew activity had declined during the 2 preceding years. However, 1983 seismic activity increased 2.1% from 1982, reversing the trend. Therefore, because seismic crew activity is usually a reliable leading indicator of trends in exploratory drilling, an increase in Permian basin wildcat drilling is predicted for mid-1985. In 1983, the number of development wells drilled decreased 15.2% from 1982, and total development footage decreased 17.6%. Development success increased by 0.1% to 89.2%. Oil production for 1983 was 550,473,920 bbl, down 1.7% from 1982. Gas production was 1,995,555,963 mcf, down 9.5% from 1982. Overall leasing activity decreased in 1983. The land sales of New Mexico and the University of Texas received only a fraction of the attention normally paid to them. However, leasing was very aggressive in Glasscock, Midland, and Hockley Counties, Texas, of the Midland basin. 6 figures, 3 tables.

  5. Coiled tubing CO{sub 2} gas lift evaluated in West Texas

    SciTech Connect (OSTI)

    Sorrell, D.; Miller, R.

    1997-01-01

    The Denver Unit is a mature San Andres field in West Texas. It has been through primary production plus waterflood, and is now undergoing tertiary CO{sub 2} water-alternating-gas (WAG) injection. A significant number of the producers are strongly affected by the offset WAG injection well cycle. The wells swing through a broad range of producing characteristics, from mostly liquid to a high gas-liquid ratio, depending on injection fluid and response time. These wide swings cause troublesome failures, a loss in production and lead to higher operating costs. Since late 1995, SWEPI has been testing two CO{sub 2} gas lift installations in the Denver Unit. Results have been mixed to date. Evaluation of the two installations continues.

  6. Oil and gas developments in west Texas and eastern New Mexico in 1984

    SciTech Connect (OSTI)

    Pause, P.H.; Adams, D.R.; Collier, W.W.; Gibson, W.R.; Miller, H.A. Jr.; Robbins, L.D.; Williams, S.M.

    1985-10-01

    1984 was a surprisingly good year for drilling activity in the Permian basin. 8012 wells were drilled in west Texas and eastern New Mexico, almost 14% more than in 1983. The success rate for all wells continued to climb, reaching 83.5%, up 3.7% from 1983. Exploratory drilling was up almost 5% to 1080 wells. Total exploratory footage increased 8%, and the success rate for exploratory tests increased 1.5% to 26.9%. Development drilling also increased with 6932 wells drilled, up 15.5% from 1983. This was only 150 wells shy of the record set in 1982. The overall development success rate climbed from 89.2% to 92.4%, reflecting increased emphasis on safe drilling. These overall increases stand in sharp contrast to gas well drilling efforts. Exploratory gas completions declined 12.8%, and development gas well drilling was down 33.4%, a result of lower gas prices and a weak market. Oil and gas production in 1984 increased for the first time in 10 years. Total oil production was 551,911,001 bbl, an increase of 0.3% from 1983. Gas production was 2,006,907 mmcf, up 0.6%. Seismic activity increased in 1984, maintaining a trend started the year before. 1993 seismic crew-weeks were reported, up almost 4% from 1983. Overall leasing interest declined again for the third year in a row. Glasscock, Midland, and Hockley Counties, Texas, however, continued to be areas of vigorous activity. 6 figures, 3 tables.

  7. Oil and gas developments in west Texas and eastern New Mexico in 1984

    SciTech Connect (OSTI)

    Pause, P.H.; Adams, D.R.; Collier, W.W.; Gibson, W.R.; Miller, H.A.; Robbins, L.D.; Williams, S.M.

    1985-10-01

    1984 was a surprisingly good year for drilling activity in the Permian basin. 8,012 wells were drilled in west Texas and eastern New Mexico, almost 14% more than in 1983. The success rate for all wells continued to climb, reaching 83.5%, up 3.7% from 1983. Exploratory drilling was up almost 5% to 1,080 wells. Total exploratory footage increased 8%, and the success rate for exploratory tests increased 1.5% to 26.9%. Development drilling also increased with 6,932 wells drilled, up 15.5% from 1983. This was only 150 wells shy of the record set in 1982. The overall development success rate climbed from 89.2% to 92.4%, reflecting increased emphasis on ''safe'' drilling. These overall increases stand in sharp contrast to gas well drilling efforts. Exploratory gas completions declined 12.8%, and development gas well drilling was down 33.4%, a result of lower gas prices and a weak market. Oil and gas production in 1984 increased for the first time in 10 years. Total oil production was 551,911,001 bbl, an increase of 0.3% from 1983. Gas production was 2,006,907 mmcf, up 0.6%. Seismic activity increased in 1984, maintaining a trend started the year before. 1,993 seismic crew-weeks were reported, up almost 4% from 1983. Overall leasing interest declined again for the third year in a row. Glasscock, Midland, and Hockley Counties, Texas, however, continued to be areas of vigorous activity.

  8. Comparison of selected oil-field brines from fields in the Permian basin, West Texas-southeast New Mexico

    SciTech Connect (OSTI)

    White, H.G. III

    1992-04-01

    Stiff diagrams of oil-field brines from the west Texas Permian basin are identifiable within the geological framework. Plotted from a simple analysis of three cations and three anions, older Paleozoic waters can be categorized as either 'pristine' or modified, usually by a later influx of Permian or early Pennsylvanian water. These different plots can be segregated by geologic province. The Permian brines differ by age and also by environment (shelf, basin, etc.).

  9. Focus on Venezuelan heavy crude: refining margins

    SciTech Connect (OSTI)

    Not Available

    1984-01-25

    Of six crudes refined in the US Gulf Coast, heavy Venezuelan crude Lagunillas (15/sup 0/ API) provides the best margin per barrel. Data for end of December 1983 and the first three weeks of January show that margins on all crudes are on the rise in this market, due to a turnaround in product prices. The lighter crudes are showing the greatest increase in Gross Product Worth. This is having a modest shrinking effect on the margin differential between light and heavy crudes in this market. The domestic crude West Texas Intermediate, at 40/sup 0/ API, provides the highest GPW in this crude slate sample, over US $31 per barrel, compared to GPW of under US $28 per barrel for Lagunillas. Still, as Lagunillas cost about US $8 less than does WTI, refiners with sufficient residue conversion capacity can be earning about US $3.50 more in margin per barrel than they can with WTI. Although few refiners would be using a 15/sup 0/ API crude exclusively for any length of time, heavier oil's inclusion in modern refiners' diets is enhancing their competitive position more than any other single factor. This issue of Energy Detente presents the fuel price/tax series and industrial fuel prices for January 1984 for countries of the Western Hemisphere.

  10. Competitiveness of Mexican crude

    SciTech Connect (OSTI)

    Not Available

    1983-12-28

    Mexico is under great pressure to maintain oil export revenue levels if it is to avoid a reversal in its economic recovery program. While the country's vulnerability to a price plunge is also applicable to OPEC countries, the North Sea producers, and others, Mexico does have an ace. The ace is that its heavier, metals-ridden and sulfur-laden Maya crude, which had to be pushed on customers until about 1981, is now in strong demand. Comparisons are presented of the market value of five crude oils refined in the US Gulf Coast: West Texas Intermediate (or WTI, a 40/sup 0/ API, light), Arabian Light and Isthmus (both 34/sup 0/ medium-light), Alaska North Slope (or ANS, a 27/sup 0/ API, a medium), and Maya (22/sup 0/ API, medium-heavy). In this mix, the heavier the crude, the greater is the refining margin (except for Arabian Light, for which freight cost and product yield provide lower margins than those derived from WTI). The sacrifice by OPEC and other producers cutting crude oil prices was to the benefit to refiners' improved margins during the first half of 1983. Those cuts were on the lighter-quality oils. But prices for heavier Venezuelan, Californian, and Mexican crudes increased during the second half of 1983, due to developing refinery technologies in extracting favorable product yields from them. This issue of Energy Detente presents their fuel price/tax series and industrial fuel prices for December 1983 for countries of the Western Hemisphere.

  11. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4

    SciTech Connect (OSTI)

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared, solely under funds provided by West Texas Utilities (WTU), the Energy Systems Group (ESG) of Rockwell International, and four other support groups. A central-receiver repowering system is one in which a tower, surrounded by a large field of mirrors, is placed adjacent to an existing electric power plant. A receiver, located on top of the tower, absorbs solar energy reflected onto it by the mirrors and converts this solar energy to heat energy. The heat energy is transported by the liquid sodium to a set of sodium-to-steam steam generators. The steam generators produce steam at the same temperature and pressure as that produced by the fossil boiler in the existing plant. When solar energy is available, steam is produced by the solar part of the plant, thus displacing steam from the fossil boiler, and reducing the consumption of fossil fuel while maintaining the original plant output. A means for storing the solar energy is usually provided, so that some energy obtained from the solar source can be used to displace natural gas or oil fuels when the sun is not shining. This volume presents an executive summary of the conceptual design, performance, economics, development plans, and site owner's assessment. (WHK)

  12. Design, installation, and operation of a remote hazard-warning system in west Texas; A case study

    SciTech Connect (OSTI)

    Seanard, K.C. ); McClurkin, C.C. )

    1992-04-01

    A major problem facing operators in the Permian Basin is the hydrogen sulfide (H{sub 2}S) associated with oil and gas production in populated areas. Population growth in the area has led to the encroachment of the once-small towns into the producing fields. This situation is potentially hazardous in areas of west Texas where the concentration of H{sub 2}S can range from 5 to 10 mol% of the produced gas. To protect the population living around these wells, it has become necessary, and in some circumstances mandatory, to install early warning systems to inform company personnel of problems on producing leases. This paper describes the process of designing, installing, and operating an early hazard-warning system to monitor the leases operated by Fina Oil and Chemical Co. in the Foster field in Ector County, TX.

  13. Precambrian basement geology of the Permian basin region of west Texas and Eastern New Mexico: A geophysical perspective

    SciTech Connect (OSTI)

    Adams, D.C.; Keller, G.R.

    1996-03-01

    Because most of the Permian basin region of west Texas and southern New Mexico is covered by Phanerozoic rocks, other means must be found to examine the Precambrian upper crustal geology of the region. We have combined geologic information on the Precambrian from outcrops and wells with geophysical information from gravity and magnetic surveys in an integrated analysis of the history and structure of basement rocks in the region. Geophysical anomalies can be related to six Precambrian events: formation of the Early Proterozoic outer tectonic belt, igneous activity in the southern Granite-Rhyolite province, an episode of pre-Grenville extension, the Grenville orogeny, rifting to form the Delaware aulacogen, and Eocambrian rifting to form the early Paleozoic continental margin. Two geophysical features were studied in detail: the Abilene gravity minimum and the Central Basin platform gravity high. The Abilene gravity minimum is shown to extend from the Delaware basin across north-central Texas and is interpreted to be caused by a granitic batholith similar in size to the Sierra Nevada batholith in California and Nevada. This batholith appears to be related to formation of the southern Granite- Rhyolite province, possibly as a continental margin arc batholith. Because of this interpretation, we have located the Grenville tectonic front southward from its commonly quoted position, closer to the Llano uplift. Middle Proterozoic mafic intrusions are found to core the Central Basin platform and the Roosevelt uplift. These intrusions formed at about 1.1 Ga and are related in time to both the Mid-Continent rift system and the Grenville orogeny in Texas. Precambrian basement structures and changes in lithology have influenced the structure and stratigraphy in the overlying Permian basin, and thus have potential exploration significance.

  14. Depositional environments, sequence stratigraphy, and trap configuration of lower Wolfcampian clastics along eastern edge of Midland basin, west Texas

    SciTech Connect (OSTI)

    Stewart, N.R.; Reuter, S.G.

    1989-03-01

    The Lower Permian (lower Wolfcampian) along the eastern edge of the Midland basin, west Texas, is characterized by ramp-type shelf margins. During eustatic lowstand, nearshore sedimentation shifted drastically to the west into a basinal setting below the Pennsylvanian (Canyon) shelf margin. Core descriptions demonstrate that lowstand systems tract (LST) and transgressive systems tract (TST) siliciclastics were deposited in deltaic and coastal-plain environments. Prodelta, delta-front, and stream-mouth bar facies are associated with the LST. Coastal-plain and distributary channels are preserved in the TST. The sequence stratigraphic framework indicates type 1 sequence boundaries at 287 Ma, 282 Ma, and 280 Ma in the lower Wolfcampian clastics. This lower Wolfcampian package of sedimentary rocks overlies the Pennsylvanian and is capped by the 279-Ma middle Wolfcampian unconformity. All three sequence boundaries and associated systems tract deposits exhibit a prograding stacking pattern within the sequence stratigraphic framework. Basinally restricted prograding LST deltaic rocks are overlain by backstepping TST deltaics and highstand systems tract (HST) outer marine shales. Production in lower Wolfcampian clastic fields is associated with fine-grained quartzarenites up to 45 ft thick which were deposited in stream-mouth bars. Delta-front and prodelta low-permeability shales encase the reservoir facies, forming lateral permeability barriers. HST outer marine shales deposited over the stream-mouth-bar sandstones act as a top seal, creating a stratigraphic trap and providing source for the high-BTU gas and oil produced from these basinally restricted LST deltaics.

  15. Texas - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Texas

  16. Texas - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Texas

  17. Texas - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Texas

  18. Early Permian deep-water allochthonous limestone facies and reservoir, west Texas

    SciTech Connect (OSTI)

    Hobson, J.P.; Caldwell, C.D.; Toomey, D.F.

    1985-12-01

    Conventional cores from six wells in southwest Reagan and northern Crockett Counties, Texas, recovered interbedded limestone conglomerate, intraclast and bioclast limestone, calcarenite, and shale. Twenty-one lithologies are grouped into six lithofacies based on study of slabbed core surfaces. The limestone facies are interpreted on the basis of petrologic characteristics, biota regional stratigraphic setting, and facies stratigraphy as deep water and allochthonous. Biotic constituents within the lithoclasts and matrix indicate an Early Permian (Wolfcamp) age. Age and facies determinations from cores in the Gunnx area significantly alter earlier stratigraphic interpretations made with wireline logs alone. Late Paleozoic allochthonous carbonate facies may provide significant new reserves in the Permian basin. 19 figures, 2 tables.

  19. Shelf margin bioherms and associated facies in the Lower Permian Hueco Group (Late Wolfcampian), Hueco Mountains, West Texas

    SciTech Connect (OSTI)

    Wahlman, G.P.; Tasker, D.R.; St. John, J.W.; Werle, K.J. )

    1992-01-01

    Late Wolfcampian phylloid algal/Tubiphytes biohermal complexes are exposed in three erosional oilers lying about 3 miles west of and parallel to the main Hueco Mountains in far West Texas. The biohermal complexes are located paleogeographically along the shelf margin between the Diablo Platform and Orogrande Basin. Based on fusulinids the shelf margin buildups correlate with well-bedded shelf carbonates of the type Hueco Group in the main Hueco Mountains. The phylloid algal/Tubiphytes shelf margin bioherms contain an upward shallowing facies succession, which, in ascending order, consists of: (1) phylloid algal wackestone-bafflestone, (2) phylloid algal-fusulinid bafflestone-packstone, and (3) Tubiphytes boundstone and Tubiphytes-fusulinid-phylloid algal packstone-grainstone. The crest of the southernmost outlier has a different type of bioherm that consists of nodular boundstones composed of calcisponges, encrusting bryozoans and laminar red algae. The shelf margin complexes prograded over slope facies of dark-gray cherty limestones, which generally lack skeletal fossils, but contain common ichnofossils in upper slope beds. Overlapping tongues and channels of lithoclastic-skeletal packstones and grainstones extend seaward from the phylloid algal/Tubiphytes bioherms into the dark-gray slope facies. Proximal backreef facies consist of mainly skeletal-peloidal packstones and wackestones. The Hueco Mountains outlier exposures are important because: (1) they confirm a Late Wolfcampian shelf margin with distinct topographic relief in the southern Orogrande Basin, and (2) they provide an easily accessible field laboratory where Wolfcampian shelf-to-basin facies relationships and shelf margin bioherms can be studied. Wolfcampian bioherms represent a significant stage in the evolutionary history of Late Paleozoic reef communities and form important petroleum reservoirs in the adjacent Permian Basin.

  20. Sequence stratigraphic model of the Rio Grande Delta, south west Texas: Potential analog for the Niger Delta

    SciTech Connect (OSTI)

    Banfield, L.A.; Anderson, J.B.; Vail, P.R.

    1996-12-31

    A sequence stratigraphic model developed from the ancient Rio Grande Delta in South West Texas is suggested as an analog for the Niger Delta. The two delta systems are characterized by high sand bedloads, shale diapirism with associated listric normal faulting, and large amounts of tidal and wave influence forming lower coastal plains characterized by swamps and estuaries. The sequence stratigraphic model of the ancient Rio Grande delta is based on approximately 1200 kilometers of single channel, 15 cubic inch water gun data, lithologic descriptions from approximately 25 long cores (28-30 m) located in 17-94 meters water depth, three gamma ray logs, paleontologic data from two cores, and oxygen isotopic data from one core (152 meters in length and located in 94 meters water depth). The combined data indicate that considerable quantities of sand are sequestered on the continental shelf and point sourcing the slope. The Rio Grande sequence stratigraphic model provides an improved understanding of sand deposits on the shelf, of the role of sediment bypass during lowstands, and of the base of slope deposits formed by headward eroding canyons (?) or channels (?) located at the shelf break. This information regarding the distribution of sand in the Rio Grande system can provide valuable insight into the reservoir distribution in the Niger system, improving existing reservoir predictions.

  1. Predicting the natural state of fractured carbonate reservoirs: An Andector Field, West Texas test of a 3-D RTM simulator

    SciTech Connect (OSTI)

    Tuncay, K.; Romer, S.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.

  2. Evaporite replacement within the Permian strata of the Bighorn Basin, Wyoming and the Delaware Basin, west Texas and New Mexico

    SciTech Connect (OSTI)

    Ulmer, D.S.; Scholle, P.A. )

    1992-01-01

    The Park City and Goose Egg Formations of the Big Horn Basin, Wyoming and the Seven Rivers, Yates and Tansill Formations of west Texas and New Mexico contain numerous examples of silicified and calcitized evaporites. Both areas show significant preserved interstitial evaporite, but on outcrop the discrete crystals and nodular evaporites have been extensively replaced. These replacements appear to be a multistage phenomenon. Field and petrographic evidence (matted fabrics in nodules; evaporite inclusions) indicate that silicification involved direct replacement of evaporites and probably occurred during earlier stages of burial. Calcitization, however, appears to be a much later phenomenon and involved precipitation of coarse crystals within evaporite molds. The calcites are typically free of evaporite inclusions. Isotopic analyses of these calcites give a wide range of values from [minus]6.04 to [minus]25.02 [per thousand] [delta][sup 18]O and +6.40 to [minus]25.26 [per thousand] [delta][sup 13]C, reflecting their complex diagenetic histories. In both localities, silicification of evaporites was completed by the end of hydrocarbon migration and emplacement. The extremely broad isotopic range of the calcites indicates that the calcitization occurred during a long period of progressive uplift and increased groundwater circulation associated with mid-Tertiary block faulting. The very light oxygen values within the Bighorn Basin were produced by thermochemical sulfate reduction during deepest burial of the region. Evaporite diagenesis in both the Bighorn and Delaware Basins is an ongoing process that started prior to hydrocarbon migration, continued over millions of years, and has the potential to do significant porosity change.

  3. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  4. INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO

    SciTech Connect (OSTI)

    F. Jerry Lucia

    2002-01-31

    This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock-fabric flow layers

  5. MaxWest Environmental Systems | Open Energy Information

    Open Energy Info (EERE)

    MaxWest Environmental Systems Jump to: navigation, search Name: MaxWest Environmental Systems Place: Houston, Texas Zip: 77057 Product: MaxWest Environmental Systems designs,...

  6. Calculation and interpretation of crustal shortening along the Central Basin Platform, West Texas: A method to calculate basement motion for modeling input

    SciTech Connect (OSTI)

    Hoak, T.E. |; Sundberg, K.R.; Ortoleva, P.

    1998-12-31

    The analysis carried out in the Chemical Interaction of Rocks and Fluids Basin (CIRFB) model describes the chemical and physical evolution of the entire system. One aspect of this is the deformation of the rocks, and its treatment with a rigorous flow and rheological model. This type of analysis depends on knowing the state of the model domain`s boundaries as functions of time. In the Andrews and Ector County areas of the Central Basin Platform of West Texas, the authors calculate this shortening with a simple interpretation of the basic motion and a restoration of the Ellenburger formation. Despite its simplicity, this calculation reveals two distinct periods of shortening/extension, a relatively uniform directionality to all the deformation, and the localization of deformation effects to the immediate vicinities of the major faults in the area. Conclusions are drawn regarding the appropriate expressions of these boundary conditions in the CIRFB model and possible implications for exploration.

  7. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  8. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico - petrophysical characterization of the South Cowden Grayburg Reservoir, Ector County, Texas. Final report

    SciTech Connect (OSTI)

    Lucia, F.J.

    1997-06-01

    Reservoir performance of the South Cowden Grayburg field suggests that only 21 percent of the original oil in place has been recovered. The purpose of this study is to construct a realistic reservoir model to be used to predict the location of the remaining mobile oil. Construction of reservoir models for fluid-flow simulation of carbonate reservoirs is difficult because they typically have complicated and unpredictable permeability patterns. Much of the difficulty results from the degree to which diagenetic overprinting masks depositional textures and patterns. For example, the task of constructing a reservoir model of a limestone reservoir that has undergone only cementation and compaction is easier than constructing a model of a karsted reservoir that has undergone cavern formation and collapse as well as cementation and compaction. The Permian-age carbonate-ramp reservoirs in the Permian Basin, West Texas and New Mexico, are typically anhydritic dolomitized limestone. Because the dolomitization occurred soon after deposition, depositional fabrics and patterns are often retained, and a reservoir model can be constructed using depositional concepts. Recent studies of the San Andres outcrop in the Guadalupe Mountains and the Seminole San Andres reservoir in the Permian Basin illustrate how depositional fabrics and patterns can be used to construct a reservoir model when depositional features are retained.

  9. Regional depositional systems tracts, paleogeography, and sequence stratigraphy, upper Pennsylvanian and lower Permian strata, North-and-West-Central Texas

    SciTech Connect (OSTI)

    Brown, L.F.; Solis-Iriarte, R.F.; Johns, D.A.

    1990-01-01

    This book provides a regional stratigraphic and depositional framework of the Virgilian and Wolfcampian Series of North-Central Texas. The authors have identified 16 major and several minor depositional sequences, commonly called cyclothems, deposited during Late Pennsylvanian and Early Permian regressive-transgressive episodes. These cyclothems were mapped from outcrop across the Eastern Shelf and into the Midland Basin. Seventeen maps and 23 cross-sections were constructed to show regional net-sandstone distribution within siliciclastic systems, to document sequential depositional history and paleogeography, to analyze depositional response to paleobathymetry and tectonics, and to offer a regional sequence-stratigraphic framework for evaluating controls on relative sea level. Regional perspective provided by the map series will stimulate new ideas about inadequately tested sandstone trends and unrealized stratigraphic-trap potential in this large, mature petroleum province.

  10. West Texas geothermal resource assessment. Part II. Preliminary utilization assessment of the Trans-Pecos geothermal resource. Final report

    SciTech Connect (OSTI)

    Gilliland, M.W.; Fenner, L.B.

    1980-01-01

    The utilization potential of geothermal resources in Trans-Pecos, Texas was assessed. The potential for both direct use and electric power generation were examined. As with the resource assessment work, the focus was on the Hueco Tanks area in northeastern El Paso County and the Presidio Bolson area in Presidio County. Suitable users of the Hueco Tanks and Presidio Bolson resource areas were identified by matching postulated temperature characteristics of the geothermal resource to the need characteristics of existing users in each resource area. The amount of geothermal energy required and the amount of fossil fuel that geothermal energy would replace were calculated for each of the users identified as suitable. Current data indicate that temperatures in the Hueco Tanks resource area are not high enough for electric power generation, but in at least part of the Presidio Bolson resource area, they may be high enough for electric power generation.

  11. Depositional and diagenetic controls on porosity permeability and oil production in McFarland/Magutex (Queen) reservoirs, Andrews County, west Texas

    SciTech Connect (OSTI)

    Holtz, M.H. )

    1991-03-01

    The McFarland/Magutex Queen reservoir complex lies along the northeastern edge of the Central basin platform in the west Texas Permian basin and produces oil from the Permian Queen Formation. Current production from this complex totals 42 million stock-tank barrels (MMSTB) of an estimated 219 MMSTB of original oil in place, with an estimated 90 MMSTB of remaining mobile oil (RMO). The gross pay interval contains two parasequences consisting of progradational, 30-ft-thick, upward-shoaling facies packages. Facies include shoreface, mixed tidal channel and intertidal flat, and supratidal. Elongate shoreface facies are characterized by poorly consolidated, massive to thinly laminated sandstones. The supratidal facies, which act as permeability barriers, are characterized by algal-laminated dolostone and nodular, laminated, and massive anhydrite containing halite and gypsum pseudomorphs. Highest production and the largest amount of the 90 MMSTB of RMO is associated with the shoreface and tidal-channel facies. Bulk pore volume storage capacity and permeability are also highest within these two facies. Sandstones are arkosic, containing anhydrite and dolomite cements. Accessory minerals are clays, authigenic feldspar, and dolomite. Three main pore types are recognized: interparticle, moldic and intraconstituent, and micropores. Moldic and intraconstituent porosity is associated with leached feldspars and anhydrite cement dissolution. Microporosity is associated with syndepositional, grain-coating corrensite, dissolution-enhanced feldspar cleavage planes, and authigenic multifaceted dolomite. Microporosity derived from clays and dolomite is formed preferentially in tidal-channel and intertidal flat facies.

  12. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico--waterflood performance analysis for the South Cowden Grayburg Reservoir, Ector County, Texas. Final report

    SciTech Connect (OSTI)

    Jennings, J.W. Jr.

    1997-05-01

    A reservoir engineering study was conducted of waterflood performance in the South Cowden field, an Upper Permian Grayburg reservoir on the Central Basin Platform in West Texas. The study was undertaken to understand the historically poor waterflood performance, evaluate three techniques for incorporating petrophysical measurements and geological interpretation into heterogeneous reservoir models, and identify issues in heterogeneity modeling and fluid-flow scaleup that require further research. The approach included analysis of relative permeability data, analysis of injection and production data, heterogeneity modeling, and waterflood simulation. The poor South Cowden waterflood recovery is due, in part, to completion of wells in only the top half of the formation. Recompletion of wells through the entire formation is estimated to improve recovery in ten years by 6 percent of the original oil in place in some areas of the field. A direct three-dimensional stochastic approach to heterogeneity modeling produced the best fit to waterflood performance and injectivity, but a more conventional model based on smooth mapping of layer-averaged properties was almost as good. The results reaffirm the importance of large-scale heterogeneities in waterflood modeling but demonstrate only a slight advantage for stochastic modeling at this scale. All the flow simulations required a reduction to the measured whole-core k{sub v}/k{sub h} to explain waterflood behavior, suggesting the presence of barriers to vertical flow not explicitly accounted for in any of the heterogeneity models. They also required modifications to the measured steady-state relative permeabilities, suggesting the importance of small-scale heterogeneities and scaleup. Vertical flow barriers, small-scale heterogeneity modeling, and relative permeability scaleup require additional research for waterflood performance prediction in reservoirs like South Cowden.

  13. Fact #758: December 17, 2012 U.S. Production of Crude Oil by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: December 17, 2012 U.S. Production of Crude Oil by State, 2011 Fact 758: December 17, 2012 U.S. Production of Crude Oil by State, 2011 Texas is by far the State that produces ...

  14. Conceptual design of the solar repowering system for West Texas Utilities Company Paint Creek Power Station Unit No. 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-07-15

    A conceptual design of a sodium-cooled, solar, central-receiver repowering system for West Texas Utilities' Paint Creek Unit 4 was prepared. The existing Paint Creek Unit 4 is a natural-gas-fired, baseload unit with a dependable net power output of 110 MWe. It is a reheat unit, has a main steam temperature and pressure of 538/sup 0/C (1000/sup 0/F) and 12.41 MPa (1800 psig), respectively, has a reheat temperature of 538/sup 0/C (1000/sup 0/F), and was placed in operation in 1972. On this conceptual design study program, a large number of trade studies and optimizations were carried out, in order to derive the most cost-effective design that had the greatest potential for widespread application and commercialization. As a result of these studies, the optimum power level for the solar part of the plant was determined to be 60 MWe, and provisions were made to store enough solar energy, so that the solar part of the plant would produce, on March 21 (equinox), 60 MWe of electric power for a period of 4 h after sunset. The tower in this system is 154 m (505 ft) high to the midpoint of the receiver, and is surrounded by 7882 heliostats (mirrors), each of which is 6.7 m (22 ft) by 7.3 m (24 ft). The mirror field occupies 1.74 x 10/sup 6/ m/sup 2/ (430 acres), and extends 1040 m (3400 ft) to the north of the tower, 550 m (1800 ft) to the south of the tower, and is bounded on the east and west by Lake Stamford. The receiver, which is of the external type, is 15.4 m (50.5 ft) high by 14 m (45.9 ft) in diameter, and is capable of absorbing a maximum of 226 MW of thermal energy. The set of sodium-to-steam generators consists of an evaporator, a superheater, and a reheater, the power ratings of which are 83.2, 43.7, and 18.1 MWt, respectively. Conceptual design, system characteristics, economic analysis, and development plans are detailed. (WHK)

  15. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  16. Natural Gas and Crude Oil Prices in AEO (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the Annual Energy Outlook 2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

  17. U.S. Crude Oil Rotary Rigs in Operation (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Export Policy EIA Energy Conference Jason Bordoff July 14, 2014 Washington, DC 420 West 118 th St, New York, NY 10027 | http://energypolicy.columbia.edu | @ColumbiaUEnergy * Crude transported by pipeline over federal rights-of-way (with exceptions). * Crude produced from OCS. * Crude from Naval Petroleum Reserve. Other restrictions (waived in the above cases) barring export of: Current Crude Export Law 2 * Shipments to Canada for consumption or use therein. * Crude exported from

  18. Environmental assessment of oil degasification at four Strategic Petroleum Reserve facilities in Texas and Louisiana

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The U.S. Department of Energy (DOE) proposes to treat gassy oil at four Strategic Petroleum Reserve (SPR) storage sites to lower the gas content of the stored crude oil and help ensure safe transfer of the oil during drawdown. The crude oil is stored underground in caverns created in salt domes. The degree of gassiness of the oil varies substantially among sites and among caverns within a site. This environmental assessment describes the proposed degasification operation, its alternatives, and potential environmental impacts. The need for degasification has arisen because over time, gases, principally methane and nitrogen, have migrated into and become dissolved in the stored crude oil. This influx of gas has raised the crude oil vapor pressure above limits required by safety and emission guidelines. When oil is drawn from the caverns, excess gases may come out of solution. Based on preliminary data from an ongoing sampling program, between 200 and 350 million of the 587 million barrels of crude oil stored at these four sites would require processing to remove excess gas. Degasification, a commonly used petroleum industry process, would be done at four crude oil storage facilities: Bryan Mound and Big Hill in Texas, and West Hackberry and Bayou Choctaw in Louisiana. DOE would use a turnkey services contract for engineering, procurement, fabrication, installation, operation and maintenance of two degasification plants. These would be installed initially at Bryan Mound and West Hackberry. Degasification would be complete in less than three years of continuous operations. This report summarizes the environmental impacts of this gasification process.

  19. Bowie County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas De Kalb, Texas Hooks, Texas Leary, Texas Maud, Texas Nash, Texas New Boston, Texas Red Lick, Texas Redwater, Texas Texarkana, Texas Wake Village, Texas Retrieved from "http:...

  20. Navarro County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Navarro County, Texas Angus, Texas Barry, Texas Blooming Grove, Texas Corsicana, Texas Dawson, Texas Emhouse, Texas Eureka, Texas Frost, Texas Goodlow, Texas Kerens, Texas Mildred,...

  1. Fact #933: July 11, 2016 Texas, North Dakota, and the Gulf of Mexico

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Account for Two-Thirds of U.S. Crude Oil Production | Department of Energy 3: July 11, 2016 Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production Fact #933: July 11, 2016 Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production SUBSCRIBE to the Fact of the Week In 2015, the United States produced a total of 9.4 million barrels of crude oil per day (mmbd) from state and federal offshore operations. Texas produced

  2. Brazoria County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Hillcrest, Texas Holiday Lakes, Texas Iowa Colony, Texas Jones Creek, Texas Lake Jackson, Texas Liverpool, Texas Manvel, Texas Oyster Creek, Texas Pearland, Texas Quintana,...

  3. Henderson County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Eustace, Texas Gun Barrel City, Texas Log Cabin, Texas Mabank, Texas Malakoff, Texas Moore Station, Texas Murchison, Texas Payne Springs, Texas Poynor, Texas Seven Points, Texas...

  4. Fannin County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Fannin County, Texas Bailey, Texas Bonham, Texas Dodd City, Texas Ector, Texas Honey Grove, Texas Ladonia, Texas Leonard, Texas Pecan Gap, Texas Ravenna, Texas Savoy,...

  5. Galveston County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Clear Lake Shores, Texas Dickinson, Texas Friendswood, Texas Galveston, Texas Hitchcock, Texas Jamaica Beach, Texas Kemah, Texas La Marque, Texas League City, Texas San...

  6. World Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  7. U.S. crude oil production expected to top 8 million barrels per...

    U.S. Energy Information Administration (EIA) Indexed Site

    that U.S. crude oil output exceeded 8 million barrels per day. The higher production over the next two years will be due mainly to increased oil drilling in North Dakota and Texas

  8. Crude butadiene to styrene process

    SciTech Connect (OSTI)

    Dixit, R.S.; Murchison, C.B.

    1994-12-31

    One of the natural by-products of ethylene manufacture is a mixture of C4`s containing butadiene, butenes and butane. This C4 stream is the predominant feed stock for producing pure butadiene by an extraction process. The demand growth for ethylene far exceeds that for butadiene resulting in a world wide surplus of butadiene. The ethylene producer has a number of options available to process the crude C4 stream if the market price does not justify isolation of the pure butadiene. The first option is recycle the crude C4 stream back to the ethylene cracker and co-crack with fresh feed. A second option that has become popular in the last few years has been the partial or complete hydrogenation of the butadiene and butenes in the crude C4 stream. Partial or selective hydrogenation is preferred when there is a market for iso-butene which finds use in MTBE manufacture. Full hydrogenation is used when cracker feed stock is limited, there is excess hydrogen and no cost effective outlets exist for butenes. Full hydrogenation produces butanes that are excellent crack feed stock. Both selective and full hydrogenation require low to moderate capital expenditure. Both of these options are currently being practiced to remove excess butadiene from the market. The crude C4 to styrene process developed by Dow offers an attractive, high value alternative to an olefins producer. This process selectively upgrades butadiene in C4 streams to styrene monomer and produces raffinate-1 as a by-product. The process is currently being operated at the 18--40 lb/hr scale in a Dow Texas pilot plant.

  9. US Crude oil exports

    Gasoline and Diesel Fuel Update (EIA)

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since ...

  10. Willacy County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Lasara, Texas Los Angeles Subdivision, Texas Lyford South, Texas Lyford, Texas Port Mansfield, Texas Ranchette Estates, Texas Raymondville, Texas San Perlita, Texas Santa...

  11. Jefferson County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Central Gardens, Texas China, Texas Groves, Texas Nederland, Texas Nome, Texas Port Arthur, Texas Port Neches, Texas Taylor Landing, Texas Retrieved from "http:...

  12. Ellis County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Milford, Texas Oak Leaf, Texas Ovilla, Texas Palmer, Texas Pecan Hill, Texas Red Oak, Texas Venus, Texas Waxahachie, Texas Retrieved from "http:en.openei.orgw...

  13. Starr County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Los Alvarez, Texas Los Villareales, Texas North Escobares, Texas Rio Grande City, Texas Roma Creek, Texas Roma, Texas Salineno, Texas San Isidro, Texas Santa Cruz, Texas Retrieved...

  14. Guadalupe County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Guadalupe County, Texas Cibolo, Texas Geronimo, Texas Kingsbury, Texas Marion, Texas McQueeney, Texas New Berlin, Texas New Braunfels, Texas Redwood, Texas San...

  15. Cass County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Cass County, Texas Atlanta, Texas Avinger, Texas Bloomburg, Texas Domino, Texas Douglassville, Texas Hughes Springs, Texas Linden, Texas Marietta, Texas Queen...

  16. Bexar County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Converse, Texas Cross Mountain, Texas Elmendorf, Texas Fair Oaks Ranch, Texas Grey Forest, Texas Helotes, Texas Hill Country Village, Texas Hollywood Park, Texas Kirby,...

  17. Tarrant County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Benbrook, Texas Blue Mound, Texas Briar, Texas Burleson, Texas Colleyville, Texas Crowley, Texas Dalworthington Gardens, Texas Edgecliff Village, Texas Euless, Texas Everman,...

  18. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  19. EIS-0520: Texas LNG Project; Cameron County, Texas | Department...

    Office of Environmental Management (EM)

    20: Texas LNG Project; Cameron County, Texas EIS-0520: Texas LNG Project; Cameron County, Texas Summary The Federal Energy Regulatory Commission (FERC) announced its intent to ...

  20. Gravity Data for west-central Colorado

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard

    2012-04-06

    West -108.366692 East -105.478847 North 40.932361 South 36.961606 Data from From University of Texas: Pan American Center for Earth and Environmental Studies

  1. Gravity Data for west-central Colorado

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard

    West -108.366692 East -105.478847 North 40.932361 South 36.961606 Data from From University of Texas: Pan American Center for Earth and Environmental Studies

  2. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  3. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  4. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  5. Travis County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Travis County, Texas Texas General Land Office Places in Travis County, Texas Anderson Mill, Texas Austin, Texas Barton Creek, Texas Bee Cave, Texas Briarcliff, Texas Cedar...

  6. Williamson County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Williamson County, Texas Texas General Land Office Places in Williamson County, Texas Anderson Mill, Texas Austin, Texas Bartlett, Texas Brushy Creek, Texas Cedar Park, Texas...

  7. Austin County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Austin County, Texas Ag Fuels Ltd Places in Austin County, Texas Bellville, Texas Brazos Country, Texas Industry, Texas San Felipe, Texas Sealy, Texas Wallis, Texas Retrieved...

  8. Caldwell County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Caldwell County, Texas Lockhart, Texas Luling, Texas Martindale, Texas Mustang Ridge, Texas Niederwald, Texas San Marcos, Texas Uhland, Texas Retrieved from "http:...

  9. Comal County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Canyon Lake, Texas Fair Oaks Ranch, Texas Garden Ridge, Texas New Braunfels, Texas San Antonio, Texas Schertz, Texas Selma, Texas Retrieved from "http:en.openei.orgw...

  10. Bee County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 2 Climate Zone Subtype A. Places in Bee County, Texas Beeville, Texas Blue Berry Hill, Texas Normanna, Texas Pawnee, Texas Pettus, Texas Skidmore, Texas Tuleta, Texas...

  11. WEST VALLEY DEVELOPMENT PROJECT WEST VALLEY, NEW YORK NEWS MEDIA CONTACT: FOR IMMEDIATE RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEST VALLEY DEVELOPMENT PROJECT WEST VALLEY, NEW YORK NEWS MEDIA CONTACT: FOR IMMEDIATE RELEASE Bryan Bower: 716-942-4368 June 28, 2012 Bill Taylor: 803-952-8564 West Valley Draft Waste Evaluation West Valley, New York - The U.S. Department of Energy (DOE) today released to the Nuclear Regulatory Commission (NRC), the public and the states of Nevada and Texas, for review and comment, a Draft Waste Incidental to Reprocessing (WIR) Evaluation (Draft Evaluation) for the concentrator feed makeup

  12. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  13. Crude Oil Characteristics Research

    Broader source: Energy.gov (indexed) [DOE]

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The ...

  14. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  15. Angelina County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Angelina County, Texas Burke, Texas Diboll, Texas Hudson, Texas Huntington, Texas Lufkin, Texas Zavalla, Texas Retrieved from "http:en.openei.orgw...

  16. Hale County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Texas Edmonson, Texas Hale Center, Texas Petersburg, Texas Plainview, Texas Seth Ward, Texas Retrieved from "http:en.openei.orgwindex.php?titleHaleCounty,Texas&oldid...

  17. Hunt County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype A. Places in Hunt County, Texas Caddo Mills, Texas Campbell, Texas Celeste, Texas Commerce, Texas Greenville, Texas Hawk Cove, Texas Josephine,...

  18. Frio County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype B. Places in Frio County, Texas Bigfoot, Texas Dilley, Texas Hilltop, Texas Moore, Texas North Pearsall, Texas Pearsall, Texas Retrieved from "http:en.openei.orgw...

  19. Hardin County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Hardin County, Texas Kountze, Texas Lumberton, Texas Pinewood Estates, Texas Rose Hill Acres, Texas Silsbee, Texas Sour Lake, Texas Retrieved from "http:en.openei.org...

  20. Chambers County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Texas Reliant Baytown Biomass Facility Places in Chambers County, Texas Anahuac, Texas Baytown, Texas Beach City, Texas Cove, Texas Mont Belvieu, Texas Old...

  1. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  2. Crude Oil Characteristics Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The Energy Information Administration projects that U.S. oil production will reach 9.3 million barrels per day in 2015 - the highest annual average level of oil production since 1972. This domestic energy boom is due primarily to new unconventional production of light sweet crude oil from tight-oil formations like the

  3. ,"Texas Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  4. Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 1 16 0 31 21 5 2009-2014 New Field Discoveries 62 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 16 11 0 14 2 0 2009-2014 Estimated Production 55 53 50 72 ...

  5. Texas Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    5,496 6,356 8,108 11,101 12,004 14,058 2009-2014 Adjustments 21 -72 145 239 -51 173 2009-2014 Revision Increases 653 846 908 1,333 1,537 2,183 2009-2014 Revision Decreases 276 423 799 1,131 1,748 1,778 2009-2014 Sales 111 252 424 240 640 891 2009-2014 Acquisitions 210 469 791 510 722 1,198 2009-2014 Extensions 416 666 1,588 2,941 1,939 2,233 2009-2014 New Field Discoveries 11 78 33 23 3 10 2009-2014 New Reservoir Discoveries in Old Fields 6 8 44 60 72 86 2009-2014 Estimated Production 401 460

  6. Costs of Imported Crude Oil for Selected Crude Streams

    U.S. Energy Information Administration (EIA) Indexed Site

    18.19 17.14 18.84 20.97 See footnotes at end of table. 29. F.O.B. Costs of Imported Crude Oil for Selected Crude Streams Energy Information Administration Petroleum Marketing...

  7. ,"Texas Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Prices",8,"Monthly","2... 6:46:23 AM" "Back to Contents","Data 1: Texas Natural Gas Prices" "Sourcekey","N3050TX3"...

  8. Uvalde County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    2 Climate Zone Subtype B. Places in Uvalde County, Texas Knippa, Texas Sabinal, Texas Utopia, Texas Uvalde Estates, Texas Uvalde, Texas Retrieved from "http:en.openei.orgw...

  9. Cameron County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Island, Texas South Point, Texas Tierra Bonita, Texas Villa Pancho, Texas Villa del Sol, Texas Yznaga, Texas Retrieved from "http:en.openei.orgwindex.php?titleCameronCou...

  10. Milam County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 2 Climate Zone Subtype A. Places in Milam County, Texas Buckholts, Texas Cameron, Texas Milano, Texas Rockdale, Texas Thorndale, Texas Retrieved from "http:...

  11. Duval County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 2 Climate Zone Subtype A. Places in Duval County, Texas Benavides, Texas Concepcion, Texas Freer, Texas Realitos, Texas San Diego, Texas Retrieved from "http:...

  12. Nacogdoches County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Nacogdoches County, Texas Appleby, Texas Chireno, Texas Cushing, Texas Garrison, Texas Nacogdoches, Texas Retrieved from "http:en.openei.orgw...

  13. Hall County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    B. Places in Hall County, Texas Estelline, Texas Lakeview, Texas Memphis, Texas Turkey, Texas Retrieved from "http:en.openei.orgwindex.php?titleHallCounty,Texas&oldid...

  14. Central Texas Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Texas Biofuels LLC Jump to: navigation, search Name: Central Texas Biofuels LLC Place: Giddings, Texas Zip: 78942 Product: Biodiesel producer in Giddings, Texas. References:...

  15. Texas Solar Energy Society | Open Energy Information

    Open Energy Info (EERE)

    Society Jump to: navigation, search Logo: Texas Solar Energy Society Name: Texas Solar Energy Society Address: P. O. Box 1447 Place: Austin, Texas Zip: 78767 Region: Texas Area...

  16. South Texas Blending | Open Energy Information

    Open Energy Info (EERE)

    search Name: South Texas Blending Place: Laredo, Texas Zip: 78045 Product: Biodiesel producer based in Texas. References: South Texas Blending1 This article is a stub....

  17. Biodiesel Coalition of Texas | Open Energy Information

    Open Energy Info (EERE)

    Coalition of Texas Jump to: navigation, search Logo: Biodiesel Coalition of Texas Name: Biodiesel Coalition of Texas Address: 100 Congress Avenue Place: Austin, Texas Zip: 78701...

  18. DOE-Sponsored IGCC Project in Texas Takes Important Step Forward...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The captured CO2 will be used for enhanced oil recovery (EOR) in the West Texas Permian Basin, a process that both prevents the greenhouse gas from entering the atmosphere and ...

  19. Texas site selection and licensing status

    SciTech Connect (OSTI)

    Avant, R.V. Jr.

    1989-11-01

    Texas has identified a potential site in Hudspeth County in far West Texas near the town of Fort Hancock. Over the past year the Texas Low-Level Radioactive Waste Disposal Authority has been conducting detailed geology, hydrology, meteorology, soils, and flora and fauna evaluations. An authorization by the Board of Directors of the Authority to proceed with a license application, assuming that the detailed evaluation indicates that the site is suitable, is expected by September. A prototype license has been prepared in anticipation of the order to proceed with licensing, and the formal license application is expected to be submitted to the Texas Department of Health-Bureau of Radiation Control in December, meeting the license application milestone. Although site selection processes in all siting areas across the country have experienced organized opposition, El Paso County has funded a particularly well-organized, well-financed program to legally and technically stop consideration of the Fort Hancock site prior to the licensing process. Many procedural, regulatory, and technical issues have been raised which have required responses from the Authority in order to proceed with licensing. This has provided a unique perspective of what to expect from well-organized opposition at the licensing stage. This paper presents an update on the Texas siting activity with detailed information on the site evaluation and license application. Experience of dealing with issues raised by opposition relating to NRC guidelines and rules is also discussed.

  20. Implications of lifting the ban on the export of Alaskan crude oil

    SciTech Connect (OSTI)

    Not Available

    1990-03-26

    Present legislation effectively bans the export of crude oil produced in the United States. The ban has been in effect for years and is particularly stringent with respect to crude oil produced in Alaska, particularly on the North Slope. The Alaska crude export ban is specifically provided for in the Trans-Alaska Pipeline Authorization Act of 1973 and in other legislation. It was imposed for two reasons. The first was to reduce US dependence on imported crude oil. The Arab oil embargo had been imposed shortly before the Act was passed and a greater measure of energy independence was considered imperative at that time. The second reason was to assure that funds expended in building an Alaskan pipeline would benefit domestic users rather than simply employed to facilitate shipments to other countries. The main objective of this report is to estimate the potential impacts on crude oil prices that would result from lifting the export ban Alaskan crude oil. The report focuses on the Japanese market and the US West Coast market. Japan is the principal potential export market for Alaskan crude oil. Exports to that market would also affect the price of Alaskan crude oil as well as crude oil and product prices on the West Coast and the volume of petroleum imported in that area. 3 figs., 8 tabs.

  1. Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  2. Landed Costs of Imported Crude for Selected Crude Streams

    U.S. Energy Information Administration (EIA) Indexed Site

    Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Crude Stream Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 View History ...

  3. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 and 2012 Brent and West Texas Intermediate crude oil spot prices: Thomson Reuters. 2011 and 2012 average imported crude oil cost: U.S. Energy Information...

  4. Texas Retail Energy, LLC (Texas) | Open Energy Information

    Open Energy Info (EERE)

    Texas Retail Energy, LLC (Texas) Jump to: navigation, search Name: Texas Retail Energy, LLC Address: 2001 SE 10th St Place: Bentonville, AR Zip: 72712 Phone Number: (479) 204-0845...

  5. Texas City, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Texas City is a city in Chambers County and Galveston County, Texas. It falls under Texas's 14th congressional...

  6. West Virginia - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia West Virginia

  7. West Virginia - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia West Virginia

  8. West Virginia - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia West Virginia

  9. Enernoc (Texas) | Open Energy Information

    Open Energy Info (EERE)

    Lamar Place: Houston, Texas Zip: 77002 Region: Texas Area Sector: Efficiency Product: Demand response provider serving commercial and industrial customers Website:...

  10. Replacement Cost of Domestic Crude

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    The DEEPWATER model forecasts the replacement cost of domestic crude oil for 13 offshore regions in the lower 48 states. The replacement cost of domestic crude oil is the constant or levelized selling price that will recover the full expense of exploration, development, and productions with a reasonable return on capital.

  11. Louisiana - North Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana - North Crude Oil ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 North Louisiana Crude Oil ...

  12. Parmer County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Texas Scandia Wind Southwest LLC Places in Parmer County, Texas Bovina, Texas Farwell, Texas Friona, Texas Retrieved from "http:en.openei.orgwindex.php?titleParmerCo...

  13. Grimes County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Grimes County, Texas Anderson, Texas Bedias, Texas Navasota, Texas Todd Mission, Texas Retrieved from "http:...

  14. Matagorda County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Registered Energy Companies in Matagorda County, Texas Gulf Coast Green Energy Places in Matagorda County, Texas Bay City, Texas Blessing, Texas Markham, Texas...

  15. Callahan County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype B. Places in Callahan County, Texas Baird, Texas Clyde, Texas Cross Plains, Texas Putnam, Texas Retrieved from "http:...

  16. Coke County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype B. Places in Coke County, Texas Blackwell, Texas Bronte, Texas Robert Lee, Texas Retrieved from "http:en.openei.orgwindex.php?titleCokeCounty,Texas&oldid...

  17. Collingsworth County, Texas: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Places in Collingsworth County, Texas Dodson, Texas Quail, Texas Samnorwood, Texas Wellington, Texas Retrieved from "http:en.openei.orgwindex.php?titleCollingsworthCounty,...

  18. Jim Hogg County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 2 Climate Zone Subtype A. Places in Jim Hogg County, Texas Guerra, Texas Hebbronville, Texas Las Lomitas, Texas South Fork Estates, Texas Retrieved from...

  19. Brooks County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Brooks County, Texas Airport Road Addition, Texas Cantu Addition, Texas Encino, Texas Falfurrias, Texas Flowella,...

  20. This Week In Petroleum Crude Oil Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crude oil futures and estimated contract prices (dollars per barrel) Contract 1 Contract 2 Contract 3 Contract 4 Crude oil futures price contract 1 graph Crude oil futures price ...

  1. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports from Denmark of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Egypt of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Equatorial Guinea of Crude...

  2. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Imports from Oman of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Papua New Guinea of Crude Oil (Thousand Barrels per Day)","U.S. Imports from Peru of Crude Oil ...

  3. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Imports from Oman of Crude Oil (Thousand Barrels)","U.S. Imports from Papua New Guinea of Crude Oil (Thousand Barrels)","U.S. Imports from Peru of Crude Oil (Thousand ...

  4. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  5. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  6. Medina County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Castroville, Texas Devine, Texas Hondo, Texas LaCoste, Texas Lytle, Texas Natalia, Texas San Antonio, Texas Retrieved from "http:en.openei.orgwindex.php?titleMedinaCounty,T...

  7. San Patricio County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in San Patricio County, Texas Aransas Pass, Texas Corpus Christi, Texas Del Sol-Loma Linda, Texas Doyle, Texas Edgewater-Paisano, Texas Edroy, Texas Falman-County...

  8. Bastrop County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 2 Climate Zone Subtype A. Places in Bastrop County, Texas Bastrop, Texas Camp Swift, Texas Circle D-KC Estates, Texas Elgin, Texas Mustang Ridge, Texas Smithville, Texas...

  9. Lamar County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Lamar County, Texas Blossom, Texas Deport, Texas Paris, Texas Roxton, Texas Sun Valley, Texas Toco, Texas Retrieved from "http:en.openei.orgwindex.php?titleLamar...

  10. U.S. Crude Oil Export Policy

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil Export Policy EIA Energy Conference Jason Bordoff July 14, 2014 Washington, DC ... Cook Inlet. * Heavy California crude oil. * Exports connected to refining or ...

  11. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products ... "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Exports" ...

  12. West Coast (PADD 5) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas

  13. West Coast (PADD 5) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Norway 322 170 373 510 1995-2015 Oman 4,008 13,189 3,460 951 1995-2013 Panama 1995-2008 Papua New Guinea 1995-2003 Peru 6,471 5,712 3,017 4,596 3,652 2,234 1993-2015 Philippines 30 ...

  14. NM, West Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 1 0 3 2 1 4 2009-2014 Extensions 0 0 0 0 10 39 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  15. West Virginia Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 2 14 0 0 60 2009-2014 Extensions 0 2 1 19 32 46 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 14 0 0 1 2009-2014 ...

  16. Crude Oil Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 285,000 265,254 284,400 268,380 275,715 261,028 1920-2016 PADD 1 1,472 1,367 1,393 1,438 1,454 1,348 1981-2016 Florida 180 162 173 159 163 158 1981-2016 New York 24 22 24 23 24 23 1981-2016 Pennsylvania 599 537 558 600 571 476 1981-2016 Virginia 1 1 1 1 1 1 1981-2016 West Virginia 669 645 638 655 695 690 1981-2016 PADD 2 54,847 52,143 55,523 50,786 52,565 50,177 1981-2016 Illinois 693 697 785 723 725 744 1981-2016 Indiana 142 133 160

  17. Phil West

    Broader source: Energy.gov [DOE]

    Phil West is the director of communications for the Department of Energy’s Office of Energy Efficiency and Renewable Energy.

  18. Corsicana, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Texas. It falls under Texas's 6th congressional district.12 Registered Energy Companies in Corsicana, Texas Corsicana Chemical Company References US Census...

  19. Texas Power, LP | Open Energy Information

    Open Energy Info (EERE)

    search Name: Texas Power, LP Place: Texas Website: www.texaspoweronline.com Facebook: https:www.facebook.compagesTexas-Power-LP110752578951516 References: EIA Form...

  20. Third Planet Windpower (Texas) | Open Energy Information

    Open Energy Info (EERE)

    Windpower (Texas) Jump to: navigation, search Name: Third Planet Windpower Address: 909 Fannin Place: Houston, Texas Zip: 77010 Region: Texas Area Sector: Wind energy Product:...

  1. Fermilab Today | University of Texas at Arlington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas at Arlington Aug. 22, 2012 NAME: University of Texas at Arlington HOME TOWN: Arlington, Texas MASCOT: Blaze the Mustang SCHOOL COLORS: Orange and blue COLLABORATING AT...

  2. Texas Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Texas Department of Transportation Jump to: navigation, search Logo: Texas Department of Transportation Name: Texas Department of Transportation Abbreviation: TxDOT Place: Austin,...

  3. Texas Emerging Technology Fund | Open Energy Information

    Open Energy Info (EERE)

    Emerging Technology Fund Jump to: navigation, search Name: Texas Emerging Technology Fund Place: Texas Product: String representation "The Texas Emerg ... hnology fields." is too...

  4. Texas General Land Office | Open Energy Information

    Open Energy Info (EERE)

    Land Office Jump to: navigation, search Logo: Texas General Land Office Name: Texas General Land Office Address: 1700 Congress Ave Place: Austin, Texas Zip: 78701 Website:...

  5. Austin, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Entrepreneurs Network Austin Technology Incubator Biodiesel Coalition of Texas Texas Renewable Energy Industries Association Texas Solar Energy Society The Wind Coalition...

  6. Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico-stratigraphic hierarchy and cycle stacking facies distribution, and interwell-scale heterogeneity: Grayburg Formation, New Mexico. Final report

    SciTech Connect (OSTI)

    Barnaby, R.J.; Ward, W.B.; Jennings, J.W. Jr.

    1997-06-01

    The Grayburg Formation (middle Guadalupian) is a major producing interval in the Permian Basin and has yielded more than 2.5 billion barrels of oil in West Texas. Grayburg reservoirs have produced, on average, less than 30 percent of their original oil in place and are undergoing secondary and tertiary recovery. Efficient design of such enhanced recovery programs dictates improved geological models to better understand and predict reservoir heterogeneity imposed by depositional and diagenetic controls. The Grayburg records mixed carbonate-siliciclastic sedimentation on shallow-water platforms that rimmed the Delaware and Midland Basins. Grayburg outcrops in the Guadalupe and Brokeoff Mountains region on the northwest margin of the Delaware Basin present an opportunity to construct a detailed, three-dimensional image of the stratigraphic and facies architecture. This model can be applied towards improved description and characterization of heterogeneity in analogous Grayburg reservoirs. Four orders of stratigraphic hierarchy are recognized in the Grayburg Formation. The Grayburg represents a long-term composite sequence composed of four high-frequency sequences (HFS 1-4). Each HFS contains several composite cycles comprising two or more cycles that define intermediate-scale transgressive-regressive successions. Cycles are the smallest scale upward-shoaling vertical facies successions that can be recognized and correlated across various facies tracts. Cycles thus form the basis for establishing the detailed chronostratigraphic correlations needed to delineate facies heterogeneity.

  7. Texas Nuclear Profile - South Texas Project

    U.S. Energy Information Administration (EIA) Indexed Site

    South Texas Project" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,280","11,304",100.8,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  8. Texas | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Alevine(5) Member 29 July, 2013 - 14:46 Texas Legal Review BHFS flora and fauna leasing Legal review permitting roadmap Texas The NREL roadmap team recently met with...

  9. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  10. Texas Workshop Program V01

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop on Studies of Super-Heavy Nuclei at the SHE Factory and Super-Heavy Element Collaboration Meeting Texas A&M University College Station, Texas March 12-13, 2013 Tuesday, ...

  11. Low pour crude oil compositions

    SciTech Connect (OSTI)

    Motz, K.L.; Latham, R.A.; Statz, R.J.

    1990-05-22

    This patent describes and improvement in the process of transporting waxy crude oils through a pipeline. It comprises: incorporating into the crude oil an effective pour point depressant amount of an additive comprising a polymer selected from the group consisting of copolymers of ethylene and acrylonitrile, and terpolymers of ethylene, acrylonitrile and a third monomer selected from the group consisting of vinyl acetate, carbon monoxide, alkyl acrylates, alkyl methacrylates, alkyl vinyl ethers, vinyl chloride, vinyl fluoride, acrylic acid, and methacrylic acid, wherein the amount of third monomer in the terpolymer ranges from about 0.1 to about 10.0 percent by weight.

  12. Heavy crude upgrading using remote natural gas

    SciTech Connect (OSTI)

    Grosboll, M.P.

    1991-12-03

    This paper describes a method of forming an upgraded crude. It comprises: forming hydrogen from methane gas for hydroconverting heavy crude to form a better crude and reduce its viscosity; hydrogenating under hydroconverting conditions of 650 degrees Fahrenheit ({degrees}F)-1000{degrees}F; and 500-3000 pounds per square inch gauge (psig) only a first portion of a crude oil stream less than the total crude oil stream to produce a light oil that has a lowered viscosity; admixing the light oil with the remainder of the crude oil stream not hydrogenated to produce a flowable crude; and transporting the flowable crude to a refinery including a substep of flowing the crude through a pipeline.

  13. Nueces County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Nueces County, Texas Agua Dulce, Texas Aransas Pass, Texas Bishop, Texas Corpus Christi, Texas Driscoll, Texas...

  14. Hood County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Hood County, Texas Brazos Bend, Texas Cresson, Texas DeCordova, Texas Granbury, Texas Lipan, Texas Oak Trail...

  15. Zavala County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 2 Climate Zone Subtype B. Places in Zavala County, Texas Batesville, Texas Chula Vista-River Spur, Texas Crystal City, Texas La Pryor, Texas Las Colonias, Texas Retrieved...

  16. Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 790,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Texas

  17. Texas Onshore Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Texas Onshore Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 4,763,732 5,274,730 5,854,956 6,636,937 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Texas Onshore-Texas

  18. Gillespie County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    3 Climate Zone Subtype A. Places in Gillespie County, Texas Fredericksburg, Texas Harper, Texas Stonewall, Texas Retrieved from "http:en.openei.orgwindex.php?titleGillesp...

  19. Calhoun County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 2 Climate Zone Subtype A. Places in Calhoun County, Texas Point Comfort, Texas Port Lavaca, Texas Seadrift, Texas Retrieved from "http:en.openei.orgw...

  20. Renewable Energy Systems Inc (RES Americas) (Texas) | Open Energy...

    Open Energy Info (EERE)

    (Texas) Jump to: navigation, search Name: Renewable Energy Systems Inc (RES Americas) Address: 9050 Capital of Texas Hwy Place: Austin, Texas Zip: 78759 Region: Texas Area Sector:...

  1. Blanco County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype A. Places in Blanco County, Texas Blanco, Texas Johnson City, Texas Round Mountain, Texas Retrieved from "http:en.openei.orgw...

  2. Crosby County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype B. Registered Energy Companies in Crosby County, Texas Brownfield Biodiesel LLC Places in Crosby County, Texas Crosbyton, Texas Lorenzo, Texas Ralls,...

  3. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration ...

  4. Louisiana State Offshore Crude Oil + Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana State Offshore ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 LA, State Offshore Crude ...

  5. Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--North Crude Oil ... Referring Pages: Proved Nonproducing Reserves of Crude Oil North Louisiana Proved ...

  6. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: U.S. Crude Oil Imports" "Sourcekey","MCRIMUS1","MCRIMUSPG1... "Date","U.S. Imports of Crude Oil (Thousand Barrels)","U.S. Imports from ...

  7. "ENDING STOCKS OF CRUDE OIL (excluding SPR)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ENDING STOCKS OF CRUDE OIL (excluding SPR)" "Sourcekey","WCESTP11","WCESTP11","WCESTP21","... 1) Ending Stocks excluding SPR of Crude Oil (Thousand Barrels)","Weekly East Coast ...

  8. ,"U.S. Crude Oil Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: U.S. Crude Oil Imports" "Sourcekey","MCRIMUS2","MCRIMUSPG2... "Date","U.S. Imports of Crude Oil (Thousand Barrels per Day)","U.S. Imports ...

  9. Crude Oil Characteristics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crude Oil Characteristics Research Crude Oil Characteristics Research July 9, 2015 - 1:00pm Addthis Paula Gant Paula Gant Principal Deputy Assistant Secretary The DOE Office of Fossil Energy wanted to identify the actions needed to obtain a science-based understanding of outstanding questions associated with the production, treatment, and transportation of various types of crude oil, including Bakken crude oil. In support of that effort, DOE - in collaboration with the Department of

  10. SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 PDF icon October 2014 PDF icon April ...

  11. SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT...

    Office of Environmental Management (EM)

    TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 October 2014 April 2015 More...

  12. Wilmington crude oil and addendum

    SciTech Connect (OSTI)

    Not Available

    1983-03-29

    Ten (10) ampoules of the Wilmington crude oil material have been analyzed by gas chromatography/mass spectrometry (GC/MS). The measurements were made directly on samples of the diluted oil by GC/MS with selected ion monitoring (SIM). The mass spectrometer was operated in the chemical ionization mode using methane as the reagent gas, and the method of internal standards was used for the quantitative measurements. The analytes determined in the Wilmington crude oil are shown in Table 1. For most of the analytes, the quasi-molecular ion (M+H)/sup +/ was the species on which the SIM measurements were made. For measurements on the second set of ampoules, m/z 252 (M)/sup +/ was monitored for the benzo(a)pyrene, benzo(e)pyrene, and perylene. The ion(s) monitored for each of the analytes is also shown in Table 1. 4 tabs.

  13. Virent is Replacing Crude Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virent 2014 Virent is Replacing Crude Oil. Biomass 2014 July 30, 2014 Randy D. Cortright, Ph.D. CTO/Founder © Virent 2014 Slide 2 Virent at a Glance The global leader in catalytic biorefinery research, development, and commercialization Employees Technology Infrastructure 25x Development Pilot Plants 2x Process Plants Partners & Investors Converting plant-based feedstocks to fuels and chemicals 75 Employees © Virent 2014 Slide 3 Energy Cost Comparison Heating Value Data Sources: GREET and

  14. PROCESS FOR PURIFYING CRUDE PERFLUOROCARBONS

    DOE Patents [OSTI]

    Holeton, R.E.

    1959-03-24

    A method is described for refining organic perfluoro compounds. In the manufacture of perfluorinated compounds by the fluorination of hydrocarbons, the product frequently is contaminated ny incompletely fluorimated hydrogen containing impurities. These impurities can be removed by contacting the products in a fluid conditions with an active adsorbents such as silica gel or alumina gel. The patent claims are restricted to this refining of crude perfluorinated lubricating oil.

  15. Abandoned Texas oil fields

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  16. Abilene, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Abilene is a city in Jones County and Taylor County, Texas. It falls under Texas's 13th congressional district and Texas's 19th...

  17. WKN Texas LLC | Open Energy Information

    Open Energy Info (EERE)

    Product: A wind farm developer based in Texas. Originally a subsidiary of Windkraft Nord USA, WKN Texas LLC is currently owned by Enel North America. References: WKN Texas LLC1...

  18. Ferris, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Ferris is a city in Dallas County and Ellis County, Texas. It falls under Texas's 30th congressional district and Texas's 6th...

  19. Texas Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Texas Municipal Power Agency Jump to: navigation, search Name: Texas Municipal Power Agency Place: Texas Sector: Wind energy Phone Number: (936) 873-1100 Website: www.texasmpa.org...

  20. ,"Texas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...010TX2","N5020TX2","N5070TX2","N5050TX2","N5060TX2" "Date","Texas Natural Gas Underground Storage Volume (MMcf)","Texas Natural Gas in Underground Storage (Base Gas) (MMcf)","Texas ...

  1. Friendswood, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. Friendswood is a city in Galveston County and Harris County, Texas. It falls under Texas's 14th congressional district and Texas's 22nd...

  2. Tomball, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Tomball is a city in Harris County, Texas. It falls under Texas's 10th congressional district and Texas's 8th...

  3. Seabrook, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    OpenEI by expanding it. Seabrook is a city in Chambers County and Galveston County and Harris County, Texas. It falls under Texas's 14th congressional district and Texas's 22nd...

  4. Shoreacres, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Shoreacres is a city in Chambers County and Harris County, Texas. It falls under Texas's 14th congressional district and Texas's 22nd...

  5. Pearland, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    OpenEI by expanding it. Pearland is a city in Brazoria County and Fort Bend County and Harris County, Texas. It falls under Texas's 14th congressional district and Texas's 22nd...

  6. Humble, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Humble is a city in Harris County, Texas. It falls under Texas's 2nd congressional district and Texas's 18th...

  7. Stafford, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    stub. You can help OpenEI by expanding it. Stafford is a city in Fort Bend County and Harris County, Texas. It falls under Texas's 9th congressional district and Texas's 22nd...

  8. Baytown, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Baytown is a city in Chambers County and Harris County, Texas. It falls under Texas's 14th congressional district and Texas's 2nd...

  9. Pasadena, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Pasadena is a city in Harris County, Texas. It falls under Texas's 22nd congressional district and Texas's 29th...

  10. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas