Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total Number of Operable Refineries  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product:Country: Total

2

GrossStark units for totally real number fields  

E-Print Network [OSTI]

Gross­Stark units for totally real number fields by Kaloyan Slavov a thesis presented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 The proof of Gross's conjecture over the rational field 20 5.1 The p-adic Gamma function Computing the multiplicative integral . . . . . . . . . . . . . . . . . . . . . . 66 2 #12;Acknowledgements

Dasgupta, Samit

3

U.S. Dry Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0SalesDrilled (Number of1Decade

4

U.S. Dry Exploratory Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0SalesDrilled (Number

5

U.S. Dry Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast-Drilled (Number

6

U.S. Dry Exploratory Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast-Drilled (NumberYear Jan

7

Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,9792"1. NumberNumber

8

Service identification in TCP/IP : well-known versus random port numbers  

E-Print Network [OSTI]

The sixteen-bit well-known port number is often overlooked as a network identifier in Internet communications. Its purpose at the most fundamental level is only to demultiplex flows of traffic. Several unintended uses of ...

Masiello, Elizabeth

2005-01-01T23:59:59.000Z

9

Service Identification in TCP/IP: Well-Known versus Random Port Numbers  

E-Print Network [OSTI]

The sixteen-bit well-known port number is often overlooked as a network identifier in Internet communications. Its purpose at the most fundamental level is only to demultiplex flows of traffic. Several unintended uses of ...

Masiello, Elizabeth

2006-01-11T23:59:59.000Z

10

The Total Number of Giant Planets in Debris Disks with Central Clearings  

E-Print Network [OSTI]

Infrared spectra from the Spitzer Space Telescope (SSC) of many debris disks are well fit with a single black body temperature which suggest clearings within the disk. We assume that inside the clearing orbital instability due to planets removes dust generating planetesimal belts and dust generated by the outer disk that is scattered or drifts into the clearing. From numerical integrations we estimate a minimum planet spacing required for orbital instability (and so planetesimal and dust removal) as a function of system age and planet mass. We estimate that a 10^8 year old debris disk with a dust disk edge at a radius of 50 AU hosted by an A star must contain approximately 5 Neptune mass planets between the clearing radius and the iceline in order to remove all primordial objects within it. We infer that known debris disk systems contain at least a fifth of a Jupiter mass in massive planets. The number of planets and spacing required is insensitive to the assumed planet mass. However an order of magnitude higher total mass in planets could reside in these systems if the planets are more massive.

Peter Faber; Alice C. Quillen

2007-06-12T23:59:59.000Z

11

Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,9792"1. Number

12

Total..............................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1

13

Total................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1..

14

Total........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 111.1..

15

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7

16

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q Table

17

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q TableQ

18

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q

19

Total...........................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7Q26.7

20

Total............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7

22

Total.............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8 20.6

23

Total..............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8

24

Total..............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7 28.8,171

25

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.7

26

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.7 21.7

27

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.7

28

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1

29

Total...............................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1Do

30

Total................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.726.70.747.1Do

31

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6

32

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.5 12.5

33

Total.................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.5

34

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4 12.578.1

35

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4

36

Total..................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.1 14.7

37

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.1

38

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4. 111.115.2

39

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7 7.4.

40

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.7

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Total...................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033 1,618

42

Total....................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033 1,61814.7

43

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,033

44

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6 17.7

45

Total.......................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6 17.74.2

46

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.6

47

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.1 5.5

48

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.1

49

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.614.72,0335.615.10.7

50

Table B2. Summary Table: Totals and Medians of Floorspace, Number of Workers,  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number of6.9..

51

A holographic bound on the total number of computations in the visible Universe  

E-Print Network [OSTI]

Information and encoding are central to holographic imaging of matter and fields within a two-surface. We consider the probability of detection of particles inside star-like holographic screens defined by their propagators. Imaging a point particle of mass m hereby requires I = 2 pi mr in log2 bits on a spherical screen or radius r. Encoding the three hairs of mass, charge, angular momentum and radiation requires a minimum of four bits. This formulation leads directly to Reissner-Nordstrom black holes and extremal Kerr black holes for minimal screens, that envelope event horizons. Applied to the cosmological event horizon, the total number of computations in the visible Universe is found to be bounded by 10e121.

Maurice H. P. M. van Putten

2014-08-12T23:59:59.000Z

52

PA_Format_WAP April Production Numbers and Total ARRA and Non...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1,402 2,876 Vermont 131 1,008 2,387 Virginia 152 2,605 3,562 Washington 593 4,055 5,703 West Virginia 177 1,370 2,572 Wisconsin 836 3,478 11,097 Wyoming 85 137 405 Total 23,396...

53

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,9792"1.

54

Table B1. Summary Table: Totals and Means of Floorspace, Number of Workers, and  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " " (EstimatesA9.6.

55

U.S. Crude Oil Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWellsWellsU.S.20,798Year Jan

56

U.S. Crude Oil Exploratory Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore ShaleAcquisitionsWellsWellsU.S.20,798Year

57

Drilling, completion, stimulation, and testing of Hardy HW[number sign]1 well, Putnam County, West Virginia  

SciTech Connect (OSTI)

This report discusses the detailed field operations in drilling, logging, casing, completing, stimulating and testing the Hardy HW No. l well located in Union District, Putnam County, West Virginia. The project was designed and managed by BDM in cooperation with Cabot Oil and Gas Corporation. The well was spudded on November 29, 1989 and was completed at a total measured depth of 6406 feet on December 29, 1989. The well was drilled on an average azimuth of 335 degrees with a total horizontal displacement of 2618 feet. Approximately 1035 feet of the well had an inclination higher than 86 degrees, while 2212 feet of the well had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Four zones were stimulated during three stimulation operations (Zones 3 and 4 were stimulated together). Zone 1 stimulation was a successful foam frac while the stimulations on Zones 2, 3-4 were Partially successful. Initial gas production rates were 4.5 times greater than the natural production rate. After 21 months, gas produced from the BDM/Cabot well has declined at a rate about one-half that of a conventional vertical well in the area. This horizontal well is projected to produce 475 million cubic feet of gas over a 30-year period.

Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.

1992-03-01T23:59:59.000Z

58

Drilling, completion, stimulation, and testing of Hardy HW{number_sign}1 well, Putnam County, West Virginia. Final report  

SciTech Connect (OSTI)

This report discusses the detailed field operations in drilling, logging, casing, completing, stimulating and testing the Hardy HW No. l well located in Union District, Putnam County, West Virginia. The project was designed and managed by BDM in cooperation with Cabot Oil and Gas Corporation. The well was spudded on November 29, 1989 and was completed at a total measured depth of 6406 feet on December 29, 1989. The well was drilled on an average azimuth of 335 degrees with a total horizontal displacement of 2618 feet. Approximately 1035 feet of the well had an inclination higher than 86 degrees, while 2212 feet of the well had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Four zones were stimulated during three stimulation operations (Zones 3 and 4 were stimulated together). Zone 1 stimulation was a successful foam frac while the stimulations on Zones 2, 3-4 were Partially successful. Initial gas production rates were 4.5 times greater than the natural production rate. After 21 months, gas produced from the BDM/Cabot well has declined at a rate about one-half that of a conventional vertical well in the area. This horizontal well is projected to produce 475 million cubic feet of gas over a 30-year period.

Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.

1992-03-01T23:59:59.000Z

59

U.S. Dry Exploratory and Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0SalesDrilled (NumberDecade Year-0

60

U.S. Dry Exploratory and Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast-Drilled (NumberYear

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Natural Gas Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 WellsDecadeCubicYear Jan Feb Mar Apr May

62

U.S. Natural Gas Exploratory Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 WellsDecadeCubicYear Jan Feb Mar Apr

63

U.S. Natural Gas Exploratory and Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 WellsDecadeCubicYear Jan Feb Mar

64

Environmental Health Perspectives VOLUME 120 | NUMBER 1 | January 2012 29 It is well recognized that the fetus and infant  

E-Print Network [OSTI]

Environmental Health Perspectives VOLUME 120 | NUMBER 1 | January 2012 29 Review It is well and absorption of noxious agents in children relative to their body weight (Grandjean et al. 2008). Chemical diseases, childhood cancer, learning disabilities, behavioral problems, and possibly even obesity (Trasande

Boyer, Edmond

65

Comparative Study for the Interpretation of Mineral Concentrations, Total Porosity, and TOC in Hydrocarbon-Bearing Shale from Conventional Well  

E-Print Network [OSTI]

, and TOC in Hydrocarbon-Bearing Shale from Conventional Well Logs Haryanto Adiguna, SPE, Anadarko Petroleum, and mineral composition is an integral part of unconventional shale reservoir formation evaluation. Porosity requirement for economically viable flow of gas in very-low permeability shales. Brittle shales are favorable

Torres-Verdín, Carlos

66

Quantum state tomography of large nuclear spins in a semiconductor quantum well: Robustness against errors as quantified by condition numbers  

E-Print Network [OSTI]

We discuss methods of quantum state tomography for solid-state systems with a large nuclear spin $I=3/2$ in nanometer-scale semiconductors devices based on a quantum well. Due to quadrupolar interactions, the Zeeman levels of these nuclear-spin devices become nonequidistant, forming a controllable four-level quantum system (known as quartit or ququart). The occupation of these levels can be selectively and coherently manipulated by multiphoton transitions using the techniques of nuclear magnetic resonance (NMR) [Yusa et al., Nature (London) 434, 101 (2005)]. These methods are based on an unconventional approach to NMR, where the longitudinal magnetization $M_z$ is directly measured. This is in contrast to the standard NMR experiments and tomographic methods, where the transverse magnetization $M_{xy}$ is detected. The robustness against errors in the measured data is analyzed by using condition numbers. We propose several methods with optimized sets of rotations. The optimization is applied to decrease the number of NMR readouts and to improve the robustness against errors, as quantified by condition numbers. An example of state reconstruction, using Monte Carlo methods, is presented. Tomographic methods for quadrupolar nuclei with higher-spin numbers (including $I=7/2$) are also described.

Adam Miranowicz; Sahin K. Ozdemir; Jiri Bajer; Go Yusa; Nobuyuki Imoto; Yoshiro Hirayama; Franco Nori

2014-10-09T23:59:59.000Z

67

Overpressure prediction by mean total stress estimate using well logs for compressional environments with strike-slip or reverse faulting stress state  

E-Print Network [OSTI]

of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2006 Major Subject: Petroleum Engineering OVERPRESSURE PREDICTION BY MEAN TOTAL STRESS ESTIMATE USING WELL LOGS... FOR COMPRESSIONAL ENVIRONMENTS WITH STRIKE-SLIP OR REVERSE FAULTING STRESS STATE A Thesis by ASLIHAN OZKALE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

Ozkale, Aslihan

2007-04-25T23:59:59.000Z

68

1132 nature structural biology volume 6 number 12 december 1999 To be active, proteins must fold into well-defined three-dimen-  

E-Print Network [OSTI]

precursor proteins normally lack all structure during import11, but some proteins assume their native formarticles 1132 nature structural biology volume 6 number 12 december 1999 To be active, proteins must fold into well-defined three-dimen- sional structures. However, unfolding of proteins is also

Matouschek, Andreas

69

Number of Producing Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan Feb

70

Geothermal wells: a forecast of drilling activity  

SciTech Connect (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

71

Environmental baseline monitoring in the area of general crude oil - Department of Energy Pleasant Bayou Number 2: a geopressured geothermal test well, 1979. Annual report, Volume I  

SciTech Connect (OSTI)

A program to monitor baseline air and water quality, subsidence, microseismic activity, and noise in the vicinity of Brazoria County geopressured geothermal test wells, Pleasant Bayou No. 1 and No. 2, has been underway since March 1978. The initial report on environmental baseline monitoring at the test well contained descriptions of baseline air and water quality, a noise survey, an inventory of microseismic activity, and a discussion of the installation of a liquid tilt meter (Gustavson, 1979). The following report continues the description of baseline air and water quality of the test well site, includes an inventory of microseismic activity during 1979 with interpretations of the origin of the events, and discusses the installation and monitoring of a liquid tilt meter at the test well site. In addition, a brief description of flooding at the test site is presented.

Gustavson, T.C.; Howard, R.C.; McGookey, D.

1980-01-01T23:59:59.000Z

72

Public health assessment for Newton County Wells (a/k/a Silver Creek TCE), Joplin, Jasper County, Missouri, Region 7: CERCLIS number MOD985798339. Final report  

SciTech Connect (OSTI)

The Newton County TCE site contains an uncontrolled groundwater plume of trichloroethylene (TCE) contamination. The source of contamination is believed to be FAG Bearings. From 1973 to 1982, FAG Bearings produced ball bearings using TCE as a commercial degreaser. It is alleged that improper disposal and leaks of an alleged closed system of TCE led to the contamination of soil at the industrial site, the groundwater aquifer, and subsequently, 82 private water wells. Exposure pathways at the site consist of inhalation of, ingestion of, and dermal contact with TCE-contaminated groundwater and surface water. Because completed and potential exposure pathways exist, the Newton County TCE site has been classified as a Public Health Hazard.

NONE

1999-07-19T23:59:59.000Z

73

Contractor: Contract Number: Contract Type: Total Estimated  

Office of Environmental Management (EM)

2010 19,332,431 FY2011 23,956,349 FY2012 19,099,251 FY2013 19,352,402 FY2014 0 FY2015 FY2016 FY2017 FY2018 FY2019 Cumulative Fee Paid 81,740,433 208,635,203 21,226,918...

74

Notices Total Estimated Number of Annual  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment511

75

Notices Total Estimated Number of Annual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurity ComplexNorman RamseyNot84383 Federal

76

Contractor: Contract Number: Contract Type: Total Estimated  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison Uranium activities on DOE facilities orContractor:

77

Number of Producing Gas Wells (Summary)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 12 7311,925Count) Data Series: Wellhead

78

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

79

Hanford wells  

SciTech Connect (OSTI)

Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

Chamness, M.A.; Merz, J.K.

1993-08-01T23:59:59.000Z

80

Dimensions of Wellness Staying Well  

E-Print Network [OSTI]

to protect your physical health by eating a well-balanced diet, getting plenty of physical activity-evaluation and self-assessment. Wellness involves continually learning and making changes to enhance your state) A state in which your mind is engaged in lively interaction with the world around you. Intellectual

Fernandez, Eduardo

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Total Imports  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total9,216 9,178

82

Horizontal well IPR calculations  

SciTech Connect (OSTI)

This paper presents the calculation of near-wellbore skin and non-Darcy flow coefficient for horizontal wells based on whether the well is drilled in an underbalanced or overbalanced condition, whether the well is completed openhole, with a slotted liner, or cased, and on the number of shots per foot and phasing for cased wells. The inclusion of mechanical skin and the non-Darcy flow coefficient in previously published horizontal well equations is presented and a comparison between these equations is given. In addition, both analytical and numerical solutions for horizontal wells with skin and non-Darcy flow are presented for comparison.

Thomas, L.K.; Todd, B.J.; Evans, C.E.; Pierson, R.G.

1996-12-31T23:59:59.000Z

83

Monitoring well  

DOE Patents [OSTI]

A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

84

Monitoring well  

DOE Patents [OSTI]

A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

Hubbell, J.M.; Sisson, J.B.

1999-06-29T23:59:59.000Z

85

Monitoring well  

DOE Patents [OSTI]

The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

86

NAME: STUDENT NUMBER (PID): CITY, STATE ZIP: DAYTIME PHONE NUMBER  

E-Print Network [OSTI]

NAME: STUDENT NUMBER (PID): ADDRESS: CITY, STATE ZIP: DAYTIME PHONE NUMBER: CELL PHONE NUMBER of financial institution. 14 Cell Phone Expenses 15 Other ordinary and necessary living expenses. 16 TOTAL (add

87

Insulating and sheathing materials of electric and optical cables - Common test methods - Part 5-1: Methods specific to filling compounds - Drop-point - Separation of oil - Lower temperature brittleness - Total acid number - Absence of corrosive components - Permittivity at 23 C - DC resistivity at 23 C and 100 C  

E-Print Network [OSTI]

Specifies the test methods for filling compounds of electric cables used with telecommunication equipment. Gives the methods for drop-point, separation of oil, lower temperature brittleness, total acid number, absence of corrosive components, permittivity at 23 C, d.c. resistivity at 23C and 100C.

International Electrotechnical Commission. Geneva

2004-01-01T23:59:59.000Z

88

Total termination of term rewriting is undecidable  

E-Print Network [OSTI]

Total termination of term rewriting is undecidable Hans Zantema Utrecht University, Department Usually termination of term rewriting systems (TRS's) is proved by means of a monotonic well­founded order. If this order is total on ground terms, the TRS is called totally terminating. In this paper we prove that total

Utrecht, Universiteit

89

A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restricti  

E-Print Network [OSTI]

A significant number of Iowa water treatment systems are dependent upon well-based water sources. Because of this, CIRAS efforts have been focused on the "Ground Water Levels" as reported by Iowa DNR. Currently, DNR officials are indicating that restrictions or loss of the water supply is not likely

Lin, Zhiqun

90

Total Number of Existing Underground Natural Gas Storage Fields  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The BasicsTop 100

91

Well control procedures for extended reach wells  

E-Print Network [OSTI]

been found to be critical to the success of ERD are torque and drag, drillstring design, wellbore stability, hole cleaning, casing design, directional drilling optimization, drilling dynamics and rig sizing.4 Other technologies of vital importance... are the use of rotary steerable systems (RSS) together with measurement while drilling (MWD) and logging while drilling (LWD) to geosteer the well into the geological target.5 Many of the wells drilled at Wytch Farm would not have been possible to drill...

Gjorv, Bjorn

2004-09-30T23:59:59.000Z

92

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

93

Total Light Management  

Broader source: Energy.gov [DOE]

Presentation covers total light management, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

94

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

95

Permanent Home Number: Residential Number  

E-Print Network [OSTI]

Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address

Viglas, Anastasios

96

Total Organic Carbon Analyzer | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Organic Carbon Analyzer Total Organic Carbon Analyzer The carbon analyzer is used to analyze total carbon (TC), inorganic carbon (IC), total organic carbon (TOC), purgeable...

97

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

98

Regulations of Wells (Florida)  

Broader source: Energy.gov [DOE]

The Department of Environmental Protection regulates the construction, repair, and abandonment of wells, as well as the persons and businesses undertaking such practices. Governing boards of water...

99

Groundwater and Wells (Nebraska)  

Broader source: Energy.gov [DOE]

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

100

Plugging Abandoned Water Wells  

E-Print Network [OSTI]

. It is recommended that before you begin the process of plugging an aban- doned well that you seek advice from your local groundwater conservation district, a licensed water well driller in your area, or the Water Well Drillers Program with the Texas Department... hire a licensed water well driller or pump installer to seal and plug an abandoned well. Well contractors have the equipment and an understanding of soil condi- tions to determine how a well should be properly plugged. How can you take care...

Lesikar, Bruce J.

2002-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Total Synthesis of (?)-Himandrine  

E-Print Network [OSTI]

We describe the first total synthesis of (?)-himandrine, a member of the class II galbulimima alkaloids. Noteworthy features of this chemistry include a diastereoselective Diels?Alder reaction in the rapid synthesis of the ...

Movassaghi, Mohammad

102

Underground Wells (Oklahoma)  

Broader source: Energy.gov [DOE]

Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

103

Well drilling apparatus  

SciTech Connect (OSTI)

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

104

New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecade Year-0

105

New York Natural Gas Number of Gas and Gas Condensate Wells (Number of  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYearDecadeand Plant

106

North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0Feet) DecadeElements)

107

Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0YearSalesDecadeInputand

108

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feband

109

Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 Year-3FuelElements) Gas

110

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0Sales

111

Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan MonthlyProduction% ofYearYear Jan

112

Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellheadProvedDecadeElements) Gas and

113

West Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) YearProduction

114

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-DissolvedDecade Year-0

115

South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7,Cubic

116

Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand CubicinResidualU.S.containsDecadeDecade

117

Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear JanSeparation, Proved ReservesReservesGrossElements) Gas and

118

U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14Deliveries (MillionYearElements) Gas

119

Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan Feb Mar Apr May Jun

120

Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProvedGrossYear JanYear Jan

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear JanFeet)Year Jan FebYear

122

Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVentedYear Jan FebYear Jan Feb

123

California Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReservesmDecadeDecade

124

Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA,0,Decade Year-0

125

Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NAElements) Gas and Gas

126

Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith,Foot) Decade Year-0YearYear Jan

127

Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 Kentucky -Provedoff)CubicElements) Gas and

128

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 KentuckyYear Jan FebInputElements) Gas and

129

Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 KentuckyYearDecade Year-0(MillionYear Jan

130

Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith, RussFoot) DecadeYear Jan Feb Mar

131

Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubicDecadeDecade

132

Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (Million Barrels)Reserves%Foot)Elements) Gas

133

Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear Jan Feb Mar Apr MayDecade Year-0YearYear

134

Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear Jan FebFoot) Decade(MillionYear Jan

135

Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear JanDecadeYear Jan Feb Mar AprYear Jan

136

Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear(Billion CubicDecade Year-0NetYear Jan

137

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

138

Penrose Well Temperatures  

SciTech Connect (OSTI)

Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

Christopherson, Karen

2013-03-15T23:59:59.000Z

139

Geothermal well stimulation  

SciTech Connect (OSTI)

All available data on proppants and fluids were examined to determine areas in technology that need development for 300 to 500/sup 0/F (150/sup 0/ to 265/sup 0/C) hydrothermal wells. While fluid properties have been examined well into the 450/sup 0/F range, proppants have not been previously tested at elevated temperatures except in a few instances. The latest test data at geothermal temperatures is presented and some possible proppants and fluid systems that can be used are shown. Also discussed are alternative stimulation techniques for geothermal wells.

Sinclair, A.R.; Pittard, F.J.; Hanold, R.J.

1980-01-01T23:59:59.000Z

140

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class...

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Shock Chlorination of Wells  

E-Print Network [OSTI]

Shock chlorination is a method of disinfecting a water well. This publication gives complete instructions for chlorinating with bleach or with dry chlorine. It is also available in Spanish as publication L-5441S...

McFarland, Mark L.; Dozier, Monty

2003-06-11T23:59:59.000Z

142

Isobaric groundwater well  

DOE Patents [OSTI]

A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

143

Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and  

E-Print Network [OSTI]

Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA of Molecular Evolutionary Genetics, The Pennsylvania State University Examining the pattern of nucleotide per site, as well as the total number of nucleotide substitutions. In this method, excess transitions

Nei, Masatoshi

144

Total Crude by Pipeline  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total

145

Total U.S......................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do.. 111.1

146

Total U.S.....................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do..

147

Total U.S.....................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do..5.6

148

Total U.S.....................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do..5.64.2

149

Total U.S........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9

150

Total U.S........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 21.7

151

Total U.S........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7 21.77.1

152

Total U.S...........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.90.7

153

Summary Max Total Units  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 Recovery Act/BuySummary Max Total Units *If All

154

Thermal indicator for wells  

DOE Patents [OSTI]

Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

1983-01-01T23:59:59.000Z

155

Spacer for deep wells  

SciTech Connect (OSTI)

A spacer for use in a deep well that is to have a submersible pump situated downhole and with a string of tubing attached to the pump for delivering the pumped fluid. The pump is electrically driven, and power is supplied via an armored cable which parallels the string of tubing. Spacers are clamped to the cable and have the tubing running through an eccentrically located passage in each spacer. The outside dimensions of a spacer fit freely inside any casing in the well.

Klein, G. D.

1984-10-23T23:59:59.000Z

156

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

157

21 briefing pages total  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013Lamps;5 Federal Energy14 Federalof50Number2030

158

Decontaminating Flooded Wells  

E-Print Network [OSTI]

ER-011 6-06 Mark L. McFarland, Associate Professor and Extension Water Resources Specialist; Diane E. Boellstorff, Program Specialist Water Quality; Tony L. Provin, Associate Professor and Extension Soil Chemist; Monty C. Dozier, Assistant... and local hospitals may also test water samples for bacteria. The cost of the test ranges from $8 to $30, depending on the lab. Well disinfection does not eliminate hydrocarbons (fuels, oils), pesticides, heavy metals or other types of nonbiological...

Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

2005-09-30T23:59:59.000Z

159

Total quality management implementation guidelines  

SciTech Connect (OSTI)

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

160

New well control companies stress planning, engineering  

SciTech Connect (OSTI)

The technology for capping a blowing well has not changed during the last 50 years. Still, operators are finding new ways of using well control companies' expertise to help avoid potentially disastrous situations. This trend is especially critical given the current environmentally sensitive and cost-cutting times facing the oil industry. While regulatory agencies world-wide continue to hinder well control efforts during an offshore event, well control companies are focusing on technologies to make their job easier. Some of the most exciting are the hydraulic jet cutter, which gained fame in Kuwait, and electromagnetic ranging for drilling more accurate relief wells. With the number of subsea wells increasing, subsea intervention is a major target for future innovations. Well control companies are experiencing a change in their role to the offshore oil industry. Well control professionals discuss this expanded responsibility as well as other aspects of offshore blowouts including regulatory hindrances, subsea intervention and future technologies.

Bell, S.; Wright, R.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Total Energy CMR Production  

SciTech Connect (OSTI)

The following outlines the optimized pulsed laser deposition (PLD) procedure used to prepare Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} (NSMO) temperature sensors at Towson University (Prof. Rajeswari Kolagani) for the LCLS XTOD Total Energy Monitor. The samples have a sharp metal/insulator transition at T {approx} 200 K and are optimized for operation at T {approx} 180 K, where their sensitivity is the highest. These samples are epitaxial multilayer structures of Si/YSZ/CeO/NSMO, where these abbreviations are defined in table 1. In this heterostructure, YSZ serves as a buffer layer to prevent deleterious chemical reactions, and also serves to de-oxygenate the amorphous SiO{sub 2} surface layer to generate a crystalline template for epitaxy. CeO and BTO serve as template layers to minimize the effects of thermal and lattice mismatch strains, respectively. More details on the buffer and template layer scheme are included in the attached manuscript accepted for publication in Sensor Letters (G. Yong et al., 2008).

Friedrich, S; Kolagani, R M

2008-08-11T23:59:59.000Z

162

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

163

Multifunctional Corrosion-resistant Foamed Well Cement Composites  

Broader source: Energy.gov (indexed) [DOE]

Multifunctional Corrosion-resistant Foamed Well Cement Composites Project Officer: Dan KingGreg Stillman Total budget: 300 K April 24 , 2013 Principal Investigator: Dr. Toshifumi...

164

Development Wells At Salt Wells Area (Nevada Bureau of Mines...  

Open Energy Info (EERE)

Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area...

165

The Total RNA Story Introduction  

E-Print Network [OSTI]

The Total RNA Story Introduction Assessing RNA sample quality as a routine part of the gene about RNA sample quality. Data from a high quality total RNA preparation Although a wide variety RNA data interpretation and identify features from total RNA electropherograms that reveal information

Goldman, Steven A.

166

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau...  

Open Energy Info (EERE)

Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic...

167

Total..........................................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11.7 0.8 Have Equipment But Do Not Use it... 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System......

168

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

30.3 Have Equipment But Do Not Use it... 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System......

169

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage...

170

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Have Equipment But Do Not Use it... 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System......

171

Total..........................................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System......

172

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

11.7 Have Equipment But Do Not Use it... 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System......

173

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

8.6 Have Equipment But Do Not Use it... 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System......

174

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

8.5 Have Equipment But Do Not Use it... 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System......

175

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3.7 Have Equipment But Do Not Use it... 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System......

176

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.7 1.9 4.7 Have Equipment But Do Not Use it... 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System......

177

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......

178

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Personal Computers Do Not Use a Personal Computer... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer... 75.6...

179

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer... 35.5 8.1 5.6 2.5 Use a Personal Computer......

180

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer... 35.5 6.4 2.2 4.2 Use a Personal Computer......

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

182

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......

183

Total..........................................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Usage Indicators UrbanRural Location (as Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey:...

184

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Housing Units (millions) Home Appliances Usage Indicators City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey:...

185

Total..........................................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information Administration: 2005...

186

Total  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1, 20126,6,4,7,Top 100 U.S.

187

Total  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1, 20126,6,4,7,Top 100

188

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:

189

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do Not Have

190

Total........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do Not

191

Total.........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do

192

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do25.6 40.7

193

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do25.6 40.7.

194

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do25.6

195

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do25.60.7

196

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1 Do25.60.74.2

197

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.1

198

Total..........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.17.1 19.0 22.7

199

Total...........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.17.1 19.0

200

Total...........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.17.1 19.05.6

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total...........................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.17.1

202

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0 12.17.1Cooking

203

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0

204

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0Cooking Appliances

205

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0Cooking

206

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo Not Have

207

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo Not

208

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo NotDo

209

Total.............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo NotDoDo

210

Total..............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo NotDoDo

211

Total..............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo

212

Total..............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo0.7 21.7

213

Total..............................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo0.7

214

Total.................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo0.77.1

215

Total.................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0 8.0CookingDo0.77.1...

216

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0

217

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0Cooking Appliances

218

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0Cooking Appliances25.6

219

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0Cooking

220

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0CookingPersonal

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0CookingPersonal4.2 7.6

222

Total....................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0CookingPersonal4.2 7.6

223

Total.........................................................................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1 7.0CookingPersonal4.2

224

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

AppliancesTools.... 56.2 11.6 3.3 8.2 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 0.2 Q 0.1 Hot Tub or...

225

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AppliancesTools.... 56.2 12.0 9.0 3.1 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 0.4 Q Q Hot Tub or...

226

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

AppliancesT 56.2 20.3 16.0 8.6 5.1 6.2 12.8 26.8 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q 0.2 Q Q 0.3 Q Q Hot Tub or...

227

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

AppliancesTools.... 56.2 12.2 9.4 2.8 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 Q Q Q Hot Tub or Spa......

228

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

AppliancesTools... 56.2 20.5 10.8 3.6 6.1 Other Appliances Used Auto BlockEngineBattery Heater... 0.8 N N N N Hot Tub or...

229

Estimating visitor and visit numbers to  

E-Print Network [OSTI]

............................................ 24 4.5 Monitoring and Evaluating Quality of Life for CRS'07 .......................................25 4.6 Quality of experience visitor, visit and total numbers of visits to woodlands. This document builds on guidance on visitor

230

Visualizing Motion in Potential Wells* Pratibha Jolly  

E-Print Network [OSTI]

, directly and plot the potential energy diagrams using a magnetic field sensor. The ease of measurement of potential #12;2 barriers and wells. The previous developers used a photo-interrupt and timing device for the sake of economy a single sensor was employed. Then, the experiment had to be repeated a large number

Zollman, Dean

231

Well-pump alignment system  

DOE Patents [OSTI]

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

Drumheller, Douglas S. (Cedar Crest, NM)

1998-01-01T23:59:59.000Z

232

Well Monitoring Systems for EGS  

Broader source: Energy.gov (indexed) [DOE]

Track: 2, HT Tools Project Officer: Bill Vandermeer Total Project Funding: 2,869,978 March 14th, 2013 This presentation does not contain any proprietary confidential, or...

233

Well Permits (District of Columbia)  

Broader source: Energy.gov [DOE]

Well permits are required for the installation of wells in private and public space. Wells are defined as any trest hole, shaft, or soil excavation created by any means including, but not limited...

234

OGJ300; Smaller list, bigger financial totals  

SciTech Connect (OSTI)

This paper reports on Oil and Gas Journal's list of the largest, publicly traded oil and gas producing companies in the U.S. which is both smaller and larger this year than it was in 1990. It's smaller because it covers fewer companies. Industry consolidation has slashed the number of public companies. As a result, the former OGJ400 has become the OGJ300, which includes the 30 largest limited partnerships. But the assets-ranked list is larger because important financial totals - representing 1990 results - are significantly higher than those of a year ago, despite the lower number of companies. Consolidation of the U.S. producing industry gained momentum throughout the 1980s. Unable to sustain profitability in a period of sluggish energy prices and, for many, rising costs, companies sought relief through mergers or liquidation of producing properties. As this year's list shows, however, surviving companies have managed to grow. Assets for the OGJ300 group totaled $499.3 billion in 1990 - up 6.3% from the 1989 total of last year's OGJ400. Stockholders' equity moved up 5.3% to $170.7 billion. Stockholders' equity was as high as $233.8 billion in 1983.

Beck, R.J.; Biggs, J.B.

1991-09-30T23:59:59.000Z

235

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Services & Testing Contract September 2014 Contractor: Contract Number: Contract Type: Advanced Technologies & Labs International Inc. DE-AC27-10RV15051 Cost Plus Award Fee...

236

Compendium of Experimental Cetane Numbers  

SciTech Connect (OSTI)

This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

2014-08-01T23:59:59.000Z

237

Well-pump alignment system  

DOE Patents [OSTI]

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

Drumheller, D.S.

1998-10-20T23:59:59.000Z

238

Soda Lake Well Lithology Data and Geologic Cross-Sections  

SciTech Connect (OSTI)

Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross?sections in Adobe Illustrator format.

Faulds, James E.

2013-12-31T23:59:59.000Z

239

Number of applicants Number of students enrolled  

E-Print Network [OSTI]

No data available 1138 Ph.D.s awarded (1996-97 thru 2005-06) 3118 Yale Graduate School: Total employment 19 3% Total Responses to Survey 678 No data available 262 Ph.D.s awarded (1996-97 thru 2005-06.D.s awarded (1996-97 thru 2005-06) 669 Social Sciences Division Ph.D. Admissions Data - Fall 2011 Entering

240

Compare All CBECS Activities: Total Energy Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel OilTotal

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sampling for Bacteria in Wells  

E-Print Network [OSTI]

This publication will instruct you on the proper procedures for collecting a sample from a water well for bacteriological analysis....

Lesikar, Bruce J.

2001-11-15T23:59:59.000Z

242

Thermal well-test method  

DOE Patents [OSTI]

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, Chin-Fu (Albany, CA); Doughty, Christine A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

243

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

LLC (UCOR) DE-SC-0004645 April 29, 2011 - July 13, 2016 Contract Number: Maximum Fee Cost Plus Award Fee 1,640,839,964 Fee Information Minimum Fee 0 EM Contractor Fee Site:...

244

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

FY2011 FY2012 Fee Information Minimum Fee Maximum Fee September 2014 Contract Number: Cost Plus Incentive Fee Contractor: 3,260,603,765 Contract Period: EM Contractor Fee Site:...

245

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Wastren-EnergX Mission Support LLC Contract Number: DE-CI0000004 Contract Type: Cost Plus Award Fee 128,879,762 Contract Period: December 2009 - July 2015 Fee Information...

246

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

- September 2015 September 2014 Contractor: Contract Number: Contract Type: Idaho Treatment Group LLC DE-EM0001467 Cost Plus Award Fee Fee Information 444,161,295 Contract Period:...

247

Total Estimated Contract Cost:) Performance Period Total Fee...  

Office of Environmental Management (EM)

Washington Closure LLC DE-AC06-05RL14655 Contractor: Contract Number: Contract Type: Cost Plus Incentive Fee 2,366,753,325 Fee Information 0 Maximum Fee 319,511,699...

248

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Number: Contract Type: Contract Period: 0 Minimum Fee Maximum Fee Washington River Protection Solutions LLC DE-AC27-08RV14800 Cost Plus Award Fee 5,553,789,617 Fee Information...

249

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

& Wilcox Conversion Services, LLC Contract Number: DE-AC30-11CC40015 Contract Type: Cost Plus Award Fee Fee Available 4,324,912 408,822,369 Contract Period: December 2010 -...

250

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

0 Contractor: Bechtel National Inc. Contract Number: DE-AC27-01RV14136 Contract Type: Cost Plus Award Fee Maximum Fee* 595,123,540 Fee Available 102,622,325 10,714,819,974...

251

Total dose and dose rate models for bipolar transistors in circuit simulation.  

SciTech Connect (OSTI)

The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

Campbell, Phillip Montgomery; Wix, Steven D.

2013-05-01T23:59:59.000Z

252

Hyper Space Complex Number  

E-Print Network [OSTI]

A new kind of numbers called Hyper Space Complex Numbers and its algebras are defined and proved. It is with good properties as the classic Complex Numbers, such as expressed in coordinates, triangular and exponent forms and following the associative and commutative laws of addition and multiplication. So the classic Complex Number is developed from in complex plane with two dimensions to in complex space with N dimensions and the number system is enlarged also.

Shanguang Tan

2007-04-23T23:59:59.000Z

253

Totally Unimodular Multistage Stochastic Programs  

E-Print Network [OSTI]

Nov 23, 2014 ... be the workforce level with a cost of ck per worker. The number of ... to the variable of the previous workforce level y?(k). Remark 4. ... planning.

2014-11-23T23:59:59.000Z

254

Recompletion Report for Well UE-10j  

SciTech Connect (OSTI)

Existing Well UE-10j was deepened and recompleted for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was originally drilled to a total depth of 725.4 meters in 1965 for use as a hydrologic test hole in the northern portion of Yucca Flat in Area 8 of the Nevada Test Site. The well is located up-gradient of the Yucca Flat underground test area and penetrates deep into the Paleozoic rocks that form the lower carbonate aquifer of the NTS and surrounding areas. The original 24.4-centimeter-diameter borehole was drilled to a depth of 725.4 meters and left uncompleted. Water-level measurements were made periodically by the U.S. Geological Survey, but access to the water table was lost between 1979 and 1981 due to hole sloughing. In 1993, the hole was opened to 44.5 centimeters and cased off to a depth of 670.0 meters. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 796.4 meters. The depth to water in the open borehole was measured at 658.7 meters on March 18, 1993.

M. J. Townsend

2000-05-01T23:59:59.000Z

255

Well Monitoring System for EGS  

Broader source: Energy.gov [DOE]

EGS well monitoring tools offer a unique set of solutions which will lower costs and increase confidence in future geothermal projects.

256

Thermal well-test method  

DOE Patents [OSTI]

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

257

Well Monitoring System for EGS  

Broader source: Energy.gov (indexed) [DOE]

Peer Review Well Monitoring Systems for EGS Principal Investigator Randy Normann Perma Works LLC May 19, 2010 This presentation does not contain any proprietary confidential, or...

258

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Environmental Management (EM)

Fee Paid 127,390,991 Contract Number: Fee Available Contract Period: Contract Type: Cost Plus Award Fee 4,104,318,749 28,500,000 31,597,837 0 39,171,018 32,871,600 EM...

259

Optimization of fractured well performance of horizontal gas wells  

E-Print Network [OSTI]

In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach...

Magalhaes, Fellipe Vieira

2009-06-02T23:59:59.000Z

260

DOE/ID-Number  

Energy Savers [EERE]

should come from renewable sources (wood, biofuels, wind, waste products, geothermal, and solar), which currently provide about 6% of total U.S. electricity? verbatim...

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Efficiency limits of quantum well solar cells  

E-Print Network [OSTI]

The quantum well solar cell (QWSC) has been proposed as a flexible means to ensuring current matching for tandem cells. This paper explores the further advantage afforded by the indication that QWSCs operate in the radiative limit because radiative contribution to the dark current is seen to dominate in experimental data at biases corresponding to operation under concentration. The dark currents of QWSCs are analysed in terms of a light and dark current model. The model calculates the spectral response (QE) from field bearing regions and charge neutral layers and from the quantum wells by calculating the confined densities of states and absorption coefficient, and solving transport equations analytically. The total dark current is expressed as the sum of depletion layer and charge neutral radiative and non radiative currents consistent with parameter values extracted from QE fits to data. The depletion layer dark current is a sum of Shockley-Read-Hall non radiative, and radiative contributions. The charge neu...

Connolly, J P; Barnham, K W J; Bushnell, D B; Tibbits, T N D; Roberts, J S

2010-01-01T23:59:59.000Z

262

Elements of number theory  

E-Print Network [OSTI]

The dissertation argues for the necessity of a morphosemantic theory of number, that is, a theory of number serviceable both to semantics and morphology. The basis for this position, and the empirical core of the dissertation, ...

Harbour, Daniel, 1975-

2003-01-01T23:59:59.000Z

263

MSU-Bozeman Total Faculty  

E-Print Network [OSTI]

Associate Assistant Total College of Agriculture Agricultural Economics & Economics 2 1 8 5 16 20 100 0 18.8 Agricultural Education 1 1 1 1 4 0 0 50 25.0 Animal & Range Sciences 1 1 1 13 1 1 2 3 2 2 4 14 33 50 43 42.9 Film & Photography 1 1 3 5 3 1 14 17 25 75 35.7 Music

Maxwell, Bruce D.

264

Total Estimated Contract Cost: Performance Period Total Fee Paid  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,Top Value AddedTotal Energy

265

Quantum well multijunction photovoltaic cell  

DOE Patents [OSTI]

A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

Chaffin, R.J.; Osbourn, G.C.

1983-07-08T23:59:59.000Z

266

Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981  

SciTech Connect (OSTI)

The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

Not Available

1982-01-01T23:59:59.000Z

267

Total Energy Outcome City Pilot  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,Top Value AddedTotal Energy Outcome

268

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total9,216

269

Entiat 4Mile WELLs Completion Report, 2006.  

SciTech Connect (OSTI)

The Entiat 4-mile Wells (Entiat 4-mile) project is located in the Entiat subbasin and will benefit Upper Columbia steelhead, spring Chinook and bull trout. The goal of this project is to prevent juvenile fish from being diverted into an out-of-stream irrigation system and to eliminate impacts due to the annual maintenance of an instream pushup dam. The objectives include eliminating a surface irrigation diversion and replacing it with two wells, which will provide Bonneville Power Administration (BPA) and the Bureau of Reclamation (Reclamation) with a Federal Columbia River Power System (FCRPS) BiOp metric credit of one. Wells were chosen over a new fish screen based on biological benefits and costs. Long-term biological benefits are provided by completely eliminating the surface diversion and the potential for fish entrainment in a fish screen. Construction costs for a new fish screen were estimated at $150,000, which does not include other costs associated with implementing and maintaining a fish screening project. Construction costs for a well were estimated at $20,000 each. The diversion consisted of a pushup dam that diverted water into an off-channel pond. Water was then pumped into a pressurized system for irrigation. There are 3 different irrigators who used water from this surface diversion, and each has multiple water right claims totaling approximately 5 cfs. Current use was estimated at 300 gallons per minute (approximately 0.641 cfs). Some irrigated acreage was taken out of orchard production less than 5 years ago. Therefore, approximately 6.8 acre-feet will be put into the State of Washington Trust Water Right program. No water will be set aside for conservation savings. The construction of the two irrigation wells for three landowners was completed in September 2006. The Lower Well (Tippen/Wick) will produce up to 175 gpm while the Upper Well (Griffith) will produce up to 275 gpm during the irrigation season. The eight inch diameter wells were developed to a depth of 75 feet and 85 feet, respectively, and will be pumped with Submersible Turbine pumps. The irrigation wells have been fitted with new electric boxes and Siemens flowmeters (MAG8000).

Malinowksi, Richard

2007-01-01T23:59:59.000Z

270

Characterization Well R-7 Geochemistry Report  

SciTech Connect (OSTI)

This report provides analytical results for four groundwater-sampling rounds conducted at characterization well R-7. The goal of the characterization efforts was to assess the hydrochemistry and to determine if contaminants from Technical Area (TA)-2 and TA-21 of the Los Alamos National Laboratory (LANL or the Laboratory) are present in the regional aquifer in the vicinity of the well. Figure 1.0-1 shows the well's location in the narrow upper part of Los Alamos Canyon, between the inactive Omega West reactor and the mouth of DP Canyon. Well R-7 is in an excellent location to characterize the hydrology and groundwater chemistry in both perched groundwater and the regional aquifer near sites of known Laboratory effluent release, including radionuclides and inorganic chemicals (Stone et al. 2002, 72717). The Risk Reduction and Environmental Stewardship-Remediation (RRES-R) Program (formerly the Environmental Restoration [ER] Project) installed well R-7 as part of groundwater investigations to satisfy requirements of the ''Hydrogeologic Workplan'' (LANL 1998, 59599) and to support the Laboratory's ''Groundwater Protection Management Program Plan'' (LANL 1996, 70215). Well R-7 was designed primarily to provide geochemical or water quality and hydrogeologic data for the regional aquifer within the Puye Formation. This report also presents a geochemical evaluation of the analytical results for well R-7 and provides hydrogeochemical interpretations using analytical results for groundwater samples collected at the well. Discussion of other hydrogeochemical data collected within the east-central portion of the Laboratory, however, is deferred until they can be evaluated in the context of sitewide information collected from other RRES and Hydrogeologic Workplan characterization wells (R-8A, R-9, and R-9i). Once all deep groundwater investigations in the east-central portion of the Laboratory are completed, geochemical and hydrogeologic conceptual models for the Los Alamos Canyon watershed may be included in a groundwater risk analysis. These models will include an evaluation of potential contaminant transport pathways. Well R-7 was completed on March 9, 2001, with three screens (363.2 to 379.2 ft, 730.4 to 746.4 ft, and 895.5 to 937.4 ft). Screen No.2 was dry during characterization sampling. Four rounds of groundwater characterization samples, collected from a perched zone and the regional aquifer from depths of 378.0 ft (screen No.1) and 915.0 ft (screen No.3), were chemically characterized for radionuclides, metals and trace elements, major ions, high-explosive (HE) compounds, total organic carbon, dissolved organic carbon, organic compounds, and stable isotopes (H, N, and O). Although well R-7 is primarily a characterization well, its design and construction also meet the requirements of a Resource Conservation and Recovery Act (RCRA)-compliant monitoring well as described in the US Environmental Protection Agency (EPA) document ''RCRA Groundwater Monitoring: Draft Technical Guidance,'' November 1992, EPA 530-R-93- 001. Incorporation of this well into a Laboratory-wide groundwater-monitoring program will be considered, and more specifically evaluated (e.g., sampling frequency, analytes, etc.), when the results of the well R-7 characterization activities are comprehensively evaluated in conjunction with other groundwater investigations in the ''Hydrogeologic Workplan'' (LANL 1998, 59599).

P.Longmire; F.Goff

2002-12-01T23:59:59.000Z

271

ADVANCED CEMENTS FOR GEOTHERMAL WELLS  

SciTech Connect (OSTI)

Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further their deterioration was a major impediment in expediting the development of geothermal energy resources.

SUGAMA,T.

2007-01-01T23:59:59.000Z

272

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

273

Process for cementing geothermal wells  

DOE Patents [OSTI]

A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

Eilers, Louis H. (Inola, OK)

1985-01-01T23:59:59.000Z

274

Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects  

E-Print Network [OSTI]

This thesis presents a methodology based on Proppant Number approach for optimal fracture treatment design of natural gas wells considering non-Darcy flow effects in the design process. Closure stress is taken into account, by default, because...

Lopez Hernandez, Henry De Jesus

2004-11-15T23:59:59.000Z

275

Definitions Numbered Space  

E-Print Network [OSTI]

Definitions · Numbered Space ­ a single space marked with a number and reserved for a single permit 24/7 · Unnumbered Space ­ a space which can be used by any customer allowed to park in that lot. High Low Average Question 4: If I buy a staff permit for an UNNUMBERED* space in a non-gated surface

Behmer, Spencer T.

276

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

277

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

278

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

279

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

280

Total DDT and dieldrin content of human adipose tissue  

SciTech Connect (OSTI)

As far as the authors could ascertain only 4 well-documented analytical studies have been carried out in Australia determining the total DDT and dieldrin content of human adipose tissue. The latest of these studies was published over 16 years ago. Therefore it is timely and important to re-examine the total DDT and dieldrin concentration within the adipose tissue of the Australian population. The present investigation has analyzed 290 samples of human adipose tissue obtained from Westmead Hospital situated in an outer suburb of Sydney, New South Wales for their content of total DDT and dieldrin.

Ahmad, N.; Harsas, W.; Marolt, R.S.; Morton, M.; Pollack, J.K.

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The thermal maturation degree of organic matter from source rocks revealed by wells logs including examples from Murzuk Basin, Libya  

SciTech Connect (OSTI)

The customary technique used to know the organic matter quantity per rock volume it as well as the organic matter maturation stage is based on geochemical analyses accomplished on a preselected number of samples and cuttings drawn from boreholes during the drilling period. But the same objectives can be approached without any extra cost using the continuous measurements of well logs recorded in each well from the ground surface to the total depth. During the diagenetic stage, the identification of potential source rocks out of which no hydrocarbon have been generated may be carried out using a well logging suite including Gamma Ray Spectrometry, the Compensated Neutron/Litho Density combination and a Dual Induction/Sonic Log. During the catagenetic stage the onset of oil generation brings some important changes in the organic matter structure as well as in the fluid distribution throughout the pore space of source rocks. The replacement of electric conductive water by electric non-conductive hydrocarbons, together with water and oil being expelled from source rocks represent a process of different intensities dependent of time/temperature geohistory and kerogen type. The different generation and expulsion scenarios of hydrocarbons taking place during the catagenetic and metagenetic stages of source rocks are very well revealed by Induction and Laterolog investigations. Several crossplots relating vitrinite reflectance, total organic carbon and log-derived physical parameters are illustrated and discussed. The field applications are coming from Murzuk Basin, where Rompetrol of Libya is operating.

Negoita, V.; Gheorghe, A.

1995-08-01T23:59:59.000Z

282

A new well surveying tool  

E-Print Network [OSTI]

directional well was to tip the entire rig, then block up one side of the rotary table so as to incline the uppermost joint of the drill pipe. The accuracy obtained by this method left much to be desired. The technique of controlled directional drilling... by Surveying Device for S and 19 , N and 41 . 21 3. Comparison of Measured Angles and Angles Indicated by Surveying Device for NE snd 9 , W and 45 . . . . . . . ~ 22 ABSTRNl T Ever since the advent of rotary drilling the petroleum industry has been...

Haghighi, Manuchehr Mehdizabeh

1966-01-01T23:59:59.000Z

283

Observation Wells | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)Change Assessment Model (GCAM) | OpenWells

284

Program solves for gas well inflow performance  

SciTech Connect (OSTI)

A Windows-based program, GasIPR, can solve for the gas well inflow performance relationship (IPR). The program calculates gas producing rates at various pressures and is applicable for both turbulent and non-turbulent flow. It also has the following capabilities: computes PVT properties {gamma}{sub g}, P{sub c}, T{sub c}, heating value, Z, {mu}{sub g}, B{sub g}, and {rho}{sub g} from input gas composition data; calculates the Reynolds number (N{sub Re}) and shows the gas flow rates at the sandface at which the turbulence effect must be considered; helps the user to optimize the net perforation interval (h{sub p}) so that the turbulence effect can be minimized; and helps the user to evaluate the sensitivity of formation permeability on gas flow rate for a new play. IPR is a critical component in forecasting gas well deliverability. IPRs are used for sizing optimum tubing configurations and compressors, designing gravel packs, and solving gas well loading problems. IPR is the key reference for nodal analysis.

Engineer, R. [AERA Energy LLC, Bakersfield, CA (United States); Grillete, G. [Bechtel Petroleum Operations Inc., Tupman, CA (United States)

1997-10-20T23:59:59.000Z

285

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

286

DOE/ID-Number  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

performance and PSC in NPPs and the latest information on mobile devices and software technology in order to explore a number of usage scenarios. In their research, the team...

287

Total number of Mag Lab employees 360 Percentage of employees with PhDs 36  

E-Print Network [OSTI]

Capacity, in megawatts, of the motor generator powering the pulsed magnets at the lab's Los Alamos National,400,000 Magnetic field, in tesla2 , of the lab's hybrid magnet, which creates the most powerful sustained magnetic, at which chilled water is run through resistive magnets to keep them cold 45 Magnetic field, in tesla

Weston, Ken

288

Oklahoma's Native Languages with Total Population c. 1993 and Estimated Numbers of Speakers c. 2004  

E-Print Network [OSTI]

,927) 0 0 5 1(?) 24 0 Tonkawan Tonkawa (186) 0 Iroquoian Cherokee (122,000) Keetoowah Band Cherokee (7,450) Wyandotte (3,617) Seneca-Cayuga# (2,460) 9,000 (w/Cherokee) 0 0 Uto-Aztecan Comanche (8,500) Uchean Euchee

Oklahoma, University of

289

Consequence of total lepton number violation in strongly magnetized iron white dwarfs  

E-Print Network [OSTI]

The influence of neutrinoless electron to positron conversion on cooling of strongly magnetized iron white dwarfs is studied. It is shown that they can be good candidates for soft gamma-ray repeaters and anomalous X-ray pulsars.

V. B. Belyaev; P. Ricci; F. Simkovic; J. Adam, Jr.; M. Tater; E. Truhlik

2014-06-04T23:59:59.000Z

290

Consequence of total lepton number violation in strongly magnetized iron white dwarfs  

SciTech Connect (OSTI)

The influence of a neutrinoless electron to positron conversion on a cooling of strongly magnetized iron white dwarfs is studied.

Belyaev, V. B. [Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Ricci, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Firenze) (Italy); imkovic, F. [Department of Nuclear Physics and Biophysics, Comenius University, Mlynsk dolina F1, SK-842 15, Bratislava, Slovakia and Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Adam, J. Jr.; Tater, M.; Truhlk, E. [Institute of Nuclear Physics ASCR, CZ-250 68 ?e (Czech Republic)

2013-12-30T23:59:59.000Z

291

Award Number: Federal Non-Federal Federal Non-Federal Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5: OilCitygate PriceW W W

292

Award Number: Federal Non-Federal Federal Non-Federal Total  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugustAviation

293

Award Number: Federal Non-Federal Federal Non-Federal Total  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugustAviationj. Indirect Charges k.

294

Total number of slots consumed in long_excl.q (exclusive nodes) will be  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: An Enzyme TargetPipeline 111.15.6

295

System for stabbing well casing  

SciTech Connect (OSTI)

Apparatus for stabbing well casing to join casing sections to each other, includes a rotary table assembly for supporting a casing section in a well bore, a derrick over the rotary table assembly, a crown block at the top of the derrick, a first piston and cylinder subassembly pivotally mounted on one side of the derrick over the rotary table assembly and below the crown block for pivotation about a horizontal axis, a second piston and cylinder subassembly pivotally mounted on a second side of the derrick for pivotation about a horizontal axis. The second piston and cylinder subassembly is located over the rotary table assembly and below the crown block and extends substantially normal to the direction of extension of the first piston and cylinder subassembly. The cooperating casing clamping elements are carried on the piston rods of the first and second piston and cylinder subassemblies, and counter balancing subassemblies are connected to the first and second piston and cylinder subassemblies for pivoting the first and second piston and cylinder subassemblies to a vertically extending inoperative position.

McArthur, J.R.

1984-04-03T23:59:59.000Z

296

U.S. Crude Oil Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (Million Barrels) U.S.

297

U.S. Crude Oil Exploratory Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (Million Barrels) U.S.Decade

298

U.S. Crude Oil Exploratory and Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (Million Barrels)

299

U.S. Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales (MillionElements)

300

U.S. Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0Sales

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U.S. Natural Gas Developmental Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternationalYear Jan Feb Mar Apr

302

U.S. Natural Gas Exploratory Wells Drilled (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternationalYear Jan Feb Mar AprDecade

303

U.S. Natural Gas Exploratory and Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternationalYear Jan Feb Mar

304

U.S. Crude Oil Exploratory and Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore

305

U.S. Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast- AnalysisElements)

306

U.S. Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Number of  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State OffshoreProduction Forecast-

307

Investigation and evaluation of geopressured-geothermal wells  

SciTech Connect (OSTI)

Over the life of the project, 1143 wildcat wells were screened for possible use. Although many did not meet the program's requirement for sand development, a surprisingly large number were abandoned because of downhole mechanical problems. Only 94 of these wells were completed as commercial hydrocarbon producers. Five wells of opportunity were funded for testing. Of these, two were evaluated for their hydraulic energy, thermal energy, and recoverable methane, and three were abandoned because of mechanical problems. (MHR)

Hartsock, J.H.; Rodgers, J.A.

1980-09-01T23:59:59.000Z

308

Ultra Thin Quantum Well Materials  

SciTech Connect (OSTI)

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

309

Report number codes  

SciTech Connect (OSTI)

This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

Nelson, R.N. (ed.)

1985-05-01T23:59:59.000Z

310

A statistical study of the macroepidemiology of air pollution and total mortality  

SciTech Connect (OSTI)

A statistical analysis of spatial patterns of 1980 US urban total mortality (all causes) was performed, evaluating demographic, socioeconomic and air pollution factors as predictors. Specific mortality predictors included cigarette smoking, drinking water hardness, heating fuel use, and 1978-1982 annual concentrations of the following air pollutants: ozone, carbon monoxide, sulfate aerosol, particulate concentrations of lead, iron, cadmium, manganese, vanadium, as well as total and fine particle mass concentrations from the inhalable particulate network (dichotomous samplers). In addition, estimates of sulfur dioxide, oxides of nitrogen, and sulfate aerosol were made for each city using the ASTRAP long-range transport diffusion model, and entered into the analysis as independent variables. Because the number of cities with valid air quality and water hardness data varied considerably by pollutant, it was necessary to consider several different data sets, ranging from 48 to 952 cities. The relatively strong associations (ca. 5--10%) shown for 1980 pollution with 1980 total mortality are generally not confirmed by independent studies, for example, in Europe. In addition, the US studies did not find those pollutants with known adverse health effects at the concentrations in question (such as ozone or CO) to be associated with mortality. The question of causality vs. circumstantial association must therefore be regarded as still unresolved. 59 refs., 20 figs., 40 tabs.

Lipfert, F.W.; Malone, R.G.; Daum, M.L.; Mendell, N.R.; Yang, Chin-Chun

1988-04-01T23:59:59.000Z

311

Well test imaging - a new method for determination of boundaries from well test data  

SciTech Connect (OSTI)

A new method has been developed for analysis of well test data, which allows the direct calculation of the location of arbitrary reservoir boundaries which are detected during a well test. The method is based on elements of ray tracing and information theory, and is centered on the calculation of an instantaneous {open_quote}angle of view{close_quote} of the reservoir boundaries. In the absence of other information, the relative reservoir shape and boundary distances are retrievable in the form of a Diagnostic Image. If other reservoir information, such as 3-D seismic, is available; the full shape and orientation of arbitrary (non-straight line or circular arc) boundaries can be determined in the form of a Reservoir Image. The well test imaging method can be used to greatly enhance the information available from well tests and other geological data, and provides a method to integrate data from multiple disciplines to improve reservoir characterization. This paper covers the derivation of the analytical technique of well test imaging and shows examples of application of the technique to a number of reservoirs.

Slevinsky, B.A.

1997-08-01T23:59:59.000Z

312

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

SciTech Connect (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

313

ALARA notes, Number 8  

SciTech Connect (OSTI)

This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.

Khan, T.A.; Baum, J.W.; Beckman, M.C. [eds.] [eds.

1993-10-01T23:59:59.000Z

314

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

315

A number of organizations,  

E-Print Network [OSTI]

installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green Technology shown here. CityofChicago Aggregated Purchasing--A Clean Energy Strategy SOLAR TODAY Aggregated Purchasing--A Clean Energy Strategy by Lori A. Bird and Edward A. Holt #12;November/December 2002 35 Power

316

Total organic carbon as an indicator of wood delignification  

SciTech Connect (OSTI)

Kraft pulping experiments were performed in a 12-liter electrically heated laboratory digester to determine pulp yields and residual lignin content (kappa number) as a function of time. Samples of the pulp and the black liquor were analyzed for total organic carbon (TOC) content by oxidizing the samples in a combustion furnace and measuring the released CO/sub 2/ gravimetrically. The experimental data on TOC were correlated with kappa number and yield. Results can be explained satisfactorily using a mathematical model based upon the principle of conservation of mass. The TOC content of black liquor appears to be a useful parameter for batch digester control. 17 references.

Genco, J.M.; Hassler, J.C.; Busayasakul, N.

1984-07-01T23:59:59.000Z

317

Total System Performance Assessment Peer Review Panel  

Broader source: Energy.gov [DOE]

Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

318

Team Total Points Beta Theta Pi 2271  

E-Print Network [OSTI]

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

319

Horizontal-well pilot waterflood tests shallow, abandoned field  

SciTech Connect (OSTI)

This paper reports on the suitability of using horizontal wells in a waterflood of shallow, partially depleted sands which will be tested in the Jennings field in Oklahoma. The vertical wells drilled in the Jennings field intersect several well-known formations such as Red Fork, Misner, and Bartlesville sand. Most of these formations have been produced over a number of years, and presently no wells are producing in the field. In the 1940s, 1950s, and 1960s, wells were drilled on 10-acre spacing, and the last well was plugged in 1961. The field was produced only on primary production and produced approximately 1 million bbl of oil. Because the field was not waterflooded, a large potential exists to produce from the field using secondary methods. To improve the economics for the secondary process, a combination of horizontal and vertical wells was considered.

McAlpine, J.L. (White Buffalo Petroleum Co., Tulsa, OK (US)); Joshi, S.D. (Joshi Technologies International Inc., Tulsa, OK (US))

1991-08-05T23:59:59.000Z

320

ACCOUNTS PAYABLE VENDOR NUMBER GUIDE  

E-Print Network [OSTI]

ACCOUNTS PAYABLE VENDOR NUMBER GUIDE FOR DEPARTMENTS W-9 AND W-8BEN FORMS TAXPAYER ID NUMBER (TIN), FEDERAL EMPLOYER ID NUMBER (FEIN), AND EMPLOYER'S ID NUMBER (EIN) HOW TO FIND A VENDOR'S ID NUMBER IN BANNER HOW TO DETERMINE IF A VENDOR IS IN BANNER UPDATED MAY 2013 #12;Vendor Number Guide

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TI-59 helps predict IPRs for gravel-packed gas wells  

SciTech Connect (OSTI)

The inflow performance relationship (IPR) is an important tool for reservoir and production engineers. It helps optimize completion, tubing, gas lift, and storm choke design. It facilitates accurate rate predictions that can be used to evaluate field development decisions. The IPR is the first step of the systems analysis that translates reservoir rock and fluid parameters into predictable flow rates. Use of gravel packing for sand control complicates the calculation that predicts a well's IPR curve, particularly in gas wells where high velocities in the formation and through gravel-filled perforation tunnels can cause turbulent flow. The program presented in this article calculates the pressure drop and the flowing bottomhole pressures at varying flow rates for gravel-packed gas wells. The program was written for a Texas Instruments TI-59 programmable calculator with a PC-100 printer. Program features include: Calculations for in-casing gravel packs, open-hole gravel packs, or ungravel packed wells. Program prompts for the required data variables. Easy change of data values to run new cases. Calculates pressures for an unlimited number of flow rates. Results show the total pressure drop and the relative magnitude of its components.

Capdevielle, W.C.

1983-12-01T23:59:59.000Z

322

Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number  

E-Print Network [OSTI]

An algebraic transformation of the DeTemple-Wang half-integer approximation to the harmonic series produces the general formula and error estimate for the Ramanujan expansion for the nth harmonic number into negative powers of the nth triangular number. We also discuss the history of the Ramanujan expansion for the nth harmonic number as well as sharp estimates of its accuracy, with complete proofs, and we compare it with other approximative formulas.

Mark B. Villarino

2007-07-28T23:59:59.000Z

323

About Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides  

E-Print Network [OSTI]

New Jersey, Total Lubricants USA provides advanced quality industrial lubrication productsAbout Total Lubricants USA, Inc. Headquartered in Linden, New Jersey, Total Lubricants USA provides. A subsidiary of Total, S.A., the world's fourth largest oil company, Total Lubricants USA still fosters its

Fisher, Kathleen

324

Do Well, Be Well with Diabetes 2014 1 Wrap-Up Form for People with Diabetes Wrap-Up Form for People with Diabetes 2014  

E-Print Network [OSTI]

Do Well, Be Well with Diabetes ­ 2014 1 Wrap-Up Form for People with Diabetes Wrap-Up Form for People with Diabetes ­ 2014 Please complete this form ONLY IF YOU HAVE DIABETES. Thank you. A. The month of my telephone number are __ __ __ __. C. Circle how many Do Well, Be Well Classes you attended? 1 2 3

325

Total Operators and Inhomogeneous Proper Values Equations  

E-Print Network [OSTI]

Kaehler's two-sided angular momentum operator, K + 1, is neither vector-valued nor bivector-valued. It is total in the sense that it involves terms for all three dimensions. Constant idempotents that are "proper functions" of K+1's components are not proper functions of K+1. They rather satisfy "inhomogeneous proper-value equations", i.e. of the form (K + 1)U = {\\mu}U + {\\pi}, where {\\pi} is a scalar. We consider an equation of that type with K+1 replaced with operators T that comprise K + 1 as a factor, but also containing factors for both space and spacetime translations. We study the action of those T's on linear combinations of constant idempotents, so that only the algebraic (spin) part of K +1 has to be considered. {\\pi} is now, in general, a non-scalar member of a Kaehler algebra. We develop the system of equations to be satisfied by the combinations of those idempotents for which {\\pi} becomes a scalar. We solve for its solutions with {\\mu} = 0, which actually also makes {\\pi} = 0: The solutions with {\\mu} = {\\pi} = 0 all have three constituent parts, 36 of them being different in the ensemble of all such solutions. That set of different constituents is structured in such a way that we might as well be speaking of an algebraic representation of quarks. In this paper, however, we refrain from pursuing this identification in order to emphasize the purely mathematical nature of the argument.

Jose G. Vargas

2015-03-27T23:59:59.000Z

326

Production Well Performance Enhancement using Sonication Technology  

SciTech Connect (OSTI)

The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: Laboratory studies Mathematical modeling Sonic tool design and development Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

2005-12-31T23:59:59.000Z

327

Number | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest Basin andNsbowde's blog HomeNumber"

328

Math for Poets and Drummers Rachel Wells Hall  

E-Print Network [OSTI]

Math for Poets and Drummers Rachel Wells Hall Department of Mathematics and Computer Science Saint a meter, is a pattern of stressed and unstressed syllables. English poets use about a dozen different line and "these" in the third line refer to the critics.) 1 #12;But most by Numbers judge a Poet's Song

Hall, Rachel W.

329

,"New Mexico Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","331...

330

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

331

Optimization Online - Total variation superiorization schemes in ...  

E-Print Network [OSTI]

Oct 8, 2010 ... Total variation superiorization schemes in proton computed tomography ... check improved the image quality, in particular image noise, in the...

S.N. Penfold

2010-10-08T23:59:59.000Z

332

Health and Wellness Guide for Students Introduction  

E-Print Network [OSTI]

dimensions of health and wellness. The 7 dimensions are: Physical Wellness Taking care of your body Wellness Taking care of what's around you 2Health andWellness Guide for Students #12;Physical Wellness Communicate with your partner if you have questions or concerns Meet with a Health Care Provider on campus

333

Total aerosol effect: forcing or radiative flux perturbation?  

SciTech Connect (OSTI)

Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

2009-09-25T23:59:59.000Z

334

Grant Application Package CFDA Number  

E-Print Network [OSTI]

Grant Application Package CFDA Number: Opportunity Title: Offering Agency: Agency Contact: Opportunity Open Date: Opportunity Close Date: CFDA Description: Opportunity Number: Competition ID

Talley, Lynne D.

335

Neural networks predict well inflow performance  

E-Print Network [OSTI]

Predicting well inflow performance relationship accurately is very important for production engineers. From these predictions, future plans for handling and improving well performance can be established. One method of predicting well inflow...

Alrumah, Muhammad K.

2004-09-30T23:59:59.000Z

336

Industry survey for horizontal wells. Final report  

SciTech Connect (OSTI)

An international survey of horizontal environmental wells was performed during May and June of 1993. The purpose of the survey was to provide the environmental industry with an inventory of horizontal environmental wells and information pertaining to the extent of the use of horizontal environmental wells, the variety of horizontal environmental well applications, the types of geologic and hydrogeologic conditions within which horizontal environmental wells have been installed, and the companies that perform horizontal environmental well installations. Other information, such as the cost of horizontal environmental well installations and the results of tests performed on the wells, is not complete but is provided as general information with the caveat that the information should not be used to compare drilling companies. The result of the survey is a catalogue of horizontal environmental wells that are categorized by the objective or use of the wells, the vertical depth of the wells, and the drilling company contracted to install the wells.

Wilson, D.D.; Kaback, D.S. [CDM Federal Programs Corp., Denver, CO (United States); Denhan, M.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Watkins, D. [CDM Federal Programs Corp., Aiken, SC (United States)

1993-07-01T23:59:59.000Z

337

New multilateral well architecture in heterogeneous reservoirs  

E-Print Network [OSTI]

. The performance of new multilateral well in heterogeneous reservoirs is studied, and that is compared with vertical well architecture also. In order to study the productivity of new multilateral wells, we use a numerical simulation method to set up heterogeneous...

Jia, Hongqiao

2004-09-30T23:59:59.000Z

338

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network [OSTI]

Oil, Gas, . . 81 and Geothermal Well Tests (abstract) W.has been testing geothermal wells for about three years, andof Oil, Gas, and Geothermal Well Tests W. E. Brigham

Authors, Various

2011-01-01T23:59:59.000Z

339

Oil and Gas Wells: Regulatory Provisions (Kansas)  

Broader source: Energy.gov [DOE]

It shall be unlawful for any person, firm or corporation having possession or control of any natural gas well, oil well or coalbed natural gas well, whether as a contractor, owner, lessee, agent or...

340

Table HC6.7 Air-Conditioning Usage Indicators by Number of Household...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4 15.9...

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Capping of Water Wells for Future Use  

E-Print Network [OSTI]

in determining the condition of your well, contact: S your local groundwater conservation dis- trict http://www.tceq.state.tx.us/permitting/ water_supply/groundwater/districts.html S a licensed water well driller in your area S the Water Well Drillers Program... are the steps in capping a well? The landowner, a licensed well driller or a licensed pump installer may cap a well. There are several steps involved. The well casing should extend above the ground surface to limit the risk of water entering the well...

Lesikar, Bruce J.; Mechell, Justin

2007-09-04T23:59:59.000Z

342

Dewatering of coalbed methane wells with hydraulic gas pump  

SciTech Connect (OSTI)

The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

Amani, M.; Juvkam-Wold, H.C. [Texas A& M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

343

Helicopter magnetic survey conducted to locate wells  

SciTech Connect (OSTI)

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3s (NPR-3) Teapot Dome Field near Casper, Wyoming. The surveys purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

344

Completion Report for Well ER-EC-5  

SciTech Connect (OSTI)

Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.

Bechtel Nevada

2004-10-01T23:59:59.000Z

345
346

Track 4: Employee Health and Wellness  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 4: Employee Health and Wellness

347

Thank you for joining: 360WELLNESS  

E-Print Network [OSTI]

shortly. If you are experiencing technical difficulties with Adobe Connect, please call 1 March 22, 2012 12 pm ­ 1pm ET #12;360° WELLNESS: Achieving Wellness At Work And At Home Workshop & Self-Assessment © Joe Rosenlicht, Certified Coach 3 #12;8 Wellness Areas Wellness Nutrition Brain Power Fitness Sleep

Vertes, Akos

348

Fully Coupled Well Models for Fluid Injection and Production  

SciTech Connect (OSTI)

Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving these equations varies from zero coupling to full coupling. In this paper we describe a fully coupled solution approach for well model that allows for a flexible well trajectory and screened interval within a structured hexahedral computational grid. In this scheme the nonlinear well equations have been fully integrated into the Jacobian matrix for the reservoir conservation equations, minimizing the matrix bandwidth.

White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

2013-08-05T23:59:59.000Z

349

TWRS privatization: Phase I monitoring well engineering study and decommissioning plan  

SciTech Connect (OSTI)

This engineering study evaluates all well owners and users, the status or intended use of each well, regulatory programs, and any future well needs or special purpose use for wells within the TWRS Privatization Phase I demonstration area. Based on the evaluation, the study recommends retaining 11 of the 21 total wells within the demonstration area and decommissioning four wells prior to construction activities per the Well Decommissioning Plan (WHC-SD-EN-AP-161, Rev. 0, Appendix I). Six wells were previously decommissioned.

Williams, B.A.

1996-09-11T23:59:59.000Z

350

Total to withdraw from Qatar methanol - MTBE?  

SciTech Connect (OSTI)

Total is rumored to be withdrawing from the $700-million methanol and methyl tert-butyl ether (MTBE) Qatar Fuel Additives Co., (Qafac) project. The French company has a 12.5% stake in the project. Similar equity is held by three other foreign investors: Canada`s International Octane, Taiwan`s Chinese Petroleum Corp., and Lee Change Yung Chemical Industrial Corp. Total is said to want Qafac to concentrate on methanol only. The project involves plant unit sizes of 610,000 m.t./year of MTBE and 825,000 m.t./year of methanol. Total declines to comment.

NONE

1996-05-01T23:59:59.000Z

351

The concrete theory of numbers: initial numbers and wonderful properties of numbers repunit  

E-Print Network [OSTI]

In this work initial numbers and repunit numbers have been studied. All numbers have been considered in a decimal notation. The problem of simplicity of initial numbers has been studied. Interesting properties of numbers repunit are proved: $gcd(R_a, R_b) = R_{gcd(a,b)}$; $R_{ab}/(R_aR_b)$ is an integer only if $gcd(a,b) = 1$, where $a\\geq1$, $b\\geq1$ are integers. Dividers of numbers repunit, are researched by a degree of prime number.

Boris V. Tarasov

2007-04-07T23:59:59.000Z

352

Enantioselective Total Synthesis of (?)-Acylfulvene and (?)- Irofulven  

E-Print Network [OSTI]

We report our full account of the enantioselective total synthesis of (?)-acylfulvene (1) and (?)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor ...

Movassaghi, Mohammad

353

Total synthesis of cyclotryptamine and diketopiperazine alkaloids  

E-Print Network [OSTI]

I. Total Synthesis of the (+)-12,12'-Dideoxyverticillin A The fungal metabolite (+)-12,12'-dideoxyverticillin A, a cytotoxic alkaloid isolated from a marine Penicillium sp., belongs to a fascinating family of densely ...

Kim, Justin, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

354

Total synthesis and study of myrmicarin alkaloids  

E-Print Network [OSTI]

I. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations ...

Ondrus, Alison Evelynn, 1981-

2009-01-01T23:59:59.000Z

355

Provides Total Tuition Charge to Source Contribution  

E-Print Network [OSTI]

,262 1,938 TGR 4-20 0-3 2,871 2,871 - % of time appointed Hours of Work/Week Units TAL Provides Total

Kay, Mark A.

356

Total Ore Processing Integration and Management  

SciTech Connect (OSTI)

This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 October through 31 December of 2003.

Leslie Gertsch; Richard Gertsch

2003-12-31T23:59:59.000Z

357

Total Energy Management in General Motors  

E-Print Network [OSTI]

This paper presents an overview of General Motors' energy management program with special emphasis on energy conservation. Included is a description of the total program organization, plant guidelines, communication and motivation techniques...

DeKoker, N.

1979-01-01T23:59:59.000Z

358

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs1 Number7Quantity1.

359

Vapor port and groundwater sampling well  

DOE Patents [OSTI]

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

360

Vapor port and groundwater sampling well  

DOE Patents [OSTI]

A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

Hubbell, J.M.; Wylie, A.H.

1996-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Well performance graph simplifies field calculations  

SciTech Connect (OSTI)

Graphic Methods are widely employed in order to understand overall well behavior using only surface parameters. The authors propose a new graphic method, used successfully by Agip for oil and gas wells in Italy, Libya, Nigeria and Tunisia. The well performance graph helps solve many production problems, including estimation of: inflow performance relationship; causes of rate decline throughout well life; and production rate and bottomhole flowing pressure for various pressures upstream of the surface choke, and vice-versa. This method differs from others by using flow behavior through the choke for both critical and subcritical conditions. Equations describing flow through the formation, string and surface choke are also used. Results are quite reliable when these theoretical equations are calibrated with field data, either from the well concerned or from nearby wells producing the same fluid. This article describes the technique as it applies to oil wells. The methodology for gas wells is similar.

De Ghetto, G.

1987-05-01T23:59:59.000Z

362

RFI Well Integrity 06 JUL 1400  

Broader source: Energy.gov [DOE]

This PowerPoint report entitled "Well Integrity During Shut - In Operations: DOE/DOI Analyses" describes risks and suggests risk management recommendations associated with shutting in the well.

363

Economic evaluation of smart well technology  

E-Print Network [OSTI]

comprehensive review of this technology has been discussed. The possible reservoir environments in which smart well technology could be used and also, the possible benefits that could be realized by utilizing smart well technology has been discussed...

Al Omair, Abdullatif A.

2007-09-17T23:59:59.000Z

364

Disinfecting Water Wells by Shock Chlorination  

E-Print Network [OSTI]

If your well has been flooded, it must be shock chlorinated before it can be used as a source of drinking water. This publication explains how to disinfect a well using either dry chlorine or liquid household bleach....

Dozier, Monty; McFarland, Mark L.

2005-09-30T23:59:59.000Z

365

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network [OSTI]

Discharge Using Ground- Water Storage," Trans. , AGU (1935),of a well using ground-water storage: ~n. Geophys. Unionof a Well Using Ground-Water Storage," Trans. , AGU (1935),

Authors, Various

2011-01-01T23:59:59.000Z

366

Well Owner's Guide To Water Supply  

E-Print Network [OSTI]

's groundwater and guidelines, including national drinking water standards, to test well water to insure safe drinking water in private wells. National drinking water standards and common methods of home water .....................22 Contaminants in Water........................................23 Drinking Water Guidelines

Fay, Noah

367

Production Trends of Shale Gas Wells  

E-Print Network [OSTI]

To obtain better well performance and improved production from shale gas reservoirs, it is important to understand the behavior of shale gas wells and to identify different flow regions in them over a period of time. It is also important...

Khan, Waqar A.

2010-01-14T23:59:59.000Z

368

Technical support for geopressured-geothermal well activities in Louisiana  

SciTech Connect (OSTI)

Continuous recording microearthquake monitoring networks have been established around US Department of Energy (DOE) geopressured-geothermal design wells in southwestern Louisiana and southeastern Texas since summer 1980 to assess the effects well development may have had on subsidence and growth-fault activation. This monitoring has shown several unusual characteristics of Gulf Coast seismic activity. The observed activity is classified into two dominant types, one with identifiable body phases (type 1) and the other with only surface-wave signatures (type 2). During this reporting period no type 1 or body-wave events were reported. A total of 230 type 2 or surface-wave events were recorded. Origins of the type 2 events are still not positively understood; however, little or no evidence is available to connect them with geopressured-geothermal well activity. We continue to suspect sonic booms from military aircraft or some other human-induced source. 37 refs., 16 figs., 6 tabs.

Not Available

1991-07-01T23:59:59.000Z

369

Thermal extraction analysis of five Los Azufres production wells  

SciTech Connect (OSTI)

Thermal energy extraction from five wells supplying 5-MWe wellhead generators in three zones of the Los Azufres geothermal field has been examined from production and chemical data compiled over 14-years of operation. The data, as annual means, are useful in observing small-scale changes in reservoir performance with continuous production. The chemical components are chloride for quality control and the geothermometer elements for reservoir temperatures. The flowrate and fluid enthalpy data are used to calculate the thermal extraction rates. Integration of these data provides an estimate of the total energy extracted from the zone surrounding the well. The combined production and chemical geothermometer data are used to model the produced fluid as coming from just-penetrating wells for which the annual produced mass originates from a series of concentric hemispheric shells moving out into the reservoir. Estimates are made of the drawdown distance into the reservoir and the far-field conditions.

Kruger, Paul; Quijano, Luis

1995-01-26T23:59:59.000Z

370

STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS  

SciTech Connect (OSTI)

The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

Stephen Wolhart

2003-06-01T23:59:59.000Z

371

Data Compression with Prime Numbers  

E-Print Network [OSTI]

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

372

Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)  

SciTech Connect (OSTI)

This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

Van Wychen, S.; Laurens, L. M. L.

2013-12-01T23:59:59.000Z

373

Geopressured-geothermal well report. Volume I. Drilling and completion  

SciTech Connect (OSTI)

Gladys McCall site activities are covered through the completion of the test well and salt water disposal well. The test well was drilled to a total depth of 16,510 feet, then plugged back to 15,831 feet. Three 4'' diameter diamond cores were taken for analysis. An existing well on site, the Getty-Butts Gladys McCall No. 1, was reentered and completed to a depth of 3514 feet as a salt water disposal well. The geologic interpretation of the Gladys McCall site indicated target sands for testing at 15,080 feet through 15, 831 feet. Reservoir fluid temperature at this depth is estimated to be approximately 313/sup 0/F and pressure is estimated to be +-12,800 psi. The preliminary reservoir volume estimate is 3.6 billion barrels of brine. The design wells program includes environmental monitoring of the Gladys McCall site by Louisiana State University. Field stations are set up to monitor surface and ground water quality, subsidence, land loss and shoreline erosion, and seismicity. As of December 31, 1981 the study shows no significant impact on the environment by site operations.

Not Available

1982-01-01T23:59:59.000Z

374

2011 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 20)  

SciTech Connect (OSTI)

This 2011 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 20) provides water use information (monthly annual average and total annual volume) for production and potable water wells at the Idaho National Laboratory for Calendar Year 2011. It also provides detailed information for new, modified, and abandoned (decommissioned) wells and holes. One new well was drilled and completed and one well was modified in Calendar Year 2011. A total of 14 wells and boreholes were reported as decommissioned. Detailed construction information for the new and modified wells is provided. Details are provided for the wells and boreholes that have been decommissioned, and if available, construction diagrams. Location maps are included, provided survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

Renee Bowser

2012-06-01T23:59:59.000Z

375

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Broader source: Energy.gov (indexed) [DOE]

and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

376

Kentucky Total Sum City, County, and SEO Allocations | Department...  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Total Sum City, County, and SEO Allocations Kentucky Total Sum City, County, and SEO Allocations A chart indicating the total sum city, county, and SEO allocations for...

377

Probability Tables for Mendelian Ratios with Small Numbers.  

E-Print Network [OSTI]

-called ex- Total ...-...-..-..-....-.--. .9999 pected may lead to error in interpretation rather than serving as a valuable aid as it does with large numbers. Examples with other small numbers could be given, but this should iIIustrate the points... is set off so as to show the point beyond which the total probability in that direction is .0050 or less. Mendelian Ratios Combi- 1 130 121 112 10 3 9 4 8 5 7 6 6 7 5 8 4 9 3 10 2 11 .On95 0028 .O002 .. -- I ---- - 1 12 .0016 .0004...

Warwick, B. L. (Bruce L.)

1932-01-01T23:59:59.000Z

378

Flow tests of the Gladys McCall well  

SciTech Connect (OSTI)

This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 md (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor pills'' directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.

Randolph, P.L.; Hayden, C.G.; Rogers, L.A. (Institute of Gas Technology, Chicago, IL (United States))

1992-04-01T23:59:59.000Z

379

Total Cross Sections for Neutron Scattering  

E-Print Network [OSTI]

Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

1994-10-19T23:59:59.000Z

380

Potential hydrologic characterization wells in Amargosa Valley  

SciTech Connect (OSTI)

More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

Lyles, B.; Mihevc, T.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fiscal year 1993 well plugging and abandonment program, Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from December 1992 through August 20, 1993. A total of 70 wells and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the US Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991).

Not Available

1993-09-01T23:59:59.000Z

382

GRADE NUMBER OF CREDITS FACTOR QUALITY POINTS HOW TO COMPUTE A GRADE POINT AVERAGE  

E-Print Network [OSTI]

.00 = __________ TOTALS: _________ __________ CREDITS QUALITY PTS. Divide total credits into total quality pointsGRADE NUMBER OF CREDITS FACTOR QUALITY POINTS HOW TO COMPUTE A GRADE POINT AVERAGE A _________ x 4 and the result is the grade point average (GPA). QUALITY PTS. = GPA ____________ = CREDITS

Massachusetts at Amherst, University of

383

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT  

SciTech Connect (OSTI)

As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger--Holditch Reservoir Technologies (H-RT) joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden and Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners previously provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have enhanced and streamlined our software, and we are beta-testing the final stages of our new Microsoft{trademark} Access/Excel based software. We have processed all well information and identified potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, the final technical report is almost finished and a draft version is being reviewed by Gary Covatch.

Charles M. Boyer II; Ronald J. MacDonald P.G.

2002-04-01T23:59:59.000Z

384

Well purge and sample apparatus and method  

DOE Patents [OSTI]

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.

Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.

1995-10-24T23:59:59.000Z

385

Well purge and sample apparatus and method  

DOE Patents [OSTI]

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

Schalla, Ronald (Kennewick, WA); Smith, Ronald M. (Richland, WA); Hall, Stephen H. (Kennewick, WA); Smart, John E. (Richland, WA); Gustafson, Gregg S. (Redmond, WA)

1995-01-01T23:59:59.000Z

386

Stimulation Technologies for Deep Well Completions  

SciTech Connect (OSTI)

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

Stephen Wolhart

2005-06-30T23:59:59.000Z

387

Wells, Borings, and Underground Uses (Minnesota)  

Broader source: Energy.gov [DOE]

This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits...

388

Characterization Well R-22 Geochemistry Report  

SciTech Connect (OSTI)

This report provides analytical results for groundwater collected during four characterization-sampling rounds conducted at well R-22 from March 2001 through March 2002. Characterization well R-22 was sampled from March 6 through 13, 2001; June 19 through 26, 2001; November 30 through December 10, 2001; and February 27 through March 7, 2002. The goal of the characterization efforts was to assess the hydrochemistry and to determine whether or not contaminants are present in the regional aquifer in the vicinity of the well. A geochemical evaluation of the analytical results for the well is also presented in this report.

Patrick Longmire

2002-09-01T23:59:59.000Z

389

Total Solar Irradiance Satellite Composites and their  

E-Print Network [OSTI]

Chapter 12 Total Solar Irradiance Satellite Composites and their Phenomenological Effect on Climate. Phenomenological solar signature on climate 310 9. Conclusion 312 1. INTRODUCTION A contiguoustotal solar from each other, in particular about whether the TSI minimum during solar Cycles 22e23 (1995

Scafetta, Nicola

390

Completion Report for Well ER-2-1  

SciTech Connect (OSTI)

Well ER-2-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (formerly Nevada Operations Office), in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in February and March of 2003, as part of a hydrogeologic investigation program for the Yucca Flat/Climax Mine Corrective Action Unit in the northeastern portion of the Nevada Test Site. Well ER-2-1 was drilled as part of the Yucca Flat Corrective Action Unit Phase I drilling initiative. The well is located in north central Yucca Flat within Area 2 of the Nevada Test Site, and provided information regarding the radiological and physical environment near underground nuclear tests conducted in a saturated volcanic aquifer setting. Detailed lithologic descriptions with stratigraphic assignments are included in this report. These are based on composite drill cuttings collected every 3 meters and 83 sidewall samples taken at various depths between 113.7 and 754.4 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 27 samples of drill cuttings. The well was collared in tuffaceous alluvium, and penetrated Tertiary-age tuffs of the Timber Mountain and Paintbrush Groups, Calico Hills and Wahmonie Formations, Crater Flat Group, Grouse Canyon Formation, before reaching total depth in the Tunnel Bed Formation.

Bechtel Nevada

2004-10-01T23:59:59.000Z

391

Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #7  

SciTech Connect (OSTI)

This book is a detailed prognosis covering the acquisition, completion, drilling, testing and abandonment of the Frank A. Godchaux, III, Well No. 1 under the Wells of Opportunity Program. The well is located approximately 12 miles southeast of the city of Abbeville, Louisiana. Eaton Operating Company proposes to test a section of the Planulina sand at a depth ranging from 15,584 to 15,692 feet. The reservoir pressure is estimated to be 14,480 psi and the temperature of the formation water is expected to be 298 F. The water salinity is calculated to be 75,000 ppm. The well is expected to produce 20,000 barrels of water per day with a gas content of 44 standard cubic feet pre barrel. The well was acquired from C and K Petroleu, Inc. on March 20, 1981. C and K abandoned the well at a total depth of 16,000 feet. The well has a 7-5/8 inches liner set at 13,387 feet. Eaton proposes to set 5-1/2 inch casing at 16,000 feet and produce the well through the casing using a 2-3/8 inch tubing string for wireline protection and for pressure control. A 4,600 foot saltwater disposal well will be drilled on the site and testing will be conducted similar to previous Eaton tests. The total estimated cost to perform the work is $2,959,000. An optional test from 14,905 to 15,006 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous Eaton WOO tests will be utilized on this test. This equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. The Institute of Gas Technology and Mr. Don Clark will handle the sampling and testing and reservoir evaluation, respectively, as on the previous Eaton tests.

Godchaux, Frank A.

1981-06-01T23:59:59.000Z

392

Enhanced Geothermal Systems (EGS) well construction technology evaluation report.  

SciTech Connect (OSTI)

Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A task and cost based analysis of the exercise is subsequently conducted to develop a deeper understanding of the key technical and economic drivers of the well construction process. Finally, future research & development recommendations are provided and ranked based on their economic and technical significance.

Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

2008-12-01T23:59:59.000Z

393

SAFETY & WELLNESS Annual Report 2012-2013  

E-Print Network [OSTI]

HEALTH, SAFETY & WELLNESS Annual Report 2012-2013 #12;HEALTH, SAFETY & WELLNESS UPDATE ON SAFETY PROGRAMS The professionals working in the Health and Safety team and Rehabilitation Services group have had a very successful year in supporting individuals to take accountability for their own safety and health

Sinnamon, Gordon J.

394

Geothermal Reservoir Well Stimulation Program: technology transfer  

SciTech Connect (OSTI)

Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

Not Available

1980-05-01T23:59:59.000Z

395

Number  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores" _ ,' ,:.'' , /v-i 2 -i 3

396

Geopressured-geothermal well activities in Louisiana  

SciTech Connect (OSTI)

Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

John, C.J.

1992-10-01T23:59:59.000Z

397

Texas Rice, Volume II, Number 7  

E-Print Network [OSTI]

.128 trillion in 2003. Over the next 10 years, the US federal budget is expected to total $24.087 trillion. During this same period of time, expenditures on the Farm Bill are ex- pected to reach between $180 billion (2002 House Agriculture Committee Report...) and $275 billion (USDA FAS web site). A question often raised, is the Farm Bill money well spent, depends on ones perspective. Unlike many sectors of our economy, US agriculture provides a trade surplus estimated at $18 billion for 2002. US agriculture...

398

Optimization of well length in waterflooding a five-spot pattern of horizontal wells  

E-Print Network [OSTI]

for the horizontal wells and provide a good return on investment. Horizontal Wells in Waterflood Pr t A worldwide interest exists today in drilling horizontal wells to increase productivity, Horizontal wells can be used in any phase of reservoir recovery... efficiency7. Several investigatorss-ic have studied waterflooding using horizontal wells. droman et al, s reported a field application using horizontal wells in the Prudhoe Bay Unit where the main reservoir drive mechanism is gas cap expansion...

Jimenez, Zulay J.

1992-01-01T23:59:59.000Z

399

Production-systems analysis for fractured wells  

SciTech Connect (OSTI)

Production-systems analysis has been in use for many years to design completion configurations on the basis of an expected reservoir capacity. The most common equations used for the reservoir calculations are for steady-state radial flow. Most hydraulically fractured wells require the use of an unsteady-state production simulator to predict the higher flow rates associated with the stimulated well. These high flow rates may present problems with excessive pressure drops through production tubing designed for radial-flow production. Therefore, the unsteady-state nature of fractured-well production precludes the use of steady-state radial-flow inflow performance relationships (IPR's) to calculate reservoir performance. An accurate prediction of fractured-well production must be made to design the most economically efficient production configuration. It has been suggested in the literature that a normalized reference curve can be used to generate the IPR's necessary for production-systems analysis. However, this work shows that the reference curve for fractured-well response becomes time-dependent when reservoir boundaries are considered. A general approach for constructing IPR curves is presented, and the use of an unsteady-state fractured-well-production simulator coupled with the production-systems-analysis approach is described. A field case demonstrates the application of this method to fractured wells.

Hunt, J.L. (Halliburton Services (US))

1988-11-01T23:59:59.000Z

400

Frustrated total internal reflection acoustic field sensor  

DOE Patents [OSTI]

A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

Kallman, Jeffrey S. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

), md 0.15 Porosity (g102), fraction 0.1 Water Saturation (S w ), fraction 0.16 Initial Pressure (p i ), psi 3,900 Injection Pressure (p inj ), psi 3,910 Dewpoint Pressure (p d ), psi 3,500 Temperature (T), o F 200 Total Compressibility (c g... simulation ..........................13 3.4 Permeability reduction normal to fracture face .........................................14 3.5 Quarter model for 80 acre drainage area....................................................15 3.6 Fracture face...

Adeyeye, Adedeji Ayoola

2004-09-30T23:59:59.000Z

402

The role of the total entropy production in dynamics of open quantum systems in detection of non-Markovianity  

E-Print Network [OSTI]

In the theory of open quantum systems interaction is a fundamental concepts in the review of the dynamics of open quantum systems. Correlation, both classical and quantum one, is generated due to interaction between system and environment. Here, we recall the quantity which well known as total entropy production. Appearance of total entropy production is due to the entanglement production between system an environment. In this work, we discuss about the role of the total entropy production for detecting non-Markovianity. By utilizing the relation between total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity.

S. Salimi; S. Haseli; A. S. Khorashad

2015-04-19T23:59:59.000Z

403

CASING-HEADING PHENOMENON IN GAS-LIFTED WELL AS A LIMIT CYCLE OF A  

E-Print Network [OSTI]

, France CSTJF, TOTAL Exploration-Production, Pau, France Abstract: Oil well instabilities cause production losses. One of these instabilities, referred to as the "casing-heading" is an oscillatory: Process Control, Dynamic Systems, Limit Cycles, Switching System, Gas-Lifted Well. 1. INTRODUCTION

404

3DEP in Oregon by the Numbers Expected annual benefits  

E-Print Network [OSTI]

total cost (quality level 2) $32.41 million Payback 0.7 years Quality level 1 buy-up estimate $203DEP in Oregon by the Numbers Expected annual benefits (quality level 2) $45.73 million Estimated resource management; forest resources management; water supply and quality; infrastructure and construction

Torgersen, Christian

405

Completion of Oil Wells May 4, 2003  

E-Print Network [OSTI]

Completion of Oil Wells John Rudge May 4, 2003 1 Introduction After the initial drilling of an oil the small gap, lubrication theory can be used to study the flow. Non-dimensionalise all lengths on the gap

Rudge, John

406

Two-phase flow in horizontal wells  

SciTech Connect (OSTI)

Flow in horizontal wells and two-phase flow interaction with the reservoir were investigated experimentally and theoretically. Two-phase flow behavior has been recognized as one of the most important problems in production engineering. The authors designed and constructed a new test facility suitable for acquiring data on the relationship between pressure drop and liquid holdup along the well and fluid influx from the reservoir. For the theoretical work, an initial model was proposed to describe the flow behavior in a horizontal well configuration. The model uses the inflow-performance-relationship (IPR) approach and empirical correlations or mechanistic models for wellbore hydraulics. Although good agreement was found between the model and experimental data, a new IPR apart from the extension of Darcy`s law must be investigated extensively to aid in the proper design of horizontal wells.

Ihara, Masaru [Japan National Oil Corp., Chiba (Japan); Yanai, Koji [Nippon Kokan Corp., Yokohama (Japan); Yanai, Koji

1995-11-01T23:59:59.000Z

407

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network [OSTI]

Interpretation of Drill Stem Test M. F. Anderson Halliburtonby William value of drill-stem tests. Myron Dorfman dis-well development, drill-stem tests, direc- tional surveys,

Authors, Various

2011-01-01T23:59:59.000Z

408

MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS  

SciTech Connect (OSTI)

A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

Mason M. Medizade; John R. Ridgely; Donald G. Nelson

2004-11-01T23:59:59.000Z

409

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

Yusuf, Nurudeen

2008-10-10T23:59:59.000Z

410

Modeling techniques for simulating well behavior  

E-Print Network [OSTI]

This thesis is a catalog of modeling techniques useful in simulating well behavior in certain types of reservoirs that are often encountered in petroleum reservoirs. Emphasis has been placed on techniques that can be used with any conventional...

Rattu, Bungen Christina

2002-01-01T23:59:59.000Z

411

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

Predicting the performance of wells in compartmentalized reservoirs can be quite challenging to most conventional reservoir engineering tools. The purpose of this research is to develop a Compartmentalized Gas Depletion Model that applies not only...

Yusuf, Nurudeen

2009-05-15T23:59:59.000Z

412

Groundwater well with reactive filter pack  

DOE Patents [OSTI]

A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

413

Groundwater well with reactive filter pack  

DOE Patents [OSTI]

A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

1998-09-08T23:59:59.000Z

414

PrimeEnergy/DOE/GRI slant well  

SciTech Connect (OSTI)

This report presents final results of the Sterling Boggs 1240 slant well. Objectives of the project were (1) to test the potential for improved recovery efficiency in a fractured Devonian Shale reservoir from a directionally drilled well, (2) to perform detailed tests of reservoir properties and completion methods, and (3) to provide technology to industry which may ultimately improve the economics of drilling in the Devonian Shale and thereby stimulate development of its resources.

Drimal, C.E.; Muncey, G.; Carden, R.

1991-12-01T23:59:59.000Z

415

Ultracold atoms in a cavity mediated double-well system  

E-Print Network [OSTI]

We study ground-state properties and dynamics of a dilute ultracold atomic gas in a double well potential. The Gaussian barrier separating the two wells derives from the interaction between the atoms and a quantized field of a driven Fabry-Perot cavity. Due to intrinsic atom-field nonlinearity, several novel phenomena arise being the focus of this work. For the ground state, there is a critical pumping amplitude in which the atoms self-organize and the intra cavity field amplitude drastically increases. In the dynamical analysis, we show that the Josephson oscillations depend strongly on the atomic density and may be greatly suppressed within certain regimes, reminiscent of self-trapping of Bose-Einstein condensates in double-well setups. This pseudo self-trapping effect is studied within a mean-field treatment valid for large atom numbers. For small numbers of atoms, we consider the analogous many-body problem and demonstrate a collapse-revival structure in the Josephson oscillations.

Jonas Larson; Jani-Petri Martikainen

2010-09-13T23:59:59.000Z

416

Locating Faults in a Constant Number of Parallel Testing Rounds (Preliminary Version)  

E-Print Network [OSTI]

the total number of processors and t denotes the number of faulty processors. Both of these results improve processor (diagnosis­with­repair) and identifying a single good processor, we present an oblivious constant­time algorithm using a fixed 3­regular in­ terconnect that tolerates a linear number of faults. This contrasts

Beigel, Richard

417

Unified position-dependent photon-number quantization in layered structures  

E-Print Network [OSTI]

We have recently developed a position-dependent quantization scheme for describing the ladder and effective photon-number operators associated with the electric field to analyze quantum optical energy transfer in lossy and dispersive dielectrics [Phys. Rev. A, 89, 033831 (2014)]. While having a simple connection to the thermal balance of the system, these operators only described the electric field and its coupling to lossy dielectric bodies. Here we extend this field quantization scheme to include the magnetic field and thus to enable description of the total electromagnetic field and discuss conceptual measurement schemes to verify the predictions. In addition to conveniently describing the formation of thermal balance, the generalized approach allows modeling of the electromagnetic pressure and Casimir forces. We apply the formalism to study the local steady state field temperature distributions and electromagnetic force density in cavities with cavity walls at different temperatures. The calculated local electric and magnetic field temperatures exhibit oscillations that depend on the position as well as the photon energy. However, the effective photon number and field temperature associated with the total electromagnetic field is always position-independent in lossless media. Furthermore, we show that the direction of the electromagnetic force varies as a function of frequency, position, and material thickness.

Mikko Partanen; Teppo Hyrynen; Jani Oksanen; Jukka Tulkki

2014-12-01T23:59:59.000Z

418

Completion Report for Well ER-EC-1  

SciTech Connect (OSTI)

Well ER-EC-1 was drilled for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the spring of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to the depth 675.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,524.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 566.3 meters prior to installation of the completion string. One completion string with three isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 31 sidewall samples taken at various depths below 680 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well penetrated Tertiary-age lava and tuff of the Timber Mountain Group, the Paintbrush Group, the Calico Hills Formation, the Crater Flat Group, and the Volcanics of Quartz Mountain. The preliminary geologic interpretation of data from Well ER-EC-1 indicates the presence of a structural trough or bench filled with a thick section of post-Rainier Mesa lava. These data also suggest that this site is located on a buried structural ridge that may separate the Silent Canyon and Timber Mountain caldera complexes.

Townsend, M.J.

2000-12-01T23:59:59.000Z

419

Completion Report for Well ER-EC-4  

SciTech Connect (OSTI)

Well ER-EC-4 was drilled for the US Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 263.7 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,062.8 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static, water level was measured at the depth of 228.3 meters, two months after installation of the completion string. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 35 sidewall samples taken at various depths below 286.5 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well was collared in basalt and penetrated Tertiary-age lava and tuff of the Thirsty Canyon Group, the Volcanics of Fortymile Canyon, and the Timber Mountain Group. The preliminary geologic interpretation of data from this well helps pinpoint the location of the western margin of the Timber Mountain caldera complex in the southern Nevada volcanic field.

M. J. Townsend

2000-09-01T23:59:59.000Z

420

Completion Report for Well ER-18-2  

SciTech Connect (OSTI)

Well ER-18-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well, located on Buckboard Mesa in the western part of the Nevada Test Site, was drilled in the spring of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to the depth 408.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 762.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 369.7 meters approximately two months after the completion string was installed. One completion string with three isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 15 sidewall samples taken at various depths below 420 meters, supplemented by geophysical log data and results of detailed chemical and mineralogical studies of rock samples. The upper part of the well penetrated Tertiary-age basalt, underlain by tuffaceous moat-filling sediments interbedded with ash-flow tuff units of the Thirsty Canyon Group and the Beatty Wash Formation. The lower half of the drill hole penetrated ash-flow tuff of the mafic-rich Ammonia Tanks Tuff. The geologic interpretation of data from Well ER-18-2 indicates that this site is located inside the structural margin of the Ammonia Tanks caldera.

Bechtel Nevada

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Completion Report for Well ER-12-2  

SciTech Connect (OSTI)

Well ER-12-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled from November 2002 to January 2003 as part of a hydrogeologic investigation program for the Yucca Flat Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology in the northwestern portion of Yucca Flat. The well was drilled to total measured depth of 2,097.9 meters. The 131.1-centimeter-diameter borehole was left open (i.e., uncased) below the base of the intermediate casing at 901.6 meters. A piezometer string was installed outside the surface casing to a depth of 176.4 meters to monitor a zone of perched water. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters, sidewall core samples from 7 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated, in descending order, 137.5 meters of Quaternary and Tertiary alluvium, 48.8 meters of Tertiary volcanic rocks, 289.6 meters of Mississippian Chainman Shale, and 1,622.5 meters of Mississippian and Upper Devonian Eleana Formation consisting of shale, argillite, sandstone, quartzite, and limestone. Forty-seven days after the well was drilled the water level inside the main hole was tagged at the depth of 65.43 meters, and the water level inside the piezometer string was tagged at 127.14 meters.

Bechtel Nevada

2004-11-01T23:59:59.000Z

422

ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS  

SciTech Connect (OSTI)

Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore); and (3) accurate approaches to account for the effects of reservoir heterogeneity and for the optimization of nonconventional well deployment. An overview of our progress in each of these main areas is as follows. A general purpose object-oriented research simulator (GPRS) was developed under this project. The GPRS code is managed using modern software management techniques and has been deployed to many companies and research institutions. The simulator includes general black-oil and compositional modeling modules. The formulation is general in that it allows for the selection of a wide variety of primary and secondary variables and accommodates varying degrees of solution implicitness. Specifically, we developed and implemented an IMPSAT procedure (implicit in pressure and saturation, explicit in all other variables) for compositional modeling as well as an adaptive implicit procedure. Both of these capabilities allow for efficiency gains through selective implicitness. The code treats cell connections through a general connection list, which allows it to accommodate both structured and unstructured grids. The GPRS code was written to be easily extendable so new modeling techniques can be readily incorporated. Along these lines, we developed a new dual porosity module compatible with the GPRS framework, as well as a new discrete fracture model applicable for fractured or faulted reservoirs. Both of these methods display substantial advantages over previous implementations. Further, we assessed the performance of different preconditioners in an attempt to improve the efficiency of the linear solver. As a result of this investigation, substantial improvements in solver performance were achieved.

Louis J. Durlofsky; Khalid Aziz

2004-08-20T23:59:59.000Z

423

RNG: A Practitioner's Overview Random Number Generation  

E-Print Network [OSTI]

RNG: A Practitioner's Overview Random Number Generation A Practitioner's Overview Prof. Michael and Monte Carlo Methods Pseudorandom number generation Types of pseudorandom numbers Properties of these pseudorandom numbers Parallelization of pseudorandom number generators New directions for SPRNG Quasirandom

Mascagni, Michael

424

Total Building Air Management: When Dehumidification Counts  

E-Print Network [OSTI]

are realized when systems are designed with a total operating strategy in mind. Thls strategy takes Cheryl L. White Technical Consultant Eddleson & Rowe, Assoc. Denver, Colorado into consideration every factor of buildmg air management includmg: 1...-89 specifies at least 15 CFM per person. In Denver Colorado where relative humidity of outdoor air is low and outdoor design temperature is 92" F DB/65" F WB, this may be a cost effective method of assuring high IAQ. In other parts of the country - Houston...

Chilton, R. L.; White, C. L.

1996-01-01T23:59:59.000Z

425

Total Natural Gas Gross Withdrawals (Summary)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total9,216Pipeline

426

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total Supplemental Supply

427

Total U.S. Housing Units.............................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total Supplemental Supply

428

Total U.S. Housing Units.................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total Supplemental

429

Total U.S. Housing Units.................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total Supplemental.... 111.1

430

Total U.S. Housing Units..................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total Supplemental....

431

Total U.S. Housing Units...................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total Supplemental.....

432

Total U.S. Housing Units........................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total Supplemental.....25.6

433

Total U.S. Housing Units........................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total

434

Total U.S. Housing Units........................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do Not

435

Total U.S. Housing Units........................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do Not0.7

436

Total U.S. Housing Units........................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do

437

Total U.S. Housing Units............................................  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product: Total5.6 17.7 7.9 Do.. 111.1

438

Project management improves well control events  

SciTech Connect (OSTI)

During a well control operation, the efficient use of personnel and equipment, through good project management techniques, contributes to increased safety and ensures a quality project. The key to a successful blowout control project is to use all resources in the most efficient manner. Excessive use of resources leads to unnecessary expenditures and delays in bringing the project under control. The Kuwait well control project, which involved more than 700 blowouts, was accomplished in a much shorter time (8 months) than first estimated (5 years). This improvement partly resulted from the application of sound project management techniques. These projects were prime examples of the need for a formal project management approach to handling wild well projects. There are many examples of projects that were successful in controlling wells but were economic disasters. Only through the effective application of project management can complex well control projects be completed in reasonable time frames at reasonable cost. The paper describes team management, project scope, organizational structures, scheduling, tracking models, critical path method, and decision trees.

Oberlender, G.D. [Oklahoma State Univ., Stillwater, OK (United States); Abel, L.W. [Wild Well Control Inc., Spring, TX (United States)

1995-07-10T23:59:59.000Z

439

ADVANCED TECHNOLOGIES FOR STRIPPER GAS WELL ENHANCEMENT  

SciTech Connect (OSTI)

As part of Task 1 in Advanced Technologies for Stripper Gas Well Enhancement, Schlumberger-Holditch Reservoir Technologies (H-RT) has joined with two Appalachian Basin producers, Great Lakes Energy Partners, LLC, and Belden & Blake Corporation to develop methodologies for identification and enhancement of stripper wells with economic upside potential. These industry partners have provided us with data for more than 700 wells in northwestern Pennsylvania. Phase 1 goals of this project are to develop and validate methodologies that can quickly and cost-effectively identify wells with enhancement potential. We have continued to enhance and streamline our software, and we are testing the final stages of our new Microsoft{trademark} Access/Excel based software. We are continuing to process the information and are identifying potential candidate wells that can be used in Phase 2 to validate the new methodologies. In addition, preparation of the final technical report is underway. During this quarter, we have presented our project and discussed the software to numerous Petroleum Technology Transfer Council (PTTC) workshops located in various regions of the United States.

Charles M. Boyer II; Ronald J. MacDonald P.G.

2002-01-01T23:59:59.000Z

440

Snubdrilling a new well in Venezuela  

SciTech Connect (OSTI)

A new well was successfully drilled using a snubbing jack. The drill bit was rotated using a rotary table, downhole motors and combination of the two. Expected high-pressure zones prompted this use of ``snubdrilling.`` The primary objective was to drill a vertical well through underlying sands and gain information about formation pressures. This data would aid in the drilling of a relief well using a conventional drilling rig. The secondary objective was to relieve pressure by putting this new well on production. In addition to special high-pressure drilling jobs, there are other drilling applications where snubbing jacks are a feasible alternative to conventional rotary drilling rigs or coiled tubing units. Slimhole, underbalanced and flow drilling, and sidetracking of existing wells are excellent applications for snubdrilling. Advantages of snubdrilling vs. coiled tubing drilling, include ability to rotate drillstrings, use high-torque downhole motors, pump at high rates and pressures, apply significant overpull in case of stuck pipe, and run casing and liners without rigging down. Shortcomings of drilling with snubbing jacks compared to coiled tubing are the need to stop circulation while making new connections and inability to run continuous cable inside workstrings.

Aasen, J.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Motion at low Reynolds number  

E-Print Network [OSTI]

The work described in this thesis centers on inertialess motion at low Reynolds numbers at the crossroad between biofluids and microfluids. Here we address questions regarding locomotion of micro-swimmers, transport of ...

Tam, Daniel See Wai, 1980-

2008-01-01T23:59:59.000Z

442

Departmental Business Instrument Numbering System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

2000-12-05T23:59:59.000Z

443

Departmental Business Instrument Numbering System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

2005-01-27T23:59:59.000Z

444

Natural Gas Development and Grassland Songbird Abundance in Southwestern Saskatchewan: The Impact of Gas Wells and Cumulative Disturbance .  

E-Print Network [OSTI]

??The quantity and quality of remaining grasslands in southwestern Saskatchewan, Canada, are threatened by expansion of natural gas development. The number of natural gas wells (more)

Bogard, Holly Jayne Kalyn

2011-01-01T23:59:59.000Z

445

Large scale total synthesis of apoptolidinone and progress towards the total synthesis of ammocidin  

E-Print Network [OSTI]

transformed with the adenovirus type E1A oncognene, but not normal cells. This dissertation describes the latest studies in understanding of apoptolidins biological activity mechanism and previous contributions towards its total synthesis. Synthesizing...

Liu, Qingsong

2009-05-15T23:59:59.000Z

446

Apparatus for stringing well pipe of casing  

SciTech Connect (OSTI)

An apparatus for use in running a string of threaded well pipe or casing in a vertical configuration in a deep well bore which is adapted to convert a top head drive drilling rig for use in running each length of pipe into the well bore. A drive spindle adaptor is provided which may be securely attached in a removably mounted manner to the rotary drive spindle or sub of a top head drive drilling rig. The drive spindle includes a pair of opposing, outwardly extending lugs disposed at a right angle to the axial direction of the spindle and a true centering guide means. A collar is included which is provided with frictional gripping members for removably securing the collar to one end of a length of conventional pipe and a pair of axially extending, spaced ears which cooperate upon engagement with said lugs on said spindle adaptor to transfer rotary motion of said spindle to said length of pipe.

Sexton, J.L.

1984-04-17T23:59:59.000Z

447

Apparatus for rotating and reciprocating well pipe  

SciTech Connect (OSTI)

This patent describes an apparatus for simultaneously rotating and reciprocating well pipe, having an upper end, and mechanically utilizing a rotary table attached to a drilling rig, comprising: a rotating pipe clamp assembly having an irregular cross-sectional mid-member and clamp members for releasably gripping the well pipe connected to the ends of the mid-member for rotation therewith; a square block for fitting to the rotary table square and having a selected grooved interior configuration; a torque transmitting means fitted into the grooves having openings therethrough having the same irregular cross-section as the mid-member cross-section; and a torque limiting means connecting the torque transmitting means and the block for limiting torque applied through the well pipe via the clamp assembly and the torque transmitting means.

Davis, K.D.

1988-04-12T23:59:59.000Z

448

Positron interactions with watertotal elastic, total inelastic, and elastic differential cross section measurements  

SciTech Connect (OSTI)

Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions.

Tattersall, Wade [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia) [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Chiari, Luca [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia)] [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Machacek, J. R.; Anderson, Emma; Sullivan, James P. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)] [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); White, Ron D. [Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia)] [Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Brunger, M. J. [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia) [Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide 5001, South Australia (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Buckman, Stephen J. [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia) [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Garcia, Gustavo [Instituto de F?sica Fundamental, Consejo Superior de Investigationes Cient?ficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain)] [Instituto de F?sica Fundamental, Consejo Superior de Investigationes Cient?ficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, Francisco [Departamento de F?sica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain)] [Departamento de F?sica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

2014-01-28T23:59:59.000Z

449

Numerical simulation of an energy storage well  

E-Print Network [OSTI]

~ Isothera aap oC ~ at the end of 0. 25 yr. of in]ectiou. . ~ ~ ~ ~ ~ ~ ~ . ~ . ~ ~ . ~ 48 7 ~ Isobar aap, Rilopascals, after 0. 25 yr. of storaqe. 49 8. Isothera aap, oC ~ after 0 25 yr. of stozaqe. . . . ~ 50 9 Isobar nap. Rilopascal, after 0 ~ 25 yr...-recovery schedules to insure an economical operation and to prevent theraal pollution of the aquifer. Sa~iaal 511~I mayer and Todd (1973) did preliminary calculations for a well in a 33 a thick confined aquifer of 25 percent poros- ity. The well received 99o...

Ebeling, Lynn Louis

2012-06-07T23:59:59.000Z

450

Pressure buildup characteristics in Austin Chalk wells  

E-Print Network [OSTI]

20 40 60 60 Mr lee IOOKrlemelere EEKAR 6 UA SALMI' WILSON LAVACA hrAVERICK ZAVA' A FRIG ATAECOSA KARNES DE WITT 0 0 IMMIT LA SALLE ~CO o& @g'v Figure I ? Austin Chalk Trend in Texas Early in the development of Clayton W, Williams, Jr..., Henry J. , Jr. : "Well- Test Analysis for Vertically Fractured Wells, " J. Pet. Tech. (Aug. 1972) 1014-1020; Trans. , AINE, 253. VITA Name: Eddy Claycomb Birth Date: March 18, 1956 Birthplace: Tyler, Texas Parents: Mr. and Mrs. Tom Claycomb, Jr...

Claycomb, Eddy

1982-01-01T23:59:59.000Z

451

Foolproof completions for high rate production wells  

E-Print Network [OSTI]

gravel pack (GP) and high rate water pack (HRWP) completions over high-permeability fracturing (HPF), known in the vernacular as a frac&pack (FP) for very high rate wells. While a properly designed GP completion may prevent sand production, it does...

Tosic, Slavko

2008-10-10T23:59:59.000Z

452

Foolproof completions for high rate production wells  

E-Print Network [OSTI]

gravel pack (GP) and high rate water pack (HRWP) completions over high-permeability fracturing (HPF), known in the vernacular as a frac&pack (FP) for very high rate wells. While a properly designed GP completion may prevent sand production, it does...

Tosic, Slavko

2009-05-15T23:59:59.000Z

453

Well performance under solutions gas drive  

SciTech Connect (OSTI)

A fully implicit black-oil simulator was written to predict the drawdown and buildup responses for a single well under Solution Gas Drive. The model is capable of handling the following reservoir behaviors: Unfractured reservoir, Double-Porosity system, and Double Permeability-Double Porosity model of Bourdet. The accuracy of the model results is tested for both single-phase liquid flow and two-phase flow. The results presented here provide a basis for the empirical equations presented in the literature. New definitions of pseudopressure and dimensionless time are presented. By using these two definitions, the multiphase flow solutions correlate with the constant rate liquid flow solution for both transient and boundary-dominated flow. For pressure buildup tests, an analogue for the liquid solution is constructed from the drawdown pseudopressure, similar to the reservoir integral of J. Jones. The utility of using the producing gas-oil ration at shut in to compute pseudopressures and pseudotimes is documented. The influence of pressure level and skin factor on the Inflow Performance Relationship (IPR) of wells producing solution gas drive systems is examined. A new definition of flow efficiency that is based on the structure of the deliverability equations is proposed. This definition avoids problems that result when the presently available methods are applied to heavily stimulated wells. The need for using pseudopressures to analyze well test data for fractured reservoirs is shown. Expressions to compute sandface saturations for fractured systems are presented.

Camacho-Velazquez, R.G.

1987-01-01T23:59:59.000Z

454

Promoting Balance, Wellness & Fitness Creating healthier lives.  

E-Print Network [OSTI]

in student recruitment and retention. Engagement ­ We provide opportunities for students and members of their leisure time. Participation in such activities also assists students in performing well in a demanding interpersonal conflicts, learn healthy life-style habits, provide first aid and emergency response services

Washington at Seattle, University of

455

T2WELL/ECO2N  

Energy Science and Technology Software Center (OSTI)

002966IBMPC00 T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water http:..esd.lbl.gov/tough/licensing.html

456

FOR THE ACTIVE Health and Wellness  

E-Print Network [OSTI]

FOR THE ACTIVE Health and Wellness n EARLY BIRD SWIM Monday, Wednesday & Friday Sept. 16-Dec. 6, 7, Seniors: $58 n SWIMMER'S SPECIAL (Participate in 36 swims of your choice of Early Bird or Evening Swim Education fasttrac for 55+ ASTRONOMY ­ OUR SOLAR SYSTEM AND BEYOND This basic introductory course

deYoung, Brad

457

FOR THE ACTIVE Health and Wellness  

E-Print Network [OSTI]

FOR THE ACTIVE Health and Wellness n EARLY BIRD SWIM Monday, Wednesday & Friday Sept. 16-Dec. 6, 7, Seniors: $58 n SWIMMER'S SPECIAL (Participate in 36 swims of your choice of Early Bird or Evening Swim Education fasttrac for 55+ ASTRONOMY ­ Our Solar System and Beyond This basic introductory course

deYoung, Brad

458

Completion Report for Well ER-EC-2A  

SciTech Connect (OSTI)

Well ER-EC-2A was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in January and February of 2000 as part of a hydrogeologic investigation program in the Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 412.9 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,516.1 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 228.0 meters, approximately two months after installation of the completion string. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in this report. These are based on composite drill cuttings collected every 3 meters, and 81 sidewall samples taken at various depths below 212 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 30 samples. The well was collared in rhyolite lava and penetrated Tertiary-age lava and tuff of the Volcanics of Fortymile Canyon and the Timber Mountain Group. The preliminary geologic interpretation of borehole data indicates that this well was drilled within the margins of the buried Rainier Mesa and Ammonia Tanks calderas, and that caldera collapse in this area was deeper than expected, resulting in a section of Volcanics of Fortymile Canyon (caldera-filling deposit) that is much thicker than expected.

M. J. Townsend

2002-03-01T23:59:59.000Z

459

Completion report for Well ER-EC-6  

SciTech Connect (OSTI)

Well ER-EC-6 was drilled for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the spring of 1999 as part of the DOE's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 66-centimeter surface hole was drilled and cased off to the depth of 485.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,524.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 434.6 meters prior to installation of the completion string. One completion string with four isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 33 sidewall samples taken at various depths below 504.4 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well penetrated Tertiary-age lava and tuff of the Timber Mountain Group, the Paintbrush Group, the Calico Hills Formation, and the Volcanics of Quartz Mountain. Intense hydrothermal alteration was observed below the depth of 640 m. The preliminary geologic interpretation indicates that this site may be located on a buried structural ridge that separates the Silent Canyon and Timber Mountain caldera complexes.

M. J. Townsend

2000-05-01T23:59:59.000Z

460

Completion Report for Well ER-EC-7  

SciTech Connect (OSTI)

Well ER-EC-7 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 265.8 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 422.5 meters. The planned depth of 762 meters was not reached due to borehole stability problems. One completion string with two isolated slotted intervals was installed in the well. A preliminary composite, static, water level was measured at the depth of 227.8 meters, 20 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings, supplemented by geophysical log data, and incorporating data from detailed chemical and mineralogical studies of rock samples. Beneath a thin alluvial deposit, the well penetrated 410 meters of lava and bedded tuff of the Volcanics of Fortymile Canyon Group, deposited in the Timber Mountain caldera moat after caldera collapse. The geologic interpretation of data from this well provides information on the thickness, lithologic composition, and hydrogeologic character of moat-filling rocks in the southern portion of the Timber Mountain caldera complex in the southwestern Nevada volcanic field.

Bechtel Nevada

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Completion Report for Well ER-EC-8  

SciTech Connect (OSTI)

Well ER-EC-8 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 129.8 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 609.6 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 98.4 meters, 24 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on evaluation of composite drill cuttings collected every 3 meters, and 20 sidewall samples taken at various depths below 157.9 meters, supplemented by geophysical log data and results of detailed chemical and mineralogical studies of rock samples. Drilling began in Tertiary-age tuff of the Thirsty Canyon Group, and penetrated tuffs of the Beatty Wash Formation, tuff of Buttonhook Wash, and the upper portion of the Ammonia Tanks Tuff. The geologic interpretation of data from this well helps define the location of the western margin of the Timber Mountain caldera complex in the southwestern Nevada volcanic field. Geologic and hydrologic data from the well will aid in development of models to predict groundwater flow and contaminant migration within and near the Nevada Test Site.

Bechtel Nevada

2004-10-01T23:59:59.000Z

462

Fracturing pressures and near-well fracture geometry of arbitrarily oriented and horizontal wells  

SciTech Connect (OSTI)

The hydraulic fracturing of arbitrarily oriented and horizontal wells is made challenging by the far more complicated near-well fracture geometry compared to that of conventional vertical wells. This geometry is important both for hydraulic fracture propagation and the subsequent post-treatment well performance. Fracture tortuosity of arbitrarily oriented and horizontal wells is likely to cause large initiation pressures and reduction in the fracture widths. This paper presents a comprehensive study of the effects of important variables, including the principal stresses, wellbore orientation, and perforation configuration on fracture geometry. Initiation pressures, the contact between arbitrarily oriented wells and the fracture plane, and the near-well fracture geometry are determined and discussed. This study also shows that because of the near-well stress concentration the fracture width at the wellbore is always smaller than the maximum fracture width. This can have important consequences during hydraulic fracturing.

Chen, Z.; Economides, M.J.

1995-12-31T23:59:59.000Z

463

Completion Report for Well ER-7-1  

SciTech Connect (OSTI)

Well ER-7-1 was drilled for the U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in January and February 2003, as part of a hydrogeologic investigation program in Yucca Flat. A 47.0-centimeter surface hole was drilled and cased off to a depth of 541.0 meters below the surface. The hole diameter was then decreased to 31.8 centimeters for drilling to a total depth of 762.0 meters. Detailed lithologic descriptions with stratigraphic assignments are included in this report. These are based on composite drill cuttings collected every 3 meters, and 62 sidewall samples taken at various depths below 85.3 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies were conducted on 22 samples of cuttings. The well was collared in Quaternary surficial deposits and penetrated a thick section of Tertiary-age volcanic deposits before terminating in carbonate rocks of Paleozoic-age.

Bechtel Nevada

2004-11-01T23:59:59.000Z

464

Provides Total Tuition Charge to Source Contribution  

E-Print Network [OSTI]

Contribution 10 4 * 1,914 1,550 364 15 6 3 2,871 2,326 545 20 8 4 3,828 3,101 727 25 10 5 4,785 3,876 909 30 12,752 1,818 TGR 4-20 0-3 2,871 2,871 - % of time appointed Hours of Work/Week Units TAL Provides Total,742 4,651 1,091 75 30 5 4,785 3,876 909 80 32 4 3,828 3,101 727 85 34 3 2,871 2,326 545 90 36 3 2,871 2

Kay, Mark A.

465

Neutrino oscillation experiments and limits on lepton-number and lepton-flavor violating processes  

E-Print Network [OSTI]

Using a three neutrino framework we investigate bounds for the effective Majorana neutrino mass matrix. The mass measured in neutrinoless double beta decay is its (11) element. Lepton-number and -flavor violating processes sensitive to each element are considered and limits on branching ratios or cross sections are given. Those processes include $\\mu^- e^+$ conversion, $K^+ \\to \\pi^- \\mu^+ \\mu^+$ or recently proposed high-energy scattering processes at HERA. Including all possible mass schemes, the three solar solutions and other allowed possibilities, there is a total of 80 mass matrices. The obtained indirect limits are up to 14 orders of magnitude more stringent than direct ones. It is investigated how neutrinoless double beta decay may judge between different mass and mixing schemes as well as solar solutions. Prospects for detecting processes depending on elements of the mass matrix are also discussed.

W. Rodejohann

2000-06-19T23:59:59.000Z

466

A total risk assessment methodology for security assessment.  

SciTech Connect (OSTI)

Sandia National Laboratories performed a two-year Laboratory Directed Research and Development project to develop a new collaborative risk assessment method to enable decision makers to fully consider the interrelationships between threat, vulnerability, and consequence. A five-step Total Risk Assessment Methodology was developed to enable interdisciplinary collaborative risk assessment by experts from these disciplines. The objective of this process is promote effective risk management by enabling analysts to identify scenarios that are simultaneously achievable by an adversary, desirable to the adversary, and of concern to the system owner or to society. The basic steps are risk identification, collaborative scenario refinement and evaluation, scenario cohort identification and risk ranking, threat chain mitigation analysis, and residual risk assessment. The method is highly iterative, especially with regard to scenario refinement and evaluation. The Total Risk Assessment Methodology includes objective consideration of relative attack likelihood instead of subjective expert judgment. The 'probability of attack' is not computed, but the relative likelihood for each scenario is assessed through identifying and analyzing scenario cohort groups, which are groups of scenarios with comparable qualities to the scenario being analyzed at both this and other targets. Scenarios for the target under consideration and other targets are placed into cohort groups under an established ranking process that reflects the following three factors: known targeting, achievable consequences, and the resources required for an adversary to have a high likelihood of success. The development of these target cohort groups implements, mathematically, the idea that adversaries are actively choosing among possible attack scenarios and avoiding scenarios that would be significantly suboptimal to their objectives. An adversary who can choose among only a few comparable targets and scenarios (a small comparable target cohort group) is more likely to choose to attack the specific target under analysis because he perceives it to be a relatively unique attack opportunity. The opposite is also true. Thus, total risk is related to the number of targets that exist in each scenario cohort group. This paper describes the Total Risk Assessment Methodology and illustrates it through an example.

Aguilar, Richard; Pless, Daniel J.; Kaplan, Paul Garry; Silva, Consuelo Juanita; Rhea, Ronald Edward; Wyss, Gregory Dane; Conrad, Stephen Hamilton

2009-06-01T23:59:59.000Z

467

Common Exam 2 Physics 111 Fall 2006 Name _____________________________ A Total Number of Points is 15 (Multiple Choice and Workout Problems).  

E-Print Network [OSTI]

) 4.08 m E) 20.0 m ( ) 22 2 / / 2 2 3.02 N l tv F ma m m r l l m t = = = = = net, net, 2 0 7.84 m;Common Exam 2 Physics 111 Fall 2006 Name _____________________________ A Page 2 4.) If a ski lift raises power is required of the force making the lift? A) 0.264 kW B) 1.65 kW C) 26.4 kW D) 66.0 kW E) 165.0 k

Janow, Rich

468

Date/Time: Friday 16 Sept: to // Saturday 17 Sept: to Number of search hours (total): hours (Fri) // hours (Sat)  

E-Print Network [OSTI]

Common Reed Phragmites australis 30 Common Sowthistle Sonchus oleraceus 31 Curly Dock Rumex crispus 32

Columbia University

469

Broken gauge symmetry in a Bose gas with constant particle number  

E-Print Network [OSTI]

The existence of broken gauge symmetries in Bose-Einstein condensates is still controversially discussed in science, since it would not conserve the total number of particles. Here, it is shown for the first time that non-random condensate and non-condensate phase distributions may arise from local particle number breaking in a Bose gas with constant particle number, while the global U(1)-gauge symmetry of the system is preserved due to particle number conservation.

Alexej Schelle

2014-12-13T23:59:59.000Z

470

In vivo tibial force measurement after total knee arthroplasty  

E-Print Network [OSTI]

and Colwell, C. W. , Jr. : The press-fit condylar total kneeColwell, C. W. , Jr. : Press-fit condylar design total knee

D'Lima, Darryl David

2007-01-01T23:59:59.000Z

471

Analysis of Serum Total and Free PSA Using Immunoaffinity Depletion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Serum Total and Free PSA Using Immunoaffinity Depletion Coupled to SRM: Correlation with Clinical Immunoassay Tests. Analysis of Serum Total and Free PSA Using Immunoaffinity...

472

Project Profile: Transformational Approach to Reducing the Total...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transformational Approach to Reducing the Total System Costs of Building-Integrated Photovoltaics Project Profile: Transformational Approach to Reducing the Total System Costs of...

473

Total synthesis of Class II and Class III Galbulimima Alkaloids  

E-Print Network [OSTI]

I. Total Synthesis of All Class III Galbulimima Alkaloids We describe the total synthesis of (+)- and (-)-galbulimima alkaloid 13, (-)-himgaline anad (-)-himbadine. The absolute stereochemistry of natural (-)-galbulimima ...

Tjandra, Meiliana

2010-01-01T23:59:59.000Z

474

Enantioselective total syntheses of acylfulvene, irofulven, and the agelastatins  

E-Print Network [OSTI]

I. Enantioselective Total Synthesis of (-)-Acylfulvene, and (-)-Irofulven We report the enantioselective total synthesis of (-)-acylfulvene and (-)-irofulven, which features metathesis reactions for the rapid assembly of ...

Siegel, Dustin S. (Dustin Scott), 1980-

2010-01-01T23:59:59.000Z

475

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the...

476

On rings of structural numbers  

E-Print Network [OSTI]

structural numbers over the set X, and let B(X) have the operations defined above with equality also as before. Theorem I. l. If X is any set, then B(X) is a commutative ring with identity. Proof. The structural number 0 is the additive identity element... with identity g. Definition I. 7. If A, B e S(X) then A'B = (P U q ( p e A, q e B, p Il q = &f and p U q can be formed in an odd number of ways). ~E1 t. 4. L t A = (( . b), (bj. 7 )) 4 B = ((b, c), (b), (a)) be in S(X) for some X. Then AD B = {{b, a), {a...

Powell, Wayne Bruce

2012-06-07T23:59:59.000Z

477

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

478

Consortium for Petroleum & Natural Gas Stripper Wells  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

479

Boise geothermal injection well: Final environmental assessment  

SciTech Connect (OSTI)

The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

NONE

1997-12-31T23:59:59.000Z

480

Energy loss rate in disordered quantum well  

SciTech Connect (OSTI)

We report the effect of dynamically screened deformation potential on the electron energy loss rate in disordered semiconductor quantum well. Interaction of confined electrons with bulk acoustic phonons has been considered in the deformation coupling. The study concludes that the dynamically screened deformation potential coupling plays a significant role as it substantially affects the power dependency of electron relaxation on temperature and mean free path.

Tripathi, P.; Ashraf, S. S. Z. [Centre of Excellence in Nanomaterials, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Hasan, S. T. [Physics Department, Faculty of Science, The M.S. University of Baroda, Vadodara-390002 (India); Sharma, A. C. [Physics Department, Sibli National College, Azamgarh-276128 (India)

2014-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "wells total number" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Gas well operation with liquid production  

SciTech Connect (OSTI)

Prediction of liquid loading in gas wells is discussed in terms of intersecting tubing or system performance curves with IPR curves and by using a more simplified critical velocity relationship. Different methods of liquid removal are discussed including such methods as intermittent lift, plunger lift, use of foam, gas lift, and rod, jet, and electric submersible pumps. Advantages, disadvantages, and techniques for design and application of the methods of liquid removal are discussed.

Lea, J.F.; Tighe, R.E.

1983-02-01T23:59:59.000Z

482

Oscillation dynamics of multi-well condensates  

E-Print Network [OSTI]

We propose a new approach to the macroscopic dynamics of three-well Bose-Einstein condensates, giving particular emphasis to self-trapping and Josephson oscillations. Although these effects have been studied quite thoroughly in the mean-field approximation, a full quantum description is desirable, since it avoids pathologies due to the nonlinear character of the mean-field equations. Using superpositions of quantum eigenstates, we construct various oscillation and trapping scenarios.

S. Mossmann; C. Jung

2006-12-05T23:59:59.000Z

483

Geothermal Well Completion Tests | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A Survey of Work to DateWell

484

Bitumen production through a horizontal well  

SciTech Connect (OSTI)

This patent describes a method for thermal stimulation and production of a viscous hydrocarbon from a reservoir having a productive layer which retains the hydrocarbon until the latter is made flowable by contact with a hot stimulating medium. The method includes the steps of: forming a borehole having a substantially horizontal segment which transverses the productive layer, registering a well completion in the borehole which includes; an elongated perforate well liner, a fluid conduit extending through the liner and having a discharge end, and a well head at the liner upper end communicated with the fluid conduit, positioning a variable length flow diverter in the liner adjacent to the fluid conduit discharge end, whereby to define a quasi-barrier in the liner which is pervious to passage of the hot stimulating medium, and which divides the liner into injection and production segments respectively, heating the productive layer about the substantially horizontal segment of the elongated liner, introducing a pressurized stream of the hot stimulant through the fluid conduit and into the liner injection segment, and producing hydrocarbon emulsion which flows into the liner production segment.

Livesey, D.B.; Toma, P.

1987-02-03T23:59:59.000Z

485

Method of drilling and casing a well  

SciTech Connect (OSTI)

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

486

Remote down-hole well telemetry  

DOE Patents [OSTI]

The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2004-07-20T23:59:59.000Z

487

2010 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 19)  

SciTech Connect (OSTI)

This 2010 Idaho National Laboratory Water Use Report and Comprehensive Well Inventory (Revision 19) provides water use information (monthly annual average and total annual volume) for production and potable water wells at the Idaho National Laboratory for Calendar Year 2010. It also provides detailed information for new, modified, and abandoned (decommissioned) wells and holes. Five new wells were drilled and completed in the latter part of Calendar Years 2009 and 2010. Two wells were modified in Calendar Year 2010 and 66 wells and boreholes reported as abandoned (decommissioned). Detailed construction information for the new and modified wells, along with abandonment information for older wells, is provided. Location maps are provided if survey information was available. This report is being submitted in accordance with the Water Rights Agreement between the State of Idaho and the United States, for the United States Department of Energy (dated 1990) and the subsequent Partial Decree for Water Right 34-10901 issued June 20, 2003.

Mike Lewis

2011-06-01T23:59:59.000Z

488

Completion Report for the Well ER-6-2 Site Corrective Action Unit 97: Yucca Flat - Climax Mine  

SciTech Connect (OSTI)

Well ER-6-2 and its satellite hole, Well ER-6-2 No.1, were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. Well ER-6-2 was drilled in two stages in 1993 and 1994; the satellite hole, Well ER-6-2 No.1 was drilled nearby in 1993 but was abandoned. The wells were drilled as part of a hydrogeologic investigation program for the Yucca Flat-Climax Mine Corrective Action Unit Number 97, in the northeastern portion of the Nevada Test Site. The wells are located in Yucca Flat, within Area 6 of the Nevada Test Site. The wells provided information regarding the radiological and hydrogeological environment in a potentially down-gradient position from tests conducted in northern and central Yucca Flat. Construction of Well ER-6-2 began with a 1.2-meter-diameter surface conductor hole, which was drilled and cased off to a depth of 30.8 meters below the surface. A 50.8-centimeter diameter surface hole was then rotary drilled to the depth of 578.5 meters and cased off to the depth of 530.4 meters. The hole diameter was then reduced to 27.0 centimeters, and the borehole was advanced to a temporary depth of 611.4 meters. The borehole was conventionally cored to a total depth of 1,045 meters with a diameter of 14.0 centimeters. Borehole sloughing required cementing and re-drilling of several zones. The open-hole completion accesses the lower carbonate aquifer, the CP thrust fault, and the upper clastic confining unit. A fluid level depth of 543.2 meters was most recently measured in the open borehole in September 2007. No radionuclides were encountered during drilling. The satellite hole Well ER-6-2 No.1 was drilled approximately 15.2 meters north of Well ER-6-2 on the same drill pad. This was planned to be used as an observation well during future hydrologic testing at Well ER-6-2; however, the satellite hole was abandoned at the depth of 399 meters due to stuck drill pipe, and was subsequently cemented to the surface. Detailed lithologic descriptions with stratigraphic assignments in this report are based on composite drill cuttings samples collected every 3 meters, cores taken between the depths of 619.3 and 1,042.4 meters, and geophysical log data. Stratigraphic assignments within the Paleozoic section are based on paleontological analyses. The well was collared in alluvium and at 30.8 meters penetrated Paleozoic carbonate rocks. These consisted of dolostone with minor shale and limestone of the Bonanza King Formation, and limestone with minor quartzite, sandstone, and dolostone assigned to the Guilmette Formation. The borehole reached total depth in a shale unit assigned to the Chainman Shale. The units below the Bonanza King Formation are overturned due to faulting and folding and, therefore, are stratigraphically upside-down.

NSTec Environmental Management

2008-03-01T23:59:59.000Z

489

Monitoring polymer properties in production wells of Chateaurenard oilfield  

SciTech Connect (OSTI)

A polymer flooding test was conducted in the Chateaurenard field (France) from 1985 to 1989. The test was run on a ten-acre inverted five-spot. A total of 240,000 m{sup 3} of partially hydrolyzed polyacrylamide at a concentration of 1000 ppm was injected followed by an equal volume of solution but at a tapered concentration. A strong response in oil recovery for three of the four producers was observed. This paper reports on an original methodology that was designed for sampling and analyzing the polymer in the effluents of the producing wells. Concentrations and main characteristics of produced polyacrylamide were determined versus injected volume. No degradation of the polymer was detected. A molecular weight fractionation during polymer slug propagation into the reservoir due to adsorption/retention chromatography was observed. The low-polymer concentration of the effluents could be explained by a strong retention of the polymer in the low permeability zones of the reservoir.

Putz, A.G. (Elf Aquitaine, Avenue Larribau, Pau (FR)); Lecourtier, J. (Inst. Francais du Petrole, Avenue Bois-Preau, 92500 Rueil-Malmaison (FR))

1991-01-01T23:59:59.000Z

490

Dark current mechanism of terahertz quantum-well photodetectors  

SciTech Connect (OSTI)

Dark current mechanisms of terahertz quantum-well photodetectors (THz QWPs) are systematically investigated experimentally and theoretically by measuring two newly designed structures combined with samples reported previously. In contrast to previous investigations, scattering-assisted tunneling dark current is found to cause significant contributions to total dark current. A criterion is also proposed to determine the major dark current mechanism at different peak response frequencies. We further determine background limited performance (BLIP) temperatures, which decrease both experimentally and theoretically as the electric field increases. This work gives good description of dark current mechanism for QWPs in the THz region and is extended to determine the transition fields and BLIP temperatures with response peaks from 3 to 12 THz.

Jia, J. Y.; Gao, J. H.; Hao, M. R.; Wang, T. M.; Shen, W. Z.; Zhang, Y. H., E-mail: yuehzhang@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Cao, J. C.; Guo, X. G. [Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Schneider, H., E-mail: h.schneider@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, P.O. Box 510119, 01314 Dresden (Germany)

2014-10-21T23:59:59.000Z

491

Hawaii Natural Gas Number of Residential Consumers (Number of Elements)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (Million Barrels)Reserves from% of TotalYear

492

Logarithmic Bounds for Infinite Prandtl Number Rotating Convection  

E-Print Network [OSTI]

is how much of the total heat transfer is due to convec- tion. The natural measure of this quantity on the forcing parameter [1] - [6], although it has been observed that rotation plays a nontrivial role as well, Chandrasekhar [8]). This is a 1 #12; system of equations coupling

Constantin, Peter

493

IMPROVED NATURAL GAS STORAGE WELL REMEDIATION  

SciTech Connect (OSTI)

This report summarizes the research conducted during Budget Period One on the project ''Improved Natural Gas Storage Well Remediation''. The project team consisted of Furness-Newburge, Inc., the technology developer; TechSavants, Inc., the technology validator; and Nicor Technologies, Inc., the technology user. The overall objectives for the project were: (1) To develop, fabricate and test prototype laboratory devices using sonication and underwater plasma to remove scale from natural gas storage well piping and perforations; (2) To modify the laboratory devices into units capable of being used downhole; (3) To test the capability of the downhole units to remove scale in an observation well at a natural gas storage field; (4) To modify (if necessary) and field harden the units and then test the units in two pressurized injection/withdrawal gas storage wells; and (5) To prepare the project's final report. This report covers activities addressing objectives 1-3. Prototype laboratory units were developed, fabricated, and tested. Laboratory testing of the sonication technology indicated that low-frequency sonication was more effective than high-frequency (ultrasonication) at removing scale and rust from pipe sections and tubing. Use of a finned horn instead of a smooth horn improves energy dispersal and increases the efficiency of removal. The chemical data confirmed that rust and scale were removed from the pipe. The sonication technology showed significant potential and technical maturity to warrant a field test. The underwater plasma technology showed a potential for more effective scale and rust removal than the sonication technology. Chemical data from these tests also confirmed the removal of rust and scale from pipe sections and tubing. Focusing of the underwater plasma's energy field through the design and fabrication of a parabolic shield will increase the technology's efficiency. Power delivered to the underwater plasma unit by a sparkplug repeatedly was interrupted by sparkplug failure. The lifecycle for the plugs was less than 10 hours. An electrode feed system for delivering continuous power needs to be designed and developed. As a result, further work on the underwater plasma technology was terminated. It needs development of a new sparking system and a redesign of the pulsed power supply system to enable the unit to operate within a well diameter of less than three inches. Both of these needs were beyond the scope of the project. Meanwhile, the laboratory sonication unit was waterproofed and hardened, enabling the unit to be used as a field prototype, operating at temperatures to 350 F and depths of 15,000 feet. The field prototype was extensively tested at a field service company's test facility before taking it to the field site. The field test was run in August 2001 in a Nicor Gas storage field observation well at Pontiac, Illinois. Segmented bond logs, gamma ray neutron logs, water level measurements and water chemistry samples were obtained before and after the downhole demonstration. Fifteen tests were completed in the field. Results from the water chemistry analysis showed an increase in the range of calcium from 1755-1984 mg/l before testing to 3400-4028 mg/l after testing. For magnesium, the range increased from 285-296 mg/l to 461-480 mg/l. The change in pH from a range of 3.11-3.25 to 8.23-8.45 indicated a buffering of the acidic well water, probably due to the increased calcium available for buffering. The segmented bond logs showed no damage to the cement bond in the well and the gamma ray neutron log showed no increase in the amount of hydrocarbons present in the formation where the testing took place. Thus, the gas storage bubble in the aquifer was not compromised. A review of all the field test data collected documents the fact that the application of low-frequency sonication technology definitely removes scale from well pipe. Phase One of this project took sonication technology from the concept stage through a successful ''proof-of-concept'' downhole application in a natural gas storage field

James C. Furness; Donald O. Johnson; Michael L. Wilkey; Lynn Furness; Keith Vanderlee; P. David Paulsen

2001-12-01T23:59:59.000Z

494

Apparatus for use in rejuvenating oil wells  

SciTech Connect (OSTI)

A sub incorporating a check valve is connected into the lower end of a well pipestring. This valve will pass hot steam injected down the pipestring to the formations to loosen up the thick crude oil. The check valve prevents back flow and thus will hold the high pressure steam. To resume production, the production pump can then be lowered through the pipestring. The pump itself is provided with an extended probe member which will unseat the check valve when the pump is in proper position so that production pumping can resume.

Warnock, C.E. Sr.

1983-07-19T23:59:59.000Z

495

Decline curve analysis for horizontal wells  

E-Print Network [OSTI]

support kept me from losing sight of my goals. Thanks to Sam Hou, Joseph Wang, Robert Liau, James Wang, and Shou for their company and in particular to Li Fan and Mrs. Shou-Lee Chang for their caring and delicious meals when I forgot my dinner. Thanks... Pressure (L/2xe= 0. 2) Composite Dimensionless Flow Rate Integral and Flow Rate Integral Derivative Functions Type Curve for an Infinite-Conductivity Horizontal Well Located in the Center of a Square Drainage Area, Producing at Constant Bottomhole...

Shih, Min-Yu

1994-01-01T23:59:59.000Z

496

RMOTC - Field Information - Wells and Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001Data sets Notice: As ofOnlineWells

497

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing,Webb County,Energy Information 2001)Al.,Well

498

Salt Wells Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm(CTIhinderProject SmartSalt Wells

499

Willow Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois: Facility WillowWell

500

Wells Rural Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells Rural Electric Co Place: