National Library of Energy BETA

Sample records for wells sampled exceed

  1. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  2. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  3. Well purge and sample apparatus and method

    DOE Patents [OSTI]

    Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.

    1995-10-24

    The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.

  4. Well purge and sample apparatus and method

    DOE Patents [OSTI]

    Schalla, Ronald; Smith, Ronald M.; Hall, Stephen H.; Smart, John E.; Gustafson, Gregg S.

    1995-01-01

    The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

  5. Raft River Geothermal Field Well Head Brine Sample

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tim Lanyk

    2015-12-18

    Raw data and data workup of assay for real-world brine sample. Brine sample was taken at the well head.

  6. Multi-well sample plate cover penetration system

    DOE Patents [OSTI]

    Beer, Neil Reginald

    2011-12-27

    An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.

  7. Water Sampling At Salt Wells Area (Shevenell & Garside, 2003...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details...

  8. Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  9. Well fluid isolation and sample apparatus and method

    DOE Patents [OSTI]

    Schalla, Ronald; Smith, Ronald M.; Hall, Stephen H.; Smart, John E.

    1995-01-01

    The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. A seal may be positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Purged well fluid is stored in a riser above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

  10. Method and apparatus for sampling low-yield wells

    DOE Patents [OSTI]

    Last, George V. (Richland, WA); Lanigan, David C. (Kennewick, WA)

    2003-04-15

    An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.

  11. Evaluation of repeated measurements of radon-222 concentrations in well water sampled from bedrock aquifers of the Piedmont near Richmond, Virginia, USA: Effects of lithology and well characteristics

    SciTech Connect (OSTI)

    Harris, Shelley A. . E-mail: saharris@vcu.edu; Billmeyer, Ernest R.; Robinson, Michael A.

    2006-07-15

    Radon ({sup 222}Rn) concentrations in 26 ground water wells of two distinct lithologies in the Piedmont of Virginia were measured to assess variation in ground water radon concentrations (GWRC), to evaluate differences in concentrations related to well characteristics, lithology, and spatial distributions, and to assess the feasibility of predicting GWRC. Wells were sampled in accordance with American Public Health Association Method 7500 Rn-B, with modifications to include a well shaft profile analysis that determined the minimum purge time sufficient to remove the equivalent of one column of water from each well. Statistically significant differences in GWRC were found in the Trssu (1482{+-}1711 pCi/L) and Mpg (7750{+-}5188 pCi/L) lithologies, however, no significant differences were found among GWRC at each well over time. Using multiple regression, 86% of the variability (R {sup 2}) in the GWRC was explained by the lithology, latitudinal class, and water table elevation of the wells. The GWRC in a majority of the wells studied exceed US Environmental Protection Agency designated maximum contaminant level and AMCL. Results support modifications to sampling procedures and indicate that, in previous studies, variations in GWRC concentrations over time may have been due in part to differences in sampling procedures and not in source water.

  12. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    SciTech Connect (OSTI)

    Chapman, Jenny; Lyles, Brad; Cooper, Clay; Hershey, Ron; Healey, John

    2015-06-01

    Frenchman Flat basin on the Nevada National Security Site (NNSS) contains Corrective Action Unit (CAU) 98, which is comprised of ten underground nuclear test locations. Environmental management of these test locations is part of the Underground Test Area (UGTA) Activity conducted by the U.S. Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended) with the U.S. Department of Defense (DOD) and the State of Nevada. A Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) has been approved for CAU 98 (DOE, 2011). The CADD/CAP reports on the Corrective Action Investigation that was conducted for the CAU, which included characterization and modeling. It also presents the recommended corrective actions to address the objective of protecting human health and the environment. The recommended corrective action alternative is Closure in Place with Modeling, Monitoring, and Institutional Controls. The role of monitoring is to verify that Contaminants of Concern (COCs) have not exceeded the Safe Drinking Water Act (SDWA) limits (Code of Federal Regulations, 2014) at the regulatory boundary, to ensure that institutional controls are adequate, and to monitor for changed conditions that could affect the closure conditions. The long-term closure monitoring program will be planned and implemented as part of the Closure Report stage after activities specified in the CADD/CAP are complete. Groundwater at the NNSS has been monitored for decades through a variety of programs. Current activities were recently consolidated in an NNSS Integrated Sampling Plan (DOE, 2014). Although monitoring directed by the plan is not intended to meet the FFACO long-term monitoring requirements for a CAU (which will be defined in the Closure Report), the objective to ensure public health protection is similar. It is expected that data collected in accordance with the plan will support the transition to long-term monitoring at each CAU. The sampling plan is designed to ensure that monitoring activities occur in compliance with the UGTA Quality Assurance Plan (DOE, 2012). The sampling plan should be referenced for Quality Assurance (QA) elements and procedures governing sampling activities. The NNSS Integrated Sampling Plan specifies the groundwater monitoring that will occur in CAU 98 until the long-term monitoring program is approved in the Closure Report. The plan specifies the wells that must be monitored and categorizes them by their sampling objective with the associated analytical requirements and frequency. Possible sample collection methods and required standard operating procedures are also presented. The intent of this handbook is to augment the NNSS Integrated Sampling Plan by providing well-specific details for the sampling professional implementing the Sampling Plan in CAU 98, Frenchman Flat. This handbook includes each CAU 98 well designated for sampling in the NNSS Integrated Sampling Plan. The following information is provided in the individual well sections: 1. The purpose of sampling. 2. A physical description of the well. 3. The chemical characteristics of the formation water. 4. Recommended protocols for purging and sampling. The well-specific information has been gathered from numerous historical and current sources cited in each section, but two particularly valuable resources merit special mention. These are the USGS NNSS website (http://nevada.usgs.gov/doe_nv/ntsarea5.cfm) and the UGTA Field Operations website (https://ugta.nv.doe.gov/sites/Field%20Operations/default.aspx). 2 Land surface elevation and measuring point for water level measurements in Frenchman Flat were a focus during CAU investigations (see Appendix B, Attachment 1 in Navarro-Intera, 2014). Both websites listed above provide information on the accepted datum for each well. A summary is found on the home page for the well on the USGS website. Additional information is available through a link in the Available Data section to an MP diagram with a photo annotated with the datum information. On the UGTA Field Operations well page, the same information is in the Wellhead Diagram link. Well RNM-2s does not have an annotated photo at this time. All of the CAU 98 monitoring wells are located within Area 5 of Frenchman Flat, with the exception of ER-11-2 in Area 11 (Figure 1). The wells are clustered in two areas: the northern area (Figure 2) and the central area (Figure 3). Each well is discussed below in geographic order from north to south as follows: ER-11-2, ER-5-3 shallow piezometer, ER-5-3-2, ER-5-5, RNM-1, RNM-2s, and UE-5n.

  13. Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005)...

  14. Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba

    Office of Environmental Management (EM)

    City, Arizona, Site | Department of Energy Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site PDF icon Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site More Documents & Publications Analysis of MSE Cores Tuba City, Arizona,

  15. Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details...

  16. LANL exceeds Early Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds Early Recovery Act recycling goals March 8, 2010 More than 136 tons of metal saved from demolished buildings LOS ALAMOS, New Mexico, March 9, 2009-Los Alamos National Laboratory announced today that Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year, largely due to the skill of heavy equipment operators and efforts to gut the buildings before they come down. Some 106 tons of metal came

  17. Lowell, Massachusetts, Restaurant Exceeds Energy Savings Expectations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exceeds Energy Savings Expectations The logo for Better Buildings Lowell. The Athenian Corner, a Greek restaurant owned by the Panagiotopoulos family, has been a familiar sight in...

  18. Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals

    Office of Environmental Management (EM)

    | Department of Energy Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals June 26, 2013 - 12:00pm Addthis The 200 West Pump and Treat System is Hanford’s largest facility for treating contaminated groundwater. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. A graphic

  19. Downhole fluid sampling at the SSSDP (Salton Sea Scientific Drilling Project) California State 2-14 well, Salton Sea, California

    SciTech Connect (OSTI)

    Goff, F.; Shevenell, L.; Grigsby, C.O.; Dennis, B.

    1987-07-01

    In situ fluid sampling activities were conducted at the Salton Sea Scientific Drilling Project (SSSDP) well during late December 1985 and late March 1986 to obtain unflashed samples of Salton Sea brine. In late December, three sampling runs were made to depths of approximately 1800 m and temperatures of 300/sup 0/C. In late March, 10 sampling runs were made to depths of approximately 3150 m and temperatures of 350/sup 0/C. In brief, the Los Alamos tool obtained samples from four of eight runs; the Lawrence Berkeley tool obtained samples from one of one run; the Leutert Instruments, Inc., tool obtained samples from zero of three runs; and the USGS quartz crystal experiment was lost in the well. The most complete sample was obtained from run No. 11, using the Los Alamos sampler and Sandia battery pack/controller on a wireline. About 1635 ml of brine, two noble gas samples, and two bulk gas samples were collected from this run. Samples of brine and gas from productive runs have been distributed to about 15 researchers for various types of analyses. Chemical analyses by the Los Alamos and US Geological Survey analytical teams are presented in this report, although they are not corrected for flashing and precipitation.

  20. LANL exceeds Early Recovery Act recycling goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  1. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  2. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped more than 3,000 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico.

  3. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  4. Lowell, Massachusetts, Restaurant Exceeds Energy Savings Expectations |

    Energy Savers [EERE]

    Department of Energy Restaurant Exceeds Energy Savings Expectations Lowell, Massachusetts, Restaurant Exceeds Energy Savings Expectations The logo for Better Buildings Lowell. The Athenian Corner, a Greek restaurant owned by the Panagiotopoulos family, has been a familiar sight in the historic district of downtown Lowell, Massachusetts, since 1974. Energy efficiency upgrades are helping the Panagiotopoulos family reduce operating costs and make their restaurant more successful. The Athenian

  5. Savannah River Tritium Enterprise exceeds productivity savings...

    National Nuclear Security Administration (NNSA)

    million, which represents more than 116 percent of the goal. Performance against other Continuous Improvement goals was impressive as well, with 20 percent of employees engaged...

  6. A brightness exceeding simulated Langmuir limit

    SciTech Connect (OSTI)

    Nakasuji, Mamoru

    2013-08-15

    When an excitation of the first lens determines a beam is parallel beam, a brightness that is 100 times higher than Langmuir limit is measured experimentally, where Langmuir limits are estimated using a simulated axial cathode current density which is simulated based on a measured emission current. The measured brightness is comparable to Langmuir limit, when the lens excitation is such that an image position is slightly shorter than a lens position. Previously measured values of brightness for cathode apical radii of curvature 20, 60, 120, 240, and 480 ?m were 8.7, 5.3, 3.3, 2.4, and 3.9 times higher than their corresponding Langmuir limits, respectively, in this experiment, the lens excitation was such that the lens and the image positions were 180 mm and 400 mm, respectively. From these measured brightness for three different lens excitation conditions, it is concluded that the brightness depends on the first lens excitation. For the electron gun operated in a space charge limited condition, some of the electrons emitted from the cathode are returned to the cathode without having crossed a virtual cathode. Therefore, method that assumes a Langmuir limit defining method using a Maxwellian distribution of electron velocities may need to be revised. For the condition in which the values of the exceeding the Langmuir limit are measured, the simulated trajectories of electrons that are emitted from the cathode do not cross the optical axis at the crossover, thus the law of sines may not be valid for high brightness electron beam systems.

  7. runtime error message: "apsched: request exceeds max nodes, alloc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    apsched: request exceeds max nodes, alloc" runtime error message: "apsched: request exceeds max nodes, alloc" September 12, 2014 Symptom: User jobs with single or multiple apruns...

  8. Kansas City Weatherization Efforts Exceed Goals | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ... The program is available to those who earn less than 200 percent of the federal poverty level. Kansas City is well on its way to weatherize over 2,000 homes by March 2012. No ...

  9. Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar...

  10. Final work plan : targeted groundwater sampling and monitoring well installation for potential site reclassification at Barnes, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.

    2006-07-11

    This ''Work Plan'' outlines the scope of work for a targeted groundwater sampling investigation and monitoring well installation at Barnes, Kansas. This activity is being conducted at the request of the Kansas Department of Health and Environment (KDHE), in accordance with the intergovernmental agreement between the KDHE and the Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA). Data resulting from the proposed work will be used to determine the hydraulic gradient near the former CCC/USDA facility, delineate the downgradient carbon tetrachloride plume, and determine additional monitoring requirements at Barnes. The overall goal is to establish criteria for monitoring leading to potential site reclassification. The proposed work will be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The Farm Service Agency of the USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a ''Master Work Plan'' (Argonne 2002) to provide general guidance for all investigations at former CCC/USDA facilities in Kansas. The ''Master Work Plan'', approved by the KDHE, contains the materials common to investigations at all locations in Kansas. This document must be consulted for the complete details of plans for this work associated with the former CCC/USDA facility at Barnes.

  11. The Impact of PV Module Reliability on Plant Lifetimes Exceeding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years Presented at the PV Module...

  12. Y-12 Successfully Meets and Exceeds Defense Programs Goals During...

    National Nuclear Security Administration (NNSA)

    Blog Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Successfully Meets and Exceeds Defense Programs ... Y-12 Successfully Meets and...

  13. Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar power Finished groundwater well head with solar power How does LANL determine where to put a monitoring well? Project teams routinely review groundwater monitoring data to verify adequate placement of wells and to plan the siting of additional wells as needed. RELATED IMAGES

  14. Hanford Groundwater Contamination Areas Shrink as EM Exceeds...

    Office of Environmental Management (EM)

    Areas Shrink as EM Exceeds Cleanup Goals June 26, 2013 - 12:00pm Addthis The 200 West Pump and Treat System is Hanfords largest facility for treating contaminated...

  15. Petrographic report on clay-rich samples from Permian Unit 4 salt, G. Friemel No. 1 well, Palo Duro Basin, Deaf Smith County, Texas: unanalyzed data

    SciTech Connect (OSTI)

    Fukui, L M

    1983-09-01

    This report presents the results of mineralogic and petrographic analyses performed on five samples of clay-rich rock from salt-bearing Permian strata sampled by drill core from G. Friemel No. 1 Well, Deaf Smith County, Texas. Five samples of clay-rich rock from depths of about 2457, 2458, 2521, 2548, and 2568 feet were analyzed to determine the amounts of soluble phase (halite) and the amounts and mineralogy of the insoluble phases. The amounts of halite found were 59, 79, 47, 40, and 4 weight percent, respectively, for the samples. The insoluble minerals are predominately clay (20 to 60 volume percent) and anhydrite (up to 17 volume percent), with minor (about 1.0%) and trace amounts of quartz, dolomite, muscovite, and gypsum. The clays include illite, chlorite, and interstratified chlorite-smectite. The results presented in this petrographic report are descriptive, uninterpreted data. 2 references, 7 tables.

  16. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    SciTech Connect (OSTI)

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  17. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    SciTech Connect (OSTI)

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  18. Savannah River Tritium Enterprise exceeds productivity savings goals for

    National Nuclear Security Administration (NNSA)

    FY13 | National Nuclear Security Administration Tritium Enterprise exceeds productivity savings goals for FY13 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  19. EM Exceeds Sustainability Goal by Reducing Carbon Footprint

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM has surpassed another DOE sustainability goal, this time reducing its carbon footprint by 44 percent, well ahead of the Department’s 15 percent target for fiscal year 2012.

  20. Workers at Paducah Site Exceed 1.5 Million Hours Without Lost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Paducah Site Exceed 1.5 Million Hours Without Lost-Time Injury, Illness Workers at Paducah Site Exceed 1.5 Million Hours Without Lost-Time Injury, Illness October 30, 2014 -...

  1. Policy Flash 2013-41 Contracts Periods of Performance Exceeding 5 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 Contracts Periods of Performance Exceeding 5 Years Policy Flash 2013-41 Contracts Periods of Performance Exceeding 5 Years Attached is Policy Flash 2013-41 Contracts Periods of Performance Exceeding 5 Years Questions concerning this policy flash should be directed to Jason Taylor of the Contract and Financial Assistance Policy Division, Office of Policy, Office of Acquisition and Project Management at (202) 287-1560 or at jason.taylor@hq.doe.gov. PDF icon Policy

  2. Microsoft Word - DOE Exceeds TRU Waste Cleanup Goal at LANL.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Exceeds 2012 TRU Waste Cleanup Goal at Los Alamos National Laboratory CARLSBAD, N.M., October 3, 2012 -The Waste Isolation Pilot Plant (WIPP) Central Characterization Project (CCP) and Los Alamos National Laboratory (LANL) exceeded a fiscal year 2012 goal of characterizing and shipping 800 cubic meters of transuranic (TRU) waste, fulfilling a commitment to the state of New Mexico. The 800 cubic meters goal was exceeded by more than 100 cubic meters, with the vast majority of the TRU waste

  3. Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent

    Energy Savers [EERE]

    Remediated | Department of Energy Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688

  4. Bad Estimates as a Function of Exceeding the MCNP Random Number Stride

    SciTech Connect (OSTI)

    Booth, Thomas E.

    2014-05-05

    Examples of bad MCNP estimates resulting from exceeding the MCNP random number stride are given for a simple infinite medium problem.

  5. Recovery Act Helps Y-12 Exceed Cleanup Goal at Manhattan Project...

    National Nuclear Security Administration (NNSA)

    Helps Y-12 Exceed Cleanup Goal at Manhattan Project-Era Building | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  6. runtime error message: "apsched: request exceeds max nodes, alloc"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    apsched: request exceeds max nodes, alloc" runtime error message: "apsched: request exceeds max nodes, alloc" September 12, 2014 Symptom: User jobs with single or multiple apruns in a batch script may get this runtime error. "apsched: request exceeds max nodes, alloc". This problem is intermittent, started in April, then mid July, and again since late August. Status: This problem is identified as a problem when Torque/Moab batch scheduler becomes out of sync with the

  7. Fuel Cells Market Exceeds $1.3 Billion in Worldwide Sales

    Broader source: Energy.gov [DOE]

    The market for fuel cells is growing, exceeding $1.3 billion in worldwide sales during 2013, according to the recently released "Business Case for Fuel Cells" report from the Fuel Cell Technologies Office.

  8. Workers at Paducah Site Exceed 1.5 Million Hours Without Lost-Time Injury, Illness

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Workers with Paducah site infrastructure contractor Swift & Staley, Inc. recently exceeded 1.5 million hours without lost time away from work due to injury or illness, representing nine years of safe performance.

  9. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  10. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  11. The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps1_saic_mcclung.pdf More Documents & Publications Investigation of Direct Injection Vehicle Particulate Matter Emissions Model-Based Transient Calibration Optimization for Next Generation Diesel Engines USABC LEESS

  12. Comprehensive Energy Program at Patrick Air Force Base Set to Exceed Energy

    Office of Environmental Management (EM)

    Goals | Department of Energy Comprehensive Energy Program at Patrick Air Force Base Set to Exceed Energy Goals Comprehensive Energy Program at Patrick Air Force Base Set to Exceed Energy Goals Federal Energy Management Program case study focuses on Patrick Air Force Base's use of a utility energy services contract to achieve its energy goals. PDF icon uesc_casestudy_pafb.pdf More Documents & Publications FPL Energy Services ESCO Qualification Sheet UESC Project Overview: NASA Ames

  13. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2002-01-01

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  14. Well pump

    DOE Patents [OSTI]

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  15. Hanford Exceeds Annual Goal for Cleaning up Groundwater near Columbia River

    Energy Savers [EERE]

    | Department of Energy Exceeds Annual Goal for Cleaning up Groundwater near Columbia River Hanford Exceeds Annual Goal for Cleaning up Groundwater near Columbia River August 28, 2014 - 12:00pm Addthis An aerial photo of Hanford’s 100-D Area along the Columbia River, which is served by one of five pump-and-treat systems along the Columbia River that are helping shrink areas of contaminated groundwater. An aerial photo of Hanford's 100-D Area along the Columbia River, which is served by

  16. U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel Wood. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs In February 1995, The Brady Bunch Movie and Billy Madison were in movie theaters, "Creep" by TLC was at the top of

  17. Y-12 Successfully Meets and Exceeds Defense Programs Goals During FY 2010 |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Successfully Meets and Exceeds Defense Programs Goals During FY 2010 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  18. Recovery Act Helps Y-12 Exceed Cleanup Goal at Manhattan Project-Era

    National Nuclear Security Administration (NNSA)

    Building | National Nuclear Security Administration Helps Y-12 Exceed Cleanup Goal at Manhattan Project-Era Building | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  19. Probability of Future Observations Exceeding One-Sided, Normal, Upper Tolerance Limits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Edwards, Timothy S.

    2014-10-29

    Normal tolerance limits are frequently used in dynamic environments specifications of aerospace systems as a method to account for aleatory variability in the environments. Upper tolerance limits, when used in this way, are computed from records of the environment and used to enforce conservatism in the specification by describing upper extreme values the environment may take in the future. Components and systems are designed to withstand these extreme loads to ensure they do not fail under normal use conditions. The degree of conservatism in the upper tolerance limits is controlled by specifying the coverage and confidence level (usually written inmore » “coverage/confidence” form). Moreover, in high-consequence systems it is common to specify tolerance limits at 95% or 99% coverage and confidence at the 50% or 90% level. Despite the ubiquity of upper tolerance limits in the aerospace community, analysts and decision-makers frequently misinterpret their meaning. The misinterpretation extends into the standards that govern much of the acceptance and qualification of commercial and government aerospace systems. As a result, the risk of a future observation of the environment exceeding the upper tolerance limit is sometimes significantly underestimated by decision makers. This note explains the meaning of upper tolerance limits and a related measure, the upper prediction limit. So, the objective of this work is to clarify the probability of exceeding these limits in flight so that decision-makers can better understand the risk associated with exceeding design and test levels during flight and balance the cost of design and development with that of mission failure.« less

  20. Development of high productivity medium current ion implanter 'EXCEED 3000AH Evo2'

    SciTech Connect (OSTI)

    Ikejiri, T.; Hamamoto, N.; Hisada, S.; Iwasawa, K.; Kawakami, K.; Kokuryu, K.; Miyamoto, N.; Nogami, T.; Sakamoto, T.; Sasada, Y.; Tanaka, K.; Yamamoto, Y.; Yamashita, T. [Nissin Ion Equipment Co., LTD., 575, Kuze-tonoshiro-cho, Minami-ku, Kyoto, 601-8205 (Japan)

    2011-01-07

    High productivity medium current ion implanter 'EXCEED 3000AH Evo2' is developed. In semiconductor manufacturing field, improvement of the productivity is continuously required. Especially mass production lines recently tend to use low energy beam and 2 pass implant for higher throughput. The 'Evo2' has been developed in an effort to fulfill these requirements. The 'Evo2' increases low energy beam current by 150 to 250% by applying electrostatic einzel lens called 'V-lens' installed at the exit of the Collimator magnet. This lens is also able to control the beam incident angle by adjusting the upper and lower electrode's voltages independently. Besides, mechanical scanning speed is enhanced to minimize process time of 2 pass implant, while also frequency of the fast beam scanning is enhanced to keep dose uniformity. In addition, a vacuum pumping capability at the target chamber is enhanced to reduce a vacuum waiting time during processing photo-resist wafers. This improvement achieved to reduce process time by 40% for a specific recipe. Furthermore, a modified Indirectly Heated Cathode with electron active Reflection 2 (IHC-R2) ion source which has a long life time filament has been installed. These new elements and/or functions have realized typically 25% improvement of productivity compared to standard EXCEED, and also improve a precise implantation capability.

  1. Biological sample collector

    DOE Patents [OSTI]

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  2. Monitoring Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013 Topographic map showing placement of monitoring wells Topographic map showing placement of monitoring wells

  3. Monitoring Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013...

  4. Well Placement Decision Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Decision Process Well Placement Decision Process Determining where to place a well is a multi-step process. August 1, 2013 Investigation process for determining where to place a sentinel well Investigation process for determining where

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    October 2013 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site December 2013 LMS/BLU/S00813 This page intentionally left blank U.S. Department of Energy DVP-August and October 2013, Bluewater, New Mexico December 2013 RIN 13085537 and 13095651 Page i Contents Sampling Event Summary ...............................................................................................................1 Private Wells Sampled August 2013 and October 2013, Bluewater, NM, Disposal Site

  6. PPPL News sample:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News sample:

  7. BUFFERED WELL FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    Input well points layer must be a feature class (FC) with the following attributes: Fieldname Buffer distance (can be unique for each well to represent reservoirs with different ...

  8. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protections: Sampling Protections: Sampling Protection #3: Sampling for known and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental Sampling Board, a key piece of the Strategy, ensures that LANL collects relevant and appropriate data to answer questions about the protection of human and environmental health, and to satisfy regulatory requirements. LANL must demonstrate the data are technically justified

  9. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and unexpected contaminants August 1, 2013 Monitoring stormwater in Los Alamos Canyon Monitoring stormwater in Los Alamos Canyon The Environmental Sampling Board, a key piece...

  10. BUFFERED WELL FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output:

  11. Well Log ETL tool

    Energy Science and Technology Software Center (OSTI)

    2013-08-01

    This is an executable python script which offers two different conversions for well log data: 1) Conversion from a BoreholeLASLogData.xls model to a LAS version 2.0 formatted XML file. 2) Conversion from a LAS 2.0 formatted XML file to an entry in the WellLog Content Model. Example templates for BoreholeLASLogData.xls and WellLogsTemplate.xls can be found in the package after download.

  12. Geothermal well stimulation program

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    The stimulation of geothermal production wells presents some new and challenging problems. Formation temperatures in the 275 to 550/sup 0/F range can be expected and the behavior of fracturing fluids and fracture proppants at these temperatures in a hostile brine environment must be carefully evaluated in laboratory tests. To avoid possible damage to the producing horizon of the formation, the high-temperature chemical compatibility between the in situ materials and the fracturing fluids, fluid loss additives, and proppants must be verified. In geothermal wells, the necessary stimulation techniques are required to be capable of initiating and maintaining the flow of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional oil field stimulation. The objective of well stimulation is to initiate and maintain additional fluid production from existing wells at a lower cost than either drilling new replacement wells or multiply redrilling existing wells. The economics of well stimulation will be vastly enhanced when proven stimulation techniques can be implemented as part of the well completion (while the drilling rig is still over the hole) on all new wells exhibiting some form of flow impairment. Results from 7 stimulation tests are presented and planned tests are described.

  13. GEOTHERMAL WELL STIMULATION

    Office of Scientific and Technical Information (OSTI)

    constitute or imply its endorsement, recommendation, or favoring by the United States ... a relatively planar hydraulic fracture job was performed in Well RRGP-5 and a "Kiel" ...

  14. Sampling box

    DOE Patents [OSTI]

    Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803); Johnson, Craig (100 Midland Rd., Oak Ridge, TN 37831-0895)

    2000-01-01

    An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

  15. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  16. Isobaric groundwater well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

  17. Geothermal Well Site Restoration and Plug and Abandonment of Wells

    SciTech Connect (OSTI)

    Rinehart, Ben N.

    1994-08-01

    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

  18. Sampling apparatus

    DOE Patents [OSTI]

    Gordon, N.R.; King, L.L.; Jackson, P.O.; Zulich, A.W.

    1989-07-18

    A sampling apparatus is provided for sampling substances from solid surfaces. The apparatus includes first and second elongated tubular bodies which telescopically and sealingly join relative to one another. An absorbent pad is mounted to the end of a rod which is slidably received through a passageway in the end of one of the joined bodies. The rod is preferably slidably and rotatably received through the passageway, yet provides a selective fluid tight seal relative thereto. A recess is formed in the rod. When the recess and passageway are positioned to be coincident, fluid is permitted to flow through the passageway and around the rod. The pad is preferably laterally orientable relative to the rod and foldably retractable to within one of the bodies. A solvent is provided for wetting of the pad and solubilizing or suspending the material being sampled from a particular surface. 15 figs.

  19. Sampling apparatus

    DOE Patents [OSTI]

    Gordon, Norman R. (Kennewick, WA); King, Lloyd L. (Benton, WA); Jackson, Peter O. (Richland, WA); Zulich, Alan W. (Bel Air, MD)

    1989-01-01

    A sampling apparatus is provided for sampling substances from solid surfaces. The apparatus includes first and second elongated tubular bodies which telescopically and sealingly join relative to one another. An absorbent pad is mounted to the end of a rod which is slidably received through a passageway in the end of one of the joined bodies. The rod is preferably slidably and rotatably received through the passageway, yet provides a selective fluid tight seal relative thereto. A recess is formed in the rod. When the recess and passageway are positioned to be coincident, fluid is permitted to flow through the passageway and around the rod. The pad is preferably laterally orientable relative to the rod and foldably retractable to within one of the bodies. A solvent is provided for wetting of the pad and solubilizing or suspending the material being sampled from a particular surface.

  20. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  1. Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau...

    Open Energy Info (EERE)

    Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic...

  2. Exploratory Well At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management,...

  3. Completion practices in deep sour Tuscaloosa wells

    SciTech Connect (OSTI)

    Huntoon, G.G.

    1984-01-01

    Successful development of the Tuscaloosa trend in Louisiana has required unique completion practices to produce the trend's deep sour formations. Amoco's operations in the Tuscaloosa formation are between 16,000 and 21,000 ft (4877 and 6400 m), and a range of pressure environments, high temperatures, and corrosive elements is encountered. Application of proved completion practices and equipment has resulted in several techniques that enhance the safety, longevity, and production capacity of these wells. The design of deep Tuscaloosa completions is assisted by a series of correlations developed to project bottomhole and surface shut-in tubing pressures, temperature gradients, and flow capacities for deep sour wells. This paper discusses material selection, completion practices, completion fluids, wellhead equipment, packer designs, corrosion-inhibition systems, and safety and monitoring equipment used in the Tuscaloosa trend. The design of a wellhead surface installation used to detect equipment failure, to pump kill fluids, and to circulate corrosion inhibitors is reviewed. A case study illustrates the methods used in completing a Tuscaloosa well with surface pressures exceeding 16,000 psi (110.3 MPa). Deep high-pressure sour-gas wells can be completed safely if all the elements of the environment that will affect the mechanical integrity of the wellbore are considered in the completion designs. The development of higher-strength material capable of withstanding SSC is needed if wells are completed in formations deeper than 22,000 ft (6700 m). Further research is necessary on the use of alloy steels and nonferrous metals for sour service. Effective high-temperature corrosion inhibitors for heavy zinc bromide completion fluids must be developed before these brines can be used in the Tuscaloosa. The testing of new inhibitors for use in highpressure sour-gas completions should be continued.

  4. Well-pump alignment system

    DOE Patents [OSTI]

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  5. Methods for obtaining well-to-well flow communication

    SciTech Connect (OSTI)

    Harmon, R.A.; Wahl, H.A.

    1988-07-05

    A process is described for reducing uneven areal sweep of injection fluid in a well pattern having a central injection well surrounded by production wells, all of the wells being communicated by a fracture, comprising: (a) injecting fracturing fluid containing a proppant material into the central injection well and into the fracture to prop the fracture adjacent the injection well; (b) simultaneous with step (a), injecting fluid into one or more of the production wells toward which it is desired to reduce the flow of injection fluid, thereby causing a greater portion of the proppant material to be placed in the fracture adjacent the central injection well in directions away from the one or more of the production wells toward which it is desired to reduce the flow of injection fluid; and (c) thereby subsequently reducing uneven areal sweep of injection fluid injected into the central injection well at rates and pressures below those required to part the fracture.

  6. Ultra Thin Quantum Well Materials

    SciTech Connect (OSTI)

    Dr Saeid Ghamaty

    2012-08-16

    This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

  7. Pulse Wave Well Development Demonstration

    SciTech Connect (OSTI)

    Burdick, S.

    2001-02-23

    Conventional methods of well development at the Savannah River Site generate significant volumes of investigative derived waste (IDW) which must be treated and disposed of at a regulated Treatment, Storage, or Disposal (TSD) facility. Pulse Wave technology is a commercial method of well development utilizing bursts of high pressure gas to create strong pressure waves through the well screen zone, extending out into the formation surrounding the well. The patented process is intended to reduce well development time and the amount of IDW generated as well as to micro-fracture the formation to improve well capacity.

  8. Well-pump alignment system

    DOE Patents [OSTI]

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  9. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect (OSTI)

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  10. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu; Doughty, Christine A.

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  11. Wellness Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and assistance to DOE employees through a variety of programs and resources geared toward enhancing their mental and physical well-being. Wellness programs include: Accommodations, the Child Development Centers, the Employee Assistance Program (EAP), the Forrestal (FOHO) and Germantown (GOHO) Fitness Centers, the Occupational

  12. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005...

  13. Well having inhibited microbial growth

    DOE Patents [OSTI]

    Lee, Brady D.; Dooley, Kirk J.

    2006-08-15

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  14. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  15. Connecticut Wells | Open Energy Information

    Open Energy Info (EERE)

    Zip: 6751 Sector: Geothermal energy Product: A Connecticut-based geothermal heat pump installer and well driller. Coordinates: 40.04446, -80.690839 Show Map Loading...

  16. Wellness Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wellness services are available for Ames Laboratory employees: Weight monitoring Blood pressure monitoring Information on medications, diseases, treatments and other health...

  17. Well Deepening | Open Energy Information

    Open Energy Info (EERE)

    can be deepened in order to reach a location with higher flow and temperature. Use in Geothermal Exploration Sometimes wells that were initially not planned for utilization...

  18. Well drilling apparatus and method

    DOE Patents [OSTI]

    Alvis, Robert L.; Newsom, Melvin M.

    1977-01-01

    Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

  19. Well Monitoring System for EGS

    Broader source: Energy.gov [DOE]

    EGS well monitoring tools offer a unique set of solutions which will lower costs and increase confidence in future geothermal projects.

  20. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet lab is located in Rm 109 of the Far Experimental Hall near the MEC, CXI, and XCS hutches. It conveniently serves all LCLS hutches and is available for final stage sample preparation. Due to space limitations, certain types of activities may be restricted and all access must be scheduled in advance. User lab bench

  1. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  2. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  3. Water and Sediment Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L) (Bq/L) Sample of Opportunity * 9/13/2014 Below MDC Below MDC Sample of Opportunity * 9/13/2014 Below MDC Below MDC Sample of Opportunity * 9/13/2014 Below MDC Below MDC Sample of Opportunity (Dupe) * 9/13/2014 Below MDC Below MDC Sample of Opportunity * 9/13/2014 Below MDC Below MDC Sample of Opportunity * 9/13/2014 Below MDC Below MDC Blank 9/13/2014 Below MDC Below MDC Sample of Opportunity * 8/26/2014 Below MDC Below MDC Sample of Opportunity (Dupe) * 8/26/2014 Below MDC Below MDC Sample

  4. Well completion and servicing fluid

    SciTech Connect (OSTI)

    Grimsley, R.L.

    1990-09-25

    This patent describes a well completion servicing fluid for controlling formation pressure during completion or servicing of a well. It comprises: an aqueous solution of calcium chloride, a solid weighing agent suspended in the solution and being selected from the group consisting of zinc, zinc oxide, and mixtures thereof; and a viscosifier dissolved in the solution in an amount effective to suspend the weighing agent. The fluid has a density of greater than 15 pounds per gallon and being substantially free of bromide ions and being substantially free of solid material which is not soluble in hydrochloric acid.

  5. Visual Sample Plan Flyer

    Broader source: Energy.gov [DOE]

    This flyer better explains that VSP is a free, easy-to-use software tool that supports development of optimal sampling plans based on statistical sampling theory.

  6. Process for cementing geothermal wells

    DOE Patents [OSTI]

    Eilers, Louis H. (Inola, OK)

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  7. Generic effluent monitoring system certification for salt well portable exhauster

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Maughan, A.D.

    1997-09-01

    Tests were conducted to verify that the Generic Effluent Monitoring System (GEMS), as it is applied to the Salt Well Portable Exhauster, meets all applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the air sampling probe location and the transport of the sample to the collection devices. The criteria covering air sampling probe location ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in the report. The tests demonstrated that the GEMS/Salt Well Exhauster system meets all applicable performance criteria. Pacific Northwest National Laboratory conducted the testing using a mockup of the Salt Well Portable Exhauster stack at the Numatec Hanford Company`s 305 Building. The stack/sampling system configuration tested was designed to provide airborne effluent control for the Salt Well pumping operation at some U.S. Department of Energy (DOE) radioactive waste storage tanks at the Hanford Site, Washington. The portable design of the exhauster allows it to be used in other applications and over a range of exhaust air flowrates (approximately 200 - 1100 cubic feet per minute). The unit includes a stack section containing the sampling probe and another stack section containing the airflow, temperature and humidity sensors. The GEMS design features a probe with a single shrouded sampling nozzle, a sample delivery line, and sample collection system. The collection system includes a filter holder to collect the sample of record and an in-line detector head and filter for monitoring beta radiation-emitting particles.

  8. Environmental surveillance master sampling schedule

    SciTech Connect (OSTI)

    Bisping, L.E.

    1995-02-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). This document contains the planned 1994 schedules for routine collection of samples for the Surface Environmental Surveillance Project (SESP), Drinking Water Project, and Ground-Water Surveillance Project. Samples are routinely collected for the SESP and analyzed to determine the quality of air, surface water, soil, sediment, wildlife, vegetation, foodstuffs, and farm products at Hanford Site and surrounding communities. The responsibility for monitoring onsite drinking water falls outside the scope of the SESP. PNL conducts the drinking water monitoring project concurrent with the SESP to promote efficiency and consistency, utilize expertise developed over the years, and reduce costs associated with management, procedure development, data management, quality control, and reporting. The ground-water sampling schedule identifies ground-water sampling .events used by PNL for environmental surveillance of the Hanford Site. Sampling is indicated as annual, semi-annual, quarterly, or monthly in the sampling schedule. Some samples are collected and analyzed as part of ground-water monitoring and characterization programs at Hanford (e.g. Resources Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), or Operational). The number of samples planned by other programs are identified in the sampling schedule by a number in the analysis column and a project designation in the Cosample column. Well sampling events may be merged to avoid redundancy in cases where sampling is planned by both-environmental surveillance and another program.

  9. Apparatus for sectioning demountable semiconductor samples

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Scottsdale, AZ); Wolf, Abraham (Sun City West, AZ)

    1984-01-01

    Apparatus for use during polishing and sectioning operations of a ribbon sample is described. The sample holder includes a cylinder having an axially extending sample cavity terminated in a first funnel-shaped opening and a second slot-like opening. A spring-loaded pressure plunger is located adjacent the second opening of the sample cavity for frictional engagement of the sample prior to introduction of a molding medium in the sample cavity. A heat softenable molding medium is inserted in the funnel-shaped opening, to surround the sample. After polishing, the heater is energized to allow draining of the molding medium from the sample cavity. During manual polishing, the second end of the sample holder is inserted in a support ring which provides mechanical support as well as alignment of the sample holder during polishing. A gauge block for measuring the protrusion of a sample beyond the second wall of the holder is also disclosed.

  10. Natural Gas Wells Near Project Rulison

    Office of Legacy Management (LM)

    for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what

  11. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, Anthony R. (Espanola, NM); Johnston, Roger G. (Las Alamos, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2000-01-01

    A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.

  12. Sample Preparation Laboratory Training - Course 204 | Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mandatory for: SLAC employees and non-employees who need unescorted access to SSRL or LCLS Sample Preparation Laboratories Note: This course may be taken in lieu of Course 199,...

  13. Method for polymer synthesis in a reaction well

    DOE Patents [OSTI]

    Brennan, Thomas M.

    1998-01-01

    A method of synthesis for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: A) depositing a liquid reagent in a reaction well (26) in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well (26) includes at least one orifice (74) extending into the well (26), and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well (26) to enable polymer chain growth on the solid support. The method further includes the step of B) expelling the reagent solution from the well (26), while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit (80) of the orifice (74) exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well (26) through the orifice exit (80).

  14. Method for polymer synthesis in a reaction well

    DOE Patents [OSTI]

    Brennan, T.M.

    1998-09-29

    A method of synthesis is described for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: (A) depositing a liquid reagent in a reaction well in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well includes at least one orifice extending into the well, and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well to enable polymer chain growth on the solid support. The method further includes the step of (B) expelling the reagent solution from the well, while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit of the orifice exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well through the orifice exit. 9 figs.

  15. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  16. Chemistry of spring and well waters on Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    determine the chemistry of dilute meteoric water, mixtures with sea water,and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea...

  17. Rain sampling device

    DOE Patents [OSTI]

    Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

    1991-05-14

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

  18. Rain sampling device

    DOE Patents [OSTI]

    Nelson, Danny A. (Richland, WA); Tomich, Stanley D. (Richland, WA); Glover, Donald W. (Prosser, WA); Allen, Errol V. (Benton City, WA); Hales, Jeremy M. (Kennewick, WA); Dana, Marshall T. (Richland, WA)

    1991-01-01

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

  19. Apparatus for sectioning demountable semiconductor samples

    DOE Patents [OSTI]

    Sopori, B.L.; Wolf, A.

    1984-01-01

    Apparatus for use during polishing and sectioning operations of a ribbon sample is described. The sample holder includes a cylinder having an axially extending sample cavity terminated in a first funnel-shaped opening and a second slot-like opening. A spring-loaded pressure plunger is located adjacent the second opening of the sample cavity for frictional engagement of the sample cavity. A heat softenable molding medium is inserted in the funnel-shaped opening, to surround the sample. After polishing, the heater is energized to allow draining of the molding medium from the sample cavity. During manual polishing, the second end of the sample holder is inserted in a support ring which provides mechanical support as well as alignment of the sample holder during polishing. A gauge block for measuring the protrusion of a sample beyond the second wall of the holder is also disclosed.

  20. Testing of the Pleasant Bayou Well through October 1990

    SciTech Connect (OSTI)

    Randolph, P.L.; Hayden, C.G.; Mosca, V.L.; Anhaiser, J.L.

    1992-08-01

    Pleasant Bayou location was inactive from 1983 until the cleanout of the production and disposal wells in 1986. The surface facilities were rehabilitated and after shakedown of the system, additional repair of wellhead valves, and injection of an inhibitor pill, continuous long-term production was started in 1988. Over two years of production subsequent to that are reviewed here, including: production data, brine sampling and analysis, hydrocarbon sampling and analysis, solids sampling and analysis, scale control and corrosion monitoring and control.

  1. Number of Producing Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2009 2010 2011 2012 2013 2014 View History U.S. 493,100 487,627 514,637 482,822 484,994 514,786 1989-2014 Alabama 6,913 7,026 7,063 6,327 6,165 6,118 1989-2014 Alaska 261 269 277 185 159 170 1989-2014 Arizona 6 5 5 5 5 5 1989-2014 Arkansas 6,314 7,397 8,388 8,538 9,843 10,150 1989-2014 California 1,643 1,580 1,308 1,423 1,335 1,118 1989-2014

  2. SITE CHARACTERIZATION AND MONITORING DATA FROM THE AREA 5 PILOT WELLS

    SciTech Connect (OSTI)

    BECHTEL NEVADA; U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2005-09-01

    Three exploratory boreholes were drilled and completed to the uppermost alluvial aquifer in Area 5 of the Nevada Test Site, Nye County, Nevada, in 1992. The boreholes and associated investigations were part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level, mixed, and high-specific-activity waste at this site. This series of boreholes was specifically designed to characterize the hydrogeology of the thick vadose zone and to help define the water quality and hydraulic properties of the uppermost aquifer. Wells UE5PW-1, UE5PW-2, and UE5PW-3 are located in a triangular array near the southeast, northeast, and northwest corners, respectively, of the approximately 2.6-square-kilometer Area 5 Radioactive Waste Management Site to give reasonable spatial coverage for sampling and characterization, and to help define the nearly horizontal water table. Two of the wells, UE5PW-1 and UE5PW-2, penetrated only unconsolidated alluvial materials. The third well, located closer to the margin of the basin, penetrated both alluvium and underlying ash-flow and bedded tuff units. The watertable was encountered at the elevation of approximately 734 meters. The results of laboratory testing of core and drill cuttings samples indicate that the mineralogical, material, and hydrologic properties of the alluvium are very similar within and between boreholes. Additional tests on the same core and drill cuttings samples indicate that hydrologic conditions within the alluvium are also similar between pilot wells. Both core and drill cuttings samples are dry (less than 10 percent water content by weight) throughout the entire unsaturated section of alluvium, and water content increases slightly with depth in each borehole. Water potential measurements on core samples show a large positive potential gradient (water tends to move upward, rather than downward) to a depth of approximately 30.5 meters in each borehole, and a nearly zero potential gradient throughout the remaining portion of the vadose zone. These hydrologic condition data and hydrologic property data indicate that little net downward liquid flow is occurring (if any) through the thick vadose zone. Conversely, gas flow by diffusion, and possibly by advection, may be an important transport mechanism. Environmental tracer measurements made on water extracted from geologic samples suggest that water vapor in the upper portion of the vadose zone is moving upward in response to evaporative demand of the present arid climate. Preliminary water quality data indicate that the key hazardous and radioactive constituents do not exceed appropriate standards. Monitoring instruments and equipment were installed in each pilot well for making in-situ measurements of key hydrologic and pneumatic parameters and to monitor change in these parameters over time.

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    February 2015 Groundwater and Surface Water Sampling at the Grand Junction, Colorado, Site April 2015 LMS/GJO/S00215 This page intentionally left blank U.S. Department of Energy DVP-February 2015, Grand Junction, Colorado, Site April 2015 RIN 15026795 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Site Sample Location Map

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater Sampling at the Grand Junction, Colorado, Disposal Site November 2014 LMS/GRJ/S00814 This page intentionally left blank U.S. Department of Energy DVP-August 2014, Grand Junction, Colorado November 2014 RIN 14076376 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Grand Junction, Colorado, Disposal Site November 2013 LMS/GRJ/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Grand Junction, Colorado November 2013 RIN 13075515 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Disposal Site Sample Location Map ....................................................3 Data Assessment

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site September 2014 LMS/GUP/S00414 This page intentionally left blank U.S. Department of Energy DVP-April and June 2014, Gunnison, Colorado September 2014 RIN 14046058 and 14066262 Page i Contents Sampling Event Summary ...............................................................................................................1 Gunnison, Colorado, Processing Site Planned Sampling Map

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Naturita, Colorado Processing Site October 2013 LMS/NAP/S00713 This page intentionally left blank U.S. Department of Energy DVP-July 2013, Naturita, Colorado October 2013 RIN 13075483 Page i Contents Sampling Event Summary ...............................................................................................................1 Naturita, Colorado, Sample Location Map ......................................................................................3

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Old and New Rifle, Colorado, Processing Sites August 2013 LMS/RFN/RFO/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Rifle, Colorado August 2013 RIN 13065380 Page i Contents Sampling Event Summary ...............................................................................................................1 Sample Location Map, New Rifle, Colorado, Processing Site ........................................................5 Sample Location Map, Old Rifle,

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites December 2014 LMS/SRW/SRE/S00914 This page intentionally left blank U.S. Department of Energy DVP-September 2014, Slick Rock, Colorado December 2014 RIN 14096456 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock, Colorado, Processing Sites, Sample Location Map

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites January 2016 LMS/SRE/SRW/S00915 This page intentionally left blank U.S. Department of Energy DVP-September 2015, Slick Rock, Colorado January 2016 RINs 15087319 and 15107424 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock, Colorado, Processing Sites, Sample Location Map

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater and Surface Water Sampling at the Slick Rock East and West, Colorado, Processing Sites November 2013 LMS/SRE/SRW/S0913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Slick Rock, Colorado November 2013 RIN 13095593 Page i Contents Sampling Event Summary ...............................................................................................................1 Slick Rock East and West, Colorado, Processing Sites, Sample Location Map

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Water Sampling at the Ambrosia Lake, New Mexico, Disposal Site February 2015 LMS/AMB/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Ambrosia Lake, New Mexico February 2015 RIN 14116607 Page i Contents Sampling Event Summary ...............................................................................................................1 Ambrosia Lake, NM, Disposal Site Planned Sampling Map...........................................................3 Data

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater Sampling at the Bluewater, New Mexico, Disposal Site February 2015 LMS/BLU/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Bluewater, New Mexico February 2015 RIN 14116606 Page i Contents Sampling Event Summary ...............................................................................................................1 Bluewater, New Mexico, Disposal Site, Sample Location Map......................................................5 Data

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Green River, Utah, Disposal Site August 2014 LMS/GRN/S00614 This page intentionally left blank U.S. Department of Energy DVP-June 2014, Green River, Utah August 2014 RIN 14066228 Page i Contents Sampling Event Summary ...............................................................................................................1 Green River, Utah, Disposal Site Sample Location Map ................................................................5 Data Assessment

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2014 LMS/MON/S01213 This page intentionally left blank U.S. Department of Energy DVP-December 2013, Monument Valley, Arizona March 2014 RIN 13125794 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Processing Site, Sample Location Map

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monument Valley, Arizona, Processing Site February 2015 LMS/MON/S01214 This page intentionally left blank U.S. Department of Energy DVP-December 2014, Monument Valley, Arizona February 2015 RIN 14126645 Page i Contents Sampling Event Summary ...............................................................................................................1 Monument Valley, Arizona, Disposal Site Sample Location Map ..................................................5

  17. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2014 LMS/MNT/S00414 This page intentionally left blank U.S. Department of Energy DVP-April 2014, Monticello, Utah July 2014 RIN 14046077 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map, April 2014, Monticello, Utah, Processing Site .........................................5 Data Assessment Summary

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Monticello, Utah, Processing Site July 2015 LMS/MNT/S00415 This page intentionally left blank U.S. Department of Energy DVP-April 2015, Monticello, Utah July 2015 RIN 15046927 Page i Contents Sampling Event Summary ...............................................................................................................1 Monticello, Utah, Processing Site Sample Location Map ...............................................................5 Data Assessment

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    3 Water Sampling at the Monticello, Utah, Processing Site January 2014 LMS/MNT/S01013 This page intentionally left blank U.S. Department of Energy DVP-October 2013, Monticello, Utah January 2014 RIN 13105661 and 13105711 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map, Monticello, Utah, Processing and Disposal Site, October 2013 ..............5 Data Assessment Summary

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site May 2014 LMS/RVT/S00314 This page intentionally left blank U.S. Department of Energy DVP-March 2014, Riverton, Wyoming May 2014 RIN 14035986 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, WY, Processing Site, Sample Location Map ...................................................................3 Data

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater, Surface Water, and Alternate Water Supply System Sampling at the Riverton, Wyoming, Processing Site December 2013 LMS/RVT/S00913 This page intentionally left blank U.S. Department of Energy DVP-September 2013, Riverton, Wyoming December 2013 RIN 13095603 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Sample Location Map

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and May 2014 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site June 2014 LMS/SHP/S00314 This page intentionally left blank U.S. Department of Energy DVP-March and May 2014, Shiprock, New Mexico June 2014 RIN 14036011, 14036013, and 14056142 Page i Contents Sampling Event Summary ...............................................................................................................1 Shiprock, New Mexico, Disposal Site, Sample Location Map

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    2015 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site June 2015 LMS/SHP/S00315 This page intentionally left blank U.S. Department of Energy DVP-March 2015, Shiprock, New Mexico June 2015 RIN 15036862 and 15036863 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map Shiprock, New Mexico, Disposal Site

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Shirley Basin South, Wyoming, Disposal Site September 2013 LMS/SBS/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Shirley Basin South, Wyoming September 2013 RIN 13065426 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site Sample Location Map ............................................3 Data Assessment

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Tuba City, Arizona Disposal Site June 2015 LMS/TUB/S00215 This page intentionally left blank U.S. Department of Energy DVP-February 2015, Tuba City, Arizona June 2015 RIN 15026775 Page i Contents Sampling Event Summary ...............................................................................................................1 Planned Sampling Map Tuba City, AZ, Disposal Site February 2015 ............................................5 Data

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMS/TUB/S00813 This page intentionally left blank U.S. Department of Energy DVP-August 2013, Tuba City, Arizona November 2013 RIN 13085553 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal Site, Sample Location Map ..............................................................7 Data

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Falls City, Texas, Disposal Site July 2015 LMS/FCT/S00415 This page intentionally left blank U.S. Department of Energy DVP-April 2015, Falls City, Texas July 2015 RIN 15036899 Page i Contents Sampling Event Summary ...............................................................................................................1 Falls City, Texas, Disposal Site Sample Location Map...................................................................3 Data Assessment Summary

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Hallam, Nebraska, Decommissioned Reactor Site September 2014 LMS/HAL/S00614 This page intentionally left blank U.S. Department of Energy DVP-June 2014, Hallam, Nebraska September 2014 RIN 14056211 Page i Contents Sampling Event Summary ...............................................................................................................1 Hallam, Nebraska, Sample Location Map .......................................................................................3 Data

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sampling at the Sherwood, Washington, Disposal Site October 2013 LMS/SHE/S00713 This page intentionally left blank U.S. Department of Energy DVP-July 2013, Sherwood, Washington October 2013 RIN 13075481 Page i Contents Sampling Event Summary ...............................................................................................................1 Sherwood, Washington, Disposal Site Sample Location Map ........................................................3 Data Assessment Summary

  10. Category:Production Wells | Open Energy Information

    Open Energy Info (EERE)

    Wells Jump to: navigation, search Geothermalpower.jpg Looking for the Production Wells page? For detailed information on Production Wells, click here. Category:Production Wells...

  11. Aerosol sampling system

    DOE Patents [OSTI]

    Masquelier, Donald A.

    2004-02-10

    A system for sampling air and collecting particulate of a predetermined particle size range. A low pass section has an opening of a preselected size for gathering the air but excluding particles larger than the sample particles. An impactor section is connected to the low pass section and separates the air flow into a bypass air flow that does not contain the sample particles and a product air flow that does contain the sample particles. A wetted-wall cyclone collector, connected to the impactor section, receives the product air flow and traps the sample particles in a liquid.

  12. Sample Proficiency Test exercise

    SciTech Connect (OSTI)

    Alcaraz, A; Gregg, H; Koester, C

    2006-02-05

    The current format of the OPCW proficiency tests has multiple sets of 2 samples sent to an analysis laboratory. In each sample set, one is identified as a sample, the other as a blank. This method of conducting proficiency tests differs from how an OPCW designated laboratory would receive authentic samples (a set of three containers, each not identified, consisting of the authentic sample, a control sample, and a blank sample). This exercise was designed to test the reporting if the proficiency tests were to be conducted. As such, this is not an official OPCW proficiency test, and the attached report is one method by which LLNL might report their analyses under a more realistic testing scheme. Therefore, the title on the report ''Report of the Umpteenth Official OPCW Proficiency Test'' is meaningless, and provides a bit of whimsy for the analyses and readers of the report.

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and September 2013 Groundwater and Surface Water Sampling at the Durango, Colorado, Disposal and Processing Sites March 2014 LMS/DUD/DUP/S00613 This page intentionally left blank U.S. Department of Energy DVP-June and September 2013, Durango, Colorado March 2014 RIN 13055370 and 13085577 Page i Contents Sampling Event Summary ...............................................................................................................1 Durango, Colorado, Disposal Site Sample Location Map-June

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    conducted in accordance with the Sampling and Analysis Plan for the U. S. Department of Energy Office of Legacy Management Sites (LMSPROS04351, continually updated). Monitoring...

  15. Adaptive Sampling Proxy Application

    Energy Science and Technology Software Center (OSTI)

    2012-10-22

    ASPA is an implementation of an adaptive sampling algorithm [1-3], which is used to reduce the computational expense of computer simulations that couple disparate physical scales. The purpose of ASPA is to encapsulate the algorithms required for adaptive sampling independently from any specific application, so that alternative algorithms and programming models for exascale computers can be investigated more easily.

  16. Creating Sample Plans

    Energy Science and Technology Software Center (OSTI)

    1999-03-24

    The program has been designed to increase the accuracy and reduce the preparation time for completing sampling plans. It consists of our files 1. Analyte/Combination (AnalCombo) A list of analytes and combinations of analytes that can be requested of the onsite and offsite labs. Whenever a specific combination of analytes or suite names appear on the same line as the code number, this indicates that one sample can be placed in one bottle to bemore » analyzed for these paremeters. A code number is assigned for each analyte and combination of analytes. 2. Sampling Plans Database (SPDb) A database that contains all of the analytes and combinations of analytes along with the basic information required for preparing a sample plan. That basic information includes the following fields; matrix, hold time, preservation, sample volume, container size, if the bottle caps are taped, acceptable choices. 3. Sampling plans create (SPcreate) a file that will lookup information from the Sampling Plans Database and the Job Log File (JLF98) A major database used by Sample Managemnet Services for recording more than 100 fields of information.« less

  17. Sampling system and method

    DOE Patents [OSTI]

    Decker, David L.; Lyles, Brad F.; Purcell, Richard G.; Hershey, Ronald Lee

    2013-04-16

    The present disclosure provides an apparatus and method for coupling conduit segments together. A first pump obtains a sample and transmits it through a first conduit to a reservoir accessible by a second pump. The second pump further conducts the sample from the reservoir through a second conduit.

  18. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Grand Junction, Colorado, Site April 2014 LMS/GJO/S00214 This page intentionally left blank U.S. Department of Energy DVP-February 2014, Grand Junction, Colorado April 2014 RIN 14025928 Page i Contents Sampling Event Summary ...............................................................................................................1 Grand Junction, Colorado, Site Sample Location Map ...................................................................3 Data Assessment Summary

  19. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Rifle, Colorado, New and Old Processing Sites January 2014 LMS/RFN/RFO/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Rifle, Colorado January 2014 RIN 13115731 Page i Contents Sampling Event Summary ...............................................................................................................1 New Rifle, Colorado, Processing Site, Sample Location Map ........................................................5 Old Rifle, Colorado, Processing

  20. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Old and New Rifle, Colorado, Processing Sites January 2015 LMS/RFN/RFO/S01114 This page intentionally left blank U.S. Department of Energy DVP-November 2014, Rifle, Colorado January 2015 RINs 14106568 and 14106569 Page i Contents Sampling Event Summary ...............................................................................................................1 New Rifle, Colorado, Processing Site, Planned Sampling Map ......................................................3 Old Rifle,

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Ambrosia Lake, New Mexico, Disposal Site February 2014 LMS/AMB/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Ambrosia Lake, New Mexico February 2014 RIN 13115745 Page i Contents Sampling Event Summary ...............................................................................................................1 Ambrosia Lake, New Mexico, Disposal Site Sample Location Map ..............................................3 Data Assessment

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Bluewater, New Mexico, Disposal Site February 2014 LMS/BLU/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Bluewater, New Mexico February 2014 RIN 13115746 Page i Contents Sampling Event Summary ...............................................................................................................1 Bluewater, New Mexico, Disposal Site Sample Location Map.......................................................5 Data Assessment Summary

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Burrell, Pennsylvania, Disposal Site January 2014 LMS/BUR/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Burrell, Pennsylvania January 2014 RIN 13095638 Page i Contents Sampling Event Summary ...............................................................................................................1 Burrell, Pennsylvania, Disposal Site, Sample Location Map ..........................................................3 Data Assessment Summary

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Canonsburg, Pennsylvania, Disposal Site February 2014 LMS/CAN/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Canonsburg, Pennsylvania February 2014 RIN 13095639 Page i Contents Sampling Event Summary ...............................................................................................................1 Canonsburg, Pennsylvania, Disposal Site, Sample Location Map ..................................................3 Data Assessment Summary

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Gasbuggy, New Mexico, Site October 2009 LMS/GSB/S00609 This page intentionally left blank U.S. Department of Energy DVP-June 2009, Gasbuggy, New Mexico October 2009 RIN 09062379, 09062380, 09062381 Page i Contents Sampling Event Summary ...............................................................................................................1 Gasbuggy, New Mexico, Sampling Locations ................................................................................2 Data Assessment Summary

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Green River, Utah, Disposal Site August 2013 LMS/GRN/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Green River, Utah August 2013 RIN 13065402 Page i Contents Sampling Event Summary ...............................................................................................................1 Data Assessment Summary ..............................................................................................................7 Water Sampling Field Activities

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Disposal Site August 2014 LMS/LKD/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Lakeview, Oregon, Disposal August 2014 RIN 14056157 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Disposal Site, Sample Location Map ...............................................................3 Data Assessment Summary

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Processing Site August 2014 LMS/LKP/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Lakeview, Oregon, Processing August 2014 RIN 14056157 and 14056158 Page i Contents Sampling Event Summary ...............................................................................................................1 Lakeview, Oregon, Processing Site, Sample Location Map ............................................................3 Data Assessment Summary

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    L-Bar, New Mexico, Disposal Site February 2014 LMS/BAR/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, L-Bar, New Mexico February 2014 RIN 13115747 Page i Contents Sampling Event Summary ...............................................................................................................1 L-Bar, New Mexico, Disposal Site Sample Location Map .............................................................3 Data Assessment Summary

  10. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Monticello, Utah, Processing Site January 2015 LMS/MNT/S01014 This page intentionally left blank U.S. Department of Energy DVP-October 2014, Monticello, Utah January 2015 RIN 14106558 Page i Contents Sampling Event Summary ...............................................................................................................1 Monticello, Utah, Processing Site Sample Location Map ...............................................................5 Data Assessment Summary

  11. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Riverton, Wyoming, Processing Site September 2013 LMS/RVT/S00613 This page intentionally left blank U.S. Department of Energy DVP-June 2013, Riverton, Wyoming September 2013 RIN 13065379 Page i Contents Sampling Event Summary ...............................................................................................................1 Riverton, Wyoming, Processing Site, Sample Location Map .........................................................5 Data Assessment Summary

  12. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Shirley Basin South, Wyoming, Disposal Site October 2015 LMS/SBS/S00715 This page intentionally left blank U.S. Department of Energy DVP-Shirley Basin South, Wyoming October 2015 RIN 15067185 Page i Contents Sampling Event Summary ...............................................................................................................1 Shirley Basin South, Wyoming, Disposal Site, Sample Location Map ...........................................3 Data Assessment Summary

  13. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Tuba City, Arizona, Disposal Site May 2014 LMS/TUB/S00214 This page intentionally left blank U.S. Department of Energy DVP-February 2014, Tuba City, Arizona May 2014 RIN 14025914 Page i Contents Sampling Event Summary ...............................................................................................................1 Tuba City, Arizona, Disposal, Site, Sample Location Map .............................................................7 Data Assessment Summary

  14. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Falls City, Texas, Disposal Site April 2014 LMS/FCT/S00214 This page intentionally left blank U.S. Department of Energy DVP-February 2014, Falls City, Texas April 2014 RIN 14025923 Page i Contents Sampling Event Summary ...............................................................................................................1 Falls City, Texas, Disposal Site, Sample Location Map..................................................................3 Data Assessment Summary

  15. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Parkersburg, West Virginia, Disposal Site February 2014 LMS/PKB/S01113 This page intentionally left blank U.S. Department of Energy DVP-November 2013, Parkersburg, West Virginia February 2014 13095640, 13115753 Page i Contents Sampling Event Summary ...............................................................................................................1 Parkersburg, West Virginia, Disposal Site Sample Location Map ..................................................5 Data Assessment Summary

  16. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Sherwood, Washington, Disposal Site July 2014 LMS/SHE/S00514 This page intentionally left blank U.S. Department of Energy DVP-May 2014, Sherwood, Washington July 2014 RIN 14056159 Page i Contents Sampling Event Summary ...............................................................................................................1 Sherwood, Washington, Disposal Site Sample Location Map ........................................................3 Data Assessment Summary

  17. Site-Wide Integrated Water Monitoring -- Defining and Implementing Sampling Objectives to Support Site Closure

    SciTech Connect (OSTI)

    Wilborn, Bill; Marutzky, Sam; Knapp, Kathryn

    2013-02-24

    The Underground Test Area (UGTA) activity is responsible for assessing and evaluating the effects of the underground nuclear weapons tests on groundwater at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), and implementing a corrective action closure strategy. The UGTA strategy is based on a combination of characterization, modeling studies, monitoring, and institutional controls (i.e., monitored natural attenuation). The closure strategy verifies through appropriate monitoring activities that contaminants of concern do not exceed the SDWA at the regulatory boundary and that adequate institutional controls are established and administered to ensure protection of the public. Other programs conducted at the NNSS supporting the environmental mission include the Routine Radiological Environmental Monitoring Program (RREMP), Waste Management, and the Infrastructure Program. Given the current programmatic and operational demands for various water-monitoring activities at the same locations, and the ever-increasing resource challenges, cooperative and collaborative approaches to conducting the work are necessary. For this reason, an integrated sampling plan is being developed by the UGTA activity to define sampling and analysis objectives, reduce duplication, eliminate unnecessary activities, and minimize costs. The sampling plan will ensure the right data sets are developed to support closure and efficient transition to long-term monitoring. The plan will include an integrated reporting mechanism for communicating results and integrating process improvements within the UGTA activity as well as between other U.S. Department of Energy (DOE) Programs.

  18. Spontaneous Potential Well Log | Open Energy Information

    Open Energy Info (EERE)

    Log Chemical Logging Density Log Gamma Log Image Logs Mud Logging Neutron Log Pressure Temperature Log Single-Well and Cross-Well Resistivity Spontaneous Potential Well Log...

  19. Category:Observation Wells | Open Energy Information

    Open Energy Info (EERE)

    Observation Wells Jump to: navigation, search Geothermalpower.jpg Looking for the Observation Wells page? For detailed information on Observation Wells, click here....

  20. Well Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Well tests are conducted to quantify well characteristics, production potential, and reservoir properties. Well tests are essential for exploration and production drilling,...

  1. Microsoft Word - RUL_3Q2010_Rpt_Gas_Samp_Results_18Wells.doc

    Office of Legacy Management (LM)

    Monitoring Results Natural Gas Wells near the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 July 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 18 gas wells sampled are within 1.1 miles of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background:

  2. Defining And Characterizing Sample Representativeness For DWPF Melter Feed Samples

    SciTech Connect (OSTI)

    Shine, E. P.; Poirier, M. R.

    2013-10-29

    Representative sampling is important throughout the Defense Waste Processing Facility (DWPF) process, and the demonstrated success of the DWPF process to achieve glass product quality over the past two decades is a direct result of the quality of information obtained from the process. The objective of this report was to present sampling methods that the Savannah River Site (SRS) used to qualify waste being dispositioned at the DWPF. The goal was to emphasize the methodology, not a list of outcomes from those studies. This methodology includes proven methods for taking representative samples, the use of controlled analytical methods, and data interpretation and reporting that considers the uncertainty of all error sources. Numerous sampling studies were conducted during the development of the DWPF process and still continue to be performed in order to evaluate options for process improvement. Study designs were based on use of statistical tools applicable to the determination of uncertainties associated with the data needs. Successful designs are apt to be repeated, so this report chose only to include prototypic case studies that typify the characteristics of frequently used designs. Case studies have been presented for studying in-tank homogeneity, evaluating the suitability of sampler systems, determining factors that affect mixing and sampling, comparing the final waste glass product chemical composition and durability to that of the glass pour stream sample and other samples from process vessels, and assessing the uniformity of the chemical composition in the waste glass product. Many of these studies efficiently addressed more than one of these areas of concern associated with demonstrating sample representativeness and provide examples of statistical tools in use for DWPF. The time when many of these designs were implemented was in an age when the sampling ideas of Pierre Gy were not as widespread as they are today. Nonetheless, the engineers and statisticians used carefully thought out designs that systematically and economically provided plans for data collection from the DWPF process. Key shared features of the sampling designs used at DWPF and the Gy sampling methodology were the specification of a standard for sample representativeness, an investigation that produced data from the process to study the sampling function, and a decision framework used to assess whether the specification was met based on the data. Without going into detail with regard to the seven errors identified by Pierre Gy, as excellent summaries are readily available such as Pitard [1989] and Smith [2001], SRS engineers understood, for example, that samplers can be biased (Gy�s extraction error), and developed plans to mitigate those biases. Experiments that compared installed samplers with more representative samples obtained directly from the tank may not have resulted in systematically partitioning sampling errors into the now well-known error categories of Gy, but did provide overall information on the suitability of sampling systems. Most of the designs in this report are related to the DWPF vessels, not the large SRS Tank Farm tanks. Samples from the DWPF Slurry Mix Evaporator (SME), which contains the feed to the DWPF melter, are characterized using standardized analytical methods with known uncertainty. The analytical error is combined with the established error from sampling and processing in DWPF to determine the melter feed composition. This composition is used with the known uncertainty of the models in the Product Composition Control System (PCCS) to ensure that the wasteform that is produced is comfortably within the acceptable processing and product performance region. Having the advantage of many years of processing that meets the waste glass product acceptance criteria, the DWPF process has provided a considerable amount of data about itself in addition to the data from many special studies. Demonstrating representative sampling directly from the large Tank Farm tanks is a difficult, if not unsolvable enterprise due to limited accessibility. However, the consistency and the adequacy of sampling and mixing at SRS could at least be studied under the controlled process conditions based on samples discussed by Ray and others [2012a] in Waste Form Qualification Report (WQR) Volume 2 and the transfers from Tanks 40H and 51H to the Sludge Receipt and Adjustment Tank (SRAT) within DWPF. It is important to realize that the need for sample representativeness becomes more stringent as the material gets closer to the melter, and the tanks within DWPF have been studied extensively to meet those needs.

  3. Category:Exploratory Well | Open Energy Information

    Open Energy Info (EERE)

    Looking for the Exploratory Well page? For detailed information on Exploratory Well, click here. Category:Exploratory Well Add.png Add a new Exploratory Well Technique Pages in...

  4. Water Sample Concentrator

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  5. Dissolution actuated sample container

    DOE Patents [OSTI]

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  6. SAMPLING AND ANALYSIS PROTOCOLS

    SciTech Connect (OSTI)

    Jannik, T; P Fledderman, P

    2007-02-09

    Radiological sampling and analyses are performed to collect data for a variety of specific reasons covering a wide range of projects. These activities include: Effluent monitoring; Environmental surveillance; Emergency response; Routine ambient monitoring; Background assessments; Nuclear license termination; Remediation; Deactivation and decommissioning (D&D); and Waste management. In this chapter, effluent monitoring and environmental surveillance programs at nuclear operating facilities and radiological sampling and analysis plans for remediation and D&D activities will be discussed.

  7. Draft Sample Collection Instrument

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sample Collection Instrument Davis-Bacon Semi-annual Labor Compliance Report OMB Control Number 1910-New Please note that different DOE programs will use different collection instruments. Wherever possible, the data collection will be integrated into existing reporting processes for recipients of DOE financial assistance and prime contractors use. The sample collection instrument below would be used by recipients of Energy Efficiency Conservation Block Grants, State Energy Program grants, and

  8. In-well vapor stripping drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-03-13

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  9. Liquid sampling system

    DOE Patents [OSTI]

    Larson, Loren L. (Idaho Falls, ID)

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  10. Liquid sampling system

    DOE Patents [OSTI]

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  11. Coiled tubing workover saves horizontal well in Lake Maracaibo

    SciTech Connect (OSTI)

    Lizak, K.; Patterson, J.; Suarez, D.; Salas, J.

    1996-12-31

    A slotted liner horizontal completion became stuck while being run. Inflatable packers were to be used to isolate the productive interval from a water-bearing, unconsolidated sand in the curved section of this well. While personnel were deciding how to cement the well, the liner was left in the hole with the inflatable packers unset, and the production tubing was run. Coiled tubing was used to log the well, isolate the productive interval, and remove damage to restore well productivity. Personnel considered all possible options, and a thorough decision-making process guided the workover. Because of severe lost-circulation problems, extensive ``what if`` scenarios were made and updated daily for the engineers on location. Service company and oil company personnel worked together to guarantee the job designs were practical and did not exceed the limits of the equipment on location. Computer simulations of all operations were run to allow corrective action to be taken if unusual circumstances arose. All fluids were thoroughly laboratory tested and witnessed by oil company personnel to ensure job success. Problems on the job included lost circulation, locating the exact positions of the packers and water zone, ensuring correct cement placement, removing mud and workover fluids without damaging the squeeze, and bad weather on Lake Maracaibo. Advantages and disadvantages of all the solutions that were considered are included to assist anyone in a similar situation. Post-job oil production has stabilized at 900 BOPD with no water or sand production. Careful job planning and the versatility of coiled tubing saved this well and proved economical with an estimated payout of 33 days, assuming a price of $12 per barrel of oil.

  12. Fluid sampling system

    DOE Patents [OSTI]

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  13. Visual Sample Plan

    Energy Science and Technology Software Center (OSTI)

    2007-10-25

    VSP selects the appropriate number and location of environmental samples to ensure that the results of statistical tests performed to provide input to risk decisions have the required confidence and performance. VSP Version 5.0 provides sample-size equations or algorithms needed by specific statistical tests appropriate for specific environmental sampling objectives. It also provides data quality assessment and statistical analysis functions to support evaluation of the data and determine whether the data support decisions regarding sitesmore » suspected of contamination. The easy-to-use program is highly visual and graphic. VSP runs on personal computers with Microsoft Windows operating systems (98, NT, 2000, Millennium Edition, CE, and XP) Designed primarily for project managers and users without expertise in statistics, VSP is applicable to two- and three-dimensional populations to be sampled (e.g., rooms and buildings, surface soil, a defined layer of subsurface soil, water bodies, and other similar applications) for studies of environmental quality. VSP is also applicable for designing sampling plans for assessing chem./rad/bio threat and hazard identification within rooms and buildings, and for designing geophysical surveys for UXO identification.« less

  14. Fluid sampling system

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  15. Spatially indirect excitons in coupled quantum wells

    SciTech Connect (OSTI)

    Lai, Chih-Wei Eddy

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.

  16. Viscous sludge sample collector

    DOE Patents [OSTI]

    Beitel, George A [Richland, WA

    1983-01-01

    A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  17. Post-Award Deliverables Sample (Part 2 of Sample Deliverables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ...

  18. SW New Mexico Oil Well Formation Tops

    SciTech Connect (OSTI)

    Shari Kelley

    2015-10-21

    Rock formation top picks from oil wells from southwestern New Mexico from scout cards and other sources. There are differing formation tops interpretations for some wells, so for those wells duplicate formation top data are presented in this file.

  19. Industry survey for horizontal wells. Final report

    SciTech Connect (OSTI)

    Wilson, D.D.; Kaback, D.S. [CDM Federal Programs Corp., Denver, CO (United States); Denhan, M.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Watkins, D. [CDM Federal Programs Corp., Aiken, SC (United States)

    1993-07-01

    An international survey of horizontal environmental wells was performed during May and June of 1993. The purpose of the survey was to provide the environmental industry with an inventory of horizontal environmental wells and information pertaining to the extent of the use of horizontal environmental wells, the variety of horizontal environmental well applications, the types of geologic and hydrogeologic conditions within which horizontal environmental wells have been installed, and the companies that perform horizontal environmental well installations. Other information, such as the cost of horizontal environmental well installations and the results of tests performed on the wells, is not complete but is provided as general information with the caveat that the information should not be used to compare drilling companies. The result of the survey is a catalogue of horizontal environmental wells that are categorized by the objective or use of the wells, the vertical depth of the wells, and the drilling company contracted to install the wells.

  20. Single-Well And Cross-Well Seismic Imaging | Open Energy Information

    Open Energy Info (EERE)

    Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique:...

  1. Single-Well And Cross-Well Seismic Imaging | Open Energy Information

    Open Energy Info (EERE)

    Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details...

  2. Geothermal/Well Field | Open Energy Information

    Open Energy Info (EERE)

    Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection Environment Water...

  3. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  4. EPA - UIC Well Classifications | Open Energy Information

    Open Energy Info (EERE)

    Well Classifications Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - UIC Well Classifications Author Environmental Protection Agency Published...

  5. Oregon Modification Application Geothermal Wells Form | Open...

    Open Energy Info (EERE)

    Modification Application Geothermal Wells Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon Modification Application Geothermal Wells Form Form...

  6. Countryman Well Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Countryman Well Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Countryman Well Greenhouse Low Temperature Geothermal Facility Facility Countryman...

  7. Wells Public Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Wells Public Utilities Website http:www.SaveEnergyInWells.com State Minnesota Program Type...

  8. Tank 241-AP-103 08/1999 Compatibility Grab Samples and Analytical Results for the Final Report

    SciTech Connect (OSTI)

    BELL, K.E.

    1999-12-09

    This document is the format IV, final report for the tank 241-AP-103 (AP-103) grab samples taken in August 1999 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank AP-103 samples were performed as directed in ''Compatibility Grub Sampling and Analysis Plan for Fiscal Year 1999'' (Sasaki 1999a). Any deviations from the instructions provided in the tank sampling and analysis plan (TSAP) were discussed in this narrative. No notification limits were exceeded.

  9. Interface effect in coupled quantum wells

    SciTech Connect (OSTI)

    Hao, Ya-Fei

    2014-06-28

    This paper intends to theoretically investigate the effect of the interfaces on the Rashba spin splitting of two coupled quantum wells. The results show that the interface related Rashba spin splitting of the two coupled quantum wells is both smaller than that of a step quantum well which has the same structure with the step quantum well in the coupled quantum wells. And the influence of the cubic Dresselhaus spin-orbit interaction of the coupled quantum wells is larger than that of a step quantum well. It demonstrates that the spin relaxation time of the two coupled quantum wells will be shorter than that of a step quantum well. As for the application in the spintronic devices, a step quantum well may be better than the coupled quantum wells, which is mentioned in this paper.

  10. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V.; Hall, R.; Colina, K.

    2008-07-01

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3s (NPR-3) Teapot Dome Field near Casper, Wyoming. The surveys purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  11. Field Sampling | Open Energy Information

    Open Energy Info (EERE)

    Field Mapping Hand-held X-Ray Fluorescence (XRF) Macrophotography Portable X-Ray Diffraction (XRD) Field Sampling Gas Sampling Gas Flux Sampling Soil Gas Sampling Surface Gas...

  12. Track 4: Employee Health and Wellness

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 4: Employee Health and Wellness

  13. Completion Report for Well Cluster ER-6-1

    SciTech Connect (OSTI)

    Bechtel Nevada

    2004-10-01

    Well Cluster ER-6-1 was constructed for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Division at the Nevada Test Site, Nye County, Nevada. This work was initiated as part of the Groundwater Characterization Project, now known as the Underground Test Area Project. The well cluster is located in southeastern Yucca Flat. Detailed lithologic descriptions with stratigraphic assignments for Well Cluster ER-6-1 are included in this report. These are based on composite drill cuttings collected every 3 meters and conventional core samples taken below 639 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 11 samples to resolve complex interrelationships between several of the Tertiary tuff units. Additionally, paleontological analyses by the U.S. Geological Survey confirmed the stratigraphic assignments below 539 meters within the Paleozoic sedimentary section. All three wells in the Well ER-6-1 cluster were drilled within the Quaternary and Tertiary alluvium section, the Tertiary volcanic section, and into the Paleozoic sedimentary section.

  14. Completion Report for Well ER-2-1

    SciTech Connect (OSTI)

    Bechtel Nevada

    2004-10-01

    Well ER-2-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (formerly Nevada Operations Office), in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in February and March of 2003, as part of a hydrogeologic investigation program for the Yucca Flat/Climax Mine Corrective Action Unit in the northeastern portion of the Nevada Test Site. Well ER-2-1 was drilled as part of the Yucca Flat Corrective Action Unit Phase I drilling initiative. The well is located in north central Yucca Flat within Area 2 of the Nevada Test Site, and provided information regarding the radiological and physical environment near underground nuclear tests conducted in a saturated volcanic aquifer setting. Detailed lithologic descriptions with stratigraphic assignments are included in this report. These are based on composite drill cuttings collected every 3 meters and 83 sidewall samples taken at various depths between 113.7 and 754.4 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 27 samples of drill cuttings. The well was collared in tuffaceous alluvium, and penetrated Tertiary-age tuffs of the Timber Mountain and Paintbrush Groups, Calico Hills and Wahmonie Formations, Crater Flat Group, Grouse Canyon Formation, before reaching total depth in the Tunnel Bed Formation.

  15. Completion Report for Well Cluster ER-5-4

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

    2005-02-01

    Well Cluster ER-5-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The cluster consists of two wells, positioned about 30 meters apart on the same drill pad, constructed as part of a hydrogeologic investigation program for Frenchman Flat at the Nevada Test Site. Detailed lithologic descriptions with preliminary stratigraphic assignments for the well cluster are included in this report. These are based on composite drill cuttings collected every 3 meters, and 156 sidewall samples taken at various depths below 192 meters in both boreholes, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 122 samples. Well ER-5-4 penetrated approximately 1,120 meters of Quaternary and Tertiary alluvium before reaching total depth in Tertiary volcanic rocks at 1,137.5 meters. The deeper Well ER-5-4 No.2 penetrated 1,120.4 meters of alluvial sediments, and was terminated within Tertiary volcanic rocks at a depth of 2,133.6 meters, indicating that Paleozoic rocks are deeper than expected at this site.

  16. NID Copper Sample Analysis

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  17. Colloid characterization and quantification in groundwater samples

    SciTech Connect (OSTI)

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples should be analyzed for colloid size and concentration shortly after they have been collected. A prolonged waiting period after sampling will affect the colloid size distribution as well as colloid concentration resulting from the changes of water chemical properties. The data also shows that sample containers, filter materials, and labware that are used for colloid analyses should be cleaned by specially treated low-colloid-containing water. Water used for sample dilution should be verified for total colloidal particle concentration. They then analyzed freshly collected groundwater from NTS wells ER-20-5{number_sign}1 and {number_sign}3. Results show that these groundwater samples have similar colloid concentrations and particle size distributions. For the particle size range between 50- and 200-nm, about ten trillion (1E10) colloidal particles per liter are present in these water samples. Most of these colloidal particles are less than 100 mm in size. For example, more than 98% of the colloids are smaller than 100 nm in size in the ER-20-5 {number_sign}1 sample. Furthermore, it was found that the smaller the sizes of colloid, the higher the colloid concentration present in the water. For another site at NTS, Cheshire, they had analyzed two zones of groundwater samples. For water samples collected from the lower water zone (near the underground detonation cavity about 3,700 feet of slanted depth from the surface), the colloid concentration was about 5E12 particles per liter. About 20 times less than the lower zone of total colloids was found in water samples collected from the upper aquifer (around 2,511 feet of slanted depth), although colloid size distributions from these two zones appear to be rather similar.

  18. Stack sampling apparatus

    DOE Patents [OSTI]

    Lind, Randall F; Lloyd, Peter D; Love, Lonnie J; Noakes, Mark W; Pin, Francois G; Richardson, Bradley S; Rowe, John C

    2014-09-16

    An apparatus for obtaining samples from a structure includes a support member, at least one stabilizing member, and at least one moveable member. The stabilizing member has a first portion coupled to the support member and a second portion configured to engage with the structure to restrict relative movement between the support member and the structure. The stabilizing member is radially expandable from a first configuration where the second portion does not engage with a surface of the structure to a second configuration where the second portion engages with the surface of the structure.

  19. Pulsed field sample neutralization

    DOE Patents [OSTI]

    Appelhans, Anthony D. (Idaho Falls, ID); Dahl, David A. (Idaho Falls, ID); Delmore, James E. (Idaho Falls, ID)

    1990-01-01

    An apparatus and method for alternating voltage and for varying the rate of extraction during the extraction of secondary particles, resulting in periods when either positive ions, or negative ions and electrons are extracted at varying rates. Using voltage with alternating charge during successive periods to extract particles from materials which accumulate charge opposite that being extracted causes accumulation of surface charge of opposite sign. Charge accumulation can then be adjusted to a ratio which maintains a balance of positive and negative charge emission, thus maintaining the charge neutrality of the sample.

  20. Germanium-76 Sample Analysis

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Engelhard, Mark H.; Zhu, Zihua

    2011-04-01

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). The DEMONSTRATOR will utilize 76Ge from Russia, and the first one gram sample was received from the supplier for analysis on April 24, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of this first analysis are reported here.

  1. September 2004 Water Sampling

    Office of Legacy Management (LM)

    4 Groundwater Sampling at the Central Nevada Test Area February 2015 LMS/CNT/S01214 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its contractors, in

  2. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site December 2013 LMS/GSB/S00613 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its

  3. September 2004 Water Sampling

    Office of Legacy Management (LM)

    2014 Groundwater, Surface Water, Produced Water, and Natural Gas Sampling at the Gasbuggy, New Mexico, Site October 2014 LMS/GSB/S00614 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to

  4. September 2004 Water Sampling

    Office of Legacy Management (LM)

    and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2014 LMS/RBL/S00514 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its contractors, in

  5. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2015 LMS/RBL/S00515 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its

  6. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Produced Water Sampling at the Rulison, Colorado, Site May 2015 LMS/RUL/S00115 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its contractors, in paper,

  7. September 2004 Water Sampling

    Office of Legacy Management (LM)

    5 Groundwater and Surface Water Sampling at the Rulison, Colorado, Site October 2015 LMS/RUL/S00515 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its

  8. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Natural Gas and Produced Water Sampling at the Rulison, Colorado, Site November 2014 LMS/RUL/S00714 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/scitech/ Available for a processing fee to U.S. Department of Energy and its

  9. September 2004 Water Sampling

    Office of Legacy Management (LM)

    Water Sampling at the Salmon, Mississippi, Site March 2014 Approved for public release; further dissemination unlimited LMS/SAL/S00413 Available for sale to the public from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 Telephone: 800.553.6847 Fax: 703.605.6900 E-mail: orders@ntis.gov Online Ordering: http://www.ntis.gov/help/ordermethods.aspx Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S.

  10. Completion Report for Well ER-8-1

    SciTech Connect (OSTI)

    Bechtel Nevada

    2004-11-01

    Well ER-8-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in October and November of 2002 as part of a Hydrogeologic investigation program for the Yucca Flat/Climax Mine Corrective Action Unit in the northeastern portion of the Nevada Test Site. Well ER-8-1 is located at the north end of Yucca Flat approximately 580 meters south-southeast of the surface exposure of the Climax granitic intrusive. Detailed lithologic descriptions with stratigraphic assignments are included in this report. These are based on composite drill cuttings samples collected every 3 meters, and 21 sidewall samples taken at various depths between 351.1 and 573.0 meters, supplemented by incomplete geophysical log data. Detailed petrographic, geochemical, and mineralogical studies of rock samples were conducted on 22 samples of drill cuttings. Drilling began in tuffaceous alluvium, and the borehole penetrated Tertiary age bedded tuffs of the Volcanics of Oak Spring Butte and carbonate sediments of Paleozoic age, which were encountered at a depth of 334 meters. The borehole unexpectedly penetrated granite at the depth of 538.9 meters in which drilling was stopped. Contact metamorphic rocks and intrusive dikes associated with the Cretaceous-age granitic intrusive and at least one significant fault zone were encountered.

  11. Geochemistry of Background Sediment Samples at Technical Area 39, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Eric V. McDonald; Katherine Campbell; Patrick A. Longmire; Steven L. Reneau

    1998-11-01

    This report presents results of chemical analyses of 24 analytes in 16 background sediment samples collected from Ancho Canyon and Indio Canyon at Technical Area (TA) 39, Los Alamos National Laboratory. Preliminary upper tolerance limits (UTLS) for sediments are calculated from this data set but, because of the small sample size, these UTLs exceed the maximum values in the data set by up to 50'ZO and will require revision as more background sediment data are obtained.

  12. Step-out Well | Open Energy Information

    Open Energy Info (EERE)

    step-out well should be drilled where there is some evidence of a permeable formation linked with the main reservoir. The well should be drilled in a location to where if it is an...

  13. RFI Well Integrity 06 JUL 1400

    Broader source: Energy.gov [DOE]

    This PowerPoint report entitled "Well Integrity During Shut - In Operations: DOE/DOI Analyses" describes risks and suggests risk management recommendations associated with shutting in the well.

  14. Salt Wells Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333,...

  15. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, Anthony R. (Espanola, NM); Johnston, Roger G. (Los Alamos, NM); Martinez, Ronald K. (Santa Cruz, NM)

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  16. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  17. NID Copper Sample Analysis

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0???). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  18. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect (OSTI)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  19. Apparatus and method for analyzing well fluid sag

    SciTech Connect (OSTI)

    Jamison, D.E.; Clements, W.R.

    1992-02-11

    This patent describes a method of analyzing sag phenomena in well fluids. It comprises: mounting an elongate container containing a sample of a fluid to be tested on a force responsive device which provides a measurable, variable indication of the center of mass of the container, at an angle with respect to vertical; holding the angle generally constant, but for small movements corresponding to changes in the center of mass of the container due to sagging of the contents of the sample, for a period of time sufficient for such sagging to occur, and measuring the indication.

  20. Analytical laboratory and mobile sampling platform

    SciTech Connect (OSTI)

    Stetzenbach, K.; Smiecinski, A.

    1996-04-30

    This is the final report for the Analytical Laboratory and Mobile Sampling Platform project. This report contains only major findings and conclusions resulting from this project. Detailed reports of all activities performed for this project were provided to the Project Office every quarter since the beginning of the project. This report contains water chemistry data for samples collected in the Nevada section of Death Valley National Park (Triangle Area Springs), Nevada Test Site springs, Pahranagat Valley springs, Nevada Test Site wells, Spring Mountain springs and Crater Flat and Amargosa Valley wells.

  1. Sample injector for high pressure liquid chromatography

    DOE Patents [OSTI]

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2001-01-01

    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  2. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1993-12-21

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus. 5 figures.

  3. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1993-01-01

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus.

  4. Soil sampling kit and a method of sampling therewith

    DOE Patents [OSTI]

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  5. Soil sampling kit and a method of sampling therewith

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN)

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  6. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  7. Fluid sampling apparatus and method

    DOE Patents [OSTI]

    Yeamans, D.R.

    1998-02-03

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis. 3 figs.

  8. Fluid sampling apparatus and method

    DOE Patents [OSTI]

    Yeamans, David R. (Los Alamos, NM)

    1998-01-01

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis.

  9. Gas Flux Sampling At Haleakala Volcano Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    deviations from expected ratios. One well was also found to have an abnormally high sulfate concentration. All three wells are located in the same general area and are sampling...

  10. Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling Details Activities (63) Areas (51) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling...

  11. Rock Sampling | Open Energy Information

    Open Energy Info (EERE)

    resource at depth. These hand samples can be collected using a rock hammer or sledge. Data Access and Acquisition Under a detailed investigation, a systematic sampling procedure...

  12. Completion Report for Well ER-EC-5

    SciTech Connect (OSTI)

    Bechtel Nevada

    2004-10-01

    Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.

  13. Electrphoretic Sample Excitation Light Assembly.

    DOE Patents [OSTI]

    Li, Qingbo; Liu, Changsheng

    2002-04-02

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  14. Induced fractures: well stimulation through fracturing

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    Seven fracture stimulation treatments were planned and executed under the Department of Energy-funded Geothermal Well Stimulation Program. The objective of this program is to demonstrate that geothermal well stimulation offers a technical alternative to additional well drilling and redrilling for productivity enhancement which can substantially reduce development costs. Well stimulation treatments have been performed at Raft River, Idaho; East Mesa, California; The Geysers, California; and the Baca Project Area in New Mexico. Six of the seven stimulation experiments were technically successful in stimulating the wells. The two fracture treatments in East Mesa more than doubled the production rate of the previously marginal producer. The two fracture treatments at Raft River and the two at Baca were all successful in obtaining significant production from previously nonproductive intervals. The acid etching treatment in the well at the Geysers did not have any material effect on production rate.

  15. Sample holder with optical features

    DOE Patents [OSTI]

    Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

    2013-07-30

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  16. Feasibility of EGS Well Control Systems

    SciTech Connect (OSTI)

    Norann, Randy A; Darlow, Richard

    2015-02-03

    This report covers the 8th major objective listed in Grant DE-FG36-08GO18185. This objective takes the information and experience gained from the development of 300C well monitoring system and applies them to concepts envisioned for future geothermal well control systems supporting EGS power production. This report covers a large number of instrumentation and control system engineering issues for EGS wells while also providing a window into existing technology to address those issues.

  17. Cathodic protection of storage field well casings

    SciTech Connect (OSTI)

    Dabkowski, J.

    1986-01-01

    Downhole logging of gas storage field wells to determine cathodic protection (CP) levels is expensive and requires removing the well from service. A technique allowing the prediction of downhole CP levels by modeling combined with limiting field measurements would provide the industry with a cost-effective means of implementing and monitoring casing protection. A computer model has been developed for a cathodically protected well casing.

  18. Well Completion Report for Well ER-20-11, Corrective Action Units 101 and 102: Central and Western Pahute Mesa

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-02-27

    Well ER-20-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September 2012 as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. Well ER-20-11 was constructed to further investigate the nature and extent of radionuclidecontaminated groundwater encountered in two nearby UGTA wells, to help define hydraulic and transport parameters for the contaminated Benham aquifer, and to provide data for the UGTA hydrostratigraphic framework model. The 44.5-centimeter (cm) surface hole was drilled to a depth of 520.0 meters (m) and cased with 34.0-cm casing to 511.5 m. The hole diameter was then decreased to 31.1 cm, and the borehole was drilled to a total depth of 915.6 m. The hole was completed to allow access for hydrologic testing and sampling in the target aquifer, which is a lava-flow aquifer known as the Benham aquifer. The completion casing string, set to the depth of 904.3 m, consists of a string of 6?-inch (in.) stainless-steel casing hanging from a string of 7?-in. carbon-steel casing. The stainless-steel casing has one slotted interval at 796.3 to 903.6 m. One piezometer string was installed, which consists of 2?-in. stainless-steel tubing that hangs from 2?-in. carbon-steel tubing via a crossover sub. This string was landed at 903.8 m and is slotted in the interval 795.3 to 903.1 m. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 915.6 m of Tertiary volcanic rock, including one saturated lava flow aquifer. Measurements on samples taken from the undeveloped well indicated elevated tritium levels within the Benham aquifer. The maximum tritium level measured with field equipment was 146,131 picocuries per liter from a sample obtained at the depth of 912.0 m. The fluid level was measured in the piezometer string at a depth of 504.5 m on September 26, 2012. All Fluid Management Plan (FMP) requirements for Well ER-20-11 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-20-11 met the FMP criteria for discharge to an unlined sump or designated infiltration area. Well development, hydrologic testing, and sampling will be conducted at a later date.

  19. ORNL OLCF Facilities Plans Jack Wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL OLCF Facilities Plans Jack Wells Director of Science Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory HEP-ASCR Requirements Workshop Bethesda 10 June 2015...

  20. Hawaii Well Construction & Pump Installation Standards Webpage...

    Open Energy Info (EERE)

    Standards Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Well Construction & Pump Installation Standards Webpage Abstract This webpage...

  1. Well Log Techniques | Open Energy Information

    Open Energy Info (EERE)

    formation properties versus depth in a borehole. Other definitions:Wikipedia Reegle Introduction Well logging, also known as wireline logging, is a method of data collection in the...

  2. GeoWells International | Open Energy Information

    Open Energy Info (EERE)

    Name: GeoWells International Place: Nairobi, Kenya Sector: Geothermal energy, Solar, Wind energy Product: Kenya-based geothermal driller. The company also supplies and installs...

  3. Excepted Service Authority for Exceptionally Well Qualified ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service Authority for Exceptionally Well Qualified (EWQ) EQ Pay Plan Employees by Erin Moore Functional areas: Excepted Service, EWQ Pay Plan Employees The order establishes...

  4. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  5. Hawaii Well Construction & Pump Installation Standards | Open...

    Open Energy Info (EERE)

    Handbook Abstract This document provides an overview of the well construction and pump installation standards in Hawaii. Author State of Hawaii Commission on Water Resource...

  6. Observation Wells (Ozkocak, 1985) | Open Energy Information

    Open Energy Info (EERE)

    test wells can be used to obtain quite precise measurements of reservoir permeability. References o ozkocak (1985) Un Seminar On The Utilization Of Geothermal Energy For...

  7. Wells, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wells, Vermont: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4172937, -73.2042744 Show Map Loading map... "minzoom":false,"mappingservice...

  8. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maintaining an excellent safety record," said Jeff Mousseau, associate director of Environmental Programs at the Laboratory. Lab breaks another record with three months remaining...

  9. Microsoft Word - RBL_3Q2010_Rpt_Gas_Samp_Results_3Wells

    Office of Legacy Management (LM)

    near the Project Rio Blanco Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 September 2010 Purpose: The purpose of this sample collection is to monitor natural gas wells for radionuclides from Project Rio Blanco. The bottom-hole locations (BHLs) of the 3 gas wells sampled are within 1.4 miles of the Project Rio Blanco detonation horizon. All wells sampled have produced or are producing gas from the Mesaverde Group. Background: Project Rio

  10. Adaptive control system for gas producing wells

    SciTech Connect (OSTI)

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  11. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  12. Coiled tubing velocity strings keep wells unloaded

    SciTech Connect (OSTI)

    Wesson, H.R.; Shursen, J.L.

    1989-07-01

    Liquid loading is a problem in many older and even some newer gas wells, particularly in pressure depletion type reservoirs. This liquid loading results in decreased production and may even kill the well. The use of coiled tubing as a velocity string (or siphon string) has proved to be an economically viable alternative to allow continued and thus, increased cumulative production for wells experiencing liquid loading problems. Coiled tubing run inside the existing production string reduces the flow area, whether the well is produced up the tubing or up the annulus. This reduction in flow area results in an increase in flow velocity and thus, an increase in the well's ability to unload fluids.

  13. Geopressured-geothermal well activities in Louisiana

    SciTech Connect (OSTI)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

  14. Monitoring cathodic protection of well casings

    SciTech Connect (OSTI)

    Dabkowski, J.

    1980-01-01

    Because conventional downhole logging of gas storage wells to determine cathodic-protection levels is expensive and inconvenient, a program was developed (1) to predict downhole casing-to-soil potentials from wellhead measurements in the presence of interference and (2 )to model the mutual interference effects occurring between the wells and the cathodic-protection systems. In the first phase of this project, a transmission-line model that was developed to represent the well casing electrically adequately predicted the downhole potentials for both ideal and nonideal polarization conditions. By allowing the number of sections used and their parameter values as variables, the model can accommodate different environments and casing configurations. The model's representation of a well casing by a lumped-parameter electrical network will also permit interference studies between mutually coupled wells.

  15. Completion Report for Well ER-EC-2A

    SciTech Connect (OSTI)

    M. J. Townsend

    2002-03-01

    Well ER-EC-2A was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in January and February of 2000 as part of a hydrogeologic investigation program in the Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 412.9 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,516.1 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 228.0 meters, approximately two months after installation of the completion string. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in this report. These are based on composite drill cuttings collected every 3 meters, and 81 sidewall samples taken at various depths below 212 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 30 samples. The well was collared in rhyolite lava and penetrated Tertiary-age lava and tuff of the Volcanics of Fortymile Canyon and the Timber Mountain Group. The preliminary geologic interpretation of borehole data indicates that this well was drilled within the margins of the buried Rainier Mesa and Ammonia Tanks calderas, and that caldera collapse in this area was deeper than expected, resulting in a section of Volcanics of Fortymile Canyon (caldera-filling deposit) that is much thicker than expected.

  16. Microsoft Word - RUL_1Q2009_Gas_Samp_Results_6wells_22Jan09

    Office of Legacy Management (LM)

    09 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 22 January 2009 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison test site. As part of the Department of Energy's (DOE's) directive to protect human health and the environment, samples are collected from producing gas wells and analyzed to ensure no Rulison related radionuclides have

  17. Microsoft Word - RUL_1Q2011_Gas_Samp_Results_7Wells

    Office of Legacy Management (LM)

    31 March 2011 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom-hole locations (BHLs) of the seven gas wells sampled are between 0.75 and 0.90 mile from the Project Rulison detonation point. All wells sampled are producing gas from the Williams Fork Formation. Background: Project Rulison was the second test under the Plowshare Program to stimulate natural-gas recovery from tight sandstone formations. On 10 September 1969, a

  18. Microsoft Word - RUL_2Q2011_Gas_Samp_Results_7Wells_23June2011

    Office of Legacy Management (LM)

    23 June 2011 Purpose: The purpose of this environmental sample collection is to monitor natural gas and production water from natural gas wells drilled near the Project Rulison test site. As part of the DOE's directive to protect human health and the environment, sample are collected and analyzed from producing gas wells to ensure no Rulison related radionuclides have migrated outside the DOE institution control boundary. Using the DOE Rulison Monitoring Plan as guidance, samples are collected

  19. Category:Single-Well And Cross-Well Seismic Imaging | Open Energy...

    Open Energy Info (EERE)

    Login | Sign Up Search Category Edit History Category:Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search Geothermalpower.jpg Looking for the Single-Well...

  20. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

    1998-09-08

    A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

  1. Well Record or History | Open Energy Information

    Open Energy Info (EERE)

    Record or History Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Well Record or HistoryLegal Published NA Year Signed or Took...

  2. MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS

    SciTech Connect (OSTI)

    Mason M. Medizade; John R. Ridgely; Donald G. Nelson

    2004-11-01

    A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

  3. California Water Well Standards | Open Energy Information

    Open Energy Info (EERE)

    Water Well StandardsLegal Published NA Year Signed or Took Effect 2104 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  4. Groundwater well with reactive filter pack

    DOE Patents [OSTI]

    Gilmore, Tyler J.; Holdren, Jr., George R.; Kaplan, Daniel I.

    1998-01-01

    A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

  5. Subsea tree cap well choke system

    SciTech Connect (OSTI)

    Bednar, J.M.

    1991-04-30

    This patent describes an apparatus useful in subsea well completions requiring a subsea choke. It comprises: a wellhead connector; a tree flow passage; a tree annulus passage; a tree cap; a choke; and a production line.

  6. Ultrabroad stimulated emission from quantum well laser

    SciTech Connect (OSTI)

    Wang, Huolei; Zhou, Xuliang; Yu, Hongyan; Mi, Junping; Wang, Jiaqi; Bian, Jing; Wang, Wei; Pan, Jiaoqing; Ding, Ying; Chen, Weixi

    2014-06-23

    Observation of ultrabroad stimulated emission from a simplex quantum well based laser at the center wavelength of 1.06??m is reported. With increased injection current, spectrum as broad as 38?nm and a pulsed output power of ?50?mW have been measured. The experiments show evidence of an unexplored broad emission regime in the InGaAs/GaAs quantum well material system, which still needs theoretical modeling and further analysis.

  7. San Bernardino National Wildlife Refuge Well 10

    SciTech Connect (OSTI)

    Ensminger, J.T.; Easterly, C.E.; Ketelle, R.H.; Quarles, H.; Wade, M.C.

    1999-12-01

    The U.S. Geological Survey (USGS), at the request of the U.S. Fish and Wildlife Service, evaluated the water production capacity of an artesian well in the San Bernardino National Wildlife Refuge, Arizona. Water from the well initially flows into a pond containing three federally threatened or endangered fish species, and water from this pond feeds an adjacent pond/wetland containing an endangered plant species.

  8. Completion Report for Well ER-18-2

    SciTech Connect (OSTI)

    Bechtel Nevada

    2003-09-01

    Well ER-18-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well, located on Buckboard Mesa in the western part of the Nevada Test Site, was drilled in the spring of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to the depth 408.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 762.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 369.7 meters approximately two months after the completion string was installed. One completion string with three isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 15 sidewall samples taken at various depths below 420 meters, supplemented by geophysical log data and results of detailed chemical and mineralogical studies of rock samples. The upper part of the well penetrated Tertiary-age basalt, underlain by tuffaceous moat-filling sediments interbedded with ash-flow tuff units of the Thirsty Canyon Group and the Beatty Wash Formation. The lower half of the drill hole penetrated ash-flow tuff of the mafic-rich Ammonia Tanks Tuff. The geologic interpretation of data from Well ER-18-2 indicates that this site is located inside the structural margin of the Ammonia Tanks caldera.

  9. Completion Report for Well ER-12-2

    SciTech Connect (OSTI)

    Bechtel Nevada

    2004-11-01

    Well ER-12-2 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled from November 2002 to January 2003 as part of a hydrogeologic investigation program for the Yucca Flat Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology in the northwestern portion of Yucca Flat. The well was drilled to total measured depth of 2,097.9 meters. The 131.1-centimeter-diameter borehole was left open (i.e., uncased) below the base of the intermediate casing at 901.6 meters. A piezometer string was installed outside the surface casing to a depth of 176.4 meters to monitor a zone of perched water. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters, sidewall core samples from 7 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated, in descending order, 137.5 meters of Quaternary and Tertiary alluvium, 48.8 meters of Tertiary volcanic rocks, 289.6 meters of Mississippian Chainman Shale, and 1,622.5 meters of Mississippian and Upper Devonian Eleana Formation consisting of shale, argillite, sandstone, quartzite, and limestone. Forty-seven days after the well was drilled the water level inside the main hole was tagged at the depth of 65.43 meters, and the water level inside the piezometer string was tagged at 127.14 meters.

  10. Completion Report for Well ER-EC-1

    SciTech Connect (OSTI)

    Townsend, M.J.

    2000-12-01

    Well ER-EC-1 was drilled for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the spring of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to the depth 675.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,524.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 566.3 meters prior to installation of the completion string. One completion string with three isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 31 sidewall samples taken at various depths below 680 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well penetrated Tertiary-age lava and tuff of the Timber Mountain Group, the Paintbrush Group, the Calico Hills Formation, the Crater Flat Group, and the Volcanics of Quartz Mountain. The preliminary geologic interpretation of data from Well ER-EC-1 indicates the presence of a structural trough or bench filled with a thick section of post-Rainier Mesa lava. These data also suggest that this site is located on a buried structural ridge that may separate the Silent Canyon and Timber Mountain caldera complexes.

  11. Completion Report for Well ER-EC-4

    SciTech Connect (OSTI)

    M. J. Townsend

    2000-09-01

    Well ER-EC-4 was drilled for the US Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S Department of Energy's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 263.7 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,062.8 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static, water level was measured at the depth of 228.3 meters, two months after installation of the completion string. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 35 sidewall samples taken at various depths below 286.5 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well was collared in basalt and penetrated Tertiary-age lava and tuff of the Thirsty Canyon Group, the Volcanics of Fortymile Canyon, and the Timber Mountain Group. The preliminary geologic interpretation of data from this well helps pinpoint the location of the western margin of the Timber Mountain caldera complex in the southern Nevada volcanic field.

  12. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    SciTech Connect (OSTI)

    Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred; Hun, Diana E.; Jackson, Roderick K.; Desjarlais, Andre Omer

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions. In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.

  13. Specified assurance level sampling procedure

    SciTech Connect (OSTI)

    Willner, O.

    1980-11-01

    In the nuclear industry design specifications for certain quality characteristics require that the final product be inspected by a sampling plan which can demonstrate product conformance to stated assurance levels. The Specified Assurance Level (SAL) Sampling Procedure has been developed to permit the direct selection of attribute sampling plans which can meet commonly used assurance levels. The SAL procedure contains sampling plans which yield the minimum sample size at stated assurance levels. The SAL procedure also provides sampling plans with acceptance numbers ranging from 0 to 10, thus, making available to the user a wide choice of plans all designed to comply with a stated assurance level.

  14. Groundwater Sampling | Open Energy Information

    Open Energy Info (EERE)

    500 mL), whereas analysis for stable isotopes that are present in greater abundance in natural samples requires less water to be sampled by a full order of magnitude (approximately...

  15. Entiat 4Mile WELLs Completion Report, 2006.

    SciTech Connect (OSTI)

    Malinowksi, Richard

    2007-01-01

    The Entiat 4-mile Wells (Entiat 4-mile) project is located in the Entiat subbasin and will benefit Upper Columbia steelhead, spring Chinook and bull trout. The goal of this project is to prevent juvenile fish from being diverted into an out-of-stream irrigation system and to eliminate impacts due to the annual maintenance of an instream pushup dam. The objectives include eliminating a surface irrigation diversion and replacing it with two wells, which will provide Bonneville Power Administration (BPA) and the Bureau of Reclamation (Reclamation) with a Federal Columbia River Power System (FCRPS) BiOp metric credit of one. Wells were chosen over a new fish screen based on biological benefits and costs. Long-term biological benefits are provided by completely eliminating the surface diversion and the potential for fish entrainment in a fish screen. Construction costs for a new fish screen were estimated at $150,000, which does not include other costs associated with implementing and maintaining a fish screening project. Construction costs for a well were estimated at $20,000 each. The diversion consisted of a pushup dam that diverted water into an off-channel pond. Water was then pumped into a pressurized system for irrigation. There are 3 different irrigators who used water from this surface diversion, and each has multiple water right claims totaling approximately 5 cfs. Current use was estimated at 300 gallons per minute (approximately 0.641 cfs). Some irrigated acreage was taken out of orchard production less than 5 years ago. Therefore, approximately 6.8 acre-feet will be put into the State of Washington Trust Water Right program. No water will be set aside for conservation savings. The construction of the two irrigation wells for three landowners was completed in September 2006. The Lower Well (Tippen/Wick) will produce up to 175 gpm while the Upper Well (Griffith) will produce up to 275 gpm during the irrigation season. The eight inch diameter wells were developed to a depth of 75 feet and 85 feet, respectively, and will be pumped with Submersible Turbine pumps. The irrigation wells have been fitted with new electric boxes and Siemens flowmeters (MAG8000).

  16. Evaluating Radionuclide Air Emission Stack Sampling Systems

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.

    2002-12-16

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R&D) facilities for the U.S. Department of Energy at the Hanford Site, Washington. These facilities are subject to Clean Air Act regulations that require sampling of radionuclide air emissions from some of these facilities. A revision to an American National Standards Institute (ANSI) standard on sampling radioactive air emissions has recently been incorporated into federal and state regulations and a re-evaluation of affected facilities is being performed to determine the impact. The revised standard requires a well-mixed sampling location that must be demonstrated through tests specified in the standard. It also carries a number of maintenance requirements, including inspections and cleaning of the sampling system. Evaluations were performed in 2000 2002 on two PNNL facilities to determine the operational and design impacts of the new requirements. The evaluation included inspection and cleaning maintenance activities plus testing to determine if the current sampling locations meet criteria in the revised standard. Results show a wide range of complexity in inspection and cleaning activities depending on accessibility of the system, ease of removal, and potential impact on building operations (need for outages). As expected, these High Efficiency Particulate Air (HEPA)-filtered systems did not show deposition significant enough to cause concerns with blocking of the nozzle or other parts of the system. The tests for sampling system location in the revised standard also varied in complexity depending on accessibility of the sample site and use of a scale model can alleviate many issues. Previous criteria to locate sampling systems at eight duct diameters downstream and two duct diameters upstream of the nearest disturbances is no guarantee of meeting criteria in the revised standard. A computational fluid dynamics model was helpful in understanding flow and contaminant mixing in an exhaust system and may be useful to identify potential sampling locations in an exhaust system that are likely to meet criteria in the revised standard.

  17. Tank 241-SY-102 January 2000 Compatibility Grab Samples Analytical Results for the Final Report [SEC 1 and 2

    SciTech Connect (OSTI)

    BELL, K.E.

    2000-05-11

    This document is the format IV, final report for the tank 241-SY-102 (SY-102) grab samples taken in January 2000 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank SY-102 samples were performed as directed in Comparability Grab Sampling and Analysis Plan for Fiscal Year 2000 (Sasaki 1999). No notification limits were exceeded. Preliminary data on samples 2SY-99-5, -6, and -7 were reported in ''Format II Report on Tank 241-SY-102 Waste Compatibility Grab Samples Taken in January 2000'' (Lockrem 2000). The data presented here represent the final results.

  18. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  19. Maximize revenue from gas condensate wells

    SciTech Connect (OSTI)

    Hall, S.R. )

    1988-09-01

    A computerized oil/gas modeling program called C.O.M.P. was used to analyze comparative recovery, losses and revenues from six different producing systems on a given wellstream as tested on initial completion. A multi-stage separation/stabilization/compression system (HERO system) manufactured by U.S. Enertek, Inc., was subsequently installed to produce the well, plus five other wells in the immediate area. This article compares theoretical gains forecast by the modeling program with actual gains recorded during later testing of the same well with a two-stage separation hookup and the multi-stage unit. The test using two-stage separation was run as a basis for comparison. Operating temperatures and pressures for each test are shown.

  20. Resonator-quantum well infrared photodetectors

    SciTech Connect (OSTI)

    Choi, K. K. Sun, J.; Olver, K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.

    2013-11-11

    We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

  1. Completion Report for Well ER-7-1

    SciTech Connect (OSTI)

    Bechtel Nevada

    2004-11-01

    Well ER-7-1 was drilled for the U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in January and February 2003, as part of a hydrogeologic investigation program in Yucca Flat. A 47.0-centimeter surface hole was drilled and cased off to a depth of 541.0 meters below the surface. The hole diameter was then decreased to 31.8 centimeters for drilling to a total depth of 762.0 meters. Detailed lithologic descriptions with stratigraphic assignments are included in this report. These are based on composite drill cuttings collected every 3 meters, and 62 sidewall samples taken at various depths below 85.3 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies were conducted on 22 samples of cuttings. The well was collared in Quaternary surficial deposits and penetrated a thick section of Tertiary-age volcanic deposits before terminating in carbonate rocks of Paleozoic-age.

  2. Completion report for Well ER-EC-6

    SciTech Connect (OSTI)

    M. J. Townsend

    2000-05-01

    Well ER-EC-6 was drilled for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the spring of 1999 as part of the DOE's hydrogeologic investigation well program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 66-centimeter surface hole was drilled and cased off to the depth of 485.1 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 1,524.0 meters. A preliminary composite, static, water level was measured at the depth of approximately 434.6 meters prior to installation of the completion string. One completion string with four isolated, slotted intervals was installed in the well. Detailed lithologic descriptions with preliminary stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters and 33 sidewall samples taken at various depths below 504.4 meters, supplemented by geophysical log data. Detailed chemical and mineralogical studies of rock samples are in progress. The well penetrated Tertiary-age lava and tuff of the Timber Mountain Group, the Paintbrush Group, the Calico Hills Formation, and the Volcanics of Quartz Mountain. Intense hydrothermal alteration was observed below the depth of 640 m. The preliminary geologic interpretation indicates that this site may be located on a buried structural ridge that separates the Silent Canyon and Timber Mountain caldera complexes.

  3. Completion Report for Well ER-EC-8

    SciTech Connect (OSTI)

    Bechtel Nevada

    2004-10-01

    Well ER-EC-8 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 129.8 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 609.6 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 98.4 meters, 24 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on evaluation of composite drill cuttings collected every 3 meters, and 20 sidewall samples taken at various depths below 157.9 meters, supplemented by geophysical log data and results of detailed chemical and mineralogical studies of rock samples. Drilling began in Tertiary-age tuff of the Thirsty Canyon Group, and penetrated tuffs of the Beatty Wash Formation, tuff of Buttonhook Wash, and the upper portion of the Ammonia Tanks Tuff. The geologic interpretation of data from this well helps define the location of the western margin of the Timber Mountain caldera complex in the southwestern Nevada volcanic field. Geologic and hydrologic data from the well will aid in development of models to predict groundwater flow and contaminant migration within and near the Nevada Test Site.

  4. Rapid determination of actinides in asphalt samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  5. Rapid determination of actinides in asphalt samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  6. Completion report for Well Cluster ER-20-6

    SciTech Connect (OSTI)

    1998-02-01

    The Well Cluster ER-20-6 drilling and completion project was conducted during February, March, and April of 1996 in support of the Nevada Environmental Restoration Project at the Nevada Test Site (NTS), Nye County, Nevada. This project is part of the DOE`s Underground Test Area (UGTA) subproject at the NTS. The primary UGTA tasks include collecting geological, geophysical, and hydrological data from new and existing wells to define groundwater quality as well as pathways and rates of groundwater migration at the NTS. A program of drilling wells near the sites of selected underground nuclear tests (near-field drilling) was implemented as part of the UGTA subproject to obtain site-specific data on the nature and extent of migration of radionuclides produced by an underground nuclear explosion. The ER-20-6 near-field drilling project was originally planned to be very similar to that recently conducted at Well Cluster ER-20-5, which was designed to obtain data on the existing hydrologic regime near the site of an underground nuclear explosion (IT, 1995; IT, 1996a). However, after further consideration of the goals of the near-field drilling program and the characteristics of the BULLION site, the TWG recommended that the ER-20-6 project be redesigned to accommodate a forced-gradient experiment. This proposed experiment is expected to yield more realistic estimates of transport parameters than can be deduced from sampling and testing natural groundwater flow systems.

  7. Impacts of an oil well blowout near Trecate, Italy on ecological resources

    SciTech Connect (OSTI)

    Brandt, C.; Becker, J.; Dauble, D.

    1995-12-31

    An ecological risk assessment (ERA) was conducted after the February 1995 blowout of an oil well near Trecate, Italy to quantify injuries to terrestrial and aquatic biological resources from effects of oil and habitat changes. Avian surveys were conducted on a surrogate area near Varallino to estimate species and numbers potentially exposed to oil and displaced by habitat alteration in the affected area. Of the 43 avian species observed, 20 are considered protected by European Community laws. The most abundant species were passero domestico, fringuello, cornacchia grigia, rondine, piccione torraiolo, and cardellino. These species likely suffered the greatest losses due to inhalation of volatile aromatics, dermal loading of oil, and/or habitat loss in the affected area. Based on CHARM model outputs, inhalation exposures to volatile aromatics and oil aerosols occurred above LOELs for all receptors within 2 km of the blowout. The most significant exposure pathway to large birds was dermal loading, which likely exceeded LC50 levels within 900m of the well. Terrestrial insects seldom contained detectable levels of PAHs, consistent with their shorter life span and residence time in the contaminated area. The highest concentrations of PAHs were found in dike vegetation, frogs, and benthic invertebrates. Ingestion exposures of woodmice to PAHs exceeded toxic reference levels at one site and mice had EHQ = >1 at soil PAH concentrations >4.2 mg/kg. Based on known body burdens causing narcotic response, neither fish nor benthic invertebrates experienced toxic consequences from exposure to PAHs in irrigation canal sediments.

  8. Marginal Expense Oil Well Wireless Surveillance (MEOWWS)

    SciTech Connect (OSTI)

    Nelson, Donald G.

    2002-03-11

    The objective of this study was to identify and field test a new, low cost, wireless oil well surveillance system. A variety of suppliers and technologies were considered. One supplier and system was chosen that was low cost, new to the oil field, and successfully field tested.

  9. T2WELL/ECO2N

    Energy Science and Technology Software Center (OSTI)

    002966IBMPC00 T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water http:..esd.lbl.gov/tough/licensing.html

  10. Microsoft Word - RUL_4Q2010_Rpt_Gas_Samp_Results_8Wells

    Office of Legacy Management (LM)

    the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 21 October 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 8 gas wells sampled are within 0.75 and 1.0 mile of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background: Project Rulison was the second

  11. Visual Sample Plan (VSP) - FIELDS Integration

    SciTech Connect (OSTI)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download instructions and software requirements for running the integrated package.

  12. January 2011 Groundwater Sampling at the Gnome-Coach, New Mexico, Site (Data Validation Package)

    SciTech Connect (OSTI)

    None

    2011-11-01

    Annual sampling was conducted January 19, 2011, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Well LRL-7 was not sampled per instruction from the lead. A duplicate sample was collected from well USGS-1.Water levels were measured in the monitoring wells onsite.

  13. Sampling Report for May-June, 2014 WIPP Samples

    Office of Environmental Management (EM)

    1 L L N L - X X X X - X X X X X Sampling Report for May- June, 2014 WIPP Samples UNCLASSIFIED Forensic Science Center January 8, 2015 Sampling Report for May-June, 2014 WIPP Samples Lawrence Livermore National Laboratory UNCLASSIFIED ii Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or

  14. Sampling Report for August 15, 2014 WIPP Samples

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 12 Figure 11. Sample transport container and example of bag packing. ... better collect materials, principally the solid materials around the ruptured container. ...

  15. Sampling Report for August 15, 2014 WIPP Samples

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLNL-TR-667000 L L N L - X X X X - X X X X X Sampling Report for August 15, 2014 WIPP Samples UNCLASSIFIED Forensic Science Center December 19, 2014 Sampling Report for August 15 2014 WIPP Samples Lawrence Livermore National Laboratory UNCLASSIFIED ii Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty,

  16. Hypercrosslinked Phenolic Polymers with Well Developed Mesoporous Frameworks

    SciTech Connect (OSTI)

    Zhang, Jinshui; Qiao, Zhenan; Mahurin, Shannon Mark; Jiang, Xueguang; Chai, Songhai; Lu, Hanfeng; Nelson, Kimberly M; Dai, Sheng

    2015-01-01

    A soft chemistry synthetic strategy based on a Friedel Crafts alkylation reaction is developed for the textural engineering of phenolic resin (PR) with a robust mesoporous framework to avoid serious framework shrinkage and maximize retention of organic functional moieties. By taking advantage of the structural benefits of molecular bridges, the resultant sample maintains a bimodal micro-mesoporous architecture with well-preserved organic functional groups, which is effective for carbon capture. Moreover, this soft chemistry synthetic protocol can be further extended to nanotexture other aromatic-based polymers with robust frameworks.

  17. Monitoring Results Natural Gas Wells Near Project Rulison

    Office of Legacy Management (LM)

    Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado,

  18. DWPF SMECT PVV SAMPLE CHARACTERIZATION AND REMEDIATION

    SciTech Connect (OSTI)

    Bannochie, C.; Crawford, C.

    2013-06-18

    On April 2, 2013, a solid sample of material collected from the Defense Waste Processing Facilitys Process Vessel Vent (PVV) jumper for the Slurry Mix Evaporator Condensate Tank (SMECT) was received at the Savannah River National Laboratory (SRNL). DWPF has experienced pressure spikes within the SMECT and other process vessels which have resulted in processing delays while a vacuum was re-established. Work on this sample was requested in a Technical Assistance Request (TAR). This document reports the results of chemical and physical property measurements made on the sample, as well as insights into the possible impact to the material using DWPFs proposed remediation methods. DWPF was interested in what the facility could expect when the material was exposed to either 8M nitric acid or 90% formic acid, the two materials they have the ability to flush through the PVV line in addition to process water once the line is capped off during a facility outage.

  19. Maximize revenue from gas condensate wells

    SciTech Connect (OSTI)

    Hall, S.R.

    1988-07-01

    A computerized oil/gas modeling program called C.O.M.P. allows operators to select the economically optimum producing equipment for a given gas-condensate well-stream. This article, the first of two, discusses use of the model to analyze performance of six different production system on the same wellstream and at the same wellhead conditions. All producing equipment options are unattended wellhead facilities designed for high volume gas-condensate wells and are not gas plants. A second article to appear in September will discuss operating experience with one of the producing systems analyzed, integrated multi-stage separation with stabilization and compression (the HERO system), which was developed by U.S. Enertek, Inc. This equipment was chosen for the wellstream analyzed because of the potential revenue increase indicated by the model.

  20. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  1. Hydrogeologic Site Characterization and Well Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories' Defense Waste Management Programs (DWMP) uses a combination of field systems, software and scientific expertise to perform characterization activities. Capabilities include groundwater testing and hydraulic response analysis to assess and understand subsurface conditions at a particular site or region. Hydrology as part of the Site Characterization Whether you are looking to site a petroleum production well, locate a new business, or select a site for a nuclear repository, a

  2. Perforating devices for use in wells

    DOE Patents [OSTI]

    Jacoby, Jerome J. (Grass Valley, CA); Brooks, James E. (Manvel, TX); Aseltine, Clifford L. (late of Houston, TX)

    2002-01-01

    The perforating device for use in completing a well includes a case, an explosive charge contained in the case, and a generally bowl-shaped liner. The liner is positioned adjacent the explosive charge and has non-uniforrn thickness along its length. The liner further includes a protruding portion near its tip. In another configuration, the liner includes a hole near its tip to expose a portion of the explosive charge.

  3. PSA_Well_Completion_Report.book

    Office of Legacy Management (LM)

    Restoration Project U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Environmental Restoration Project U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Nevada Environmental Restoration Project Well Completion Report for Corrective Action Unit 447, Project Shoal Area Churchill County, Nevada Revision No.: 0 September 2006 Approved for public release; further dissemination unlimited. DOE/NV--1166 Available for public sale,

  4. CNTA_Well_Installation_Report.book

    Office of Legacy Management (LM)

    Well Installation Report for Corrective Action Unit 443, Central Nevada Test Area Nye County, Nevada Revision No.: 0 January 2006 Approved for public release; further dissemination unlimited. DOE/NV--1102 Uncontrolled When Printed Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.ntis.gov/ordering.htm

  5. Remote down-hole well telemetry

    DOE Patents [OSTI]

    Briles, Scott D.; Neagley, Daniel L.; Coates, Don M.; Freund, Samuel M.

    2004-07-20

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  6. Can we treat CO₂ well blowouts like routine plumbing problems? A study of the incidence, impact, and perception of loss of well control

    SciTech Connect (OSTI)

    Porse, Sean L.; Wade, Sarah; Hovorka, Susan D.

    2014-12-31

    Risk communication literature suggests that for a number of reasons, the public may perceive a risk to be greater than indicated by its statistical probability. Public concern over risk can lead to significant and costly delays in project permitting and operations. Considering these theories, media coverage of CO₂-related well blowouts in 2013 gave rise to the questions: What is the risk of CO₂ well blowouts associated with CCUS through CO₂ EOR? What is the potential public perception of those risks? What information could be used to respond to public concern? To address these questions, this study aims to: 1) provide a framework for understanding the nature of onshore well blowouts, 2) quantify the incidence of such events for three specific geographic regions of Texas, 3) relate this data to CCUS and findings from other studies, and 4) explore the potential implications for public perception of this risk associated with CCUS projects. While quantifying answers to these questions proved to be challenging, the results from this study suggest that (1) the perceived risk of CO₂ well blowouts may exceed the statistical risk and (2) information that could be used to address this gap could be made more readily available to the greater benefit of industry and stakeholders who support the development of CCUS as an option for addressing anthropogenic CO₂ emissions. The study also suggests approaches to best conduct such data inquiries.

  7. Can we treat CO₂ well blowouts like routine plumbing problems? A study of the incidence, impact, and perception of loss of well control

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Porse, Sean L.; Wade, Sarah; Hovorka, Susan D.

    2014-12-31

    Risk communication literature suggests that for a number of reasons, the public may perceive a risk to be greater than indicated by its statistical probability. Public concern over risk can lead to significant and costly delays in project permitting and operations. Considering these theories, media coverage of CO₂-related well blowouts in 2013 gave rise to the questions: What is the risk of CO₂ well blowouts associated with CCUS through CO₂ EOR? What is the potential public perception of those risks? What information could be used to respond to public concern? To address these questions, this study aims to: 1) providemore » a framework for understanding the nature of onshore well blowouts, 2) quantify the incidence of such events for three specific geographic regions of Texas, 3) relate this data to CCUS and findings from other studies, and 4) explore the potential implications for public perception of this risk associated with CCUS projects. While quantifying answers to these questions proved to be challenging, the results from this study suggest that (1) the perceived risk of CO₂ well blowouts may exceed the statistical risk and (2) information that could be used to address this gap could be made more readily available to the greater benefit of industry and stakeholders who support the development of CCUS as an option for addressing anthropogenic CO₂ emissions. The study also suggests approaches to best conduct such data inquiries.« less

  8. Borehole data package for well 699-37-47A, PUREX Plant Cribs, CY 1996

    SciTech Connect (OSTI)

    Lindberg, J.W.; Williams, B.A.; Spane, F.A.

    1997-02-01

    A new groundwater monitoring well (699-37-47A) was installed in 1996 as a downgradient well near the PUREX Plant Cribs Treatment, Storage, and Disposal Facility at Hanford. This document provides data from the well drilling and construction operations, as well as data from subsequent characterization of groundwater and sediment samples collected during the drilling process. The data include: well construction documentation, geologist`s borehole logs, results of laboratory analysis of groundwater samples collected during drilling and of physical tests conducted on sediment samples collected during drilling, borehole geophysics, and results of aquifer testing including slug tests and flowmeter analysis. This well (699-37-47A) was constructed in support of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestone M-24-00H and interim milestone M-24-35 (Ecology et al. 1994), and was funded under Project W-152.

  9. Acceptance sampling using judgmental and randomly selected samples

    SciTech Connect (OSTI)

    Sego, Landon H.; Shulman, Stanley A.; Anderson, Kevin K.; Wilson, John E.; Pulsipher, Brent A.; Sieber, W. Karl

    2010-09-01

    We present a Bayesian model for acceptance sampling where the population consists of two groups, each with different levels of risk of containing unacceptable items. Expert opinion, or judgment, may be required to distinguish between the high and low-risk groups. Hence, high-risk items are likely to be identifed (and sampled) using expert judgment, while the remaining low-risk items are sampled randomly. We focus on the situation where all observed samples must be acceptable. Consequently, the objective of the statistical inference is to quantify the probability that a large percentage of the unsampled items in the population are also acceptable. We demonstrate that traditional (frequentist) acceptance sampling and simpler Bayesian formulations of the problem are essentially special cases of the proposed model. We explore the properties of the model in detail, and discuss the conditions necessary to ensure that required samples sizes are non-decreasing function of the population size. The method is applicable to a variety of acceptance sampling problems, and, in particular, to environmental sampling where the objective is to demonstrate the safety of reoccupying a remediated facility that has been contaminated with a lethal agent.

  10. Well constructions with inhibited microbial growth and methods of antimicrobial treatment in wells

    DOE Patents [OSTI]

    Lee, Brady D.; Dooley, Kirk J.

    2004-11-02

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  11. Sample page | Open Energy Information

    Open Energy Info (EERE)

    Sample pages; Help pages; References Francis C. Monastero. 2002. An overview of industry-military cooperation in the development of power operations at the Coso...

  12. DOE IDIQ ESPC Contract Sample

    Broader source: Energy.gov [DOE]

    Document displays a sample U.S. Department of Energy (DOE) indefinite-delivery, indefinite-quantity (IDIQ) energy savings performance contract (ESPC).

  13. Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    of geothermometric calculations and geochemical modeling of the data. In the case of gas flux sampling, different measurement techniques and devices may disrupt or alter the...

  14. Sample Residential Program Term Sheet

    Broader source: Energy.gov [DOE]

    A sample for defining and elaborating on the specifics of a clean energy loan program. Author: U.S. Department of Energy

  15. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  16. Logging of subterranean wells using coiled tubing

    SciTech Connect (OSTI)

    Pilla, J.

    1991-01-15

    This patent describes an apparatus for production logging of a well utilizing artificial lift in a wellbore. It comprises: coiled tubing extending into the wellbore having wireline electrical cable passing through a central bore thereof and having a remote end within the wellbore which end is connected to gas injector means. The wireline cable passing through the gas injector means to a flexible electrically conductive support spacer having an end portion remote from the gas injector means and logging means connected to the end portion of the support spacer.

  17. Production Well Performance Enhancement using Sonication Technology

    SciTech Connect (OSTI)

    Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

    2005-12-31

    The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: Laboratory studies Mathematical modeling Sonic tool design and development Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

  18. Novel Tube-in-Tube System Simplifies Subsurface Fluid Sampling

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2011-01-21

    Barry Freifeld of Berkeley Lab has developed a device that simplifies subsurface fluid sampling. The technology’s tube-within-a-tube construction is a substantial improvement to the U-tube sampling system widely used for borehole sampling today. Using only one line, instead of two, the tube-in-tube system enables the sampling device to get lowered easily through a pressure control device (such as a grease head or pack-off) for discrete level sampling of live oil and gas wells...

  19. Central Shops Burning/Rubble Pit 631-6G Additonal Sampling and Monitor Well Installation Report

    SciTech Connect (OSTI)

    Palmer, E.

    1995-02-01

    The Central Shops Burning/Rubble Pit 631-6G was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal and incineration of potentially hazardous substances, such as metals and organic solvents.

  20. Rheology and TIC/TOC results of ORNL tank samples

    SciTech Connect (OSTI)

    Pareizs, J. M.; Hansen, E. K.

    2013-04-26

    The Savannah River National Laboratory (SRNL)) was requested by Oak Ridge National Laboratory (ORNL) to perform total inorganic carbon (TIC), total organic carbon (TOC), and rheological measurements for several Oak Ridge tank samples. As received slurry samples were diluted and submitted to SRNL-Analytical for TIC and TOC analyses. Settled solids yield stress (also known as settled shear strength) of the as received settled sludge samples were determined using the vane method and these measurements were obtained 24 hours after the samples were allowed to settled undisturbed. Rheological or flow properties (Bingham Plastic viscosity and Bingham Plastic yield stress) were determined from flow curves of the homogenized or well mixed samples. Other targeted total suspended solids (TSS) concentrations samples were also analyzed for flow properties and these samples were obtained by diluting the as-received sample with de-ionized (DI) water.

  1. 200 area TEDF sample schedule

    SciTech Connect (OSTI)

    Brown, M.J.

    1995-03-22

    This document summarizes the sampling criteria associated with the 200 Area Treatment Effluent Facility (TEDF) that are needed to comply with the requirements of the Washington State Discharge Permit No. WA ST 4502 and good engineering practices at the generator streams that feed into TEDF. In addition, this document Identifies the responsible parties for both sampling and data transference.

  2. Third invitational well-testing symposium: well testing in low permeability environments

    SciTech Connect (OSTI)

    Doe, T.W.; Schwarz, W.J.

    1981-03-01

    The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted. (DLC)

  3. ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON JANUARY 15, 2013

    SciTech Connect (OSTI)

    Reigel, M.

    2014-05-19

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received twelve samples of colemanite concrete for analysis on January 15, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the hydrogen partial density met or exceeded the specified limit. All of the samples met or exceeded the boron partial density lower bound with the exception of samples G3-M11-2000-H, G3-M11-3000-M, and G5-M1-3000-H which are below the limit of 1.65E-01 g/cm{sup 3}.

  4. ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON JANUARY 15, 2013

    SciTech Connect (OSTI)

    Reigel, M.; Best, D.

    2013-02-13

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received twelve samples of colemanite concrete for analysis on January 15, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1311, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the hydrogen partial density met or exceeded the specified limit. All of the samples met or exceeded the boron partial density lower bound with the exception of samples G3-M11-2000-H, G3-M11-3000-M, and G5-M1-3000-H which are below the limit of 1.65E-01 g/cm3.

  5. Sample push-out fixture

    DOE Patents [OSTI]

    Biernat, John L.

    2002-11-05

    This invention generally relates to the remote removal of pelletized samples from cylindrical containment capsules. V-blocks are used to receive the samples and provide guidance to push out rods. Stainless steel liners fit into the v-channels on the v-blocks which permits them to be remotely removed and replaced or cleaned to prevent cross contamination between capsules and samples. A capsule holder securely holds the capsule while allowing manual up/down and in/out movement to align each sample hole with the v-blocks. Both end sections contain identical v-blocks; one that guides the drive out screw and rods or manual push out rods and the other to receive the samples as they are driven out of the capsule.

  6. Soil Sampling At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    importance of aspect. The samples were analyzed for their Hg contents, as well as for pH, hydrous Fe and Mn, and organic carbon, all of which are known to have influence on Hg...

  7. A Mineralogical Petrographic And Geochemical Study Of Samples...

    Open Energy Info (EERE)

    Mineralogical Petrographic And Geochemical Study Of Samples From Wells In The Geothermal Field Of Milos Island (Greece) Jump to: navigation, search OpenEI Reference LibraryAdd to...

  8. Descriptive logs, skeletonized samples, and photographs of core...

    Open Energy Info (EERE)

    skeletonized samples, and photographs of core from Presco Energy's thermal gradient wells P3-1, P10-1, and P32-2 in the Rye Patch area, Pershing County, Nevada Jump to:...

  9. Completion Report for Well ER-EC-7

    SciTech Connect (OSTI)

    Bechtel Nevada

    2004-10-01

    Well ER-EC-7 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 265.8 meters below the surface. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 422.5 meters. The planned depth of 762 meters was not reached due to borehole stability problems. One completion string with two isolated slotted intervals was installed in the well. A preliminary composite, static, water level was measured at the depth of 227.8 meters, 20 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings, supplemented by geophysical log data, and incorporating data from detailed chemical and mineralogical studies of rock samples. Beneath a thin alluvial deposit, the well penetrated 410 meters of lava and bedded tuff of the Volcanics of Fortymile Canyon Group, deposited in the Timber Mountain caldera moat after caldera collapse. The geologic interpretation of data from this well provides information on the thickness, lithologic composition, and hydrogeologic character of moat-filling rocks in the southern portion of the Timber Mountain caldera complex in the southwestern Nevada volcanic field.

  10. Analytical Results For MOX Colemanite Concrete Samples Received On November, 2013

    SciTech Connect (OSTI)

    Reigel, Marissa M.

    2013-12-18

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received two samples of colemanite concrete for analysis on November 21, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

  11. ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON SEPTEMBER 4, 2013

    SciTech Connect (OSTI)

    Reigel, M.

    2014-05-19

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received three samples of colemanite concrete for analysis on September 4, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

  12. ANALYTICAL RESULTS FOR MOX COLEMANITE CONCRETE SAMPLES RECEIVED ON NOVEMBER 21, 2013

    SciTech Connect (OSTI)

    Reigel, M.

    2014-05-19

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received two samples of colemanite concrete for analysis on November 21, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

  13. Analytical Results For MOX Colemanite Concrete Samples Received On September 4, 2013

    SciTech Connect (OSTI)

    Reigel, Marissa M.

    2013-09-24

    The Mixed Oxide Fuel Fabrication Facility (MFFF) will use colemanite bearing concrete neutron absorber panels credited with attenuating neutron flux in the criticality design analyses and shielding operators from radiation. The Savannah River National Laboratory (SRNL) is tasked with measuring the total density, partial hydrogen density, and partial boron density of the colemanite concrete. SRNL received three samples of colemanite concrete for analysis on September 4, 2013. The average total density of each of the samples measured by the ASTM method C 642, the average partial hydrogen density was measured using method ASTM E 1131, and the average partial boron density of each sample was measured according to ASTM C 1301. The lower limits and measured values for the total density, hydrogen partial density, and boron partial density are presented. For all the samples tested, the total density and the boron partial density met or exceeded the specified limit. None of the samples met the lower limit for hydrogen partial density.

  14. Duplex sampling apparatus and method

    DOE Patents [OSTI]

    Brown, Paul E. (Pittsburgh, PA); Lloyd, Robert (West Mifflin, PA)

    1992-01-01

    An improved apparatus is provided for sampling a gaseous mixture and for measuring mixture components. The apparatus includes two sampling containers connected in series serving as a duplex sampling apparatus. The apparatus is adapted to independently determine the amounts of condensable and noncondensable gases in admixture from a single sample. More specifically, a first container includes a first port capable of selectively connecting to and disconnecting from a sample source and a second port capable of selectively connecting to and disconnecting from a second container. A second container also includes a first port capable of selectively connecting to and disconnecting from the second port of the first container and a second port capable of either selectively connecting to and disconnecting from a differential pressure source. By cooling a mixture sample in the first container, the condensable vapors form a liquid, leaving noncondensable gases either as free gases or dissolved in the liquid. The condensed liquid is heated to drive out dissolved noncondensable gases, and all the noncondensable gases are transferred to the second container. Then the first and second containers are separated from one another in order to separately determine the amount of noncondensable gases and the amount of condensable gases in the sample.

  15. DOE Regional Partnership Begins Core Sampling for Large-Volume

    Office of Environmental Management (EM)

    Sequestration Test | Department of Energy Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test DOE Regional Partnership Begins Core Sampling for Large-Volume Sequestration Test May 22, 2009 - 1:00pm Addthis Washington, DC - The Plains CO2 Reduction (PCOR) Partnership, one of seven members of the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has begun collecting core samples from a new characterization well near Spectra Energy's Fort

  16. Productivity and injectivity of horizontal wells. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; OIL WELLS; DAMAGE; WELL DRILLING; WELL COMPLETION; EQUATIONS; PROGRESS REPORT This report...

  17. Results of Remediation and Verification Sampling for the 600-270 Horseshoe Landfill

    SciTech Connect (OSTI)

    W. S. Thompson

    2005-12-14

    This report presents the results of the 2005 remedial action and verification soil sampling conducted at the 600-270 waste site after removal of soil containing residual concentrations of dichlorodiphenyl trichloroethane and its breakdown products dichlorodiphenyl dichloroethylene and dichlorodiphenyl dichloroethane. The remediation was performed in response to post-closure surface soil sampling performed between 1998 and 2003 that indicated the presence of residual DDT contamination exceeding the Record of Decision for the 1100 Area National Priorities List site cleanup criteria of 1 mg/kg that was established for the original 1994 cleanup activities.

  18. Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and vicinity

    SciTech Connect (OSTI)

    Janik, C.J.; Nathenson, M.; Scholl, M.A.

    1994-12-31

    Published and new data for chemical and isotopic samples from wells and springs on Kilauea Volcano and vicinity are presented. These data are used to understand processes that determine the chemistry of dilute meteoric water, mixtures with sea water, and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water and dissolution of rock from weathering are the major processes that determine the composition of dissolved constituents in water. Data from coastal springs demonstrate that there is a large thermal system south of the lower east rift of Kilauea. Samples of thermal water from shallow wells in the lower east rift and vicinity have rather variable chemistry indicating that a number of processes operate in the near surface. Water sampled from the available deep wells is different in composition from the shallow thermal water, indicating that generally there is not a significant component of deep water in the shallow wells. Data for samples from available deep wells show significant gradients in chemistry and steam content of the reservoir fluid. These gradients are interpreted to indicate that the reservoir tapped by the existing wells is an evolving vapor-dominated system.

  19. Inspecting coiled tubing for well operations

    SciTech Connect (OSTI)

    Gard, M.F.; Pasternack, E.S.; Smith, L.J.

    1992-02-18

    This patent describes improvement in a coiled tubing system for insertion of a substantially continuous bendable length of metal tubing into and withdrawal from a wellbore, the system including a tubing injection unit disposed for injecting the length of tubing into the well bore and storage means for dispensing the length of tubing and receiving the length of tubing from the injection unit. The improvement includes: tubing inspection apparatus for substantially continuously inspecting the wall section of the tubing to detect cracks and structural defects which may lead to tubing failure, the apparatus comprising: a source of electromagnetic radiation mounted in proximity to the tubing between the injection unit and a wellhead into which the tubing is injected; a radiation detector unit for receiving signals from the source which have been projected through the wall of the tubing; means for receiving signals form the detector unit for monitoring the structural integrity o the wall of the tubing during one of injecting and withdrawing the tubing with respect to the wellhead; and housing means supported for rotation about a longitudinal axis of the tubing.

  20. Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2010

    SciTech Connect (OSTI)

    None

    2010-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on July 6 and 7, 2010. Additionally, a water sample was obtained at one well known as the 29-6 Water Hole, several miles west of the Gasbuggy site. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. The one water well sample was analyzed for gamma-emitting radionuclides and tritium. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  1. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011

    SciTech Connect (OSTI)

    2011-09-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  2. Air Sampling System Evaluation Template

    Energy Science and Technology Software Center (OSTI)

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  3. Sample Business Plan Framework 1

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

  4. Sample Business Plan Framework 2

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 1: A program seeking to continue operations in the post-grant period as a not-for-profit (NGO) entity.

  5. Sample Business Plan Framework 3

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 3: A government entity running a Commercial PACE program in the post-grant period.

  6. Sample Business Plan Framework 5

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 5: A program that establishes itself as a government entity, then operates using a fee-based structure.

  7. Sample Business Plan Framework 4

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Sample Business Plan Framework 4: A program seeking to continue in the post-grant period as a marketing contractor to a utility.

  8. Depth-discrete sampling port

    DOE Patents [OSTI]

    Pemberton, Bradley E. (Aiken, SC); May, Christopher P. (Columbia, MD); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA); Nichols, Ralph L. (North Augusta, SC)

    1998-07-07

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  9. Depth-discrete sampling port

    DOE Patents [OSTI]

    Pemberton, Bradley E. (Aiken, SC); May, Christopher P. (Columbia, MD); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA); Nichols, Ralph L. (North Augusta, SC)

    1999-01-01

    A sampling port is provided which has threaded ends for incorporating the port into a length of subsurface pipe. The port defines an internal receptacle which is in communication with subsurface fluids through a series of fine filtering slits. The receptacle is in further communication through a bore with a fitting carrying a length of tubing there which samples are transported to the surface. Each port further defines an additional bore through which tubing, cables, or similar components of adjacent ports may pass.

  10. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Resources Chemical Inventory All Sample Preparation Labs are stocked with an assortment of common solvents, acids, bases, buffers, and other reagents. See our Chemical Inventories for a list of available reagents. If you need large quantities of any chemicals, please order or bring your own supply (see below). Chemical Inventories Standard Operating Procedures (SOPs) If you will be working with any samples or reagents that are significantly toxic, reactive, corrosive, flammable, or

  11. Pahute Mesa Well Development and Testing Analyses for Wells ER-20-7, ER-20-8 #2, and ER-EC-11, Revision 1

    SciTech Connect (OSTI)

    Greg Ruskauff

    2011-12-01

    This report analyzes the following data collected from ER-20-7, ER-20-8 No.2, and ER-EC-11 during WDT operations: (1) Chemical indicators of well development (Section 2.0); (2) Static hydraulic head (Section 3.0); (3) Radiochemistry and geochemistry (Section 4.0); (4) Drawdown observed at locations distal to the pumping well (Section 5.0); and (5) Drilling water production, flow logs, and temperature logs (Section 6.0). The new data are further considered with respect to existing data as to how they enhance or change interpretations of groundwater flow and transport, and an interim small-scale conceptual model is also developed and compared to Phase I concepts. The purpose of well development is to remove drilling fluids and drilling-associated fines from the formation adjacent to a well so samples reflecting ambient groundwater water quality can be collected, and to restore hydraulic properties near the well bore. Drilling fluids can contaminate environmental samples from the well, resulting in nonrepresentative measurements. Both drilling fluids and preexisting fines in the formation adjacent to the well can impede the flow of water from the formation to the well, creating artifacts in hydraulic response data measured in the well.

  12. Pantex Protective Force hailed as "well prepared, well trained" |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Protective Force hailed as "well prepared, well trained" | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  13. Ball assisted device for analytical surface sampling

    DOE Patents [OSTI]

    ElNaggar, Mariam S; Van Berkel, Gary J; Covey, Thomas R

    2015-11-03

    A system for sampling a surface includes a sampling probe having a housing and a socket, and a rolling sampling sphere within the socket. The housing has a sampling fluid supply conduit and a sampling fluid exhaust conduit. The sampling fluid supply conduit supplies sampling fluid to the sampling sphere. The sampling fluid exhaust conduit has an inlet opening for receiving sampling fluid carried from the surface by the sampling sphere. A surface sampling probe and a method for sampling a surface are also disclosed.

  14. Gasbuggy, New Mexico, Hydrologic and Natural Gas Sampling and Analysis Results for 2009

    SciTech Connect (OSTI)

    None

    2009-11-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted hydrologic and natural gas sampling for the Gasbuggy, New Mexico, site on June 16, and 17, 2009. Hydrologic sampling consists of collecting water samples from water wells and surface water locations. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. The water well samples were analyzed for gamma-emitting radionuclides and tritium. Surface water samples were analyzed for tritium. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. Water samples were analyzed by ALS Laboratory Group in Fort Collins, Colorado, and natural gas samples were analyzed by Isotech Laboratories in Champaign, Illinois. Concentrations of tritium and gamma-emitting radionuclides in water samples collected in the vicinity of the Gasbuggy site continue to demonstrate that the sample locations have not been impacted by detonation-related contaminants. Results from the sampling of natural gas from producing wells demonstrate that the gas wells nearest the Gasbuggy site are not currently impacted by detonation-related contaminants. Annual sampling of the gas production wells nearest the Gasbuggy site for gas and produced water will continue for the foreseeable future. The sampling frequency of water wells and surface water sources in the surrounding area will be reduced to once every 5 years. The next hydrologic sampling event at water wells, springs, and ponds will be in 2014.

  15. Sample Results from Routine Salt Batch 7 Samples

    SciTech Connect (OSTI)

    Peters, T.

    2015-05-13

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the microbatches of Integrated Salt Disposition Project (ISDP) Salt Batch (Macrobatch) 7B have been analyzed for 238Pu, 90Sr, 137Cs, Inductively Coupled Plasma Emission Spectroscopy (ICPES), and Ion Chromatography Anions (IC-A). The results from the current microbatch samples are similar to those from earlier samples from this and previous macrobatches. The Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU) continue to show more than adequate Pu and Sr removal, and there is a distinct positive trend in Cs removal, due to the use of the Next Generation Solvent (NGS). The Savannah River National Laboratory (SRNL) notes that historically, most measured Concentration Factor (CF) values during salt processing have been in the 12-14 range. However, recent processing gives CF values closer to 11. This observation does not indicate that the solvent performance is suffering, as the Decontamination Factor (DF) has still maintained consistently high values. Nevertheless, SRNL will continue to monitor for indications of process upsets. The bulk chemistry of the DSSHT and SEHT samples do not show any signs of unusual behavior.

  16. Hawaii basic data for thermal springs and wells as recorded in geotherm

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-07-01

    GEOTHERM sample file contains 34 records for Hawaii. The high average ambient air temperature found on the Hawaiian Islands required fluid samples to have a temperature of at least 30/sup 0/C to be included. A computer-generated index is found in appendices A of this report. The index give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Hawaii. The index is found in appendix A (p. is sorted by county and by the name of the source. Also given are well number (when appropriate), site type (spring, well, fumarole), latitude, longitude (both use decimal minutes), GEOTHERM record identifier, and temperature (/sup 0/C). In conducting a search of Appendix A, site names are quite useful for locating springs or wells for which a specific name is commonly used, but sites which do not have specific names are more difficult to locate.

  17. Well test imaging - a new method for determination of boundaries from well test data

    SciTech Connect (OSTI)

    Slevinsky, B.A.

    1997-08-01

    A new method has been developed for analysis of well test data, which allows the direct calculation of the location of arbitrary reservoir boundaries which are detected during a well test. The method is based on elements of ray tracing and information theory, and is centered on the calculation of an instantaneous {open_quote}angle of view{close_quote} of the reservoir boundaries. In the absence of other information, the relative reservoir shape and boundary distances are retrievable in the form of a Diagnostic Image. If other reservoir information, such as 3-D seismic, is available; the full shape and orientation of arbitrary (non-straight line or circular arc) boundaries can be determined in the form of a Reservoir Image. The well test imaging method can be used to greatly enhance the information available from well tests and other geological data, and provides a method to integrate data from multiple disciplines to improve reservoir characterization. This paper covers the derivation of the analytical technique of well test imaging and shows examples of application of the technique to a number of reservoirs.

  18. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    SciTech Connect (OSTI)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plans scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  19. Modular Automated Processing System (MAPS) for analysis of biological samples.

    SciTech Connect (OSTI)

    Gil, Geun-Cheol; Chirica, Gabriela S.; Fruetel, Julia A.; VanderNoot, Victoria A.; Branda, Steven S.; Schoeniger, Joseph S.; Throckmorton, Daniel J.; Brennan, James S.; Renzi, Ronald F.

    2010-10-01

    We have developed a novel modular automated processing system (MAPS) that enables reliable, high-throughput analysis as well as sample-customized processing. This system is comprised of a set of independent modules that carry out individual sample processing functions: cell lysis, protein concentration (based on hydrophobic, ion-exchange and affinity interactions), interferent depletion, buffer exchange, and enzymatic digestion of proteins of interest. Taking advantage of its unique capacity for enclosed processing of intact bioparticulates (viruses, spores) and complex serum samples, we have used MAPS for analysis of BSL1 and BSL2 samples to identify specific protein markers through integration with the portable microChemLab{trademark} and MALDI.

  20. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  1. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  2. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, Katharine H. (13150 Wenonah SE. Apt. 727, Albuquerque, NM 87123)

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  3. The Ocean Sampling Day Consortium

    SciTech Connect (OSTI)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z.; Sonnenschein, Eva C.; Cariou, Thierry; O’Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R.; Kremp, Anke; DeLorenzo, Marie E.; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P.; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A.; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M.; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion M. F.; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C.; Kandil, Mahrous M.; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; ten Hoopen, Petra; Cochrane, Guy; L’Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M.; Martin, Patrick; Jensen, Rachelle M.; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A. Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J.; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N.; Gasol, Josep M.; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S.; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M.; Collins, R. Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J.; Amaral-Zettler, Linda A.; Gilbert, Jack A.; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

  4. Water-Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water-Gas Sampling (Redirected from Water-Gas Samples) Redirect page Jump to: navigation, search REDIRECT Downhole Fluid Sampling Retrieved from "http:en.openei.orgw...

  5. Category:Water Sampling | Open Energy Information

    Open Energy Info (EERE)

    Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Water Sampling page? For detailed information on Water Sampling as...

  6. Customized Well Test Methods for a Non-Customary Geothermal Well

    SciTech Connect (OSTI)

    Burr, Myron

    1986-01-21

    Recent testing of Thermal 4, The Geysers blowout well, has shown that the flow has two different components: a low enthalpy, mineral-laden flow from a well drilled within the existing wellhead and a high flowrate, high enthalpy annular flow. The commingled flows were mechanically separated and individually tested. The results of the test show that the flows are from two very different sources that are in weak hydraulic communication. Work is in progress to apply this information to bring Thermal 4 within compliance of the 1986 air quality regulations.

  7. U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Oil Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 52.2 51.3 54.2 51.8 50.6 56.6 62.2 66.6 79.1 86.5 1970's 86.7 78.4 93.5 103.8 110.2 138.6 151.1 170.0 208.0 243.1 1980's 272.1 336.3 347.4 283.8 262.1 270.4 284.9 246.0 279.4 282.3 1990's 321.8 346.9 362.3 356.6 409.5 415.8 341.0 445.6 566.0 783.0 2000's 593.4 729.1 882.8 1,037.3 1,441.8 1,920.4

  8. U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 44.0 45.2 50.8 48.2 48.5 53.1 56.9 61.5 66.2 70.2 1970's 80.9 86.8 94.9 105.8 141.7 177.2 190.3 230.2 281.7 339.6 1980's 376.5 464.0 515.4 366.5 329.2 372.3 389.2 259.1 366.4 355.4 1990's 367.5 441.2 357.6 387.7 491.5 481.2 541.0 655.6 973.2 1,115.5 2000's 1,075.4 1,620.4 1,673.4 2,065.1 1,977.3 2,392.9

  9. U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 102.7 94.7 97.1 92.4 104.8 101.9 133.8 141.0 148.5 154.3 1970's 160.7 166.6 157.8 155.3 189.2 262.0 270.4 313.5 374.2 443.1 1980's 536.4 698.6 864.3 608.1 489.8 508.7 522.9 380.4 460.3 457.8 1990's 471.3 506.6 426.1 521.2 535.1 629.7 616.0 728.6 815.6 798.4 2000's 756.9 896.5 991.9

  10. Multifunctional Corrosion-resistant Foamed Well Cement Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well ...

  11. Energetic Materials for EGS Well Stimulation (solids, liquids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energetic Materials for EGS Well Stimulation (solids, liquids, gases) Energetic Materials for EGS Well Stimulation (solids, liquids, gases) Energetic Materials for EGS Well ...

  12. COMPLETION REPORT FOR WELL CLUSTER ER-5-3

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2005-12-01

    Well Cluster ER-5-3 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This cluster of 3 wells was drilled in 2000 and 2001 as part of a hydrogeologic investigation program in Frenchman Flat. The first borehole in the cluster, Well ER-5-3, was drilled in February and March 2000. A 47.0-centimeter surface hole was drilled and cased off to the depth of 374.8 meters. The hole diameter was decreased to 31.1 centimeters for drilling to a total depth of 794.3 meters within welded ash-flow tuff. A piezometer string with 1 slotted interval was installed in the annulus of the surface casing, open to the saturated alluvium. A completion string with 2 slotted intervals was installed in the main hole, open to saturated alluvium and to the welded tuff aquifer. A second piezometer string with 1 slotted interval open to the welded-tuff aquifer was installed outside the completion string. Well ER-5-3 No.2 was drilled about 30 meters west of the first borehole in March 2000, and was recompleted in March 2001. A 66.0-centimeter hole was drilled and cased off to the depth of 613.8 meters. The hole diameter was decreased to 44.5 centimeters and the borehole was drilled and cased off to the depth of 849.0 meters. The hole diameter was decreased once more to 31.1 centimeters for drilling to a total depth of 1,732.2 meters in dolomite. A completion string open to the dolomite (lower carbonate aquifer) was installed. Well ER-5-3 No.3 was drilled approximately 30 meters north of the first 2 boreholes in February 2001. A 66.0-centimeter hole was drilled and cased off to the depth of 36.6 meters, then the main 25.1-centimeter-diameter hole was drilled to a total depth of 548.6 meters in alluvium. A slotted stainless-steel tubing string was installed in the saturated alluvium. A preliminary composite, static water level was measured at the depth of 282.6 meters, prior to development and hydrologic testing. Detailed lithologic descriptions and stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 120 sidewall samples taken at various depths below 91 meters in Wells ER-5-3 and ER-5-3 No.2, supplemented by geophysical log data. The wells penetrated Quaternary/Tertiary alluvium to the depth of 622.4 meters, and an 8.5-meter-thick basalt flow was encountered within the alluvium. Tertiary tuff was penetrated to the depth of approximately 1,425.9 meters, where the top of the lower carbonate aquifer was tagged in Well ER-5-3 No.2.

  13. Sample rotating turntable kit for infrared spectrometers

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

    2008-03-04

    An infrared spectrometer sample rotating turntable kit has a rotatable sample cup containing the sample. The infrared spectrometer has an infrared spectrometer probe for analyzing the sample and the rotatable sample cup is adapted to receive the infrared spectrometer probe. A reflectance standard is located in the rotatable sample cup. A sleeve is positioned proximate the sample cup and adapted to receive the probe. A rotator rotates the rotatable sample cup. A battery is connected to the rotator.

  14. Apparatus and method for handheld sampling

    DOE Patents [OSTI]

    Staab, Torsten A. (Whiterock, NM)

    2005-09-20

    The present invention includes an apparatus, and corresponding method, for taking a sample. The apparatus is built around a frame designed to be held in at least one hand. A sample media is used to secure the sample. A sample media adapter for securing the sample media is operated by a trigger mechanism connectively attached within the frame to the sample media adapter.

  15. Single-point representative sampling with shrouded probes

    SciTech Connect (OSTI)

    McFarland, A.R.; Rodgers, J.C.

    1993-08-01

    The Environmental Protection Agency (EPA) prescribed methodologies for sampling radionuclides in air effluents from stacks and ducts at US Department of Energy (DOE) facilities. Requirements include use of EPA Method 1 for the location of sampling sites and use of American National Standards Institute (ANSI) N13.1 for guidance in design of sampling probes and the number of probes at a given site. Application of ANSI N13.1 results in sampling being performed with multiprobe rakes that have as many as 20 probes. There can be substantial losses of aerosol particles in such sampling that will degrade the quality of emission estimates from a nuclear facility. Three alternate methods, technically justified herein, are proposed for effluent sampling. First, a shrouded aerosol sampling probe should replace the sharp-edged elbowed-nozzle recommended by ANSI. This would reduce the losses of aerosol particles in probes and result in the acquisition of more representative aerosol samples. Second, the rakes of multiple probes that are intended to acquire representative samples through spatial coverage should be replaced by a single probe located where contaminant mass and fluid momentum are both well mixed. A representative sample can be obtained from a well-mixed flow. Some effluent flows will need to be engineered to achieve acceptable mixing. Third, sample extraction should be performed at a constant flow rate through a suitable designed shrouded probe rather than at a variable flow rate through isokinetic probes. A shrouded probe is shown to have constant sampling characteristics over a broad range of stack velocities when operated at a fixed flow rate.

  16. RAPID/Geothermal/Well Field/Texas | Open Energy Information

    Open Energy Info (EERE)

    wells. A geothermal well is a well drilled within the established limits of a designated geothermal field. 16 TAC 3.79. If the proposed well is located in a Texas Groundwater...

  17. The Ocean Sampling Day Consortium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; et al

    2015-06-19

    In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less

  18. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety

  19. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  20. {sup 235}U accountability measurements on small samples

    SciTech Connect (OSTI)

    Sigg, R.A.

    1991-12-31

    Savannah River Site (SRS) is improving uranium accountability at its fuel fabrication facility through measurements of {sup 235}U in samples taken from uranium/aluminum alloy melts. Since area personnel desired a method that would minimize mixed waste, low volume samples are prepared from dissolutions of production melt grab samples. The solution assay monitor (SAM) analyzes for {sup 235}U gamm-rays by using a high-efficiency germanium well detector. The detector`s high counting efficiency permits analysis of small samples (7 mL) from these dissolutions, and the counting geometry minimizes sample geometry uncertainties. Counting each sample for thirty minutes delivers excellent precision across the calibration range of 3 to 12 g uranium per liter. As shown by interlaboratory calibration, the gamma-ray spectrometer provides overall (counting, calibration, geometric,...) uncertainties less than 0.7% one sigma. Gamma-rays from a reference source, used to provide live-time corrections, are collimated to avoid absorption by the sample in the detector well. Since sample masses are small, minor self-attenuation corrections are calculated from chemical composition data rather than determined in separate transmission measurements. This avoids employing short-lived transmission sources for self-attenuation corrections.

  1. sup 235 U accountability measurements on small samples

    SciTech Connect (OSTI)

    Sigg, R.A.

    1991-01-01

    Savannah River Site (SRS) is improving uranium accountability at its fuel fabrication facility through measurements of {sup 235}U in samples taken from uranium/aluminum alloy melts. Since area personnel desired a method that would minimize mixed waste, low volume samples are prepared from dissolutions of production melt grab samples. The solution assay monitor (SAM) analyzes for {sup 235}U gamm-rays by using a high-efficiency germanium well detector. The detector's high counting efficiency permits analysis of small samples (7 mL) from these dissolutions, and the counting geometry minimizes sample geometry uncertainties. Counting each sample for thirty minutes delivers excellent precision across the calibration range of 3 to 12 g uranium per liter. As shown by interlaboratory calibration, the gamma-ray spectrometer provides overall (counting, calibration, geometric,...) uncertainties less than 0.7% one sigma. Gamma-rays from a reference source, used to provide live-time corrections, are collimated to avoid absorption by the sample in the detector well. Since sample masses are small, minor self-attenuation corrections are calculated from chemical composition data rather than determined in separate transmission measurements. This avoids employing short-lived transmission sources for self-attenuation corrections.

  2. Radionuclide Concentrations in Terrestrial Vegetation and Soil Samples On and Around the Hanford Site, 1971 Through 2008

    SciTech Connect (OSTI)

    Simmons, Mary Ann; Poston, Ted M.; Fritz, Brad G.; Bisping, Lynn E.

    2011-07-29

    Environmental monitoring is conducted on the U.S. Department of Energy (DOE) Hanford Site to comply with DOE Orders and federal and state regulations. Major objectives of the monitoring are to characterize contaminant levels in the environment and to determine site contributions to the contaminant inventory. This report focuses on surface soil and perennial vegetation samples collected between 1971 and 2008 as part of the Pacific Northwest National Laboratory Surface Environmental Surveillance Project performed under contract to DOE. Areas sampled under this program are located on the Hanford Site but outside facility boundaries and on public lands surrounding the Hanford Site. Additional samples were collected during the past 8 years under DOE projects that evaluated parcels of land for radiological release. These data were included because the same sampling methodology and analytical laboratory were used for the projects. The spatial and temporal trends of six radionuclides collected over a 38-year period were evaluated. The radionuclides----cobalt-60, cesium-137, strontium-90, plutonium-238, plutonium-239/240, and uranium (reported either as uranium-238 or total uranium)----were selected because they persist in the environment and are still being monitored routinely and reported in Hanford Site environmental reports. All these radionuclides were associated with plutonium production and waste management of activities occurring on the site. Other sources include fallout from atmospheric testing of nuclear weapons, which ended in 1980, and the Chernobyl explosion in 1986. Uranium is also a natural component of the soil. This assessment of soil and vegetation data provides important information on the distribution of radionuclides in areas adjacent to industrial areas, established perimeter locations and buffer areas, and more offsite nearby and distant locations. The concentrations reflect a tendency for detection of some radionuclides close to where they were utilized onsite, but as one moves to unindustrialized areas on the site, surrounding buffer areas and perimeter location into the more distant sites, concentrations of these radionuclides approach background and cannot be distinguished from fallout activity. More importantly, concentrations in soil and vegetation samples did not exceed environmental benchmark concentrations, and associated exposure to human and ecological receptors were well below levels that are demonstratively hazardous to human health and the environment.

  3. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    SciTech Connect (OSTI)

    R. L. Hoskinson; R C. Rope; L G. Blackwood; R D. Lee; R K. Fink

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soils characteristics. Most often, spatial variability in the soils fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and a predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soils fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted for almost 87% of the cost difference. The sum of these differences could result in a $34 per acre cost difference for the fertilization. Because of these differences, better analysis or better sampling methods may need to be done, or more samples collected, to ensure that the soil measurements are truly representative of the fields spatial variability.

  4. Microsoft Word - Ventilation System Sampling Results 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ventilation System Sampling Results Air sampling results before and after the High Efficiency Particulate Air (HEPA) filters at WIPP are available here. Station A samples air before the filters and Station B samples air after passing through the filters. These samples were analyzed following the detection of airborne radioactivity on February 14, 2014. They are not environmental samples, and are not representative of the public or worker breathing zone air samples. They do provide assurance that

  5. Licensing Guide and Sample License

    Energy Savers [EERE]

    THE TEI:HNOL06Y TRANSFER WORKIN6 6ROUP Lic:en!iing Guide and Sample Lic:en!ie *~ ICan.u City Plan I OFermilab ~OAK ~RIDGE Nuioul~.<o-.,. Arg9..QDe t.AIOUTOlY SRNL .............. ~ A o LOs Alamos MATIO NA L l .U ORUORY / BROOKHAVEN NATIONAL LABORATORY :.:..,/ PRIN. C£loN PlASMA PHYSICS t ABOAATORV .:~ Ul!J Lawrence Uvermore National Laboratory Jef[;?on Lab t1NREL ~ ..................... sandia National Laboratories Laboratory or Facility Representative Email Addresses Phone # Ames Laboratory

  6. Latin Hypercube Sampling (LHS) UNIX Library/Standalone

    Energy Science and Technology Software Center (OSTI)

    2004-05-13

    The LHS UNIX Library/Standalone software provides the capability to draw random samples from over 30 distribution types. It performs the sampling by a stratified sampling method called Latin Hypercube Sampling (LHS). Multiple distributions can be sampled simultaneously, with user-specified correlations amongst the input distributions, LHS UNIX Library/ Standalone provides a way to generate multi-variate samples. The LHS samples can be generated either as a callable library (e.g., from within the DAKOTA software framework) or asmore »a standalone capability. LHS UNIX Library/Standalone uses the Latin Hypercube Sampling method (LHS) to generate samples. LHS is a constrained Monte Carlo sampling scheme. In LHS, the range of each variable is divided into non-overlapping intervals on the basis of equal probability. A sample is selected at random with respect to the probability density in each interval, If multiple variables are sampled simultaneously, then values obtained for each are paired in a random manner with the n values of the other variables. In some cases, the pairing is restricted to obtain specified correlations amongst the input variables. Many simulation codes have input parameters that are uncertain and can be specified by a distribution, To perform uncertainty analysis and sensitivity analysis, random values are drawn from the input parameter distributions, and the simulation is run with these values to obtain output values. If this is done repeatedly, with many input samples drawn, one can build up a distribution of the output as well as examine correlations between input and output variables.« less

  7. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-08-25

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  8. January 2012 Groundwater Sampling at the Gnome-Coach, New Mexico, Site (Data Validation Package)

    SciTech Connect (OSTI)

    None

    2012-12-01

    Annual sampling was conducted January 18, 2012, to monitor groundwater for potential radionuclide contamination at the Gnome-Coach site in New Mexico. The sampling was performed as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Well LRL-7 was not sampled per instruction from the lead. A duplicate sample was collected from well USGS-1 and water levels were measured in the monitoring wells onsite.

  9. Tank 214-AW-105, grab samples, analytical results for the finalreport

    SciTech Connect (OSTI)

    Esch, R.A.

    1997-02-20

    This document is the final report for tank 241-AW-105 grab samples. Twenty grabs samples were collected from risers 10A and 15A on August 20 and 21, 1996, of which eight were designated for the K Basin sludge compatibility and mixing studies. This document presents the analytical results for the remaining twelve samples. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DO). The results for the previous sampling of this tank were reported in WHC-SD-WM-DP-149, Rev. 0, 60-Day Waste Compatibility Safety Issue and Final Results for Tank 241-A W-105, Grab Samples 5A W-95-1, 5A W-95-2 and 5A W-95-3. Three supernate samples exceeded the TOC notification limit (30,000 microg C/g dry weight). Appropriate notifications were made. No immediate notifications were required for any other analyte. The TSAP requested analyses for polychlorinated biphenyls (PCB) for all liquids and centrifuged solid subsamples. The PCB analysis of the liquid samples has been delayed and will be presented in a revision to this document.

  10. Radioactive air emissions notice of construction use of a portable exhauster on single-shell tanks during salt well pumping

    SciTech Connect (OSTI)

    HOMAN, N.A.

    1999-07-14

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on singleshell tanks (SSTs) during salt well pumping. Table 1-1 lists SSTs covered by this NOC. This GOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping. The primary objective of providing active ventilation to these SSTs during salt well pumping is to reduce the risk of postulated accidents to remain within risk guidelines. It is anticipated that salt well pumping will release gases entrapped within the waste as the liquid level is lowered, because of less hydrostatic force keeping the gases in place. Hanford Site waste tanks must comply with the Tank Farms authorization basis (DESH 1997) that requires that the flammable gas concentration be less than 25 percent of the lower flammability limit (LFL). Safety analyses indicate that the LFL might be exceeded in some tanks during certain postulated accident scenarios. Also, the potential for electrical (pump motor, heat tracing) and mechanical (equipment installation) spark sources exist. Therefore, because of the presence of ignition sources and the potential for release of flammable gases, active ventilation might be required in some SSTs to reduce the ''time at risk'' while salt well pumping. For this reason, portable exhausters will be installed as a precautionary measure and used when flammable gas concentrations exceed 25 percent of the LFL during salt well pumping.

  11. Offline solid phase microextraction sampling system

    DOE Patents [OSTI]

    Harvey, Chris A. (French Camp, CA)

    2008-12-16

    An offline solid phase microextraction (SPME) sampling apparatus for enabling SPME samples to be taken a number of times from a previously collected fluid sample (e.g. sample atmosphere) stored in a fused silica lined bottle which keeps volatile organics in the fluid sample stable for weeks at a time. The offline SPME sampling apparatus has a hollow body surrounding a sampling chamber, with multiple ports through which a portion of a previously collected fluid sample may be (a) released into the sampling chamber, (b) SPME sampled to collect analytes for subsequent GC analysis, and (c) flushed/purged using a fluidically connected vacuum source and purging fluid source to prepare the sampling chamber for additional SPME samplings of the same original fluid sample, such as may have been collected in situ from a headspace.

  12. CFCNCA Sample Pledge Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFCNCA Sample Pledge Form CFCNCA Sample Pledge Form This file contains a sample pledge form and instructions for completing a paper donation through the CFC. PDF icon CFCNCA Fall 2012 Sample Pledge Form.pdf More Documents & Publications CFCNCA Sample Pledge Form 2012 CFCNCA Catalog of Caring DOE F 3630.1 Rights and Benefits of Reservists Called to Active Duty

  13. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012

    SciTech Connect (OSTI)

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  14. Enhanced AFCI Sampling, Analysis, and Safeguards Technology Review

    SciTech Connect (OSTI)

    John Svoboda

    2009-09-01

    The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. Sampling and analysis of nuclear fuel recycling plant processes is required both to monitor the operations and ensure Safeguards and Security goals are met. In addition, environmental regulations lead to additional samples and analysis to meet licensing requirements. The volume of samples taken by conventional means, can restrain productivity while results samples are analyzed, require process holding tanks that are sized to meet analytical issues rather than process issues (and that create a larger facility footprint), or, in some cases, simply overwhelm analytical laboratory capabilities. These issues only grow when process flowsheets propose new separations systems and new byproduct material for transmutation purposes. Novel means of streamlining both sampling and analysis are being evaluated to increase the efficiency while meeting all requirements for information. This report addresses just a part of the effort to develop and study novel methods by focusing on the sampling and analysis of aqueous samples for metallic elements. It presents an overview of the sampling requirements, including frequency, sensitivity, accuracy, and programmatic drivers, to demonstrate the magnitude of the task. The sampling and analysis system needed for metallic element measurements is then discussed, and novel options being applied to other industrial analytical needs are presented. Inductively coupled mass spectrometry instruments are the most versatile for metallic element analyses and are thus chosen as the focus for the study. Candidate novel means of process sampling, as well as modifications that are necessary to couple such instruments to introduce these samples, are discussed. A suggested path forward based on an automated microchip capillary based sampling system interfaced to the analysis spectrometer is presented. The ability to obtain micro liter volume samples coupled with remote automated means of sample tracking and transport to the instrument would greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste. Application of this sampling technique to new types of mass spectrometers for selective elemental isotopic analysis could also provide significant improvements in safeguards and security analyses.

  15. Waste compatibility safety issues and final results for tank 241-T-110 push mode samples

    SciTech Connect (OSTI)

    Nuzum, J.L.

    1997-05-15

    This document is the final laboratory report for Tank 241-T-110. Push mode core segments were removed from risers 2 and 6 between January 29, 1997, and February 7, 1997. Segments were received and extruded at 222-S Laboratory. Analyses were performed in accordance with Tank 241-T-110 Push Mode Core Sampling and analysis Plan (TSAP) and Safety Screening Data Quality Objective (DQO). None of the subsamples submitted for total alpha activity (AT) or differential scanning calorimetry (DSC) analyses exceeded the notification limits stated in DQO.

  16. Borehole Completion and Conceptual Hydrogeologic Model for the IFRC Well Field, 300 Area, Hanford Site

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Horner, Jacob A.; Vermeul, Vincent R.; Lanigan, David C.; Thorne, Paul D.

    2009-04-20

    A tight cluster of 35 new wells was installed over a former waste site, the South Process Pond (316-1 waste site), in the Hanford Site 300 Area in summer 2008. This report documents the details of the drilling, sampling, and well construction for the new array and presents a summary of the site hydrogeology based on the results of drilling and preliminary geophysical logging.

  17. Pahute Mesa Well Development and Testing Analyses for Wells ER-20-8 and ER-20-4, Nevada National Security Site, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Greg Ruskauff and Sam Marutzky

    2012-09-01

    Wells ER-20-4 and ER-20-8 were drilled during fiscal year (FY) 2009 and FY 2010 (NNSA/NSO, 2011a and b). The closest underground nuclear test detonations to the area of investigation are TYBO (U-20y), BELMONT (U-20as), MOLBO (U-20ag), BENHAM (U-20c), and HOYA (U-20 be) (Figure 1-1). The TYBO, MOLBO, and BENHAM detonations had working points located below the regional water table. The BELMONT and HOYA detonation working points were located just above the water table, and the cavity for these detonations are calculated to extend below the water table (Pawloski et al., 2002). The broad purpose of Wells ER-20-4 and ER-20-8 is to determine the extent of radionuclide-contaminated groundwater, the geologic formations, groundwater geochemistry as an indicator of age and origin, and the water-bearing properties and hydraulic conditions that influence radionuclide migration. Well development and testing is performed to determine the hydraulic properties at the well and between other wells, and to obtain groundwater samples at the well that are representative of the formation at the well. The area location, wells, underground nuclear detonations, and other features are shown in Figure 1-1. Hydrostratigraphic cross sections A-A, B-B, C-C, and D-D are shown in Figures 1-2 through 1-5, respectively.

  18. UTM Well Coordinates for the Boise Hydrogeophysical Research Site (BHRS)

    SciTech Connect (OSTI)

    David Lim

    2014-12-19

    A series of oscillatory pumping tests were performed at the BHRS. The data collected from these wells will be used to tomographically image the shallow subsurface. This excel file only contains well coordinates for all wells at the Boise site.

  19. UTM Well Coordinates for the Boise Hydrogeophysical Research Site (BHRS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    David Lim

    A series of oscillatory pumping tests were performed at the BHRS. The data collected from these wells will be used to tomographically image the shallow subsurface. This excel file only contains well coordinates for all wells at the Boise site.

  20. Property:FirstWellLog | Open Energy Information

    Open Energy Info (EERE)

    FirstWellLog Jump to: navigation, search Property Name FirstWellLog Property Type Page Retrieved from "http:en.openei.orgwindex.php?titleProperty:FirstWellLog&oldid598766...

  1. Dixie Valley Six Well Flow Test | Open Energy Information

    Open Energy Info (EERE)

    Six Well Flow Test Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dixie Valley Six Well Flow Test Abstract A six well flow test was conducted...

  2. RAPID/Geothermal/Well Field/Alaska | Open Energy Information

    Open Energy Info (EERE)

    At a Glance Jurisdiction: Alaska Drilling & Well Field Permit Agency: Alaska Division of Oil and Gas Drilling & Well Field Permit All wells drilled in support or in search of the...

  3. City of Wells, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Wells Address: 101 First Street SE Place: Wells, MN Zip: 56097 Phone Number: 507-553-3119 Website: www.cityofwells.net Twitter: @CityofWellsMN Outage Hotline: 507-553-3197...

  4. Tank 241-AP-107, grab samples, 7AP-99-1, 7AP-99-3 and 7AP-99-4 analytical results for the final report

    SciTech Connect (OSTI)

    BELL, K.E.

    1999-08-12

    This document is the format IV, final report for the tank 241-AP-107 (AP-107) grab samples taken in May 1999 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank AP-107 samples were performed as directed in Compatibility Grab Sampling and Analysis Plan for Fiscal year 1999. Any deviations from the instructions provided in the tank sampling and analysis plan (TSAP) were discussed in this narrative. Interim data were provided earlier to River Protection Project (RPP) personnel, however, the data presented here represent the official results. No notification limits were exceeded.

  5. Hanford analytical sample projections 1996 - 2000

    SciTech Connect (OSTI)

    Joyce, S.M.

    1996-02-02

    Sample projections are compiled for the Hanford site based on inputs from the major programs for the years 1996 through 2000. Sample projections are categorized by radiation level, protocol, sample matrix and Program. Analyses requirements are also presented.

  6. RAPID/Geothermal/Well Field/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWell FieldNevada < RAPID | Geothermal | Well Field Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  7. Geothermal Literature Review At Salt Wells Area (Faulds, Et Al...

    Open Energy Info (EERE)

    Salt Wells Area (Faulds, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salt Wells Area (Faulds,...

  8. RAPID/Geothermal/Well Field/Oregon | Open Energy Information

    Open Energy Info (EERE)

    pipe, well pad, access road construction, etc). Local Well Field Process not available Policies & Regulations ORS 517 - Mining and Mining Claims ORS 522.135 Permit Time Limit...

  9. RAPID/Geothermal/Well Field/Montana | Open Energy Information

    Open Energy Info (EERE)

    construction will require the MEPA review. Local Well Field Process not available Policies & Regulations MCA 37-43-100 Water Well Contractors References Print PDF...

  10. RAPID/Geothermal/Well Field/Idaho | Open Energy Information

    Open Energy Info (EERE)

    DWR, and file drilling records upon completion. Local Well Field Process not available Policies & Regulations IDAPA 37.03.04.045 - Abandonment of Geothermal Resource Wells IDWS...

  11. Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility...

  12. RAPID/Geothermal/Well Field | Open Energy Information

    Open Energy Info (EERE)

    well, the developer must submit a Sundry Notice to the Nevada Division of Minerals Geothermal Well Field in New Mexico New Mexico Energy, Minerals and Natural Resources...

  13. Magnetotellurics At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of...

  14. Masco Home Services/WellHome | Open Energy Information

    Open Energy Info (EERE)

    WellHome Jump to: navigation, search Name: Masco Home ServicesWellHome Place: Taylor, MI Website: www.mascohomeserviceswellhome. References: Masco Home Services...

  15. 2008-08 "Improve Documentation for Monitoring Wells Used for...

    Office of Environmental Management (EM)

    8 "Improve Documentation for Monitoring Wells Used for LANL Environmental Restoration and Clean-up" 2008-08 "Improve Documentation for Monitoring Wells Used for LANL Environmental...

  16. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy...

    Open Energy Info (EERE)

    Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells...

  17. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 -...

  18. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date...

  19. Conceptual Model At Salt Wells Area (Faulds, Et Al., 2011) |...

    Open Energy Info (EERE)

    At Salt Wells Area (Faulds, Et Al., 2011) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness...

  20. Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility...

  1. Jackson Well Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Well Springs Space Heating Low Temperature Geothermal Facility Facility Jackson Well...

  2. Marysville Test Well Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Marysville Test Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Marysville Test Well Geothermal Area Contents 1 Area Overview 2 History and...

  3. Texas Water Code 27A General Provisions for Injection Wells ...

    Open Energy Info (EERE)

    WellsLegal Abstract These rules outline the requirements for construction and maintenance of injection wells in Texas. Published NA Year Signed or Took Effect 1977 Legal...

  4. Biofuel alternatives to ethanol: pumping the microbial well ...

    Office of Scientific and Technical Information (OSTI)

    Biofuel alternatives to ethanol: pumping the microbial well Citation Details In-Document Search Title: Biofuel alternatives to ethanol: pumping the microbial well Engineered ...

  5. Method for determining formation quality factor from well log...

    Office of Scientific and Technical Information (OSTI)

    well log data and its application to seismic reservoir characterization Citation Details In-Document Search Title: Method for determining formation quality factor from well log ...

  6. Templated photocatalytic synthesis of well-defined Pt hollow...

    Office of Scientific and Technical Information (OSTI)

    Templated photocatalytic synthesis of well-defined Pt hollow nanostructures with enhanced ... Title: Templated photocatalytic synthesis of well-defined Pt hollow nanostructures with ...

  7. Vapor Extraction Well Performance and Recommendations for Future...

    Office of Scientific and Technical Information (OSTI)

    Well Performance and Recommendations for Future Soil Vapor Extraction Activities at the A-014 Outfall Citation Details In-Document Search Title: Vapor Extraction Well ...

  8. Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multidimensional Tracers for Geothermal Inter-Well Diagnostics Novel Multidimensional Tracers for Geothermal Inter-Well Diagnostics Novel Multidimensional Tracers for Geothermal ...

  9. Development Wells At Raft River Geothermal Area (2004) | Open...

    Open Energy Info (EERE)

    Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal...

  10. Average Depth of Crude Oil and Natural Gas Wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Depth of Crude Oil and Natural Gas Wells (Feet per Well) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

  11. Category:Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    Technique Subcategories This category has the following 3 subcategories, out of 3 total. G Gas Flux Sampling 1 pages S Soil Gas Sampling 1 pages Surface Gas...

  12. Category:Field Sampling | Open Energy Information

    Open Energy Info (EERE)

    Technique Subcategories This category has the following 2 subcategories, out of 2 total. G + Gas Sampling (3 categories) 4 pages W + Water Sampling (2 categories) 3...

  13. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  14. Fluid rare earth element anlayses from wells RN-12 and RN-19, Reykjanes, Iceland

    SciTech Connect (OSTI)

    Andrew Fowler

    2015-07-24

    Results for fluid rare earth elment analyses from Reykjanes wells RN-12 and RN-19. The data have not been corrected for flashing. Samples preconcetrated using chelating resin with IDA functional group (InertSep ME-1). Analyzed using and Element magnetic sctor ICP-MS.

  15. CAES 2014 Chemical Analyses of Thermal Wells and Springs in Southeastern Idaho

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Baum, Jeffrey

    2014-03-10

    This dataset contains chemical analyses for thermal wells and springs in Southeastern Idaho. Data includes all major cations, major anions, pH, collection temperature, and some trace metals, These samples were collected in 2014 by the Center for Advanced Energy Studies (CAES), and are part of a continuous effort to analyze the geothermal potential of Southeastern Idaho.

  16. Geologic Map and GID Data for the Salt Wells Geothermal Area

    SciTech Connect (OSTI)

    Hinz, Nick

    2011-10-31

    Salt WellsESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Locations of 40Ar/39Ar samples.

  17. Matrix isolation apparatus with extended sample collection capability

    DOE Patents [OSTI]

    Reedy, Gerald T. (Bourbonnais, IL)

    1987-01-01

    A gas-sample collection device provides for the matrix isolation of increased amounts of a sample material for spectrographic analysis from a gas chromatographic separation. The device includes an evacuated sample collection chamber containing a disc-like specular carousel having a generally circular lateral surface upon which the sample is deposited in an inert gas matrix for infrared (IR) spectral analysis. The evacuated sample chamber is mounted in a fixed manner and is coupled to and supports a rotating cryostatic coupler which, in turn, supports the specular carousel within the collection chamber. A rotational drive system connected to the cryostatic coupler provides for its rotational displacement as well as that of the sample collecting carousel. In addition, rotation of the cryostatic coupler effects vertical displacement of the carousel to permit the collection of an extended sample band in a helical configuration on the entire lateral surface of the carousel. The various components of the carousel's angular/linear displacement drive system are located exterior to the cryostatic coupler for easy access and improved operation. The cryostatic coupler includes a 360.degree. rotary union assembly for permitting the delivery of a high pressure working fluid to the cryostatic coupler in a continuous flow manner for maintaining the specular carousel at a low temperature, e.g., 10.degree.-20.degree. K., for improved uninterrupted gas sample collection and analysis.

  18. Well completion process for formations with unconsolidated sands

    DOE Patents [OSTI]

    Davies, David K.; Mondragon, III, Julius J.; Hara, Philip Scott

    2003-04-29

    A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

  19. Development of an Improved Cement for Geothermal Wells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy an Improved Cement for Geothermal Wells Development of an Improved Cement for Geothermal Wells Development of an Improved Cement for Geothermal Wells presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon cement_wells_trabits_peer2013.pdf More Documents & Publications Development of an Improved Cement for Geothermal Wells Geopolymer Sealing Materials track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review

  20. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  1. Tank 12H residuals sample analysis report

    SciTech Connect (OSTI)

    Oji, L. N.; Shine, E. P.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.

    2015-06-11

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 12H final characterization samples to determine the residual tank inventory prior to grouting. Eleven Tank 12H floor and mound residual material samples and three cooling coil scrape samples were collected and delivered to SRNL between May and August of 2014.

  2. Core sampling system spare parts assessment

    SciTech Connect (OSTI)

    Walter, E.J.

    1995-04-04

    Soon, there will be 4 independent core sampling systems obtaining samples from the underground tanks. It is desirable that these systems be available for sampling during the next 2 years. This assessment was prepared to evaluate the adequacy of the spare parts identified for the core sampling system and to provide recommendations that may remediate overages or inadequacies of spare parts.

  3. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2006) |...

    Open Energy Info (EERE)

    Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study...

  4. Sample introduction system for a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA)

    1997-01-01

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

  5. Sample introduction apparatus for a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA)

    1998-01-01

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it.

  6. Sample introduction apparatus for a flow cytometer

    DOE Patents [OSTI]

    Van den Engh, G.

    1998-03-10

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning HPLC tubing and fittings may be used in a manner which facilitates removable of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

  7. Sample introduction system for a flow cytometer

    DOE Patents [OSTI]

    Engh, G. van den

    1997-02-11

    A sample introduction system for a flow cytometer allows easy change of sample containers such as test tubes and facilitates use in high pressure environments. The sample container includes a cap having a pressure supply chamber and a sample container attachment cavity. A sample container may be automatically positioned into the attachment cavity so as to sealably engage the end of the sample container as its outer surface. This positioning may be accomplished through some sample introduction mechanism. To facilitate cleaning, HPLC tubing and fittings may be used in a manner which facilitates removing of the entire tubing from both the nozzle container and other sample container cap to permit its replacement to avoid contamination. The sample container support may include horizontal stops which loosely limit the movement of the sample container and thus avoid further stresses upon it. 3 figs.

  8. Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Orders, IDIQ Attachment. J-4) | Department of Energy Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Post-Award Deliverables Sample (Part 2 of Sample Deliverables for Task Orders, IDIQ Attachment. J-4) Document offers a post-award deliverables sample for an energy savings performance contract. Microsoft Office document icon sample_reptg_rqmts.doc More Documents & Publications Pre-Award Deliverables Sample (Part 1 of Sample Deliverables for

  9. AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP

    SciTech Connect (OSTI)

    CONNELL CW; CONLEY SF; HILDEBRAND RD; CUNNINGHAM DE; R_D_Doug_Hildebrand@rl.gov; DeVon_E_Cunningham@rl.gov

    2010-01-21

    Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very "people intensive." Approximately 1500 wells are sampled each year by field personnel or "samplers." These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in a work flow process where the data is transferred to the database and electronic form is filed in managed records - thus eliminating manually completed forms. Elimating the manual forms and streamlining the data entry not only improved the accuracy of the information recorded, but also enhanced the efficiency and sampling capacity of field office personnel.

  10. Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

  11. June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect (OSTI)

    2011-10-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

  12. Method and apparatus for data sampling

    DOE Patents [OSTI]

    Odell, D.M.C.

    1994-04-19

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples is described. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium. 6 figures.

  13. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  14. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  15. Method and apparatus for data sampling

    DOE Patents [OSTI]

    Odell, Daniel M. C. (Aiken, SC)

    1994-01-01

    A method and apparatus for sampling radiation detector outputs and determining event data from the collected samples. The method uses high speed sampling of the detector output, the conversion of the samples to digital values, and the discrimination of the digital values so that digital values representing detected events are determined. The high speed sampling and digital conversion is performed by an A/D sampler that samples the detector output at a rate high enough to produce numerous digital samples for each detected event. The digital discrimination identifies those digital samples that are not representative of detected events. The sampling and discrimination also provides for temporary or permanent storage, either serially or in parallel, to a digital storage medium.

  16. File:HI well abandonment.pdf | Open Energy Information

    Open Energy Info (EERE)

    HI well abandonment.pdf Jump to: navigation, search File File history File usage File:HI well abandonment.pdf Size of this preview: 364 600 pixels. Full resolution (1,275 ...

  17. RAPID/Geothermal/Well Field/Utah | Open Energy Information

    Open Energy Info (EERE)

    an operating unit and have like characteristics. Local Well Field Process not available Policies & Regulations UAC Rule R655-1 Wells Used for the Discovery and Production of...

  18. RAPID/Geothermal/Well Field/Colorado | Open Energy Information

    Open Energy Info (EERE)

    standards set forth in 2 CCR 402-10:8 and 10:9). Local Well Field Process not available Policies & Regulations 2 CCR 402-10 - Rules and Regulations for Geothermal Well Permitting...

  19. Montana Board of Water Well Contractors Webpage | Open Energy...

    Open Energy Info (EERE)

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Board of Water Well Contractors Webpage Abstract Provides information on water well...

  20. Spin-orbit interaction in multiple quantum wells

    SciTech Connect (OSTI)

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  1. Success of Geothermal Wells: A Global Study | Open Energy Information

    Open Energy Info (EERE)

    of Geothermal Wells: A Global Study Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Success of Geothermal Wells: A Global Study Abstract This report...

  2. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy...

    Open Energy Info (EERE)

    Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells...

  3. Property:NumRepWells | Open Energy Information

    Open Energy Info (EERE)

    NumRepWells Property Type Number Description Number of replacement wells needed in a specific Geothermal Resource Area Retrieved from "http:en.openei.orgwindex.php?titlePrope...

  4. Production Wells At Lightning Dock Geothermal Area (McCants,...

    Open Energy Info (EERE)

    well for space heating Notes This was a project to use a low flow (25 GPM) well producing water and steam that had historically been difficult to pump. The project was for a space...

  5. File:05AKADrillingWellDevelopment.pdf | Open Energy Information

    Open Energy Info (EERE)

    AKADrillingWellDevelopment.pdf Jump to: navigation, search File File history File usage Metadata File:05AKADrillingWellDevelopment.pdf Size of this preview: 463 599 pixels....

  6. File:05IDADrillingWellDevelopment.pdf | Open Energy Information

    Open Energy Info (EERE)

    5IDADrillingWellDevelopment.pdf Jump to: navigation, search File File history File usage Metadata File:05IDADrillingWellDevelopment.pdf Size of this preview: 463 599 pixels....

  7. File:05NVADrillingWellDevelopment.pdf | Open Energy Information

    Open Energy Info (EERE)

    05NVADrillingWellDevelopment.pdf Jump to: navigation, search File File history File usage Metadata File:05NVADrillingWellDevelopment.pdf Size of this preview: 463 599 pixels....

  8. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. Colorado Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  12. Texas--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Texas--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  13. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Other States Natural Gas Gross Withdrawals from Coalbed Wells...

    Gasoline and Diesel Fuel Update (EIA)

    Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0...

  15. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Tennessee Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  20. Alaska--State Offshore Natural Gas Withdrawals from Gas Wells...

    Gasoline and Diesel Fuel Update (EIA)

    Gas Wells (Million Cubic Feet) Alaska--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...