Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

2

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

3

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

4

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

5

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

6

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

7

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

8

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

9

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

10

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

11

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

12

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

13

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

14

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

15

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

16

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

17

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

18

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

19

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

20

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

22

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

23

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

24

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

25

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

26

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

27

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

28

Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Repressuring (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 2,759...

29

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

30

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

31

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

32

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

33

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

34

Nebraska Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Repressuring (Million Cubic Feet) Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

35

Ohio Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Repressuring (Million Cubic Feet) Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0

36

Oklahoma Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Repressuring (Million Cubic Feet) Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

37

Arizona Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Repressuring (Million Cubic Feet) Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

38

Other States Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Repressuring (Million Cubic Feet) Repressuring (Million Cubic Feet) Other States Natural Gas Repressuring (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 867 758 881 1992 718 641 691 666 662 642 653 653 645 697 694 725 1993 680 609 662 635 644 618 635 636 626 670 673 706 1994 656 588 637 610 620 596 612 613 603 644 645 676 1995 683 612 665 636 646 620 637 638 627 671 674 706 1996 196 185 205 187 218 212 192 191 193 201 218 156 1997 208 194 204 211 200 187 148 162 151 158 148 169 1998 126 117 123 127 121 113 90 98 91 95 89 102 1999 103 99 110 99 109 102 101 96 89 102 70 69 2000 0 0 0 0 0 0 0 0 8 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0

39

Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Other States Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 513 491 515 539 557 534 541 579 574 585 558 573 1998 578 536 591 581 517 456 486 486 471 477 457 468 1999 466 438 489 495 499 510 547 557 544 555 541 579 2000 587 539 605 587 615 570 653 629 591 627 609 611 2001 658 591 677 690 718 694 692 679 686 697 688 700 2002 639 591 587 621 622 605 654 639 649 650 623 638 2003 689 624 649 676 702 691 733 732 704 734 719 748 2004 741 697 727 692 692 688 718 729 706 723 711 718

40

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Illinois Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0

42

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

43

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA

44

Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization  

SciTech Connect (OSTI)

Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

2008-06-01T23:59:59.000Z

45

,"Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030oh2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030oh2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:25 AM" "Back to Contents","Data 1: Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030OH2" "Date","Ohio Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0 33284,0 33312,0

46

,"Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:27 AM" "Back to Contents","Data 1: Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030TN2" "Date","Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0 33284,0

47

,"Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030tn2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030tn2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:27 AM" "Back to Contents","Data 1: Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030TN2" "Date","Tennessee Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 35611,0 35976,0 37802,0 38898,0

48

,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030va2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030va2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:29 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030VA2" "Date","Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0 33284,0

49

,"Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:26 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030PA2" "Date","Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 35611,0 35976,0 37802,0

50

,"South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030sd2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030sd2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:26 AM" "Back to Contents","Data 1: South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)" "Sourcekey","N9030SD2" "Date","South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)" 33253,0 33284,0 33312,0 33343,0 33373,0

51

,"Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2010 Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030va2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030va2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:29 AM" "Back to Contents","Data 1: Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030VA2" "Date","Virginia Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 35611,0 35976,0 37802,0 38898,0

52

,"Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9030pa2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9030pa2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:56:26 AM" "Back to Contents","Data 1: Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" "Sourcekey","N9030PA2" "Date","Pennsylvania Natural Gas Nonhydrocarbon Gases Removed (Million Cubic Feet)" 33253,0

53

Federal Offshore--Gulf of Mexico Nonhydrocarbon Gases Removed from Natural  

U.S. Energy Information Administration (EIA) Indexed Site

Nonhydrocarbon Gases Removed from Natural Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

54

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect (OSTI)

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

55

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

56

Energy Information Administration / Natural Gas Annual 2005 66  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 28. Summary Statistics for Natural Gas - Arizona, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 8 7 9 6 6 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 305 300 443 331 233 From Oil Wells .................................................. 1 * * * * Total................................................................... 307 301 443 331 233 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared .............................................. * 0 0 0 0 Wet After Lease Separation................................ 307 301 443 331 233 Nonhydrocarbon Gases Removed......................

57

Natural Gas Used for Repressuring  

Gasoline and Diesel Fuel Update (EIA)

1-2013 1-2013 Oklahoma NA NA NA NA NA NA 1996-2013 Texas NA NA NA NA NA NA 1991-2013 Wyoming NA NA NA NA NA NA 1991-2013 Other States Other States Total NA NA NA NA NA NA 1991-2013 Alabama NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1991-2013 Colorado NA NA NA NA NA NA 1991-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1991-2013 Missouri NA NA NA NA NA NA 1991-2013

58

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

59

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

60

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

62

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

63

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

64

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

65

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

66

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

67

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

68

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

69

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

70

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

71

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

72

Energy Information Administration / Natural Gas Annual 2009 124  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 56. Summary Statistics for Natural Gas - New Hampshire, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

73

Energy Information Administration / Natural Gas Annual 2010 108  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 48. Summary Statistics for Natural Gas - Maryland, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 7 7 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 48 35 28 43 43 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 48 35 28 43 43 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

74

Energy Information Administration / Natural Gas Annual 2010 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Hampshire, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

75

Energy Information Administration / Natural Gas Annual 2010 134  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 61. Summary Statistics for Natural Gas - North Carolina, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

76

Energy Information Administration / Natural Gas Annual 2010 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 36. Summary Statistics for Natural Gas - District of Columbia, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

77

Energy Information Administration / Natural Gas Annual 2009 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2005-2009 Number of Producing Gas Wells at End of Year ................................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 From Coalbed Wells ........................................ 0 0 0 0 0 From Shale Gas Wells..................................... 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed.....................

78

Energy Information Administration / Natural Gas Annual 2010 128  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 58. Summary Statistics for Natural Gas - New Jersey, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

79

Energy Information Administration / Natural Gas Annual 2009 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 50. Summary Statistics for Natural Gas - Minnesota, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

80

Energy Information Administration / Natural Gas Annual 2010 142  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 65. Summary Statistics for Natural Gas - Oregon, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 14 18 21 24 26 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 621 409 778 821 1,407 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 621 409 778 821 1,407 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Information Administration / Natural Gas Annual 2009 144  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 66. Summary Statistics for Natural Gas - Rhode Island, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

82

Energy Information Administration / Natural Gas Annual 2010 158  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 73. Summary Statistics for Natural Gas - Vermont, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

83

Energy Information Administration / Natural Gas Annual 2009 106  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 47. Summary Statistics for Natural Gas - Maryland, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 7 7 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 46 48 35 28 43 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 46 48 35 28 43 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

84

Energy Information Administration / Natural Gas Annual 2009 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 36. Summary Statistics for Natural Gas - Florida, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 2,954 2,845 2,000 2,742 290 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 2,954 2,845 2,000 2,742 290 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

85

Energy Information Administration / Natural Gas Annual 2009 96  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 42. Summary Statistics for Natural Gas - Iowa, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

86

Energy Information Administration / Natural Gas Annual 2010 148  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 68. Summary Statistics for Natural Gas - South Carolina, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

87

Energy Information Administration / Natural Gas Annual 2010 124  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 56. Summary Statistics for Natural Gas - Nevada, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 4 4 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 5 5 4 4 4 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 5 5 4 4 4 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

88

Energy Information Administration / Natural Gas Annual 2009 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

89

Energy Information Administration / Natural Gas Annual 2010 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 53. Summary Statistics for Natural Gas - Missouri, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

90

Energy Information Administration / Natural Gas Annual 2010 114  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 51. Summary Statistics for Natural Gas - Minnesota, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

91

Energy Information Administration / Natural Gas Annual 2010 92  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 40. Summary Statistics for Natural Gas - Idaho, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

92

Energy Information Administration / Natural Gas Annual 2010 166  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 77. Summary Statistics for Natural Gas - Wisconsin, 2006-2010 Number of Producing Gas Wells at End of Year ................................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 From Coalbed Wells ........................................ 0 0 0 0 0 From Shale Gas Wells..................................... 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed.....................

93

Energy Information Administration / Natural Gas Annual 2010 72  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 30. Summary Statistics for Natural Gas - Arizona, 2006-2010 Number of Producing Gas Wells at End of Year................................................ 7 7 6 6 5 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 611 654 523 711 183 From Oil Wells ............................................. * * * * 0 From Coalbed Wells .................................... 0 0 0 0 0 From Shale Gas Wells ................................. 0 0 0 0 0 Total.............................................................. 611 655 523 712 183 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed.................

94

Energy Information Administration / Natural Gas Annual 2010 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Connecticut, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

95

Energy Information Administration / Natural Gas Annual 2010 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - Delaware, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

96

Energy Information Administration / Natural Gas Annual 2010 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Georgia, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

97

Energy Information Administration / Natural Gas Annual 2009 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Delaware, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

98

Energy Information Administration / Natural Gas Annual 2009 70  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 29. Summary Statistics for Natural Gas - Arizona, 2005-2009 Number of Producing Gas Wells at End of Year................................................ 6 7 7 6 6 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 233 611 654 523 711 From Oil Wells ............................................. * * * * * From Coalbed Wells .................................... 0 0 0 0 0 From Shale Gas Wells ................................. 0 0 0 0 0 Total.............................................................. 233 611 655 523 712 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed.................

99

Energy Information Administration / Natural Gas Annual 2009 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

100

Energy Information Administration / Natural Gas Annual 2009 108  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 48. Summary Statistics for Natural Gas - Massachusetts, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Information Administration / Natural Gas Annual 2009 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - District of Columbia, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

102

Energy Information Administration / Natural Gas Annual 2009 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

103

Energy Information Administration / Natural Gas Annual 2009 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 64. Summary Statistics for Natural Gas - Oregon, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 15 14 18 21 24 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 454 621 409 778 821 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 454 621 409 778 821 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed

104

Energy Information Administration / Natural Gas Annual 2009 116  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 52. Summary Statistics for Natural Gas - Missouri, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

105

Energy Information Administration / Natural Gas Annual 2009 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

106

Energy Information Administration / Natural Gas Annual 2009 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Jersey, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

107

Energy Information Administration / Natural Gas Annual 2009 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 46. Summary Statistics for Natural Gas - Maine, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

108

Energy Information Administration / Natural Gas Annual 2009 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 33. Summary Statistics for Natural Gas - Connecticut, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

109

Energy Information Administration / Natural Gas Annual 2009 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Hawaii, 2005-2009 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

110

Energy Information Administration / Natural Gas Annual 2010 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Hawaii, 2006-2010 Number of Producing Gas Wells at End of Year ................................................ 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 From Shale Gas Wells.................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed .................

111

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

112

Average Commercial Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

113

Energy Information Administration / Natural Gas Annual 2008 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 55. Summary Statistics for Natural Gas - Nevada, 2004-2008 Number of Wells Producing at End of Year.. 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 5 5 5 5 4 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 5 5 5 5 4 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 5 5 5 5 4 Extraction Loss...............................................

114

Energy Information Administration / Natural Gas Annual 2008 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

115

Average Commercial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

116

Energy Information Administration / Natural Gas Annual 2008 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

117

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

118

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

119

Energy Information Administration / Natural Gas Annual 2008 126  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 57. Summary Statistics for Natural Gas - New Jersey, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

120

Energy Information Administration / Natural Gas Annual 2008 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 50. Summary Statistics for Natural Gas - Minnesota, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Information Administration / Natural Gas Annual 2008 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 46. Summary Statistics for Natural Gas - Maine, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

122

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

123

Energy Information Administration / Natural Gas Annual 2008 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

124

Energy Information Administration / Natural Gas Annual 2008 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2004-2008 Number of Wells Producing at End of Year..... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 From Coalbed Wells ........................................ 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production ......................................... 0 0 0 0 0 Extraction Loss..................................................

125

Energy Information Administration / Natural Gas Annual 2008 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

126

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

127

Energy Information Administration / Natural Gas Annual 2008 82  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 35. Summary Statistics for Natural Gas - District of Columbia, 2004-2008 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss...............................................

128

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

129

Energy Information Administration / Natural Gas Annual 2005 120  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 55. Summary Statistics for Natural Gas - New Hampshire, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

130

Energy Information Administration / Natural Gas Annual 2005 104  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 47. Summary Statistics for Natural Gas - Massachusetts, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

131

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

132

Energy Information Administration / Natural Gas Annual 2005 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 37. Summary Statistics for Natural Gas - Hawaii, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

133

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

134

Energy Information Administration / Natural Gas Annual 2006 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 37. Summary Statistics for Natural Gas - Hawaii, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

135

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 19 17 20 18 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,555 1,412 1,112 837 731 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,555 1,412 1,112 837 731 Repressuring ...................................................... 50 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,505 1,412 1,112 837 731 Nonhydrocarbon Gases Removed ..................... 214 198 3 0 0 Marketed Production

136

Energy Information Administration / Natural Gas Annual 2005 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 73. Summary Statistics for Natural Gas - Washington, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

137

Energy Information Administration / Natural Gas Annual 2005 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 56. Summary Statistics for Natural Gas - New Jersey, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

138

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

139

Energy Information Administration / Natural Gas Annual 2006 116  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 53. Summary Statistics for Natural Gas - Nebraska, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 106 109 111 114 114 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 904 1,187 1,229 943 1,033 From Oil Wells.............................................. 288 279 269 258 185 Total............................................................... 1,193 1,466 1,499 1,201 1,217 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 5 12 23 29 17 Wet After Lease Separation............................ 1,188 1,454 1,476 1,172 1,200 Nonhydrocarbon Gases Removed

140

Energy Information Administration / Natural Gas Annual 2007 96  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 42. Summary Statistics for Natural Gas - Iowa, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Information Administration / Natural Gas Annual 2006 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 54. Summary Statistics for Natural Gas - Nevada, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 6 6 5 5 5 Total............................................................... 6 6 5 5 5 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 6 6 5 5 5 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

142

Microsoft Word - Table_40_2.doc  

Gasoline and Diesel Fuel Update (EIA)

1 1 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,498 1,502 1,533 1,545 2,291 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 855 899 1,064 1,309 1,464 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 855 899 1,064 1,309 1,464 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. NA NA NA NA NA Wet After Lease Separation................................ 855 899 1,064 1,309 1,464 Nonhydrocarbon Gases Removed .....................

143

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

1 1 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

144

Energy Information Administration / Natural Gas Annual 2007 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 38. Summary Statistics for Natural Gas - Hawaii, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

145

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

146

Energy Information Administration / Natural Gas Annual 2007 156  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 72. Summary Statistics for Natural Gas - Vermont, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

147

Energy Information Administration / Natural Gas Annual 2007 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 34. Summary Statistics for Natural Gas - Delaware, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

148

Energy Information Administration / Natural Gas Annual 2006 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 51. Summary Statistics for Natural Gas - Missouri, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

149

Energy Information Administration / Natural Gas Annual 2007 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 67. Summary Statistics for Natural Gas - South Carolina, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

150

Energy Information Administration / Natural Gas Annual 2005 100  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 45. Summary Statistics for Natural Gas - Maine, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

151

Energy Information Administration / Natural Gas Annual 2005 160  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 75. Summary Statistics for Natural Gas - Wisconsin, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................

152

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

153

Energy Information Administration / Natural Gas Annual 2007 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 37. Summary Statistics for Natural Gas - Georgia, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

154

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

155

Energy Information Administration / Natural Gas Annual 2007 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 55. Summary Statistics for Natural Gas - Nevada, 2003-2007 Number of Wells Producing at End of Year.. 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 6 5 5 5 5 Total............................................................... 6 5 5 5 5 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 6 5 5 5 5 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

156

Energy Information Administration / Natural Gas Annual 2007 132  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 60. Summary Statistics for Natural Gas - North Carolina, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

157

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

158

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

4 4 - Natural Gas 1999 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: Massachusetts Massachusetts - Table 62 62. Summary Statistics for Natural Gas Massachusetts, 1995-1999 Table 1995 1996 1997 1998 1999 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 0 0 0 0 0 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed...............

159

Energy Information Administration / Natural Gas Annual 2006 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 38. Summary Statistics for Natural Gas - Idaho, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

160

Energy Information Administration / Natural Gas Annual 2006 76  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 33. Summary Statistics for Natural Gas - Delaware, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Information Administration / Natural Gas Annual 2007 90  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 39. Summary Statistics for Natural Gas - Idaho, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

162

Energy Information Administration / Natural Gas Annual 2007 70  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 29. Summary Statistics for Natural Gas - Arizona, 2003-2007 Number of Wells Producing at End of Year . 9 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 443 331 233 611 654 From Oil Wells ............................................. * * * * * Total.............................................................. 443 331 233 611 655 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed................. 0 0 0 0 0 Marketed Production...................................... 443 331 233 611 655 Extraction Loss .............................................. 0 0 0 0 0 Total Dry Production

163

Energy Information Administration / Natural Gas Annual 2007 124  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 56. Summary Statistics for Natural Gas - New Hampshire, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

164

Energy Information Administration / Natural Gas Annual 2005 152  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 71. Summary Statistics for Natural Gas - Vermont, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

165

Energy Information Administration / Natural Gas Annual 2006 100  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 45. Summary Statistics for Natural Gas - Maine, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

166

Energy Information Administration / Natural Gas Annual 2005 108  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 49. Summary Statistics for Natural Gas - Minnesota, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

167

Energy Information Administration / Natural Gas Annual 2005 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 54. Summary Statistics for Natural Gas - Nevada, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 6 6 5 5 Total................................................................... 7 6 6 5 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 6 6 5 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

168

Energy Information Administration / Natural Gas Annual 2005 128  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 59. Summary Statistics for Natural Gas - North Carolina, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

169

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

170

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

1 1 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

171

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

172

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 8 9 8 7 9 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 471 368 305 300 443 From Oil Wells.................................................. 3 1 1 0 0 Total................................................................... 474 368 307 301 443 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 474 368 307 301 443 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

173

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 300 280 300 225 240 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 189 183 180 174 169 From Oil Wells.................................................. 6 6 6 5 5 Total................................................................... 195 189 185 180 174 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 195 189 185 180 174 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

174

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

175

Energy Information Administration / Natural Gas Annual 2006 122  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 56. Summary Statistics for Natural Gas - New Jersey, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

176

Energy Information Administration / Natural Gas Annual 2005 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 34. Summary Statistics for Natural Gas - District of Columbia, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

177

Energy Information Administration / Natural Gas Annual 2005 86  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 38. Summary Statistics for Natural Gas - Idaho, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

178

Energy Information Administration / Natural Gas Annual 2007 92  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 40. Summary Statistics for Natural Gas - Illinois, 2003-2007 Number of Wells Producing at End of Year.. 240 251 316 316 316 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 169 165 E 161 E 165 E 164 From Oil Wells.............................................. 5 5 E 5 E 5 E 5 Total............................................................... 174 170 E 166 E 170 E 169 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 174 E 170 E 166 E 170 E 169 Extraction Loss...............................................

179

Energy Information Administration / Natural Gas Annual 2007 164  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 76. Summary Statistics for Natural Gas - Wisconsin, 2003-2007 Number of Wells Producing at End of Year..... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production ......................................... 0 0 0 0 0 Extraction Loss.................................................. 0 0 0 0 0

180

Energy Information Administration / Natural Gas Annual 2005 142  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 66. Summary Statistics for Natural Gas - South Carolina, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

182

Energy Information Administration / Natural Gas Annual 2007 106  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 47. Summary Statistics for Natural Gas - Maryland, 2003-2007 Number of Wells Producing at End of Year.. 7 7 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 48 34 46 48 35 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 48 34 46 48 35 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 48 34 46 48 35 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production

183

Energy Information Administration / Natural Gas Annual 2007 144  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 66. Summary Statistics for Natural Gas - Rhode Island, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 0 0 0 0 0 Extraction Loss............................................... 0 0 0 0 0 Total Dry Production ....................................

184

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 96 98 96 106 109 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,040 869 886 R 904 1,187 From Oil Wells.................................................. 356 349 322 R 288 279 Total................................................................... 1,395 1,218 1,208 R 1,193 1,466 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 R 5 12 Wet After Lease Separation................................ 1,395 1,218 1,208 R 1,188 1,454 Nonhydrocarbon Gases Removed .....................

185

Energy Information Administration / Natural Gas Annual 2005 74  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 32. Summary Statistics for Natural Gas - Connecticut, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

186

Energy Information Administration / Natural Gas Annual 2006 78  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 34. Summary Statistics for Natural Gas - District of Columbia, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

187

Energy Information Administration / Natural Gas Annual 2006 88  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 39. Summary Statistics for Natural Gas - Illinois, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 225 240 251 316 E 316 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 174 169 165 E 161 E 165 From Oil Wells.............................................. 5 5 5 E 5 E 5 Total............................................................... 180 174 170 E 166 E 170 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 180 174 170 166 170 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production

188

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

1 1 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

189

Energy Information Administration / Natural Gas Annual 2007 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 64. Summary Statistics for Natural Gas - Oregon, 2003-2007 Number of Wells Producing at End of Year.. 15 15 15 14 18 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 731 467 454 621 409 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 731 467 454 621 409 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 731 467 454 621 409 Extraction Loss............................................... 0 0 0

190

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 8 7 7 6 6 Total................................................................... 8 7 7 6 6 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 8 7 7 6 6 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

191

Microsoft Word - Table_68_2.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 420 380 350 400 430 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,230 1,150 2,000 2,050 1,803 Total................................................................... 1,230 1,150 2,000 2,050 1,803 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. NA NA NA NA NA Wet After Lease Separation................................ 1,230 1,150 2,000 2,050 1,803 Nonhydrocarbon Gases Removed .....................

192

Energy Information Administration / Natural Gas Annual 2005 136  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 63. Summary Statistics for Natural Gas - Oregon, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 20 18 15 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,112 837 731 467 454 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,112 837 731 467 454 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,112 837 731 467 454 Nonhydrocarbon Gases Removed .....................

193

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

194

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 8 7 7 5 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 18 34 32 22 48 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 18 34 32 22 48 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 18 34 32 22 48 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

195

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

1 1 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

196

Energy Information Administration / Natural Gas Annual 2006 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 65. Summary Statistics for Natural Gas - Rhode Island, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 0 0 0 0 0 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

197

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

198

Energy Information Administration / Natural Gas Annual 2006 66  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 28. Summary Statistics for Natural Gas - Arizona, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year............................... 7 9 6 6 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ........................................... 300 443 331 233 611 From Oil Wells ............................................. * * * * * Total.............................................................. 301 443 331 233 611 Repressuring ................................................. 0 0 0 0 0 Vented and Flared ......................................... 0 0 0 0 0 Wet After Lease Separation........................... 301 443 331 233 611 Nonhydrocarbon Gases Removed................. 0 0 0 0 0 Marketed Production......................................

199

Energy Information Administration / Natural Gas Annual 2005 112  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 51. Summary Statistics for Natural Gas - Missouri, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

200

Energy Information Administration / Natural Gas Annual 2006 160  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 75. Summary Statistics for Natural Gas - Wisconsin, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year .................................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 0 0 0 0 0 From Oil Wells................................................. 0 0 0 0 0 Total.................................................................. 0 0 0 0 0 Repressuring ..................................................... 0 0 0 0 0 Vented and Flared ............................................. 0 0 0 0 0 Wet After Lease Separation............................... 0 0 0 0 0 Nonhydrocarbon Gases Removed..................... 0 0 0 0 0 Marketed Production .........................................

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Information Administration / Natural Gas Annual 2005 140  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 65. Summary Statistics for Natural Gas - Rhode Island, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

202

Energy Information Administration / Natural Gas Annual 2005 102  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 46. Summary Statistics for Natural Gas - Maryland, 2001-2005 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 5 7 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 32 22 48 34 46 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 32 22 48 34 46 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 32 22 48 34 46 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production

203

Nevada Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

204

Indiana Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

205

Colorado Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 657 638 525 665 651 635 507 611 607 1992 665 667 720 787 782 766 787 513 840 822 915 821 1993 1,034 857 948 531 965 949 922 936 879 982 976 1,016 1994 1,024 885 999 948 553 949 969 999 1,000 1,003 1,010 1,009 1995 1,594 931 2,253 893 1,451 1,976 976 958 1,256 830 929 993 1996 954 931 858 862 907 849 880 865 762 1,028 957 863 1997 543 530 578 485 612 618 588 623 609 609 712 664 1998 594 589 751 704 764 400 626 641 604 677 588 306 1999 556 566 558 520 542 528 526 527 504 537 522 511 2000 534 510 541 521 539 524 534 540 522 551 547 561 2001 612 556 603 569 585 591 587 623 610 633 627 666

206

Utah Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,073 14,081 15,757 15,821 14,757 15,209 15,209 15,665 12,137 14,694 14,486 14,329 1992 15,221 13,656 13,168 11,390 11,537 11,941 11,954 11,375 11,617 10,161 10,609 9,069 1993 9,234 8,048 8,426 10,843 10,044 9,739 10,136 9,860 9,381 8,310 7,236 7,372 1994 7,057 6,684 6,978 6,450 6,086 6,183 6,058 6,000 5,912 4,935 5,287 5,167 1995 4,736 3,880 3,400 3,383 3,441 1,323 1,293 1,492 1,056 1,076 907 886 1996 762 708 215 187 210 167 165 169 163 135 142 141 1997 148 150 133 57 62 55 85 58 51 106 40 46 1998 47 40 55 45 47 40 45 43 44 44 42 69 1999 62 36 43 39 39 42 64 48 42 39 38 28 2000 42 39 45 46 46 45 51 55 44 42 69 39

207

Michigan Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 195 195 195 195 195 195 195 195 195 195 195 195 1997 195 195 195 195 195 195 195 195 195 195 195 195 1998 195 195 195 195 195 195 195 195 195 195 195 195 1999 195 195 195 195 195 195 195 195 195 195 195 195 2000 195 195 195 195 195 195 195 195 195 195 195 195 2001 195 195 195 195 195 195 195 195 195 195 195 195 2002 195 195 195 195 195 195 195 195 195 195 195 195 2003 195 195 195 195 195 195 195 195 195 195 195 195 2004 195 195 195 195 195 195 195 195 195 195 195 195 2005 195 195 195 195 195 195 195 195 195 195 195 195 2006 195 195 195 195 195 195 195 195 195 195 195 195

208

Louisiana Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,244 4,734 4,225 4,287 4,497 4,051 3,869 2,184 3,937 4,254 2,076 1,935 1992 3,882 3,446 3,606 3,528 3,694 3,572 3,661 3,278 3,265 3,553 3,480 3,668 1993 3,051 2,763 2,983 2,907 3,017 2,891 2,959 2,994 2,996 3,134 3,065 3,144 1994 3,119 2,825 3,049 2,971 3,083 2,955 3,024 3,060 3,062 3,204 3,133 3,215 1995 3,033 2,747 2,965 2,887 2,993 2,869 2,939 2,977 2,978 3,118 3,048 3,130 1996 3,068 2,866 3,008 2,923 3,036 3,346 3,525 3,543 3,488 3,445 3,738 3,964 1997 1,004 907 1,005 945 965 883 915 929 900 896 844 867 1998 721 650 719 677 691 633 653 664 644 641 602 619 1999 951 859 952 896 915 837 868 881 854 850 802 823

209

Maryland Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

210

Montana Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 7 6 6 7 8 7 7 7 5 5 6 6 1997 6 5 6 5 5 5 5 5 5 5 5 6 1998 6 5 5 8 6 6 5 5 5 6 6 6 1999 6 5 6 6 5 7 5 5 5 5 5 6 2000 0 0 0 0 0 0 0 1 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 1 1 1 2004 0 0 0 0 1 0 1 0 0 0 0 1 2005 0 0 1 2 1 1 0 0 0 1 1 1 2006 1 0 4 5 5 1 1 0 1 0 1 0 2007 0 1 0 0 1 0 0 0 0 0 0 1 2008 0 0 1 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 1 0 0 2010 0 0 0 0 0 0 0 0 0 0 1 1 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA

211

Oregon Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 3 2 3 3 4 4 4 4 4 4 3 2 1997 3 2 3 3 4 4 4 5 4 4 4 4 1998 3 3 3 3 4 4 4 4 4 4 4 4 1999 4 4 4 4 4 4 4 4 4 5 4 4 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

212

Natural Gas Used for Repressuring (Summary)  

Gasoline and Diesel Fuel Update (EIA)

NA NA NA NA NA NA 1973-2013 NA NA NA NA NA NA 1973-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Alabama NA NA NA NA NA NA 1991-2013 Alaska NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1991-2013 Colorado NA NA NA NA NA NA 1991-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana NA NA NA NA NA NA 1991-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1991-2013 Missouri NA NA NA NA NA NA 1991-2013

213

California Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,315 5,658 6,757 6,471 6,507 6,127 6,736 6,497 6,688 7,419 7,161 6,900 1992 7,314 6,701 7,119 7,071 7,197 6,573 6,884 6,683 6,498 6,759 6,244 6,286 1993 7,750 6,919 7,484 7,167 7,241 6,955 7,081 7,093 6,997 7,570 7,597 7,950 1994 7,447 6,648 7,191 6,887 6,958 6,683 6,804 6,816 6,723 7,273 7,300 7,639 1995 8,960 7,999 8,653 8,286 8,372 8,041 8,187 8,201 8,089 8,751 8,783 9,192 1996 9,703 9,320 9,579 9,504 9,323 9,273 9,490 9,132 8,872 9,551 8,761 8,808 1997 8,205 7,851 9,616 9,165 9,100 9,599 10,094 10,132 9,188 9,435 8,806 8,943 1998 9,271 7,306 10,350 8,962 9,292 6,986 7,080 4,299 3,979 4,100 3,688 4,303

214

Kentucky Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

215

Arkansas Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 854 748 874 377 368 398 320 289 301 116 43 35 1992 714 638 688 663 660 639 651 651 643 693 693 724 1993 679 609 661 633 642 617 633 635 624 668 670 702 1994 649 582 632 605 614 589 605 606 596 638 641 671 1995 683 612 665 636 646 620 637 638 627 671 674 706 1996 196 185 205 187 218 212 192 191 193 201 218 156 1997 208 194 204 211 200 187 148 162 151 158 148 169 1998 126 117 123 127 121 113 90 98 91 95 89 102 1999 103 99 110 99 109 102 101 96 89 102 70 69 2000 0 0 0 0 0 0 0 0 8 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0

216

Virginia Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

217

Colorado Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 657 638 525 665 651 635 507 611 607 1992 665 667 720 787 782 766 787 513 840 822 915 821 1993 1,034 857 948 531 965 949...

218

Colorado Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,501 6,645 3,257 1970's 2,227 1,960 415 709 266 220 327 218 256 1980's 196 398 227 388 94 748...

219

Wyoming Natural Gas Repressuring (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

1970's 8,563 8,046 8,412 12,643 11,796 6,892 6,149 14,163 14,484 23,768 1980's 39,895 43,871 35,168 45,870 46,291 48,107 52,977 66,604 51,982 52,783 1990's 56,581 90,465 81,712...

220

Alaska Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 165,196 155,820 172,824 157,592 156,292 156,913 163,560 160,337 144,609 169,116 159,810 168,222 1992 177,791 178,481 186,092 181,395 176,802 169,069 171,059 170,930 179,174 189,695 185,519 202,013 1993 200,110 178,483 201,238 185,464 188,032 168,714 169,336 185,382 178,508 211,134 223,628 235,477 1994 217,133 193,581 219,086 201,450 203,950 182,418 182,384 200,295 192,711 228,960 241,471 253,820 1995 249,424 222,370 251,668 231,409 234,281 209,546 209,508 230,082 221,371 263,010 277,382 291,567 1996 256,039 244,327 258,675 235,873 216,656 225,006 218,556 229,586 234,296 254,528 251,365 260,779 1997 257,697 245,909 260,350 237,401 218,058 226,463 219,971 231,072 235,813 256,176 252,993 262,467

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hanford wells  

SciTech Connect (OSTI)

Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

Chamness, M.A.; Merz, J.K.

1993-08-01T23:59:59.000Z

222

Nonhydrocarbon Gases Removed from Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

6-2013 6-2013 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2013 Louisiana NA NA NA NA NA NA 1996-2013 New Mexico NA NA NA NA NA NA 1996-2013 Oklahoma NA NA NA NA NA NA 1996-2013 Texas NA NA NA NA NA NA 1991-2013 Wyoming NA NA NA NA NA NA 1991-2013 Other States Other States Total NA NA NA NA NA NA 1996-2013 Alabama NA NA NA NA NA NA 1991-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Maryland

223

Nonhydrocarbon Gases Removed from Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

661,168 718,674 721,507 836,698 867,922 761,836 1973-2012 661,168 718,674 721,507 836,698 867,922 761,836 1973-2012 Alaska 0 0 0 0 0 0 1996-2012 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 1997-2012 Louisiana 0 0 0 0 1996-2010 Louisiana Onshore NA NA NA NA NA NA 2003-2012 Louisiana State Offshore NA NA NA NA NA NA 2003-2012 New Mexico 28,962 32,444 33,997 40,191 39,333 38,358 1980-2012 Oklahoma 0 0 0 0 1996-2010 Texas 254,337 241,626 240,533 279,981 284,557 183,118 1980-2012 Texas Onshore 254,337 241,626 240,533 279,981 284,557 183,118 1992-2012 Texas State Offshore NA 0 0 0 0 0 2003-2012 Wyoming 154,157 161,952 155,366 164,221 152,421 151,288 1980-2012 Other States Other States Total 223,711 282,651 291,611 352,304 1994-2010 Alabama 16,529 17,394 16,658 14,418 18,972 NA 1980-2012

224

Nonhydrocarbon Gases Removed from Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

1-2013 1-2013 Alaska NA NA NA NA NA NA 1996-2013 Arizona NA NA NA NA NA NA 1996-2013 Arkansas NA NA NA NA NA NA 1991-2013 California NA NA NA NA NA NA 1996-2013 Colorado NA NA NA NA NA NA 1996-2013 Florida NA NA NA NA NA NA 1996-2013 Illinois NA NA NA NA NA NA 1991-2013 Indiana NA NA NA NA NA NA 1991-2013 Kansas NA NA NA NA NA NA 1996-2013 Kentucky NA NA NA NA NA NA 1991-2013 Louisiana NA NA NA NA NA NA 1996-2013 Maryland NA NA NA NA NA NA 1991-2013 Michigan NA NA NA NA NA NA 1996-2013 Mississippi NA NA NA NA NA NA 1991-2013 Missouri NA NA NA NA NA NA 1991-2013 Montana NA NA NA NA NA NA 1996-2013 Nebraska NA NA NA NA NA NA 1991-2013 Nevada NA NA NA NA NA NA 1991-2013 New Mexico NA NA NA NA NA NA 1996-2013

225

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

226

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

227

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

228

Average Commercial Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

229

Energy Information Administration / Natural Gas Annual 2008 154  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 71. Summary Statistics for Natural Gas - Utah, 2004-2008 Number of Wells Producing at End of Year.. 3,657 4,092 4,858 5,197 5,578 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 259,432 279,412 322,848 276,634 337,924 From Oil Wells.............................................. 31,153 32,583 33,472 35,104 36,056 From Coalbed Wells ..................................... NA NA NA 73,623 67,619 Total............................................................... 290,586 311,994 356,321 385,361 441,598 Repressuring .................................................. 1,337 1,294 1,300 1,742 1,571 Vented and Flared.......................................... 688 595 585 1,005 1,285 Nonhydrocarbon Gases Removed

230

Energy Information Administration / Natural Gas Annual 2008 130  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 59. Summary Statistics for Natural Gas - New York, 2004-2008 Number of Wells Producing at End of Year.. 5,781 5,449 5,985 6,680 6,675 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 45,963 54,851 55,339 54,232 49,607 From Oil Wells.............................................. 87 329 641 710 714 From Coalbed Wells ..................................... 0 0 0 0 0 Total............................................................... 46,050 55,180 55,980 54,942 50,320 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production

231

Energy Information Administration / Natural Gas Annual 2008 72  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 30. Summary Statistics for Natural Gas - Arkansas, 2004-2008 Number of Wells Producing at End of Year.. 3,460 3,462 3,814 4,773 5,592 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 176,221 180,969 262,911 259,708 437,006 From Oil Wells.............................................. 11,088 9,806 7,833 7,509 7,378 From Coalbed Wells ..................................... NA NA NA 3,198 2,698 Total............................................................... 187,310 190,774 270,744 270,414 447,082 Repressuring .................................................. 0 0 439 516 511 Vented and Flared.......................................... 241 241 12 11 20 Nonhydrocarbon Gases Removed

232

Energy Information Administration / Natural Gas Annual 2008 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 53. Summary Statistics for Natural Gas - Montana, 2004-2008 Number of Wells Producing at End of Year.. 4,971 5,751 6,578 6,925 7,095 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 87,292 91,833 93,759 84,460 82,400 From Oil Wells.............................................. 10,546 16,722 20,278 23,092 22,995 From Coalbed Wells ..................................... NA NA NA 13,022 14,004 Total............................................................... 97,838 108,555 114,037 120,575 119,399 Repressuring .................................................. 5 9 19 6 6 Vented and Flared.......................................... 1,071 629 1,173 3,721 6,863 Nonhydrocarbon Gases Removed

233

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 14,750 13,487 14,370 14,367 12,900 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 76,770 81,545 81,723 88,259 87,608 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 76,770 81,545 81,723 88,259 87,608 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 76,770 81,545 81,723 88,259 87,608 Nonhydrocarbon Gases Removed

234

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60 71 68 69 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 702 648 563 531 550 From Oil Wells.................................................. 8,637 10,032 10,751 9,894 11,055 Total................................................................... 9,340 10,680 11,313 10,424 11,605 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,555 1,806 2,043 1,880 2,100 Wet After Lease Separation................................ 7,785 8,875 9,271 8,545 9,504 Nonhydrocarbon Gases Removed

235

Energy Information Administration / Natural Gas Annual 2006 80  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 35. Summary Statistics for Natural Gas - Florida, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 3,785 3,474 3,525 2,954 2,845 Total............................................................... 3,785 3,474 3,525 2,954 2,845 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Wet After Lease Separation............................ 3,785 3,474 3,525 2,954 2,845 Nonhydrocarbon Gases Removed .................

236

C:\ANNUAL\VENTCHAP.V8\NewNGA02.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 Indiana - Table 40 I n d i a n a 509,215 250,766 3.41 1,064 0.01 310 2.52 147,338 3.08 17,572 0.33 78,479 2.58 494,465 2.41 40. Summary Statistics for Natural Gas Indiana, 1997-2001 Table 1997 1998 1999 2000 2001 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 1,458 1,479 1,498 1,502 1,533 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 526 615 855 899 1,064 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 526 615 855 899 1,064 Repressuring ................................................ 0 0 0 0 0 Vented and Flared........................................ 0 0 0 0 0 Wet After Lease Separation ......................... 526 615 855 899 1,064 Nonhydrocarbon Gases Removed...............

237

Energy Information Administration / Natural Gas Annual 2007 130  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 59. Summary Statistics for Natural Gas - New York, 2003-2007 Number of Wells Producing at End of Year.. 5,878 5,781 5,449 5,985 6,680 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 35,943 45,963 54,851 55,339 54,232 From Oil Wells.............................................. 194 87 329 641 710 Total............................................................... 36,137 46,050 55,180 55,980 54,942 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 36,137 46,050 55,180 55,980 54,942

238

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

239

Energy Information Administration / Natural Gas Annual 2007 154  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 71. Summary Statistics for Natural Gas - Utah, 2003-2007 Number of Wells Producing at End of Year.. 3,220 3,657 4,092 R 4,858 5,197 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 254,488 259,432 279,412 R 322,848 350,257 From Oil Wells.............................................. 29,871 31,153 32,583 R 33,472 35,104 Total............................................................... 284,359 290,586 311,994 R 356,321 385,361 Repressuring .................................................. 1,785 1,337 1,294 1,300 1,742 Vented and Flared.......................................... 705 688 595 R 585 1,005 Nonhydrocarbon Gases Removed ................. 13,810 10,592 8,883 R 6,116 6,205 Marketed Production

240

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

242

Energy Information Administration / Natural Gas Annual 2007 98  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 43. Summary Statistics for Natural Gas - Kansas, 2003-2007 Number of Wells Producing at End of Year.. 17,387 18,120 18,946 19,713 19,713 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 369,624 350,413 332,860 327,386 322,836 From Oil Wells.............................................. 50,403 47,784 45,390 44,643 44,023 Total............................................................... 420,027 398,197 378,250 372,029 366,859 Repressuring .................................................. 714 677 643 620 E 618 Vented and Flared.......................................... 420 398 378 365 E 363 Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production ......................................

243

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

244

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

4 4 - Natural Gas 1999 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: 0 463 0.01 0 0.00 0 0.00 524 0.01 0 0.00 1,749 0.06 2,735 0.01 H a w a i i Hawaii - Table 52 52. Summary Statistics for Natural Gas Hawaii, 1995-1999 Table 1995 1996 1997 1998 1999 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 0 0 0 0 0 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon

245

Energy Information Administration / Natural Gas Annual 2007 84  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 36. Summary Statistics for Natural Gas - Florida, 2003-2007 Number of Wells Producing at End of Year.. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 3,474 3,525 2,954 2,845 2,000 Total............................................................... 3,474 3,525 2,954 2,845 2,000 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 387 402 337 304 E 222 Marketed Production ...................................... 3,087 3,123 2,616 2,540 1,778 Extraction Loss...............................................

246

Energy Information Administration / Natural Gas Annual 2007 118  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 53. Summary Statistics for Natural Gas - Montana, 2003-2007 Number of Wells Producing at End of Year.. 4,539 4,971 5,751 6,578 6,925 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 78,175 87,292 91,833 93,759 97,483 From Oil Wells.............................................. 8,256 10,546 16,722 20,278 23,092 Total............................................................... 86,431 97,838 108,555 114,037 120,575 Repressuring .................................................. 2 5 9 19 6 Vented and Flared.......................................... 403 1,071 629 1,173 3,721 Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production ......................................

247

Energy Information Administration / Natural Gas Annual 2007 138  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 63. Summary Statistics for Natural Gas - Oklahoma, 2003-2007 Number of Wells Producing at End of Year.. 34,334 35,612 36,704 38,060 38,364 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 1,487,451 1,597,915 1,592,524 1,640,389 1,709,207 From Oil Wells.............................................. 70,704 57,854 46,786 48,597 35,186 Total............................................................... 1,558,155 1,655,769 1,639,310 1,688,985 1,744,393 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... NA NA NA NA NA Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production

248

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

249

Energy Information Administration / Natural Gas Annual 2007 100  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 44. Summary Statistics for Natural Gas - Kentucky, 2003-2007 Number of Wells Producing at End of Year.. 12,900 13,920 14,175 15,892 16,563 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 87,608 94,259 92,795 95,320 95,437 From Oil Wells.............................................. 0 0 0 0 0 Total............................................................... 87,608 94,259 92,795 95,320 95,437 Repressuring .................................................. 0 0 0 0 0 Vented and Flared.......................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ...................................... 87,608 94,259 92,795 95,320 95,437

250

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

251

Energy Information Administration / Natural Gas Annual 2007 136  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 62. Summary Statistics for Natural Gas - Ohio, 2003-2007 Number of Wells Producing at End of Year.. 33,828 33,828 33,735 33,945 34,416 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 87,993 85,018 77,819 81,155 82,827 From Oil Wells.............................................. 5,647 5,458 5,704 5,160 5,268 Total............................................................... 93,641 90,476 83,523 86,315 88,095 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... NA NA NA NA NA Nonhydrocarbon Gases Removed ................. NA NA NA NA NA Marketed Production ......................................

252

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

1995 1996 1997 1998 1999 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 298,541 301,811 310,971 R 316,929 307,449 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 17,282,032 17,737,334 17,844,046 R 17,719,241 17,540,919 From Oil Wells........................................... 6,461,596 6,376,201 6,368,631 R 6,376,965 6,214,427 Total............................................................. 23,743,628 24,113,536 24,212,677 R 24,096,206 23,755,345 Repressuring ................................................ -3,565,023 -3,510,753 -3,491,542 R -3,437,062 -3,304,594 Nonhydrocarbon Gases Removed............... -388,392 -518,425 -598,691 R -615,941 -609,717 Wet After Lease Separation ......................... 19,790,213

253

NGA98fin5.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 Indiana - Table 61 I n d i a n a 540,755 290,973 3.35 615 0.00 67 1.32 140,122 3.10 9,096 0.28 73,117 2.44 513,375 2.64 61. Summary Statistics for Natural Gas Indiana, 1994-1998 Table 1994 1995 1996 1997 1998 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 1,348 1,347 1,367 1,458 1,479 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 107 249 360 526 615 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 107 249 360 526 615 Repressuring ................................................ NA NA NA NA NA Nonhydrocarbon Gases Removed...............

254

Indiana I  

Gasoline and Diesel Fuel Update (EIA)

Indiana Indiana I n d i a n a 624,744 289,219 3.26 360 0.00 112 3.82 179,939 3.43 4,330 0.16 87,456 2.77 561,056 2.80 62. Summary Statistics for Natural Gas Indiana, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,333 1,336 1,348 1,347 1,367 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 174 192 107 249 360 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 174 192 107 249 360 Repressuring ................................................ NA NA NA NA NA Nonhydrocarbon Gases Removed ...............

255

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 Indiana - Table 55 I n d i a n a 587,213 319,890 3.56 855 0.00 48 0.84 151,529 3.21 7,655 0.25 73,643 2.42 552,765 2.78 55. Summary Statistics for Natural Gas Indiana, 1995-1999 Table 1995 1996 1997 1998 1999 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 1,347 1,367 1,458 1,479 1,498 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 249 360 526 615 855 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 249 360 526 615 855 Repressuring ................................................ NA NA NA NA NA Nonhydrocarbon Gases Removed............... NA NA NA NA NA Wet After Lease Separation ......................... 249 360 526 615 855 Vented and Flared........................................

256

Energy Information Administration / Natural Gas Annual 2007 72  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 30. Summary Statistics for Natural Gas - Arkansas, 2003-2007 Number of Wells Producing at End of Year.. 7,606 3,460 3,462 R 3,814 4,773 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 157,039 176,221 180,969 R 262,911 262,905 From Oil Wells.............................................. 12,915 11,088 9,806 R 7,833 7,509 Total............................................................... 169,953 187,310 190,774 R 270,744 270,414 Repressuring .................................................. 0 0 0 439 516 Vented and Flared.......................................... 354 241 241 R 12 11 Nonhydrocarbon Gases Removed ................. 0 0 0 0 0 Marketed Production ......................................

257

Energy Information Administration / Natural Gas Annual 2007 76  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 32. Summary Statistics for Natural Gas - Colorado, 2003-2007 Number of Wells Producing at End of Year..... 18,774 16,718 22,691 20,568 22,949 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................... 970,229 1,002,453 1,038,739 1,101,361 1,093,695 From Oil Wells................................................. 51,065 87,170 105,247 113,035 160,833 Total.................................................................. 1,021,294 1,089,622 1,143,985 1,214,396 1,254,529 Repressuring ..................................................... 8,885 9,229 9,685 10,285 10,625 Vented and Flared............................................. 1,123 1,158 1,215 1,291 1,333 Nonhydrocarbon Gases Removed

258

C:\ANNUAL\VENTCHAP.V8\NGAla1109.vp  

Gasoline and Diesel Fuel Update (EIA)

1 1 Indiana - Table 56 I n d i a n a 561,632 312,222 3.28 899 0.00 50 0.60 160,027 3.21 7,754 0.25 90,378 2.81 570,431 2.75 56. Summary Statistics for Natural Gas Indiana, 1996-2000 Table 1996 1997 1998 1999 2000 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 1,367 1,458 1,479 1,498 1,502 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 360 526 615 855 899 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 360 526 615 855 899 Repressuring ................................................ NA NA NA NA NA Vented and Flared........................................ NA NA NA NA NA Wet After Lease Separation ......................... 360 526 615 855 899 Nonhydrocarbon Gases Removed...............

259

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

260

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 - Natural Gas 1999 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: N e w J e r s e y 564,194 206,898 2.30 0 0.00 0 0.00 209,399 4.43 32,650 1.05 163,759 5.37 612,707 3.08 New Jersey - Table 71 1995 1996 1997 1998 1999 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 0 0 0 0 0 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed...............

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

262

C:\ANNUAL\VENTCHAP.V8\NGA.VP  

Gasoline and Diesel Fuel Update (EIA)

2 2 Indiana - Table 61 I n d i a n a 627,176 290,723 3.29 526 0.00 60 1.36 169,140 3.39 5,141 0.17 81,753 2.54 546,817 2.73 61. Summary Statistics for Natural Gas Indiana, 1993-1997 Table 1993 1994 1995 1996 1997 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 1,336 1,348 1,347 1,367 1,458 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 192 107 249 360 526 From Oil Wells........................................... 0 0 0 0 0 Total............................................................. 192 107 249 360 526 Repressuring ................................................ NA NA NA NA NA Nonhydrocarbon Gases Removed...............

263

Energy Information Administration / Natural Gas Annual 2006 146  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 68. Summary Statistics for Natural Gas - Tennessee, 2002-2006 Number of Gas and Gas Condensate Wells Producing at End of Year ............................... 400 430 280 400 330 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 0 0 0 0 0 From Oil Wells.............................................. 2,050 1,803 2,100 2,200 1,793 Total............................................................... 2,050 1,803 2,100 2,200 1,793 Repressuring .................................................. NA NA NA NA NA Vented and Flared.......................................... NA NA NA NA NA Wet After Lease Separation............................ 2,050 1,803 2,100 2,200 1,793 Nonhydrocarbon Gases Removed

264

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

265

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

266

Microsoft Word - Table_72_2.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 1999 2000 2001 2002 2003 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 2,752 3,051 3,521 3,429 3,506 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 72,189 71,545 71,543 76,915 81,086 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 72,189 71,545 71,543 76,915 81,086 Repressuring ...................................................... NA NA NA NA NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 72,189 71,545 71,543 76,915 81,086 Nonhydrocarbon Gases Removed

267

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

268

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

269

NGA_99fin.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 1995-1999 Table 1995 1996 1997 1998 1999 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 298,541 301,811 310,971 R 316,929 307,449 Production (million cubic meters) Gross Withdrawals From Gas Wells......................................... 489,373 502,265 505,287 R 501,753 496,704 From Oil Wells........................................... 182,972 180,554 180,340 R 180,576 175,973 Total............................................................. 672,345 682,819 685,627 R 682,329 672,677 Repressuring ................................................ -100,950 -99,413 -98,869 R -97,327 -93,576 Nonhydrocarbon Gases Removed............... -10,998 -14,680 -16,953 R -17,442 -17,265 Wet After Lease Separation .........................

270

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

271

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

272

Energy Information Administration / Natural Gas Annual 2007 166  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 77. Summary Statistics for Natural Gas - Wyoming, 2003-2007 Number of Wells Producing at End of Year.. 18,154 20,244 23,734 25,052 26,900 Production (million cubic feet) Gross Withdrawals From Gas Wells............................................ 1,652,504 1,736,136 1,803,443 1,900,589 2,102,362 From Oil Wells.............................................. 183,612 192,904 200,383 211,177 156,066 Total............................................................... 1,836,115 1,929,040 2,003,826 2,111,766 2,258,428 Repressuring .................................................. 131,125 164,164 171,616 114,343 133,716 Vented and Flared.......................................... 16,685 16,848 31,161 31,661 47,331 Nonhydrocarbon Gases Removed

273

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012 (trillion cubic feet) Natural Gas Plant Liquids Production Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 29.5 0.8 0.2 3.3 2.963 0.112 0.620 0.971 0.014 24.1 1.3 2.9 2.8 2.5 2.9 7.2 0.03 9.1 0.003 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

274

Microsoft Word - front_matter_Dec12.docx  

Gasoline and Diesel Fuel Update (EIA)

5 5 Egypt Figure 2. Natural gas supply and disposition in the United States, 2011 (trillion cubic feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 28.5 0.9 0.2 3.4 3.117 0.129 0.002 0.500 0.937 0.018 22.9 1.1 3.5 3.1 2.0 3.2 6.9 0.03 7.6 0.035 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

275

North Dakota Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 223 222 230 228 233 230 239 233 222 207 220 242 1997 110 87 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0

276

U.S. Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 73,507 84,925 101,551 171,401 1940's 362,916 644,379 752,619 824,803 882,979 1,061,951 1,038,242 1,083,119 1,220,579 1,273,205 1950's 1,396,546 1,438,827 1,410,501 1,438,606 1,518,737 1,540,804 1,426,648 1,417,263 1,482,975 1,612,109 1960's 1,753,996 1,682,754 1,736,722 1,843,297 1,647,108 1,604,204 1,451,516 1,590,574 1,486,092 1,455,205 1970's 1,376,351 1,310,458 1,236,292 1,171,361 1,079,890 860,956 859,410 934,801 1,181,432 1,245,074 1980's 1,365,454 1,311,735 1,388,392 1,458,054 1,630,152 1,915,197 1,837,552 2,207,559 2,478,382 2,475,179 1990's 2,489,040 2,771,928 2,972,552 3,103,014 3,230,667 3,565,023 3,510,753 3,491,542 3,427,045 3,292,564

277

Decontaminating Flooded Wells  

E-Print Network [OSTI]

This publication explains how to decontaminate and disinfect a well, test the well water and check for well damage after a flood....

Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

2005-09-30T23:59:59.000Z

278

Well control procedures for extended reach wells  

E-Print Network [OSTI]

been found to be critical to the success of ERD are torque and drag, drillstring design, wellbore stability, hole cleaning, casing design, directional drilling optimization, drilling dynamics and rig sizing.4 Other technologies of vital importance... are the use of rotary steerable systems (RSS) together with measurement while drilling (MWD) and logging while drilling (LWD) to geosteer the well into the geological target.5 Many of the wells drilled at Wytch Farm would not have been possible to drill...

Gjorv, Bjorn

2004-09-30T23:59:59.000Z

279

Groundwater and Wells (Nebraska)  

Broader source: Energy.gov [DOE]

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

280

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Value & Marketed Production Wellhead Value & Marketed Production Definitions Key Terms Definition Marketed Production Gross withdrawals less gas used for repressuring, quantities vented and flared, and nonhydrocarbon gases removed in treating or processing operations. Includes all quantities of gas used in field and processing plant operations. Production The volume of natural gas withdrawn from reservoirs less (1) the volume returned to such reservoirs in cycling, repressuring of oil reservoirs, and conservation operations; less (2) shrinkage resulting from the removal of lease condensate; and less (3) nonhydrocarbon gases where they occur in sufficient quantity to render the gas unmarketable. Volumes of gas withdrawn from gas storage reservoirs and native gas, which has been transferred to the storage category, are not considered production. Flared and vented gas is also considered production. (This differs from "Marketed Production" which excludes flared and vented gas.)

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Plugging Abandoned Water Wells  

E-Print Network [OSTI]

. It is recommended that before you begin the process of plugging an aban- doned well that you seek advice from your local groundwater conservation district, a licensed water well driller in your area, or the Water Well Drillers Program with the Texas Department... hire a licensed water well driller or pump installer to seal and plug an abandoned well. Well contractors have the equipment and an understanding of soil condi- tions to determine how a well should be properly plugged. How can you take care...

Lesikar, Bruce J.

2002-02-28T23:59:59.000Z

282

Horizontal well IPR calculations  

SciTech Connect (OSTI)

This paper presents the calculation of near-wellbore skin and non-Darcy flow coefficient for horizontal wells based on whether the well is drilled in an underbalanced or overbalanced condition, whether the well is completed openhole, with a slotted liner, or cased, and on the number of shots per foot and phasing for cased wells. The inclusion of mechanical skin and the non-Darcy flow coefficient in previously published horizontal well equations is presented and a comparison between these equations is given. In addition, both analytical and numerical solutions for horizontal wells with skin and non-Darcy flow are presented for comparison.

Thomas, L.K.; Todd, B.J.; Evans, C.E.; Pierson, R.G.

1996-12-31T23:59:59.000Z

283

Underground Wells (Oklahoma)  

Broader source: Energy.gov [DOE]

Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

284

Economic design of wells  

Science Journals Connector (OSTI)

...concepts and the general principles outlined...with wells of the general configuration shown...internal com- bustion engine. It is assumed that...analysis, consider a diesel- powered well of...modified to use either a general expression for performance...written in terms of diesel-powered wells...

R. F. Stoner; D. M. Milne; P. J. Lund

285

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class in same GDB as the well points FC, with one polygon field record (may be multiple polygon rings) per field_name. Overlapping buffers for the same field name are dissolved and unioned (see figure below). Adds an attribute PCTFEDLAND which can be populated using the VBA

286

Well drilling apparatus  

SciTech Connect (OSTI)

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

287

California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 71 76 80 78 78 76 80 79 77 79 78 80 1997 20 18 20 20 20 20 20 20 20 20 20 20 1998 62 56 62 60 62 60 62 62 60 62 60 62 1999 18 16 18 17 18 17 18 18 17 18 17 18 2000 22 20 22 22 22 22 22 22 22 22 22 22 2001 21 19 21 20 21 20 21 21 20 21 20 21 2002 224 203 227 211 219 217 217 410 274 304 330 299 2003 309 277 304 289 307 293 298 285 279 281 276 281 2004 284 260 273 270 278 269 278 275 270 279 272 277 2005 104 250 276 272 280 267 282 289 280 288 281 283 2006 277 256 293 283 293 280 283 286 269 284 275 285 2007 261 242 277 268 277 264 268 270 254 268 260 269

288

Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,825 1,776 1,759 1,668 1,765 1,492 1,869 1,541 2,011 857 1,610 1,972 1992 2,247 1,940 1,988 2,248 2,249 2,233 2,381 2,259 2,222 2,290 2,277 2,387 1993 2,340 1,872 2,111 1,945 1,407 1,747 2,269 2,331 2,270 2,338 2,232 2,457 1994 2,473 2,025 2,223 2,147 1,562 1,554 2,551 2,616 2,287 2,375 2,593 2,575 1995 2,412 2,008 2,181 2,136 1,597 1,475 2,496 2,591 2,213 2,314 2,581 2,576 1996 2,211 2,030 2,287 2,270 2,346 2,216 2,232 2,297 2,257 2,293 2,292 2,275 1997 2,336 2,076 2,333 2,284 2,206 1,787 2,210 2,225 2,387 2,564 2,349 2,447 1998 2,281 2,028 2,282 2,245 2,151 1,732 2,162 2,156 2,342 2,519 2,310 2,404

289

Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

290

North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 18 12 17 15 21 64 67 60 36 32 9 8 1997 6 6 8 6 5 5 10 24 47 13 28 5 1998 5 4 5 3 5 5 5 5 5 6 5 5 1999 5 6 7 7 7 8 6 8 6 6 5 5 2000 5 5 5 5 5 5 5 5 8 8 8 9 2001 9 7 7 6 7 6 9 8 8 8 7 7 2002 9 10 15 14 12 13 14 13 9 10 10 10 2003 11 10 10 10 11 11 11 12 9 10 9 9 2004 10 10 12 12 18 13 14 11 7 8 5 6 2005 6 6 7 6 7 8 9 8 8 8 7 7 2006 8 5 5 5 3 4 4 4 5 4 3 3 2007 6 4 4 4 2 3 3 3 4 3 2 2 2008 567 495 642 623 697 761 801 818 853 935 931 920 2009 614 540 589 564 544 513 535 536 497 479 483 349 2010 431 467 513 478 560 682 626 760 660 733 777 761

291

Montana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 134 102 102 102 24 20 27 7 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

292

Missouri Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

293

Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,374 2,117 2,567 2,440 2,313 2,308 2,342 2,478 2,317 2,472 2,521 2,381 1992 2,015 1,452 1,893 1,823 1,717 1,841 2,042 2,024 1,919 2,008 2,039 2,020 1993 13,055 11,433 13,119 12,645 13,201 6,119 12,956 13,525 13,301 13,884 14,076 13,925 1994 12,654 11,498 12,761 12,155 10,841 6,002 12,042 12,022 11,700 12,648 11,857 11,877 1995 13,054 11,340 12,181 12,297 12,586 12,154 12,287 10,493 12,228 12,613 12,100 12,391 1996 12,895 12,028 13,010 12,512 12,728 5,106 12,415 12,604 12,006 13,039 12,740 13,111 1997 13,025 11,329 13,134 12,620 12,437 9,809 12,318 12,317 11,967 12,304 12,546 12,607 1998 12,808 11,567 12,745 12,011 8,083 11,668 11,325 12,323 12,368 13,077 12,714 12,051

294

Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 730 790 769 1,205 963 766 715 704 861 583 478 765 2001 852 765 1,053 957 1,104 1,086 1,925 1,935 1,418 1,469 1,570 951 2002 1,221 1,265 1,334 1,269 1,197 1,224 1,354 1,285 1,259 1,525 1,172 1,115 2003 1,184 1,146 1,278 1,218 1,081 1,186 1,205 1,134 1,181 1,070 1,091 1,036 2004 991 932 942 895 880 864 744 961 883 886 823 790 2005 941 861 805 815 809 731 782 764 626 627 589 533 2006 695 479 534 493 469 447 463 485 497 555 530 469 2007 500 409 462 478 548 538 563 565 563 635 540 404

295

Maryland Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

296

Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

297

Utah Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 730 790 769 1,205 963 766 715 704 861 583 478 765 2001 852 765 1,053 957 1,104 1,086 1,925 1,935 1,418 1,469 1,570 951 2002 1,221 1,265 1,334 1,269 1,197 1,224 1,354 1,285 1,259 1,525 1,172 1,115 2003 1,184 1,146 1,278 1,218 1,081 1,186 1,205 1,134 1,181 1,070 1,091 1,036 2004 991 932 942 895 880 864 744 961 883 886 823 790 2005 941 861 805 815 809 731 782 764 626 627 589 533 2006 695 479 534 493 469 447 463 485 497 555 530 469 2007 500 409 462 478 548 538 563 565 563 635 540 404

298

Texas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,942 13,557 14,940 12,971 14,588 14,028 14,816 14,906 15,187 15,171 14,489 14,803 1992 15,418 14,446 14,043 15,744 15,716 14,929 15,203 15,313 14,243 15,567 14,513 14,868 1993 15,307 13,813 15,250 14,590 15,480 14,914 15,983 16,468 14,486 15,673 15,868 16,426 1994 16,557 15,133 16,303 16,449 16,781 16,234 14,410 15,490 16,853 17,348 17,080 17,827 1995 16,874 15,423 16,615 16,765 17,103 16,545 14,686 15,787 17,177 17,681 17,408 18,169 1996 18,965 18,527 19,905 18,331 17,193 19,390 18,370 21,654 21,126 20,005 23,391 22,041 1997 21,201 19,430 21,726 19,323 22,294 21,770 23,348 23,536 21,611 22,478 23,411 23,268

299

California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 71 76 80 78 78 76 80 79 77 79 78 80 1997 20 18 20 20 20 20 20 20 20 20 20 20 1998 62 56 62 60 62 60 62 62 60 62 60 62 1999 18 16 18 17 18 17 18 18 17 18 17 18 2000 22 20 22 22 22 22 22 22 22 22 22 22 2001 21 19 21 20 21 20 21 21 20 21 20 21 2002 224 203 227 211 219 217 217 410 274 304 330 299 2003 309 277 304 289 307 293 298 285 279 281 276 281 2004 284 260 273 270 278 269 278 275 270 279 272 277 2005 104 250 276 272 280 267 282 289 280 288 281 283 2006 277 256 293 283 293 280 283 286 269 284 275 285 2007 261 242 277 268 277 264 268 270 254 268 260 269

300

Wyoming Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,374 2,117 2,567 2,440 2,313 2,308 2,342 2,478 2,317 2,472 2,521 2,381 1992 2,015 1,452 1,893 1,823 1,717 1,841 2,042 2,024 1,919 2,008 2,039 2,020 1993 13,055 11,433 13,119 12,645 13,201 6,119 12,956 13,525 13,301 13,884 14,076 13,925 1994 12,654 11,498 12,761 12,155 10,841 6,002 12,042 12,022 11,700 12,648 11,857 11,877 1995 13,054 11,340 12,181 12,297 12,586 12,154 12,287 10,493 12,228 12,613 12,100 12,391 1996 12,895 12,028 13,010 12,512 12,728 5,106 12,415 12,604 12,006 13,039 12,740 13,111 1997 13,025 11,329 13,134 12,620 12,437 9,809 12,318 12,317 11,967 12,304 12,546 12,607 1998 12,808 11,567 12,745 12,011 8,083 11,668 11,325 12,323 12,368 13,077 12,714 12,051

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alaska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

302

New Mexico Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 8,529 7,949 8,687 8,339 8,740 8,289 7,875 7,987 7,677 7,773 7,824 8,089 1997 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 1998 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 1999 12,787 11,548 12,722 12,443 12,412 12,599 12,654 12,926 12,327 12,927 12,633 11,671 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 2,219 1,984 2,391 2,117 2,392 2,251 2,373 2,639 2,554 2,728 2,619 2,696

303

Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

304

Montana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 134 102 102 102 24 20 27 7 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

305

Mississippi Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,713 4,103 4,177 3,429 3,291 3,200 3,548 3,901 3,708 4,067 3,907 3,971 1992 3,944 3,653 3,861 3,656 3,806 4,011 4,105 4,107 2,254 4,223 4,138 4,015 1993 4,031 3,622 3,992 3,857 4,043 4,213 4,447 4,201 4,173 4,150 3,845 3,441 1994 3,468 3,196 3,665 3,492 3,683 3,619 3,903 3,999 3,578 4,030 3,792 3,920 1995 810 747 857 816 861 846 912 935 836 942 886 916 1996 829 744 786 751 808 750 776 725 326 427 693 701 1997 718 631 684 659 641 598 633 677 752 775 723 676 1998 734 676 691 696 727 713 720 746 685 716 705 711 1999 697 637 667 553 559 532 537 516 490 525 498 493 2000 487 1,362 1,346 1,380 1,545 1,453 1,616 1,565 1,526 1,608 1,546 1,558

306

Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

307

Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

308

Kansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

309

Florida Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 51 49 45 45 48 50 81 65 68 63 66 69 1997 69 66 79 72 70 58 67 65 67 59 57 64 1998 62 56 60 62 66 55 65 69 58 61 69 67 1999 67 58 64 59 55 51 65 74 68 68 73 65 2000 64 62 73 64 69 61 68 68 68 66 58 66 2001 59 51 56 64 57 61 71 68 63 90 49 46 2002 44 33 50 38 38 37 34 31 32 31 27 35 2003 30 26 30 27 27 36 35 30 35 38 34 37 2004 37 25 35 36 34 36 42 35 13 33 37 40 2005 43 31 37 33 36 27 12 19 26 26 25 23 2006 21 20 24 23 24 26 30 29 29 39 24 16 2007 15 15 17 17 17 19 22 21 21 29 17 12 2008 21 20 24 23 24 26 30 29 29 40 24 16 2009 2 2 3 2 3 3 3 3 3 4 3 2

310

Oregon Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 35 22 31 35 20 19 20 16 19 19 16 14 1997 15 14 14 14 14 14 14 14 12 14 13 14 1998 13 11 14 13 13 13 13 13 13 12 12 12 1999 12 12 20 19 19 19 18 13 15 21 22 23 2000 20 17 17 16 17 15 15 16 16 18 16 15 2001 1 1 1 1 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0

311

Nevada Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

312

North Dakota Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 18 12 17 15 21 64 67 60 36 32 9 8 1997 6 6 8 6 5 5 10 24 47 13 28 5 1998 5 4 5 3 5 5 5 5 5 6 5 5 1999 5 6 7 7 7 8 6 8 6 6 5 5 2000 5 5 5 5 5 5 5 5 8 8 8 9 2001 9 7 7 6 7 6 9 8 8 8 7 7 2002 9 10 15 14 12 13 14 13 9 10 10 10 2003 11 10 10 10 11 11 11 12 9 10 9 9 2004 10 10 12 12 18 13 14 11 7 8 5 6 2005 6 6 7 6 7 8 9 8 8 8 7 7 2006 8 5 5 5 3 4 4 4 5 4 3 3 2007 6 4 4 4 2 3 3 3 4 3 2 2 2008 567 495 642 623 697 761 801 818 853 935 931 920 2009 614 540 589 564 544 513 535 536 497 479 483 349 2010 431 467 513 478 560 682 626 760 660 733 777 761

313

Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

314

Arkansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

315

Michigan Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

316

West Virginia Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

317

Nebraska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 0 0 0 0 0 0 0 0 0 0 1992 0 0 0 0 0 0 0 0 0 0 0 0 1993 0 0 0 0 0 0 0 0 0 0 0 0 1994 0 0 0 0 0 0 0 0 0 0 0 0 1995 0 0 0 0 0 0 0 0 0 0 0 0 1996 0 0 0 0 0 0 0 0 0 0 0 0 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0

318

Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 NA NA NA NA NA NA NA NA NA NA

319

Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - - - - 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 NA NA NA NA NA NA NA NA NA NA NA NA 2012 NA NA NA NA NA NA NA NA NA NA NA NA

320

New Mexico Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 8,529 7,949 8,687 8,339 8,740 8,289 7,875 7,987 7,677 7,773 7,824 8,089 1997 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 12,133 1998 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 11,177 1999 12,787 11,548 12,722 12,443 12,412 12,599 12,654 12,926 12,327 12,927 12,633 11,671 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 2,219 1,984 2,391 2,117 2,392 2,251 2,373 2,639 2,554 2,728 2,619 2,696

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,825 1,776 1,759 1,668 1,765 1,492 1,869 1,541 2,011 857 1,610 1,972 1992 2,247 1,940 1,988 2,248 2,249 2,233 2,381 2,259 2,222 2,290 2,277 2,387 1993 2,340 1,872 2,111 1,945 1,407 1,747 2,269 2,331 2,270 2,338 2,232 2,457 1994 2,473 2,025 2,223 2,147 1,562 1,554 2,551 2,616 2,287 2,375 2,593 2,575 1995 2,412 2,008 2,181 2,136 1,597 1,475 2,496 2,591 2,213 2,314 2,581 2,576 1996 2,211 2,030 2,287 2,270 2,346 2,216 2,232 2,297 2,257 2,293 2,292 2,275 1997 2,336 2,076 2,333 2,284 2,206 1,787 2,210 2,225 2,387 2,564 2,349 2,447 1998 2,281 2,028 2,282 2,245 2,151 1,732 2,162 2,156 2,342 2,519 2,310 2,404

322

well | OpenEI  

Open Energy Info (EERE)

43 43 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280543 Varnish cache server well Dataset Summary Description The California Division of Oil, Gas, and Geothermal Resources contains oil, gas, and geothermal data for the state of California. Source California Division of Oil, Gas, and Geothermal Resources Date Released February 01st, 2011 (3 years ago) Date Updated Unknown Keywords California data gas geothermal oil well Data application/vnd.ms-excel icon California district 1 wells (xls, 10.1 MiB) application/vnd.ms-excel icon California district 2 wells (xls, 4 MiB) application/vnd.ms-excel icon California district 3 wells (xls, 3.8 MiB) application/zip icon California district 4 wells (zip, 11.2 MiB)

323

Petroleum well costs.  

E-Print Network [OSTI]

??This is the first academic study of well costs and drilling times for Australia??s petroleum producing basins, both onshore and offshore. I analyse a substantial… (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

324

Phenomenal well-being  

E-Print Network [OSTI]

rated against the experience of the individualÂ?s other possible lives. Unlike well-being, PWB is guaranteed to track more robust experiential benefits that a person gets out of living a life. In this work, I discuss the concept of well-being, including...

Campbell, Stephen Michael

2006-08-16T23:59:59.000Z

325

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class...

326

Shock Chlorination of Wells  

E-Print Network [OSTI]

Shock chlorination is a method of disinfecting a water well. This publication gives complete instructions for chlorinating with bleach or with dry chlorine. It is also available in Spanish as publication L-5441S...

McFarland, Mark L.; Dozier, Monty

2003-06-11T23:59:59.000Z

327

Economic design of wells  

Science Journals Connector (OSTI)

...year, c is the cost per lb of diesel fuel, and Co is the cost per...program was written in terms of diesel-powered wells, modifications...charac- teristics of pump-engine combinations and are again...water encountered. There is a fundamental difference between the design...

R. F. Stoner; D. M. Milne; P. J. Lund

328

Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2008-2012  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2008-2012 See footnotes at end of table. Number of Wells Producing at End of Year 476,652 493,100 487,627 514,637 482,822 Production (million cubic meters) Gross Withdrawals From Gas Wells 428,565 408,167 375,127 348,044 360,663 From Oil Wells 158,841 160,673 165,220 167,294 140,725 From Coalbed Wells 57,263 56,922 54,277 50,377 43,591 From Shale Gas Wells 81,268 112,087 164,723 240,721 291,566 Total 725,938 737,849 759,347 806,436 836,545 Repressuring 103,034 99,734 97,172 95,295 92,304 Vented and Flared 4,726 4,682 4,699 5,931 6,027 Nonhydrocarbon Gases Removed 20,351 20,431 23,693 24,577 21,573

329

Missouri Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

1967-1997 1967-1997 Pipeline and Distribution Use 1967-2005 Citygate 7.53 8.03 7.06 6.17 5.85 5.27 1984-2012 Residential 13.42 13.36 12.61 11.66 12.02 12.25 1967-2012 Commercial 11.82 12.02 10.81 10.28 9.99 9.54 1967-2012 Industrial 10.84 11.32 9.55 8.70 8.54 7.93 1997-2012 Vehicle Fuel 8.44 8.66 7.86 6.34 6.11 5.64 1994-2012 Electric Power W W W W W W 1997-2012 Production (Million Cubic Feet) Number of Producing Gas Wells 0 0 0 0 53 100 1989-2012 Gross Withdrawals 0 0 0 0 0 0 1967-2012 From Gas Wells 0 0 0 0 0 0 1967-2012 From Oil Wells 0 0 0 0 0 0 2007-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2007-2012 Repressuring 0 0 0 0 0 0 2007-2012 Nonhydrocarbon Gases Removed

330

Federal Offshore Gulf of Mexico Natural Gas Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Proved Reserves Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 13,634 1992-2007 Estimated Production NA 1992-2007 Production (Million Cubic Feet) Number of Producing Gas Wells 2,552 1,527 1,984 1,852 1,559 1,474 1998-2012 Gross Withdrawals 2,813,197 2,329,955 2,444,102 2,259,144 1,830,913 1,527,875 1997-2012 From Gas Wells 2,202,242 1,848,290 1,877,722 1,699,908 1,353,929 1,013,914 1997-2012 From Oil Wells 610,955 481,665 566,380 559,235 476,984 513,961 1997-2012 From Shale Gas Wells 0 0 0 0 0 0 2007-2012 From Coalbed Wells 0 0 0 0 0 0 2002-2012 Repressuring 1,969 1,105 432 110 3,084 4,014 1997-2012 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2012 Vented and Flared 12,509 14,507 14,754 13,971 15,502 16,296 1997-2012

331

Other States Total Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Gross Withdrawals 4,430,466 4,839,942 5,225,005 5,864,402 6,958,125 8,225,321 1991-2012 From Gas Wells 2,480,211 2,613,139 2,535,642 2,523,173 1991-2010 From Oil Wells 525,280 534,253 648,906 691,643 1991-2010 From Shale Gas Wells 569,502 796,138 1,146,821 1,787,965 2007-2010 From Coalbed Wells 855,473 896,412 893,636 861,620 2002-2010 Repressuring 48,011 51,781 43,376 45,994 1991-2010 Vented and Flared 32,600 52,667 55,544 53,950 1991-2010 Nonhydrocarbon Gases Removed 223,711 282,651 291,611 352,304 1994-2010

332

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 6.2 Natural Gas Production, Selected Years, 1949-2011 (Billion Cubic Feet) Year Natural Gas Gross Withdrawals Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Extraction Loss 1 Dry Gas Production Natural Gas Wells Crude Oil Wells Coalbed Wells Shale Gas Wells Total 1949 4,986 2,561 NA NA 7,547 1,273 NA 854 5,420 224 5,195 1950 5,603 2,876 NA NA 8,480 1,397 NA 801 6,282 260 6,022 1955 7,842 3,878 NA NA 11,720 1,541 NA 774 9,405 377 9,029 1960 10,853 4,234 NA NA 15,088 1,754 NA 563 12,771 543 12,228 1965 13,524 4,440 NA NA 17,963 1,604 NA 319 16,040 753 15,286 1970 18,595 5,192 NA NA 23,786 1,376 NA 489 21,921 906 21,014 1975 17,380 3,723 NA NA 21,104 861 NA 134 20,109 872 19,236 1976 17,191 3,753 NA NA 20,944 859 NA 132 19,952

333

South Dakota Natural Gas Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Prices (Dollars per Thousand Cubic Feet) Citygate 4.65 5.22 5.92 5.49 5.15 5.26 1989-2013 Residential 8.00 9.08 11.46 13.17 13.86 13.81 1989-2013 Commercial 6.38 6.76 7.55 8.06 7.62 7.69 1989-2013 Industrial 5.71 5.84 6.12 6.46 6.27 6.11 2001-2013 Electric Power 4.62 5.61 5.49 4.06 4.06 4.15 2002-2013 Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2013 From Gas Wells NA NA NA NA NA NA 1991-2013 From Oil Wells NA NA NA NA NA NA 1991-2013 From Shale Gas Wells NA NA NA NA NA NA 2007-2013 From Coalbed Wells NA NA NA NA NA NA 2006-2013 Repressuring NA NA NA NA NA NA 1991-2013 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2013

334

Alaska Natural Gas Gross Withdrawals and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Gross Withdrawals 3,479,290 3,415,884 3,312,386 3,197,100 3,162,922 3,164,791 1967-2012 From Gas Wells 165,624 150,483 137,639 127,417 112,268 107,873 1967-2012 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918 1967-2012 From Coalbed Wells 0 0 0 0 0 0 2002-2012 Repressuring 3,039,347 3,007,418 2,908,828 2,812,701 2,795,732 2,801,763 1967-2012 Vented and Flared 6,458 10,023 6,481 10,173 10,966 11,769 1967-2012 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2012 Marketed Production 433,485 398,442 397,077 374,226 356,225 351,259 1967-2012

335

Well Permits (District of Columbia)  

Broader source: Energy.gov [DOE]

Well permits are required for the installation of wells in private and public space. Wells are defined as any trest hole, shaft, or soil excavation created by any means including, but not limited...

336

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land  

Open Energy Info (EERE)

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Single-Well And Cross-Well Seismic Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary

337

Microsoft Word - figure_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 2. Natural Gas Supply and Disposition in the United States, 2010 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 26.8 0.8 0.2 3.4 3.280 0.190 0.042 0.333 0.739 0.033 21.3 1.1 3.3 3.3 2.0 3.1 6.5 0.03 7.4 0.073 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to

338

Microsoft Word - figure_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 2. Natural Gas Supply and Disposition in the United States, 2009 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 26.0 0.7 0.2 3.5 3.271 0.236 0.013 0.338 0.701 0.031 20.6 1.0 3.4 3.0 1.9 3.1 6.2 0.03 6.9 0.160 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to

339

Microsoft Word - figure_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Algeria Figure 2. Natural Gas Supply and Disposition in the United States, 2007 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 24.6 0.6 0.2 3.8 3.783 0.448 0.077 0.095 0.292 0.482 0.047 19.1 0.9 3.2 3.4 1.8 3.0 6.6 0.03 6.8 0.115 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895A, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to

340

Energy Information Administration / Natural Gas Annual 2005 4  

Gasoline and Diesel Fuel Update (EIA)

Figure 2. Natural Gas Supply and Disposition in the United States, 2005 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Algeria Nigeria Qatar Malaysia Oman Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 23.5 0.7 0.1 3.7 3.700 0.439 0.097 0.008 0.003 0.002 0.009 0.305 0.358 0.065 18.1 0.9 3.1 3.1 1.7 4.8 3.1 6.7 0.02 5.9 Egypt 0.073 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Monthly and Annual

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Microsoft Word - figure_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Egypt Figure 2. Natural Gas Supply and Disposition in the United States, 20088 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 25.8 0.7 0.2 3.6 3.589 0.267 0.012 0.365 0.590 0.050 20.3 1.0 3.4 3.4 1.9 3.1 6.7 0.03 6.7 0.055 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-914, "Monthly Natural Gas Production Report"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to

342

Microsoft Word - figure_02.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Egypt Algeria Figure 2. Natural Gas Supply and Disposition in the United States, 2006 (Trillion Cubic Feet) Extraction Loss Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Nigeria Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 23.5 0.7 0.1 3.3 3.590 0.389 0.017 0.057 0.322 0.341 0.061 18.5 0.9 3.0 2.5 1.7 4.4 2.8 6.5 0.02 6.2 0.120 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895A, "Annual Quantity and Value of Natural Gas Production Report"; Form EIA-857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-816, "Monthly Natural Gas Liquids

343

Well-pump alignment system  

DOE Patents [OSTI]

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

Drumheller, D.S.

1998-10-20T23:59:59.000Z

344

Health And Wellness Department Of Health And Wellness  

E-Print Network [OSTI]

Health And Wellness Department Of Health And Wellness Lutchmie Narine, Chair, 315-443-9630 426 The Department of Health and Wellness offers a 123-credit Bachelor of Science degree (B.S.) in public health. Our graduates are prepared to work in community health education and health promotion in public health agencies

McConnell, Terry

345

Exploratory Well | Open Energy Information  

Open Energy Info (EERE)

Exploratory Well Exploratory Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Well Details Activities (8) Areas (3) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a well Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Well: An exploratory well is drilled for the purpose of identifying the

346

Well Monitoring Systems for EGS  

Broader source: Energy.gov [DOE]

Well Monitoring Systems for EGS presentation at the April 2013 peer review meeting held in Denver, Colorado.

347

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells (Redirected from Development Wells) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir

348

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Production Wells:

349

Wellness Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and assistance to DOE employees through a variety of programs and resources geared toward enhancing their mental and physical well-being. Wellness programs include: Accommodations, the Child Development Centers, the Employee Assistance Program (EAP), the Forrestal (FOHO) and Germantown (GOHO) Fitness Centers, the Occupational Health Clinics and the DOE WorkLife4You Program. Programs Disability Services Child Development Centers Headquarters Employee Assistance Program (EAP) Headquarters Occupational Health Clinics Headquarters Accommodation Program DOE Worklife4You Program Health Foreign Travel Health & Wellness Tips

350

Well Deepening | Open Energy Information  

Open Energy Info (EERE)

Well Deepening Well Deepening Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Deepening Details Activities (5) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Well Deepening:

351

Observation Wells | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Observation Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Observation Wells Details Activities (7) Areas (7) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Total dissolved solids, fluid pressure, flow rates, and flow direction Thermal: Monitors temperature of circulating fluids Dictionary.png Observation Wells: An observation well is used to monitor important hydrologic parameters in a geothermal system that can indicate performance, longevity, and transient processes. Other definitions:Wikipedia Reegle

352

well records | OpenEI  

Open Energy Info (EERE)

well records well records Dataset Summary Description The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This dataset is comprised of 50 recent well record permits from 2/9/11 - 3/18/11. The dataset lists the well name, county, operator, field, and date approved, among other fields. State's make oil and gas data publicly available for a range of topics. Source Geological Survey of Alabama Date Released February 09th, 2011 (3 years ago) Date Updated March 18th, 2011 (3 years ago) Keywords Alabama board gas oil state well records Data application/vnd.ms-excel icon Well records 2/9/11 - 3/18/11 (xls, 28.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License

353

Well Monitoring System for EGS  

Broader source: Energy.gov [DOE]

EGS well monitoring tools offer a unique set of solutions which will lower costs and increase confidence in future geothermal projects.

354

Thermal well-test method  

DOE Patents [OSTI]

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

355

1982 geothermal well drilling summary  

SciTech Connect (OSTI)

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

356

Quantum well multijunction photovoltaic cell  

DOE Patents [OSTI]

A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

Chaffin, Roger J. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

357

Pressure analysis for horizontal wells  

SciTech Connect (OSTI)

This paper presents horizontal-well test design and interpretation methods. Analytical solutions are developed that can be handled easily by a desktop computer to carry out design as well as interpretation with semilog and log-log analysis. These analytical solutions point out the distinctive behavior of horizontal wells: (1) at early time, there is a circular radial flow in a vertical plane perpendicular to the well, and (2) at late time, there is a horizontal pseudoradial flow. Each type of flow is associated with a semilog straight line to which semilog analysis has to be adapted. The horizontal pseudoradial flow takes into account a pseudoskin depending on system geometry, which is a priori defined and estimated. Practical time criteria are proposed to determine the beginning and the end of each type of flow and to provide a guide to semilog analysis and well test design. The authors study the behavior of uniform-flux or infinite-conductivity horizontal wells, with wellbore storage and skin. The homogeneous reservoir is infinite or limited by impermeable or constant-pressure boundaries. A method is also outlined to transform all our solutions for homogeneous reservoirs into corresponding solutions for double-porosity reservoirs.

Davlau, F.; Mouronval, G.; Bourdarot, G.; Curutchet, P.

1988-12-01T23:59:59.000Z

358

Optimization of fractured well performance of horizontal gas wells  

E-Print Network [OSTI]

................................................24 3.4 Ideal Number of Transverse Fractures..........................................26 3.5 Constant Volume Transverse Fractures ........................................32 3.6... of a longitudinal fracture..............................................10 2.5 Example of horizontal well with longitudinal fracture performance .............11 2.6 DVS representation of transverse fractures...

Magalhaes, Fellipe Vieira

2009-06-02T23:59:59.000Z

359

Well record | OpenEI  

Open Energy Info (EERE)

Well record Well record Dataset Summary Description This dataset contains oil and gas drilling and permit records for February 2011. State oil and gas boards and commissions make oil and gas data and information open to the public. To view the full range of data contained at the Alaska Oil and Gas Conservation Commission, visit http://doa.alaska.gov/ogc/ Source Alaska Oil and Gas Conservation Commission Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords Alaska Commission gas oil Well record Data application/vnd.ms-excel icon http://doa.alaska.gov/ogc/drilling/dindex.html (xls, 34.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Monthly Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

360

Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization  

E-Print Network [OSTI]

documented example of gas hydrate saturated sand in the Gulfa volume of water to gas hydrate in sands at these pressureseffects of hydrate redistribution in cemented, gas-rich sand

Waite, W.F.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A new well surveying tool  

E-Print Network [OSTI]

directional well was to tip the entire rig, then block up one side of the rotary table so as to incline the uppermost joint of the drill pipe. The accuracy obtained by this method left much to be desired. The technique of controlled directional drilling... by Surveying Device for S and 19 , N and 41 . 21 3. Comparison of Measured Angles and Angles Indicated by Surveying Device for NE snd 9 , W and 45 . . . . . . . ~ 22 ABSTRNl T Ever since the advent of rotary drilling the petroleum industry has been...

Haghighi, Manuchehr Mehdizabeh

1966-01-01T23:59:59.000Z

362

Health Education & Wellness - HPMC Occupational Health Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wellness Health Education & Wellness Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Health Coaching Health Fairs and...

363

Category:Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells page? For detailed information on Production Wells, click here. Category:Production Wells Add.png Add a new Production Wells Technique Pages in category...

364

Number of Producing Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Producing Gas Wells Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2007 2008 2009 2010 2011 2012 View History U.S. 452,945 476,652 493,100 487,627 514,637 482,822 1989-2012 Alabama 6,591 6,860 6,913 7,026 7,063 6,327 1989-2012 Alaska 239 261 261 269 277 185 1989-2012 Arizona 7 6 6 5 5 5 1989-2012 Arkansas 4,773 5,592 6,314 7,397 8,388 8,538 1989-2012 California 1,540 1,645 1,643 1,580 1,308 1,423 1989-2012 Colorado 22,949 25,716 27,021 28,813 30,101 32,000 1989-2012 Gulf of Mexico 2,552 1,527 1,984 1,852 1,559 1,474 1998-2012 Illinois 43 45 51 50 40 40 1989-2012 Indiana 2,350 525 563 620 914 819 1989-2012 Kansas

365

System for stabbing well casing  

SciTech Connect (OSTI)

Apparatus for stabbing well casing to join casing sections to each other, includes a rotary table assembly for supporting a casing section in a well bore, a derrick over the rotary table assembly, a crown block at the top of the derrick, a first piston and cylinder subassembly pivotally mounted on one side of the derrick over the rotary table assembly and below the crown block for pivotation about a horizontal axis, a second piston and cylinder subassembly pivotally mounted on a second side of the derrick for pivotation about a horizontal axis. The second piston and cylinder subassembly is located over the rotary table assembly and below the crown block and extends substantially normal to the direction of extension of the first piston and cylinder subassembly. The cooperating casing clamping elements are carried on the piston rods of the first and second piston and cylinder subassemblies, and counter balancing subassemblies are connected to the first and second piston and cylinder subassemblies for pivoting the first and second piston and cylinder subassemblies to a vertically extending inoperative position.

McArthur, J.R.

1984-04-03T23:59:59.000Z

366

Ultra Thin Quantum Well Materials  

SciTech Connect (OSTI)

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

367

Visualizing motion in potential wells  

Science Journals Connector (OSTI)

The concept of potential-energy diagrams is of fundamental importance in the study of quantum physics. Yet students are rarely exposed to this powerful alternative description in introductory classes and thus have difficulty comprehending its significance when they encounter it in beginning-level quantum courses. We describe a learning unit that incorporates a sequence of computer-interfaced experiments using dynamics or air-track systems. This unit is designed to make the learning of potential-energy diagrams less abstract. Students begin by constructing the harmonic or square-well potential diagrams using either the velocity data and assuming conservation of energy or the force-displacement graph for the elasticinteraction of an object constrained by springs or bouncing off springy blocks. Then they investigate the motion of a rider magnetinteracting with a configuration of field magnets and plot directly the potential-energy diagrams using a magnetic field sensor. The ease of measurement allows exploring the motion in a large variety of potential shapes in a short duration class.

Pratibha Jolly; Dean Zollman; N. Sanjay Rebello; Albena Dimitrova

1998-01-01T23:59:59.000Z

368

Health and Wellness Guide for Students Introduction  

E-Print Network [OSTI]

dimensions of health and wellness. The 7 dimensions are: Physical Wellness � Taking care of your body Wellness � Taking care of what's around you 2Health andWellness Guide for Students #12;Physical Wellness � Communicate with your partner if you have questions or concerns � Meet with a Health Care Provider on campus

369

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network [OSTI]

Oil, Gas, • . . 81 and Geothermal Well Tests (abstract) W.has been testing geothermal wells for about three years, andof Oil, Gas, and Geothermal Well Tests W. E. Brigham

Authors, Various

2011-01-01T23:59:59.000Z

370

Hydrocarbon and non-hydrocarbon gas in salt environments, a contribution to gas genesis understanding  

SciTech Connect (OSTI)

The analysis of organic inclusions is a contribution to the understanding of the thermal and biochemical history of the evaporite basins by the in-situ observation of organic evolution products which are preserved by entrapment in salt. Recent applications of microanalytical techniques (FT-infrared, Raman, FT-Raman, UV-fluorescence) have confirmed and elucidated the nature of the organic phases trapped in inclusions. Three geological environments were studied corresponding to different levels of organic maturation: (1) the Bresse salt deposit (France) where the presence of solid organic matter, immature oil, carbon dioxide, and ammonium is detected, is characteristic of the early diagenesis of the massive salt series deposited at the Eocene-Oligocene period in the West European continental rift, (2) the Gabon margin where oil, methane, carbon dioxide and ammonium correspond to catagenetic products trapped in a salt diapir of the Cretaceous salt series of the Ogooue delta, and (3) the Lena-Tungusska oil-bearing region of Siberian platform where graphite, carbonaceous material, sulphur, carbon dioxide, methane, nitrogen, and oils correspond to the evolution of the evaporite-brine-organic matter system under influence of basalt intrusions. The organic history of salt rocks can be followed from Bresse to Siberian examples. Proteins and carbohydrates are rapidly destroyed during early diagenesis (Bresse-France): ammonium and carbon dioxide are produced by deamination and decarboxylation respectively, the complex organic molecular association is simplified and geopolymers (kerogen precursors) are produced. With increasing maturity (Gabon), kerogen is transformed in aliphatic compounds which are progressively cracked to produce short alkane chains and finally methane. Residual carbon dioxide is also produced. In Siberia, the organic matter evolution is linked to the d/h ratio, where d is the distance to the dolerite sill and h the thickness of the sill.

Pironon, J. [BP, Vandoeuvre-les-Nancy (France); Grishina, S. [United Institute of geology, Novosibirsk (Russian Federation)

1995-08-01T23:59:59.000Z

371

U.S. Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 NA NA NA NA NA NA NA NA NA NA NA NA 1977 NA NA NA NA NA NA NA NA NA NA NA NA 1978 NA NA NA NA NA NA NA NA NA NA NA NA 1979 NA NA NA NA NA NA NA NA NA NA NA NA 1980 18,000 16,000 17,000 16,000 17,000 16,000 17,000 17,000 17,000 15,000 17,000 18,000 1981 20,000 18,000 18,000 18,000 18,000 19,000 20,000 18,000 18,000 18,000 17,000 20,000 1982 19,000 18,000 19,000 18,000 17,000 16,000 15,000 18,000 16,000 16,000 18,000 19,000 1983 19,994 16,995 17,995 15,995 16,995 18,995 17,995 19,994 18,995 17,995 18,995 20,994

372

Capping of Water Wells for Future Use  

E-Print Network [OSTI]

in determining the condition of your well, contact: S your local groundwater conservation dis- trict http://www.tceq.state.tx.us/permitting/ water_supply/groundwater/districts.html S a licensed water well driller in your area S the Water Well Drillers Program... are the steps in capping a well? The landowner, a licensed well driller or a licensed pump installer may cap a well. There are several steps involved. The well casing should extend above the ground surface to limit the risk of water entering the well...

Lesikar, Bruce J.; Mechell, Justin

2007-09-04T23:59:59.000Z

373

Functionalized Graphene Nanoroads for Quantum Well Device. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoroads for Quantum Well Device. Functionalized Graphene Nanoroads for Quantum Well Device. Abstract: Using density functional theory, a series of calculations of structural and...

374

Observation Wells (Ozkocak, 1985) | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Activity Date Usefulness useful DOE-funding Unknown Notes Reinjection test wells can be used to obtain quite precise measurements of reservoir permeability....

375

EPA - UIC Well Classifications | Open Energy Information  

Open Energy Info (EERE)

Well Classifications Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - UIC Well Classifications Author Environmental Protection Agency Published...

376

Helicopter magnetic survey conducted to locate wells  

SciTech Connect (OSTI)

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

377

Thank you for joining: 360WELLNESS  

E-Print Network [OSTI]

shortly. If you are experiencing technical difficulties with Adobe Connect, please call 1 March 22, 2012 12 pm ­ 1pm ET #12;360° WELLNESS: Achieving Wellness At Work And At Home Workshop & Self-Assessment © Joe Rosenlicht, Certified Coach 3 #12;8 Wellness Areas Wellness Nutrition Brain Power Fitness Sleep

Vertes, Akos

378

Track 4: Employee Health and Wellness  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 4: Employee Health and Wellness

379

Definition: Artesian Well | Open Energy Information  

Open Energy Info (EERE)

Well Well Jump to: navigation, search Dictionary.png Artesian Well An artesian well is a water well that doesn't require a pump to bring water to the surface; this occurs when there is enough pressure in the aquifer. The pressure causes hydrostatic equilibrium and if the pressure is high enough the water may even reach the ground surface in which case the well is called a flowing artesian well.[1] View on Wikipedia Wikipedia Definition See Great Artesian Basin for the water source in Australia. An artesian aquifer is a confined aquifer containing groundwater under positive pressure. This causes the water level in a well to rise to a point where hydrostatic equilibrium has been reached. This type of well is called an artesian well. Water may even reach the ground surface if the natural

380

New well control companies stress planning, engineering  

SciTech Connect (OSTI)

The technology for capping a blowing well has not changed during the last 50 years. Still, operators are finding new ways of using well control companies' expertise to help avoid potentially disastrous situations. This trend is especially critical given the current environmentally sensitive and cost-cutting times facing the oil industry. While regulatory agencies world-wide continue to hinder well control efforts during an offshore event, well control companies are focusing on technologies to make their job easier. Some of the most exciting are the hydraulic jet cutter, which gained fame in Kuwait, and electromagnetic ranging for drilling more accurate relief wells. With the number of subsea wells increasing, subsea intervention is a major target for future innovations. Well control companies are experiencing a change in their role to the offshore oil industry. Well control professionals discuss this expanded responsibility as well as other aspects of offshore blowouts including regulatory hindrances, subsea intervention and future technologies.

Bell, S.; Wright, R.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

382

Vapor port and groundwater sampling well  

DOE Patents [OSTI]

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

383

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

384

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

385

RFI Well Integrity 06 JUL 1400  

Broader source: Energy.gov [DOE]

This PowerPoint report entitled "Well Integrity During Shut - In Operations: DOE/DOI Analyses" describes risks and suggests risk management recommendations associated with shutting in the well.

386

Well Owner's Guide To Water Supply  

E-Print Network [OSTI]

's groundwater and guidelines, including national drinking water standards, to test well water to insure safe drinking water in private wells. National drinking water standards and common methods of home water .....................22 Contaminants in Water........................................23 Drinking Water Guidelines

Fay, Noah

387

Essays on Well-Being in Japan.  

E-Print Network [OSTI]

??This dissertation is comprised of four papers on well-being in Japan and aims to examine three important measures of well-being: perceptions of job insecurity, self-reported… (more)

Kuroki, Masanori

2011-01-01T23:59:59.000Z

388

Method for the magnetization of well casing  

SciTech Connect (OSTI)

A well casing is magnetized by traversing an internal magnetizer along and within the well casing while periodically reversing the direction of the magnetic field of the magnetizer to create a plurality of magnetic flux leakage points along the well casing.

Hoehn, G.L. Jr.

1984-08-14T23:59:59.000Z

389

Calculator program aids well cost management  

SciTech Connect (OSTI)

A TI-59 calculator program designed to track well costs on daily and weekly bases can dramatically facilitate the task of monitoring well expenses. The program computes the day total, cumulative total, cumulative item-row totals, and day-week total. For carrying these costs throughout the drilling project, magnetic cards can store the individual and total cumulative well expenses.

Doyle, C.J.

1982-01-18T23:59:59.000Z

390

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...Analyses of 8,000 offshore wells in the Gulf of Mexico show that 11–12% of wells developed pressure in the outer...underground gas storage, and even geothermal energy (16–20). We...to learn about how often wells fail, when and why they...

Robert B. Jackson

2014-01-01T23:59:59.000Z

391

Spontaneous Potential Well Log | Open Energy Information  

Open Energy Info (EERE)

Spontaneous Potential Well Log Spontaneous Potential Well Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Spontaneous Potential Well Log Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: SP technique originally applied to locating sulfide ore-bodies. Stratigraphic/Structural: -Formation bed thickness and boundaries -Detection and tracing of faults -Permeability and porosity Hydrological: Determination of fluid flow patterns: electrochemical coupling processes due to variations in ionic concentrations, and electrokinetic coupling processes due to fluid flow in the subsurface.

392

Regulations of Wells (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regulations of Wells (Florida) Regulations of Wells (Florida) Regulations of Wells (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider Florida Department of Environmental Protection The Department of Environmental Protection regulates the construction, repair, and abandonment of wells, as well as the persons and businesses undertaking such practices. Governing boards of water management districts

393

Step-out Well | Open Energy Information  

Open Energy Info (EERE)

Step-out Well Step-out Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Step-out Well Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Step-out Well: A well drilled outside of the proven reservoir boundaries to investigate a

394

Well purge and sample apparatus and method  

DOE Patents [OSTI]

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

Schalla, Ronald (Kennewick, WA); Smith, Ronald M. (Richland, WA); Hall, Stephen H. (Kennewick, WA); Smart, John E. (Richland, WA); Gustafson, Gregg S. (Redmond, WA)

1995-01-01T23:59:59.000Z

395

Well purge and sample apparatus and method  

DOE Patents [OSTI]

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.

Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.

1995-10-24T23:59:59.000Z

396

Geothermal Well Completion Tests | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Completion Tests Geothermal Well Completion Tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Completion Tests Abstract This paper reviews the measurements that are typically made in a well immediately after drilling is completed - the Completion Tests. The objective of these tests is to determine the properties of the reservoir, and of the reservoir fluid near the well. A significant amount of information that will add to the characterisation of the reservoir and the well, can only be obtained in the period during and immediately after drilling activities are completed. Author Hagen Hole Conference Petroleum Engineering Summer School; Dubrovnik, Croatia; 2008/06/09 Published N/A, 2008 DOI Not Provided Check for DOI availability: http://crossref.org

397

MIMO Control during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract A drilling system consists of a rotating drill string, which is placed into the well. The drill fluid is pumped through the drill string and exits through the choke valve. An important scope of the drill fluid is to maintain a certain pressure gradient along the length of the well. Well construction is a complex job in which annular pressures must be kept inside the operational window (limited by fracture and pore pressure). Monitoring bottom hole pressure to avoid fluctuations out of operational window limits is an extremely important job, in order to guarantee safe conditions during drilling. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. In this work, a non linear mathematical model (gas-liquid-solid), representing an oil well drilling system, was developed, based on mass and momentum balances. Besides, for implementing classic control (PI), alternative control schemes were analyzed using mud pump flow rate, choke opening index and weight on bit as manipulated variables in order to control annulus bottomhole pressure and rate of penetration. Classic controller tuning was performed for servo and regulatory control studies, under MIMO frameworks.

Márcia Peixoto Vega; Marcela Galdino de Freitas; André Leibsohn Martins

2014-01-01T23:59:59.000Z

398

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

399

Stimulation Technologies for Deep Well Completions  

SciTech Connect (OSTI)

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

Stephen Wolhart

2005-06-30T23:59:59.000Z

400

Hawaii Well Construction & Pump Installation Standards Webpage...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Well Construction & Pump Installation Standards Webpage Abstract This webpage provides...

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SAFETY & WELLNESS Annual Report 2012-2013  

E-Print Network [OSTI]

HEALTH, SAFETY & WELLNESS Annual Report 2012-2013 #12;HEALTH, SAFETY & WELLNESS UPDATE ON SAFETY PROGRAMS The professionals working in the Health and Safety team and Rehabilitation Services group have had a very successful year in supporting individuals to take accountability for their own safety and health

Sinnamon, Gordon J.

402

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

403

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

404

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

405

Geopressured-geothermal well activities in Louisiana  

SciTech Connect (OSTI)

Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

John, C.J.

1992-10-01T23:59:59.000Z

406

GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells |  

Open Energy Info (EERE)

GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-f - Water Well NOI for Replacement or Additional Wells 19-WA-f - Water Well NOI for Replacement or Additional Wells.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 90.44.100 Revised Code of Washington 18.104.048 Washington Administrative Code 173-160-151 Triggers None specified A developer seeking to use ground water for an activity may need to drill a new well in a different location than a previous well, drill an additional well at an existing location, or drill a replacement well at the same

407

Production-systems analysis for fractured wells  

SciTech Connect (OSTI)

Production-systems analysis has been in use for many years to design completion configurations on the basis of an expected reservoir capacity. The most common equations used for the reservoir calculations are for steady-state radial flow. Most hydraulically fractured wells require the use of an unsteady-state production simulator to predict the higher flow rates associated with the stimulated well. These high flow rates may present problems with excessive pressure drops through production tubing designed for radial-flow production. Therefore, the unsteady-state nature of fractured-well production precludes the use of steady-state radial-flow inflow performance relationships (IPR's) to calculate reservoir performance. An accurate prediction of fractured-well production must be made to design the most economically efficient production configuration. It has been suggested in the literature that a normalized reference curve can be used to generate the IPR's necessary for production-systems analysis. However, this work shows that the reference curve for fractured-well response becomes time-dependent when reservoir boundaries are considered. A general approach for constructing IPR curves is presented, and the use of an unsteady-state fractured-well-production simulator coupled with the production-systems-analysis approach is described. A field case demonstrates the application of this method to fractured wells.

Hunt, J.L. (Halliburton Services (US))

1988-11-01T23:59:59.000Z

408

Method of gravel packing a subterranean well  

SciTech Connect (OSTI)

This patent describes a method of gravel packing a well bore penetrating a subterranean formation. It comprises blocking a first group of apertures in a liner with an immobile gel; positioning the liner within the well bore thereby defining a first annulus between the liner and the well bore; transporting a slurry comprised of gravel suspended in a fluid into the first annulus, the fluid flowing through a second group of apertures in the liner while the gravel is deposited within the first annulus to form a gravel pack; and thereafter removing substantially all of the gel from the first group of apertures.

Not Available

1991-11-05T23:59:59.000Z

409

Discussion of productivity of a horizontal well  

SciTech Connect (OSTI)

The authors of this paper has been using several of the analytical equations and numerical simulation to evaluate the productivity of horizontal wells that have near-wellbore damage. Through this evaluation, the author found that here are inconsistencies in the way the skin factor is introduced into the analytical equations. This discussion shows the corrections needed in various analytical equations to obtain consistency with numerical simulation. In the numerical simulation shown here, skin factor is simulated by assignment of a reduced permeability to nodes near the well. The author would appreciate any comments Babu and Odeh could make on this aspect of horizontal wells.

Gilman, J.R. (Marathon Oil Company (US))

1991-02-01T23:59:59.000Z

410

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging (Redirected from Definition:Single-Well And Cross-Well Seismic) Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246"

411

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

412

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well | Open  

Open Energy Info (EERE)

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well GRR/Section 19-WA-e - Water Well Notice of Intent for New Well < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-e - Water Well Notice of Intent for New Well 19-WA-e - Water Well Notice of Intent for New Well.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 18.104.048 Washington Administrative Code 173-160-151 Triggers None specified A developer seeking to use ground water for an activity may need to drill a new well to access the ground water. When a developer needs to drill a new well, the developer must complete the Notice of Intent (NOI) to Drill a Well form and submit the form to the Washington State Department of Ecology

413

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

414

Maazama Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maazama Well Geothermal Area Maazama Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maazama Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8965,"lon":-121.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Willow Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Geothermal Area Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Willow Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.6417,"lon":-150.095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Wellness & Additional Benefits | Careers | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working at ORNL Working at ORNL Benefits Wellness and Other Incentives View Open Positions View Postdoctoral Positions Create A Profile Internal applicants please apply here View or update your current application or profile. External applicants Internal applicants Internet Explorer Browser preferred for ORNL applicants. Chrome is not currently supported. For more information about browser compatibility please refer to the FAQs. If you have difficulty using the online application system or need an accommodation to apply due to a disability, please email ORNLRecruiting@ornl.gov or phone 1-866-963-9545 Careers Home | ORNL | Careers | Working at ORNL | Wellness and Other Incentives SHARE Wellness & Additional Benefits Wellness Program Employees have many opportunities to maintain and improve their health

417

6981 well-provided recreation facility [n  

Science Journals Connector (OSTI)

recr. (Well-provisioned recreation installation and equipment);s instalación [f] de recreo intensivo (Equipamiento recreacional de gran variedad y de gran calidad);f équipement [m] de loisirs lourd (...

2010-01-01T23:59:59.000Z

418

Two-phase flow in horizontal wells  

SciTech Connect (OSTI)

Flow in horizontal wells and two-phase flow interaction with the reservoir were investigated experimentally and theoretically. Two-phase flow behavior has been recognized as one of the most important problems in production engineering. The authors designed and constructed a new test facility suitable for acquiring data on the relationship between pressure drop and liquid holdup along the well and fluid influx from the reservoir. For the theoretical work, an initial model was proposed to describe the flow behavior in a horizontal well configuration. The model uses the inflow-performance-relationship (IPR) approach and empirical correlations or mechanistic models for wellbore hydraulics. Although good agreement was found between the model and experimental data, a new IPR apart from the extension of Darcy`s law must be investigated extensively to aid in the proper design of horizontal wells.

Ihara, Masaru [Japan National Oil Corp., Chiba (Japan); Yanai, Koji [Nippon Kokan Corp., Yokohama (Japan); Yanai, Koji

1995-11-01T23:59:59.000Z

419

Well Record or History | Open Energy Information  

Open Energy Info (EERE)

History Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Well Record or HistoryLegal Published NA Year Signed or Took Effect 2013...

420

Groundwater well with reactive filter pack  

DOE Patents [OSTI]

A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Groundwater well with reactive filter pack  

DOE Patents [OSTI]

A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

1998-09-08T23:59:59.000Z

422

Polariton dispersion of periodic quantum well structures  

Science Journals Connector (OSTI)

We studied the polariton dispersion relations of a periodic quantum-well structure with a period in the vicinity of half the exciton resonance wavelength, i.e., the Bragg structure. We classified polariton mod...

A. V. Mintsev; L. V. Butov; C. Ell; S. Mosor…

2002-11-01T23:59:59.000Z

423

Geological well log analysis. Third ed  

SciTech Connect (OSTI)

Until recently, well logs have mainly been used for correlation, structural mapping, and quantitive evaluation of hydrocarbon bearing formations. This third edition of Geologic Well Log Analysis, however, describes how well logs can be used for geological studies and mineral exploration. This is done by analyzing well logs for numerous parameters and indices of significant mineral accumulation, primarily in sediments. Contents are: SP and Eh curves as redoxomorphic logs; sedimentalogical studies by log curve shapes; exploration for stratigraphic traps; continuous dipmeter as a structural tool; continuous dipmeter as a sedimentation tool; Paleo-facies logging and mapping; hydrogeology 1--hydrodynamics of compaction; hydrogeology 2--geostatic equilibrium; and hydrogeology 3--hydrodynamics of infiltration. Appendixes cover: Computer program for calculating the dip magnitude, azimuth, and the degree and orientation of the resistivity anisotrophy; a lithology computer program for calculating the curvature of a structure; and basic log analysis package for HP-41CV programmable calculator.

Pirson, S.J.

1983-01-01T23:59:59.000Z

424

California Water Well Standards | Open Energy Information  

Open Energy Info (EERE)

Legal Document- OtherOther: California Water Well StandardsLegal Published NA Year Signed or Took Effect 2104 Legal Citation Not provided DOI Not Provided Check for DOI...

425

Slim wells for exploration purposes in Mexico  

SciTech Connect (OSTI)

To invest in the construction of wells with definitive designs considerably increases the cost of a geothermal electric project in its analysis and definition stage. The Federal Commission for Electricity (Comision Federal de Electricidad, CFE) has concentrated on the task to design wells which casing and cementing programs would provide the minimum installation necessary to reach the structural objective, to confirm the existence of geothermal reservoirs susceptible to commercial exploitation, to check prior geological studies, to define the stratigraphic column and to obtain measurements of pressure, temperature and permeability. Problems of brittle, hydratable and permeable formations with severe circulation losses, must be considered within the design and drilling programs of the wells. This work explains the slim wells designs used in the exploration of three geothermal zones in Mexico: Las Derrumbadas and Acoculco in the State of Puebla and Los Negritos in the State of Michoacan.

Vaca Serrano, J.M.E.; Soto Alvarez, M.

1996-12-31T23:59:59.000Z

426

Project management improves well control events  

SciTech Connect (OSTI)

During a well control operation, the efficient use of personnel and equipment, through good project management techniques, contributes to increased safety and ensures a quality project. The key to a successful blowout control project is to use all resources in the most efficient manner. Excessive use of resources leads to unnecessary expenditures and delays in bringing the project under control. The Kuwait well control project, which involved more than 700 blowouts, was accomplished in a much shorter time (8 months) than first estimated (5 years). This improvement partly resulted from the application of sound project management techniques. These projects were prime examples of the need for a formal project management approach to handling wild well projects. There are many examples of projects that were successful in controlling wells but were economic disasters. Only through the effective application of project management can complex well control projects be completed in reasonable time frames at reasonable cost. The paper describes team management, project scope, organizational structures, scheduling, tracking models, critical path method, and decision trees.

Oberlender, G.D. [Oklahoma State Univ., Stillwater, OK (United States); Abel, L.W. [Wild Well Control Inc., Spring, TX (United States)

1995-07-10T23:59:59.000Z

427

Snubdrilling a new well in Venezuela  

SciTech Connect (OSTI)

A new well was successfully drilled using a snubbing jack. The drill bit was rotated using a rotary table, downhole motors and combination of the two. Expected high-pressure zones prompted this use of ``snubdrilling.`` The primary objective was to drill a vertical well through underlying sands and gain information about formation pressures. This data would aid in the drilling of a relief well using a conventional drilling rig. The secondary objective was to relieve pressure by putting this new well on production. In addition to special high-pressure drilling jobs, there are other drilling applications where snubbing jacks are a feasible alternative to conventional rotary drilling rigs or coiled tubing units. Slimhole, underbalanced and flow drilling, and sidetracking of existing wells are excellent applications for snubdrilling. Advantages of snubdrilling vs. coiled tubing drilling, include ability to rotate drillstrings, use high-torque downhole motors, pump at high rates and pressures, apply significant overpull in case of stuck pipe, and run casing and liners without rigging down. Shortcomings of drilling with snubbing jacks compared to coiled tubing are the need to stop circulation while making new connections and inability to run continuous cable inside workstrings.

Aasen, J.

1995-12-01T23:59:59.000Z

428

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246" Category:

429

Salt Wells Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Project Salt Wells Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333°, -118.33444444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.580833333333,"lon":-118.33444444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

GeoWells International | Open Energy Information  

Open Energy Info (EERE)

GeoWells International GeoWells International Jump to: navigation, search Name GeoWells International Place Nairobi, Kenya Sector Geothermal energy, Solar, Wind energy Product Kenya-based geothermal driller. The company also supplies and installs wind and solar units. Coordinates -1.277298°, 36.806261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-1.277298,"lon":36.806261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

432

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

433

Well-test data from geothermal reservoirs  

SciTech Connect (OSTI)

Extensive well testing in geothermal resources has been carried out throughout the western United States and in northern Mexico since 1975. Each resource tested and each well test conducted by LBL during the eight-year period are covered in brief. The information, collected from published reports and memoranda, includes test particulars, special instrumentation, data interpretation when available, and plots of actual data. Brief geologic and hydrologic descriptions of the geothermal resources are also presented. The format is such that well test descriptions are grouped, in the order performed, into major sections according to resource, each section containing a short resource description followed by individual test details. Additional information regarding instrumentation is provided. Source documentation is provided throughout to facilitate access to further information and raw data.

Bodvarsson, M.G.; Benson, S.M.

1982-09-01T23:59:59.000Z

434

Apparatus for stringing well pipe of casing  

SciTech Connect (OSTI)

An apparatus for use in running a string of threaded well pipe or casing in a vertical configuration in a deep well bore which is adapted to convert a top head drive drilling rig for use in running each length of pipe into the well bore. A drive spindle adaptor is provided which may be securely attached in a removably mounted manner to the rotary drive spindle or sub of a top head drive drilling rig. The drive spindle includes a pair of opposing, outwardly extending lugs disposed at a right angle to the axial direction of the spindle and a true centering guide means. A collar is included which is provided with frictional gripping members for removably securing the collar to one end of a length of conventional pipe and a pair of axially extending, spaced ears which cooperate upon engagement with said lugs on said spindle adaptor to transfer rotary motion of said spindle to said length of pipe.

Sexton, J.L.

1984-04-17T23:59:59.000Z

435

Apparatus for rotating and reciprocating well pipe  

SciTech Connect (OSTI)

This patent describes an apparatus for simultaneously rotating and reciprocating well pipe, having an upper end, and mechanically utilizing a rotary table attached to a drilling rig, comprising: a rotating pipe clamp assembly having an irregular cross-sectional mid-member and clamp members for releasably gripping the well pipe connected to the ends of the mid-member for rotation therewith; a square block for fitting to the rotary table square and having a selected grooved interior configuration; a torque transmitting means fitted into the grooves having openings therethrough having the same irregular cross-section as the mid-member cross-section; and a torque limiting means connecting the torque transmitting means and the block for limiting torque applied through the well pipe via the clamp assembly and the torque transmitting means.

Davis, K.D.

1988-04-12T23:59:59.000Z

436

Resonator-quantum well infrared photodetectors  

SciTech Connect (OSTI)

We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

Choi, K. K., E-mail: kwong.k.choi.civ@mail.mil; Sun, J.; Olver, K. [Electro-Optics and Photonics Division, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States)] [Electro-Optics and Photonics Division, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States); Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A. [Instrument Systems and Technology Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)] [Instrument Systems and Technology Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

2013-11-11T23:59:59.000Z

437

Economic evaluation of smart well technology  

E-Print Network [OSTI]

. At this pivotal time the role of emerging technologies is of at most importance. Smart or intelligent well technology is one of the up and coming technologies that have been developed to assist improvements in field development outcome. In this paper a...

Al Omair, Abdullatif A.

2007-09-17T23:59:59.000Z

438

ATHLETICS AND RECREATION Health, Wellness and Recreation  

E-Print Network [OSTI]

ATHLETICS AND RECREATION Health, Wellness and Recreation 5 July 1.00pm ­ 4.00pm Attendees: Louise and recreation for UBC. Anticipating this `work in progress' outcome from our initial discussion, the approach and recreation as it is currently structured? 2 Closer attention to level/degree of competition vs other drivers

Handy, Todd C.

439

Well performance under solutions gas drive  

SciTech Connect (OSTI)

A fully implicit black-oil simulator was written to predict the drawdown and buildup responses for a single well under Solution Gas Drive. The model is capable of handling the following reservoir behaviors: Unfractured reservoir, Double-Porosity system, and Double Permeability-Double Porosity model of Bourdet. The accuracy of the model results is tested for both single-phase liquid flow and two-phase flow. The results presented here provide a basis for the empirical equations presented in the literature. New definitions of pseudopressure and dimensionless time are presented. By using these two definitions, the multiphase flow solutions correlate with the constant rate liquid flow solution for both transient and boundary-dominated flow. For pressure buildup tests, an analogue for the liquid solution is constructed from the drawdown pseudopressure, similar to the reservoir integral of J. Jones. The utility of using the producing gas-oil ration at shut in to compute pseudopressures and pseudotimes is documented. The influence of pressure level and skin factor on the Inflow Performance Relationship (IPR) of wells producing solution gas drive systems is examined. A new definition of flow efficiency that is based on the structure of the deliverability equations is proposed. This definition avoids problems that result when the presently available methods are applied to heavily stimulated wells. The need for using pseudopressures to analyze well test data for fractured reservoirs is shown. Expressions to compute sandface saturations for fractured systems are presented.

Camacho-Velazquez, R.G.

1987-01-01T23:59:59.000Z

440

Flow tests of the Willis Hulin well  

SciTech Connect (OSTI)

The Hulin well was tested between 20,100 and 20,700 feet down in layers of brine-saturated clean sand with occasional intervening layers of shale. The characteristics of the brine and gas were determined in this interval and an initial determination of the reservoir properties were made.

Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...oil and natural gas wells passing through drinking-water aquifers (1–4). In PNAS, Ingraffea et al. (5) examine one of...Jackson RB ( 2014 ) The environmental costs and benefits of fracking. Annu Rev Environ Resour, in press . 12 Nicot JP Scanlon...

Robert B. Jackson

2014-01-01T23:59:59.000Z

442

T2WELL/ECO2N  

Energy Science and Technology Software Center (OSTI)

002966IBMPC00 T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water  http:..esd.lbl.gov/tough/licensing.html 

443

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

444

Single-Well and Cross-Well Resistivity | Open Energy Information  

Open Energy Info (EERE)

Single-Well and Cross-Well Resistivity Single-Well and Cross-Well Resistivity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well and Cross-Well Resistivity Details Activities (14) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip and structural features in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

445

Fracturing pressures and near-well fracture geometry of arbitrarily oriented and horizontal wells  

SciTech Connect (OSTI)

The hydraulic fracturing of arbitrarily oriented and horizontal wells is made challenging by the far more complicated near-well fracture geometry compared to that of conventional vertical wells. This geometry is important both for hydraulic fracture propagation and the subsequent post-treatment well performance. Fracture tortuosity of arbitrarily oriented and horizontal wells is likely to cause large initiation pressures and reduction in the fracture widths. This paper presents a comprehensive study of the effects of important variables, including the principal stresses, wellbore orientation, and perforation configuration on fracture geometry. Initiation pressures, the contact between arbitrarily oriented wells and the fracture plane, and the near-well fracture geometry are determined and discussed. This study also shows that because of the near-well stress concentration the fracture width at the wellbore is always smaller than the maximum fracture width. This can have important consequences during hydraulic fracturing.

Chen, Z.; Economides, M.J.

1995-12-31T23:59:59.000Z

446

Single-Well And Cross-Well Seismic (Majer, 2003) | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic (Majer, 2003) Single-Well And Cross-Well Seismic (Majer, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well And Cross-Well Seismic (Majer, 2003) Exploration Activity Details Location Unspecified Exploration Technique Single-Well And Cross-Well Seismic Activity Date Usefulness not indicated DOE-funding Unknown Notes The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new

447

Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology,  

Open Energy Info (EERE)

Salt Wells Area (Nevada Bureau of Mines and Geology, Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis AMP Resources, LLC drilled one of the first operating wells, Industrial Production Well PW-2, in the spring of 2005 under geothermal project area permit #568. Notes The well was completed to a depth of 143.6 m and a peak temperature of 145°C, as indicated by static temperature surveys. Wellhead temperatures at PW-2 were 140°C at a flow rate of 157.7 liters per minute, and no

448

Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells  

E-Print Network [OSTI]

EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS A Thesis IAN MARIE BERTHELOT Submitted to the Office of Graduate Studies of Texas AdtM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Petroleum Engineering EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS by JAN MARIE BERTIIELOT Appmved...

Berthelot, Jan Marie

2012-06-07T23:59:59.000Z

449

Lalamilo Wells Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Lalamilo Wells Wind Farm Facility Lalamilo Wells Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hawaiian Electric Light Co. Developer Lalamilo Ventures Energy Purchaser Hawaii Electric Light Co. Location Big Island HI Coordinates 19.9875°, -155.765556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.9875,"lon":-155.765556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Lost Circulation Experience in Geothermal Wells  

SciTech Connect (OSTI)

Lost circulation during drilling and cementing in geothermal wells is a problem common to most geothermal areas. Material and rig time costs due to lost circulation often represent one fourth or more of the total well cost. Assessment of the general drilling and completion practices commonly used for handling lost circulation have been surveyed and evaluated under a study sponsored by Sandia National Laboratories. Results of this study, including interviews with geothermal production companies and with drilling fluid service companies, are reported in the paper. Conclusions and recommendations are presented for control of lost circulation during geothermal operations. Recent improvements in lost circulation materials and techniques and potential equipment solutions to the lost circulation problem are discussed. Research needs are also identified.

Goodman, M. A.

1981-01-01T23:59:59.000Z

451

Consortium for Petroleum & Natural Gas Stripper Wells  

SciTech Connect (OSTI)

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

452

Recent developments in well test analysis  

SciTech Connect (OSTI)

The analysis of pressure transient data in terms of model parameter values is part of the reservoir description process and must be regarded as complementary to other branches of this activity. The advantage of transient pressure data is the depth of investigation achieved by the propagating pressure disturbance. However, the problem of an interpretation`s lack of uniqueness always exists. The objective of well test analysis is to help increase the understanding of the reservoir structure so that ultimate recovery can be improved. This pressure transient analysis review summarizes the major developments that have occurred since the derivative technique was introduced in 1982. This is the first in a series that discusses recent and future developments in well test analysis.

Stewart, G. [Edinburgh Petroleum Services Ltd. (United Kingdom)]|[Heriot-Watt Univ., Edinburgh (United Kingdom)

1997-08-01T23:59:59.000Z

453

Boise geothermal injection well: Final environmental assessment  

SciTech Connect (OSTI)

The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

NONE

1997-12-31T23:59:59.000Z

454

Drop pressure optimization in oil well drilling  

Science Journals Connector (OSTI)

In this research work we are interested in minimizing losses existing when drilling an oil well. This would essentially improve the load losses by acting on the rheological parameters of the hydraulic and drilling mud. For this rheological tests were performed using a six-speed rotary viscometer (FANN 35). We used several rheological models to accurately describe the actual rheological behavior of drilling mud oil-based according to the Pearson's coefficient and to the standard deviation. To model the problem we established a system of equations that describe the essential to highlight purpose and various constraints that allow for achieving this goal. To solve the problem we developed a computer program that solves the obtained equations in Visual Basic language system. Hydraulic and rheological calculation was made for in situ application. This allowed us to estimate the distribution of losses in the well.

2014-01-01T23:59:59.000Z

455

Gas well operation with liquid production  

SciTech Connect (OSTI)

Prediction of liquid loading in gas wells is discussed in terms of intersecting tubing or system performance curves with IPR curves and by using a more simplified critical velocity relationship. Different methods of liquid removal are discussed including such methods as intermittent lift, plunger lift, use of foam, gas lift, and rod, jet, and electric submersible pumps. Advantages, disadvantages, and techniques for design and application of the methods of liquid removal are discussed.

Lea, J.F.; Tighe, R.E.

1983-02-01T23:59:59.000Z

456

Energy loss rate in disordered quantum well  

SciTech Connect (OSTI)

We report the effect of dynamically screened deformation potential on the electron energy loss rate in disordered semiconductor quantum well. Interaction of confined electrons with bulk acoustic phonons has been considered in the deformation coupling. The study concludes that the dynamically screened deformation potential coupling plays a significant role as it substantially affects the power dependency of electron relaxation on temperature and mean free path.

Tripathi, P.; Ashraf, S. S. Z. [Centre of Excellence in Nanomaterials, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Hasan, S. T. [Physics Department, Faculty of Science, The M.S. University of Baroda, Vadodara-390002 (India); Sharma, A. C. [Physics Department, Sibli National College, Azamgarh-276128 (India)

2014-04-24T23:59:59.000Z

457

Program solves for gas well inflow performance  

SciTech Connect (OSTI)

A Windows-based program, GasIPR, can solve for the gas well inflow performance relationship (IPR). The program calculates gas producing rates at various pressures and is applicable for both turbulent and non-turbulent flow. It also has the following capabilities: computes PVT properties {gamma}{sub g}, P{sub c}, T{sub c}, heating value, Z, {mu}{sub g}, B{sub g}, and {rho}{sub g} from input gas composition data; calculates the Reynolds number (N{sub Re}) and shows the gas flow rates at the sandface at which the turbulence effect must be considered; helps the user to optimize the net perforation interval (h{sub p}) so that the turbulence effect can be minimized; and helps the user to evaluate the sensitivity of formation permeability on gas flow rate for a new play. IPR is a critical component in forecasting gas well deliverability. IPRs are used for sizing optimum tubing configurations and compressors, designing gravel packs, and solving gas well loading problems. IPR is the key reference for nodal analysis.

Engineer, R. [AERA Energy LLC, Bakersfield, CA (United States); Grillete, G. [Bechtel Petroleum Operations Inc., Tupman, CA (United States)

1997-10-20T23:59:59.000Z

458

Method of drilling and casing a well  

SciTech Connect (OSTI)

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

459

Vibration of Generalized Double Well Oscillators  

E-Print Network [OSTI]

We have applied the Melnikov criterion to examine a global homoclinic bifurcation and transition to chaos in a case of a double well dynamical system with a nonlinear fractional damping term and external excitation. The usual double well Duffing potential having a negative square term and positive quartic term has been generalized to a double well potential with a negative square term and a positive one with an arbitrary real exponent $q > 2$. We have also used a fractional damping term with an arbitrary power $p$ applied to velocity which enables one to cover a wide range of realistic damping factors: from dry friction $p \\to 0$ to turbulent resistance phenomena $p=2$. Using perturbation methods we have found a critical forcing amplitude $\\mu_c$ above which the system may behave chaotically. Our results show that the vibrating system is less stable in transition to chaos for smaller $p$ satisfying an exponential scaling low. The critical amplitude $\\mu_c$ as an exponential function of $p$. The analytical results have been illustrated by numerical simulations using standard nonlinear tools such as Poincare maps and the maximal Lyapunov exponent. As usual for chosen system parameters we have identified a chaotic motion above the critical Melnikov amplitude $\\mu_c$.

Grzegorz Litak; Marek Borowiec; Arkadiusz Syta

2006-10-20T23:59:59.000Z

460

Remote down-hole well telemetry  

DOE Patents [OSTI]

The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2004-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Well log evaluation of natural gas hydrates  

SciTech Connect (OSTI)

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

462

Well log evaluation of natural gas hydrates  

SciTech Connect (OSTI)

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

463

Production Well Performance Enhancement using Sonication Technology  

SciTech Connect (OSTI)

The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

2005-12-31T23:59:59.000Z

464

Treating paraffin deposits in producing oil wells  

SciTech Connect (OSTI)

Paraffin deposition has been a problem for operators in many areas since the beginning of petroleum production from wells. An extensive literature search on paraffin problems and methods of control has been carried out, and contact was made with companies which provide chemicals to aid in the treatment of paraffin problems. A discussion of the nature of paraffins and the mechanisms of this deposition is presented. The methods of prevention and treatment of paraffin problems are summarized. Suggested procedures for handling paraffin problems are provided. Suggestions for areas of further research testing are given.

Noll, L.

1992-01-01T23:59:59.000Z

465

Apparatus for use in rejuvenating oil wells  

SciTech Connect (OSTI)

A sub incorporating a check valve is connected into the lower end of a well pipestring. This valve will pass hot steam injected down the pipestring to the formations to loosen up the thick crude oil. The check valve prevents back flow and thus will hold the high pressure steam. To resume production, the production pump can then be lowered through the pipestring. The pump itself is provided with an extended probe member which will unseat the check valve when the pump is in proper position so that production pumping can resume.

Warnock, C.E. Sr.

1983-07-19T23:59:59.000Z

466

CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to  

Open Energy Info (EERE)

CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description This "geothermal central plant" concept will provide ground source loop energy as a utility to be shared by the academic and residential buildings on the soon-to-be-constructed campus.

467

Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984) | Open Energy  

Open Energy Info (EERE)

Edmiston & Benoit, 1984) Edmiston & Benoit, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 1980 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This paper seeks to (1) describe several moderate-temperature (150-200°C) geothermal systems discovered and drilled during the early 1980s that had not been documented previously in the literature, (2) summarize and compare

468

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

469

Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program  

SciTech Connect (OSTI)

Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

Not Available

1981-06-01T23:59:59.000Z

470

Third invitational well-testing symposium: well testing in low permeability environments  

SciTech Connect (OSTI)

The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted. (DLC)

Doe, T.W.; Schwarz, W.J. (eds.)

1981-03-01T23:59:59.000Z

471

Well testing in coalbed methane (CBM) wells: An environmental remediation case history  

SciTech Connect (OSTI)

In 1993, methane seepage was observed near coalbed methane wells in southwestern Colorado. Well tests were conducted to identify the source of the seeps. The well tests were complicated by two-phase flow, groundwater flow, and gas readsorption. Using the test results, production from the area was simulated. The cause of the seeps was found to be depressuring in shallow coal near the surface, and a remediation plan using water injection near the seep area was formulated.

Cox, D.P.; Young, G.B.C.; Bell, M.J.

1995-12-31T23:59:59.000Z

472

Well injection valve with retractable choke  

SciTech Connect (OSTI)

An injection valve is described for use in a well conduit consisting of: a housing having a bore, a valve closure member in the bore moving between open and closed positions, a flow tube telescopically movable in the housing for controlling the movement of the valve closure member, means for biasing the flow tube in a direction for allowing the valve closure member to move to the closed position, an expandable and contractible fluid restriction connected to the flow tube and extending into the bore for moving the flow tube to the open position in response to injection fluid, but allowing the passage of well tools through the valve, the restriction contractible in response to fluid flow, the restriction includes, segments movable into and out of the bore, and biasing means yieldably urging the segments into the bore, a no-go shoulder on the flow tube, and releasable lockout means between the flow tube and the housing for locking the flow tube and valve in the open position.

Pringle, R.E.

1986-07-22T23:59:59.000Z

473

Productivity and Injectivity of Horizontal Wells  

SciTech Connect (OSTI)

A general wellbore flow model is presented to incorporate not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow. Influence of inflow or outflow on the wellbore pressure drop is analyzed. New friction factor correlations accounting for both inflow and outflow are also developed. The greatest source of uncertainty is reservoir description and how it is used in simulators. Integration of data through geostatistical techniques leads to multiple descriptions that all honor available data. The reality is never known. The only way to reduce this uncertainty is to use more data from geological studies, formation evaluation, high resolution seismic, well tests and production history to constrain stochastic images. Even with a perfect knowledge about reservoir geology, current models cannot do routine simulations at a fine enough scale. Furthermore, we normally don't know what scale is fine enough. Upscaling introduces errors and masks some of the physical phenomenon that we are trying to model. The scale at which upscaling is robust is not known and it is probably smaller in most cases than the scale actually used for predicting performance. Uncertainties in the well index can cause errors in predictions that are of the same magnitude as those caused by reservoir heterogeneities. Simplified semi-analytical models for cresting behavior and productivity predictions can be very misleading.

Khalid Aziz; Sepehr Arababi; Thomas A. Hewett

1997-04-29T23:59:59.000Z

474

Routine Form EIA-895 Edit Checks Each  

Gasoline and Diesel Fuel Update (EIA)

Routine Routine Form EIA-895 Edit Checks Each filing of the Form EIA-895 is manually checked for reasonableness and mathematical accuracy. Volumes are converted, as necessary, to a standard 14.73 psia pressure base. Value data are compared to the previous year's data for reasonableness. When data on nonhydrocarbon gases re- moved, gas vented and flared, and gas used for repressuring are not reported for a State that historically reported one or more of these items, a volume is imputed. The imputation is based on the average ratio of gas volumes in the missing category to total gross withdrawals in States with values reporting gas in that category. This average ratio is applied to the volume of total gross withdrawals reported by the State to calculate the volume for the missing items. State agencies are contacted by telephone in order to correct errors. Amended filings or resubmissions are not

475

Spatially indirect excitons in coupled quantum wells  

SciTech Connect (OSTI)

Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.

Lai, Chih-Wei Eddy

2004-03-01T23:59:59.000Z

476

Hydrologic Tests at Characterization Well R-14  

SciTech Connect (OSTI)

Well R-14 is located in Ten Site Canyon and was completed at a depth of 1316 ft below ground surface (bgs) in August 2002 within unassigned pumiceous deposits located below the Puye Formation (fanglomerate). The well was constructed with two screens positioned below the regional water table. Individual static depths measured for each isolated screen after the Westbay{trademark} transducer monitoring system was installed in mid-December 2002 were nearly identical at 1177 ft bgs, suggesting only horizontal subsurface flow at this time, location, and depth. Screen 1 straddles the geologic contact between the Puye fanglomerate and unassigned pumiceous deposits. Screen 2 is located about 50 ft deeper than screen 1 and is only within the unassigned pumiceous deposits. Constant-rate, straddle-packer, injection tests were conducted at screen 2, including two short tests and one long test. The short tests were 1 minute each but at different injection rates. These short tests were used to select an appropriate injection rate for the long test. We analyzed both injection and recovery data from the long test using the Theis, Theis recovery, Theis residual-recovery, and specific capacity techniques. The Theis injection, Theis recovery, and specific capacity methods correct for partial screen penetration; however, the Theis residual-recovery method does not. The long test at screen 2 involved injection at a rate of 10.1 gallons per minute (gpm) for 68 minutes and recovery for the next 85 minutes. The Theis analysis for screen 2 gave the best fit to residual recovery data. These results suggest that the 158-ft thick deposits opposite screen 2 have a transmissivity (T) equal to or greater than 143 ft{sup 2}/day, and correspond to a horizontal hydraulic conductivity (K) of at least 0.9 ft/day. The specific capacity method yielded a T value equal to or greater than 177 ft{sup 2}/day, and a horizontal K of at least 1.1 ft/day. Results from the injection and recovery phases of the test at screen 2 were similar to those from the residual-recovery portion of the test, but were lower by a factor of about two. The response to injection was typical for a partially penetrating well screen in a very thick aquifer.

S. McLin; W. Stone

2004-08-01T23:59:59.000Z

477

Natural Gas Prices: Well Above Recent Averages  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The recent surge in spot prices at the Henry Hub are well above a typical range for 1998-1999 (in this context, defined as the average, +/- 2 standard deviations). Past price surges have been of short duration. The possibility of a downward price adjustment before the end of next winter is a source of considerable risk for storage operators who acquire gas at recent elevated prices. Storage levels in the Lower 48 States were 7.5 percent below the 5-year average (1995-1999) by mid-August (August 11), although the differential is only 6.4 percent in the East, which depends most heavily on storage to meet peak demand. Low storage levels are attributable, at least in part, to poor price incentives: high current prices combined with only small price

478

PSA_Well_Completion_Report.book  

Office of Legacy Management (LM)

Restoration Restoration Project U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Environmental Restoration Project U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Nevada Environmental Restoration Project Well Completion Report for Corrective Action Unit 447, Project Shoal Area Churchill County, Nevada Revision No.: 0 September 2006 Approved for public release; further dissemination unlimited. DOE/NV--1166 Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.ntis.gov/ordering.htm Available electronically at http://www.osti.gov/bridge

479

CNTA_Well_Installation_Report.book  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Security Administration Nuclear Security Administration Nevada Site Office Environmental Restoration Division Nevada Environmental Restoration Project Well Installation Report for Corrective Action Unit 443, Central Nevada Test Area Nye County, Nevada Revision No.: 0 January 2006 Approved for public release; further dissemination unlimited. DOE/NV--1102 Uncontrolled When Printed Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.ntis.gov/ordering.htm Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

480

New multilateral well architecture in heterogeneous reservoirs  

E-Print Network [OSTI]

the drilling of the main horizontal well and it is cemented together with the main horizontal section. The pressure and structural integrity of these junctions is critical requirement. This integrity does not have to be compromised by any additional... with 15 horizontal lateral model Case 1 Case 6 CMG Results Eclipse Results CMG Results K v/Kh J STBD/psi J STBD/psi J(Case6)/J(Case 1) J STBD/psi J(Case6)/J(Case1) 1 13.85 12.95 93.5% 13.06 94% 0.1 5.73 5.14 89.7% 5.37 93.7% 0.01 1.93 1...

Jia, Hongqiao

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "wells repressuring nonhydrocarbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Remote system for subsea wells tested  

SciTech Connect (OSTI)

At its experimental submarine station in the Grondin field offshore the West African state of Gabon, Societe Nationale Elf-Aquitaine has run a series of inspection, repair, and maintenance tests on two producing wells using a robot controlled from the surface. Designed for water depths beyond the range of divers, the TIM robot has a pair of manipulator arms and a rotating telescopic crane installed on a 14 by 7.6 ft carriage. Five television cameras fitted at various spots on the robot allow surface operators to direct TIM in such tasks as (1) installing a jumper pipe between a Christmas tree and the manifold, (2) connecting a jumper electric cable and hydraulic hose, (3) locally operating a safety valve, and (4) removing a guide line. During 104 hr of seabed experience, TIM outperformed divers, particularly in jobs requiring great strength.

Vielvoye, R.

1981-05-04T23:59:59.000Z

482

Kuwait poised for massive well kill effort  

SciTech Connect (OSTI)

This paper reports that full scale efforts to extinguish Kuwait's oil well fires are to begin. The campaign to combat history's worst oil fires, originally expected to begin in mid-March, has been hamstrung by logistical problems, including delays in equipment deliveries caused by damage to Kuwait's infrastructure. Meantime, production from a key field off Kuwait--largely unaffected by the war--is expected to resume in May, but Kuwaiti oil exports will still be hindered by damaged onshore facilities. In addition, Kuwait is lining up equipment and personnel to restore production from its heavily damaged oil fields. Elsewhere in the Persian Gulf, Saudi Arabia reports progress in combating history's worst oil spills but acknowledges a continuing threat.

Not Available

1991-04-08T23:59:59.000Z

483

Drilling of wells with top drive unit  

SciTech Connect (OSTI)

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

484

Catching sparks from well-forged neutralinos  

Science Journals Connector (OSTI)

In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, ?+??+?+ET. Unlike traditional electroweakino searches, which perform best when m?˜2,30?m?˜10,m?˜±?m?˜10>mZ, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut m???mZ effectively removes on shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for “well-tempered” scenarios, where the dark matter relic abundance is achieved with interelectroweakino splittings of ?20–70??GeV. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark matter—a spectrum we dub well forged. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with m?˜2,30?190??GeV and m?˜2,30?m?˜10?30??GeV can be uncovered after roughly 600??fb?1 of luminosity at the 14 TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery.

Joseph Bramante; Antonio Delgado; Fatemeh Elahi; Adam Martin; Bryan Ostdiek

2014-11-11T23:59:59.000Z

485

Flow in geothermal wells: Part III. Calculation model for self-flowing well  

SciTech Connect (OSTI)

The theoretical model described predicts the temperature, pressure, dynamic dryness fraction, and void fraction along the vertical channel of two-phase flow. The existing data from operating wells indicate good agreement with the model. (MHR)

Bilicki, Z.; Kestin, J.; Michaelides, E.E.

1981-06-01T23:59:59.000Z

486

Well test imaging - a new method for determination of boundaries from well test data  

SciTech Connect (OSTI)

A new method has been developed for analysis of well test data, which allows the direct calculation of the location of arbitrary reservoir boundaries which are detected during a well test. The method is based on elements of ray tracing and information theory, and is centered on the calculation of an instantaneous {open_quote}angle of view{close_quote} of the reservoir boundaries. In the absence of other information, the relative reservoir shape and boundary distances are retrievable in the form of a Diagnostic Image. If other reservoir information, such as 3-D seismic, is available; the full shape and orientation of arbitrary (non-straight line or circular arc) boundaries can be determined in the form of a Reservoir Image. The well test imaging method can be used to greatly enhance the information available from well tests and other geological data, and provides a method to integrate data from multiple disciplines to improve reservoir characterization. This paper covers the derivation of the analytical technique of well test imaging and shows examples of application of the technique to a number of reservoirs.

Slevinsky, B.A.

1997-08-01T23:59:59.000Z

487

Well completion report on installation of horizontal wells for in-situ remediation tests  

SciTech Connect (OSTI)

A project to drill and install two horizontal vapor extraction/air-injection wells at the Savannah River Site (SRS), Aiken, South Carolina, was performed in September and October of 1988. This study was performed to test the feasibility of horizontal drilling technologies in unconsolidated sediments and to evaluate the effectiveness of in-situ air stripping of volatile organics from the ground water and unsaturated soils. A tremendous amount of knowledge was obtained during the drilling and installation of the two test wells. Factors of importance to be considered during design of another horizontal well drilling program follow. (1) Trips in and out of the borehole should be minimized to maintain hole stability. No reaming to enlarge the hole should be attempted. (2) Drilling fluid performance should be maximized by utilizing a low solids, low weight, moderate viscosity, high lubricity fluid. Interruption of drilling fluid circulation should be minimized. (3) Well materials should possess adequate flexibility to negotiate the curve. A flexible guide should be attached to the front of the well screen to guide the screen downhole. (4) Sands containing a minor amount of clay are recommended for completion targets, as better drilling control in the laterals was obtained in these sections.

Kaback, D.S.; Looney, B.B.; Corey, J.C.; Wright, L.M.

1989-08-01T23:59:59.000Z

488

ARSENIC IN PRIVATE WELLS IN NH YEAR 1 FINAL REPORT  

E-Print Network [OSTI]

performed geospatial analysis of the well water arsenic estimates and survey results and produced the maps .................................................................................................. 7 Well water quality...................................................................................................... 7 Well water testing

Bucci, David J.

489

Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...  

Open Energy Info (EERE)

Area Exploration Technique Well Log Data Activity Date - 1988 Usefulness useful DOE-funding Unknown Exploration Basis The study reports well log data from five wells...

490

Development and application of a transient well index  

E-Print Network [OSTI]

transient well index and the Peaceman well index were compared to analytical solutions. A good match was observed between simulated well tests using the proposed transient well index and the corresponding analytical solutions, even on coarse grids (e...

Yildiz, Tabiat Tan

2012-06-07T23:59:59.000Z

491

Uncertainty Quantification and Calibration in Well Construction Cost Estimates  

E-Print Network [OSTI]

or to individual cost components. Application of the methodology to estimation of well construction costs for horizontal wells in a shale gas play resulted in well cost estimates that were well calibrated probabilistically. Overall, average estimated...

Valdes Machado, Alejandro

2013-08-05T23:59:59.000Z

492

Cement fatigue and HPHT well integrity with application to life of well prediction  

E-Print Network [OSTI]

In order to keep up with the world’s energy demands, oil and gas producing companies have taken the initiative to explore offshore reserves or drill deeper into previously existing wells. The consequence of this, however, has to deal with the high...

Ugwu, Ignatius Obinna

2009-05-15T23:59:59.000Z