Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Pressure Transient Analysis for Multi-stage Fractured Horizontal Wells in Shale Gas Reservoirs  

Science Journals Connector (OSTI)

This article presents the PTA on the multi-stage fractured horizontal well in shale gas reservoirs incorporating desorption and diffusive flow in ... considering the mechanisms of desorption and diffusion in shale

Jingjing Guo; Liehui Zhang; Haitao Wang; Guoqing Feng

2012-07-01T23:59:59.000Z

2

Two-phase pressure transient analysis for multi-stage fractured horizontal well in shale gas reservoirs  

Science Journals Connector (OSTI)

Abstract Most researches on shale gas production and pressure transient analysis placed more emphasis on single-phase flow, the two-phase flow caused by flowback after hydrofracture in shale gas reservoirs does not attract much attention. This paper presents a two-phase pressure transient analysis model of multi-stage fractured horizontal well with the consideration of wellbore storage, skin effect, two-phase saturation, hydraulic fractures parameters and desorption characteristics of shale gas reservoirs. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method and orthogonal transformation. Pseudo-pressure and pseudo-pressure derivative type curve is plotted by using the Stehfest algorithm. Seven different flow regimes have been identified and the effects of influence factors such as initial saturation, skin factor, absorption index, fracture stages, horizontal well lateral length and wellbore storage coefficient have also been discussed. The presents research could be used to interpret the pressure behavior more accurately and effectively of shale gas reservoirs.

Weiyang Xie; Xiaoping Li; Liehui Zhang; Junchao Wang; Lina Cao; Lin Yuan

2014-01-01T23:59:59.000Z

3

Optimization of fractured well performance of horizontal gas wells  

E-Print Network [OSTI]

................................................24 3.4 Ideal Number of Transverse Fractures..........................................26 3.5 Constant Volume Transverse Fractures ........................................32 3.6... of a longitudinal fracture..............................................10 2.5 Example of horizontal well with longitudinal fracture performance .............11 2.6 DVS representation of transverse fractures...

Magalhaes, Fellipe Vieira

2009-06-02T23:59:59.000Z

4

Well testing model for multi-fractured horizontal well for shale gas reservoirs with consideration of dual diffusion in matrix  

Science Journals Connector (OSTI)

Abstract Shale gas reservoir is typical unconventional reservoir, it's necessary to take advantage of multi-stage fractured horizontal well so as to develop those kinds of reservoirs, which can form high conductivity hydraulic fractures and activate natural fractures. Due to the existence of concentration gap between matrix and fractures, desorption gas can simultaneously diffuse into the natural fractures and hydraulic fractures. This process can be called dual diffusion. Based on the triple-porosity cubic model, this paper establishes a new well testing model of multi-stage fractured horizontal well in shale gas reservoir with consideration of the unique mechanisms of desorption and dual diffusion in matrix. Laplace transformation is employed to solve this new model. The pseudo pressure transient responses are inverted into real time space with stehfest numerical inversion algorithm. Type curves are plotted, and different flow regimes in shale gas reservoirs are identified and the effects of relevant parameters are analyzed as well. Considering the mechanism of dual diffusion in matrix, the flow can be divided into five regimes: early linear flow; pseudo-steady state inter-porosity flow; the diffusion from matrix into micro-fractures; the diffusion from matrix into hydraulic fractures and boundary-dominated flow. There are large distinctions of pressure response between pseudo steady state diffusion and unsteady state diffusion under different value of pore volume ratio. It's similar to the feature of pseudo-steady state inter-porosity flow, diffusion coefficient and Langmuir parameters reflect the characters of pseudo-steady state diffusion. The numbers of stage of hydraulic fractures have certain impact on the shape factor of matrix and the inter-porosity coefficient. This new model is validated compared with some existing models. Finally, coupled with an application, this mew model can be approximately reliable and make some more precise productivity prediction.

Leng Tian; Cong Xiao; Mingjin Liu; Daihong Gu; Guangyu Song; Helong Cao; Xianglong Li

2014-01-01T23:59:59.000Z

5

Fracturing pressures and near-well fracture geometry of arbitrarily oriented and horizontal wells  

SciTech Connect (OSTI)

The hydraulic fracturing of arbitrarily oriented and horizontal wells is made challenging by the far more complicated near-well fracture geometry compared to that of conventional vertical wells. This geometry is important both for hydraulic fracture propagation and the subsequent post-treatment well performance. Fracture tortuosity of arbitrarily oriented and horizontal wells is likely to cause large initiation pressures and reduction in the fracture widths. This paper presents a comprehensive study of the effects of important variables, including the principal stresses, wellbore orientation, and perforation configuration on fracture geometry. Initiation pressures, the contact between arbitrarily oriented wells and the fracture plane, and the near-well fracture geometry are determined and discussed. This study also shows that because of the near-well stress concentration the fracture width at the wellbore is always smaller than the maximum fracture width. This can have important consequences during hydraulic fracturing.

Chen, Z.; Economides, M.J.

1995-12-31T23:59:59.000Z

6

Multi-stage Cascaded Stirling Refrigerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multi-stage Cascaded Stirling Refrigerator Multi-stage Cascaded Stirling Refrigerator Los Alamos National Laboratory (LANL) researchers have developed a multi-stage refrigerator,...

7

Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells  

E-Print Network [OSTI]

EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS A Thesis IAN MARIE BERTHELOT Submitted to the Office of Graduate Studies of Texas AdtM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Petroleum Engineering EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS by JAN MARIE BERTIIELOT Appmved...

Berthelot, Jan Marie

2012-06-07T23:59:59.000Z

8

Production-systems analysis for fractured wells  

SciTech Connect (OSTI)

Production-systems analysis has been in use for many years to design completion configurations on the basis of an expected reservoir capacity. The most common equations used for the reservoir calculations are for steady-state radial flow. Most hydraulically fractured wells require the use of an unsteady-state production simulator to predict the higher flow rates associated with the stimulated well. These high flow rates may present problems with excessive pressure drops through production tubing designed for radial-flow production. Therefore, the unsteady-state nature of fractured-well production precludes the use of steady-state radial-flow inflow performance relationships (IPR's) to calculate reservoir performance. An accurate prediction of fractured-well production must be made to design the most economically efficient production configuration. It has been suggested in the literature that a normalized reference curve can be used to generate the IPR's necessary for production-systems analysis. However, this work shows that the reference curve for fractured-well response becomes time-dependent when reservoir boundaries are considered. A general approach for constructing IPR curves is presented, and the use of an unsteady-state fractured-well-production simulator coupled with the production-systems-analysis approach is described. A field case demonstrates the application of this method to fractured wells.

Hunt, J.L. (Halliburton Services (US))

1988-11-01T23:59:59.000Z

9

Alternate Representations for Numerical Modeling of Multi-Stage Hydraulically Fractured Horizontal Wells in Shale Gas Reservoirs.  

E-Print Network [OSTI]

??Increasing demand of oil and natural gas and depletion of production from conventional resources accelerate the advancement of technology to economically produce oil and natural… (more)

Siripatrachai, Nithiwat

2011-01-01T23:59:59.000Z

10

Multi-stage flash degaser  

DOE Patents [OSTI]

A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.

Rapier, P.M.

1980-06-26T23:59:59.000Z

11

Multi-stage flash degaser  

DOE Patents [OSTI]

A multi-stage flash degaser (18) is incorporated in an energy conversion system (10) having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger (22) in order that the heat exchanger (22) and a turbine (48) and condenser (32) of the system (10) can operate at optimal efficiency.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

12

Optimizing fracture stimulation using treatment-well tiltmeters and integrated fracture modeling  

SciTech Connect (OSTI)

This paper covers the optimization of hydraulic fracture treatments in a new coalbed methane (CBM) reservoir in Wyoming. A multiwell pilot project was conducted in the Copper Ridge (CR) field to assess future development potential. Hydraulic fracture mapping was successfully performed with treatment-well tiltmeters on six wells including the first-ever used on propped treatments. The mapped fracture height was then used to calibrate the fracture model, perform on-site fracture-design changes, and optimize future fracture treatments. This paper shows how early use of fracture diagnostics can assist in the development of a new reservoir.

Mayerhofer, M.; Stutz, L.; Davis, E.; Wolhart, S. [Pinnacle Technology Houston, Houston, TX (United States)

2006-05-15T23:59:59.000Z

13

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

), md 0.15 Porosity (g102), fraction 0.1 Water Saturation (S w ), fraction 0.16 Initial Pressure (p i ), psi 3,900 Injection Pressure (p inj ), psi 3,910 Dewpoint Pressure (p d ), psi 3,500 Temperature (T), o F 200 Total Compressibility (c g... simulation ..........................13 3.4 Permeability reduction normal to fracture face .........................................14 3.5 Quarter model for 80 acre drainage area....................................................15 3.6 Fracture face...

Adeyeye, Adedeji Ayoola

2004-09-30T23:59:59.000Z

14

Geothermal Well Logging: Geological Wireline Logs and Fracture...  

Open Energy Info (EERE)

Logging: Geological Wireline Logs and Fracture Imaging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Logging: Geological...

15

A Triple-Porosity Model for Fractured Horizontal Wells  

E-Print Network [OSTI]

A TRIPLE-POROSITY MODEL FOR FRACTURED HORIZONTAL WELLS A Thesis by HASAN ALI H ALAHMADI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 2010 Major Subject: Petroleum Engineering A Triple-Porosity Model for Fractured Horizontal Wells Copyright 2010 Hasan Ali H Alahmadi A TRIPLE-POROSITY MODEL FOR FRACTURED...

Alahmadi, Hasan Ali H.

2010-10-12T23:59:59.000Z

16

Accounting for Remaining Injected Fracturing Fluid  

E-Print Network [OSTI]

The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

Zhang, Yannan

2013-12-06T23:59:59.000Z

17

Transient and Pseudosteady-State Productivity of Hydraulically Fractured Well  

E-Print Network [OSTI]

Numerical simulation method is used in this work to solve the problem of transient and pseudosteady-state flow of fluid in a rectangular reservoir with impermeable boundaries. Development and validation of the numerical solution for various well-fracture...

Lumban Gaol, Ardhi

2012-10-19T23:59:59.000Z

18

Implementation of the Ensemble Kalman Filter in the Characterization of Hydraulic Fractures in Shale Gas Reservoirs by Integrating Downhole Temperature Sensing Technology  

E-Print Network [OSTI]

Multi-stage hydraulic fracturing in horizontal wells has demonstrated successful results for developing unconventional low-permeability oil and gas reservoirs. Despite being vastly implemented by different operators across North America, hydraulic...

Moreno, Jose A

2014-08-12T23:59:59.000Z

19

Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program  

SciTech Connect (OSTI)

Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

Not Available

1981-06-01T23:59:59.000Z

20

Horizontal well will be employed in hydraulic fracturing research  

SciTech Connect (OSTI)

This paper reports on 10-well research site, planned to enable more controlled experiments for better definition of hydraulic fracturing. One of the 10 wells will be a near-horizontal well that will monitor microseismic events along its length. The Gas Research Institute (GR) has begun evaluating a low-permeability, gas-bearing sandstone as the target stratum for experiments to be conducted at its hydraulic fracture test site (HFTS). During a 4-year period, GRI will use the HFTS as a field laboratory to conduct multi-disciplinary research projects to assess the mechanics of hydraulic fracturing. As a result of a screening process the Davis sandstone in the Ft. Worth basin has emerged as the tight gas sand which best fits the selected criteria established by GRI and its contractors, GRI says. The Ft. Worth basin is located approximately 50 miles northwest of Ft. Worth. GRI is planning a research well to fully characterize the Davis prior to making a final decision on the location of the HFTS. If data from the research well indicate the Davis sand does not adequately meet selection criteria, other candidates identified in the screening process will be investigated.

Not Available

1991-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ANALYSIS OF GAS PRODUCTION FROM HYDRAULICALLY FRACTURED WELLS IN THE HAYNESVILLE SHALE USING SCALING METHODS  

E-Print Network [OSTI]

ANALYSIS OF GAS PRODUCTION FROM HYDRAULICALLY FRACTURED WELLS IN THE HAYNESVILLE SHALE USING. INTRODUCTION Before the advent of hydraulic fracturing technology and hor- izontal drilling, the Haynesville

Patzek, Tadeusz W.

22

Prediction of effects of hydraulic fracturing using reservoir and well flow simulation  

SciTech Connect (OSTI)

This paper presents a method to predict and evaluate effects of hydraulic fracturing jobs by using reservoir and well flow numerical simulation. The concept of the method i5 that steam production rate at the operating well head pressure is predicted with different fracture conditions which would be attained by the hydraulic fracturing jobs. Then, the effects of the hydraulic fracturing is evaluated by comparing the predicted steam production rate and that before the hydraulic fracturing. This course of analysis will suggest how large fracture should be created by the fracturing job to attain large enough increase in steam production at the operating condition and the best scheme of the hydraulic fracturing job.

Mineyuki Hanano; Tayuki Kondo

1992-01-01T23:59:59.000Z

23

New and Underutilized Technology: Multi-stage Indirect Evaporative Cooling  

Broader source: Energy.gov (indexed) [DOE]

Multi-stage Indirect Evaporative Multi-stage Indirect Evaporative Cooling New and Underutilized Technology: Multi-stage Indirect Evaporative Cooling October 4, 2013 - 4:33pm Addthis The following information outlines key deployment considerations for multi-stage evaporative cooling within the Federal sector. Benefits Multi-stage indirect evaporative cooling is an advanced evaporative cooler that can lower air temperatures without adding moisture. These systems evaporate water in a secondary (or working) airstream, which is discharged in multiple stages. No water or humidity is added to the primary (or product) airstream in the process. Application Multi-stage indirect evaporative cooling is applicable in office, research and development, service, and school applications. Climate and Regional Considerations

24

The Implications and Flow Behavior of the Hydraulically Fractured Wells in Shale Gas Formation  

E-Print Network [OSTI]

approaches is by drilling horizontal wells and hydraulically fracturing the formation. Once the formation is fractured, different flow patterns will occur. The dominant flow regime observed in the shale gas formation is the linear flow or the transient...

Almarzooq, Anas Mohammadali S.

2012-02-14T23:59:59.000Z

25

Massive Hydraulic Fracture of Fenton Hill HDR Well EE-3 | Open...  

Open Energy Info (EERE)

Massive Hydraulic Fracture of Fenton Hill HDR Well EE-3 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Massive Hydraulic Fracture of Fenton Hill HDR...

26

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011  

E-Print Network [OSTI]

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011 of Hydraulic Fracturing in the Shale Plays (2010). Tudor Pickering Holt & Co with Reservoir Research Partners, with a thoughtful discussion Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

Manning, Sturt

27

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011  

E-Print Network [OSTI]

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011 of Hydraulic Fracturing in the Shale Plays (2010). Tudor Pickering Holt & Co with Reservoir Research Partners, with a thoughtful discussion Draft Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water

28

Failure of a gas well to respond to a foam hydraulic fracturing treatment  

SciTech Connect (OSTI)

Well No. 1 (not the real name of the well) is not producing gas at maximum capacity following a foam hydraulic fracturing treatment performed upon completion of the well in 1987. The failure of the stimulation treatment, which has affected other wells throughout the field, was due to a combination of three factors: (1) downward fracture growth and proppant settling during injection (2) embedment due to a high pressure drawdown in the wellbore during flowback procedures, and (3) poor cleanup of the fracture fluid due to high capillary pressures. The following are recommendations to help improve future fracturing treatments throughout the field: (1) Fracture at lower treating pressures; (2) Improve perforating techniques; (3) Change flowback procedures; and (4) Evaluate using N{sub 2} as a fracture fluid.

Rauscher, B.D.

1996-12-31T23:59:59.000Z

29

Optimal fracture treatment design for dry gas wells maximizes well performance in the presence of non-Darcy flow effects  

E-Print Network [OSTI]

This thesis presents a methodology based on Proppant Number approach for optimal fracture treatment design of natural gas wells considering non-Darcy flow effects in the design process. Closure stress is taken into account, by default, because...

Lopez Hernandez, Henry De Jesus

2004-11-15T23:59:59.000Z

30

Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal Well  

Open Energy Info (EERE)

Macroscopic Fractures In Granite In The Hdr Geothermal Well Macroscopic Fractures In Granite In The Hdr Geothermal Well Eps-1, Soultz-Sous-Forets, France Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal Well Eps-1, Soultz-Sous-Forets, France Details Activities (0) Areas (0) Regions (0) Abstract: An exhaustive analysis of 3000 macroscopic fractures encountered in the geothermal Hot Dry Rock borehole, EPS-1, located inside the Rhine graben (Soultz-sous-Forets, France), was done on a continuous core section over a depth interval from 1420 to 2230 m: 97% of the macroscopic structures were successfully reorientated with a good degree of confidence by comparison between core and acoustic borehole imagery. Detailed structural analysis of the fracture population indicates that fractures are

31

Hydraulics of horizontal wells in fractured shallow aquifer systems Eungyu Parka,*, Hongbin Zhanb  

E-Print Network [OSTI]

Hydraulics of horizontal wells in fractured shallow aquifer systems Eungyu Parka,*, Hongbin Zhanb Accepted 1 May 2003 Abstract An analysis of groundwater hydraulic head in the vicinity of a horizontal well in fractured or porous aquifers considering confined, leaky confined, and water-table aquifer boundary

Zhan, Hongbin

32

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low energy deposits at the distal end of a protruding turbidite complex through use of hydraulically fractured horizontal of high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than conventional vertical wells while maintaining vertical communication between thin interbedded layers and the well bore.

Mike L. Laue

1998-05-29T23:59:59.000Z

33

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a propagating turbidite complex through the use of hydraulically-fractured horizontal or high-angle wells. The combination of a horizontal or high-angled well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thininterbedded layers and the well bore.

Mike L. Laue

1997-05-08T23:59:59.000Z

34

ECONOMIC RECOVERY OF OIL TRAPPED AT FAN MARGINS USING HIGH ANGLE WELLS AND MULTIPLE HYDRAULIC FRACTURES  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well.

Mike L. Laue

1998-11-06T23:59:59.000Z

35

Span-Wise Mixing in a Multi-Stage Compressor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPAN-WISE MIXING IN A MULTI-STAGE COMPRESSOR SPAN-WISE MIXING IN A MULTI-STAGE COMPRESSOR Penn State Bud Lakshminarayana (Cengiz Camci) #036 * Phenomena that have eluded gas turbine designers include the effects of rotor-stator interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. * Compressor tests were conducted in a three stage compressor where deterministic unsteadiness and random fluctuations causing spanwise mixing are realistically replicated . This provided valuable information on rotor stator interaction effects and the nature of the unsteadiness. * Multi-stage compressor energy efficiency improvements are only possible by careful implementation of spanwise mixing models into modern CFD codes (Computational Fluid Dynamics) . *This investigation provided results that are extremely helpful in improving computer

36

ECONOMIC RECOVERY OF OIL TRAPPED AT FAN MARGINS USING HIGH ANGLE WELLS AND MULTIPLE HYDRAULIC FRACTURES  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan-margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic-fracture treatments will be determined, in part, by fracturing an existing test well. Fracture azimuth will be predicted by passive seismic monitoring of a fracture-stimulation treatment in the test well using logging tools in an offset well. The long radius, near horizontal well was drilled during the first quarter of 1996. Well conditions resulted in the 7 in. production liner sticking approximately 900 ft off bottom. Therefore, a 5 in. production liner was necessary to case this portion of the target formation. Swept-out sand intervals and a poor cement bond behind the 5 in. liner precluded two of the three originally planned hydraulic fracture treatments. As a result, all pay intervals behind the 5 in. liner were perforated and stimulated with a non-acid reactive fluid. Following a short production period, the remaining pay intervals in the well (behind the 7 in. liner) were perforated. The well was returned to production to observe production trends and pressure behavior and assess the need to stimulate the new perforations.

Mike L. Laue

2001-09-28T23:59:59.000Z

37

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically fractured horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.

Laue, M.L.

1999-11-01T23:59:59.000Z

38

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...

39

In situ stress, fracture, and fluid flow analysis in Well 38C...  

Open Energy Info (EERE)

situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to...

40

The impact of gravity segregation on multiphase non-Darcy flow in hydraulically fractured gas wells  

E-Print Network [OSTI]

THE IMPACT OF GRAVITY SEGREGATION ON MULTIPHASE NON-DARCY FLOW IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by MARK DICKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2008 Major Subject: Petroleum Engineering THE IMPACT OF GRAVITY SEGREGATION ON MULTIPHASE NON-DARCY FLOW IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by MARK DICKINS...

Dickins, Mark Ian

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A qualitative analysis of non-Darcy flow effects in hydraulically fractured gas wells  

E-Print Network [OSTI]

A QUALITATIVE ANALYSIS OF NON-DARCY FLOW EFFECTS IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by JOANNE CAROL HRESKO Submitted to the Graduate College of Texas A 5 M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1985 Major Subject: Petroleum Engineering A QUALITATIVE ANALYSIS OF NON-DARCY FLOW EFFECTS IN HYDRAULICALLY FRACTURED GAS WELLS A Thesis by JOANNE CAROL HRESKO Approved as to style and content by: W. J. Lee (Chairman...

Hresko, Joanne Carol

2012-06-07T23:59:59.000Z

42

Simulating the Effect of Water on the Fracture System of Shale Gas Wells  

E-Print Network [OSTI]

SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2010 Major Subject: Petroleum Engineering SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate...

Hamam, Hassan Hasan H.

2011-10-21T23:59:59.000Z

43

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an  

Open Energy Info (EERE)

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Abstract Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

44

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Details Activities (2) Areas (1) Regions (0) Abstract: Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

45

Integration of well test analysis into naturally fractured reservoir simulation  

E-Print Network [OSTI]

data ..................................... 24 5.7 Shape factor vs. l/rw2 ........................................................................ 26 5.8 Lma vs. l/rw2... viscosity; 3) constant system compressibility; and 4) fully penetrating well with constant production rate. rw re ? ? rw re...

Perez Garcia, Laura Elena

2006-04-12T23:59:59.000Z

46

Laboratory data in support of hydraulically fracturing EGSP OH Well No. 3. Final report  

SciTech Connect (OSTI)

Geologic and geophysical interpretations of data from the EGSP OH Well No. 3 show that an organically lean shale has a gradual transition with depth to an organically rich shale and that two layers (bound each shale formation. The laboratory test program was designed to understand the containment and productivity of a hydraulic fracture induced in this well to enhance gas production from the shale. The porosity in the formations of interest, including the upper barrier, the lower barrier, and the organic shales, varied from 6 to 10 percent. The porosity of each formation averaged about 8%. Densities and ultrasonic velocities were used to evaluate dynamic moduli. Over the tested intervals moduli consistently increased with depth. This indicates the possibility of upward migration of an induced fracture. Perforations, therefore, should be limited to the lower portion of the pay sand and it is also advisable to use low injection rates. Of the four fracturing fluids tested, the two code-named Dow II and Hal I caused, respectively, the least amount of matrix permeability damage to the organically lean and organically rich shales. However, the damage caused by the other fracturing fluids were not severe enough to cause any significant permanent reduction in well productivity. The fracture conductivity tests under the influence of fracturing fluids indicated that Hal I and Dow I caused, respectively, the least amount of multilayered fracture conductivity damage to the organically lean and organically rich samples. For monolayer fracture conductivities Dow I caused least damage to the organically lean shale. With the exception of Dow III all other fluids showed good results in the monolayer tests for organically rich shales. In the situation where both the lean and the rich shales are to be fractured together, the use of either Hal I or Dow I is indicated.

Ahmed, U.; Swartz, G.C.; Scnatz, J.F.

1980-12-01T23:59:59.000Z

47

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

The distal fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economical to develop using vertical wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at one-half to two-thirds the cost.

Mike L. Laue

1997-05-30T23:59:59.000Z

48

Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems  

SciTech Connect (OSTI)

The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation coefficient increase. Interestingly, model results before and after hydrofracking are insensitive to adding more fractures, while slightly more sensitive to aperture increase, making SWIW tests a possible means of discriminating between these two potential hydrofracking effects. Finally, we investigate the possibility of inferring relevant information regarding the fracture-matrix system physical parameters from the BTCs obtained during SWIW testing.

Cotte, F.P.; Doughty, C.; Birkholzer, J.

2010-11-01T23:59:59.000Z

49

The Cost Effectiveness of Fracture Stimulation in Increasing the Flow from Geothermal Wells  

SciTech Connect (OSTI)

The cost effectiveness of fracture stimulation at The Geysers, the Imperial Valley, and other geothermal resource areas in the United States vas studied using GEOCOM, a computer code for analyzing the impact of completion activities on the life-cycle costs of geothermal wells. Technologies for fracturing the reservoir near the wellbore involve the creation of a pressure pulse in the wellbore by means of either hydraulic or explosive force. The cost of a single fracture stimulation job can vary from $50,000 to over $500,000, with a typical cost of around $300,000. The code shows that additional flow achieved by fracture stimulation must exceed 10,000 pounds per hour for each $100,000 invested in stimulation in order for a fracture treatment to be cost effective. In some reservoirs, this additional flow must be as great as 30,000 pounds per hour. The cost effectiveness of fracturing has not yet been demonstrated in the field. The Geothermal Well Stimulation Program achieved an overall average of about 10,000 pounds per hour for each $100,000 invested.

Brown, Gerald L.

1983-12-15T23:59:59.000Z

50

Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems  

E-Print Network [OSTI]

exchange process. Hydraulic fracturing, or hydrofracking, ismore detail below. Hydraulic fracturing, or hydrofracking,

Cotte, F.P.

2012-01-01T23:59:59.000Z

51

Well test analysis for wells with finite conductivity vertical fractures: application to the Upper Clearfork Formation  

E-Print Network [OSTI]

fracture in an infinite-acting, homogeneous reservoir as follows; pp p? (n Clp ) = pp ?t(u Cjp)- pp ?t(Q Cpi =~ ) + pp, p~(u, xp = f (Clp)) (2. 11) where xp = f (Cjp) means xp is a function of Cfp. For this work, Cfp = ~ is approximated by Cjp = x x... 106. The correlation of xp and Cfg, xp = f (Cfp), is given by [au+atln(C )+a2ln(C ) + 4bln(C ) + a4ln(C ) ] Zp [1 + biln (Crp) + b2ln (Clp) + bsln (Crp)s + b4ln (Cai) ] (2. 12) where, values of the coefficients ap - a4 and bl -b4 are given as ap...

Santivongskul, Monton

2012-06-07T23:59:59.000Z

52

The Parameter Optimization and Analysis of a Multi-Stage Tower Type of Solar Desalination Unit  

Science Journals Connector (OSTI)

After the analysis of the multi-stage tower type of solar desalination unit[1], the unit is optimized...

Chen Ziqian; He Kaiyan; Zheng Hongfei…

2009-01-01T23:59:59.000Z

53

Characterization of an Eastern Kentucky Devonian Shales well using a naturally fractured, layered reservoir description  

E-Print Network [OSTI]

and Berea Sandstone to form a better understanding of the physical properties controlling well performance. Research conducted on the well discussed in this thesis, the COOP 1 well, concentrated on the Devonian Shales. Previous research has shown...-directions. The ultimate result has been the development of an 11-layer reservoir model for the COOP 1 well that accurately describes the short-term pre- and post-fracture production and pressure transient data. Once this was accomplished, confidence in the performance...

Jochen, John Edward

1993-01-01T23:59:59.000Z

54

High-power multi-stage Rankine cycles  

SciTech Connect (OSTI)

This paper presents an analysis of the multi-stage Rankine cycle aiming at optimizing the power output from low-temperature heat sources such as geothermal or waste heat. A design methodology based on finite-time thermodynamics and the maximum power concept is used in which the shape and the power output of the maximum power cycle are identified and utilized to compare and evaluate different Rankine cycle configurations. The maximum power cycle provides the upper-limit power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger characteristics. It also provides a useful tool for studying power cycles and forms the basis for making design improvements.

Ibrahim, O.M. [Univ. of Rhode Island, Kingston, RI (United States). Mechanical Engineering Dept.; Klein, S.A. [Univ. of Wisconsin, Madison, WI (United States). Mechanical Engineering Dept.

1995-09-01T23:59:59.000Z

55

Economic Recovery of Oil Trapped at Fan Margins Using High Angle Wells and Multiple Hydraulic Fractures  

SciTech Connect (OSTI)

This project attempts to demonstrate the effectivensss of exploiting thin-layered, low energy deposits at the distal margin of a propagating turbinite complex through u se of hydraulically fractgured horizontal of high-angle wells. TGhe combinaton of a horizontal or high-angle weoo and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore.

Mike L. Laue

1998-02-05T23:59:59.000Z

56

Methodologies and new user interfaces to optimize hydraulic fracturing design and evaluate fracturing performance for gas wells  

E-Print Network [OSTI]

This thesis presents and develops efficient and effective methodologies for optimal hydraulic fracture design and fracture performance evaluation. These methods incorporate algorithms that simultaneously optimize all of the treatment parameters...

Wang, Wenxin

2006-04-12T23:59:59.000Z

57

Development of reservoir simulator for hydraulically fractured gas wells in noncontinuous lenticular reservoirs  

SciTech Connect (OSTI)

A mathematical model is presented which forms the basis for a reservoir simulator that can be used to assist in the interpretation and prediction of the performance of hydraulically fractured gas wells completed in the western tight sands area. The model represents a first step in developing a reservoir simulator that can be used as an exploration tool and to analyze proposed gas well tests and future production trends in noncontinuous sand lense formations which are representative of the tight gas sands located in the Rocky Mountain gas provinces. The model developed consists of the necessary mathematical equations to simulate both reservoir and well performance under a variety of operating conditions. The equations developed are general in that they consider the following effects: (1) three-dimensional flow in the reservoir and one-dimensional flow in the fracture; (2) non-Darcy flow in the reservoir and fracture; (3) wellbore and fracture storage; (4) formation damage on the fracture face; (5) frictional pressure drop in the production string; (6) noncontinuous sand lenses; and (7) Klinkenberg effect. As a start toward the development of the final version of the desired reservoir simulator, a two-dimensional simulator was secured, placed on the computer, and debugged, and some test cases were run to ensure its validity. Using this simulator as a starting point, changes to reflect the effects of items 3 and 6 were made since it was believed these were the more important effects to consider at this stage of development. The development of an operational two-dimensional gas reservoir simulator was completed. Further work will be required to extend the simulator to three dimensions and incorporate all the changes reflected in items 1 to 6.

Evans, R.D.; Carroll, H.B. Jr.

1980-10-01T23:59:59.000Z

58

Multi-stage fuel cell system method and apparatus  

DOE Patents [OSTI]

A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

George, Thomas J. (Morgantown, WV); Smith, William C. (Morgantown, WV)

2000-01-01T23:59:59.000Z

59

Evidence of Reopened Microfractures in Production Data of Hydraulically Fractured Shale Gas Wells  

E-Print Network [OSTI]

fracture complexity, that may have been opened or reopened during the hydraulic fracturing operation. The main objective of this work is to investigate the role of fracture complexity in resolving the apparent SSV discrepancy and to illustrate whether...

Apiwathanasorn, Sippakorn

2012-10-19T23:59:59.000Z

60

A PURELY NUMERICAL APPROACH FOR ANALYZING FLOW TO A WELL INTERCEPTING A VERTICAL FRACTURE  

E-Print Network [OSTI]

W.R. Effect of vertical fracture on reservoir behavior --of deep, penetrating fractures in the wattenberg Field.flow through a single fracture. PhD Dissertation, Department

Narasimhan, T.N.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Measuring well hydraulic connectivity in fractured bedrock using periodic slug tests  

Science Journals Connector (OSTI)

Summary Periodic hydraulic experiments were conducted in a five-spot well cluster completed in a single bedding plane fracture. Tests were performed by using a winch-operated slug (submerged solid cylinder) to create a periodic head disturbance in one well and observing the phase shift and attenuation of the head response in the remaining wells. Transmissivity (T) and storativity (S) were inverted independently from head response. Inverted T decreased and S increased with oscillation period. Estimated S was more variable among well pairs than T, suggesting S may be a better estimator of hydraulic connectivity among closely spaced wells. These estimates highlighted a zone of poor hydraulic connection that was not identified by a constant rate test conducted in the same wells. Periodic slug tests appear to be a practical and effective technique for establishing local scale spatial variability in hydraulic parameters.

Eric Guiltinan; Matthew W. Becker

2015-01-01T23:59:59.000Z

62

Investigation of post hydraulic fracturing well cleanup physics in the Cana Woodford shale.  

E-Print Network [OSTI]

??Hydraulic fracturing was first carried out in the 1940s and has gained popularity in current development of unconventional resources. Flowing back the fracturing fluids is… (more)

Lu, Rong

2014-01-01T23:59:59.000Z

63

Fractured gas well analysis: evaluation of in situ reservoir properties of low permeability gas wells stimulated by finite conductivity hydraulic fractures  

E-Print Network [OSTI]

, and the time required f e' to reach pseudo-steady-state flow in finite acting reservoirs. In Runs 6-8, variation of the fracture penetration was achieved by using different fracture lengths, while holding the drainage radius constant at 2, 640 feet for each... Reservoir Pressure Fracture Conductivity Flow Rate Drainage Radius 10/o 0. 1 md 50 ft 640 acres 150 F 0. 65 5000 psia 0. 1 500 MCF/D 2, 640 ft Run ? Xf (ft) Xf/X Drawdown Time (Days) 132. 0 264. 0 528. 0 0. 05 0. 1 0. 2 30 90 50 17...

Makoju, Charles Adoiza

2012-06-07T23:59:59.000Z

64

Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing{  

E-Print Network [OSTI]

Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing{ Ryan D-at-a-time). Microfluidic processors that enable multi-stage fluidic reactions with suspended microparticles (e-on-a-chip technologies. Here we present a single-layer microfluidic reactor that utilizes a microfluidic railing

Lin, Liwei

65

Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network  

SciTech Connect (OSTI)

Performing hydraulic fractures on gas storage wells to improve their deliverability is a common practice in the eastern part of the United States. Most of the fields in this part of the country being used for storage are old. Reservoir characteristic data necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce for these old fields. This paper introduces a new methodology by which parameters that influence the response of gas storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data. Control and manipulation of these parameters, once identified correctly, could enhance the outcome of frac jobs in gas storage fields. The study was conducted on a gas storage field in the Clinton formation of Northeastern Ohio. It was found that well performance indicators prior to a hydraulic fracture play an important role in how good the well will respond to a new frac job. Several other important factors were also identified.

McVey, D.S.; Mohaghegh, S.; Aminian, K.

1994-12-31T23:59:59.000Z

66

Determination of formation permeability using back-pressure test data from hydraulically-fractured, low-permeability gas wells  

E-Print Network [OSTI]

DETERMINATION OF FORMATION PERMEABILITY USING BACX-PRESSURE TEST DATA FROM HYDRAULICALLY-FRACTURED, LOW-PERMEABILITY GAS WELLS A Thesis JOHN PAUL KRAWTZ Submitted to the Graduate College of Texas AsJ4 University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1984 Major subject: petroleum Engineering DETERMINATION OF FORMATION PERMEABILITY USING BACK-PRESSURE TEST DATA FROM HYDRAULICALLY-FRACTURED, LOW-PERMEABILITY GAS WELLS A Thesis JOHN PAUL KRAWTZ...

Krawtz, John Paul

2012-06-07T23:59:59.000Z

67

Candidate Well Selection for the Test of Degradable Biopolymer as Fracturing Fluid  

E-Print Network [OSTI]

for environment and health effects of hydraulic fracturing becomes intense, many efforts are made to replace the conventional fracturing fluid with more environment-friendly materials. The degradable biopolymer is one of the novel materials that is injected...

Hwang, Yun Suk

2012-02-14T23:59:59.000Z

68

Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network  

SciTech Connect (OSTI)

Performing hydraulic fractures on gas storage wells to improve their deliverability is a common practice in the eastern part of the US. Most fields used for storage in this region are old, and the reservoir characteristic data necessary for most reservoir studies and hydraulic fracture design and evaluation are scarce. This paper introduces a new method by which parameters that influence the response of gas storage wells to hydraulic fracturing may be identified in the absence of sufficient reservoir data. Control and manipulation of these parameters, once identified correctly, could enhance the outcome of frac jobs in gas storage fields. The authors conducted the study on a gas storage field in the Clinton formation of northeastern Ohio. They found that well-performance indicators before a hydraulic fracture play an important role in how good the well will respond to a new frac job. They also identified several other important factors. The identification of controlling parameters serves as a foundation for improved frac job design in the fields where adequate engineering data are not available. Another application of this type of study could be the enhancement of selection criteria among the candidate wells for hydraulic fracturing. To achieve the objective of this study, the authors designed, trained, and applied an artificial neural network. The paper will discuss the results of the incorporation of this new technology in hydraulic fracture design and evaluation.

McVey, D.S. [East Ohio Gas Co., North Canton, OH (United States); Mohaghegh, S.; Aminian, K.; Ameri, S. [West Virginia Univ., Morgantown, WV (United States)

1996-04-01T23:59:59.000Z

69

MULTILEVEL INVERTER, BASED ON MULTI-STAGE CONNECTION OF THREE-LEVEL CONVERTERS, SCALED IN POWER OF THREE.  

E-Print Network [OSTI]

MULTILEVEL INVERTER, BASED ON MULTI-STAGE CONNECTION OF THREE-LEVEL CONVERTERS, SCALED IN POWER. #12;MULTILEVEL INVERTER, BASED ON MULTI-STAGE CONNECTION OF THREE-LEVEL CONVERTERS, SCALED IN POWER, Concepción, Chile ABSTRACT A multi-stage inverter using three-state converters is being analyzed

Catholic University of Chile (Universidad Católica de Chile)

70

Macroscopic three-dimensional physical simulation of water flooding in multi-well fracture-cavity unit  

Science Journals Connector (OSTI)

Abstract A macroscopic three-dimensional physical simulating model of multi-well fracture-cavity units was designed and constructed based on similarity theory. The characteristics and the water breakthrough pattern of fracture-cavity reservoirs developed in bottom water depletion and water injection modes were investigated by the model. The results show that, in bottom water drive, under the effect of bottom water depletion and water breakthrough, the wells had high productivity in early stage and fast decline. After energy supplement by injecting water, the productivity rebounded in a short time and then began a slow decline. The bottom water tended to coning to the wells at the place of bottom water entry. The water breakthrough pattern is spot pattern and the water breakthrough time is controlled by the well's connectivity to the bottom water; the water injection can inhibit coning and intrusion of bottom water, turning the spot pattern water breakthrough in bottom water drive period into planar line form, and the water breakthrough time in water injection period was mainly influenced by the well depth. The water cut of wells in water flooding multi-well fracture-cavity units changes in three patterns: slow rise, staircase rise and abrupt watered-out, which is influenced by the reservoir type and the coordination number. When the well encounters cavity, the water cut increasing rate slows down with the increase of the coordination number; when the well drilled fractures, the water cut changes in staircase pattern with the increase of coordination number.

Jirui HOU; Haibo LI; Yu JIANG; Ming LUO; Zeyu ZHENG; Li ZHANG; Dengyu YUAN

2014-01-01T23:59:59.000Z

71

Design and analysis of multi-stage expander processes for liquefying natural gas  

Science Journals Connector (OSTI)

Multi-stage expander refrigeration cycles were proposed and analyzed in order to develop an efficient natural gas liquefaction process. The proposed dual and cascade expander processes have high efficiency and th...

Wonsub Lim; Inkyu Lee; Kwanghee Lee…

2014-09-01T23:59:59.000Z

72

Creation and Impairment of Hydraulic Fracture Conductivity in Shale Formations  

E-Print Network [OSTI]

Multi-stage hydraulic fracturing is the key to the success of many shale gas and shale oil reservoirs. The main objectives of hydraulic fracturing in shale are to create artificial fracture networks that are conductive for oil and gas flow...

Zhang, Junjing

2014-07-10T23:59:59.000Z

73

Assessment of a multi-stage underwater vehicle concept using a fossil-fuel Stirling engine  

SciTech Connect (OSTI)

The Stirling Engine because of its inherent closed-cycle operation can be readily modified to work in an airless environment even if the primary source of energy is a fossil fuel. Thus, Stirling engines are well suited for use in the underwater environment and have been operated successfully in manned military submarines since the early 1980s. In recent years fossil fueled Stirling systems have been also proposed for use in small unmanned underwater vehicles (UUVs). However, in this case the need to carry an onboard oxygen supply in a very confined space has presented a number of design difficulties. These are identified in the paper. However, if the oxidant supply to the engine is provided by the membrane extraction of dissolved oxygen from seawater and/or disposable fuel/oxidant pods are used then the UUV Stirling system becomes more attractive. If this latter concept is extended to include multi-stage vehicles then it can be shown that fossil fueled Stirlings could also be put to effective use in long range-long endurance underwater vehicular operations.

Reader, G.T.; Potter, I.J. [Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

74

Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area  

SciTech Connect (OSTI)

Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

Pruess, K.; Doughty, C.

2010-01-15T23:59:59.000Z

75

A Multi Stage Fall-back Search Strategy for Cross-Lingual Information Retrieval  

E-Print Network [OSTI]

, uses the company's ontology to provide more precise and effective search results. DomainSense, OingoA Multi Stage Fall-back Search Strategy for Cross- Lingual Information Retrieval Satish Kagathara, manishpd}@it.iitb.ac.in, pb@cse.iitb.ac.in Abstract In this paper, we describe a special purpose search

Bhattacharyya, Pushpak

76

Multi-Stage Converters: A New Technology for Traction Drive Juan W. Dixon  

E-Print Network [OSTI]

demonstrated the feasibility to build multi-stage converters for real electric vehicles or electric buses of electric vehicles. On the other hand, the PWM techniques used today to control modern static converters of Electrical Engineering Pontificia Universidad Católica de Chile Felipe Ríos, and Alberto Bretón Department

Catholic University of Chile (Universidad Católica de Chile)

77

Three-Dimensional Unsteady Multi-stage Turbomachinery Simulations using the Harmonic  

E-Print Network [OSTI]

Three-Dimensional Unsteady Multi-stage Turbomachinery Simulations using the Harmonic Balance-stage turbomachinery problems modeled by the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. This time. Turbomachinery flows are naturally unsteady mainly due to the relative motion of rotors and stators

Jameson, Antony

78

EVALUATING THREAT ASSESSMENT FOR MULTI-STAGE CYBER ATTACKS Shanchieh Jay Yang  

E-Print Network [OSTI]

EVALUATING THREAT ASSESSMENT FOR MULTI-STAGE CYBER ATTACKS Shanchieh Jay Yang Rochester Institute on how to evaluate a threat assessment algorithm, especially for cyber security. Because of the variety and the constantly changing nature of hacker behavior and network vulnerabilities, a cyber threat assessment

Jay Yang, Shanchieh

79

Model reduction applied to multi-stage assemblies of bladed disks  

E-Print Network [OSTI]

consisted in modelling separately each stage of the assembly of bladed disks that compose the rotor of a jetModel reduction applied to multi-stage assemblies of bladed disks A. Sternch¨uss, E. Balm, France e-mail: arnaud.sternchuss@ecp.fr P. Jean, J.-P. Lombard Snecma (Safran Group) Rond-point Ren

Boyer, Edmond

80

Reduction of multi-stage disk models: Application to an industrial rotor  

E-Print Network [OSTI]

of the rotor into sectors. The bladed disks are coupled by intermediate rings which remove the problem that of a small portion, typically a bladed sector. This configuration no longer holds in real rotors due with multi-stage rotors. However, as underlined by Bladh et al.6 , the critical point is the choice

Boyer, Edmond

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Probabilistic Simulation of Multi-Stage Decisions for Operation of a Fractionated Satellite Mission  

E-Print Network [OSTI]

decisions. We use a generic Department of Defense (DoD) terrestrial weather satellite program as a caseProbabilistic Simulation of Multi-Stage Decisions for Operation of a Fractionated Satellite Mission of net present value for a fractionated satellite constellation. The goal is to begin development

Alonso, Juan J.

82

Evalutaion of Multi-Stage Sandstone Acidizing Uging an Organic Mud Acid and a Clay Stabalizer  

E-Print Network [OSTI]

and clay particles. The purpose of this study is to present and evaluate multi-stage acid injection into the Bandera sandstone cores to remove formation damage. In this study, coreflood experiments were conducted on Bandera sandstone cores (1.5 in. x 6 in...

Sakipour, Armin

2013-05-29T23:59:59.000Z

83

Laboratory-scale study of hydraulic fracturing in heterogeneous media for enhanced geothermal systems and general well stimulation.  

E-Print Network [OSTI]

??The primary objectives of this research were to experiment with hydraulic fracturing in the laboratory to gain additional understanding of the fracturing process in unconventional… (more)

Frash, Luke P.

2014-01-01T23:59:59.000Z

84

Polyelectrolyte Complex Nanoparticles for Protection and Delayed Release of Enzymes in Alkaline pH and at Elevated Temperature during Hydraulic Fracturing of Oil Wells  

E-Print Network [OSTI]

Polyethylenimine-dextran sulfate polyelectrolyte complexes (PEC) were used to entrap two enzymes used to degrade polymer gels following hydraulic fracturing of oil wells in order to obtain delayed release and to protect the enzyme from harsh...

Barati Ghahfarokhi, Reza; Johnson, Stephen J.; McCool, Stan; Green, Don W.; Willhite, G. Paul; Liang, Jenn-Tai

2012-01-01T23:59:59.000Z

85

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect (OSTI)

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

86

Abstract 2148: Novel therapy of liver metastases of cancer using Abraxane loaded into Multi-Stage Nanovector.  

Science Journals Connector (OSTI)

...Abraxane loaded into Multi-Stage Nanovector. Tomonori Tanei Mauro Ferrari Biana Godin Kenji Yokoi Methodist Hospital Research...trials using MSV-ABX. Citation Format: Tomonori Tanei, Mauro Ferrari, Biana Godin, Kenji Yokoi. Novel therapy of liver...

Tomonori Tanei; Mauro Ferrari; Biana Godin; Kenji Yokoi

2013-08-14T23:59:59.000Z

87

Design of a demand driven multi-item-multi-stage manufacturing system : production scheduling, WIP control and Kanban implementation  

E-Print Network [OSTI]

The project is conducted in a multi-item-multi-stage manufacturing system with high volume products. The objectives are to optimize the inventory structure and improve production scheduling process. The stock building plan ...

Zhou, Xiaoyu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

88

Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Annual report, September 28, 1995--September 27, 1996  

SciTech Connect (OSTI)

The digital fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economic to develop using verticle wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional verticle wells while maintaining verticle communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three verticle wells are anticipated at one-half to two-thirds the cost.

Niemeyer, B.L.

1997-09-01T23:59:59.000Z

89

Hydraulic fracturing in a naturally fractured reservoir  

SciTech Connect (OSTI)

Hydraulic fracturing of wells in naturally fractured reservoirs can differ dramatically from fracturing wells in conventional isotropic reservoirs. Fluid leakoff is the primary difference. In conventional reservoirs, fluid leakoff is controlled by reservoir matrix and fracture fluid parameters. The fluid leakoff rate in naturally fractured reservoirs is typically excessive and completely dominated by the natural fractures. This paper presents several field examples of a fracture stimulation program performed on the naturally fractured Devonia carbonate of West Texas. Qualitative pressure decline analysis and net treating pressure interpretation techniques were utilized to evaluate the existence of natural fractures in the Devonian Formation. Quantitative techniques were utilized to assess the importance of the natural fractures to the fracturing process. This paper demonstrates that bottomhole pressure monitoring of fracture stimulations has benefits over conducting minifrac treatments in naturally fractured reservoirs. Finally, the results of this evaluation were used to redesign fracture treatments to ensure maximum productivity and minimize costs.

Britt, L.K.; Hager, C.J.; Thompson, J.W.

1994-12-31T23:59:59.000Z

90

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

91

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterMonitoring during hydraulic fracturing using the TG-2 well,fracture processes in hydraulic fracturing, Quarterly Report

Moore, Jeffrey R.; Glaser, Steven D.

2008-01-01T23:59:59.000Z

92

The effects of damage in and around a fracture upon the analysis of pressure data from low permeability gas wells  

E-Print Network [OSTI]

, fracture penetration, fracture closure and proppant embedment, non-Darcy flow, and production rate upon these pressure data have been studied. These results have been analyzed using pseudo-radial flow theory, linear flow theory, and dimensionless... damage cases is presented for both infinite and finite reservoirs with varying formation permeability and fracture penetration. These results indicate that only minor effects on cumulative gas production are experienced. ACKNOWLEDGMENTS The author...

Fox, Thomas Lee

2012-06-07T23:59:59.000Z

93

Multi-stage axial-flux PM machine for wheel direct drive  

SciTech Connect (OSTI)

The design of direct-driven wheel motors must comply with diameter restriction due to housing the motor in a wheel rim and allow the achievement of very high torque density and overload capability. Slotless axial-flux permanent magnet machines (AFPMs) prove to be one best candidate for application in electric vehicles as direct-drive wheel motors, as in comparison with conventional machines they allow designs with higher compactness, lightness and efficiency. The paper presents a newly-conceived AFPM which has multi-stage structure and water-cooled ironless stator. In the proposed new topology of the machine the space formerly occupied by the toroidal core becomes a water duct, which removes heat directly from the interior surface of the stator winding. The high efficiency of the machine cooling arrangement allows long-term 100% overload operation and great reduction of the machine weight. The multistage structure of the machine is suited to overcome the restriction on the machine diameter and meet the torque required at the wheel shaft. The paper gives guidelines for the design of a multi-stage AFPM with water-cooled ironless stator, and describes characteristics of a two-stage prototype machine rated 220 Nm, 1,100 rpm.

Caricchi, F.; Crescimbini, F.; Mezzetti, F.; Santini, E. [Univ. of Rome La Sapienza (Italy). Dept. of Electrical Engineering

1995-12-31T23:59:59.000Z

94

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents [OSTI]

Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

1998-01-01T23:59:59.000Z

95

Catalytic multi-stage liquefaction of coal. Ninth quarterly report, October 1, 1994--December 31, 1994  

SciTech Connect (OSTI)

This quarterly report covers the activities of Catalytic Multi-Stage Liquefaction of Coal during the Period October 1 - December 31, 1994, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE Contract Period was from December 8, 1992 to December 7, 1994 and has been extended to September 30, 1995. The overall objective of this program is to produce liquid fuels from coal by direct liquefaction at a cost that is competitive with conventional fuels. Specifically, this continuous bench-scale program contains provisions to examine new ideas in areas such as: low temperature pretreatments, more effective catalysts, on-line hydrotreating, new coal feedstocks, other hydrogen sources, more concentrated coal feeds and other highly responsive process improvements while assessing the design and economics of the bench-scale results. This quarterly report covers work on Laboratory Scale Studies, Continuous Bench-Scale Operations, Technical Assessment and Project Management.

Comolli, A.G.; Johnson, E.S.; Lee, L.K. [and others

1995-06-01T23:59:59.000Z

96

A Multi-Stage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time-Windows  

E-Print Network [OSTI]

problem, where customer's time windows may be violated at a certain cost. The Vehicle Routing ProblemA Multi-Stage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time of Computing Science and Engineering Place Sainte-Barbe 2, 1348 Louvain-la-Neuve, Belgium {Sebastien

Deville, Yves

97

Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds  

DOE Patents [OSTI]

A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

Comolli, Alfred G. (Yardley, PA); Lee, Lap-Keung (Cranbury, NJ)

2001-01-01T23:59:59.000Z

98

Conditions for economical benefits of the use of solar energy in multi-stage flash distillation  

Science Journals Connector (OSTI)

A solar assisted multi-stage flash (MSF) distillation system is economically compared with a conventional energy MSF plant. Moreover, the economical and climatic conditions that make competitive the use of solar energy in MSF plants vs. conventional energy are analyzed. The design arrangement of the solar distillation system considered consists of a solar parabolic trough collector field coupled to a conventional MSF plant. The solar field directly heats the brine until its top temperature. Therefore, the solar field acts as brine heater when solar energy is available. Nevertheless, the plant consumes conventional energy at nighttime. The parameters analyzed are the climatic conditions, which define the energy production and the average daily operation time of the solar field; the capacity and the performance ratio of the desalination plant; the cost of the solar collector, and the cost of conventional energy. It was concluded that the solarassisted distillation system described above could make possible the competitiveness of the use of solar energy in MSF distillation plants.

Lourdes García-Rodríguez; Carlos Gómez-Camacho

1999-01-01T23:59:59.000Z

99

Fracture Detection and Water Sweep Characterization Using Single-well Imaging, Vertical Seismic Profiling and Cross-dipole Methods in Tight and Super-k Zones, Haradh II, Saudi Arabia  

E-Print Network [OSTI]

sustain the targeted oil production rates and they die much sooner than expected when water enters the wells. The study attempted to identify fracture systems and their role in the irregular water sweep. Single-well acoustic migration imaging (SWI...

Aljeshi, Hussain Abdulhadi A.

2012-07-16T23:59:59.000Z

100

Geothermal Ultrasonic Fracture Imager | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Ultrasonic Fracture Imager Geothermal Ultrasonic Fracture Imager Development of a downhole wireline tool to characterize fractures in EGS wells in temperatures up to...

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fracture characterization from attenuation of Stoneley waves across a fracture  

E-Print Network [OSTI]

Fractures contribute significantly to the permeability of a formation. It is important to understand the fracture distribution and fluid transmissivity. Though traditional well logs can image fractures intersecting the ...

Bakku, Sudhish Kumar

2012-01-01T23:59:59.000Z

102

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re- injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the fourth quarter of Budget Period II.

Steve Horner

2004-10-29T23:59:59.000Z

103

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the eleventh quarter of Budget Period I.

Steve Horner; Iraj Ershaghi

2003-05-15T23:59:59.000Z

104

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the tenth quarter of Budget Period I.

Steve Horner; Iraj Ershaghi

2003-01-31T23:59:59.000Z

105

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the twelfth quarter of Budget Period I.

Steve Horner; Iraj Ershaghi

2003-07-30T23:59:59.000Z

106

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the fifth quarter of Budget Period II.

Steve Horner

2005-01-31T23:59:59.000Z

107

An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the ninth quarter of Budget Period II.

Steve Horner

2006-01-31T23:59:59.000Z

108

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the seventh quarter of Budget Period II.

Steve Horner

2005-08-01T23:59:59.000Z

109

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the final quarter of Budget Period I.

Steve Horner; Iraj Ershaghi

2003-10-31T23:59:59.000Z

110

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the third quarter of Budget Period II.

Steve Horner

2004-07-30T23:59:59.000Z

111

AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the second quarter of Budget Period II.

Steve Horner

2004-04-29T23:59:59.000Z

112

Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length  

E-Print Network [OSTI]

Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...

Lolon, Elyezer P.

2006-04-12T23:59:59.000Z

113

Temporal Changes in Microbial Ecology and Geochemistry in Produced Water from Hydraulically Fractured Marcellus Shale Gas Wells  

Science Journals Connector (OSTI)

These results provide insight into the temporal trajectory of subsurface microbial communities after “fracking” and have important implications for the enrichment of microbes potentially detrimental to well infrastructure and natural gas fouling during this process. ... Interpretative modeling shows that advective transport could require up to tens of thousands of years to move contaminants to the surface, but also that fracking the shale could reduce that transport time to tens or hundreds of years. ... reflecting the significant changes caused by fracking the shale, which could allow advective transport to aquifers in less than 10 years. ...

Maryam A. Cluff; Angela Hartsock; Jean D. MacRae; Kimberly Carter; Paula J. Mouser

2014-05-06T23:59:59.000Z

114

Economic and thermal feasibility of multi stage flash desalination plant with brine–feed mixing and cooling  

Science Journals Connector (OSTI)

Abstract Improving the performance of MSF (multi stage flash) desalination plants is a major challenge for desalination industry. High feed temperature in summer shortens the evaporation range of MSF plants and limits their yield. Installing a cooler at the feed intake expands the evaporation range of MSF plants and increases their yield. Adding a cooler and a mixing chamber increases the capital and operational costs of MSF plants. This paper presents thermal and economic analysis of installing a feed cooler at the plant intake. The profit of selling the additionally produced water must cover the cost of the cooling system. The selling prices for a reasonable breakeven depend on the selected cooling temperature. The cost of installing coolers capable of maintaining feed–brine mixture temperatures of 18–20 °C shows breakeven selling prices of 0.5–0.9 $/m3. These prices fall within the current range of potable water selling prices.

Majed M. Alhazmy

2014-01-01T23:59:59.000Z

115

Catalytic multi-stage liquefaction of coal. Eleventh quarterly progress report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

This quarterly report covers the activities of Catalytic Multi-Stage Liquefaction of Coal during the Period April 1 - June 30, 1995, at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. This DOE Contract Period was from December 8, 1992 to December 7, 1994 and has been extended to September 30, 1995. The overall objective of this program is to produce liquid fuels from coal by direct liquefaction at a cost that is competitive with conventional fuels. Specifically, this continuous bench-scale program contains provisions to examine new ideas in areas such as: low temperature pretreatments, more effective catalysts, on-line hydrotreating, new coal feedstocks, other hydrogen sources, more concentrated coal feeds and other highly responsive process improvements while assessing the design and economics of the bench-scale results. This quarterly report covers work on Laboratory Scale Studies, Continuous Bench-Scale Operations, Technical Assessment and Project Management.

Comolli, A.G.; Johanson, E.S.; Lee, L.K. [and others

1995-10-01T23:59:59.000Z

116

Catalytic Multi-Stage Liquefaction of Coal. Second quarterly report, 1 January 1993--31 March 1993  

SciTech Connect (OSTI)

This quarterly report covers activities of Catalytic Multi-Stage Liquefaction of Coal during the period January 1--March 31, 1993, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE contract period is from December 8, 1992 to December 7, 1994. The overall objective of the program is to produce liquid fuels from direct coal liquefaction at a cost that is competitive with conventional fuels. Specifically, this continuous bench-scale program contains provisions to examine new ideas in areas such as: low temperature pretreatments, more effective catalysts, on-line hydrotreating, new coal feedstocks, other hydrogen sources, more concentrated coal feeds and other highly responsive process improvements while assessing the design and economics of bench-scale results. The quarterly report covers work on Laboratory Scale Studies, Continuous Bench-Scale Operations, Technical Assessment and Project Management.

Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H.

1993-08-01T23:59:59.000Z

117

Gas Research Institute improved fracturing. Unconventional natural gas program, eastern devonian shales diagnostic program: Black No. 1 well experiment results. Third quarterly report, October 1979-December 1979  

SciTech Connect (OSTI)

During the last quarter of 1979, Sandia National Laboratories participated in an experiment with Thurlow Weed and Associates and the Morgantown Energy Technology Center. This Devonian Shale gas stimulation experiment was conducted in an area north of Columbus, Ohio. One purpose of the experiment was to apply the diagnostic instrumentation that is available for fracture mapping and characterization to increase our understanding of the stimulation technique. The induced fracture apparently followed a pre-existing fracture vertically from the borehole with an orientation of the N 62/sup 0/ E and in the latter stages of the stimulation turned into a shallower horizontal fracture. This fracture behavior was confirmed by several diagnostic analyses and demonstrates the insight that can be gained by fully instrumented stimulation experiments.

Schuster, C.L. (ed.)

1980-02-01T23:59:59.000Z

118

Acid Fracture and Fracture Conductivity Study of Field Rock Samples  

E-Print Network [OSTI]

Acid fracturing is a well stimulation strategy designed to increase the productivity of a producing well. The parameters of acid fracturing and the effects of acid interaction on specific rock samples can be studied experimentally. Acid injection...

Underwood, Jarrod

2013-11-15T23:59:59.000Z

119

An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California  

SciTech Connect (OSTI)

Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to over 10,000,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intended to investigate, map and characterize field fracture patterns and the reservoir conduit system. In the first phase of the project, state of the art borehole imaging technologies including FMI, dipole sonic, interference tests and production logs were employed to characterize fractures and micro faults. These data along with the existing database were used in the construction of a new geologic model of the fracture network. An innovative fracture network reservoir simulator was developed to better understand and manage the aquifer’s role in pressure maintenance and water production. In the second phase of this project, simulation models were used to plan the redevelopment of the field using high angle wells. Correct placement of the wells is critical to intersect the best-developed fracture zones and to avoid producing large volumes of water from the water leg. Particula r attention was paid to those areas of the field that have not been adequately developed with the existing producers. In cooperation with the DOE and the PTTC, the new data and the new fracture simulation model were shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during Budget Periods I and II. Venoco elected to terminate the project after Budget Period II and not to proceed with the activities planned for Budget Period III.

Horner, Steve; Ershaghi, Iraj

2006-06-30T23:59:59.000Z

120

Investigation of the Effect of Non-Darcy Flow and Multi-Phase Flow on the Productivity of Hydraulically Fractured Gas Wells  

E-Print Network [OSTI]

Hydraulic fracturing has recently been the completion of choice for most tight gas bearing formations. It has proven successful to produce these formations in a commercial manner. However, some considerations have to be taken into account to design...

Alarbi, Nasraldin Abdulslam A.

2011-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Simulation study on the CO2-driven enhanced gas recovery with sequestration versus the re-fracturing treatment of horizontal wells in the U.S. unconventional shale reservoirs  

Science Journals Connector (OSTI)

Abstract It is proposed that very low permeability formations are possible candidates for CO2 sequestration. Further, experimental studies have shown that shale formations have huge affinity to adsorb CO2, the order of 5 to 1 compared to the methane. Therefore, potential sequestration of CO2 in shale formations leading to enhanced gas recovery (EGR) will be a promising while challenging target for the oil and gas industry. On the other side, hydraulic re-fracturing treatment of shale gas wells is currently gaining more attention due to the poor performance of shale gas reservoirs after a couple years of production. Hence, investigating and comparing the performance of CO2-EGR with the re-fracturing treatment is essential for the future economic viability of depleted shale gas reservoirs. This paper presents a systematic comparison of the effect of these two processes on improving gas production performance of unconventional reservoirs, which is not well understood and has not been studied thoroughly in the literature. In this paper, a shale gas field data has been evaluated and incorporated in our simulations for both CO2-EGR and re-fracturing treatment purposes. Numerical simulations are performed using local grid refinement (LGR) in order to accurately model the non-linear pressure drop. Also, a dual-porosity/dual-permeability model is incorporated in the reservoir simulation model. Further, the uncertainties associated with inter-related set of geologic and engineering parameters are evaluated and quantified for re-fracturing treatment through several simulation runs. This comprehensive sensitivity study helps in understanding the key reservoir and fracture properties that affect the production performance and enhanced gas recovery in shale gas reservoirs. The results showed that re-fracturing treatment outperforms CO2-EGR due to the pronounced effect on cumulative methane gas production. Moreover, the sensitivity analysis showed that the characteristics of reservoir matrix including permeability and porosity are the most influential parameters for re-fracturing treatment. The findings of this study recommend hydraulic re-fracturing of shale reservoirs at first for enhancing gas production followed by CO2 injection at a later time. This work provides field operators with more insight into maximizing gas recovery from unconventional shale gas reservoirs using re-fracturing stimulation, CO2 injection, or a combination of both methods.

Mohammad O. Eshkalak; Emad W. Al-Shalabi; Alireza Sanaei; Umut Aybar; Kamy Sepehrnoori

2014-01-01T23:59:59.000Z

122

Nonplanar fracture propagation from a horizontal wellbore: Experimental study  

SciTech Connect (OSTI)

This paper presents experimental results related to hydraulic fracturing of a horizontal well, specifically the nonplanar fracture geometries resulting from fracture initiation and propagation. Experiments were designed to investigate nonplanar fracture geometries. This paper discusses how these nonplanar fractures can be responsible for premature screenout and excessive treatment pressure when a horizontal well is hydraulically fractured. Reasons for unsuccessful hydraulic fracturing treatments of a horizontal well are presented and recommendations to ensure clear communication channels between the wellbore and the fracture are given.

Abass, H.H.; Hedayati, S.; Meadows, D.L.

1996-08-01T23:59:59.000Z

123

Integrated 3D Acid Fracturing Model for Carbonate Reservoir Stimulation  

E-Print Network [OSTI]

in integrating fracture propagation, acid transport and dissolution, and well performance models in a seamless fashion for acid fracturing design. In this new approach, the fracture geometry data of a hydraulic fracture is first obtained from commercial models...

Wu, Xi

2014-06-23T23:59:59.000Z

124

Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment Analysis  

E-Print Network [OSTI]

Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much...

Ahmed, Ibraheem 1987-

2012-11-30T23:59:59.000Z

125

Fracture Blisters  

E-Print Network [OSTI]

21. McCann S, Gruen G. Fracture Blisters: A Review of thewith Lower Extremity Fracture: Results of a ProspectiveC, Koval K. Treatment of Fracture Blisters: A Prospective

Uebbing, Claire M; Walsh, Mark; Miller, Joseph B; Abraham, Mathew; Arnold, Clifford

2011-01-01T23:59:59.000Z

126

Infusing self-determination into 18-21 services for students with intellectual or developmental disabilities: A multi-stage, multiple component model  

E-Print Network [OSTI]

Education and Training in Developmental Disabilities, 2006, 41(1), 3-13 © Division on Developmental Disabilities Infusing Self-Determination into 18 - 21 Services for Students with Intellectual or Developmental Disabilities: A Multi-Stage, Multiple... outcomes (Wehmeyer & Palmer, 2003; Wehmeyer & Schwartz, 1997). Infusing Student Involvement and Self- Determination into High Quality 18 - 21 Supports The focus of our work has centered on the final quality indicator, that of promoting stu- dent involvement...

Wehmeyer, Michael L.; Garner, Nancy; Danna, Yeager; Lawrence, Margaret; Davis, Anna Kay

2006-01-01T23:59:59.000Z

127

Suspensions in hydraulic fracturing  

SciTech Connect (OSTI)

Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.

Shah, S.N. [Univ. of Oklahoma, Norman, OK (United States)

1996-12-31T23:59:59.000Z

128

Multi-stage biomass gasification in Internally Circulating Fluidized-bed Gasifier (ICFG): Test operation of animal-waste-derived biomass and parametric investigation at low temperature  

Science Journals Connector (OSTI)

In this study, the design, construction and operation of an Internally Circulating Fluidized-bed Gasifier (ICFG) are introduced in detail. ICFG design provides a multi-stage gasification process, with bed material acting as the medium for char combustion and heat exchange by its internal circulation. And it is used for the steam gasification of animal waste at low temperature in view of producing fuel gas. The effects of pressure balance, pyrolysis temperature, catalytic temperature and steam/feedstock ratio on the gasifier performance (e.g. product gas yield, gas composition, tar content) are also discussed. Hydrogen-rich and low-tar product gas can be produced from the low-calorific feedstock, in the properly designed process together with high-performance catalyst.

Xianbin Xiao; Duc Dung Le; Kayoko Morishita; Shouyu Zhang; Liuyun Li; Takayuki Takarada

2010-01-01T23:59:59.000Z

129

Hydraulic Fracturing (Vermont)  

Broader source: Energy.gov [DOE]

Vermont prohibits hydraulic fracturing or the collection, storage, or treatment of wastewater from hydraulic fracturing

130

Acoustic-emission monitoring during hydraulic fracturing  

SciTech Connect (OSTI)

This paper reports that microseismic events or acoustic emissions associated with hydraulic fracturing are recorded with a borehole seismic tool in a deviated well during multirate injection, shut-in, and flowback. The event locations indicate that fracture orientation, length, and height are compatible with regional stress directions and estimates of the fracture size that are based on pressure decline.

Stewart, L. (Schlumberger-Doll Research (US)); Cassell, B.R. (Schlumberger Wireline Services (US)); Bol, G.M. (Nederlanse Aardolie Mij. B.V. (NL))

1992-06-01T23:59:59.000Z

131

Gas condensate damage in hydraulically fractured wells  

E-Print Network [OSTI]

a 2D 1-phase simulator in order to help us to better understand the results of gas condensate simulation. Then during the research, gas condensate models with various gas compositions were simulated using a commercial simulator (CMG). The results...

Reza, Rostami Ravari

2004-11-15T23:59:59.000Z

132

Effects of non-Darcy flow on pressure buildup analysis of hydraulically fractured gas reservoirs  

E-Print Network [OSTI]

Conventional well-testing techniques are commonly used to evaluate pressure transient tests of hydraulically fractured wells to estimate values such as formation permeability, fracture length, and fracture conductivity. When non-Darcy flow occurs...

Alvarez Vera, Cesar

2012-06-07T23:59:59.000Z

133

Hydraulic fracturing-1  

SciTech Connect (OSTI)

This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.

Not Available

1990-01-01T23:59:59.000Z

134

theoretical and applied fracture  

E-Print Network [OSTI]

theoretical and applied fracture mechanics ELSEVIER Theoretical and Applied Fracture Mechanics 00 and Applied Fracture Mechanics 00 (1995) 000-000 Recently, some European countries developed defect specific. A suitable probabilistic fracture mechanic

Cizelj, Leon

135

Reply to Davies: Hydraulic fracturing remains a possible mechanism for  

E-Print Network [OSTI]

LETTER Reply to Davies: Hydraulic fracturing remains a possible mechanism for observed methane mechanisms were leaky gas well casings and the possibility that hydraulic fracturing might generate new- knowledged the possibility of hydraulic fracturing playing a role. Is it possible that hydraulic fracturing

Jackson, Robert B.

136

Use of Tracers to Characterize Fractures in Engineered Geothermal Systems  

Broader source: Energy.gov [DOE]

Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface areas adjacent to a single geothermal well using tracers and injection/backflow techniques; design, fabricate and test a downhole instrument for measuring fracture flow following a hydraulic stimulation experiment.

137

Apparatus and method for monitoring underground fracturing  

DOE Patents [OSTI]

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

1999-08-10T23:59:59.000Z

138

Apparatus and method for monitoring underground fracturing  

DOE Patents [OSTI]

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

Warpinski, Norman R. (Albuquerque, NM); Steinfort, Terry D. (Tijeras, NM); Branagan, Paul T. (Las Vegas, NV); Wilmer, Roy H. (Las Vegas, NV)

1999-08-10T23:59:59.000Z

139

Fracture characteristics and their relationships to producing...  

Open Energy Info (EERE)

area Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River...

140

Regional Analysis And Characterization Of Fractured Aquifers...  

Open Energy Info (EERE)

geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available...

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Numerical Investigation of Interaction Between Hydraulic Fractures and Natural Fractures  

E-Print Network [OSTI]

Hydraulic fracturing of a naturally-fractured reservoir is a challenge for industry, as fractures can have complex growth patterns when propagating in systems of natural fractures in the reservoir. Fracture propagation near a natural fracture (NF...

Xue, Wenxu

2011-02-22T23:59:59.000Z

142

INTERPRETATION OF HYDRAULIC FRACTURING PRESSURE IN LOW-PERMEABILITY GAS RESERVOIRS.  

E-Print Network [OSTI]

??Hydraulic fracturing has been used in most oil and gas wells to increase production by creating fractures that extend from the wellbore into the formation.… (more)

Kim, Gun Ho

2010-01-01T23:59:59.000Z

143

Using seismic tomography to characterize fracture systems induced by hydraulic fracturing  

SciTech Connect (OSTI)

Microearthquakes induced by hydraulic fracturing have been studied by many investigators to characterize fracture systems created by the fracturing process and to better understand the locations of energy resources in the earth`s subsurface. The pattern of the locations often contains a great deal of information about the fracture system stimulated during the hydraulic fracturing. Seismic tomography has found applications in many areas for characterizing the subsurface of the earth. It is well known that fractures in rock influence both the P and S velocities of the rock. The influence of the fractures is a function of the geometry of the fractures, the apertures and number of fractures, and the presence of fluids in the fractures. In addition, the temporal evolution of the created fracture system can be inferred from the temporal changes in seismic velocity and the pattern of microearthquake locations. Seismic tomography has been used to infer the spatial location of a fracture system in a reservoir that was created by hydraulic fracturing.

Fehler, M.; Rutledge, J.

1995-01-01T23:59:59.000Z

144

Analyzing Aqueous Solution Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives  

E-Print Network [OSTI]

Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are “gelled fracturing” and “slick-water fracturing”. Both methods utilize up to several million gallons of water-based fluid per well in a...

Plamin, Sammazo Jean-bertrand

2013-09-29T23:59:59.000Z

145

Analizing Aqueous Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives  

E-Print Network [OSTI]

Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are “gelled fracturing” and “slick-water fracturing”. Both methods utilize up to several million gallons of water-based fluid per well in a...

Qureshi, Maha

2013-09-29T23:59:59.000Z

146

Three-dimensional Modeling of Acid Transport and Etching in a Fracture  

E-Print Network [OSTI]

Acid fracture stimulation generates higher well production but requires engineering design for treatment optimization. To quantify the cost and benefit of a particular acid fracture treatment an engineer must predict the resulting fracture...

Oeth, Cassandra V

2013-11-25T23:59:59.000Z

147

Theoretical and Numerical Simulation of Non-Newtonian Fluid Flow in Propped Fractures  

E-Print Network [OSTI]

and short effective fracture length, sometimes causing severe productivity impairment of a hydraulically fractured well. Some residual gels are concentrated in the filter cakes built on the fracture walls and have much higher polymer concentration than...

Ouyang, Liangchen

2013-12-10T23:59:59.000Z

148

Fracture Dislocation C6 to C7: Importance of Adequate Radiolographs  

E-Print Network [OSTI]

soma as well as a fracture dislocation with involvement ofof closed, indirect fractures and dislocations of the lower1–27. 2. Bohlman HH. Acute fractures and dislocations of the

Muñoz-Mahamud, Ernesto; Combalia, Andrés

2011-01-01T23:59:59.000Z

149

Method of fracturing a geological formation  

DOE Patents [OSTI]

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

150

Development and testing of an advanced acid fracture conductivity apparatus  

E-Print Network [OSTI]

wells. Acid fracturing is a standard practice to increase the production rate and to improve ultimate recovery in carbonate reservoirs. There have been successful cases in most carbonate reservoirs around the world. However acid fracture performance...

Zou, ChunLei

2006-08-16T23:59:59.000Z

151

Multiphase Flow in Geometrically Simple Fracture Intersections  

SciTech Connect (OSTI)

A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to Study gravity-driven flow in geometrically simple fracture intersections. simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-filin flow oil smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

Hakan Basagaoglu; Paul Meakin; Sauro Succi; Timothy R. Ginn

2006-03-01T23:59:59.000Z

152

Multiphase flow in geometrically simple fracture intersection  

SciTech Connect (OSTI)

A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phse flow through intersecting fractures, and thin-film flow on smooth and undulating solid surfaces. Qualititative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.

H. Basagaoglu; P. Meakin; M. Mathew

2006-03-01T23:59:59.000Z

153

Fracture Properties From Seismic Scattering  

E-Print Network [OSTI]

Fractures scatter seismic energy and this energy can be analyzed to provide information about fracture

Burns, Daniel R.

2007-01-01T23:59:59.000Z

154

Seismic characterization of fractures  

E-Print Network [OSTI]

Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

JM Carcione

2014-06-07T23:59:59.000Z

155

Effects of non-condensible gases on fluid recovery in fractured geothermal reservoirs  

E-Print Network [OSTI]

1). In most canes, geothermal wells have only a few majorhigh temperature geothermal wells. For the fracture relative

Bodvarsson, Gudmundur S.; Gaulke, Scott

1986-01-01T23:59:59.000Z

156

Hydraulic fracturing slurry transport in horizontal pipes  

SciTech Connect (OSTI)

Horizontal-well activity has increased throughout the industry in the past few years. To design a successful hydraulic fracturing treatment for horizontal wells, accurate information on the transport properties of slurry in horizontal pipe is required. Limited information exists that can be used to estimate critical deposition and resuspension velocities when proppants are transported in horizontal wells with non-Newtonian fracturing gels. This paper presents a study of transport properties of various hydraulic fracturing slurries in horizontal pipes. Flow data are gathered in three transparent horizontal pipes with different diameters. Linear and crosslinked fracturing gels were studied, and the effects of variables--e.g., pipe size; polymer-gelling-agent concentration; fluid rheological properties; crosslinking effects; proppant size, density, and concentrations; fluid density; and slurry pump rate--on critical deposition and resuspension velocities were investigated. Also, equations to estimate the critical deposition and resuspension velocities of fracturing gels are provided.

Shah, S.N.; Lord, D.L. (Halliburton Services (US))

1990-09-01T23:59:59.000Z

157

Hydraulic Fracturing | Open Energy Information  

Open Energy Info (EERE)

Hydraulic Fracturing Hydraulic Fracturing Jump to: navigation, search More info on OpenEI Oil and Gas Gateway Federal Environmental Statues Federal Oil and Gas Statutes Oil and Gas Companies United States Oil and Gas Boards International Oil and Gas Boards Other Information Fracking Regulations by State Wells by State Fracking Chemicals Groundwater Protection Related Reports A Perspective on Health and Natural Gas Operations: A Report for Denton City Council Just the Fracking Facts The Politics of 'Fracking': Regulating Natural Gas Drilling Practices in Colorado and Texas Addressing the Environmental Risks from Shale Gas Development Water Management Technologies Used by Marcellus Shale Gas Producers Methane contamination of drinking wateraccompanying gas-well drilling and hydraulic fracturing

158

Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock  

E-Print Network [OSTI]

influence of effective fracture aperture, Water Resourcesa system of parallel fractures, Water Resources Research,solutions for a single fractures, Water Resources Research,

Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

2008-01-01T23:59:59.000Z

159

Development Wells At Fenton Hill HDR Geothermal Area (Dreesen...  

Open Energy Info (EERE)

into EE-2 at an average flow rate of 100 Ls and downhole pressure of 83 MPa, the fracture pattern produced again failed to connect the two wells. A third attempt to fracture...

160

Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions  

E-Print Network [OSTI]

Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions CSIRO CSS TCP Detournay (UMN) Eduard Siebrits (SLB) #12;2 Outline · Examples of hydraulic fractures · Governing equations well stimulation Fracturing Fluid Proppant #12;5 Quarries #12;6 Magma flow Tarkastad #12;7 Model EQ 1

Peirce, Anthony

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions  

E-Print Network [OSTI]

Hydraulic Fractures: multiscale phenomena, asymptotic and numerical solutions SANUM Conference (UMN) Eduard Siebrits (SLB) #12;2 Outline · Examples of hydraulic fractures · Governing equations well stimulation Fracturing Fluid Proppant #12;5 Quarries #12;6 Magma flow Tarkastad #12;7 Model EQ 1

Peirce, Anthony

162

FRACTURED PETROLEUM RESERVOIRS  

SciTech Connect (OSTI)

The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

Abbas Firoozabadi

1999-06-11T23:59:59.000Z

163

Interference Fracturing: Non-Uniform Distributions of Perforation Clusters that Promote Simultaneous Growth of Multiple Hydraulic Fractures  

E-Print Network [OSTI]

Simultaneous Growth of Multiple Hydraulic Fractures A.P. Peirce, University of British Columbia and A.P. Bunger in horizontal well stimulation is the generation of hydraulic fractures (HFs) from all perforation clusters shadowing" that refers to suppression of some hydraulic fractures by the compressive stresses exerted

Peirce, Anthony

164

Testing sand used in hydraulic fracturing operations  

SciTech Connect (OSTI)

Recommended practices for testing sand used in hydraulic fracturing operations are outlined as developed by the Task Group on Evaluation of Hydraulic Fracturing Sand under the API Subcommittee on Evaluation of Well Completion Materials. The tests recommended were developed to improve the quality of frac sand delivered to the well site, and are for use in evaluating certain physical properties of sand used in hydraulic fracturing operations. The tests suggested enable users to compare physical characteristics of various sands and to select materials most useful for such applications. Parameters to be tested include turbidity, clay and soft particle content, crush resistance, and mineralogic analysis.

Not Available

1983-03-01T23:59:59.000Z

165

Fracture and hydrology data from field studies at Stripa, Sweden  

SciTech Connect (OSTI)

The purpose of this report is to present the basic fracture and hydrology data collected as part of the joint LBL-KBS fracture hydrology program at Stripa, Sweden. A detailed description of the fracture-core logging and hydrology borehole testing procedures is included as well as a description of how the fracture and hydrology data were coded and organized. Based on this coding a series of computer data files for the fracture and hydrology borehole data have been constructed and these are described in detail. The fracture data file for one borehole is presented as an example in an appendix along with all of the raw and some partially processed and analyzed fracture hydrology data files. A detailed description of how this data will be analyzed to develop a thorough understanding of the fracture system and hydrogeologic characteristics of the Stripa site is presented.

Gale, J.E.

1981-04-01T23:59:59.000Z

166

Stochastic Modeling of a Fracture Network in a Hydraulically Fractured Shale-Gas Reservoir  

E-Print Network [OSTI]

of the hydraulic fracture patterns created during the well stimulation process. This work introduces a novel approach to model the hydraulic fractures in a shale reservoir using a stochastic method called random-walk. We see this approach as a beginning step...

Mhiri, Adnene

2014-08-10T23:59:59.000Z

167

Finding Large Aperture Fractures in Geothermal Resource Areas...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Survey DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with...

168

Hydraulic Fracturing Simulation of Complex Fractures Growth in Naturally Fractured Shale Gas Reservoir  

Science Journals Connector (OSTI)

Hydraulic fracturing is regarded as one of the essential techniques for developing shale reservoirs at present. During fracturing, propagation of multi-fractures and complex fracture network is developed as re...

Wang Song; Zhao Jinzhou; Li Yongming

2014-10-01T23:59:59.000Z

169

Field fracturing multi-sites project. Annual technical progress report, July 28, 1993--July 31, 1994  

SciTech Connect (OSTI)

The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data which will resolve significant unknowns with regard to hydraulic fracture modeling, fluid fracture rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. The goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic-fracturing test site.

Not Available

1995-02-01T23:59:59.000Z

170

A synergistic approach to optimizing hydraulic fracturing  

SciTech Connect (OSTI)

Combining measurement, simulation, and imaging technologies into an integrated program can help operators achieve the best hydraulic fracture treatment possible. Hydrocarbon production can be significantly increased when fractures are extended to the planned length, and fracturing fluid is retained within the zone of interest. Fractures that break out of zone increase the risk of excess water production with the hydrocarbon. Consequently, the ability to select suitable operational parameters for hydraulic fracturing is critical to job success. An evaluation of formation properties and potential barriers to hydraulic fracturing can be made with three-dimensional (3D) simulation to integrate data taken from wireline logs, waveform sonic logs, and microfrac measurements. In-situ stress orientation is determined by use of a downhole extensometer, oriented cores, anelastic strain recovery (ASR) measurements, and borehole imaging logs. Sidewall cores can be taken perpendicular to wellbore walls without distorting the borehole or the core taken; orientation of the cores can be determined with imaging logs run after coring. Natural fractures can be viewed with a downhole video camera lowered into the well on fiberoptic cable. Effectiveness of fracture treatments may be evaluated with various gamma ray logging techniques production logs comparing expected production to actual zonal contribution. Refined procedures that result from after-frac analysis can be used to plain field development for optimal reservoir drainage.

Kessler, C.; Venditto, J.; McMechan, D.; Edwards, P.

1994-12-31T23:59:59.000Z

171

Hydraulic fracturing in a sedimentary geothermal reservoir: Results and implications  

Science Journals Connector (OSTI)

Field experiments in a geothermal research well were conducted to enhance the inflow performance of a clastic sedimentary reservoir section. Due to depths exceeding 4050 m, bottom hole temperatures exceeding 140 °C, and open hole section (dual zone), technically demanding and somewhat unprecedented conditions had to be managed. The fracturing operations were successful. Fractures were created in two isolated borehole intervals and the inflow behaviour of the reservoir was decisively enhanced. The effective pressures applied for fracture initiation and propagation were only slightly above in situ pore pressures. Nevertheless, the stimulation ratio predicted by fracture performance modelling could not be achieved. Multiple reasons could be identified that account for the mismatch. An insufficient fracture tie-back, as well as chemical and mechanical processes during closure, led to reduced fracture conductivities and therefore diminished productivity. The insights gained are the basis for further fracture design concepts at the given and geologic comparable sites.

B. Legarth; E. Huenges; G. Zimmermann

2005-01-01T23:59:59.000Z

172

The Political History of Hydraulic Fracturing’s Expansion Across the West  

E-Print Network [OSTI]

Political History of Hydraulic Fracturing’s Expansion AcrossPolitical History of Hydraulic Fracturing’s Expansion Acrosss use of the hydraulic fracturing development process.

Forbis, Robert E.

2014-01-01T23:59:59.000Z

173

Microseismicity, stress, and fracture in the Coso geothermal field,  

Open Energy Info (EERE)

Microseismicity, stress, and fracture in the Coso geothermal field, Microseismicity, stress, and fracture in the Coso geothermal field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microseismicity, stress, and fracture in the Coso geothermal field, California Details Activities (1) Areas (1) Regions (0) Abstract: Microseismicity, stress, and fracture in the Coso geothermal field are investigated using seismicity, focal mechanisms and stress analysis. Comparison of hypocenters of microearthquakes with locations of development wells indicates that microseismic activity has increased since the commencement of fluid injection and circulation. Microearthquakes in the geothermal field are proposed as indicators of shear fracturing associated with fluid injection and circulation along major pre-existing

174

Hydraulic fracture mechanism in unconsolidated formations.  

E-Print Network [OSTI]

??Most models developed for hydraulic fracturing in unconsolidated sands are based on Linear Elastic Fracture Mechanics (LEFM) and tensile fracture (Mode I fracture). However, in… (more)

Hosseini, Seyed Mehran

2012-01-01T23:59:59.000Z

175

Hydrolyzed Polyacrylamide- Polyethylenimine- Dextran Sulfate Polymer Gel System as a Water Shut-Off Agent in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Technologies such as horizontal wells and multi-stage hydraulic fracturing have made ultra-low permeability shale and tight gas reservoirs productive but the industry is still on the learning curve when it comes to addressing various production...

Jayakumar, Swathika 1986-

2012-07-09T23:59:59.000Z

176

Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs  

E-Print Network [OSTI]

Production forecasting in shale (ultra-low permeability) gas reservoirs is of great interest due to the advent of multi-stage fracturing and horizontal drilling. The well renowned production forecasting model, Arps? Hyperbolic Decline Model...

Statton, James Cody

2012-07-16T23:59:59.000Z

177

Mixed Integer Model Predictive Control of Multiple Shale Gas Wells.  

E-Print Network [OSTI]

?? Horizontal wells with multistage hydraulic fracturing are today the most important drilling technology for shale gas extraction. Considered unprofitable before, the production has now… (more)

Nordsveen, Espen T

2012-01-01T23:59:59.000Z

178

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...  

Open Energy Info (EERE)

Abstract Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A...

179

Simulation of Hydraulic Fractures and their Interactions with Natural Fractures  

E-Print Network [OSTI]

Modeling the stimulated reservoir volume during hydraulic fracturing is important to geothermal and petroleum reservoir stimulation. The interaction between a hydraulic fracture and pre-existing natural fractures exerts significant control...

Sesetty, Varahanaresh

2012-10-19T23:59:59.000Z

180

Hydraulic fracturing and geothermal energy development in Japan  

SciTech Connect (OSTI)

This paper is a review of research and development on geothermal energy extraction in Japan especially on hydraulic fracturing. First recent geothermal developments in Japan are outlined in Part I. An increase in the production rate of geothermal wells may be highly dependent on the geothermal well stimulation technology based on hydraulic fracturing. The hydraulic fracturing technique must be developed also for geothermal energy to be extracted from hot, dry rock masses. In Part II, the research on hydraulic fracturing and field application are reviewed.

Abe, H.; Suyama, J.; Takahashi, H.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Application of microseismic technology to hydraulic fracture diagnostics: GRI/DOE Field Fracturing Multi-Sites Project  

SciTech Connect (OSTI)

The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment as well as surface facilities and equipment conducive to acquiring high-quality data. It is anticipated that the project`s research advancements will provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response. The M-Site Project is jointly sponsored by the Gas Research Institute (GRI) and the US Department of Energy (DOE). The site developed for M-Site hydraulic fracture experimentation is the former DOE Multiwell Experiment (MWX) site located near Rifle, Colorado. The MWX project drilled three closely-spaced wells (MWX-1, MWX-2 and MWX-3) which were the basis for extensive reservoir analyses and tight gas sand characterizations in the blanket and lenticular sandstone bodies of the Mesaverde Group. The research results and background knowledge gained from the MWX project are directly applicable to research in the current M-Site Project.

Wilmer, R. [CER Corp., Las Vegas, NV (United States); Warpinski, N.R. [Sandia National Laboratories (United States); Wright, T.B. [Resources Engineering Systems (United States); Branagan, P.T. [Branagan & Associates (United States); Fix, J.E. [Fix & Associates (United States)

1995-06-01T23:59:59.000Z

182

Multi-scale approach to invasion percolation of rock fracture networks  

E-Print Network [OSTI]

A multi-scale scheme for the invasion percolation of rock fracture networks with heterogeneous fracture aperture fields is proposed. Inside fractures, fluid transport is calculated on the finest scale and found to be localized in channels as a consequence of the aperture field. The channel network is characterized and reduced to a vectorized artificial channel network (ACN). Different realizations of ACNs are used to systematically calculate efficient apertures for fluid transport inside differently sized fractures as well as fracture intersection and entry properties. Typical situations in fracture networks are parameterized by fracture inclination, flow path length along the fracture and intersection lengths in the entrance and outlet zones of fractures. Using these scaling relations obtained from the finer scales, we simulate the invasion process of immiscible fluids into saturated discrete fracture networks, which were studied in previous works.

Ali N. Ebrahimi; Falk K. Wittel; Nuno A. M. Araújo; Hans J. Herrmann

2014-08-12T23:59:59.000Z

183

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells (Redirected from Development Wells) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir

184

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Production Wells:

185

Well Deepening | Open Energy Information  

Open Energy Info (EERE)

Well Deepening Well Deepening Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Deepening Details Activities (5) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Well Deepening:

186

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES...  

Open Energy Info (EERE)

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search OpenEI Reference...

187

Asymptotic Analysis of Cross-Hole Hydraulic Tests in Fractured Granite  

E-Print Network [OSTI]

Asymptotic Analysis of Cross-Hole Hydraulic Tests in Fractured Granite by Walter A. Illman1 hydraulic conductivity and specific storage. Introduction Well test analyses in porous and fractured for the interpretation of three-dimensional pneumatic well tests conducted in porous or fractured geologic media, which

Daniels, Jeffrey J.

188

A Rare Isolated Trapezoid Fracture  

E-Print Network [OSTI]

wrist in suggested scaphoid fracture. Acta Radiol. 1988;29:Rare isolated trapezoid fracture: a case report. Hand. 2008;suspect and diagnose this fracture. 2,8 REFERENCES 1. Papp

Afifi, Negean; Lu, Jenny J

2011-01-01T23:59:59.000Z

189

Universal asymptotic umbrella for hydraulic fracture modeling  

E-Print Network [OSTI]

The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

Linkov, Aleksandr M

2014-01-01T23:59:59.000Z

190

The Effect of Proppant Size and Concentration on Hydraulic Fracture Conductivity in Shale Reservoirs  

E-Print Network [OSTI]

Hydraulic fracture conductivity in ultra-low permeability shale reservoirs is directly related to well productivity. The main goal of hydraulic fracturing in shale formations is to create a network of conductive pathways in the rock which increase...

Kamenov, Anton

2013-04-11T23:59:59.000Z

191

Thermo-Poroelastic Fracture Propagation Modeling with Displacement Discontinuity Boundary Element Method  

E-Print Network [OSTI]

. The influence of pore pressure and temperature changes on the fracture propagation length and path, as well as on stress and pore pressure distribution near wellbores and fractures, was considered in isotropic and homogeneous rock formations. The BEM used...

Chun, Kwang Hee

2013-08-01T23:59:59.000Z

192

Hydraulic Fracturing in Particulate Materials.  

E-Print Network [OSTI]

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has… (more)

Chang, Hong

2004-01-01T23:59:59.000Z

193

Hanford wells  

SciTech Connect (OSTI)

Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

Chamness, M.A.; Merz, J.K.

1993-08-01T23:59:59.000Z

194

Application of a 3D hydraulic-fracturing simulator for design of acid-fracturing treatments  

SciTech Connect (OSTI)

Field experience during 1989--90 shows that application of a 3D hydraulic-fracturing simulator increases success of acid-fracturing well treatments. Fracture extension can be limited to the oil-bearing pay, maximum lateral extension can be realized within the height constraint, and acid/rock contact time can be increased by a factor of between 3 and 30. Oil-production response can be improved over other stimulation designs while water-production response can be limited. These methods have been applied in mature waterfloods of the Permian Basin and Cedar Creek anticline.

Morgenthaler, L.N. (Shell Development Co., Houston, TX (United States))

1994-02-01T23:59:59.000Z

195

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network [OSTI]

C. and Fast, C. R. : Hydraulic Fracturing, Monograph Series,D. G. : "Mechanics of Hydraulic Fracturing," Trans. , AIME (Saunders, Calvin D. : "Hydraulic Fracturing: Fracture Flow

Authors, Various

2011-01-01T23:59:59.000Z

196

HFIR vessel probabilistic fracture mechanics analysis  

SciTech Connect (OSTI)

The life of the High Flux Isotope Reactor (HFIR) pressure vessel is limited by a radiation induced reduction in the material`s fracture toughness. Hydrostatic proof testing and probabilistic fracture mechanics analyses are being used to meet the intent of the ASME Code, while extending the life of the vessel well beyond its original design value. The most recent probabilistic evaluation is more precise and accounts for the effects of gamma as well as neutron radiation embrittlement. This analysis confirms the earlier estimates of a permissible vessel lifetime of at least 50 EFPY (100 MW).

Cheverton, R.D. [Delta-21 Resources, Inc., Oak Ridge, TN (United States); Dickson, T.L. [Oak Ridge National Lab., TN (United States)

1997-01-01T23:59:59.000Z

197

Regional Analysis And Characterization Of Fractured Aquifers In The  

Open Energy Info (EERE)

Analysis And Characterization Of Fractured Aquifers In The Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Analysis And Characterization Of Fractured Aquifers In The Virginia Blue Ridge And Piedmont Provinces Details Activities (1) Areas (1) Regions (0) Abstract: Areas related to low-temperature geothermal applications include the recognition of and exploration for deep fracture permeability in crystalline rocks. It is well known that the best currently available downhole techniques to identify the locations of fracture zones in crystalline rocks depend upon the measurement of some thermal parameter such as temperature or heat flow. The temperature-depth profiles and their derivatives provide a direct indication of those fracture zones that

198

Seismicity and Reservoir Fracture Characterization  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

199

Multi-stage Fischer-Tropsch process  

SciTech Connect (OSTI)

A process is described for producing paraffinic hydrocarbons from carbon monoxide and hydrogen comprising: (a) introducing carbon monoxide and hydrogen into a reaction zone wherein the carbon monoxide and hydrogen contact in a first bed a first catalyst having a high olefin selectivity selected from the group consisting of Fe/Ce/Zn/K, Fe/Mn/K and Fe/Co/K; and (b) contacting the resulting olefin in a second bed with a second catalyst having a high selectivity for converting olefins to heavier paraffinic hydrocarbons selected from the group consisting of Ru/TiO/sub 2/, Ru/SiO/sub 2/ and Ru/Al/sub 2/O/sub 3/.

Kim, C.J.; Fiato, R.A.

1986-11-25T23:59:59.000Z

200

Catalytic multi-stage liquefaction (CMSL)  

SciTech Connect (OSTI)

Reported herein are the details and the results of laboratory and bench scale experiments that were conducted at Hydrocarbon Technologies, Inc. under DOE Contract No. DE-AC22-93PC92147 during the period of October 1, 1992, to December 31, 1995. The program results described herein build on the previous technology base and investigating additional methods to improve the economics of producing transportation fuels from coal. This included purely physical parameters, coal treatment and variation in solvent to coal ratio, the use of syngas to replace part of the hydrogen as the reducing gas, the use of dispersed catalyst in addition to and replacing the supported catalyst, and the co-processing of coal with plastic waste material. The overall objective of this program is to produce liquid fuels from direct coal liquefaction at a cost that is competitive with conventional fuels. The report includes the results of an economic assessment of the various process strategies that were evaluated during this program. A summary of the technical/economic evaluations is given in Volume I, Section II of this report. The experimental details of the eleven run of the program are given in Volume I, Section III and Volume II of this report. The details of the technical evaluations are given in the Volume III of the report.

Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.; Smith, T.; Stalzer, R.H.

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Well Log Data At Dixie Valley Geothermal Area (Barton, Et Al...  

Open Energy Info (EERE)

Borehole televiewer, temperature and flowmeter data was recorded in the wells. Fracture and fluid flow data from wells within and outside of the active producing reservoir...

202

Introduction to the GRI/DOE Field Fracturing Multi-Site Project  

SciTech Connect (OSTI)

The objective of the Field Fracturing Multi-Sites Project is to conduct field experiments and analyze data that will result in definitive determinations of hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. It is anticipated that the primary benefit of the project experiments will be the development and widespread commercialization of new fracture diagnostics technologies to determine fracture length, height, width and azimuth. Data resulting from these new technologies can then be used to prove and refine the 3D fracture model mechanisms. It is also anticipated that data collected and analyzed in the project will define the correct techniques for determining fracture closure pressure. The overall impact of the research will be to provide a foundation for a fracture diagnostic service industry and hydraulic fracture optimization based on measured fracture response.

Peterson, R.E.; Middlebrook, M.L.; Warpinski, N.R.; Cleary, M.P.; Branagan, P.T.

1993-12-31T23:59:59.000Z

203

Solutions for vertically fractured injection wells in heterogeneous reservoirs  

E-Print Network [OSTI]

be found in the studies of Lefkovits, et al. 7, Cobb, er a!. 8 Tariq9, and Larsento. The current trend in studying layered reservoirs is the generalization of the solution procedure to account for as many different layer parameters as possible. Ehlig...

Spath, Jeffrey Bernard

2012-06-07T23:59:59.000Z

204

The Performance of Fractured Horizontal Well in Tight Gas Reservoir  

E-Print Network [OSTI]

?, including tight gas, gas/oil shale, oil sands, and coal-bed methane. North America has a substantial growth in its unconventional oil and gas market over the last two decades. The primary reason for that growth is because North America, being a mature...

Lin, Jiajing

2012-02-14T23:59:59.000Z

205

Predicting proppant flowback from fracture-stimulated wells  

E-Print Network [OSTI]

. 8 Drag Force Envelopes for 20/40 Sand According to the Proposed Semi-Mechanistic Model. . . . 36 . . . 37 . . . . 40 . . . 43 3. 9 Drag Force Envelopes for 20/40 Light Weight Ceramics Proppant According to the Proposed Semi-Mechanistic Model.... . . . . . . . . . . . . . . . . . . . 3. 10 Drag Force Envelopes for 20/40 High Strength Ceramics Proppant According to the Proposed Semi-Mechanistic Model. . . 3. 11 Contour Plot for the Proppant Free Wedge Model (After Ref. 3). . 3. 12 Contour Plot for the Semi-Mechanistic Model...

Canon Moreno, Javier Mauricio

2003-01-01T23:59:59.000Z

206

On the fracture toughness of advanced materials  

E-Print Network [OSTI]

occurs when the materials resistance to fracture ceases toall classes of materials, the fracture resistance does notthese biological materials derive their fracture resistance

Launey, Maximilien E.

2009-01-01T23:59:59.000Z

207

Hydraulic Fracturing Poster | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydraulic Fracturing Poster Hydraulic Fracturing Poster Educational poster graphically displaying the key components of hydraulic fracturing. Teachers: If you would like hard...

208

Self-potential observations during hydraulic fracturing  

E-Print Network [OSTI]

potential measurements during hydraulic fracturing of BunterSP response during hydraulic fracturing. Citation: Moore, J.observations during hydraulic fracturing, J. Geophys. Res. ,

Moore, J R; Glaser, Steven D

2007-01-01T23:59:59.000Z

209

Ultrasound-Confirmed Frontal Bone Fracture  

E-Print Network [OSTI]

table--frontal sinus fractures. Facial Plast Surg Clin NorthConfirmed Frontal Bone Fracture Jeremy N. Johnson, DO Danielan isolated comminuted fracture of the left frontal sinus

Johnson, Jeremy N; Crandall, Stephen; Kang, Christopher S

2009-01-01T23:59:59.000Z

210

Fracture, aging and disease in bone  

E-Print Network [OSTI]

separate during bone fracture. Nature Materials 4, 612 (on nonagenarians with hip fractures? Injury 30, 169 (1999).bone mass as predictors of fracture in a prospective study.

Ager, J.W.; Balooch, G.; Ritchie, R.O.

2006-01-01T23:59:59.000Z

211

Diagnosis and evaluation of fracturing treatments  

SciTech Connect (OSTI)

This paper introduces the pressure derivative in fracturing-pressure analysis for oil wells. The derivative is shown to enhance the analysis capabilities significantly. The interpretation methodology is presented, and several field data sets and simulations are discussed to illustrate to technique.

Barree, R.D. (Marathon Oil Co. (US)); Ayoub, J.A.; Brown, J.E.; Elphick, J.J. (Dowell Schlumberger (US))

1992-02-01T23:59:59.000Z

212

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE  

Open Energy Info (EERE)

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Details Activities (1) Areas (1) Regions (0) Abstract: This project aims to improve understanding of the subsurface fracture system in the Coso geothermal field, located in the east central California. We applied shear-wave splitting technique on a set of high quality, locally recorded microearthquake (MEQ) data. Four major fracture directions have been identified from the seismograms recorded by the permanent sixteen-station down-hole array: N10- 20W, NS, N20E, and N40-45E,

213

1112323-danimer-abstract-hydraulic-fractures | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

have significant impact on the industry as the NFT process could be applicable on 40% of hydraulic fracturing treatments in the U.S. The process is applicable on wells that...

214

Identification of MHF Fracture Planes and Flow Paths- a Correlation...  

Open Energy Info (EERE)

Identification of MHF Fracture Planes and Flow Paths- a Correlation of Well Log Data with Patterns in Locations of Induced Seismicity Jump to: navigation, search OpenEI Reference...

215

Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report  

SciTech Connect (OSTI)

The second year of this three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study are to: (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies have been conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulation model has been initialized with properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. During year one, simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure charge. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. During the second year the performances of the same vertical and horizontal wells were evaluated with the assumption that fracture permeability was a function of reservoir pressure. This required repetition of most of the natural depletion cases simulated in year one while invoking the pressure-sensitive fracture permeability option. To investigate sensitivity to in situ stress, two stress conditions were simulated for each primary variable. The water injection cases, begun in year one, were extended to include most of the reservoir parameters investigated for natural depletion, including fracture permeability as a function of net stress and the use of horizontal wells. The results thus far confirm that pressure-sensitive fractures degrade well performance and that the degradation is reduced by water injection pressure maintenance. Furthermore, oil recovery can be significantly increased by water injection pressure maintenance.

Not Available

1992-11-01T23:59:59.000Z

216

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture  

E-Print Network [OSTI]

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Brian Somerday for producing both strength of materials and fracture mechanics data H H HH H H d/dt > 0 strength of materials: UTS, YS, f, RA H2 H2H2 H2 H2 H2 H2 H2 HH H H H H H H H H d/dt 0 fracture mechanics: KIH, KTH

217

UV-BRIGHT NEARBY EARLY-TYPE GALAXIES OBSERVED IN THE MID-INFRARED: EVIDENCE FOR A MULTI-STAGE FORMATION HISTORY BY WAY OF WISE AND GALEX IMAGING  

SciTech Connect (OSTI)

In the local universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission than what is expected from their old, red stellar populations. Several origins for this ultraviolet excess (UVX) have been proposed including a population of hot young stars and a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of UVX in a selection of 49 nearby E/S0-type galaxies by measuring their extended photometry in the UV through mid-infrared (mid-IR) with the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the Wide-field Infrared Survey Explorer (WISE). We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis models, which allow for the inclusion of EHB stars. We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to the EHB fraction. There are strong color gradients, with the outer radii bluer than the inner half-light radii by {approx}1 mag. This color difference is easily accounted for with an increase in the BHB fraction of 0.25 with radius. We estimated that the average ages for the inner and outer radii are 7.0 {+-} 0.3 Gyr, and 6.2 {+-} 0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed {approx}1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the {approx}0.5-2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core at early epochs (>4 Gyr ago) and at least one later stage starburst event coinciding with z {approx} 1.

Petty, S. M.; Farrah, D. G. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Neill, J. D.; Bridge, C. R. [Division of Physics, Math, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Jarrett, T. H.; Tsai, C.-W. [Astronomy Department, University of Cape Town, Rondebosch 7701 (South Africa); Blain, A. W. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Rich, R. M.; Lake, S. E.; Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Benford, D. J. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Masci, F. J. [IPAC, California Institute of Technology, Pasadena, CA 91125 (United States)

2013-10-01T23:59:59.000Z

218

Reservoir fracture characterizations from seismic scattered waves  

E-Print Network [OSTI]

The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

Fang, Xinding

2012-01-01T23:59:59.000Z

219

Fracture Conductivity of the Eagle Ford Shale  

E-Print Network [OSTI]

conductivity is influenced by several variables including fracture surface roughness, fracture closure stress, proppant size, and proppant concentration. The proppant concentration within a fracture can significantly affect the magnitude of fracture...

Guzek, James J

2014-07-25T23:59:59.000Z

220

An Experimental Investigation of Pressure-dependent and Time-dependent Fracture Aperture and Permeability in Barnett Shale.  

E-Print Network [OSTI]

?? U.S. domestic shale-gas production is economic owing to the new completion practice of horizontal wells and multiple hydraulic fractures. The performance of these fractures… (more)

Gong, Yin

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evaluation of selective vs. point-source perforating for hydraulic fracturing  

SciTech Connect (OSTI)

This paper is a case history comparing and evaluating the effects of fracturing the Reef Ridge Diatomite formation in the Midway-Sunset Field, Kern County, California, using {open_quotes}select-fire{close_quotes} and {open_quotes}point-source{close_quotes} perforating completions. A description of the reservoir, production history, and fracturing techniques used leading up to this study is presented. Fracturing treatment analysis and production history matching were used to evaluate the reservoir and fracturing parameters for both completion types. The work showed that single fractures were created with the point-source (PS) completions, and multiple fractures resulted from many of the select-fire (SF) completions. A good correlation was developed between productivity and the product of formation permeability, net fracture height, bottomhole pressure, and propped fracture length. Results supported the continued development of 10 wells using the PS concept with a more efficient treatment design, resulting in substantial cost savings.

Underwood, P.J.; Kerley, L.

1996-12-31T23:59:59.000Z

222

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

223

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

224

Microearthquake Technology for EGS Fracture Characterization...  

Broader source: Energy.gov (indexed) [DOE]

Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization;...

225

Fluid Flow Modeling in Fractures  

E-Print Network [OSTI]

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

226

Multi-Phase Fracture-Matrix Interactions Under Stress Changes  

SciTech Connect (OSTI)

The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) counter-current fluid transport between the matrix and the fracture, (c) studying the effect of confining stress on the distribution of fracture aperture and two-phase flow, and (d) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress, on the nature of the rock, and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual and detailed descriptions of the process are shown in the report. Both extensional and shear fractures have been considered. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective was to understand the impact of the fracture, its topology and occupancy on the nature of mass transfer between the matrix and the fracture. Counter-current imbibition next to the fracture was observed and quantified, including the influence of formation layering. A group of Shear fractures were studied, with layers perpendicular and parallel to the main axis of the sample. The structures of the fractures as well as their impact on absolute permeability and on oil displacement by water were evaluated. Shear fractures perpendicular to the layers lead to a wide distribution of pores and to an overall increase in absolute permeability. Shear fractures parallel to the layers lead to an overall increase in absolute permeability, but a decrease in displacement efficiency. This DoE project funded or partially funded three Ph.D. and four M.Sc. students at the Pennsylvania State University. The results from the research have yielded several abstracts, presentations and papers. Much of the work is still in the process of being published.

A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarao; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

2005-12-07T23:59:59.000Z

227

Automatic hydraulic fracturing design for low permeability reservoirs using artificial intelligence.  

E-Print Network [OSTI]

??The hydraulic fracturing technique is one of the major developments in petroleum engineering in the last two decades. Today, nearly all the wells completed in… (more)

Popa, Sergui Andrei, 1970-

2004-01-01T23:59:59.000Z

228

Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy  

Broader source: Energy.gov [DOE]

The purpose of this research is to develop a method to identify fracture systems in wells using fluid inclusion gas analysis of drill chips.

229

EVALUATION OF ENHANCED VOC REMOVAL WITH SOIL FRACTURING IN THE SRS UPLAND UNIT  

SciTech Connect (OSTI)

The Environmental Restoration Technology Section (ERTS) of the Savannah River National Laboratory (SRNL) conducted pilot scale testing to evaluate the effectiveness of using hydraulic fracturing as a means to improve soil vapor extraction (SVE) system performance. Laboratory and field research has shown that significant amounts of solvents can be entrapped in low permeability zones by capillary forces and removal by SVE can be severely limited due to low flow rates, mass transfer resistance of the hydrophobic compounds by trapped interparticle water, and diffusion resistance. Introducing sand-filled fractures into these tight zones improves the performance of SVE by (1) increasing the overall permeability of the formation and thereby increasing SVE flow rates, (2) shortening diffusion pathways, and (3) increasing air permeability by improving pore water removal. The synergistic effect of the fracture well completion methods, fracture and flow geometry, and pore water removal appears to increase the rate of solvent mass removal over that of increasing flow rate alone. A field test was conducted where a conventional well in the SRS Upland Unit was tested before and after hydraulic fracturing. ERTS teamed with Clemson University through the South Carolina University and Education Foundation (SCUREF) program utilizing their expertise in fracturing and fracture modeling. The goals of the fracturing pilot testing were to evaluate the following: (1) The effect of hydraulic fractures on the performance of a conventional well. This was the most reliable way to remove the effects of spatial variations in permeability and contaminant distribution on relative well performance. It also provided data on the option of improving the performance of existing wells using hydraulic fractures. (2) The relative performance of a conventional SVE well and isolated hydraulic fractures. This was the most reliable indicator of the performance of hydraulic fractures that could be created in a full-scale implementation. The SVE well, monitoring point arrays and four fracturing wells were installed and the well testing has been completed. Four fractures were successfully created the week of July 25, 2005. The fractures were created in an open area at the bottom of steel well casing by using a water jet to create a notch in the soil and then injecting a guar-sand slurry into the formation. The sand-filled fractures increase the effective air permeability of the subsurface formation diffusion path lengths for contaminant removal. The primary metrics for evaluation were an increase in SVE flow rates in the zone of contamination and an increase in the zone of influence. Sufficient testing has been performed to show that fracturing in the Upland Unit accelerates SVE solvent remediation and fracturing can increase flow rates in the Upland Unit by at least one order of magnitude.

Riha, B

2005-10-31T23:59:59.000Z

230

State-of-the-art fracturing in the North Sea  

SciTech Connect (OSTI)

This paper will focus on recent advances in hydraulic fracturing technology with emphasis on North Sea applications. Five generalized applications that will benefit most from advances in technology have been identified. Because North Sea oil and gas field development requires the use of platform facilities for wellhead and processing equipment, deviated and horizontal wells are often used to effectively drain the reservoirs. Many of these wells require fracture stimulation. The success rate of such wells has increased significantly in recent years as a result of the following: Researchers better understand how fractures initiate and grow; Pre-treatment diagnostic techniques have improved substantially; Engineers better understand how completion design affects well performance. With improved understanding of post-frac well performance, engineers can evaluate the feasibility of developing a reservoir through fractured, horizontal wells. In addition to a review of the advances in HPHT technology that would apply to North Sea applications, this paper will identify improvements necessary before these techniques are applied in the North Sea. Hydraulic fracturing is being used more frequently (1) in high-permeability reservoirs to improve the overall profitability of the project, and (2) as an alternative to traditional sand control applications in soft, weakly consolidated reservoirs. The effect of hydraulic fracturing operations on the North Sea environment must be recognized. The advances in fluid design and post-treatment flowback procedures that minimize these effects are discussed. 78 refs., 19 figs.

Domelen, M.S. Van; Jacquier, R.C.; Sanders, M.W.

1995-12-31T23:59:59.000Z

231

Hydraulic fracturing experiments in the Great Northern Coal seam  

SciTech Connect (OSTI)

Two field-scale hydraulic fracturing experiments were performed in vertical boreholes on the lease of Munmorah Colliery located south of Newcastle, NSW. The treatments fractured the 3-meter thick, 220-meter deep Great Northern coal seam and were designed to provide a direct comparison between a borate-crosslinked gel and a water treatment. The fracture geometries were mapped during mining of the coal seam. Geologic mapping disclosed a well-defined coal face cleat and systematic full-seam joints perpendicular to bedding and trending NW. The vertical hydraulic fractures extended along the joint and face cleat direction. Evidence that an early slurry stage of fine mesh proppant acted to block off one of two competing parallel fractures was found at one of the mineback sites.

Jeffrey, R.G.; Weber, C.R.; Vlahovic, W.; Enever, J.R.

1994-12-31T23:59:59.000Z

232

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL  

E-Print Network [OSTI]

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY of stimulation is induced shear on preexisting fractures, which increases their transmissibility by orders of magnitude. The processes that create fractured rock are discussed from the perspective of geology and rock

Stanford University

233

Fracture characteristics and their relationships to producing zones in deep  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Fracture characteristics and their relationships to producing zones in deep wells, Raft River geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Fracture characteristics in the sedimentary and metamorphic rocks in the Raft River KGRA of Idaho are analyzed using geological, hydrological and borehole geophysical data from five deep geothermal production wells. Particular emphasis is placed on fracture identification using borehole

234

Evaluation of fracture treatments using a layered-reservoir description: Field examples  

SciTech Connect (OSTI)

This paper presents a practical analysis technique to determine actual fracture geometry and proppant profile using a three-dimensional (3D) hydraulic-fracturing simulator. The hydraulic-fracturing model used in this study considers the variation of in-situ stress, Young`s modulus, Poisson`s ratio, and net pay thickness in the productive interval. When the method is applied, the results from the fracture propagation model conform well with the results the authors obtain from pressure-buildup and production-data analyses. This study analyzed hydraulic-fracturing treatments from several wells in the Vicksburg formation of the McAllen Ranch area in south Texas. The authors have provided guidelines to properly describe the treatment interval, how to use this information in the analysis of such fracture treatments, and how to confirm the results using pressure-transient tests and production-data analyses. This paper presents examples illustrating that a detailed description of the reservoir layers is essential to properly evaluate hydraulic-fracture treatments. For the example wells presented in this paper, post-fracture-production and pressure-transient data were available. The authors have analyzed production and pressure-transient data to estimate permeability and fracture half-length. The values of fracture half-length used to analyze the production data matched closely with those predicted by the fracture model.

Rahim, Z.; Holditch, S.A.; Zuber, M.D. [Holditch and Associates Inc., College Station, TX (United States); Buehring, D.R.

1998-02-01T23:59:59.000Z

235

Simulation studies to evaluate the effect of fracture closure on the performance of naturally fractured reservoirs. Annual report  

SciTech Connect (OSTI)

The first of a three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The objectives of the study are to (1) evaluate the reservoir conditions where fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. Simulation studies were conducted with a dual porosity simulator capable of simulating the performance of vertical and horizontal wells. Each simulator was initialized using properties typical of the Austin Chalk reservoir in Pearsall Field, Texas. Simulations of both vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicate that the simulator is predicting the effects of critical reservoir parameters in a logical and consistent manner. The results to-date confirm that horizontal wells can increase both oil recovery rate and total oil recovery from naturally fractured reservoirs. The year one simulation results will provide the baseline for the ongoing study which will evaluate the performance degradation caused by the sensitivity of fracture permeability to pressure change, and investigate fluid injection pressure maintenance as a means to improve oil recovery performance. The study is likely to conclude that fracture closure decreases oil recovery and that pressure support achieved through fluid injection could be beneficial in improving recovery.

Not Available

1991-10-01T23:59:59.000Z

236

The evolution of an applied hydraulic fracture project, Frontier Formation Moxa Arch, Wyoming  

SciTech Connect (OSTI)

This paper demonstrates a methodical approach in the implementation of current hydraulic fracturing technologies. Specific examples illustrating the evolution of a consistent reservoir/hydraulic fracturing interpretation are presented in a case history of three GRI-Industry Technology Transfer wells. Detailed modeling of these project wells provided an overall reservoir and hydraulic fracture description that was consistent with respect to all observations. Based on identification of the fracturing mechanisms occurring, the second and third project wells show the capabilities of real-time diagnostics in the implementation of hydraulic fracture treatments. By optimizing the pad volume and fluid integrity to avoid premature screenouts, significant cost savings and improved proppant placement were achieved. The production and pressure build-up response in the first project well verifies the overall interpretation of the reservoir/hydraulic fracture model and provides the basis for eliminating the use of moderate strength/higher cost proppant over sand in low permeability/higher closure stress environments.

Harkrider, J.D.; Aud, W.W.; Cipolla, C.L.; Hansen, J.T.

1994-12-31T23:59:59.000Z

237

Fracture permeability and seismic wave scattering--Poroelastic linear-slip interface model for heterogeneous fractures  

E-Print Network [OSTI]

modeling of faults and fractures: Geophysics, 60, 1514-1526.Poroelastic modeling of fracture-seismic wave interaction:by a heterogeneous fracture: J. Acoust. Soc. Am. , 115,

Nakagawa, S.

2010-01-01T23:59:59.000Z

238

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Broader source: Energy.gov (indexed) [DOE]

Nanosensors for Fractured Reservoir Characterization. 2. Characterization of Fracture Properties using Production Data. 3. Fracture Characterization by Resistivity...

239

Fracture-resistant lanthanide scintillators  

DOE Patents [OSTI]

Lanthanide halide alloys have recently enabled scintillating gamma ray spectrometers comparable to room temperature semiconductors (<3% FWHM energy resolutions at 662 keV). However brittle fracture of these materials upon cooling hinders the growth of large volume crystals. Efforts to improve the strength through non-lanthanide alloy substitution, while preserving scintillation, have been demonstrated. Isovalent alloys having nominal compositions of comprising Al, Ga, Sc, Y, and In dopants as well as aliovalent alloys comprising Ca, Sr, Zr, Hf, Zn, and Pb dopants were prepared. All of these alloys exhibit bright fluorescence under UV excitation, with varying shifts in the spectral peaks and intensities relative to pure CeBr.sub.3. Further, these alloys scintillate when coupled to a photomultiplier tube (PMT) and exposed to .sup.137Cs gamma rays.

Doty, F. Patrick (Livermore, CA)

2011-01-04T23:59:59.000Z

240

Single-Well and Cross-Well Resistivity | Open Energy Information  

Open Energy Info (EERE)

Single-Well and Cross-Well Resistivity Single-Well and Cross-Well Resistivity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well and Cross-Well Resistivity Details Activities (14) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip and structural features in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluation of subsurface fracture geometry using fluid pressure response to  

Open Energy Info (EERE)

subsurface fracture geometry using fluid pressure response to subsurface fracture geometry using fluid pressure response to solid earth tidal strain Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Evaluation of subsurface fracture geometry using fluid pressure response to solid earth tidal strain Details Activities (1) Areas (1) Regions (0) Abstract: The nature of solid earth tidal strain and surface load deformation due to the influence of gravitational forces and barometric pressure loading are discussed. The pore pressure response to these types of deformation is investigated in detail, including the cases of a confined aquifer intersected by a well and a discrete fracture intersected by a well. The integration of the tidal response method with conventional pump tests in order to independently calculate the hydraulic parameters of the

242

Use of Tracers to Characterize Fractures in Engineered Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Fractures in Engineered Geothermal Systems Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface...

243

Well Log Data At Dixie Valley Geothermal Area (Mallan, Et Al...  

Open Energy Info (EERE)

mapping such as large scale and small scale producing fractures in and around geothermal wells. The overall goal of this effort was to provide experience and insight toward...

244

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

NONE

1999-06-01T23:59:59.000Z

245

Analysis of Best Hydraulic Fracturing Practices in the Golden Trend Fields of Oklahoma Shahab D. Mohaghegh, West Virginia University  

E-Print Network [OSTI]

Analysis of Best Hydraulic Fracturing Practices in the Golden Trend Fields of Oklahoma Shahab D of optimized hydraulic fracturing procedure. Detail stimulation data from more than 230 wells in the Golden of hydraulic fractures. Therefore, it is highly recommended that the clastic and carbonate formations

Mohaghegh, Shahab

246

Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs  

E-Print Network [OSTI]

technologies, such as large volume fracture treatments, are required before a reasonable profit can be made. Hydraulic fracturing is one of the best methods to stimulate a tight gas well. Most fracture treatments result in 3-6 fold increases in the productivity...

Wang, Yilin

2009-05-15T23:59:59.000Z

247

The evolution of hydraulic fracturing in the Almond formation  

SciTech Connect (OSTI)

This study draws from a database of over 600 wells to evaluate reservoir, production and treatment characteristics in the low-permeability, naturally-fractured Almond formation. Treatment-induced damage can be significant; damage mechanisms are discussed and ways are shown to mitigate these problems. An effective fracture stimulation design combines proppant scheduling of the late 1970`s with fluid and gel-breaker systems of today.

Cramer, D.D.

1995-12-31T23:59:59.000Z

248

Procedure for estimating fracture energy from fracture surface roughness  

DOE Patents [OSTI]

The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

Williford, Ralph E. (Kennewick, WA)

1989-01-01T23:59:59.000Z

249

Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

Parra, J.; Collier, H.; Angstman, B.

1997-08-01T23:59:59.000Z

250

Brittle Fracture Ductile to Brittle transition  

E-Print Network [OSTI]

FRACTURE Brittle Fracture Ductile to Brittle transition Fracture Mechanics T.L. Anderson CRC sulphur in steel Residual stress Continuity of the structure Microcracks #12;Fracture Brittle Ductile Factors affecting fracture Strain rate State of stress Temperature #12;Behaviour described Terms Used

Subramaniam, Anandh

251

NETL Releases Hydraulic Fracturing Study  

Broader source: Energy.gov [DOE]

The National Energy Technology Laboratory has released a technical report on the results of a limited field study that monitored a hydraulic fracturing operation in Greene County, PA.

252

Fracture model for cemented aggregates  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A mechanisms-based fracture model applicable to a broad class of cemented aggregates and, among them, plastic-bonded explosive (PBX) composites, is presented. The model is calibrated for PBX 9502 using the available experimental data under uniaxial compression and tension gathered at various strain rates and temperatures. We show that the model correctly captures inelastic stress-strain responses prior to the load peak and it predicts the post-critical macro-fracture processes, which result from the growth and coalescence of micro-cracks. In our approach, the fracture zone is embedded into elastic matrix and effectively weakens the material's strength along the plane of the dominant fracture.

Zubelewicz, Aleksander; Thompson, Darla G.; Ostoja-Starzewski, Martin; Ionita, Axinte; Shunk, Devin; Lewis, Matthew W.; Lawson, Joe C.; Kale, Sohan; Koric, Seid

2013-01-01T23:59:59.000Z

253

Complications in Ankle Fracture Surgery.  

E-Print Network [OSTI]

??Mikko Ovaska. Complications in Ankle Fracture Surgery. Helsinki Bone and Joint Research Group, Department of Orthopaedic Surgery and Traumatology, Faculty of Medicine, University of Helsinki,… (more)

Ovaska, Mikko

2014-01-01T23:59:59.000Z

254

Seismic anisotropy of fractured rock  

E-Print Network [OSTI]

A comparison of the theory with recent ultra- sonic experiments on a simulated fractured medium .... Note that Poisson's ratio and Young's modulus for the.

M. Schoenberg, C. M. Sayers

2000-02-18T23:59:59.000Z

255

Hydraulic fracturing and associated stress modeling for the Eastern Gas Shales Project. Final report  

SciTech Connect (OSTI)

Frac fluid flow, structure, and fracture mechanics simulations are developed for predicting and optimizing fracture dimensions and fluid leak-offs. Roles of in situ stress and material properties for possible vertical migration of fractures from the pay zone are discussed. Rationale for foam and dendritic fracturing experiments is presented along with numerical experiments for examining the phenomena of spalling of the fracture faces and conditions for secondary fracture initiation. Assignment of conventional, foam, cyrogenic, dendritic, and explosive fracturing treatments for specific reservoir properties is considered. Variables include fracture density and extent, shale thickness, in-situ stress gradients, energy assist mechanisms, well clean-up, shale-frac fluid interaction, proppant selection, and fracture height control. The analysis suggests that correlation with prevailing in situ stress gradients are promising diagnostic indicators for fracture treatment selection and design. In conclusion, the comprehensive development of an economical strategy requires extensive and controlled field testing with supporting predictive analyses of reservoir responses. Finite element modeling of reservoir in situ stress trajectories and the flow and fracture responses in the reservoir is recommended.

Advani, S.H.

1980-12-01T23:59:59.000Z

256

Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones  

SciTech Connect (OSTI)

Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

Haase, C.S.; King, H.L.

1986-01-01T23:59:59.000Z

257

Using Chemicals to Optimize Conformance Control in Fractured Reservoirs  

SciTech Connect (OSTI)

This report describes work performed during the first year of the project, ''Using Chemicals to Optimize Conformance Control in Fractured Reservoirs.'' This research project has three objectives. The first objective is to develop a capability to predict and optimize the ability of gels to reduce permeability to water more than that to oil or gas. The second objective is to develop procedures for optimizing blocking agent placement in wells where hydraulic fractures cause channeling problems. The third objective is to develop procedures to optimize blocking agent placement in naturally fractured reservoirs. This research project consists of three tasks, each of which addresses one of the above objectives. Our work is directed at both injection wells and production wells and at vertical, horizontal, and highly deviated wells.

Seright, Randall S.; Liang, Jenn-Tai; Schrader, Richard; Hagstrom II, John; Liu, Jin; Wavrik, Kathryn

1999-09-27T23:59:59.000Z

258

Geothermal reservoir well stimulation program. First-year progress report  

SciTech Connect (OSTI)

The Geothermal Reservoir Well Stimulation Program (GRWSP) group planned and executed two field experiments at the Raft River KGRA during 1979. Well RRGP-4 was stimulated using a dendritic (Kiel) hydraulic fracture technique and Well RRGP-5 was stimulated using a conventional massive hydraulic fracture technique. Both experiments were technically successful; however, the post-stimulation productivity of the wells was disappointing. Even though the artificially induced fractures probably successfully connected with the natural fracture system, reservoir performance data suggest that productivity remained low due to the fundamentally limited flow capacity of the natural fractures in the affected region of the reservoir. Other accomplishments during the first year of the program may be summarized as follows: An assessment was made of current well stimulation technology upon which to base geothermal applications. Numerous reservoirs were evaluated as potential candidates for field experiments. A recommended list of candidates was developed which includes Raft River, East Mesa, Westmorland, Baca, Brawley, The Geysers and Roosevelt Hot Springs. Stimulation materials (fracture fluids, proppants, RA tracer chemicals, etc.) were screened for high temperature properties, and promising materials selected for further laboratory testing. Numerical models were developed to aid in predicting and evaluating stimulation experiments. (MHR)

Not Available

1980-02-01T23:59:59.000Z

259

Fracture compliance estimation using borehole tube waves  

E-Print Network [OSTI]

We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

Bakku, Sudhish Kumar

260

GEOLOGY AND FRACTURE SYSTEM AT STRIPA  

E-Print Network [OSTI]

1978. An Approach to the Fracture Hydrology at Stripa:Shanley. 1972. Analysis of Fracture Orientations for InputHydraulic Pro erties of Fractures by P. A. Witherspoon, C.

Olkiewicz, O.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data,  

Open Energy Info (EERE)

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Fracture Characterization Technologies Project Description The proposed program will focus on predicting characteristics of fractures and their orientation prior to drilling new wells. It will also focus on determining the location of the fractures, spacing and orientation during drilling, as well as characterizing open fractures after stimulation to help identify the location of fluid flow pathway within the EGS reservoir. These systems are created by passively injecting cold water, and stimulating the permeation of the injected water through existing fractures into hot wet and hot dry rocks by thermo-elastic cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the hot rock formations, hence enabling better circulation of water for the purpose of producing the geothermal resource. The main focus of the project will be on developing better understanding of the mechanisms for the stimulation of existing fractures, and to use the information for better exploitation of the high temperature geothermal resources located in the northwest portion of the Geysers field and similar fields.

262

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY |  

Open Energy Info (EERE)

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a method currently being developed for use in geothermal systems to identify fractures and fluid types. This paper is the third in a series of papers on the development of FIS. Fluid inclusion gas chemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow and reservoir seals. Previously we showed that FIS analyses identify fluid types and

263

Tilmeter hydraulic fracture imaging enhancement project: Progress repeort  

SciTech Connect (OSTI)

Over half of all oil & gas production wells drilled in the United States depend upon hydraulic fracturing to sustain or enhance production. However, there is no existing technology that allows detailed near-surface imaging of these hydraulically-driven fractures at depths greater than about 5000 feet. To image hydraulic fractures in the 8000`-10,000` depth range, we are currently redesigning tiltmeter tools in order to deploy the instruments deeper to escape the cultural/natural surface noise that often masks the hydrofrac signal. With nearly noise-free data, we should be in a better position to separate the earth-tide signal from the tiltmeter signal and investigate fine-scale hydraulic fracturing processes.

Castillo, D.A. [Lawrence Livermore National Lab., CA (United States); Wright, C.A.; Conant, R.A. [and others

1995-12-31T23:59:59.000Z

264

Local drug delivery for enhancing fracture healing in osteoporotic bone  

Science Journals Connector (OSTI)

Abstract Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone.

Laura Kyllönen; Matteo D’Este; Mauro Alini; David Eglin

2014-01-01T23:59:59.000Z

265

Fracture-zone dewatering to control ground water inflow in underground coal mines. Report of Investigations/1985  

SciTech Connect (OSTI)

The Bureau of Mines investigation focuses on the identification and control of ground-water inflow problems that occur in the active sections of underground Appalachian coal mines. A fracture inflow survey of eight underground mines was conducted. Three types of mine fracture intercepts were identified, which are typical of wet section mining conditions. A mine in Preston County, WV was selected as the site for a fracture-zone dewatering experiment. Fracture trace analysis was used to site dewatering wells in a fracture valley setting ahead of mine development. The design, implementation, and results of the dewatering experiment are presented. The investigation suggests that fracture zones are responsible for the sudden release of stored ground water, which often occurs as mining sections advance beneath fracture valley topography. It is concluded, therefore, that dewatering operations that are designed to intercept the component of ground water that is stored in fracture zones will be most effective in controlling infiltration to active mine sections.

Schmidt, R.D.

1985-01-01T23:59:59.000Z

266

Microearthquake Technology for EGS Fracture Characterization  

Broader source: Energy.gov [DOE]

Project objectives: To understand how EGS fracture networks develop; To develop technology to determine accurate absolute three-dimensional positions of EGS fracture networks.

267

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Principal Investigator: John H. Queen Hi-Q Geophysical Inc. Track Name: Seismicity and Reservoir Fracture...

268

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

269

Stimulation Technologies for Deep Well Completions  

SciTech Connect (OSTI)

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

Stephen Wolhart

2005-06-30T23:59:59.000Z

270

Diagnosis of Fracture Flow Conditions with Acoustic Sensing  

E-Print Network [OSTI]

processing techniques and quantitative analysis are used to measure flow rates in a simulated fractured well. Production into a 5-½ inch OD well was simulated by injecting fluid through packed bed of 16/30 mesh, 20/40 mesh and 30/50 mesh proppant. Gas...

Martinez, Roberto

2014-07-10T23:59:59.000Z

271

Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water  

DOE R&D Accomplishments [OSTI]

The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

Poston, S. W.

1991-00-00T23:59:59.000Z

272

Evaluation of massive hydraulic fracturing experiments in the Devonian Shales in Lincoln County, West Virginia  

E-Print Network [OSTI]

perfor- mance. The type curves that have been generated have qualitatively shown that the fractured wells are clear'ly more stimulated than the surrounding shot wells, Fracture treatment simulation indicates that treatments pumped in the MHF wells... Optimal Stimulation Design Per Zone Simulated Reservoir Properties Economic Production Forecasts 64 68 70 15 Economic Analysis Results Reservoir Case 72 LIST OF FIGURES FIGURES 10 12 13 15 16 17 MHF Well Location In Lincoln County, WV MHF...

Holgate, Karen Elaine

2012-06-07T23:59:59.000Z

273

Fracturing Fluid Characterization Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Documentation Page Documentation Page 1. Report No. DE - FC 21 - 92MC29077 2. 3. Recipient's Accession No. 5. Report Date August 31, 2000 4. Title and Subtitle Fracturing Fluid Characterization Facility 6. 7. Author(s) The University of Oklahoma 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 9. Performing Organization Name and Address The University of Oklahoma Sarkeys Energy Center T301 100 E Boyd St Norman, OK 73019 11. Contract (C) or Grant (G) No. DOE:DE FC21 92 MC29077 13. Type of Report & Period Covered Final Report 09 30 92 - 03 31 00 12. Sponsoring Organization Name and Address US Dept of Energy - FETL 3610 Collins Ferry Road Morgantown, WV 26505 14. 15. Supplementary Notes Several technical papers were prepared and presented at various Society of Petroleum Engineers Conferences and US

274

Finding Large Aperture Fractures in Geothermal Resource Areas Using a  

Open Energy Info (EERE)

Finding Large Aperture Fractures in Geothermal Resource Areas Using a Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Because fractures and faults with sub-commercial permeability can propagate hot fluid and hydrothermal alteration throughout a geothermal reservoir, potential field geophysical methods including resistivity, gravity, heatflow and magnetics cannot distinguish between low-permeability fractures and LAF's (Large Aperature Fractures). USG will develop and test the combination of three-component,long-offset seismic surveying, permanent scatter synthetic aperture radar interferometry (PSInSAR) and structural kinematic analysis as an integrated method for locating and 3-D mapping of LAF's in shallow to intermediate depth (600-4000 feet) geothermal systems. This project is designed to test the methodology on known occurrences of LAF's and then apply the technology to expand an existing production field and find a new production field in a separate but related resource area. A full diameter production well will be drilled into each of the two lease blocks covered by the geophysical exploration program.

275

Coordinated studies in support of hydraulic fracturing of coalbed methane. Final report, July 1990-May 1995  

SciTech Connect (OSTI)

The primary objective of this project is to provide laboratory data that is pertinent to designing hydraulic fracturing treatments for coalbed methane. Coal fluid interactions studies, fracture conductivity, fluid leak-off through cleats, rheology, and proppant transport are designed to respresent Black Warrior and San Juan treatments. A second objective is to apply the information learned in laboratory testing to actual hydraulic fracturing treatments in order to improve results. A final objective is to review methods currently used to catalog well performance following hydraulic fracturing for the purpose of placing the data in a useable database that can be accessed by users to determine the success of various treatment scenarios.

Penny, G.S.; Conway, M.W.

1996-02-01T23:59:59.000Z

276

FRACTURE FAILURE CRITERIA OF SOFC PEN STRUCTURE  

SciTech Connect (OSTI)

Thermal stresses and warpage of the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature and mismatch of the coefficients of thermal expansion (CTE) of various layers in the PEN structures of solid oxide fuel cells (SOFC) during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. The porous nature of anode and cathode in the PEN structures determines presence of the initial flaws and crack on the interfaces of anode/electrolyte/cathode and in the interior of the materials. The sintering/assembling induced stresses may cause the fracture failure of PEN structure. Therefore, fracture failure criteria for SOFC PEN structures is developed in order to ensure the structural integrity of the cell and stack of SOFC. In this paper, the fracture criteria based on the relationship between the critical energy release rate and critical curvature and maximum displacement of the warped cells caused by the temperature changes as well as mechanical flattening process is established so that possible failure of SOFC PEN structures may be predicted deterministically by the measurement of the curvature and displacement of the warped cells.

Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Qu, Jianmin

2007-04-30T23:59:59.000Z

277

SPALL FRACTURE AND SPALL FRACTURE AND COMPACTION COMPACTION  

National Nuclear Security Administration (NNSA)

SPALL FRACTURE AND SPALL FRACTURE AND SPALL FRACTURE AND SPALL FRACTURE AND COMPACTION COMPACTION IN NATURAL URANIUM IN NATURAL URANIUM UNDER SHOCK UNDER SHOCK - - WAVE LOADING WAVE LOADING O.A. O.A. Tyupanova Tyupanova , S.S. , S.S. Nadezhin Nadezhin , A.N. , A.N. Malyshev Malyshev , , O.N. O.N. Ignatova Ignatova , V.I. , V.I. Skokov Skokov , V.N. , V.N. Knyazev Knyazev , , V.A. V.A. Raevsky Raevsky , N.A. , N.A. Yukina Yukina Russian Federal Nuclear Center Russian Federal Nuclear Center - - VNIIEF, VNIIEF, Sarov Sarov , Russia , Russia Introduction Introduction  Nucleation and growth of defects inside a solid under pulse tensile stresses signify a necessity to consider it as a damaged medium.  A certain volume of experimental data, obtained in correct tests, which are sensitive to a characteristic under study, is necessary

278

Statistical Properties of Fracture Precursors  

Science Journals Connector (OSTI)

We present the data of a mode-I fracture experiment. The samples are broken under imposed pressure. The acoustic emission of microfractures before the breakup of the sample is registered. From the acoustic signals, the position of microfractures and the energy released are calculated. A measure of the clustering of microfractures yields information about the critical load. The statistics from energy measurements strongly suggest that the fracture can be viewed as a critical phenomenon; energy events are distributed in magnitude as a power law, and a critical exponent is found for the energy near fracture.

A. Garcimartín; A. Guarino; L. Bellon; S. Ciliberto

1997-10-27T23:59:59.000Z

279

Fracture of synthetic diamond M. D. Droty  

E-Print Network [OSTI]

Fracture of synthetic diamond M. D. Droty Ctystallume, 3506 Bassett Street, Santa Clara, California 1995) The fracture behavior of synthetic diamond has been investigated using indentation methods and by the tensile testing of pre-notched fracture-mechanics type samples. Specifically, the fracture toughness

Ritchie, Robert

280

Thermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta,b,  

E-Print Network [OSTI]

effective stress is tensile near the injection well, illustrating the thermal contraction of the rock, whileThermal recovery from a fractured medium in local thermal non-equilibrium Rachel Geleta, Australia Abstract Thermal recovery from a hot dry rock reservoir viewed as a deformable fractured medium

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Deep borehole log evidence for fractal distribution of fractures in crystalline rock  

Science Journals Connector (OSTI)

......as well as large scale-lengths...fractures seen in drilling cores and...register on a borehole scanning...rock in the borehole wall. In...evidence in the drilling logs or retrieved...core that large-scale fractures...samples, and drilling history...control the large-scale trend...sensitive to borehole lithology......

Peter Leary

1991-12-01T23:59:59.000Z

282

Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS)  

Broader source: Energy.gov [DOE]

Project objectives: identify tracers with sorption properties favorable for EGS applications; apply reversibly sorbing tracers to determine the fracture-matrix interface area available for heat transfer; and; explore the feasibility of obtaining fracture-matrix interface area from non-isothermal; single-well injection-withdrawal (SWIW) tests.

283

Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing  

SciTech Connect (OSTI)

Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, have to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.

Shah, S.; Zhoi, Y.X.; Bailey, M.; Hernandez, J. [University of Oklahoma, Norman, OK (United States)

2009-08-15T23:59:59.000Z

284

Microstructure-Properties: IMicrostructure-Properties: I Lecture 6A: FractureLecture 6A: Fracture  

E-Print Network [OSTI]

-Properties: IMicrostructure-Properties: I Lecture 6A: FractureLecture 6A: Fracture 27-301 Fall, 2007 Prof. A. D. Rollett the fracture resistance of materials to their microstructure. · Both ceramics and metals exhibit strongly microstructure dependent fracture resistance. · This section focuses on basic theory of brittle fracture

Rollett, Anthony D.

285

Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and  

E-Print Network [OSTI]

Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and Upper Shelf fracture stress and stress modified fracture strain models are utilized to describe the variation of lower and upper shelf fracture toughness with temperature and strain rate for two alloy steels used

Ritchie, Robert

286

Journal of Biomechanics 38 (2005) 15171525 Fracture in human cortical bone: local fracture criteria and  

E-Print Network [OSTI]

Journal of Biomechanics 38 (2005) 1517­1525 Fracture in human cortical bone: local fracture, Livermore, CA 94550 Accepted 19 July 2004 Abstract Micromechanical models for fracture initiation such micromechanical models have been developed for the fracture of bone. In fact, although the fracture event

Ritchie, Robert O.

287

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in six wells penetrating a geothermalreservoir associated with the Stillwater fault zone inDixie Valley, Nevada, were used to investigate therelationship between reservoir permeability and thecontemporary in situ stress field. Data from wellsdrilled into productive and nonproductive segments ofthe Stillwater fault zone indicate that permeability inall wells is dominated by a relatively small number offractures striking parallel to the local trend of

288

Temporary Sealing of Fractures | Open Energy Information  

Open Energy Info (EERE)

Temporary Sealing of Fractures Temporary Sealing of Fractures Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Temporary Sealing of Fractures 2 Geothermal ARRA Funded Projects for Temporary Sealing of Fractures Geothermal Lab Call Projects for Temporary Sealing of Fractures Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

289

Sensitivity analysis of fracture scattering  

E-Print Network [OSTI]

We use a 2-D finite difference method to numerically calculate the seismic response of a single finite fracture in a homogeneous media. In our experiments, we use a point explosive source and ignore the free surface effect, ...

Fang, Xinding, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

290

Environmental Impacts of Hydraulic Fracturing  

Science Journals Connector (OSTI)

...their environmental impacts, which has been published...the hydrogeological impacts of oil and gas development...Chafin, 1994), not fracking. Watson and Bachu...Frontiers Ecology Environment. 2011. 9( 9): 503...R. Environmental Impacts of Hydraulic Fracturing...

Richard Jackson

291

Fracture of aluminum naval structures  

E-Print Network [OSTI]

Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

Galanis, Konstantinos, 1970-

2007-01-01T23:59:59.000Z

292

Preventing Water Quality Contamination through the Texas Well Owners Network (TWON): Final Report  

E-Print Network [OSTI]

the Tex*A*Syst materials, additional TWON Fact Sheets were developed: ? Hydraulic Fracturing and Your Private Water Well (ESC-012) ? Protect Your Water Well During Drought (ESC-014) A TWON curriculum, including a handbook for participants...

Boellstorff, D.; Gholson, D.; Kalisek, D.; Smith, J.; Gerlich, R.; Wagner, K.; McFarland, M.; Mukhtar, S.

2014-01-01T23:59:59.000Z

293

Numerical simulation of hydraulic fracturing  

E-Print Network [OSTI]

NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Maj or Subj ect...: Petroleum Engineering NUMERICAL SIMULATION OF HYDRAULIC FRACTURING A Thesis by JOSEPH BARNES WARNER Approved as to style and content by: S. A. Holditch (Chairman of Committee) D. D. Van Fleet (member) J. E. Russell (m be ) W. D. Von onten ( ead...

Warner, Joseph Barnes

2012-06-07T23:59:59.000Z

294

Comparison of Discrete Fracture and Effective Media Representation of Fractures on Azimuthal AVO  

E-Print Network [OSTI]

In fractured reservoir development, azimuthal AVO (AVOaz) properties of reflected PP waves from reservoir tops are often used to infer fracture properties. The fracture parameter inversion is based on either an effective ...

Zhang, Yang

2005-01-01T23:59:59.000Z

295

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network [OSTI]

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

Ogbechie, Joachim Nwabunwanne

2012-02-14T23:59:59.000Z

296

Estimation of fracture compliance from tubewaves generated at a fracture intersecting a borehole  

E-Print Network [OSTI]

Understanding fracture compliance is important for characterizing fracture networks and for inferring fluid flow in the subsurface. In an attempt to estimate fracture compliance in the field, we developed a new model to ...

Bakku, Sudhish Kumar

2011-01-01T23:59:59.000Z

297

Coupled processes in single fractures, double fractures and fractured porous media  

SciTech Connect (OSTI)

The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed.

Tsang, C.F.

1986-12-01T23:59:59.000Z

298

INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT, MONTICELLO, SOUTH CAROLINA  

E-Print Network [OSTI]

Letters INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,12091 INTERPRETATION OF A HYDRAULIC FRACTURING EXPERIMENT,transient data from a hydraulic fracturing experiment have

Narasimhan, T.N.

2014-01-01T23:59:59.000Z

299

Analysis Of Macroscopic Fractures In Granite In The Hdr Geothermal...  

Open Energy Info (EERE)

between core and acoustic borehole imagery. Detailed structural analysis of the fracture population indicates that fractures are grouped in two principal fractures sets...

300

Fracture Evolution Following a Hydraulic Stimulation within an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution...

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Aging and Fracture of Human Cortical Bone and Tooth Dentin  

E-Print Network [OSTI]

Mechanistic aspects of fracture and R-curve behavior inof failure of solid biomaterials and bone: `fracture' and `pre- fracture' toughness. Materials Science and Engineering:

Ager III, Joel W.

2008-01-01T23:59:59.000Z

302

Poroelastic modeling of seismic boundary conditions across a fracture  

E-Print Network [OSTI]

on poroelasticity of fractures. Both authors would like toYork. Figure 3: For a high permeability fracture, the fluidpressure across the fracture is continuous, which can be

Schoenberg, M.A.; Nakagawa, S.

2006-01-01T23:59:59.000Z

303

DNAPL invasion into a partially saturated dead-end fracture  

E-Print Network [OSTI]

Mobilization in Rock Fractures, Water Resources Research,of DNAPL trapped in dead-end fractures, Geophysical Researchpartially saturated dead-end fracture and a DNAPL lens above

Su, Grace W.; Javandel, Iraj

2008-01-01T23:59:59.000Z

304

Updated fracture incidence rates for the US version of FRAX®  

E-Print Network [OSTI]

presenting with non-vertebral fractures. Osteoporos Int 18:2006) Epidemiology of vertebral fractures: implications forORIGINAL ARTICLE Updated fracture incidence rates for the US

Ettinger, B.; Black, D. M.; Dawson-Hughes, B.; Pressman, A. R.; Melton, L. J.

2010-01-01T23:59:59.000Z

305

Transphyseal Fracture of the Distal Humerus in a Neonate  

E-Print Network [OSTI]

M edicine Transphyseal Fracture of the Distal Humerus in aalignment without osseous fracture and a moderate joint2] revealed a transverse fracture through the distal left

Baker, Annalee M; Methratta, Sosamma T.; Choudhary, Arabinda K

2011-01-01T23:59:59.000Z

306

Step-out Well | Open Energy Information  

Open Energy Info (EERE)

Step-out Well Step-out Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Step-out Well Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Step-out Well: A well drilled outside of the proven reservoir boundaries to investigate a

307

Fracture opening/propagation behavior and their significance on pressure-time records during hydraulic fracturing  

SciTech Connect (OSTI)

Hydraulic fracturing with constant fluid injection rate was numerically modeled for a pair of rectangular longitudinal fractures intersecting a wellbore in an impermeable rock mass, and numerical calculations have been performed to investigate the relations among the form of pressure-time curves, fracture opening/propagation behavior and permeability of the mechanically closed fractures. The results have shown that both permeability of the fractures and fluid injection rate significantly influence the form of the pressure-time relations on the early stage of fracture opening. Furthermore it has been shown that wellbore pressure during fracture propagation is affected by the pre-existing fracture length.

Takashi Kojima; Yasuhiko Nakagawa; Koji Matsuki; Toshiyuki Hashida

1992-01-01T23:59:59.000Z

308

Water Use for Hydraulic Fracturing: A Texas Sized Problem?  

E-Print Network [OSTI]

The state of Texas could face a 2.7 trillion gallon shortfall of water by 2060. Hydraulic fracturing (HF) requires large amounts of water for each well. Tax incentives should be offered to companies that substitute brackish groundwater for fresh...

LeClere, David

309

MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS  

SciTech Connect (OSTI)

This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

Gary Mavko

2000-10-01T23:59:59.000Z

310

MIMO Control during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract A drilling system consists of a rotating drill string, which is placed into the well. The drill fluid is pumped through the drill string and exits through the choke valve. An important scope of the drill fluid is to maintain a certain pressure gradient along the length of the well. Well construction is a complex job in which annular pressures must be kept inside the operational window (limited by fracture and pore pressure). Monitoring bottom hole pressure to avoid fluctuations out of operational window limits is an extremely important job, in order to guarantee safe conditions during drilling. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. In this work, a non linear mathematical model (gas-liquid-solid), representing an oil well drilling system, was developed, based on mass and momentum balances. Besides, for implementing classic control (PI), alternative control schemes were analyzed using mud pump flow rate, choke opening index and weight on bit as manipulated variables in order to control annulus bottomhole pressure and rate of penetration. Classic controller tuning was performed for servo and regulatory control studies, under MIMO frameworks.

Márcia Peixoto Vega; Marcela Galdino de Freitas; André Leibsohn Martins

2014-01-01T23:59:59.000Z

311

Uncertainty in the maximum principal stress estimated from hydraulic fracturing Measurements due to the presence of the induced fracture  

E-Print Network [OSTI]

reopening during hydraulic fracturing stress determinations.Laboratory study of hydraulic fracturing pressure data?Howevaluation of hydraulic fracturing stress measurement

Rutqvist, Jonny; Tsang, Chin-fu; Stephansson, Ove

2000-01-01T23:59:59.000Z

312

Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen-Assisted Fracture: Materials Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Brian Somerday, Chris San Marchi, and Dorian Balch Sandia National Laboratories Livermore, CA Hydrogen Pipeline Working Group Workshop Augusta, GA August 30-31, 2005 SNL has 40+ years experience with effects of high-pressure hydrogen gas on materials * Design and maintenance of welded stainless steel pressure vessels for containment of high-pressure H 2 isotopes - Extensive testing of stainless steels exposed to high-pressure H 2 gas * Six-year program in 1970s focused on feasibility of using natural gas pipeline network for H 2 gas - Materials testing in high-pressure H 2 gas using laboratory specimens and model pipeline - Examined fusion zone and heat affected zones of welds * Active SNL staff have authored 70+ papers and organized 6

313

Monitoring hydraulic fracture growth: Laboratory experiments  

SciTech Connect (OSTI)

The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

Groenenboom, J.; Dam, D.B. van

2000-04-01T23:59:59.000Z

314

Decontaminating Flooded Wells  

E-Print Network [OSTI]

This publication explains how to decontaminate and disinfect a well, test the well water and check for well damage after a flood....

Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

2005-09-30T23:59:59.000Z

315

Type curve analysis for naturally fractured reservoirs (infinite-acting reservoir case): a new approach  

E-Print Network [OSTI]

analysis methods are sometimes inconclusive for pressure transient analysis of wells completed in naturally fractured reservoirs. This is due to wellbore storage effects which mask the early time "straight-line" that is expected on the semilog plot...

Angel Restrepo, Juan Alejandro

2012-06-07T23:59:59.000Z

316

Fracture characterization and estimation of fracture porosity of naturally fractured reservoirs with no matrix porosity using stochastic fractal models  

E-Print Network [OSTI]

Determining fracture characteristics at the laboratory scale is a major challenge. It is known that fracture characteristics are scale dependent; as such, the minimum sample size should be deduced in order to scale to reservoir dimensions. The main...

Kim, Tae Hyung

2009-05-15T23:59:59.000Z

317

VALIDATION OF MASSIVELY PARALLEL SIMULATIONS OF DYNAMIC FRACTURE AND  

E-Print Network [OSTI]

VALIDATION OF MASSIVELY PARALLEL SIMULATIONS OF DYNAMIC FRACTURE AND FRAGMENTATION OF BRITTLE element simulations of dynamic fracture and fragmentation of brittle solids are presented. Fracture the results of massively parallel numerical simulations of dynamic fracture and fragmentation in brittle

Barr, Al

318

Method for directional hydraulic fracturing  

DOE Patents [OSTI]

A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

Swanson, David E. (West St. Paul, MN); Daly, Daniel W. (Crystal, MN)

1994-01-01T23:59:59.000Z

319

Tracer Methods for Characterizing Fracture Stimulation in Engineered...  

Broader source: Energy.gov (indexed) [DOE]

Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal Systems (EGS) Tracer Methods for Characterizing Fracture Stimulation in Engineered Geothermal...

320

Fracture, aging and disease in bone  

E-Print Network [OSTI]

by enhancing the materials resistance to microstructuralgrowth resistance of microcracking brittle materials. J. Am.resistance to fracture of the Page 4 Fracture, Aging and Disease in Bone underlying material.

Ager, J.W.; Balooch, G.; Ritchie, R.O.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Modeling of Acid Fracturing in Carbonate Reservoirs  

E-Print Network [OSTI]

The acid fracturing process is a thermal, hydraulic, mechanical, and geochemical (THMG)-coupled phenomena in which the behavior of these variables are interrelated. To model the flow behavior of an acid into a fracture, mass and momentum balance...

Al Jawad, Murtada s

2014-06-05T23:59:59.000Z

322

Acoustic Character Of Hydraulic Fractures In Granite  

E-Print Network [OSTI]

Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

Paillet, Frederick I.

1983-01-01T23:59:59.000Z

323

Statistical Modeling of Fracture Toughness Data.  

E-Print Network [OSTI]

??The fracture toughness of the zirconium alloy (Zr-2.5Nb) is an important parameter in determining the flaw tolerance for operation of pressure tubes in reactor. Fracture… (more)

Prakash, Guru

2007-01-01T23:59:59.000Z

324

Geothermal-Reservoir Well-Stimulation Program. Program status report  

SciTech Connect (OSTI)

Seven experimental fracture stimulation treatments completed to date and the laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Six of the seven stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments in Raft River and the two in Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or flow rate. The acid etching treatment in the well at The Geysers did not have any material effect on producing rate.

Not Available

1982-05-01T23:59:59.000Z

325

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks  

E-Print Network [OSTI]

Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks Mingjie Chen Keywords: Hydraulic fracturing Fractal dimension Surrogate model Optimization Global sensitivity a b s t r a c t Hydraulic fracturing has been used widely to stimulate production of oil, natural gas

Lu, Zhiming

326

A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling  

E-Print Network [OSTI]

A model of fracture nucleation, growth and arrest, and consequences for fracture density; accepted 1 February 2013; published 25 April 2013. [1] In order to improve discrete fracture network (DFN a new DFN modeling based on the evolution of fracture network formation--nucleation, growth, and arrest

Boyer, Edmond

327

FEM Analysis ofFEM Analysis of Deformation and Fracture ofDeformation and Fracture of  

E-Print Network [OSTI]

FEM Analysis ofFEM Analysis of Deformation and Fracture ofDeformation and Fracture of Deformation and Fracture in Polycrystalline -TiAl + 2-Ti3Al Single Crystals #12;Use of -TiAl + 2-Ti3Al Alloys-Temperature Ductility ·Low Ambient-Temperature Fracture Toughness (KIC

Grujicic, Mica

328

Statistical fracture modeling: crack path and fracture criteria with application to homogeneous and  

E-Print Network [OSTI]

Statistical fracture modeling: crack path and fracture criteria with application to homogeneous; accepted 23 January 2002 Abstract Analysis has been performed on fracture initiation near a crack in a brittle material with strength described by Weibull statistics. This nonlocal fracture model allows

Ritchie, Robert

329

A Membrane Deflection Fracture Experiment to Investigate Fracture Toughness of Freestanding MEMS Materials  

E-Print Network [OSTI]

A Membrane Deflection Fracture Experiment to Investigate Fracture Toughness of Freestanding MEMS Materials H.D. Espinosa* and B. Peng ABSTRACT This paper presents a novel Membrane Deflection Fracture Experiment (MDFE) to investigate the fracture toughness of MEMS and other advanced materials in thin film

Espinosa, Horacio D.

330

Well control procedures for extended reach wells  

E-Print Network [OSTI]

been found to be critical to the success of ERD are torque and drag, drillstring design, wellbore stability, hole cleaning, casing design, directional drilling optimization, drilling dynamics and rig sizing.4 Other technologies of vital importance... are the use of rotary steerable systems (RSS) together with measurement while drilling (MWD) and logging while drilling (LWD) to geosteer the well into the geological target.5 Many of the wells drilled at Wytch Farm would not have been possible to drill...

Gjorv, Bjorn

2004-09-30T23:59:59.000Z

331

Characterization and fluid flow simulation of naturally fractured Frontier sandstone, Green River Basin, Wyoming  

SciTech Connect (OSTI)

Significant gas reserves are present in low-permeability sandstones of the Frontier Formation in the greater Green River Basin, Wyoming. Successful exploitation of these reservoirs requires an understanding of the characteristics and fluid-flow response of the regional natural fracture system that controls reservoir productivity. Fracture characteristics were obtained from outcrop studies of Frontier sandstones at locations in the basin. The fracture data were combined with matrix permeability data to compute an anisotropic horizontal permeability tensor (magnitude and direction) corresponding to an equivalent reservoir system in the subsurface using a computational model developed by Oda (1985). This analysis shows that the maximum and minimum horizontal permeability and flow capacity are controlled by fracture intensity and decrease with increasing bed thickness. However, storage capacity is controlled by matrix porosity and increases linearly with increasing bed thickness. The relationship between bed thickness and the calculated fluid-flow properties was used in a reservoir simulation study of vertical, hydraulically-fractured and horizontal wells and horizontal wells of different lengths in analogous naturally fractured gas reservoirs. The simulation results show that flow capacity dominates early time production, while storage capacity dominates pressure support over time for vertical wells. For horizontal wells drilled perpendicular to the maximum permeability direction a high target production rate can be maintained over a longer time and have higher cumulative production than vertical wells. Longer horizontal wells are required for the same cumulative production with decreasing bed thickness.

Harstad, H. [New Mexico Tech, Socorro, NM (United States); Teufel, L.W.; Lorenz, J.C.; Brown, S.R. [Sandia National Labs., Albuquerque, NM (United States). Geomechanics Dept.

1996-08-01T23:59:59.000Z

332

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO  

Open Energy Info (EERE)

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: High rock temperatures, a high degree of fracturing, high tectonic stresses, and low permeability are the combination of qualities that define an ideal candidate-Enhanced Geothermal System (EGS) reservoir. The Coso Geothermal Field is an area where fluid temperatures exceeding 300°C have been measured at depths less than 10,000 feet and the reservoir is both highly fractured and tectonically stressed. Some of the wells within this portion of the reservoir are relatively impermeable,

333

Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation  

SciTech Connect (OSTI)

Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed. Methodology for coupling the DEM model with continuum flow and heat transport models will also be discussed.

Shouchun Deng; Robert Podgorney; Hai Huang

2011-02-01T23:59:59.000Z

334

Well performance under solutions gas drive  

SciTech Connect (OSTI)

A fully implicit black-oil simulator was written to predict the drawdown and buildup responses for a single well under Solution Gas Drive. The model is capable of handling the following reservoir behaviors: Unfractured reservoir, Double-Porosity system, and Double Permeability-Double Porosity model of Bourdet. The accuracy of the model results is tested for both single-phase liquid flow and two-phase flow. The results presented here provide a basis for the empirical equations presented in the literature. New definitions of pseudopressure and dimensionless time are presented. By using these two definitions, the multiphase flow solutions correlate with the constant rate liquid flow solution for both transient and boundary-dominated flow. For pressure buildup tests, an analogue for the liquid solution is constructed from the drawdown pseudopressure, similar to the reservoir integral of J. Jones. The utility of using the producing gas-oil ration at shut in to compute pseudopressures and pseudotimes is documented. The influence of pressure level and skin factor on the Inflow Performance Relationship (IPR) of wells producing solution gas drive systems is examined. A new definition of flow efficiency that is based on the structure of the deliverability equations is proposed. This definition avoids problems that result when the presently available methods are applied to heavily stimulated wells. The need for using pseudopressures to analyze well test data for fractured reservoirs is shown. Expressions to compute sandface saturations for fractured systems are presented.

Camacho-Velazquez, R.G.

1987-01-01T23:59:59.000Z

335

The investigation of fracture aperture effect on shale gas transport using discrete fracture model  

Science Journals Connector (OSTI)

Abstract Discrete fracture model (DFM) numerical simulation is used to investigate the shale gas transports in fractured porous media in this paper. A new seepage flow mathematic model, in which flow in fracture meets “Cubic law” and matrix meets “non-Darcy law”, is adopted and fracture aperture effect on the transport behavior is simulated by solving the nonlinear partial differential equations using finite element analysis (FEA). In this DFM, fluid flows into wellbore which is surrounded by impermeable rock matrix is merely through fractures that connect to it. The model is used to simulate a random generated fractures network to study the flow and transport characteristics in fractured porous media (FPM). Several cases with different fracture aperture in same natural fractured model are given. The preliminary simulation results show that both the natural and hydraulic fracture aperture have a significant impact on shale gas migration and production.

Lidong Mi; Hanqiao Jiang; Junjian Li; Tao Li; Ye Tian

2014-01-01T23:59:59.000Z

336

Hydraulic Fracturing in Michigan Integrated Assessment  

E-Print Network [OSTI]

Hydraulic Fracturing in Michigan Integrated Assessment #12;Agenda · Welcome and introduction and timeline · Panel presentation and discussion · Facilitated Q & A · Closing remarks #12;Hydraulic Fracturing · Leverages resources IA BENEFITS Benefits of Integrated Assessment #12;Key Points: · Hydraulic Fracturing (HF

Kamat, Vineet R.

337

Hydraulic Fracture: multiscale processes and moving  

E-Print Network [OSTI]

Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Mitchell (UBC) · Ed Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Scaling Fluid Proppant #12;6 An actual hydraulic fracture #12;7 HF experiment (Jeffrey et al CSIRO) #12;8 1D

Peirce, Anthony

338

Regulation of Hydraulic Fracturing in California  

E-Print Network [OSTI]

APRIL 2013 Regulation of Hydraulic Fracturing in California: A WAsteWAteR And WAteR QuAlity Pe | Regulation of Hydraulic Fracturing in California Wheeler Institute for Water Law & Policy Center for Law #12;Regulation of Hydraulic Fracturing in California | 3Berkeley law | wheeler InstItute for water law

Kammen, Daniel M.

339

Hydraulic Fracture: multiscale processes and moving  

E-Print Network [OSTI]

Hydraulic Fracture: multiscale processes and moving interfaces Anthony Peirce Department Siebrits (SLB, Houston) #12;2 Outline · What is a hydraulic fracture? · Mathematical models of hydraulic fracture · Scaling and special solutions for 1-2D models · Numerical modeling for 2-3D problems

Peirce, Anthony

340

Challenges in Continuum Modelling of Intergranular Fracture  

E-Print Network [OSTI]

Challenges in Continuum Modelling of Intergranular Fracture V. R. Coffman*, J. P. Sethna , A. R-2501, USA Cornell Fracture Group, Rhodes Hall, Cornell University, Ithaca, NY 14853-2501, USA § Department fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model

Sethna, James P.

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FRACTURE IN DISORDERED BRITTLE MEDIA A Dissertation  

E-Print Network [OSTI]

FRACTURE IN DISORDERED BRITTLE MEDIA A Dissertation Presented to the Faculty of the Graduate School by Ashivni Shekhawat May 2013 #12;c 2013 Ashivni Shekhawat ALL RIGHTS RESERVED #12;FRACTURE IN DISORDERED- lem of brittle fracture in disordered media. Chapters 2 and 4 are concerned with various aspects

Sethna, James P.

342

FRACTURE TOUGHNESS OF WOOD AND WOOD COMPOSITES  

E-Print Network [OSTI]

FRACTURE TOUGHNESS OF WOOD AND WOOD COMPOSITES DURING CRACK PROPAGATION Noah Matsumoto Structural, USA * Corresponding author: John.Nairn@oregonstate.edu SWST member #12;Fracture Toughness of Wood and Wood Composites During Crack Propagation ABSTRACT The mode I fracture toughness as a function of crack

Nairn, John A.

343

Models for MetaVCeramic Interface Fracture  

E-Print Network [OSTI]

ChaDter 12 Models for MetaVCeramic Interface Fracture ZHIGANG SUO C. FONG SHIH Metal shortcomingthat haslimited their wide- spread use-their tendency to fracture easily. In many systems, the low on interface fracture are reviewed in this chapter. With few exceptions, attention is limited to continuum

Suo, Zhigang

344

Interferometric hydrofracture microseism localization using neighboring fracture  

E-Print Network [OSTI]

Interferometric hydrofracture microseism localization using neighboring fracture Oleg V. Poliannikov1 , Alison E. Malcolm1 , Hugues Djikpesse2 , and Michael Prange2 ABSTRACT Hydraulic fracturing is the process of injecting high-pressure fluids into a reservoir to induce fractures and thus improve reservoir

Malcolm, Alison

345

Introduction That fracture is governed by processes  

E-Print Network [OSTI]

Introduction That fracture is governed by processes occurring over a wide range of length scales has been recognized since the earli- est developments of modern fracture me- chanics. Griffith's study by several decades the first at- tempts to apply atomistically grounded traction-separation laws to fracture

Beltz, Glenn E.

346

LA-13194-MS Fracture Characterization of the  

E-Print Network [OSTI]

LA-13194-MS Fracture Characterization of the Bandelier Tuff in OU-1098 (TA-2 and TA-41) LosN A T I technical correctness. #12;Fracture Characterization of the Bandelier Tuff in OU-1098 (TA-2 and TA-41 Los Alamos, New Mexico 87545 #12;1 Fracture Characterization of the Bandelier Tuff in OU-1098 (TA-2

347

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and potential field data, the GGRB was divided into partitions that will be used to analyze the resource potential of the Frontier and Mesaverde Upper Cretaceous tight gas play. A total of 20 partitions were developed, which will be instrumental for examining the Upper Cretaceous play potential. (5) Partition Analysis. Resource assessment associated with individual partitions was initiated starting with the Vermilion Sub-basin and the Green River Deep (which include the Stratos well) partitions (see Chapter 5). (6) Technology Transfer. Tech transfer was achieved by documenting our research and presenting it at various conferences.

NONE

1998-11-30T23:59:59.000Z

348

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Abstract Borehole televiewer, temperature and flowmeter logs and hydraulic fracturing stress measurements conducted in six wells penetrating a geothermal reservoir associated with the Stillwater fault zone in Dixie Valley, Nevada, were used to investigate the relationship between reservoir permeability and the contemporary in situ stress field. Data from wells drilled into productive and nonproductive segments of the Stillwater fault zone indicate that permeability in all wells is dominated by a relatively

349

Well productivity improvement using extreme overbalanced perforating and surging-case history  

SciTech Connect (OSTI)

This paper describes overbalanced perforating and surging operations as a pretreatment to hydraulic fracturing for the Romeo interval at Prudhoe Bay. Operation conditions are presented and discussed, as well as surface and bottomhole pressure measurements. Well productivity and the amount of proppant placed are compared to results in offset wells where the technique was not applied. The paper shows how the use of the technique allows placement of small, highly conductive fractures in intervals that were not previously considered fracturing candidates due to the close proximity to the gas/oil contact (GOC). The paper also shows pressure transient analysis affirming the technique as a stand-alone stimulation. It is shown that the use of extreme overbalanced perforating and surging treatments prior to hydraulic fracturing produces a substantial increase both in the success rate and the efficiency of the hydraulic fracturing operation and in the production rate of the wells that are pretreated. Finally, a comparison between pressure data and a new radial fracture propagation model shows a good match. The model demonstrates that high-energy treatment can significantly increase the extension and the height of the fracture; this was corroborated by downhole pressure measurements recorded during one overbalance treatment and by well logs.

Petitjean, L.; Coueet, B.; Abel, J.C. [and others

1995-12-31T23:59:59.000Z

350

Upscaling solute transport in naturally fractured porous media with the continuous time random walk method  

SciTech Connect (OSTI)

Solute transport in fractured porous media is typically 'non-Fickian'; that is, it is characterized by early breakthrough and long tailing and by nonlinear growth of the Green function-centered second moment. This behavior is due to the effects of (1) multirate diffusion occurring between the highly permeable fracture network and the low-permeability rock matrix, (2) a wide range of advection rates in the fractures and, possibly, the matrix as well, and (3) a range of path lengths. As a consequence, prediction of solute transport processes at the macroscale represents a formidable challenge. Classical dual-porosity (or mobile-immobile) approaches in conjunction with an advection-dispersion equation and macroscopic dispersivity commonly fail to predict breakthrough of fractured porous media accurately. It was recently demonstrated that the continuous time random walk (CTRW) method can be used as a generalized upscaling approach. Here we extend this work and use results from high-resolution finite element-finite volume-based simulations of solute transport in an outcrop analogue of a naturally fractured reservoir to calibrate the CTRW method by extracting a distribution of retention times. This procedure allows us to predict breakthrough at other model locations accurately and to gain significant insight into the nature of the fracture-matrix interaction in naturally fractured porous reservoirs with geologically realistic fracture geometries.

Geiger, S.; Cortis, A.; Birkholzer, J.T.

2010-04-01T23:59:59.000Z

351

Capillary fracture of soft gels  

E-Print Network [OSTI]

A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact-line in a starburst pattern. In this paper, we characterize i) the initiation process in which the number of arms in the starburst is controlled by the ratio of surface tension contrast to the gel's elastic modulus and ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law $L\\propto t^{3/4}$. We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid/solid wetting forces. The elastic solution shows that both the location and magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an impo...

Bostwick, Joshua B

2013-01-01T23:59:59.000Z

352

Relative Permeability of Fractured Rock  

E-Print Network [OSTI]

, and by the Department of Petroleum Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California #12;#12;v Abstract fractures and various fluids have yielded different relative permeability-saturation relations. This study

Stanford University

353

Dynamics of window glass fracture in explosions  

SciTech Connect (OSTI)

An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

Beauchamp, E.K.; Matalucci, R.V.

1998-05-01T23:59:59.000Z

354

Groundwater and Wells (Nebraska)  

Broader source: Energy.gov [DOE]

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

355

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

SciTech Connect (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

356

Geomechanical Simulation of Fluid-Driven Fractures  

SciTech Connect (OSTI)

The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.

Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.

2012-11-30T23:59:59.000Z

357

CONSTRAINT EFFECT IN FRACTURE WHAT IS IT  

SciTech Connect (OSTI)

The meaning of the phrase 'constraint effect in fracture' has changed in the past two decades from 'contained plasticity' to a broader description of 'dependence of fracture toughness value on geometry of test specimen or structure'. This paper will first elucidate the fundamental mechanics reasons for the apparent 'constraint effects in fracture', followed by outlining a straightforward approach to overcoming this problem in both brittle (elastic) and ductile (elastic-plastic) fracture. It is concluded by discussing the major difference in constraint effect on fracture event in elastic and elastic-plastic materials.

Lam, P; Prof. Yuh J. Chao, P

2008-10-29T23:59:59.000Z

358

Structural Settings Of Hydrothermal Outflow- Fracture Permeability  

Open Energy Info (EERE)

Settings Of Hydrothermal Outflow- Fracture Permeability Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Details Activities (1) Areas (1) Regions (0) Abstract: Hydrothermal outflow occurs most commonly at the terminations of individual faults and where multiple faults interact. These areas of fault propagation and interaction are sites of elevated stress termed breakdown regions. Here, stress concentrations cause active fracturing and continual re-opening of fluid-flow conduits, permitting long-lived hydrothermal flow despite potential clogging of fractures due to mineral precipitation. As

359

Borehole stability analysis at the Coporo-1 well, Colombia  

E-Print Network [OSTI]

-density window for Coporo-1 and future wells in the area. Repeated sections of the Carbonera formation, high in-situ stresses, abnormal pore pressure in some intervals, high temperature, and micro-fractured formations make drilling in this region both...

Arias, Henry

2012-06-07T23:59:59.000Z

360

Microseismic Tracer Particles for Hydraulic Fracturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Microseismic Tracer Particles for Hydraulic Fracturing Scientists at Los Alamos National Laboratory have developed a method by which microseismic events can be discriminated/detected that correspond to only the portion of the hydraulic fracture that contains the proppant material and can be expected to be conductive to the flow of oil and gas. July 3, 2013 Microseismic Tracer Particles for Hydraulic Fracturing Figure 1: A graph of ionic conductivity as a function of temperature for the anti-perovskite Li3OCl. Available for thumbnail of Feynman Center (505) 665-9090 Email Microseismic Tracer Particles for Hydraulic Fracturing Applications: Oil and gas production Geophysical exploration Benefits: Tracks the disposition of material in a hydraulic fracturing

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Experience proves forced fracture closure works  

SciTech Connect (OSTI)

Forced closure, or perhaps better-named ``reverse gravel packing,`` of fractures immediately following hydraulic fracturing with proppant and gelled fluids is a technique which, with rare exception, can be extremely beneficial to the success of almost every hydraulic fracture treatment. By proper planning of the rig-up to allow immediate flow-back, substantial quantities of polymer and load fluid can be removed while simultaneously negating undesirable proppant settling within fractures in the near wellbore area. Fracture smearing (dilution of proppant into an extending fracture) after shutdown can be negated. And in most cases, proppant production from the formation can be reduced. Discussions in the article explain why Ely and Associates has the confidence to make these claims after extensive hydraulic fracturing experience in many geographical areas.

Ely, J.W. [John Ely and Associates, Inc., Houston, TX (United States)

1996-01-01T23:59:59.000Z

362

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network [OSTI]

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

363

Plugging Abandoned Water Wells  

E-Print Network [OSTI]

. It is recommended that before you begin the process of plugging an aban- doned well that you seek advice from your local groundwater conservation district, a licensed water well driller in your area, or the Water Well Drillers Program with the Texas Department... hire a licensed water well driller or pump installer to seal and plug an abandoned well. Well contractors have the equipment and an understanding of soil condi- tions to determine how a well should be properly plugged. How can you take care...

Lesikar, Bruce J.

2002-02-28T23:59:59.000Z

364

Observations of the Release of Non-methane Hydrocarbons from Fractured Shale  

Science Journals Connector (OSTI)

The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing (“fracking”). ... These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the “fracking” process, improving gas yields and reducing environmental impacts. ... This technique, termed hydraulic fracturing (commonly known as “fracking”), consists of drilling a well in the prospective shale units and injecting water under high pressure mixed with sand (?5%) and chemical additives (?0.2%) to fracture the rock and stimulate the release of hydrocarbons. ...

Roberto Sommariva; Robert S. Blake; Robert J. Cuss; Rebecca L. Cordell; Jon F. Harrington; Iain R. White; Paul S. Monks

2014-06-30T23:59:59.000Z

365

THE STATE OF THE ART OF NUMERICAL MODELING OF THERMOHYDROLOGIC FLOW IN FRACTURED ROCK MASSES  

E-Print Network [OSTI]

improving production by hydraulic fracturing 8 the focus otfor fractures. (d) Hydraulic Fracturing: The model has been

Wang, J.S.Y.

2013-01-01T23:59:59.000Z

366

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

NONE

1998-11-30T23:59:59.000Z

367

Hydraulic-fracture growth in dipping anisotropic strata as viewed through the surface deformation field  

SciTech Connect (OSTI)

In 1983 and 1984 Oak Rdige National Laboratory conducted a series of precision ground deformation measurements before, during, and after the generation of several large hydraulic fractures in a dipping member of the Cambrian Conasauga Shale. Each fracture was produced by the injection of approximately 500,000 L of slurry on a single day. Injection depth was 300 m. Leveling surveys were run several days before and several days after the injections. An array of eight high-precision borehole tiltmeters monitored ground deformations continuously for a period of several weeks. Analysis of the leveling and the tilt measurements revealed surface uplifts as great as 25 mm and tilts of tens of microradians during each injection. Furthermore, partial recovery (subsidence) of the ground took place during the days following an injection, accompanied by shifts in the position of maximum resultant uplift. Interpretation of the tilt measurements is consistent with stable widening and extension of hydraulic fractures with subhorizontal orientations. Comparison of the measured tilt patterns with fracture orientations established from logging of observation wells suggests that shearing parallel to the fracture planes accompanied fracture dilation. This interpretation is supported by measured tilts and ground uplifts that were as much as 100 percent greater than those expected from fracture dilation alone. Models of elastically anisotropic overburden rock do not explain the measured tilt patterns in the absence of shear stresses in the fracture planes. This work represents the first large-scale hydraulic-fracturing experiment in which the possible effects of material anisotropy and fracture-parallel shears have been measured and interpreted.

Holzhausen, G.R.; Haase, C.S.; Stow, S.H.; Gazonas, G.

1985-01-01T23:59:59.000Z

368

Horizontal well IPR calculations  

SciTech Connect (OSTI)

This paper presents the calculation of near-wellbore skin and non-Darcy flow coefficient for horizontal wells based on whether the well is drilled in an underbalanced or overbalanced condition, whether the well is completed openhole, with a slotted liner, or cased, and on the number of shots per foot and phasing for cased wells. The inclusion of mechanical skin and the non-Darcy flow coefficient in previously published horizontal well equations is presented and a comparison between these equations is given. In addition, both analytical and numerical solutions for horizontal wells with skin and non-Darcy flow are presented for comparison.

Thomas, L.K.; Todd, B.J.; Evans, C.E.; Pierson, R.G.

1996-12-31T23:59:59.000Z

369

Analytical modeling of a fracture-injection/falloff sequence and the development of a refracture-candidate diagnostic test  

E-Print Network [OSTI]

.......................... 203 APPENDIX C ? FRACTURE-INJECTION/FALLOFF SOLUTIONS IN A RESERVOIR WITHOUT A PRE-EXISTING FRACTURE...................................................... 213 APPENDIX D ? ANALYTICAL PRESSURE-TRANSIENT SOLUTION FOR A WELL CONTAINING MULTIPLE..................................................................................................................................... 11 1.7 Frontier well GRBU 45-12 production decline before and after the refracture treatment. Solid curve is the extrapolated production decline without a refracture treatment. ................ 12 1.8 Frontier well WSC 20-09D production decline...

Craig, David Paul

2006-08-16T23:59:59.000Z

370

Colloid migration in fractured media  

SciTech Connect (OSTI)

Field studies at the Nevada Test Site by researchers at Lawrence Livermore National Laboratory have demonstrated that radionuclides are being transported by colloidal material suspended in groundwater. This observation is counter to most predictions from contaminant transport models because the models assume adsorbed species are immobile. The purpose of this research is to quantify the transport processes for colloidal materials and develop the mechanistic understanding necessary to predict radionuclide transport in fractured media. There were three areas of investigation during this year that have addressed these issues: chemical control of colloid deposition on clean mineral surfaces, colloid accumulation on fracture surfaces, and the influence of deposited colloids on colloid and tracer migration. 7 refs.

Hunt, J.R. (California Univ., Berkeley, CA (USA). Dept. of Civil Engineering)

1989-09-15T23:59:59.000Z

371

Underground Wells (Oklahoma)  

Broader source: Energy.gov [DOE]

Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

372

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network [OSTI]

responses during hydraulic fracturing, and aid developmentFracture Monitoring Hydraulic fracturing is a method forfluids" used for hydraulic fracturing, the above frequencies

Nelson, J.T.

2009-01-01T23:59:59.000Z

373

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

374

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

375

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation Effects on Human Irradiation Effects on Human Cortical Bone Fracture Behavior Irradiation Effects on Human Cortical Bone Fracture Behavior Print Wednesday, 28 July 2010 00:00 Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

376

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

377

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

378

Fracture of irradiated zircaloy-2  

Science Journals Connector (OSTI)

This paper summarizes the results of a series of investigations to evaluate the fracture behavior of Zircaloy-2 as influenced by BWR and PWR conditions. The results show that the response of the fracture toughness of Zircaloy-2 to various combinations of cold work, hydrogen content and neutron fluence in hot pressurized water is characterized by embrittlement to a point where saturation in the fracture toughness is attained. Further in-reactor exposure beyond this saturation point appears to have no effect on toughness although other mechanical properties such as flow stress continue to change. In addition, anisotropy in the toughness of rolled plate material, evident in the unirradiated condition, is retained during in-reactor exposure and after increases in hydrogen content. Several processes are thought to be contributing to the toughness of Zircaloy-2 during irradiation. The reduction in toughness at low exposures must result from defect interactions with the deformation modes and the formation of the brittle hydride phase. However, the occurrence of saturation is not explained by these mechanisms in view of data on other mechanical properties and corrosion rates. It is suggested that the difference in the conditions for initiation of slip and twinning would indicate that the twinning component of deformation is not reduced by irradiation damage as much as the slip component. Saturation is, therefore, interprétable on the basis that twinning plays a major role in the crack tip plastic zone after irradiation. Additional study of the importance of twinning in determining the toughness of Zircaloy-2 was attempted by examining the relationship between texture and the anisotropy in fracture toughness. A correlation is shown to exist between the crack tip shear stresses resolved on the 1121 twin system and the toughness anisotropy.

R.G. Hoagland; R.G. Rowe

1969-01-01T23:59:59.000Z

379

Economic design of wells  

Science Journals Connector (OSTI)

...concepts and the general principles outlined...with wells of the general configuration shown...internal com- bustion engine. It is assumed that...analysis, consider a diesel- powered well of...modified to use either a general expression for performance...written in terms of diesel-powered wells...

R. F. Stoner; D. M. Milne; P. J. Lund

380

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class in same GDB as the well points FC, with one polygon field record (may be multiple polygon rings) per field_name. Overlapping buffers for the same field name are dissolved and unioned (see figure below). Adds an attribute PCTFEDLAND which can be populated using the VBA

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Well drilling apparatus  

SciTech Connect (OSTI)

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

382

A Multi-stage Stochastic Integer Programming Approach for ...  

E-Print Network [OSTI]

IBM T. J. Watson Research Center. Yorktown Heights, NY 10598 ... In all of these applications, the expansion of production capacity requires the commitment of ...

2001-02-02T23:59:59.000Z

383

Information input for multi-stage stochastic programs  

Science Journals Connector (OSTI)

......worst-case approach to risk management are described...Operations Research & Management Science). New York...semidefinite programming approach to optimal moment...Man- agement Science: Stochastic...Applications to Risk Management. Princeton......

Jana Cerbáková

2010-04-01T23:59:59.000Z

384

Computational design of multi-stage deformation processes Nicholas Zabaras  

E-Print Network [OSTI]

Ganapathysubramanian Graduate Research Assistant A review will be provided of recent advances towards the development, Int. J. Mech. Sciences, submitted for publication. Work supported by the Computational Mathematics-0113295). Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace En

Zabaras, Nicholas J.

385

No. 2014-056 MULTI-STAGE ADJUSTABLE ROBUST MIXED ...  

E-Print Network [OSTI]

Sep 29, 2014 ... ?CentER and Department of Econometrics and Operations ...... We sample 50 instances for each N and conduct 8 splitting rounds for N = 5,10,.

2014-10-02T23:59:59.000Z

386

A scalable bounding method for multi-stage stochastic integer ...  

E-Print Network [OSTI]

tic programs. However, most practical instances are so large and/or complex that it is impossible to solve them on a single computer, especially due to memory ...

2014-05-30T23:59:59.000Z

387

Multi-stage Stochastic Linear Programming: Scenarios Versus Events  

E-Print Network [OSTI]

average scenario). In the ELP approach, the potentially huge scenario tree of the SLP approach is ...... [13] J. Gondzio, R. Sarkissian, and J.-Ph. Vial. Parallel ...

2010-05-17T23:59:59.000Z

388

Catalytic multi-stage liquefaction (CMSL). Final report  

SciTech Connect (OSTI)

The 17-day bench run CMSL-6 (227-83), on Black Thunder Mine subbituminous coal and with an approximate space velocity of 481 kg/hr/m{sup 3} (30 lb/hr/ft{sup 3}), tested the performance of a dispersed slurry catalyst in powdered form added to the first stage thermal reactor. This catalyst, based on molybdenum-containing sulfated iron oxide prepared at HTI, had about 15% moisture, 43% Fe and 7% Mo with a BET surface area of about 40 m{sup 2}/g. The second stage reactor had a partially deactivated Shell S-317 catalyst (initial age=520 kg-coal/kg-catalyst) to make the effects of the slurry catalyst more apparent and to attain a realistic equilibrium catalyst age sooner. An in-line hydrotreater was successfully employed during this run to treat atmospheric still overhead and separator overhead products. No interstage product separator was utilized in this run. For the first run condition, the catalyst additive rate was 1400-4300 ppm (of coal) Fe with 200-700 ppm Mo using a slurrying oil recycle consisting of 60% of filtered product slurry and 40% of ashy recycle (unfiltered product slurry) at a relatively low severity with first and second stage temperatures of 427{degrees}C and 413{degrees}C (800{degrees}F and 775{degrees}F), respectively. After that the additive rate was lowered to 700 ppm Fe with 100 ppm of Mo and the severity was increased with first and second stage temperatures of 441{degrees}C and 427{degrees}C (825{degrees}F and 800{degrees}F) respectively. The proportion of ashy recycle was maintained at 40% in Condition 2, and it was lowered to 25% in Condition 3. In Condition 4, the proportion of ashy recycle was set at 50%, but, because of slowing of the product slurry filtration, vacuum distillate recycle (and makeup oil) was substituted for the filtered liquid constituent of the recycled oil. With the changes of the proportion of ashy recycle the total slurry catalyst in the system (added and recycled) ranged from 860 to 6345 ppm Fe with 140 to 1030 ppm Mo.

NONE

1996-11-01T23:59:59.000Z

389

Multi Stage Underwater Sensor Localization using Mobile Beacons  

E-Print Network [OSTI]

. Then, they dive to the level of the underwater sensors to advertise these coordinates. In turn to perform, including: oceanographic data collection, ecological applications (e.g. pollution, water quality

Paparella, Francesco

390

Reservoir Characterization and Waterflood Performance Evaluation of Granite Wash Formation, Anadarko Basin  

E-Print Network [OSTI]

. The wells are stimulated by multi-stage hydraulic fracturing. The initial production gas-oil ratio is 1800 scf/stb and PVT reports indicate presence of an oil reservoir above bubble point pressure. PVT correlations show that the 42º API oil and potential...

Nilangekar, Akshay Anand

2014-05-08T23:59:59.000Z

391

Fracture induced anisotropy in viscoelastic UNLP, 11 Octubre de 2012  

E-Print Network [OSTI]

Fracture induced anisotropy in viscoelastic media UNLP, 11 Octubre de 2012 . Fracture induced anisotropy in viscoelastic media ­ p. #12;Fractured media. I Fractures are common in the earth's crust due to different factors, for instance, tectonic stresses and natural or artificial hydraulic fracturing caused

Santos, Juan

392

Transitionaltensile fracture propagation: a status report T. Engelder  

E-Print Network [OSTI]

Abstract One model for the development of hybrid shear fractures is transitional±tensile fracture that is the hybrid of a joint and a shear fracture. Crack±seal veins with oblique ®bers are possible candidates of a spectrum of brittle fracture types, and that some fractures are a hybrid of both end members (cf. Hancock

Engelder, Terry

393

Fracture toughness evaluation for N Reactor pressure tubes of Zircaloy-2 using the electric-potential method  

SciTech Connect (OSTI)

Zircaloy is commonly used for the cladding or pressure tubes in commercial reactors because of its strength, corrosion resistance, and low absorption of thermal neutrons. Fracture toughness test techniques using small samples fabricated from archival materials from N Reactor pressure tubes of Zircaloy-2 were developed to study the factors affecting tube fracture toughness. Compact tension specimen thickness was limited by the wall thickness (7 mm) of the tubes. Specimens (5 mm thick) were prepared for fracture toughness testing and results were analyzed using the J-integral approach. To reduce the high cost of irradiated specimen testing and to more easily precrack specimens remotely, single-specimen potential drop techniques were employed to evaluate the fracture toughness of Zircaloy-2. The initiation fracture toughness was determined from J-R curves, which were constructed by plotting values of J as a function of crack extension computed from the electric-potential calibration curve. The J-R curves obtained from the calibration curve equation fit the blunting line region. The curves also fit heat-tint data well. The effects of neutron fluence and hydrogen content on the fracture toughness of N Reactor pressure tubes were evaluated. Neutron irradiation substantially degraded fracture toughness. Increasing fluence decreased the fracture toughness of the alloy. Hydrogen also decreased fracture toughness, but this effect was insignificant for the pressure tubes tested. 8 refs., 13 figs., 3 tabs.

Huang, F.H.

1991-11-01T23:59:59.000Z

394

Laboratory analysis of fluid flow and solute transport through a variably saturated fracture embedded in porous tuff  

SciTech Connect (OSTI)

Laboratory techniques are developed that allow concurrent measurement of unsaturated matrix hydraulic conductivity and fracture transmissivity of fractured rock blocks. Two Apache Leap tuff blocks with natural fractures were removed from near Superior, Arizona, shaped into rectangular prisms, and instrumented in the laboratory. Porous ceramic plates provided solution to block tops at regulated pressures. Infiltration tests were performed on both test blocks. Steady flow testing of the saturated first block provided estimates of matrix hydraulic conductivity and fracture transmissivity. Fifteen centimeters of suction applied to the second block top showed that fracture flow was minimal and matrix hydraulic conductivity was an order of magnitude less than the first block saturated matrix conductivity. Coated-wire ion-selective electrodes monitored aqueous chlorided breakthrough concentrations. Minute samples of tracer solution were collected with filter paper. The techniques worked well for studying transport behavior at near-saturated flow conditions and also appear to be promising for unsaturated conditions. Breakthrough curves in the fracture and matrix, and a concentration map of chloride concentrations within the fracture, suggest preferential flows paths in the fracture and substantial diffusion into the matrix. Average travel velocity, dispersion coefficient and longitudinal dispersivity in the fracture are obtained. 67 refs., 54 figs., 23 tabs.

Chuang, Y.; Haldeman, W.R.; Rasmussen, T.C.; Evans, D.D. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

1990-02-01T23:59:59.000Z

395

Results of a 1995 hydraulic fracturing survey and a comparison of 1995 and 1990 industry practices  

SciTech Connect (OSTI)

This paper presents the results of a hydraulic fracturing survey conducted in 1995 on behalf of the Gas Research institute (GRI). The purpose of the survey was to determine the types of formations that are normally fracture treated; gather data on the fracture treatments that are normally pumped; determine the level of data collection being conducted in the field; determine the level of data analysis being conducted in the office and the field; solicit opinions on the level of technology required to obtain an accurate analysis for fracture treatments; solicit opinions of the limitations of current technology; determine what costs operators could justify to analyze fracture treatment data and obtain ideas on new areas of research. Data gathered in the survey included respondents company size (major, large/small independent, service company or consultant), geographical area of operation, well depths and permeabilities, fracture treatment size, proppant type and volume, level of detail in data gathering, fracture treatment design and real-time analysis. The 1995 data were compared to a similar survey conducted in 1990 by GRI to determine technology trends.

Carter, R.H.; Holditch, S.A.; Wolhart, S.L.

1996-12-31T23:59:59.000Z

396

well | OpenEI  

Open Energy Info (EERE)

43 43 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280543 Varnish cache server well Dataset Summary Description The California Division of Oil, Gas, and Geothermal Resources contains oil, gas, and geothermal data for the state of California. Source California Division of Oil, Gas, and Geothermal Resources Date Released February 01st, 2011 (3 years ago) Date Updated Unknown Keywords California data gas geothermal oil well Data application/vnd.ms-excel icon California district 1 wells (xls, 10.1 MiB) application/vnd.ms-excel icon California district 2 wells (xls, 4 MiB) application/vnd.ms-excel icon California district 3 wells (xls, 3.8 MiB) application/zip icon California district 4 wells (zip, 11.2 MiB)

397

Proppant flowback control in coal bed methane wells: experimental study and field application  

Science Journals Connector (OSTI)

Proppant flowback after fracturing coal bed methane (CBM) wells is a very common challenge which results in fracture pinching out, noticeable well productivity decrease, downhole and surface facility damage, etc. In this paper, fibre was studied as a low-cost and environmentally friendly additive to control proppant flowback in CBM well fracturing operation. Two kinds of glass fibre (short fibre and long fibre) are selected. Extensive experimental studies have been conducted to test the effects of fibre concentration and fibre control length exerting on the critical proppant flowback rate. The optimal fibre combination is 1:2 as the mass ratio of long fibre to short fibre. And fibre control length is 225 mm in a 300 mm tube. An optimisation model is also presented to optimise the fibre concentration and fibre control length in the field application. So the in-situ fracturing design can be conducted by repeating fracture propagation and proppant transport simulations and parameters optimisations. The experimental results and the optimisation model were applied in CBM well fracturing in Hancheng area in China. 23 tested wells have achieved a significant increase of gas production and decrease of workover times than the 9 offset ones without fibre-added sand. [Received: 22 October 2012; Accepted: 3 April 2013

Kai Zhu; Dali Guo; Xiaohui Zeng; Shuguang Li; Chuanqing Liu

2014-01-01T23:59:59.000Z

398

Hydraulic fracturing in tight, fissured media  

SciTech Connect (OSTI)

Large volumes of natural gas are found in tight, fissured reservoirs. Hydraulic fracturing can enhance recovery, but many complications, such as pressure-sensitive or accelerated leakoff, damage, and complex fracturing, arise during treatment of such reservoirs. This paper reports that special procedures generally should be considered during breakdown and fracturing of these reservoirs. In addition, the use of alternative stimulation strategies may be beneficial.

Warpinski, N.R. (Sandia National Lab., Albuquerque, NM (US))

1991-02-01T23:59:59.000Z

399

Petroleum well costs.  

E-Print Network [OSTI]

??This is the first academic study of well costs and drilling times for Australia??s petroleum producing basins, both onshore and offshore. I analyse a substantial… (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

400

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network [OSTI]

INVESTIGATION OF THE EFFECT OF GEL RESIDUE ON HYDRAULIC FRACTURE CONDUCTIVITY USING DYNAMIC FRACTURE CONDUCTIVITY TEST A Thesis by FIVMAN MARPAUNG Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2007 Major Subject: Petroleum Engineering INVESTIGATION OF THE EFFECT OF GEL RESIDUE ON HYDRAULIC FRACTURE CONDUCTIVITY USING DYNAMIC FRACTURE CONDUCTIVITY TEST A...

Marpaung, Fivman

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural and Induced Fracture Diagnostics from 4-D VSP in low Permeability Gas Reservoirs  

SciTech Connect (OSTI)

Tight gas sand reservoirs generally contain thick gas-charged intervals that often have low porosity and very low permeability. Natural and induced fractures provide the only means of production. The objective of this work is to locate and characterize natural and induced fractures from analysis of scattered waves recorded on 4-D (time lapse) VSP data in order to optimize well placement and well spacing in these gas reservoirs. Using model data simulating the scattering of seismic energy from hydraulic fractures, we first show that it is possible to characterize the quality of fracturing based upon the amount of scattering. In addition, the picked arrival times of recorded microseismic events provide the velocity moveout for isolating the scattered energy on the 4-D VSP data. This concept is applied to a field dataset from the Jonah Field in Wyoming to characterize the quality of the induced hydraulic fractures. The time lapse (4D) VSP data from this field are imaged using a migration algorithm that utilizes shot travel time tables derived from the first breaks of the 3D VSPs and receiver travel time tables based on the microseismic arrival times and a regional velocity model. Four azimuthally varying shot tables are derived from picks of the first breaks of over 200 VSP records. We create images of the fracture planes through two of the hydraulically fractured wells in the field. The scattered energy shows correlation with the locations of the microseismic events. In addition, the azimuthal scattering is different from the azimuthal reflectivity of the reservoir, giving us more confidence that we have separated the scattered signal from simple formation reflectivity. Variation of the scattered energy along the image planes suggests variability in the quality of the fractures in three distinct zones.

Mark Willis; Daniel Burns; M. Nafi Toksoz

2008-09-30T23:59:59.000Z

402

Shale Gas Development Challenges: Fracture Fluids | Department...  

Office of Environmental Management (EM)

Fluids Shale Gas Development Challenges: Fracture Fluids More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary FracFocus 2.0 Task Force...

403

Hydraulic fracturing and shale gas extraction.  

E-Print Network [OSTI]

??In the past decade the technique of horizontal drilling and hydraulic fracturing has been improved so much that it has become a cost effective method… (more)

Klein, Michael

2012-01-01T23:59:59.000Z

404

Geomechanical review of hydraulic fracturing technology .  

E-Print Network [OSTI]

??Hydraulic fracturing as a method for recovering unconventional shale gas has been around for several decades. Significant research and improvement in field methods have been… (more)

Arop, Julius Bankong

2013-01-01T23:59:59.000Z

405

Geothermal: Sponsored by OSTI -- Fracture Characterization in...  

Office of Scientific and Technical Information (OSTI)

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

406

Structural Settings Of Hydrothermal Outflow- Fracture Permeability...  

Open Energy Info (EERE)

Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

407

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

5 4.5.2 Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Presentation Number: 022 Investigator: Queen, John (Hi-Q Geophysical Inc.) Objectives: To develop...

408

Microearthquake Technology for EGS Fracture Characterization...  

Broader source: Energy.gov (indexed) [DOE]

1 4.5.1 Microearthquake Technology for EGS Fracture Characterization Presentation Number: 021 Investigator: Foulger, Gillian (Foulger Consulting) Objectives: To understand how EGS...

409

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for the quarter of October 1, 1997--December 31, 1997 consisted of two tasks: (1) Present results of Rulison field test at various conferences, seminars, and to Barrett Resources and Snyder Oil Co. and (2) Continue work into developing a predictive quantitative method for locating fault-related natural fractures. The first task was completed during this reporting period. The second task continues the beginning of quantitative fracture mechanics analysis of the geologic processes that are involved for the development of fault-related natural fractures. The goal of this work is to develop a predictive capability of locating natural fractures prior to drilling.

NONE

1998-09-30T23:59:59.000Z

410

Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation on Production from Shale Formations: Application to New  

E-Print Network [OSTI]

SPE 125893 Economic Impact of Reservoir Properties, Horizontal Well Length and Orientation production. Economic analyses are performed to identify and rank the impact of the above parameters. (3) The lack of dense natural fractures does not eliminate the potential for an economic fracture

Mohaghegh, Shahab

411

Geometrical and transport properties of single fractures: influence of the roughness of the fracture  

E-Print Network [OSTI]

Geometrical and transport properties of single fractures: influence of the roughness of the fracture walls H. Auradou Univ Pierre et Marie Curie-Paris6, Univ Paris-Sud, CNRS, F-91405. Lab FAST, Bat reviews the main features of the transport properties of single fractures. A particular attention paid

Paris-Sud XI, Université de

412

Phenomenal well-being  

E-Print Network [OSTI]

rated against the experience of the individualÂ?s other possible lives. Unlike well-being, PWB is guaranteed to track more robust experiential benefits that a person gets out of living a life. In this work, I discuss the concept of well-being, including...

Campbell, Stephen Michael

2006-08-16T23:59:59.000Z

413

Laboratory-scale fracture conductivity created by acid etching  

E-Print Network [OSTI]

Success of acid fracturing treatment depends greatly on the created conductivity under closure stress. In order to have sufficient conductivity, the fracture face must be non-uniformly etched while the fracture strength maintained to withstand...

Pournik, Maysam

2009-05-15T23:59:59.000Z

414

MULTIDIMENSIONAL NUMERICAL SIMULATION OF FLUID FLOW IN FRACTURED POROUS MEDIA  

E-Print Network [OSTI]

and fluid flow in the hydraulic fracturing process." Ph.D.depth by means of hydraulic fracturing." in Rock Mechanics:Fig. 13. Simulation of hydraulic fracturing: field data on

Narasimhan, T.N.

2014-01-01T23:59:59.000Z

415

A PKN Hydraulic Fracture Model Study and Formation Permeability Determination  

E-Print Network [OSTI]

Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional...

Xiang, Jing

2012-02-14T23:59:59.000Z

416

FINITE FRACTURE MECHANICS OF MATRIX MICROCRACKING IN COMPOSITES  

E-Print Network [OSTI]

FINITE FRACTURE MECHANICS OF MATRIX MICROCRACKING IN COMPOSITES JOHN A. NAIRN INTRODUCTION damage following complex loading conditions. This chapter describes a fracture mechanics approach to the microcracking problem. A complicating feature of composite fracture mechanics analysis is that laminates often

Nairn, John A.

417

Seismic characterization of fractured reservoirs using 3D double beams  

E-Print Network [OSTI]

We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

Zheng, Yingcai

2012-01-01T23:59:59.000Z

418

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

419

Fracture orientation analysis by the solid earth tidal strain method | Open  

Open Energy Info (EERE)

orientation analysis by the solid earth tidal strain method orientation analysis by the solid earth tidal strain method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fracture orientation analysis by the solid earth tidal strain method Details Activities (1) Areas (1) Regions (0) Abstract: A new practical method has been developed to estimate subsurface fracture orientation based on an analysis of solid earth tidal strains. The tidal strain fracture orientation technique is a passive method which has no depth limitation. The orientation of either natural or hydraulically stimulated fractures can be measured using either new or old static observation wells. Estimates for total compressibility and areal interconnected porosity can also be developed for reservoirs with matrix permeability using a combination of tidal and barometric strain analysis.

420

Dynamic fluid loss in hydraulic fracturing under realistic shear conditions in high-permeability rocks  

SciTech Connect (OSTI)

A study of the dynamic fluid loss of hydraulic fracturing fluids under realistic shear conditions is presented. During a hydraulic fracturing treatment, a polymeric solution is pumped under pressure down the well to create and propagate a fracture. Part of the fluid leaks into the rock formation, leaving a skin layer of polymer or polymer filter cake, at the rock surface or in the pore space. This study focuses on the effects of shear rate and permeability on dynamic fluid-loss behavior of crosslinked and linear fracturing gels. Previous studies of dynamic fluid loss have mainly been with low-permeability cores and constant shear rates. Here, the effect of shear history and fluid-loss additive on the dynamic leakoff of high-permeability cores is examined.

Navarrete, R.C.; Cawiezel, K.E.; Constien, V.G. [Dowell Schlumberger, Tulsa, OK (United States)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

INNOVATAIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN  

SciTech Connect (OSTI)

In the structure task, for this reporting period, the authors also edited and revised the map that displays the modified rose diagrams for the data they collected and reduced along the east side of Seneca Lake. They also revised the N-S transect that displays the frequency of ENE-striking fractures, and constructed a new N-S transect that shows the frequency of E-striking fractures. This transect compliments the earlier transect they constructed for fracture frequency of ENE-striking fractures. Significantly, the fracture frequency transect for E-W fractures shows a spike in fracture frequency in the region of the E-striking Firtree anticline that is observed on seismic reflection sections. The ENE fracture set does not exhibit an unusually high fracture frequency in this area. In contrast, the fracture frequency of the ENE-striking set is anomalously high in the region of the Trenton/Black River grabens. They have nearly completed reducing the data they collected from a NNW-SSE transect on the west side of Cayuga Lake and they have constructed modified rose diagrams for most sites. Structure contour maps and isopach maps have been revised based on additional well log analyses. Except for the Glodes Corners Field, the well spacing generally remains insufficient to identify faults or their precise locations. However, relatively sharp elevational changes east of Keuka Lake support the contention that faults occur along the east side of Keuka Lake. Similarly, a single well east of Seneca Lake shows that the Trenton there is low compared to distant wells, based on an assumed regional slope. This same area is where one of the Trenton grabens occurs. They have completed the interpretation of the reprocessed data that Quest licensed and had reprocessed. Several grabens observed in the Trenton and Black River reflectors are consistent with surface structure, soil gas, and aeromagnetic anomalies. In this report they display all four interpreted seismic lines. These data indicate that integration of aeromagnetic and topographic lineaments, surface structure, soil gas with seismic and well logs allows them to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

Robert Jacobi; John Fountain

2002-06-30T23:59:59.000Z

422

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class...

423

Shock Chlorination of Wells  

E-Print Network [OSTI]

Shock chlorination is a method of disinfecting a water well. This publication gives complete instructions for chlorinating with bleach or with dry chlorine. It is also available in Spanish as publication L-5441S...

McFarland, Mark L.; Dozier, Monty

2003-06-11T23:59:59.000Z

424

Rock-Fluid Chemistry Impacts on Shale Hydraulic Fracture and Microfracture Growth  

E-Print Network [OSTI]

fracturing fluids, to achieve improved fracture performance and higher recovery of natural gas from shale reservoirs....

Aderibigbe, Aderonke

2012-07-16T23:59:59.000Z

425

Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine  

E-Print Network [OSTI]

injection and hydraulic fracturing stress measurements inlevel measured with hydraulic fracturing (reproduced from

Rutqvist, J.

2011-01-01T23:59:59.000Z

426

E-Print Network 3.0 - apophyseal ring fracture Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fracture Search Powered by Explorit Topic List Advanced Search Sample search results for: apophyseal ring fracture...

427

Aging and Fracture of Human Cortical Bone and Tooth Dentin  

E-Print Network [OSTI]

in both biological materials, resistance to fracture arisesof fracture resistance in these biological materials, asresistance path along these interfaces through the material.

Ager III, Joel W.

2008-01-01T23:59:59.000Z

428

Numerical Modeling of Hydraulic Fracturing in Oil Sands  

E-Print Network [OSTI]

Hydraulic fracturing is a widely used and e cient technique for enhancing oil ... for analyzing hydraulic fracturing in rocks, are in general not satisfactory for oil ...

2008-11-16T23:59:59.000Z

429

Finite element modeling of hydraulic fracturing in 3D  

E-Print Network [OSTI]

Mar 22, 2013 ... Two examples of hydraulic fracturing are given. when the pressure buildup ... Hydraulic fracturing is the coupled dynamics of frac- ture and ?uid ...

2013-03-22T23:59:59.000Z

430

Seismic Studies of a Massive Hydraulic Fracturing Experiment...  

Open Energy Info (EERE)

a Massive Hydraulic Fracturing Experiment Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Seismic Studies of a Massive Hydraulic Fracturing...

431

Use of Tracers to Characterize Fractures in Engineered Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

define the subsurface system of fractures and mapping of fluid flow. * limited fracture detection capability * lack of high-temperature monitoring tools and sensors *...

432

Characterizing Fractures in the Geysers Geothermal Field by Micro...  

Broader source: Energy.gov (indexed) [DOE]

Efficient Use of MEQ Data Auto-picker Soft Computing Triggered vs induced seismicity. Fracture Mapping Fractal Dimensions Hot dry rock fracture regime Monitoring FluidTemp Dynamic...

433

The Role of Geochemistry and Stress on Fracture Development and...  

Broader source: Energy.gov (indexed) [DOE]

The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs The Role of Geochemistry and Stress on Fracture Development and Proppant...

434

Detecting Fractures Using Technology at High Temperatures and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting...

435

Tracer Methods for Characterizing Fracture Creation in Enhanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture...

436

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir...

437

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications...

438

Detecting Fractures Using Technology at High Temperatures and...  

Broader source: Energy.gov (indexed) [DOE]

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI) Presentation Number: 015 Investigator: Patterson, Doug (Baker Hughes...

439

Imaging, Characterizing, and Modeling of Fracture Networks and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS...

440

Irradiation Effects on Human Cortical Bone Fracture Behavior  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Imaging, Characterizing, and Modeling of Fracture Networks and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Lianjie Huang Los Alamos National Lab Seismicity and Reservoir Fracture Characterization...

442

Fracture Evolution Following a Hydraulic Stimulation within an...  

Broader source: Energy.gov (indexed) [DOE]

define the subsurface system of fractures and mapping of fluid flow. * limited fracture detection capability * lack of high-temperature monitoring tools and sensors *...

443

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in...

444

Three-dimensional Modeling of Fracture Clusters in Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in...

445

Joint inversion of electrical and seismic data for Fracture char...  

Broader source: Energy.gov (indexed) [DOE]

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Joint inversion of electrical and seismic data for Fracture char....

446

Fracture Evolution Following a Hydraulic Stimulation within an...  

Broader source: Energy.gov (indexed) [DOE]

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir DOE Geothermal Peer Review...

447

Displacement and segment linkage in fracture zones  

SciTech Connect (OSTI)

Fault zones and vein arrays are composed of overstepping and linked segments, so knowledge of segment evolution is crucial in understanding the development of zones. Displacement-distance profiles of faults and veins are used to study the development of segments and zones. Detailed mapping of normal and strike-slip faults allows comparison of the displacement-distance characteristics of faults both normal and parallel to the displacement vector, i.e. modes III and II propagation respectively. Similarly, vein width variations can be used to study mode I propagation. Displacement varies with distance along fractures, with zero displacement at fracture tips. Steep displacement gradients can occur where faults and extension fractures overstep because of displacement transfer between the segments. This displacement transfer is accommodated by relay and bridge structures. Overstepping fractures may link to form a single fracture with an irregular displacement-distance profile. A linkage point is often marked by a bend with a displacement minimum, where relay/bridge structures are preserved as normal drag. Displacement variations are also caused by fault bends, conjugate relationships and by lithological variations. As interaction between fractures increases, r/d[sub MAX] ratios tend to decrease (where r = the distance between the tip and the point of maximum displacement, and d[sub MAX] = maximum displacement). As a result of the interaction of fracture segments, fracture zones tend to have complex displacement-distance profiles.

Peacock, D.C.P.; Sanderson, D.J. (Univ. of Southampton (United Kingdom). Dept. of Geology)

1992-01-01T23:59:59.000Z

448

Harmonic experiments to model fracture induced anisotropy  

E-Print Network [OSTI]

´oleo (IGPUBA), Universidad de Buenos Aires, Argentina, and Universidad Nacional de La Plata, Argentina. work;Fractured media. III · Displacement discontinuities conserve energy, while velocity discontinuities generate energy loss at the fractures. The specific viscosity accounts for the presence of a liquid under

Santos, Juan

449

Harmonic experiments to model fracture induced anisotropy  

E-Print Network [OSTI]

´oleo (IGPUBA), Universidad de Buenos Aires, Argentina, and Universidad Nacional de La Plata, Argentina. work;Fractured media. III Displacement discontinuities conserve energy, while velocity discontinuities generate energy loss at the fractures. The specific viscosity accounts for the presence of a liquid under

Santos, Juan

450

Fracture mechanics of cellular glass  

SciTech Connect (OSTI)

Cellular glasses are prime candidate materials for the structural substrate of mirrored glass for solar concentrator reflecting panels. These materials are brittle, however, and susceptible to mechanical failure from slow crack growth caused by a stress corrosion mechanism. The results are detailed of one part of a program established to develop improved cellular glasses and to characterize the behavior of these and commercially available materials. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials are developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region I may be slower, by orders of magnitude, than that found in dense glasses.

Zwissler, J.G.; Adams, M.A.

1981-02-01T23:59:59.000Z

451

Evaluation of Acid Fracturing Using the Method of Distributed Volumetric Sources  

E-Print Network [OSTI]

acid volume versus cumulative production with optimum fracture half length............................................................................................40 4.1 For Well SA-2, IPR and VLP curves shows production rates... at the beginning of production....................................................................................47 4.2 For Well SA-2, IPR & VLP curves shows production rates at the end of production history; the absolute open flow (AOF) of IPR is much less...

Lee, Jaehun

2010-01-14T23:59:59.000Z

452

Hydraulic Fracturing Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil & Gas » Shale Gas » Hydraulic Oil & Gas » Shale Gas » Hydraulic Fracturing Technology Hydraulic Fracturing Technology Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Image taken from "Shale Gas: Applying Technology to Solve America's Energy Challenges," NETL, 2011. Hydraulic fracturing is a technique in which large volumes of water and sand, and small volumes of chemical additives are injected into low-permeability subsurface formations to increase oil or natural gas flow. The injection pressure of the pumped fluid creates fractures that enhance gas and fluid flow, and the sand or other coarse material holds the fractures open. Most of the injected fluid flows back to the wellbore and is pumped to the surface.

453

Case study of a horizontal well in a layered Rotliegendes gas field  

SciTech Connect (OSTI)

A horizontal well was drilled in the Ravenspurn North field to drain a thin gas column above the aquifer. The field has a significant variation in reservoir quality, with most of the wells requiring stimulation by hydraulic fracturing. The reservoir is formed from a stacked sequence of aeolian dune and fluvial sandstones with a wide permeability range. The horizontal well was chosen as an alternative to stimulation by hydraulic fracturing to avoid water production from the aquifer. The well was successful, flowing at higher gas rates than expected with no water production. Production, core, and production logging data were used to demonstrate greater than expected lateral heterogeneity in the field. The horizontal well was found to be appropriate for the very specific conditions found in one part of the reservoir; however, the overall development strategy of using hydraulic fracture remains the preferred technique.

Catterall, S.J.A.; Yaliz, A. (Hamilton Oil Co. Ltd., London (United Kingdom))

1995-02-01T23:59:59.000Z

454

Self-potential observations during hydraulic fracturing  

SciTech Connect (OSTI)

The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

Moore, Jeffrey R.; Glaser, Steven D.

2007-09-13T23:59:59.000Z

455

Fully coupled fluid flow and geomechanics in the study of hydraulic fracturing and post-fracture production.  

E-Print Network [OSTI]

??This work addresses the poroelastic effect on the processes involved in hydraulic fracturing and post-fracture production using a finite element based fully coupled poroelastic model… (more)

Aghighi, Mohammad Ali

2007-01-01T23:59:59.000Z

456

An integrated approach to evaluation of horizontal well prospects in the Niobrara Shale  

SciTech Connect (OSTI)

Integrated use of surface and subsurface geologic data, structural deformation analysis from second-derivative maps, and dimensionless type curves in identifying potential horizontal well locations in the fractured Niobrara Shale of northwest Colorado is described. The analysis included construction of detailed structure maps from surface geology with tie-ins to seismic surveys and well control and of second-derivative maps that were overlaid on production data to determine the minimum radius of curvature required for commercial production. Reservoir properties were calculated for known fields from type-curve matching with type curves for dual-porosity, anisotropic reservoirs with stress-sensitive permeability. The curves were constructed for vertical and horizontal wells by use of reservoir-simulation models. Spacing and economics of drilling horizontal Niobrara wells in northwest Colorado were evaluated. The analysis suggests that recoverable oil from the fractured Niobrara in northwest Colorado averages 1,392 bbl oil/acre on the basis of a productive fracture area identified by second derivatives of the structural surface with values > 1{times}10{sup {minus}4.5}ft{sup {minus}1}. It is also indicated that horizontal well spacing in the fractured Niobrara should be >640 acres. In some instances, it may be more economical to develop the fractured Niobrara with vertical rather than horizontal wells.

Stright, D.H. Jr. [Simtech Consulting Services Inc., Golden, CO (United States); Robertson, R.D. [Cabot Oil and Gas, Denver, CO (United States)

1995-11-01T23:59:59.000Z

457

Economic design of wells  

Science Journals Connector (OSTI)

...year, c is the cost per lb of diesel fuel, and Co is the cost per...program was written in terms of diesel-powered wells, modifications...charac- teristics of pump-engine combinations and are again...water encountered. There is a fundamental difference between the design...

R. F. Stoner; D. M. Milne; P. J. Lund

458

Parallel, Multigrid Finite Element Simulator for Fractured/Faulted and Other Complex Reservoirs based on Common Component Architecture (CCA)  

SciTech Connect (OSTI)

Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore volume of injection at lower rates. However, if oil production can be continued at high water cuts, the discounted cumulative production usually favors higher production rates. The workflow developed during the project was also used to perform multiphase simulations in heterogeneous, fracture-matrix systems. Compositional and thermal-compositional simulators were developed for fractured reservoirs using the generalized framework. The thermal-compositional simulator was based on a novel 'equation-alignment' approach that helped choose the correct variables to solve depending on the number of phases present and the prescribed component partitioning. The simulators were used in steamflooding and in insitu combustion applications. The framework was constructed to be inherently parallel. The partitioning routines employed in the framework allowed generalized partitioning on highly complex fractured reservoirs and in instances when wells (incorporated in these models as line sources) were divided between two or more processors.

Milind Deo; Chung-Kan Huang; Huabing Wang

2008-08-31T23:59:59.000Z

459

Fractured gas reservoirs in the Devonian shale of the Illinois and Appalachian basins  

SciTech Connect (OSTI)

The Devonian and Lower Mississippian black shale sequence of Kentucky includes the New Albany Shale of Illinois basin and the Ohio Shale of the Appalachian basin. Fractured reservoirs in the Ohio Shale contain a major gas resource, but have not been so prolific in the New Albany Shale. The authors propose two models of fractured shale reservoirs in both the Illinois and the Appalachian basins, to be tested with gas production data. (1) Where reactivated basement faults have propagated to the surface, the lack of an effective seal has prevented the development of overpressure. The resulting fracture system is entirely tectonic is origin, and served mainly as a conduit for gas migration from the basin to the surface. Gas accumulations in such reservoirs typically are small and underpressured. (2) Where basement faults have been reactivated but have not reached the surface, a seal on the fractured reservoir is preserved. In areas where thermal maturity has been adequate, overpressuring due to gas generation resulted in a major extension of the fracture system, as well as enhanced gas compression and adsorption. Such gas accumulations are relatively large. Original overpressuring has been largely lost, due both to natural depletion and to uncontrolled production. The relative thermal immaturity of the Illinois basin accounts for the scarcity of the second type of fractured reservoir and the small magnitude of the New Albany Shale gas resource.

Hamilton-Smith, T.; Walker, D.; Nuttall, B. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

460

Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction  

SciTech Connect (OSTI)

Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

2013-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A new coal-permeability model: Internal swelling stress and fracture-matrix interaction  

SciTech Connect (OSTI)

We have developed a new coal-permeability model for uniaxial strain and constant confining stress conditions. The model is unique in that it explicitly considers fracture-matrix interaction during coal deformation processes and is based on a newly proposed internal-swelling stress concept. This concept is used to account for the impact of matrix swelling (or shrinkage) on fracture-aperture changes resulting from partial separation of matrix blocks by fractures that do not completely cut through the whole matrix. The proposed permeability model is evaluated with data from three Valencia Canyon coalbed wells in the San Juan Basin, where increased permeability has been observed during CH{sub 4} gas production, as well as with published data from laboratory tests. Model results are generally in good agreement with observed permeability changes. The importance of fracture-matrix interaction in determining coal permeability, demonstrated in this work using relatively simple stress conditions, underscores the need for a dual-continuum (fracture and matrix) mechanical approach to rigorously capture coal-deformation processes under complex stress conditions, as well as the coupled flow and transport processes in coal seams.

Liu, H.H.; Rutqvist, J.

2009-10-01T23:59:59.000Z

462

Characterizing hydraulically fractured reservoirs using induced microearthquakes  

SciTech Connect (OSTI)

Hydraulic fracturing is a common method employed to increase the production of oil and gas fields. Recently, there has been increased interest in monitoring the microearthquakes induced by hydraulic fracturing as a means of obtaining data to characterize reservoir changeS induced by the injection. Two types of microearthquakes have been observed during hydraulic fracturing. Tensile events have been observed and modeled as the parting of the surfaces of a fracture. A majority of the events observed have been shear-slip events, where two sides of a fault plane slip parallel to each other but in opposite directions. The locations of the microearthquakes can be analyzed to determine regions where significant seismic energy was released, which presumably are regions where injected fluid penetrated into the rock along pre-existing fractures or zones of weakness. The spatial patterns in the locations can be analyzed to fine regions where events cluster along planes, which are interpreted to be the dominant fluid flow paths. Imaging methods can also be applied to the travel time and waveform data to obtain direct evidence for the locations of the fractures or fracture zones. 27 refs., 2 figs.

Fehler, M.

1991-01-01T23:59:59.000Z

463

Estimating the fracture density of small-scale vertical fractures when large-scale vertical fractures are present  

E-Print Network [OSTI]

When fractures are vertical, aligned and their dimensions are small relative to the seismic wavelength, the medium can be considered to be an equivalent Horizontal Transverse Isotropic (HTI) medium. However, geophysical ...

Liu, Yuwei

2013-01-01T23:59:59.000Z

464

Coupling schemes for modeling hydraulic fracture propagation using the XFEM  

E-Print Network [OSTI]

Coupling schemes for modeling hydraulic fracture propagation using the XFEM Elizaveta Gordeliy of hydraulic fractures in an elastic medium. With appropriate enrichment, the XFEM resolves the Neumann(h) accuracy. For hydraulic fracture problems with a lag separating the uid front from the fracture front, we

Peirce, Anthony

465

Calibration of hydraulic and tracer tests in fractured media  

E-Print Network [OSTI]

Calibration of hydraulic and tracer tests in fractured media represented by a DFN Model L. D. Donado, X. Sanchez-Vila, E. Ruiz* & F. J. Elorza** * Enviros Spain S.L. ** UPM #12;Fractured Media Water flows through fractures (matrix basically impervious ­ though relevant to transport) Fractures at all

Politècnica de Catalunya, Universitat

466

Envelope of Fracture Density Dragana Todorovic-Marinic*  

E-Print Network [OSTI]

Envelope of Fracture Density Dragana Todorovic-Marinic* Veritas DGC Ltd., Calgary, Alberta, Canada that interpretation of fractures can be improved by using the envelope of the fracture density. It has been shown that open, fluid (or gas) filled fractures can be identified through the use of the AVAZ method (Gray et. al

Santos, Juan

467

Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report  

SciTech Connect (OSTI)

Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-­?related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictive models and monitoring techniques. The project involved three major components: (1) study of two-­?phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-­?2013) and partially supported a post-­?doctoral scholar (Dr. Jean Elkhoury; 2010-­?2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-­?2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-­?water or water-­?CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high-­? resolution mechanistic model that couples elastic deformation of contacts and aperture-­?dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.

Detwiler, Russell

2014-04-30T23:59:59.000Z

468

Integration of NDE Reliability and Fracture Mechanics  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory is conducting a four-phase program for measuring and evaluating the effectiveness and reliability of in-service inspection (lSI} performed on the primary system piping welds of commercial light water reactors (LWRs). Phase I of the program is complete. A survey was made of the state of practice for ultrasonic rsr of LWR primary system piping welds. Fracture mechanics calculations were made to establish required nondestrutive testing sensitivities. In general, it was found that fatigue flaws less than 25% of wall thickness would not grow to failure within an inspection interval of 10 years. However, in some cases failure could occur considerably faster. Statistical methods for predicting and measuring the effectiveness and reliability of lSI were developed and will be applied in the "Round Robin Inspections" of Phase II. Methods were also developed for the production of flaws typical of those found in service. Samples fabricated by these methods wilI be used in Phase II to test inspection effectiveness and reliability. Measurements were made of the influence of flaw characteristics {i.e., roughness, tightness, and orientation) on inspection reliability. These measurernents, as well as the predictions of a statistical model for inspection reliability, indicate that current reporting and recording sensitivities are inadequate.

Becker, F. L.; Doctor, S. R.; Heas!er, P. G.; Morris, C. J.; Pitman, S. G.; Selby, G. P.; Simonen, F. A.

1981-03-01T23:59:59.000Z

469

Physical model of a fractured reservoir | Open Energy Information  

Open Energy Info (EERE)

model of a fractured reservoir model of a fractured reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Physical model of a fractured reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate solute migration in fracture systems. The fracture network is 0.57-m wide, 1.7-m long, and consists of two sets of fractures at right angles to one another with a fracture spacing of 10.2 cm. A series of

470

Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (DFN)  

E-Print Network [OSTI]

Influence of fracture scale heterogeneity on the flow properties of three-dimensional discrete fracture networks (DFN) J.-R. de Dreuzy,1,2 Y. Méheust,2 and G. Pichot3 Received 18 May 2012; revised 28 of fractured media has been so far studied independently at the fracture- and network- scales, we propose

Paris-Sud XI, Université de

471

Using the fracture energies for the two films a first estimate of fracture toughness, K, can be found.  

E-Print Network [OSTI]

· Using the fracture energies for the two films a first estimate of fracture toughness, K, can be found. · Assumptions are made to estimate the crack area based on the fracture mode seen in the SEM. · The total crack length is assumed to be 3 times the contact radius, , at the fracture depth. · To find

Collins, Gary S.

472

A Fracture-Mechanics-Based Approach to Fracture Control in Biomedical Devices Manufactured From Superelastic Nitinol Tube  

E-Print Network [OSTI]

A Fracture-Mechanics-Based Approach to Fracture Control in Biomedical Devices Manufactured From: 10.1002/jbm.b.30840 Abstract: Several key fracture-mechanics parameters associated with the onset of subcritical and critical cracking, specifically the fracture toughness, crack-resistance curve, and fatigue

Ritchie, Robert

473

3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs  

SciTech Connect (OSTI)

Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

1997-08-01T23:59:59.000Z

474

Infiltration and Seepage Through Fractured Welded Tuff  

SciTech Connect (OSTI)

The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

2006-06-20T23:59:59.000Z

475

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect (OSTI)

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

476

Multiphase flow in fractured porous media  

SciTech Connect (OSTI)

The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

Firoozabadi, A.

1995-02-01T23:59:59.000Z

477

Hydraulic fractur ing--also called hy  

E-Print Network [OSTI]

Hydraulic fractur ing--also called hy drofracking or frack ing--is a process where large volumes) is an aquatic invasive spe cies listed on the USDA's federal noxious weeds list (http:// www.aphis.usda.gov/plant_health

Goodman, Robert M.

478

Environmental challenges in fracturing of unconventional resources  

Science Journals Connector (OSTI)

...Fracturing and the environment. This talk showed...environmental risks and impacts associated with gas...time protecting the environment and safeguarding...Duncan, P. , 2011, Fracking and the environment: The contribution...

Azra N. Tutuncu; Chris Krohn; Stephan Gelinsky; Jacques Leveille; Cengiz Esmersoy; Ali I. Mese

479

Dynamic Fracture Toughness of Polymer Composites  

E-Print Network [OSTI]

that of defense or transport. In this project, the focus is on determining dynamic fracture toughness property of fiber reinforced polymer composites by using a combined numerical- experimental methodology. Impact tests are conducted on Split-Hopkinson pressure...

Harmeet Kaur

2012-02-14T23:59:59.000Z

480

Anomalous transport through porous and fractured media  

E-Print Network [OSTI]

Anomalous transport, understood as the nonlinear scaling with time of the mean square displacement of transported particles, is observed in many physical processes, including contaminant transport through porous and fractured ...

Kang, Peter Kyungchul

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells multi-stage fracturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogeologic and topographic factors influencing well yields in fractured crystalline rocks - Seoul, Republic of Korea  

E-Print Network [OSTI]

, the Mann ? Whitney II test or Kruskal ? Wallis One ? Way Analysis of Variance was applied according to the number of samples or categories which were tested. In each case the 10 percent level of significance was used to test the null hypothesis. Detailed... than five cases in the various groups, that is, n~ ) 5, H is distributed approximately as chi square (y ) with degree of freedom (df) = k ? 1. The following steps are used to perform the Kruskal ? Wallis test: 1. set an approximate null hypothesis Hs...

Kim, Sang-Il

2012-06-07T23:59:59.000Z

482

DEVELOPMENT OF ARTIFICIAL NEURAL NETWORKSFOR HYDRAULICALLY FRACTURED HORIZONTAL WELLS IN FAULTED SHALE GAS RESERVOIRS.  

E-Print Network [OSTI]

??There is no alternative energy to replace fossil fuels yet, demand for hydrocarbon is still increasing all over the world. In addition to that, productions… (more)

Oz, Sinan

2014-01-01T23:59:59.000Z

483

Analysis of pressure data from the horizontal wells with multiple hydraulic fractures in shale gas.  

E-Print Network [OSTI]

??In the last several years, the unconventional gas reservoirs development has grown tremendously. Most of these unconventional reservoirs have very low permeability and are not… (more)

Tabar, Essa M.

2011-01-01T23:59:59.000Z

484

Multiple Well-Shutdown Tests and Site-Scale Flow Simulation in Fractured Rocks  

E-Print Network [OSTI]

) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely@usgs.gov Received April 2009, accepted October 2009. Journalcompilation©2009NationalGroundWaterAssociation. No claim for remediation design and moni- toring. At such sites where pump-and-treat (P&T) opera- tions are underway

485

Dynamic Reservoir Characterization Of Naturally Fractured Reservoirs From An Inter-Well Tracer Test  

E-Print Network [OSTI]

-spot pattern and breakthrough time of the injected tracer. Once the model became capable of matching historical field production, a 1-year prediction run was conducted for optimization. Cumulative oil production was increased by 8,000 bbl by allocating more...

Kilicaslan, Ufuk

2013-12-03T23:59:59.000Z

486

Impact of hydraulic fractures on type curves for horizontal wells in CBM reservoirs.  

E-Print Network [OSTI]

??As production technologies continue to increase, more and more unconventional natural gas plays are becoming economical and attractive to produce. CBM, or coalbed methane, currently… (more)

Bell, David Christopher.

2011-01-01T23:59:59.000Z

487

Well-productivity improvement by use of rapid overpressured perforation extension: Case history  

SciTech Connect (OSTI)

This paper describes an overbalance perforating and surging technique used as a pretreatment to hydraulic fracturing of the Romeo interval at Prudhoe Bay. Operation conditions, surface and bottomhole pressure (BHP) measurements, and modeling results are presented and discussed. Well productivity and the amount of proppant placed are compared with results in offset wells where the technique was not used.

Coueet, B.; Petitjean, L.M. [Schlumberger-Doll Research, Ridgefield, CT (United States); Abel, J.C.; Schmidt, J.H.; Ferguson, K.R.

1996-02-01T23:59:59.000Z

488

TRITIUM EFFECTS ON WELDMENT FRACTURE TOUGHNESS  

SciTech Connect (OSTI)

The effects of tritium on the fracture toughness properties of Type 304L stainless steel and its weldments were measured. Fracture toughness data are needed for assessing tritium reservoir structural integrity. This report provides data from J-Integral fracture toughness tests on unexposed and tritium-exposed weldments. The effect of tritium on weldment toughness has not been measured until now. The data include tests on tritium-exposed weldments after aging for up to three years to measure the effect of increasing decay helium concentration on toughness. The results indicate that Type 304L stainless steel weldments have high fracture toughness and are resistant to tritium aging effects on toughness. For unexposed alloys, weldment fracture toughness was higher than base metal toughness. Tritium-exposed-and-aged base metals and weldments had lower toughness values than unexposed ones but still retained good toughness properties. In both base metals and weldments there was an initial reduction in fracture toughness after tritium exposure but little change in fracture toughness values with increasing helium content in the range tested. Fracture modes occurred by the dimpled rupture process in unexposed and tritium-exposed steels and welds. This corroborates further the resistance of Type 304L steel to tritium embrittlement. This report fulfills the requirements for the FY06 Level 3 milestone, TSR15.3 ''Issue summary report for tritium reservoir material aging studies'' for the Enhanced Surveillance Campaign (ESC). The milestone was in support of ESC L2-1866 Milestone-''Complete an annual Enhanced Surveillance stockpile aging assessment report to support the annual assessment process''.

Morgan, M; Michael Tosten, M; Scott West, S

2006-07-17T23:59:59.000Z

489

Hydraulic fracturing: A proven N.O.R.M. disposal method  

SciTech Connect (OSTI)

Since the discovery that many drill cuttings, scales, sludges, and platings contain elevated amounts of naturally occurring radioactive material (NORM), many companies and regulating authorities have discussed the merits of various disposal methods. This paper covers a process that disposes of NORM and provides isolation of the material from the environment. Disposal of NORM slurry through fracturing an existing depleted sandstone requires careful analysis to optimize a safe and effective design. A radioactivity assay was performed on the NORM before and after slurrification to determine activity concentrations. Tests were conducted on the NORM to proved parameters for the fracture design. The process consists of slurrying the material and keeping the particles suspended in solution until time for well injection. Well injection takes the form of hydraulic fracturing with the material into a deplete zone in the reservoir. Fracturing with the NORM was preceded with a Mini-Frac as a safety precaution to confirm downhole parameters. In conclusion, the philosophy of the process is to take the NORM generated through the exploration and production of oil and gas and place it back into the reservoir from which it came through hydraulic fracturing. This technique is one that helps protect the environment from the possible hazards associated with mismanaged NORM.

Young, S.C. [Halliburton Energy Services, New Orleans, LA (United States); Chambers, D.G. [Halliburton Energy Services, Lafayette, LA (United States); Woods, S.E.; Abernathy, S.E. [Halliburton Energy Services, Duncan, OK (United States)

1995-10-01T23:59:59.000Z

490

In situ bioremediation of petroleum in tight soils using hydraulic fracturing  

SciTech Connect (OSTI)

This case study evaluated the effectiveness of in situ bioremediation of petroleum hydrocarbons in tight soils. The study area was contaminated with cutting oil from historic releases from underground piping, probably dating back to the 1940`s. Previous site assessment work indicated that the only chemicals of concern were total petroleum hydrocarbons (TPH). Two fracture sets (stacks) were installed at different locations to evaluate this in situ bioremediation technique under passive and active conditions. Several injection wells were drilled at both locations to provide entry for hydraulic fracturing equipment. A series of circular, horizontal fractures 40 to 50 feet in diameter were created at different depths, based on the vertical extent of contamination at the site. The injection wells were screened across the contaminated interval which effectively created underground bioreactors. Soils were sampled and analyzed for total petroleum hydrocarbons on five separate occasions over the nine-month study. Initial average soil concentrations of total petroleum hydrocarbons of 5,700 mg/kg were reduced to 475 mg/kg within nine months of hydraulic fracturing. The analytical results indicate an average reduction in TPH at the sample locations of 92 percent over the nine-month study period. This project demonstrates that in situ bioremediation using hydraulic fracturing has significant potential as a treatment technology for petroleum contaminated soils.

Stavnes, S. [Environmental Protection Agency, Denver, CO (United States); Yorke, C.A. [Foremost Solutions, Inc., Golden, CO (United States); Thompson, L. [Pintail Systems, Inc., Aurora, CO (United States)

1996-12-31T23:59:59.000Z

491

Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China  

Open Energy Info (EERE)

downhole characteristics of well CGEH-1 at Coso Hot Springs, China downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Details Activities (5) Areas (1) Regions (0) Abstract: A series of measurements was made in the exploratory well CGEH-1 at Coso Hot Springs. The temperature measurements provide estimates for the thermal equilibration of the well and indicate that the fractures intersecting the well have different temperatures. The hottest fractures are in the upper-cased portion of the well. Downhole chemical sampling suggests that the borehole still contains remnants of drilling materials. The well has never been extensively flowed at this time.

492

High Precision Geophysics & Detailed Structural Exploration & Slim Well  

Open Energy Info (EERE)

Precision Geophysics & Detailed Structural Exploration & Slim Well Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Existing geologic data show that the basalt has been broken by complex intersecting fault zones at the hot springs. Natural state hot water flow patterns in the fracture network will be interpreted from temperature gradient wells and then tested with moderate depth core holes. Production and injection well tests of the core holes will be monitored with an innovative combination of Flowing Differential Self-Potential (FDSP) and resistivity tomography surveys. The cointerpretation of all these highly detailed geophysical methods sensitive to fracture permeability patterns and water flow during the well tests will provide unprecedented details on the structures and flow in a shallow geothermal aquifer and support effective development of the low temperature reservoir and identification of deep up flow targets.

493

Productivity and injectivity of horizontal wells. Annual report, March 10, 1993--March 9, 1994  

SciTech Connect (OSTI)

In this report, the investigators review a range of reservoir scenarios in which horizontal wells can be advantageous and discuss some of the modeling problems associated with calculating well connection factors, productivity indices, coning behavior and well two-phase pressure drops. We show illustrative coning calculations and the implications of the well model on distribution of post-breakthrough gas saturations. Such calculations then open up the possibility of determining optimal recompletion strategies and/or additional hydraulic fracturing.

Fayers, F.J.; Aziz, K.; Hewett, T.A.; Arbabi, S.

1994-10-01T23:59:59.000Z

494

A STATISTICAL FRACTURE MECHANICS APPROACH TO THE STRENGTH OF BRITTLE ROCK  

E-Print Network [OSTI]

Carlsson, H. , "Hydraulic fracturing and overcoring stress1949). Haimson, B.C. , "Hydraulic fracturing in porous andc.B. , "Laboratory hydraulic fracturing experiments in

Ratigan, J.L.

2010-01-01T23:59:59.000Z

495

Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs  

E-Print Network [OSTI]

Zimmermann, G. , 2005. Hydraulic fracturing in a sedimentaryare described in the hydraulic fracturing context, in whichoverview. However, hydraulic fracturing theories and related

Wessling, S.

2009-01-01T23:59:59.000Z

496

HYDRAULIC FRACTURING AND OVERCORING STRESS MEASUREMENTS IN A DEEP BOREHOLE AT THE STRIPA TEST MINE, SWEDEN  

E-Print Network [OSTI]

u l y 2 , 1 9 8 1 HYDRAULIC FRACTURING AND OVERCORING STRESSI nun LBL-12478 HYDRAULIC FRACTURING AND OVERCORING STRESSthe calculated stress. n HYDRAULIC FRACTURING EQUIPMENT AND

Doe, T.

2010-01-01T23:59:59.000Z

497

Skull fracture vs. accessory sutures: how can we tell the difference?  

E-Print Network [OSTI]

fissure: diagnosis of fracture versus anatomic variants.be performed to identify fractures in suspected child abuse?skull: the diagnosis of fracture. Am J Roentgenol Radium

Sanchez, Thomas; Stewart, Deborah; Walvick, Matthew; Swischuk, Leonard

2010-01-01T23:59:59.000Z

498

Estimation of fracture flow parameters through numerical analysis of hydromechanical pressure pulses  

E-Print Network [OSTI]

from previous evaluations of fracture hydromechanicalof flow through fractures in rock, In: Proceedings ofsaturated, variable-aperture fracture, Geophys. Res. Lett. ,

Cappa, F.

2009-01-01T23:59:59.000Z

499

Acoustic Emission in a Fluid Saturated Hetergeneous Porous Layer with Application to Hydraulic Fracture  

E-Print Network [OSTI]

New Model of Hydraulic Fracture With an Induced Low Velocityand L. R. Meyer, 1988. Fracture Detectin Using P- Wave andof a Vertical Hydraulic Fracture, Earth Sciences Division,

Nelson, J.T.

2009-01-01T23:59:59.000Z

500

E-Print Network 3.0 - adjacent compression fractures Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and triangular columns formed by column-bounding fractures adjacent to inflation-fracture walls... the cooling rate, caus- ing increased fracturing ... Source: Kattenhorn,...