Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hawthorne Army Depot Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Depot Geothermal Project Depot Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hawthorne Army Depot Geothermal Project Project Location Information Coordinates 38.476944444444°, -118.65777777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.476944444444,"lon":-118.65777777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Slim Holes At Hawthorne Area (Sabin, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Slim Holes At Hawthorne Area (Sabin, Et Al., 2010) Slim Holes At Hawthorne Area (Sabin, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes GPO drilled two deep, slim geophysical test holes on the western margin of the Hawthorne Army Depot in 2008/2009. These two holes, HWAD 2a and HWAD 3, were drilled on the perceived structural trend of this valley and immediately south and east, respectively, of the El Capitan well. The "El Cap" is a 1,000' well completed by an unsuccessful developer in 1980. The El Cap and several other wells in this region south of Walker Lake have long been admired and even discussed by industry and the military but no sustained exploration or development activities work have ever been

3

Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse Wells,  

Open Energy Info (EERE)

Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse Wells, Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse Wells, Hawthorne Army Depot, Terraced Hills, And Other Areas In Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse Wells, Hawthorne Army Depot, Terraced Hills, And Other Areas In Nevada Details Activities (7) Areas (7) Regions (0) Abstract: New examples of the use of two-meter temperature (2m) surveys to quickly and inexpensively reveal blind geothermal systems were documented at Dead Horse Wells, the Hawthorne Army Depot, and Emerson Pass, all located in Nevada. In addition, more than 100 new 2m measurements at Astor Pass, Nevada resolved additional details of near-surface thermal outflow in this blind geothermal system. And at Columbus Salt Marsh, Nevada,

4

Hawthorns and Crabapples  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawthorns and Crabapples Hawthorns and Crabapples Nature Bulletin No. 153 May 1, 1948 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt of Conservation HAWTHORNS AND CRABAPPLES The wild crabapple and the hawthorn are small trees; pioneers of the open woodlands, forest edges, sunny pastures, roadsides and fence rows. One of the peculiarities of the Chicago region is the manner in which the hawthorns, their seeds distributed largely by birds, will march across abandoned fields and take possession. Undisturbed by ax or fire, in twenty years there will be an almost impenetrable thicket from 10 to 20 feet in height. Crabapples and some species of hawthorns look much alike but the leaves are different and the crab has no thorns on its twigs. Its fragrant 5-petalled blossoms are pink or rose-tinged, and its fruit is a small greenish sour apple. The hawthorns have sharp thorns, white 5- petalled blossoms with a rather unpleasant fragrance, and its fruits, or "haws", are small, round, mealy-fleshed and varying In color from brilliant scarlet to dull dotted red or yellow -- according to the species.

5

Hawthorne Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hawthorne Geothermal Area Hawthorne Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hawthorne Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.53,"lon":-118.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

Hawthorne Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hawthorne Geothermal Area Hawthorne Geothermal Area (Redirected from Hawthorne Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hawthorne Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.53,"lon":-118.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

Hawthorne, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hawthorne, California: Energy Resources Hawthorne, California: Energy Resources (Redirected from Hawthorne, CA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9164032°, -118.3525748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9164032,"lon":-118.3525748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

Hawthorne Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hawthorne Geothermal Project Hawthorne Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hawthorne Geothermal Project Project Location Information Coordinates 38.313444444444°, -118.58527777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.313444444444,"lon":-118.58527777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Hawthorne, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hawthorne, NV) Hawthorne, NV) Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.5246441°, -118.624578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5246441,"lon":-118.624578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

Installation restoration program: Hydrologic measurements with an estimated hydrologic budget for the Joliet Army Ammunition Plant, Joliet, Illinois. [Contains maps of monitoring well locations, topography and hydrologic basins  

SciTech Connect

Hydrologic data were gathered from the 36.8-mi{sup 2} Joliet Army Ammunition Plant (JAAP) located in Joliet, Illinois. Surface water levels were measured continuously, and groundwater levels were measured monthly. The resulting information was entered into a database that could be used as part of numerical flow model validation for the site. Deep sandstone aquifers supply much of the water in the JAAP region. These aquifers are successively overlain by confining shales and a dolomite aquifer of Silurian age. This last unit is unconformably overlain by Pleistocene glacial tills and outwash sand and gravel. Groundwater levels in the shallow glacial system fluctuate widely, with one well completed in an upland fluctuating more than 17 ft during the study period. The response to groundwater recharge in the underlying Silurian dolomite is slower. In the upland recharge areas, increased groundwater levels were observed; in the lowland discharge areas, groundwater levels decreased during the study period. The decreases are postulated to be a lag effect related to a 1988 drought. These observations show that fluid at the JAAP is not steady-state, either on a monthly or an annual basis. Hydrologic budgets were estimated for the two principal surface water basins at the JAAP site. These basins account for 70% of the facility's total land area. Meteorological data collected at a nearby dam show that total measured precipitation was 31.45 in. and total calculated evapotranspiration was 23.09 in. for the study period. The change in surface water storage was assumed to be zero for the annual budget for each basin. The change in groundwater storage was calculated to be 0.12 in. for the Grant Creek basin and 0. 26 in. for the Prairie Creek basin. Runoff was 7.02 in. and 7.51 in. for the Grant Creek and Prairie Creek basins, respectively. The underflow to the deep hydrogeologic system in the Grant Creek basin was calculated to be negligible. 12 refs., 17 figs., 15 tabs.

Diodato, D.M.; Cho, H.E.; Sundell, R.C.

1991-07-01T23:59:59.000Z

11

Army Guidance for UESCs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of 11 of 11 Randy Smidt / DAIM-ODF-E / (703) 601-1564 (DSN 329) / SmidtRF@conus.army.mil 071400AUG2008 ARMY STRONG Army Policy Guidance for Utility Energy Services Contracts presented at The Federal Utility Partnership Working Group 5 MAY 2009 by Randy Smidt Headquarters Dept of Army, Office of the Assistant Chief of Staff for Installation Management 2 of 11 Randy Smidt / DAIM-ODF-E / (703) 601-1564 (DSN 329) / SmidtRF@conus.army.mil 071400AUG2008 ARMY STRONG Overview of Army UESC Program & Draft Policy Guidance * Army UESC Program * Draft Policy Guidance o Organizations, responsibilities & relationships o Procedures o Management & Execution o Resource Requirements o Reporting Requirements o Case Studies 3 of 11 Randy Smidt / DAIM-ODF-E / (703) 601-1564 (DSN 329) / SmidtRF@conus.army.mil

12

Army Energy Security Considerations  

NLE Websites -- All DOE Office Websites (Extended Search)

ARMY Energy Security ARMY Energy Security Considerations Don Juhasz, PE, CEM HQDA, OACSIM, DAIM-FDF Telephone: (703)-601-0374 E-mail: don.juhasz@hqda.army.mil FUEL CELL OPPORTUNITIES 26 April 2007 1 of 10 Don Juhasz DAIM-FDF (703) 601-0374 (DSN 329) / don.juhasz@hqda.army.mil 5 April 2007 Army Energy * * * * FOREIGN OIL 2 of 10 Don Juhasz DAIM-FDF (703) 601-0374 (DSN 329) / don.juhasz@hqda.army.mil 5 April 2007 World Energy Situation OIL & GAS LIQUIDS 38% Rise in NTV Fuel Use 35% of DoD utilities 21% of Fed government 11% of installations' budget US ARMY IS DEPENDENT ON 1 ¾ ¾ ¾ ¾ ¾ In ¾ 3 of 10 Don Juhasz DAIM-FDF (703) 601-0374 (DSN 329) / don.juhasz@hqda.army.mil 5 April 2007 Challenges To Managing The Future World population growing: 6.5 B in 2006, 2030 estimate 7.9 B

13

Army Asks NAS Review  

Science Journals Connector (OSTI)

Army Asks NAS Review ... The Army has asked the National Academy of Sciences to review the military's controversial plan to ship obsolete CBW agents across the country from Colorado to New Jersey and thence to a burial ground in the sea. ...

1969-05-19T23:59:59.000Z

14

E-Print Network 3.0 - army physical fitness Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

an early age, as well... between society and the army during the rest of the twentieth century. Physically, socially and mentally... between society and the army said that the...

15

December 2009 ARMY MEDICAL LOGISTICS  

E-Print Network (OSTI)

FM 4-02.1 December 2009 ARMY MEDICAL LOGISTICS DISTRIBUTION RESTRICTION: Approved for public Medical Logistics Contents Page PREFACE...................................................................................................ix Chapter 1 OVERVIEW OF ARMY MEDICAL LOGISTICS................................................. 1-1 Section

US Army Corps of Engineers

16

Making the Connection: Beneficial Collaboration Between Army...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Making the Connection: Beneficial Collaboration Between Army Installations and Energy Utility Companies Making the Connection: Beneficial Collaboration Between Army Installations...

17

Army Energy Security and Independence  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARMY ARMY ENERGY SECURITY AND INDEPENDENCE Leadership Ownership Partnership 19 NOV 2008 Don Juhasz, PE, CEM CHIEF ARMY ENERGY POLICY Army Energy Security - "The Way Ahead" 2 ARMY ENERGY SECURITY AND INDEPENDENCE Leadership Ownership Partnership Energy Costs Driven by Global Situation OIL & GAS LIQUIDS Army Utilities Energy Use * 35% of DoD consumption * 21% of Fed government use * 11% of installations' budget * Commodity Prices increasing 8 - 20% annually Consumption Climbs as new sources decrease Oil production is primarily OCONUS and decreasing Our consumption is out of balance with our Reserves New Sources Dwindling - Forcing our reliance on Unstable governments 3 ARMY ENERGY SECURITY AND INDEPENDENCE Leadership Ownership Partnership Oil Field Forecasts Peak Year Oil Expert

18

ARMY SERVICE FORCES  

Office of Legacy Management (LM)

ARMY SERVICE FORCES ARMY SERVICE FORCES ' -, 1 MANHATTAN ENGINEER DISTRICT --t 4 IN "LPLI RC,' LR io EIDM CIS INTELLIGENCE AND SECURITY DIVISION CHICAGO BRANCH OFFICE i ., -,* - P. 0. Box 6770-A I ' 1 .' CHICAGO 80. ILLINOIS /lvb 15 February 1945 Subject: shipment Security Survey at &Uinckrodt Chemical Works. MEMORANDUM to the Officer in Charge. 1. The Mallinckrodt Chemical Works, St. Louis, Missouri, was contacted by the undersigned on 16 November 1944, for the purpose of -king an investigation to determine security provided shipments of interest to the Manhattan Engineer District. The investigation in- cluded shipments of vital materials originating with the Mallinckrodt Company and those received by them. Particular attention has been given to the future production and shipment schedules of these materials.

19

Letterkenny Army Depot: The Army Teaches Business a Lesson in Lean Six Sigma  

E-Print Network (OSTI)

Letterkenny Army Depot: The Army Teaches Business a Lesson in Lean Six Sigma is a case study of Letterkenny Army Depot, one of five Army maintenance depots. Letterkenny recapitalizes missiles, HMMWV's, generators, and other ...

Harvey, Roger K.

2006-05-23T23:59:59.000Z

20

US Army Corps  

Office of Legacy Management (LM)

"-,,,,~r" "-,,,,~r" c«' "'<''f'~''''''':''~~?<~~':'t:!trtl«'' .' i.~ , _ ...., , 1,_, - ~, .." * * * * , * >:'.,.~:-t ~\, ;:. ; i ....._- - - * '.1',.£.... US Army Corps of Engineers® rlllBlLllT Buffalo District * FINAL * RECORD OF DECISION FOR THE ASHLAND 1 * (INCLUDING SEAWAY AREA D) AND ASHLAND 2 SITES * TONAWANDA, NEW YORK * * April 1998 * * * * * * * * * * * * * * * * * * * * * * I. DECLARATION FOR THE RECORD OF DECISION ( * * * * * * * * * * * * * * * * * * * * DECLARATION FOR THE RECORD OF DECISION SITE NAME AND LOCATION Ashland 1 (including Seaway Area D) and Ashland 2 Sites Town of Tonawanda, New York Within this Record of Decision (ROD), any reference to Ashland 1 with respect to cleanup includes

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2-M Probe At Hawthorne Area (Kratt, Et Al., 2010) | Open Energy Information  

Open Energy Info (EERE)

Kratt, Et Al., 2010) Kratt, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Hawthorne Area (Kratt, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique 2-M Probe Activity Date Usefulness useful DOE-funding Unknown Notes Shallow 2m surveys were first conducted at Hawthorne by Trexler et al. (1982b), who were among the earliest researchers to employ 2m surveys on a systematic basis in the Great Basin. Their work identified two shallow thermal anomalies, one of them located west of the city of Hawthorne at the base of the Wassuk Range, and the other in the "Southeast Magazine" area, south of state highway 50 and southeast of Hawthorne (anomalies A and B on Figure 3). Subsequent drilling verified the existence of shallow thermal

22

Army High Performance Computing Research Center  

E-Print Network (OSTI)

Army High Performance Computing Research Center Applying advanced computational science research challenges http://me.stanford.edu/research/centers/ahpcrc #12;Army High Performance Computing challenges http://me.stanford.edu/research/centers/ahpcrc #12;Army High Performance Computing Research

Prinz, Friedrich B.

23

Army Energy Security and Independence  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingcovers oil field forecasts; U.S. Army's energy and water strategy for installations; renewable energy projects; net zero energy installations; and the Army's renewable energy program.

24

US Army Corps of Engineers  

E-Print Network (OSTI)

. Netherland, WES David Sisneros, U.S. Bureau of Reclamation Alison M. Fox, William T. Hailer, University Liquid and Slow-Release Pellet Applications by Michael D. Netherland U.S. Army Corps of Engineers / by Michael D. Netherland ... [et al.]; prepared for U.S. Army Corps of Engineers. 64p. : ill. ; 28 cm

US Army Corps of Engineers

25

US Army Corps of Engineers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering and Support Center, Huntsville Engineering and Support Center, Huntsville FUPWG Oct 20-21, 2010 Margaret Simmons U.S. Army Corps of Engineers Huntsville Center (256) 895-1101 Margaret.p.simmons@usace.army.mil Disclaimer: The views expressed in this presentation are those of the author and do not represent the views of the Army or the Army Corps of Engineers. US Army Engineering and Support Center, Huntsville * DEMOLISHED BUILDINGS - Contract provides that adjustments can be made for changes in building usage and building occupancy - but doesn't contain the process to make the adjustment - Building is demolished so NO ENERGY is being consumed - however this is not due to the ESPC project - Should the contractor be given credit? Contracts allows for adjustment so yes. However, since building is gone, contractor

26

Army Industrial, Landscaping, and Agricultural Water Use  

SciTech Connect

The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Armys ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

McMordie Stoughton, Kate; Loper, Susan A.; Boyd, Brian K.

2014-09-18T23:59:59.000Z

27

Department of the Army Letterhead  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARMY ARMY US ARMY PUBLIC HEALTH COMMAND (PROVISIONAL) 5158 BLACKHAWK ROAD ABERDEEN PROVING GROUND, MD 21010-5403 MCHB-TS-EON MEMORANDUM FOR Savannah River Site, Savannah River Nuclear Solutions (Mr. C. Barry Shedrow), Building 705-3C, Aiken, SC 29808 SUBJECT: Operational Noise Consultation, 52-EN-0D55-10, Operational Noise Contours for Proposed Aviation Activity, Savannah River Site, Aiken, South Carolina, 12 April 2010. 1. We are enclosing 2 copies of the consultation. 2. Please contact us if this consultation or any of our services did not meet your needs or expectations. 3. The point of contact is Ms. Kristy Broska, Environmental Protection Specialist or Ms. Catherine Stewart, Program Manager, Operational Noise, US Army Public Health

28

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNCLASSIFIED UNCLASSIFIED Army Energy Initiatives Task Force Kathy Ahsing Director, Planning and Development UNCLASSIFIED 2 Perfect Storm UNCLASSIFIED 3 U.S. Army Energy Consumption, 2010 23% 77% 42% 58%  Facilities  Vehicles & Equipment (Tactical and Non-tactical) Sources: Energy Information Agency, 2010 Annual Energy Review; Agency Annual Energy Management Data Reports submitted to DOE's Federal Energy Management Program (Preliminary FY 2010) 32% 68% DoD 80% Army 21% Federal Gov 1% Federal Government United States Department of Defense U.S. = 98,079 Trillion Btu DoD = 889 Trillion Btu Fed Gov = 1,108 Trillion Btu U.S. Army = 189 Trillion Btu FY10 Highlights - $2.5+B Operational Energy Costs - $1.2 B Facility Energy Costs

29

Army Policy Guidance for UESCs  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meetingprovides an overview of the U.S. Army's utility energy service contract (UESC) program and its UESC draft policy guidance.

30

Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010) | Open  

Open Energy Info (EERE)

Sabin, Et Al., 2010) Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes In lieu of Seabee TGH drilling, GPO awarded a large IDIQ TGH drilling contract in December, 2009. Over the next two years, 90 500-ft TGHs will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these programs can be found in the Chocolate Mountains and Hawthorne papers also available in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A.

31

Water Sampling At Hawthorne Area (Lazaro, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Hawthorne Area (Lazaro, Et Al., Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The Navy GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy range from field mapping and water sampling; detailed mapping, to low angle sun photo interpretations, trenching, to 3-D seismic interpretations and modeling. References Michael Lazaro, Chris Page, Andy Tiedeman, Andrew Sabin, Steve Bjornstad, Steve Alm, David Meade, Jeff Shoffner, Kevin Mitchell, Bob Crowder, Greg Halsey (2010) United States Department Of The Navy Geothermal Exploration Leading To Shallow And Intermediate-Deep Drilling At Hawthorne

32

Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al., 2010) |  

Open Energy Info (EERE)

Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al., 2010) Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes The Navy GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy range from field mapping and water sampling; detailed mapping, to low angle sun photo interpretations, trenching, to 3-D seismic interpretations and modeling. References Michael Lazaro, Chris Page, Andy Tiedeman, Andrew Sabin, Steve

33

U.S. Army - Ft. Carson, Colorado | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Army - Ft. Carson, Colorado U.S. Army - Ft. Carson, Colorado Photo of High-Bay Aviation Maintenance Facility at Butts Army Airfield Fort Carson U.S. Army Base is located south of...

34

Manhattan Project: Enter the Army, 1942  

Office of Scientific and Technical Information (OSTI)

Army parade, Los Alamos ENTER THE ARMY Army parade, Los Alamos ENTER THE ARMY (1942) Events > Difficult Choices, 1942 More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 The decision to proceed with planning for the production of enriched uranium and of plutonium led directly to the involvement of the Army, specifically the Corps of Engineers. President Roosevelt had approved Army involvement on October 9, 1941, and Vannevar Bush had arranged for Army participation at S-1 meetings beginning in March 1942. The need for security suggested placing the S-1 program within one of the armed forces, and the construction expertise of the Corps of Engineers made it the logical choice to build the production facilities envisioned in the Conant report of May 23.

35

Energy Conservation in Army Industrial Facilities  

E-Print Network (OSTI)

The United States Army Materiel Development and Readiness Command (DARCOM) is responsible for the life cycle functions for all assigned materiel systems of the United States Army and Department of Defense agencies. DARCOM installations account...

Aveta, G. A.; Sliwinski, B. J.

1984-01-01T23:59:59.000Z

36

Sustainability: Preserving Choice for the Army  

E-Print Network (OSTI)

Sustainability: Preserving Choice for the Army Friday, October 19, 2012 12:00 - 1:30 p.m. (lunch will be provided) Wrigley Hall, Room 481 Richard Kidd Deputy Assistant of the Army, Energy and Sustainability infrastructure. The development of Army-wide sustainability principles coupled with investments, training

Hall, Sharon J.

37

US Army Corps of Engineersr~,  

E-Print Network (OSTI)

-United States-Interviews. 3. Water resources development-Government policy-United States-History-Sources. I individuals who have influenced United States water resources development. I commend this interview to allAwareness: The United States Army Corps of Engineers Environmental Advisory Board, 19704980, Reshaping National Water

US Army Corps of Engineers

38

Aerial Photography At Hawthorne Area (Lazaro, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Aerial Photography At Hawthorne Area (Lazaro, Et Al., Aerial Photography At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes The Navy GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy range from field mapping and water sampling; detailed mapping, to low angle sun photo interpretations, trenching, to 3-D seismic interpretations and modeling. References Michael Lazaro, Chris Page, Andy Tiedeman, Andrew Sabin, Steve Bjornstad, Steve Alm, David Meade, Jeff Shoffner, Kevin Mitchell, Bob Crowder, Greg Halsey (2010) United States Department Of The Navy Geothermal

39

Teleseismic-Seismic Monitoring At Hawthorne Area (Lazaro, Et Al., 2010) |  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Hawthorne Area Teleseismic-Seismic Monitoring At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes The Navy GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy range from field mapping and water sampling; detailed mapping, to low angle sun photo interpretations, trenching, to 3-D seismic interpretations and modeling. References Michael Lazaro, Chris Page, Andy Tiedeman, Andrew Sabin, Steve Bjornstad, Steve Alm, David Meade, Jeff Shoffner, Kevin Mitchell, Bob Crowder, Greg Halsey (2010) United States Department Of The Navy Geothermal

40

Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes The Navy recently completed a temperature gradient hole (TGH) drilling campaign. Results suggest multiple resources may exist on HAD lands. To further define the shallow resource, the Navy will drill one or two

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Field Mapping At Hawthorne Area (Lazaro, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Hawthorne Area (Lazaro, Et Al., Field Mapping At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown Notes The Navy GPO has contracted the University of Nevada Reno Great Basin for Center for Geothermal Research to conduct additional field exploration at HAD. The tasks required by the Navy range from field mapping and water sampling; detailed mapping, to low angle sun photo interpretations, trenching, to 3-D seismic interpretations and modeling. References Michael Lazaro, Chris Page, Andy Tiedeman, Andrew Sabin, Steve Bjornstad, Steve Alm, David Meade, Jeff Shoffner, Kevin Mitchell, Bob Crowder, Greg Halsey (2010) United States Department Of The Navy Geothermal

42

Top Operations and Maintenance (O&M) Efficiency Opportunities at DoD/Army Sites - A Guide for O&M/Energy Managers and Practitioners  

SciTech Connect

This report, sponsored the Army's Energy Engineering Analysis Program, provides the Operations and Maintenance (O&M) Energy manager and practitioner with useful information about the top O&M opportunities consistently found across the DoD/Army sector. The target is to help the DoD/Army sector develop a well-structured and organized O&M program.

Sullivan, Gregory P.; Dean, Jesse D.; Dixon, Douglas R.

2007-05-25T23:59:59.000Z

43

Regulation No. Department of the Army  

E-Print Network (OSTI)

CEMP-CE Regulation No. 1180-1-6 Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000 ER 1180-1-6 30 Sep 95 Contracts CONSTRUCTION QUALITY MANAGEMENT Distribution Restriction-1-6 CEMP-CE U. S. Army Corps of Engineers CECW-OC Washington, D.C. 20314-1000 Regulation No. 1180-1-6 30

US Army Corps of Engineers

44

DEPARTMENT OF THE ARMY EC 1165-2-214 U.S. Army Corps of Engineers  

E-Print Network (OSTI)

DEPARTMENT OF THE ARMY EC 1165-2-214 U.S. Army Corps of Engineers CECW Washington, D.C. 20314, Replacement and Rehabilitation (OMRR&R). It provides the procedures for ensuring the quality and credibility of U.S. Army Corps of Engineers (USACE) decision, implementation, and operations and maintenance

US Army Corps of Engineers

45

U.S. Army Corps of Engineers  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the U.S. Army Corps of Engineers and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

46

Army urged to resume burning chemical arms  

Science Journals Connector (OSTI)

Army urged to resume burning chemical arms ... Under baseline, the weapon is disassembled into four componentsthe chemical agent, energetic materials, metal parts, and dunnage (waste)with each incinerated separately. ...

1994-02-14T23:59:59.000Z

47

DEPARTMENT OF THE ARMY ER 11-1-XXX U.S. Army Corps of Engineers  

E-Print Network (OSTI)

#12;DEPARTMENT OF THE ARMY ER 11-1-XXX U.S. Army Corps of Engineers CECW-EV Washington, D.C. 20314 Military Sales (FMS), and any other Federal funded programs with a total project cost of $1 million or more

US Army Corps of Engineers

48

E-Print Network 3.0 - army recruits face Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Army... of the Army (Manpower and Reserve Affairs) effective 1 October 1994. o Provides definitions of Army Civilian... Training, Education, and Development System...

49

E-Print Network 3.0 - army procurement programs Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program',. Army AL&T Magazine. Yoder, E. (2005). 'Training and Educating Contingency Contracting... Assistant Secretary of the Army, was to determine if Army procurement and...

50

E-Print Network 3.0 - army rapid equipping Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Army Pamphlet 2201 Summary: , equipping, training Army units for progressive readiness to conduct full spectrum operations across... Department of the Army Pamphlet 220-1 Field...

51

E-Print Network 3.0 - army airfield savannah Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

produced for Army, Air Force... Bergstrom Air Force Base Austin, Texas KAUS 280 100 Bicycle Lake Army ... Source: United States Army Corps of Engineers, Cold Regions Research...

52

Army Energy and Water Reporting System Assessment  

SciTech Connect

There are many areas of desired improvement for the Army Energy and Water Reporting System. The purpose of system is to serve as a data repository for collecting information from energy managers, which is then compiled into an annual energy report. This document summarizes reported shortcomings of the system and provides several alternative approaches for improving application usability and adding functionality. The U.S. Army has been using Army Energy and Water Reporting System (AEWRS) for many years to collect and compile energy data from installations for facilitating compliance with Federal and Department of Defense energy management program reporting requirements. In this analysis, staff from Pacific Northwest National Laboratory found that substantial opportunities exist to expand AEWRS functions to better assist the Army to effectively manage energy programs. Army leadership must decide if it wants to invest in expanding AEWRS capabilities as a web-based, enterprise-wide tool for improving the Army Energy and Water Management Program or simply maintaining a bottom-up reporting tool. This report looks at both improving system functionality from an operational perspective and increasing user-friendliness, but also as a tool for potential improvements to increase program effectiveness. The authors of this report recommend focusing on making the system easier for energy managers to input accurate data as the top priority for improving AEWRS. The next major focus of improvement would be improved reporting. The AEWRS user interface is dated and not user friendly, and a new system is recommended. While there are relatively minor improvements that could be made to the existing system to make it easier to use, significant improvements will be achieved with a user-friendly interface, new architecture, and a design that permits scalability and reliability. An expanded data set would naturally have need of additional requirements gathering and a focus on integrating with other existing data sources, thus minimizing manually entered data.

Deprez, Peggy C.; Giardinelli, Michael J.; Burke, John S.; Connell, Linda M.

2011-09-01T23:59:59.000Z

53

U.S. Army- Ft. Carson, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

Fort Carson U.S. Army Base is located south of Colorado Springs, Colorado. It was the first Federal facility to install a "solar wall"a solar ventilation air preheating system. The solar wall heats Ft. Carson's new high-bay aviation maintenance facility at Butts Army Airfield by pre-warming air as much as 54F and supplying the heated air to the building's central heating system. This collector system is especially advantageous for buildings that require large volumes of heated air.

54

Flagging vigilance: the post-Vietnam "Hollow Army"  

E-Print Network (OSTI)

the recruiting shortfalls and civilian employee deficits and toward the issues of retention. It will demonstrate that a large part of the reason that the army suffered through increasing difficulty in regards to retention during the decade was due... in the army's civilian workforce, which performed three-fourths of the essential tasks needed to operate the army's bases. Readiness had been compromised due to budget cuts that had forced the army to divert over one division's worth of soldiers...

Lee, Robert Matthew

2001-01-01T23:59:59.000Z

55

ATP 3-90.90 Army Tactical Standard Operating Procedures  

E-Print Network (OSTI)

ATP 3-90.90 Army Tactical Standard Operating Procedures November 2011 DISTRIBUTION RESTRICTION and Doctrine Digital Library at (www.train.army.mil). #12;ATP 3-90.90 Distribution Restriction: Approved.................................................3-4 #12;ii ATP 3-90.90 1 November 2011 Preface PURPOSE Army Techniques Publication (ATP) 3

US Army Corps of Engineers

56

US Army Corps of Engineers  

E-Print Network (OSTI)

the Petroleum, Oil and Lubricants Storage Tank, and Phase 2 of the Maintenance Complex Accessory Shop. With all, the upgrade of electrical system and natural gas system and Barracks and Dining Facility projects are well

US Army Corps of Engineers

57

U.S. Army - Ft. Carson, Colorado | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Army - Ft. Carson, Colorado Army - Ft. Carson, Colorado U.S. Army - Ft. Carson, Colorado October 7, 2013 - 10:01am Addthis Photo of High-Bay Aviation Maintenance Facility at Butts Army Airfield Fort Carson U.S. Army Base is located south of Colorado Springs, Colorado. It was the first Federal facility to install a "solar wall"-a solar ventilation air preheating system. The solar wall heats Ft. Carson's new high-bay aviation maintenance facility at Butts Army Airfield by pre-warming air as much as 54°F and supplying the heated air to the building's central heating system. This collector system is especially advantageous for buildings that require large volumes of heated air. The system cost $140,000 to design, build, and install. The unglazed collector consists of 7,800 ft.² of sheet metal dotted with tiny holes. It

58

U.S. Army TARDEC | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publications Power & Energyfrom an Army Ground Vehicle Perspective SPIDERS Joint Capability Technology Demonstration Industry Day Presentations Supporting a Hawaii Hydrogen Economy...

59

Army Awards 20 Additional Contracts for Renewable Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Army Corps of Engineers awarded another 20 contracts to companies for biomass energy, solar energy, and wind energy technologies.

60

Power & Energyfrom an Army Ground Vehicle Perspective | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Task Force U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen StorageDelivery Logistics...

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Army Energy Initiatives Task Force | Department of Energy  

Office of Environmental Management (EM)

U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen StorageDelivery Logistics Home About...

62

U.S. Army Fort Carson Interconnection Agreement  

Energy.gov (U.S. Department of Energy (DOE))

Document describes a sample interconnection agreement for the U.S. Army Fort Carson photovoltaic (PV) project financed through a power purchase agreement (PPA).

63

E-Print Network 3.0 - army war college Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

army war college Page: << < 1 2 3 4 5 > >> 1 BUILDING STRONG U.S. ARMY CORPS OF ENGINEERS PACIFIC OCEAN DIVISION Summary: from the National War College. He also served as an Army...

64

E-Print Network 3.0 - army research office Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Army Engineering and Support Center, Huntsville... , where he served as the G7 (Engineer) for the U.S. Army V Corps from 2007-2008. ... Source: US Army Corps of Engineers -...

65

DEPARTMENT OF THE ARMY OFFICE OF THE ASSISTANT SECRETARY  

E-Print Network (OSTI)

into the environment. The statute and Executive Order 12316 assign primary responsibility for implementation to EPA Secretary of the Army (Civil Works) #12;Interagency Agreement Between the U.S. Army Corps of Engineers Response, Compensation, and Liability Act of 1980 (CERCLA) PURPOSE The Environmental Protection Agency (EPA

US Army Corps of Engineers

66

Miscellaneous Paper A-95-1 US Army Corps  

E-Print Network (OSTI)

Induced Stress in Submerse ·Aquatic Plants: A Review by Susan L. Sprecher, Michael D. Netherland in Submersed Aquatic Plants: A Review by Susan L. Sprecher, Michael D. Netherland U.S. Army Corps of Engineers. Netherland; pre pared for U.S. Army Corps of Engineers. 41 p. : ill. ; 28 em. - (Miscellaneous paper; A-95

US Army Corps of Engineers

67

E-Print Network 3.0 - army materials technology Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

MS Collection: Engineering 2 U.S. ARMY CORPS OF ENGINEERS PITTSBURGH DISTRICT 1000 LIBERTY AVENUE, 22 Summary: U.S. ARMY CORPS OF ENGINEERS - PITTSBURGH DISTRICT 1000...

68

E-Print Network 3.0 - army unit faces Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

he is responsible... for a mission that includes engineering design, construction and real estate management for the Army in ... Source: US Army Corps of Engineers - Coastal...

69

E-Print Network 3.0 - army field artillery Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

or Experience Summary: Instructor for MILS 1101, 2201, & 3301 Captain, US Army Political Science Field Artillery Officer, 9 years... , 2202, & 3302 Captain, US Army...

70

E-Print Network 3.0 - army engineer waterways Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiment Station Aquatic Plant Control... for Control of Hydrilla by Michael D. Netherland, Judy F. Shearer U.S. Army Corps of Engineers Waterways... .S. Army Engineer ......

71

E-Print Network 3.0 - army general officer Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

... Source: US Army Corps of Engineers - Coastal and Hydraulics Laboratory (CERC) Engineer Waterways Experiment Station Vicksburg, MS Collection: Engineering 2 ARMY NURSE CORPS...

72

E-Print Network 3.0 - army medical department Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of ... Source: US Army Corps of Engineers - Coastal and Hydraulics Laboratory (CERC) Engineer Waterways Experiment Station Vicksburg, MS Collection: Engineering 2 U.S. Army Corps...

73

E-Print Network 3.0 - army chemical school Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

how ... Source: US Army Corps of Engineers - Coastal and Hydraulics Laboratory (CERC) Engineer Waterways Experiment Station Vicksburg, MS Collection: Engineering 6 Army game to...

74

E-Print Network 3.0 - army industrial facilities Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection: Energy Storage, Conversion and Utilization 3 US Army Corps of Engineers Engineer Research and Development Center Summary: for the Army in five major initiatives: -...

75

DOE - Office of Legacy Management -- Seneca Army Depot - NY 11  

NLE Websites -- All DOE Office Websites (Extended Search)

Seneca Army Depot - NY 11 Seneca Army Depot - NY 11 FUSRAP Considered Sites Site: SENECA ARMY DEPOT (NY.11 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Romulus , New York Evaluation Year: 1985 NY.11-2 NY.11-3 Site Operations: Eleven bunkers were used to store approximately 2,000 drums of pitchblende ore in the early 1940's. The bunkers were returned to munitions storage service after removal of the ore drums. NY.11-4 Site Disposition: Eliminated - Referred to The Department of the Army NY.11-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Pitchblende Ore NY.11-3 Radiological Survey(s): Yes NY.11-5 Site Status: Eliminated from consideration under FUSRAP NY.11-2 Also see Documents Related to SENECA ARMY DEPOT

76

Major Insect Threats; Cotton Insects, Grasshoppers, Corn Borer, And Army Worm Still Maior Threats  

Science Journals Connector (OSTI)

Major Insect Threats; Cotton Insects, Grasshoppers, Corn Borer, And Army Worm Still Maior Threats ...

. U S D A

1954-01-01T23:59:59.000Z

77

U.S. Army Fort Carson Environmental Document | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rsonenvironmental.pdf More Documents & Publications U.S. Army Fort Carson Photovoltaics Project Lease SCT&E LNG, LLC - FE Dkt. No. 14-72-LNG SCT&E LNG, LLC - FE Dkt. No. 14-89-LNG...

78

Waste-to-Energy Projects at Army Installations  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Franklin H. Holcomb, U.S. Army ERDC-CERL, at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011

79

Army Enhanced Use Lease (EUL) website | Open Energy Information  

Open Energy Info (EERE)

website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Army Enhanced Use Lease (EUL) website Abstract This website provides information regarding U.S....

80

Army Corps of Engineers - Regulatory Guidance Letters | Open...  

Open Energy Info (EERE)

Guidance Letters Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Army Corps of Engineers - Regulatory Guidance Letters Abstract This webpage provides a...

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Iowa Army Ammunition Plant Former Workers, Construction Worker Screening  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Army Ammunition Plant Former Workers, Construction Worker Iowa Army Ammunition Plant Former Workers, Construction Worker Screening Projects Iowa Army Ammunition Plant Former Workers, Construction Worker Screening Projects Project Name: Medical Monitoring of Former Atomic Weapons Workers at the Iowa Army Ammunition Plant (IAAP) in Burlington, Iowa Covered DOE Site: IAAP Worker Population Served: All Line 1/Division B Workers Principal Investigator: Laurence Fuortes, MD Toll-free Telephone: (866) 282-5818 Local Medical Clinics: University of Iowa Hospitals and Clinics 200 Hawkins Drive Iowa City, IA 52242 Henry County Health Center 407 South White Street Mt. Pleasant, IA 62641 Great River Medical Center 1221 S. Gear Avenue West Burlington, IA 52655 Website: http://cph.uiowa.edu/iowafwp/ This project is intended to screen for occupational health conditions among

82

U.S. Army Fort Carson Environmental Document  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF SUITABILITY TO LEASE FINDING OF SUITABILITY TO LEASE 3 Phases Energy Services Land Lease Us Army Installation Management Command Headquarters, United States Army Garrison, Fort Carson 1.0 PURPOSE The purpose of this Finding of Suitability to Lease (FOSL) is to document the environmental suitability of property at Fort Carson, Colorado, for leasing and construction of a 2 Megawatt (2 MW) solar photovoltaic (PV) plant consistent with Department of Defense (DOD) and Army policy. In addition, the FOSL identifies use restrictions as specified in the attached Environmental Protection Provisions necessary to protect human health or the environment and to prevent interference with existing and planned environmental restoration activities. 2.0 PROPERTY DESCRIPTIONS The property to be leased consists of approximately 18.1518 acres of land located inside a

83

U.S. Army Fort Carson Environmental Document  

NLE Websites -- All DOE Office Websites (Extended Search)

FINDING OF SUITABILITY TO LEASE FINDING OF SUITABILITY TO LEASE 3 Phases Energy Services Land Lease Us Army Installation Management Command Headquarters, United States Army Garrison, Fort Carson 1.0 PURPOSE The purpose of this Finding of Suitability to Lease (FOSL) is to document the environmental suitability of property at Fort Carson, Colorado, for leasing and construction of a 2 Megawatt (2 MW) solar photovoltaic (PV) plant consistent with Department of Defense (DOD) and Army policy. In addition, the FOSL identifies use restrictions as specified in the attached Environmental Protection Provisions necessary to protect human health or the environment and to prevent interference with existing and planned environmental restoration activities. 2.0 PROPERTY DESCRIPTIONS The property to be leased consists of approximately 18.1518 acres of land located inside a

84

Commander, Seneca Army Depot Attention: Thomas Stincic, Safety Officer  

Office of Legacy Management (LM)

9 1986 9 1986 Department of Energy Washington, D .C. 20545 . Commander, Seneca Army Depot Attention: Thomas Stincic, Safety Officer Romulus, New York 14541 Dear Mr. Stincic: As you are aware, the Department of Energy is evaluating the radiological condition of sites formerly used by Department predecessors during the early years of nuclear energy development , and a portion of the Seneca Army Depot was identified as one such site. While our preliminary inves-tiga- tions did identify residual radioactive material on the site, it is our understanding that the Department of Army assumed responsibility for this residual radioactivity and has completed remedial action. We have not received a final report of this work and would appreciate receiving a copy

85

Federal Energy Management Program: U.S. Army - Ft. Carson, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Army - Ft. U.S. Army - Ft. Carson, Colorado to someone by E-mail Share Federal Energy Management Program: U.S. Army - Ft. Carson, Colorado on Facebook Tweet about Federal Energy Management Program: U.S. Army - Ft. Carson, Colorado on Twitter Bookmark Federal Energy Management Program: U.S. Army - Ft. Carson, Colorado on Google Bookmark Federal Energy Management Program: U.S. Army - Ft. Carson, Colorado on Delicious Rank Federal Energy Management Program: U.S. Army - Ft. Carson, Colorado on Digg Find More places to share Federal Energy Management Program: U.S. Army - Ft. Carson, Colorado on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Project Planning & Implementation Project Assistance

86

U.S. Army Corps of Engineers Delivers Cost and Schedule Validation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Army Corps of Engineers Delivers Cost and Schedule Validation for Hanford Waste Treatment Plant U.S. Army Corps of Engineers Delivers Cost and Schedule Validation for Hanford Waste...

87

E-Print Network 3.0 - army air forces Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

33 Air Force Reserve Reserve 0 0 1 1 Army Active Active Duty 6 6 11 23 Army ... Source: New Hampshire, University of - Department of Electrical and Computer Engineering,...

88

E-Print Network 3.0 - army air defense Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Army Active Active Duty 6 6 11 23 Army National Guard Guard 21... 0 0 1 1 ... Source: New Hampshire, University of - Department of Electrical and Computer Engineering,...

89

E-Print Network 3.0 - army supply bulletin Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1000 LIBERTY AVENUE, 22 Summary: U.S. ARMY CORPS OF ENGINEERS - PITTSBURGH DISTRICT 1000 LIBERTY AVENUE, 22 ND FLOOR, PITTSBURGH, PA... 15222 WWW.LRP.USACE.ARMY.MIL Corps partners...

90

E-Print Network 3.0 - army frontmn tallinnas Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1000 LIBERTY AVENUE, 22 Summary: U.S. ARMY CORPS OF ENGINEERS - PITTSBURGH DISTRICT 1000 LIBERTY AVENUE, 22 ND FLOOR, PITTSBURGH, PA... 15222 WWW.LRP.USACE.ARMY.MIL Corps awards...

91

E-Print Network 3.0 - army primary radiation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1000 LIBERTY AVENUE, 22 Summary: U.S. ARMY CORPS OF ENGINEERS - PITTSBURGH DISTRICT 1000 LIBERTY AVENUE, 22 ND FLOOR, PITTSBURGH, PA... 15222 WWW.LRP.USACE.ARMY.MIL Singer and...

92

The potential of America's Army, the video game as civilian-military public sphere  

E-Print Network (OSTI)

The US Army developed multiplayer online First Person Shooter video game, America's Army, was examined as the first instance of an entirely state-produced and directed enterprise leveraging video game popular culture. ...

Li, Zhan, 1979-

2004-01-01T23:59:59.000Z

93

Margaret, Simmons, U.S. Army Corps of Engineers (USACE) Huntsville...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

not represent the views of the Army or the U.S. Army Corps of Engineers. Case Study Honeywell ASBCA 57779 AF has set out the claim that went to the ASBCA The Board...

94

E-Print Network 3.0 - army future combat Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Sciences 63 MoviesMedia HintsGuides Summary: that puts you in the combat boots of a US Army infantryman. Earlier this week, we learned that for use... 's Army is...

95

E-Print Network 3.0 - anniston army depot Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

IN THIS ISSUE U.S. ARMY CORPS OF ENGINEERS Page 2 Insights Prayer is communication with God USACE... Transition (WT) Com- plex at Fort Bliss, Texas, one of nine Army construction...

96

E-Print Network 3.0 - army depot anniston Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

IN THIS ISSUE U.S. ARMY CORPS OF ENGINEERS Page 2 Insights Prayer is communication with God USACE... Transition (WT) Com- plex at Fort Bliss, Texas, one of nine Army construction...

97

E-Print Network 3.0 - army ant eciton Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

burchellii, but no label to this effect... with army ants (Hymenoptera: Formicidae) in Panama. So- ciobiology 49: 59-92. Disney, R. H. L. and C. W... - tropical army ants ......

98

Integrating the Army Geospatial Enterprise : synchronizing geospatial-intelligence to the dismounted soldier  

E-Print Network (OSTI)

The Army's Geospatial Enterprise (AGE) has an emerging identity and value proposition arising from the need to synchronize geospatial information activities across the Army in order to deliver value to military decision ...

Richards, James E., S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

99

E-Print Network 3.0 - afrotropical army ant Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Prey spectra of two swarm-raiding army ant species in East Africa Summary: in afrotropical forests. Introduction Army ants are nomadic social predators...

100

Volume XVIII, No. 4 A publication of the U.S. Army Installation Management Agency  

E-Print Network (OSTI)

......................................................................................................... 4-5 Fort Bragg calls on Huntsville Center to fix faulty HVAC systems by Debra Valine 5 Plans Army standards approved for ORTC, AFH by John A. Scharl 11 Army Facility Standardization Program update principles, Installation Design Guides, standards lead the way by Jerry Zekert 17 Army adopts LEED rating

US Army Corps of Engineers

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

United States Army Corp of Engineers (ERDC) | Open Energy Information  

Open Energy Info (EERE)

Army Corp of Engineers (ERDC) Army Corp of Engineers (ERDC) Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Army Corp of Engineers (ERDC) Address Coastal & Hydraulics Laboratory, 3909 Halls Ferry Road Place Vicksburg, Mississippi Zip 39180 Sector Hydro Phone number (601) 634-2288 Website http://chl.erdc.usace.army.mil Coordinates 32.3019199°, -90.8733522° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.3019199,"lon":-90.8733522,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

US Army Corps of Engineers (Corps or USACE)  

E-Print Network (OSTI)

, this plan addresses systematic processes in place for senior leadership to review regularly the progress1 US Army Corps of Engineers (Corps or USACE) Civil Works SUMMARY Agency Recovery Act Plan 31 March & Maintenance, Recovery Act $2.075B » Regulatory Program, Recovery Act $0.025B » Formerly Utilized Sites

US Army Corps of Engineers

103

ERDC/ELTR-12-25 Army Range Technology Program  

E-Print Network (OSTI)

ERDC/ELTR-12-25 Army Range Technology Program Large-Scale Physical Separation of Depleted Uranium-Scale Physical Separation of Depleted Uranium from Soil Steven Larson, Victor Medina, John Ballard, Chris Griggs) at Yuma Proving Ground (YPG) to evaluate this technique for removal of depleted uranium (DU) metal from

US Army Corps of Engineers

104

US ARMY CORPS OF ENGINEERS PLANNING AND RESPONSE TEAM  

E-Print Network (OSTI)

US ARMY CORPS OF ENGINEERS PLANNING AND RESPONSE TEAM INFRASTRUCTURE ASSESSMENT MISSION GUIDE March, hazardous materials, water and wastewater infrastructure (e.g. treatment facilities, lift stations, other Federal agencies (e.g. Bureau of Reclamation). The IA PRT program also supports water/wastewater

US Army Corps of Engineers

105

One Team Destined For Greatness US Army Corps of Engineers  

E-Print Network (OSTI)

Collaboration of water management organizations Flood control Reservoir operations San Juan-Chama Project, IBWC, UNM, USGS Santa Fe, Caballo Soil & Water Conservation District, Colorado Division of Water & calibration Colorado � water rights Lower Rio Grande � water quality RiverWare� 6 Azotea Tunnel #12;US Army

Johnson, Eric E.

106

http://www.tad.usace.army.mil/ Afghan Safety Professionals  

E-Print Network (OSTI)

, with the paving and U.S. ARMY CORPS OF ENGINEERS TRANSATLANTIC DIVISION PUBLICATION CFC Adds Online Option for Donors at`MyPay' by Todd Lyman USACE TRANSATLANTIC AFGHANISTAN DISTRICT KABUL--Afghan safety Transatlantic Afghanistan Districtsafetyofficeistoprovidepolicy,programs,tech- nical services, oversight

US Army Corps of Engineers

107

a Miscellaneous Paper A-96-1 US Army Corps  

E-Print Network (OSTI)

. Netherland, Judy F. Shearer =.=- -===- Approved For Public Release; Distribution Is Unlimited Prepared for Control of Hydrilla by Michael D. Netherland, Judy F. Shearer U.S. Army Corps of Engineers Waterways Netherland, Michael D. Integrated use of fluridone and a fungal pathogen for control of hydrilla / by Michael

US Army Corps of Engineers

108

m Technical Report A-94-3 US Army Corps  

E-Print Network (OSTI)

as Potential Herbicide Delivery Systems by Michael D. Netherland, R. Michael Stewart David Sisneros U.S. Bureau of Controlled-Release Matrices as Potential Herbicide Delivery Systems by Michael D. Netherland, R. Michael as potential herbicide delivery systems I by Michael D. Netherland ·.. let al.] ; prepared for U.S. Army Corps

US Army Corps of Engineers

109

The U.S. Army's VehicleThe U.S. Army's Vehicle Intelligence Program (AVIP):Intelligence Program (AVIP)  

E-Print Network (OSTI)

@ornl.gov David J. Gorsich U.S. Army Tank-Automotive and Armaments Command AMSTA-TR-N, Warren, Michigan 49397 Intelligence (VI) is the application and integration of vehicle electronics (telematics) within vehicles) is the application and integration of vehicle electronics (telematics) within vehicles in order to provide a more

110

The Army before last military transformation and the impact of nuclear weapons on the US Army during the early Cold War .  

E-Print Network (OSTI)

??This thesis analyzes the impact of nuclear weapon on the doctrine and force structure of the US Army during the Early Cold War (1947-1957). It (more)

Kinman, Bret C.

2004-01-01T23:59:59.000Z

111

U.S. Army Fort Carson Photovoltaics Project Lease  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DACA45-1-07-6037 DACA45-1-07-6037 DEPARTMENT OF THE ARMY LEASE FORT CARSON MILITARY INSTALLATION EL PAS0 COUNTY, COLORADO THIS LEASE, made on behalf of the United States, between the SECRETARY OF THE ARMY, hereinafter referred to as the Secretary, and Carson Solar I, LLC., a limited liability company organized and existing under and by virtue of the laws of the State of Delaware, with its principal office at 31 897 Del Obispo, Suite 220, San Juan Capistrano, CA 92675, hereinafter referred to as the Lessee. WITNESSETH: The Secretary, by the authority of Title 10, United States Code, Section 2667, and for the consideration hereinafter set forth, hereby leases to the Lessee the property over, across, in and upon lands of the United States, identified in Exhibits "A" and "B," attached hereto and made a

112

Iowa Army Ammunition Plant, Former Production Workers Screening Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plant, Former Production Workers Screening Plant, Former Production Workers Screening Projects Iowa Army Ammunition Plant, Former Production Workers Screening Projects Project Name: Medical Monitoring of Former Atomic Weapons Workers at the Iowa Army Ammunition Plant (IAAP) in Burlington, Iowa Covered DOE Site: IAAP Worker Population Served: All Line 1/Division B Workers Principal Investigator: Laurence Fuortes, MD Toll-free Telephone: (866) 282-5818 Local Medical Clinics: University of Iowa Hospitals and Clinics 200 Hawkins Drive Iowa City, IA 52242 Henry County Health Center 407 South White Street Mt. Pleasant, IA 62641 Great River Medical Center 1221 S. Gear Avenue West Burlington, IA 52655 Website: http://cph.uiowa.edu/iowafwp/ This project is intended to screen for occupational health conditions among

113

Preliminary thoughts concerning potential US Army threats/roles  

SciTech Connect

The rate at which the current world military/political perspective is changing demands consideration of a broader spectrum of potential threats then has been the case for the past few decades--during which the Soviet Union was the preeminent threat. Seemingly overnight, the cold war ceased, the requirement for massive U.S. military counters to the Soviet Union forces faded, and an era of constant (obvious) military threat disappeared. This situation has in turn been revolutionized by the Iraq invasion of Kuwait and the U.S. response. The paper addresses part of the problem facing military planners by defining a spectrum of threats that typify those the U.S. Army might face over the next decade or two. The purpose of the threat set is to support the evaluation of the effectiveness and usefulness, to the U.S. Army, of advanced technologies. The set of threats is intended to provide a complete set of characteristics rather then to be a complete list of the possibilities; it is illustrative rather than exhaustive. Although largely completed before the war with Iraq started, its content is still valid in that its purpose is to provide a framework for thinking about future U.S. Army technology needs.

Greene, R.A.; Solomon, K.A.; Miles, J.T.

1991-06-01T23:59:59.000Z

114

Preliminary assessment report for Virginia Army National Guard Army Aviation Support Facility, Richmond International Airport, Installation 51230, Sandston, Virginia  

SciTech Connect

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Virginia Army National Guard (VaARNG) property in Sandston, Virginia. The Army Aviation Support Facility (AASF) is contiguous with the Richmond International Airport. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The PA is designed to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF, originally constructed as an active Air Force interceptor base, provides maintenance support for VaARNG aircraft. Hazardous materials used and stored at the facility include JP-4 jet fuel, diesel fuel, gasoline, liquid propane gas, heating oil, and motor oil.

Dennis, C.B.

1993-09-01T23:59:59.000Z

115

E-Print Network 3.0 - army field water Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

River levels, flows... U.S. ARMY CORPS OF ENGINEERS - PITTSBURGH DISTRICT 1000 LIBERTY AVENUE, 22 ND FLOOR, PITTSBURGH, PA... to remain high The Corps of Engineers...

116

E-Print Network 3.0 - army reserve components Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

one of these components of the US Army. Therefore... or anesthesia students who plan to enter a ... Source: Wood, James B. - Bermuda Biological Station for Research Collection:...

117

E-Print Network 3.0 - army size military Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and Professor Summary: years of ROTC. There is no military obligation for attending basic camp. The army provides... 198 Military Science Chair and Professor Lieutenant Colonel...

118

E-Print Network 3.0 - army ants revisited Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

rugulosus (tribe Ecitonini) on a nest aggregation... their brood by carrying them to ad-hoc shelters under rocks above ground, but the army ants pursued... occurred repeatedly...

119

E-Print Network 3.0 - army scientific advisory Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

results for: army scientific advisory Page: << < 1 2 3 4 5 > >> 1 Robert L. Byer Curriculum Vitae Born: May 9, 1942, Glendale, California Summary: Editorial Boards: Proceedings of...

120

E-Print Network 3.0 - army community hospital Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

community hospital Search Powered by Explorit Topic List Advanced Search Sample search results for: army community hospital Page: << < 1 2 3 4 5 > >> 1 Directory Glossary Useful...

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

E-Print Network 3.0 - army vehicles phase Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and Unit of Action... experiments are simulations of military units. America's Army is a simulation of a squad level military Source: Carnegie Mellon University, School of...

122

E-Print Network 3.0 - army science board Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: army science board Page: << < 1 2 3 4 5 > >> 1 Professor of Military science Lieutenant Colonel...

123

E-Print Network 3.0 - army europe 409th Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

army in western Saxony. Shortly after this vic- tory, Napoleon ordered... to preserve French dominance in Europe by closely scrutinizing his operations and strategy. Instead...

124

E-Print Network 3.0 - army camp desert Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

in January 1992, after the army canceled elections won by the Islamic Salvation Front (FIS). Blocked from Source: Ecole Polytechnique, Centre de mathmatiques Collection:...

125

E-Print Network 3.0 - army unit commander Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Vicksburg, MS Collection: Engineering 2 BUILDING STRONG U.S. ARMY CORPS OF ENGINEERS PACIFIC OCEAN DIVISION Summary: Program Realignment Initiative. Pacific Ocean Division...

126

E-Print Network 3.0 - army research laboratory Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants: Summary of Research Accomplishments by Kurt D. Getsinger, Michael D. Netherland U.S. Army Corps... Station. IV. Aquatic Plant Control Research Program (U.S. ......

127

E-Print Network 3.0 - army military police Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

in the FY09 Military Construction, Army program... The contract includes one Engineer Unit Operations Facility for 26.7 million, one Unit Military Police (MP... Public...

128

E-Print Network 3.0 - army national guard Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

... Source: US Army Corps of Engineers - Coastal and Hydraulics Laboratory (CERC) Engineer Waterways Experiment Station Vicksburg, MS Collection: Engineering 3 County Total...

129

E-Print Network 3.0 - army materiel command Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

OF ... Source: US Army Corps of Engineers - Coastal and Hydraulics Laboratory (CERC) Engineer Waterways Experiment Station Vicksburg, MS Collection: Engineering 2 Contemporary...

130

E-Print Network 3.0 - army solid state Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

... Source: US Army Corps of Engineers - Coastal and Hydraulics Laboratory (CERC) Engineer Waterways Experiment Station Vicksburg, MS Collection: Engineering 2 DISTINGUISHED...

131

Hanford wells  

SciTech Connect

Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

Chamness, M.A.; Merz, J.K.

1993-08-01T23:59:59.000Z

132

U.S. ARMY CORPS OF ENGINEERS PITTSBURGH DISTRICT 1000 LIBERTY AVENUE, 22  

E-Print Network (OSTI)

U.S. ARMY CORPS OF ENGINEERS ­ PITTSBURGH DISTRICT 1000 LIBERTY AVENUE, 22 ND FLOOR, PITTSBURGH, PA 15222 WWW.LRP.USACE.ARMY.MIL Corps of Engineers to Continue Leading Clean-up of SLDA Project PITTSBURGH to lead the Shallow Land Disposal Area (SLDA) radioactive waste clean-up project in Parks Township, Pa

US Army Corps of Engineers

133

EPA and the Army Corps' Proposed Rule to Define "Waters of the United States"  

E-Print Network (OSTI)

EPA and the Army Corps' Proposed Rule to Define "Waters of the United States" Claudia Copeland.crs.gov R43455 #12;EPA and the Army Corps' Proposed Rule to Define "Waters of the United States regulatory definition of "waters of the United States" consistent with legal rulings--especially the Supreme

Gilbes, Fernando

134

Miscellaneous Paper A-97-2 I!Ius Army Corps  

E-Print Network (OSTI)

Accomplishments by Kurt D. Getsinger, Michael D. Netherland Plants: Summary of Research Accomplishments by Kurt D. Getsinger, Michael D. Netherland U.S. Army Corps / by Kurt D. Getsinger, Michael D. Netherland ; prepared for U.S. Army Corps ofEngineers. 22 p. : ill. ; 28

US Army Corps of Engineers

135

DOE - Office of Legacy Management -- Iowa Army Ammunition Plant - IA 02  

Office of Legacy Management (LM)

Army Ammunition Plant - IA 02 Army Ammunition Plant - IA 02 FUSRAP Considered Sites Iowa Army Ammunition Plant, IA Alternate Name(s): Burlington Ordnance Plant Iowa Ordnance Plant Silas Mason Company IA.02-3 Location: Located in Township 70 North, Range 3 West, Section 32, 5th Principal Meridian, Des Moines County, Burlington, Iowa IA.02-1 IA.02-5 Historical Operations: Assembled nuclear weapons, primarily high explosive components and conducted explosives testing using the high explosive components and depleted uranium. AEC and ERDA operations conducted under permit from the Department of the Army. IA.02-3 IA.02-4 Eligibility Determination: Eligible IA.02-5 Radiological Survey(s): Assessment Survey IA.02-2 Site Status: Cleanup pending by U.S. Army Corps of Engineers. IA.02-6

136

ATP 3-04.94 (FM 3-04.104) Army Techniques Publication for Forward Arming and  

E-Print Network (OSTI)

ATP 3-04.94 (FM 3-04.104) Army Techniques Publication for Forward Arming and Refueling Points.us.army.mil) and General Dennis J. Reimer Training and Doctrine Digital Library at (www.train.army.mil). #12;*ATP 3

US Army Corps of Engineers

137

United States Army; Fort Gordon, Georgia, Range Control Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT DRAFT Joint Standard Operating Procedures (JSOP) For Military Training at the Savannah River Site August 2011 U.S. Department of Energy, Savannah River Operations Office, Savannah River Site And U.S. Department Of The Army, Fort Gordon, Georgia DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 2 Chapter 1 General, 1.1 Purpose, page 8 1.2 Scope, page 8 1.3 Explanation of abbreviation and terms, page 8 1.4 Applicability, page 8 1.5 Deviations and Amendments, page 8 Chapter 2 Responsibilities 2.1 DOE-Savannah River Point of Contact (DOE-SR POC), page 10 2.2 DOE-Assistant Manager for Integration and Planning (AMIP), page 10 2.3 SRNS Interface Management Office, page 10 2.4 Directorate of Plans, Training, Mobilization, and Security (DPTMS), Page 10

138

Impact response of US Army and National Football League helmet pad systems  

SciTech Connect

Lawrence Livermore National Laboratory [LLNL] was tasked to compare the impact response of NFL helmet pad systems and U.S. Army pad systems compatible with an Advanced Combat Helmet [ACH] at impact velocities up to 20 ft/s. This was a one-year study funded by the U.S. Army and JIEDDO. The Army/JIEDDO point of contact is COL R. Todd Dombroski, DO, JIEDDO Surgeon. LLNL was chosen by committee to perform the research based on prior published computational studies of the mechanical response of helmets and skulls to blast. Our collaborators include the U.S. Army Aeromedical Research Laboratory [USAARL] (a DoD laboratory responsible for impact testing helmets), Team Wendy and Oregon Aero (current and former ACH pad manufacturers), Riddell and Xenith (NFL pad manufacturers), and d3o (general purpose sports pad manufacturer). The manufacturer-supplied pad systems that were studied are shown in the figure below. The first two are the Army systems, which are bilayer foam pads with both hard and soft foam and a water-resistant airtight wrapper (Team Wendy) or a water-resistant airtight coating (Oregon Aero). The next two are NFL pad systems. The Xenith system consists of a thin foam pad and a hollow air-filled cylinder that elastically buckles under load. The Riddell system is a bilayer foam pad that is encased in an inflatable airbag with relief channels to neighboring pads in the helmet. The inflatable airbag is for comfort and provides no enhancement to impact mitigation. The d3o system consists of a rate-sensitive homogeneous dense foam. LLNL performed experiments to characterize the material properties of the individual foam materials and the response of the complete pad systems, to obtain parameters needed for the simulations. LLNL also performed X-ray CT scans of an ACH helmet shell that were used to construct a geometrically accurate computational model of the helmet. Two complementary sets of simulations were performed. The first set of simulations reproduced the experimental helmet impact certification tests performed by USAARL, who provided data for comparison. The goal of this set of simulations was to demonstrate the overall validity of LLNL's computational analyses and methods and understand the general physics of helmet impacts. In these tests and the corresponding simulations, an inverted ACH containing pads and a head-form are dropped onto a hemispherical anvil, at 10 and 14.14 ft/s impact velocities. The simulations predicted peak accelerations (the metric used by USAARL for comparing the performance of pad systems), rebound velocities, and impact durations consistent with the experimental data, thus demonstrating the validity and relevance of the simulation methods. Because the NFL pad systems are approximately double the thickness of the U.S. Army pads, they do not fit into the ACH. As a result, the NFL pads could not be simply placed into an ACH shell in either a simulation or an experiment without modifying their size and shape. Since impact mitigation depends critically on the available stopping distance and the area over which the stopping force is applied, it is important to consider identically shaped pads in order to compare their performance in a fair and meaningful manner. Consequently, the second set of simulations utilized a simplified simulation geometry consisting of a 5 kg cylindrical impactor (equal in mass to a head) striking equally sized pads from each manufacturer. The simulated bilayer foam pads had the same proportions of hard and soft foam as the actual pad systems, while the Xenith pads were simulated as a bilayer foam pad with material properties adjusted to give the same response as the actual Xenith pads. The effects of trapped air were included in the simulations of the Team Wendy and Oregon Aero pads. All simulations used material properties derived from the experiments conducted at LLNL. The acceleration history of the center of mass of the impactor was used to calculate the Head Injury Criterion (HIC) for each simulation, to assess the pad performance. The HIC is a well-established

Moss, W C; King, M J

2011-02-18T23:59:59.000Z

139

DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, DOI and Army Corps of Engineers Sign Memorandum of DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on Hydropower DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on Hydropower March 24, 2010 - 12:00am Addthis Washington, DC - US Department of Energy Secretary Steven Chu and US Department of Interior Secretary Ken Salazar announced today that the two agencies, along with the Army Corps of Engineers, will cooperate more closely and align priorities to support the development of environmentally sustainable hydropower. The Memorandum of Understanding represents a new approach to hydropower development - a strategy that can increase the production of clean, renewable power while avoiding or reducing environmental impacts and enhancing the viability of ecosystems. By

140

The U.S. Army's Vehicle Intelligence Program (AVIP): The Future of Manned, Wheeled Tactical Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle The U.S. Army's Vehicle Vehicle The U.S. Army's Vehicle Intelligence Program (AVIP): Intelligence Program (AVIP): The Future of Manned, Wheeled The Future of Manned, Wheeled Tactical Vehicles Tactical Vehicles H. E. (Bill) Knéé Oak Ridge National Laboratory National Transportation Research Center 2360 Cherahala Blvd. Knoxville, Tennessee 37932 USA Phone: (865) 946-1300 Fax: (865) 946-1314 E-mail: kneehe@ornl.gov David J. Gorsich U.S. Army Tank-Automotive and Armaments Command AMSTA-TR-N, Warren, Michigan 49397-5000 USA Phone: (810) 574-7413 Fax: (810) 574-6996 E-mail: GorsichD@tacom.army.mil IV2001 IEEE Intelligent Vehicles Symposium Tokyo, Japan http://www.ornl.gov/ORNLReview/v33_3_00/features.htm 1. Propulsion, Vehicle and Power Systems 2. Information and Decision Support Systems 3. Materials, Structures, and Mechanical Systems

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Army Corps of Engineers Delivers Cost and Schedule Validation for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Army Corps of Engineers Delivers Cost and Schedule Validation Army Corps of Engineers Delivers Cost and Schedule Validation for Hanford Waste Treatment Plant U.S. Army Corps of Engineers Delivers Cost and Schedule Validation for Hanford Waste Treatment Plant September 7, 2006 - 8:53am Addthis Corps Report Validates Cost of $12.2 billion and Construction Completion in November 2019 WASHINGTON, DC - The U.S. Department of Energy (DOE) today released the U.S. Army Corps of Engineers (USACE) report detailing their extensive review and validation of the project contractor, Bechtel National Inc.'s Estimate at Completion - or detailed cost and schedule - for Hanford's Waste Treatment and Immobilization Plant (WTP) in southeastern Washington State. To reduce uncertainty in the planning of this first-of-its kind project, Secretary Samuel W. Bodman last year requested this independent

142

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Berkeley Lab Facilitates 18.6-megawatt PV facility at Army's Fort Detrick, Maryland December 2013 The Army, on Friday November 29, announced a notice of intent to award a contract to build an 18.6-megawatt solar photovoltaic (PV) facility at Fort Detrick, in Frederick, Maryland. This action will help the service meet its goal of deploying one gigawatt of renewable energy by 2025. The selected contractor is Framingham, Mass.-based Ameresco. Lawrence Berkeley National Laboratory (Berkeley Lab), through its Environmental Energy Technologies Division, provided essential technical services, over a span of two years, to make this project happen. Supported by the Federal Energy Management Program, Berkeley Lab renewable power expert Gerald Robinson provided the Army, Fort Detrick staff, its Energy

143

DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, DOI and Army Corps of Engineers Sign Memorandum of DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on Hydropower DOE, DOI and Army Corps of Engineers Sign Memorandum of Understanding on Hydropower March 24, 2010 - 12:00am Addthis Washington, DC - US Department of Energy Secretary Steven Chu and US Department of Interior Secretary Ken Salazar announced today that the two agencies, along with the Army Corps of Engineers, will cooperate more closely and align priorities to support the development of environmentally sustainable hydropower. The Memorandum of Understanding represents a new approach to hydropower development - a strategy that can increase the production of clean, renewable power while avoiding or reducing environmental impacts and enhancing the viability of ecosystems. By

144

DOE - Office of Legacy Management -- Granite City Army Depot - IL 0-02  

Office of Legacy Management (LM)

Granite City Army Depot - IL 0-02 Granite City Army Depot - IL 0-02 FUSRAP Considered Sites Site: GRANITE CITY ARMY DEPOT ( IL.0-02 ) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Granite City , Illinois IL.0-02-1 Evaluation Year: 1987 IL.0-02-1 Site Operations: Site was used for storage of GSA thorium residues until circa 1964. IL.0-02-1 Site Disposition: Eliminated - Referred to DOD IL.0-02-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium IL.0-02-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to DOD IL.0-02-1 Also see Documents Related to GRANITE CITY ARMY DEPOT IL.0-02-1 - DOE Letter; J.Fiore to C.Schafer; Information regarding

145

Making the Connection: Beneficial Collaboration Between Army Installations and Energy Utility Companies  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingcovers a RAND study to develop recommendations for improving Army installation collaboration with utilities to reduce traditional energy usage.

146

Citizen-State Interaction and Technical Controversy: The U.S. Army Chemical Stockpile Disposal Program  

E-Print Network (OSTI)

This paper explores the development and transformation of a local collective campaign opposing the U.S. Army's ChemicaL Weapons Stockpile Disposal Program into a social movement with national and international dimensions. ...

Futrell, Robert

1997-04-01T23:59:59.000Z

147

E-Print Network 3.0 - army service response Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Product Reviews Tech News Downloads Site map Click Here to go to Toshiba Summary: into a robot Microsoft, Verizon team on MSN services Paint retailer brushes up on Linux U.S. Army...

148

IOWA ARMY EPA Region 7 04/02/2012 City: Middletown  

E-Print Network (OSTI)

-contaminated sludges, ashes from incineration and open burning of explosives, and waste solvents from industrial, the Army completed interim cleanup actions to address soil contamination at a former pesticide disposal pit

149

Excess Titanium from NNSA's Y-12 Plant to be Used by the Army...  

National Nuclear Security Administration (NNSA)

Y-12 Plant to ... Excess Titanium from NNSA's Y-12 Plant to be Used by the Army for New Generation of Protective Body Armor for Combat Troops applicationmsword icon R-6-28.doc...

150

An overview and comparative analysis of United States Army Corps of Engineers partnering in construction  

E-Print Network (OSTI)

The construction industry is attacking the challenges of the 1990's by implementing the use of a concept known as partnering. Private and public sectors alike are showing interest in the application of this concept. The US Army Corps...

Rock, Timothy Patrick

1992-01-01T23:59:59.000Z

151

Review of Interests and Activities in Thermoelectric Materials and Devices at the Army Research Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Army interests in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for thermoelectric cooling of high-performance infrared systems for surveillance

152

Sandia National Laboratories: Sandia and the U.S. Army Collaborate...  

NLE Websites -- All DOE Office Websites (Extended Search)

and the soldiers." At a recent event, visitors were briefed about the Army's Smart and Green Energy (SAGE) for base camps initiative, which uses commercial off-the-shelf...

153

U.S. Army Making Buildings More Accountable | OpenEI Community  

Open Energy Info (EERE)

to post comments Latest blog posts Dc Have a great idea about how to cut the cost of solar panel installation? Posted: 7 Nov 2014 - 12:13 by Dc Dc U.S. Army Making Buildings...

154

Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)  

SciTech Connect

The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could make in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.

Not Available

2014-08-01T23:59:59.000Z

155

US Army facility for the consolidation of low-level radioactive waste  

SciTech Connect

A preliminary study of a waste consolidation facility for the Department of the Army's low-level radioactive waste was carried out to determine a possible site and perform a cost-benefit analysis. Four sites were assessed as possible locations for such a facility, using predetermined site selection criteria. To assist in the selection of a site, an evaluation of environmental issues was included as part of each site review. In addition, a preliminary design for a waste consolidation facility was developed, and facilities at each site were reviewed for their availability and suitability for this purpose. Currently available processes for volume reduction, as well as processes still under development, were then investigated, and the support and handling equipment and the staff needed for the safe operation of a waste consolidation facility were studied. Using current costs for the transportation and burial of low-level waste, a cost comparison was then made between waste disposal with and without the utilization of volume reduction. Finally, regulations that could affect the operation of a waste consolidation facility were identified and their impact was assessed. 11 references, 5 figures, 16 tables.

Stein, S.L.; Tanner, J.E.; Murphy, B.L.; Gillings, J.C.; Hadley, R.T.; Lyso, O.M.; Gilchrist, R.L.; Murphy, D.W.

1983-12-01T23:59:59.000Z

156

Critical Drivers for Safety Culture: Examining Department of Energy and U.S. Army Operational Experiences - 12382  

SciTech Connect

Evaluating operational incidents can provide a window into the drivers most critical to establishing and maintaining a strong safety culture, thereby minimizing the potential project risk associated with safety incidents. By examining U.S. Department of Energy (DOE) versus U.S. Army drivers in terms of regulatory and contract requirements, programs implemented to address the requirements, and example case studies of operational events, a view of the elements most critical to making a positive influence on safety culture is presented. Four case studies are used in this evaluation; two from DOE and two from U.S. Army experiences. Although the standards guiding operations at these facilities are different, there are many similarities in the level of hazards, as well as the causes and the potential consequences of the events presented. Two of the incidents examined, one from a DOE operation and the other from a U.S. Army facility, resulted in workers receiving chemical burns. The remaining two incidents are similar in that significant conduct of operations failures occurred resulting in high-level radioactive waste (in the case of the DOE facility) or chemical agent (in the case of the Army facility) being transferred outside of engineering controls. A review of the investigation reports for all four events indicates the primary causes to be failures in work planning leading to ineffective hazard evaluation and control, lack of procedure adherence, and most importantly, lack of management oversight to effectively reinforce expectations for safe work planning and execution. DOE and Army safety programs are similar, and although there are some differences in contractual requirements, the expectations for safe performance are essentially the same. This analysis concludes that instilling a positive safety culture comes down to management leadership and engagement to (1) cultivate an environment that values a questioning attitude and (2) continually reinforce expectations for the appropriate level of rigor in work planning and procedure adherence. A review of the root causes and key contributing causes to the events indicate: - Three of the four root cause analyses cite lack of management engagement (oversight, involvement, ability to recognize issues, etc.) as a root cause to the events. - Two of the four root cause analyses cite work planning failures as a root cause to the events and all cause analyses reflect work planning failures as contributing factors to the events. - All events with the exception of the Tuba City plant shutdown indicate procedure noncompliance as a key contributor; in the case of Tuba City the procedure issues were primarily related to a lack of procedures, or a lack of sufficiently detailed procedures. - All events included discussion or suggestion of a lack of a questioning attitude, either on the part of management/supervision, work planners, or workers. This analysis suggests that the most critical drivers to safety culture are: - Management engagement, - Effective work planning and procedures, and - Procedure adherence with a questioning attitude to ensure procedural problems are identified and fixed. In high-hazard operational environments the importance of robust work planning processes and procedure adherence cannot be overstated. However, having the processes by themselves is not enough. Management must actively engage in expectation setting and ensure work planning that meets expectations for hazard analysis and control, develop a culture that encourages incident reporting and a questioning attitude, and routinely observe work performance to reinforce expectations for adherence to procedures/work control documents. In conclusion, the most critical driver to achieving a workforce culture that supports safe and effective project performance can be summarized as follows: 'Management engagement to continually reinforce expectations for work planning processes and procedure adherence in an environment that cultivates a questioning attitude'. (authors)

Lowes, Elizabeth A. [The S.M. Stoller Corporation, Broomfield, Colorado (United States)

2012-07-01T23:59:59.000Z

157

EM Employee Serves Military in Afghanistan, Manages $5.8 Billion Army Task  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employee Serves Military in Afghanistan, Manages $5.8 Billion Employee Serves Military in Afghanistan, Manages $5.8 Billion Army Task Order EM Employee Serves Military in Afghanistan, Manages $5.8 Billion Army Task Order February 27, 2013 - 12:00pm Addthis James Hawkins James Hawkins BAGRAM AIRFIELD, Afghanistan - EM employee James Hawkins is currently serving the U.S. military in Afghanistan, where he is administering a $5.8 billion task order for the Army. A major in the U.S. Air Force Reserves, Hawkins is an administrative contracting officer for the Defense Contract Management Agency, a component of the Defense Department that directly contributes to the military readiness of the U.S. and its allies. Hawkins is an acquisition planning manager and procurement analyst in the Office of Procurement Planning in EM's Office of Acquisition and Project

158

Technical analysis of US Army Weapons Systems and related advanced technologies of military interest. Final report  

SciTech Connect

This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.

NONE

1991-06-14T23:59:59.000Z

159

Assessing the career mobility of U.S. Army Officers: 1950-1974  

E-Print Network (OSTI)

ASSESSING THE CAREER MOBILITY OF U. S. ARMY OFFICERS: 1950-1974 A Thesis by BOB MITCHELL PECK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...ASSESSING THE CAREER MOBILITY OF U. S. ARMY OFFICERS: 1950-1974 A Thesis by BOB MITCHELL PECK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

Peck, Bob Mitchell

2012-06-07T23:59:59.000Z

160

Baseline Report for the Fort Hood Army Base: Sept. 1, 2002 - Aug. 31, 2003  

E-Print Network (OSTI)

ESL-TR-03/12-02 BASELINE REPORT FOR THE FORT HOOD ARMY BASE: SEPT. 1 ST , 2002 TO AUG. 31 ST , 2003 A Research Project for the U.S. Army C.E.R.L. and the Ft. Hood Energy Office Jeff S. Haberl, Ph.D., P....E. Juan-Carlos Baltazar Cervantes, Zi Liu David E. Claridge, Ph.D., P.E. W. Dan Turner, Ph.D., P.E. December 2003 ENERGY SYSTEMS LABORATORY Texas Engineering Experiment Station Texas A&M University System Ft. Hood...

Haberl, J. S.; Baltazar-Cervantes, J. C.; Liu, Z.; Claridge, D. E.; Turner, W. D.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Major General Hans A. Van Winkle Director of Civil Works U.S. Army Corps of Engineers  

Office of Legacy Management (LM)

85 85 March 31. 2000 r Major General Hans A. Van Winkle Director of Civil Works U.S. Army Corps of Engineers Department of the Army Washington. D.C. 203 14- 1000 Dear General Van Winkle: I am writing to you to notie you that the former Iowa Army Ammunition Plant is eligible for the Formerly Utilized Sites Remedial Action Program (FUSRAP). The former Atomic Energy Commission (AEC) used this site for early atomic energy development. including the production and assembly of nuclear weapons. Usage of this facility ended during the 1970s. The AEC facility was located on the Army's Iowa Army Ammunition Plant (also known as the Burlington Ordnance Plant or the Iowa Ordnance Plant) near Burlington. lowa. Known activities included the fabrication of explosives for

162

DEPARTMENT OF THE ARMY OFFICE O F THE CHIEF O F ENGINEERS  

E-Print Network (OSTI)

-NAD August 25, 2006 SUBJECT: Hudson Raritan Estuary, New Jersey, Liberty State Park THE SECRETARY OF THE ARMY 1. I submit for transmission to Congress my report on the Hudson Raritan Estuary, Liberty State Park and New Jersey). Pre-construction engineering and design activities for this proposed project

US Army Corps of Engineers

163

U. S. Army Measurement and Verification (M&V) Costing Toolkit  

E-Print Network (OSTI)

This is the 2003 final report for the U.S. Army Monitoring and Verification (M&V) costs project. The purpose of this project is to develop a M&V Costing Toolkit to be used by the government or third party planners to design a M&V plan...

Haberl, J. S.; Powell, T.; Carlson, K. A.; Im, P.; Turner, W. D.

2003-01-01T23:59:59.000Z

164

Subject: FW: O U 052226Z ARMY WEST NILE VIRUS (WNV) CONTROL PROGRAM Importance: High  

E-Print Network (OSTI)

RUERSWA. ZNR UUUUU ZYW ZOC ZEO T ALL US ARMY REPS AND ACTIVITIES O 052226Z AUG 02 FM DA WASHINGTON DC//DAMO-AOC-CAT// TO RUEADWD/DA WASHINGTON DC//DAMO-AOC-CAT// ALARACT INFO RUEADWD/DA WASHINGTON DC//DAMO-ODM/DAMO-AOC

US Army Corps of Engineers

165

ATP 4-91 (FMI 4-93.41) Army Field Support Brigade  

E-Print Network (OSTI)

ATP 4-91 (FMI 4-93.41) Army Field Support Brigade December 2011 DISTRIBUTION RESTRICTION: Approved and updates the Glossary for ATP 4-91. 2. A plus sign (+) marks new material. 3. ATP 4-91,15 December 2011;*ATP 4-91, C1 Distribution Restriction: Approved for public release; distribution is unlimited. *This

US Army Corps of Engineers

166

Volume XIX, No. 4 A publication of the U.S. Army Installation Management Command  

E-Print Network (OSTI)

guidance revised to improve program input, by Ronald Diehl 7 Presenting: Army Facilities Standardization Benning removes corrosion from HVAC piping, by David Miller, Larry Baca and Mark Fincher 12 Horizon-28 Design guides for meeting energy-efficiency standards being developed, by James Paton 28 Ten primary

US Army Corps of Engineers

167

Planning Assistance to States U.S. ARMY CORPS OF ENGINEERS BUILDING STRONG  

E-Print Network (OSTI)

nutrient study for water quality Funding. The Planning Assistance to States program is funded annuallyPlanning Assistance to States U.S. ARMY CORPS OF ENGINEERS BUILDING STRONG® ® States, local governments and Native American Tribes often have needs in planning for water and related resources

US Army Corps of Engineers

168

NASA/Army/Bell XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program  

Science Journals Connector (OSTI)

To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV-15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of ...

Edwards Bryan D.; Conner David A.; Decker William A.; Marcolini Michael A.; Klein Peter D.

2001-03-01T23:59:59.000Z

169

Presented at the 24th Army Science Conference, Nov 29 Dec 2, 2004, Orlando, Florida  

E-Print Network (OSTI)

Presented at the 24th Army Science Conference, Nov 29 ­ Dec 2, 2004, Orlando, Florida ALTERNATIVE APPROACHES TO IMPROVE PHYSIOLOGICAL PREDICTIONS Nicholas Oleng', Jaques Reifman Bioinformatics Cell management through improved casualty detection, diagnostics, and triage. These goals require an array

170

Volume XVI, No. 4 A publication of the U.S. Army Installation Management Agency  

E-Print Network (OSTI)

-19 "Recycling" Army recycling policies by William F. Eng 19 IMA announces Fire & Emergency Services Award Ammunition Plant initiates recycling program for fly ash 25 Fort Lee gets a new Regional JOC by Bradford W Soldiers and IMA provide emergency backup power to Hawaii wastewater treatment plant by SFC Christopher P

US Army Corps of Engineers

171

Flood Plain Management Services Program U.S. ARMY CORPS OF ENGINEERS BUILDING STRONG  

E-Print Network (OSTI)

Flood Plain Management Services Program U.S. ARMY CORPS OF ENGINEERS BUILDING STRONG® ® People that live and work in the flood plain need to know about the flood hazard and the actions that they can take to reduce property damage and to prevent the loss of life caused by flooding. The Flood Plain Management

US Army Corps of Engineers

172

Volume XIX, No. 1 A publication of the U.S. Army Installation Management Command  

E-Print Network (OSTI)

-30 Centers of Standardization: part of the new landscape by Sarah McCleary 31-32 Army kicks off Fort Bliss: Fort Hood master planners Alan Howard, Lisa Cuellar and John Burrow identify unused facilities that future units can occupy. Photo by Felicia Locklin-Hegens, Fort Hood Directorate of Public Works January

US Army Corps of Engineers

173

Volume XVIII, No. 3 A publication of the U.S. Army Installation Management Agency  

E-Print Network (OSTI)

. Washington, DC On the cover: Fire Chief Billy Cannedy, second from the right, front row, presents Fort Bliss ...................................................................................................... 4 Army environmental programs lauded by DoD by Deborah Elliott 5 Fort Campbell significantly reduces emissions, waste by Deborah Elliott 6 Fort Lewis cleanup projects ahead of schedule by Deborah Elliott 7

US Army Corps of Engineers

174

Point-to-Point Verification of Monitored Sensors at Reynolds Army Clinic and Hospital Final Report  

E-Print Network (OSTI)

A point-to-point verification of the heating, ventilating, and air conditioning (HVAC) system of the Reynolds Army Community Hospital (RACH) in Fort Sill, Oklahoma was done by the Energy Systems Laboratory (ESL) of Texas A&M University. Work began...

Martinez, J.; Linenschmidt, S.; Turner, D.

175

How postcapping put Kuwait`s wells back onstream  

SciTech Connect

In late february 1991, the retreating Iraqi army blew up, or otherwise caused to blowout, some 700 wells in Kuwait. Between March and November, all of the fires were extinguished and the wells were capped. Work began in July 1991 to recomplete the damaged wells with replaced or reworked tubulars and well heads so that production could be resumed. Except for some of the earlier-capped wells into which cement was pumped, thus requiring more extensive downhole work, many of the damaged wells, particularly in Burgan field, were put back into production mode by the procedure described here, which became known as postcapping. This paper describes the equipment and techniques used in postcapping damaged wellheads.

Wilson, D. [ABB Vetco Gray Inc., Houston, TX (United States)

1994-01-01T23:59:59.000Z

176

War in the North? A Critical Study of News Coverage of the Lord's Resistance Army 2004-2008  

E-Print Network (OSTI)

In the northern region of Uganda a conflict between Ugandan governmental forces and the Lord's Resistance Army, a regional rebel movement, has been ongoing for more than 20 years. Though this conflict has resulted in the ...

Reiz, Nicole Patricia

2010-06-21T23:59:59.000Z

177

Report of the Independent Scientific Advisory Board Review of the U.S. Army Corps of Engineers'  

E-Print Network (OSTI)

Report of the Independent Scientific Advisory Board Review of the U.S. Army Corps of Engineers Program Independent Scientific Advisory Board for the Northwest Power Planning Council and the National........................................................................................................... 11 POLICY CONTEXT FOR THE REVIEWS

178

Extremely Low-Energy Design for Army Buildings: Tactical Equipment Maintenance Facility: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Extremely Low-Energy Design Extremely Low-Energy Design for Army Buildings: Tactical Equipment Maintenance Facility Preprint Rois Langner and Michael Deru National Renewable Energy Laboratory Alexander Zhivov, Richard Liesen, and Dale Herron U.S. Army Engineer Research and Development Center Presented at the 2012 ASHRAE Winter Conference Chicago, Illinois January 21-25, 2012 Conference Paper NREL/CP-5500-53810 March 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

179

Making the Connection: Beneficial Collaboration Between Army Installations and Energy Utility Companies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Making the Connection: "Making the Connection: Beneficial Collaboration Between Army Installations and Energy Utility Companies" Beth Lachman RAND Corporation Federal Utility Partnership Working Group (FUPWG) Fall 2011, Philadelphia, PA October 26, 2011 Contact Information: Beth Lachman, Phone: 703-413-1100, ext. 5279, E-mail: BETHL@RAND.ORG Motivation for RAND Study * Energy Independence and Security Act of 2007, Energy Policy Act of 2005, and Executive Order 13423 require military installations to - Reduce energy use 30% by 2015 - Increase renewable energy use 7.5% or more by 2013 * Army installations spend significant amounts on energy utilities - Over $1.2 billion spent in 2010 - Energy prices are rising * Collaboration with utility companies, such as with Utility Energy Service Contracts (UESCs), offers

180

Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Battery Plant in Michigan, Announces Advanced Battery Plant in Michigan, Announces New Army Partnership Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership July 18, 2011 - 1:09pm Addthis Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs What are the key facts? Thirty new manufacturing plants across the country for electric vehicle batteries and components - including A123 in Michigan - were

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Baseline Report for the Fort Hood Army Base: Sept. 1, 2001 To Aug. 31, 2002  

E-Print Network (OSTI)

REPORT, P. 1 December 2002 Energy Systems Laboratory, Texas A&M University PREFACE This report is the 2001/2002 baseline report for a multi-year Research Project performed for the U.S. Army Construction Engineering Research Laboratory... baseline analysis can be performed. 1 These data are from a separate contract to perform Continuous Commissioning for the Darnall Hospital. FT. HOOD BASELINE REPORT, P. 2 December 2002...

Haberl, J. S.; Baltazar, J. C.; Sung, Y. H.; Claridge, D. E.; Turner, W. D.

182

Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations  

SciTech Connect

This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.

2010-03-09T23:59:59.000Z

183

File:Federal Hydropower - U..S. Army Corps of Engineers.pdf | Open Energy  

Open Energy Info (EERE)

U..S. Army Corps of Engineers.pdf U..S. Army Corps of Engineers.pdf Jump to: navigation, search File File history File usage Metadata File:Federal Hydropower - U..S. Army Corps of Engineers.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 925 KB, MIME type: application/pdf, 2 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:37, 22 May 2013 Thumbnail for version as of 15:37, 22 May 2013 1,275 × 1,650, 2 pages (925 KB) Graham7781 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

184

Decontaminating Flooded Wells  

E-Print Network (OSTI)

This publication explains how to decontaminate and disinfect a well, test the well water and check for well damage after a flood....

Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

2005-09-30T23:59:59.000Z

185

Property:Reference material | Open Energy Information  

Open Energy Info (EERE)

Reference material Reference material Jump to: navigation, search Property Name Reference material Property Type Page Description The reference material used or cited in the work, activity or concept which is the subject of the page. Pages using the property "Reference material" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) + Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse Wells, Hawthorne Army Depot, Terraced Hills, And Other Areas In Nevada + 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) + Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse Wells, Hawthorne Army Depot, Terraced Hills, And Other Areas In Nevada + 2-M Probe At Black Warrior Area (DOE GTP) + GTP ARRA Spreadsheet +

186

Well control procedures for extended reach wells  

E-Print Network (OSTI)

been found to be critical to the success of ERD are torque and drag, drillstring design, wellbore stability, hole cleaning, casing design, directional drilling optimization, drilling dynamics and rig sizing.4 Other technologies of vital importance... are the use of rotary steerable systems (RSS) together with measurement while drilling (MWD) and logging while drilling (LWD) to geosteer the well into the geological target.5 Many of the wells drilled at Wytch Farm would not have been possible to drill...

Gjorv, Bjorn

2004-09-30T23:59:59.000Z

187

U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen Storage/Delivery Logistics  

NLE Websites -- All DOE Office Websites (Extended Search)

US Army Corps US Army Corps of Engineers ® Engineer Research and Development Center U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen Facility Locations and Hydrogen Storage/Delivery Logistics Nicholas M. Josefik 217-373-4436 N-josefik@cecer.army.mil www.dodfuelcell.com Franklin H. Holcomb Project Leader, Fuel Cell Team 27 OCT 08 Distributed Generation H 2 Generation & Storage Material Handling H2 Vehicles 2 US Army Corps of Engineers ® Engineer Research and Development Center Presentation Outline * DoD Energy Use * Federal Facilities Goals and Requirements * Federal Vehicles and Fuel Goals * Opportunities & Conclusions 3 US Army Corps of Engineers ® Engineer Research and Development Center Where Does the Energy Go? * Tactical and Combat Vehicles (Jets,

188

Levelized cost-benefit analysis of proposed diagnostics for the Ammunition Transfer Arm of the US Army`s Future Armored Resupply Vehicle  

SciTech Connect

The US Army`s Project Manager, Advanced Field Artillery System/Future Armored Resupply Vehicle (PM-AFAS/FARV) is sponsoring the development of technologies that can be applied to the resupply vehicle for the Advanced Field Artillery System. The Engineering Technology Division of the Oak Ridge National Laboratory has proposed adding diagnostics/prognostics systems to four components of the Ammunition Transfer Arm of this vehicle, and a cost-benefit analysis was performed on the diagnostics/prognostics to show the potential savings that may be gained by incorporating these systems onto the vehicle. Possible savings could be in the form of reduced downtime, less unexpected or unnecessary maintenance, fewer regular maintenance checks. and/or tower collateral damage or loss. The diagnostics/prognostics systems are used to (1) help determine component problems, (2) determine the condition of the components, and (3) estimate the remaining life of the monitored components. The four components on the arm that are targeted for diagnostics/prognostics are (1) the electromechanical brakes, (2) the linear actuators, (3) the wheel/roller bearings, and (4) the conveyor drive system. These would be monitored using electrical signature analysis, vibration analysis, or a combination of both. Annual failure rates for the four components were obtained along with specifications for vehicle costs, crews, number of missions, etc. Accident scenarios based on component failures were postulated, and event trees for these scenarios were constructed to estimate the annual loss of the resupply vehicle, crew, arm. or mission aborts. A levelized cost-benefit analysis was then performed to examine the costs of such failures, both with and without some level of failure reduction due to the diagnostics/prognostics systems. Any savings resulting from using diagnostics/prognostics were calculated.

Wilkinson, V.K.; Young, J.M.

1995-07-01T23:59:59.000Z

189

Groundwater and Wells (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

190

Plugging Abandoned Water Wells  

E-Print Network (OSTI)

. It is recommended that before you begin the process of plugging an aban- doned well that you seek advice from your local groundwater conservation district, a licensed water well driller in your area, or the Water Well Drillers Program with the Texas Department... hire a licensed water well driller or pump installer to seal and plug an abandoned well. Well contractors have the equipment and an understanding of soil condi- tions to determine how a well should be properly plugged. How can you take care...

Lesikar, Bruce J.

2002-02-28T23:59:59.000Z

191

Horizontal well IPR calculations  

SciTech Connect

This paper presents the calculation of near-wellbore skin and non-Darcy flow coefficient for horizontal wells based on whether the well is drilled in an underbalanced or overbalanced condition, whether the well is completed openhole, with a slotted liner, or cased, and on the number of shots per foot and phasing for cased wells. The inclusion of mechanical skin and the non-Darcy flow coefficient in previously published horizontal well equations is presented and a comparison between these equations is given. In addition, both analytical and numerical solutions for horizontal wells with skin and non-Darcy flow are presented for comparison.

Thomas, L.K.; Todd, B.J.; Evans, C.E.; Pierson, R.G.

1996-12-31T23:59:59.000Z

192

Major General Hans A. Van Winkle Director of Civil Works U.S. Army Corps of Engineers  

Office of Legacy Management (LM)

' ' h)3,la-3 -II :. *f$oF PJ f/ --' . - - -% c l * 0 - 2 0 A *i j.. %.+-&# Department of Energy Washington, DC 20585 Nay 19, 2000 Major General Hans A. Van Winkle Director of Civil Works U.S. Army Corps of Engineers Department of the Army Washington, D.C. 20314-1000 Dear General Van Winkle: .. This letter is in follow up to a phone conversation between Department of Energy (DOE) and Army Corps of Engineers (USACE) staff concerning the potential eligibility of the former Guterl Specialty Steel site' (formerly, Simonds Saw and Steel site) in Lockport, New York, for inclusion in the Formerly Utilized Sites Remedial Action Program (FUSRAP). The site is currently under the custody of a bankruptcy trustee. The former Manhattan Engineer District (MED) and the former Atomic Energy

193

Mr. Witliam Augustine CECW-B U.S. Army Corps of Engineers 20 Massachusetts Ave., N.W~  

Office of Legacy Management (LM)

:!lJY ' :!lJY ' 6 I!499 Mr. Witliam Augustine CECW-B U.S. Army Corps of Engineers 20 Massachusetts Ave., N.W~ Washington, D.C 20314-1000 Re: Former Harshaw Chemical Company Site Dear Mr. Augustine: As requested, this note is in follow-up to several phone conversations between Department of Energy (DOE) and Army Corps of Engineers staff and counsel concerning why DOE did not previously include the Former Harshaw Chemical Company site in Cleveland, Ohio in the Formerly Utilized Sites Remedial Action Program (FUSRJG' ), when DOE was responsible for FUSRAP. As indicated in my June 3 letter to you, DOE has performed historical research regarding the site and has concluded, pursuant to the March 1999 MOU between DOE and the Army Corps of Engineers, that this site was used for activities which supported the Nation'

194

Underground Wells (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

195

Economic design of wells  

Science Journals Connector (OSTI)

...concepts and the general principles outlined...with wells of the general configuration shown...internal com- bustion engine. It is assumed that...analysis, consider a diesel- powered well of...modified to use either a general expression for performance...written in terms of diesel-powered wells...

R. F. Stoner; D. M. Milne; P. J. Lund

196

Materiel availability modeling and analysis for a complex army weapon system.  

SciTech Connect

Materiel availability (A{sub m}) is a new US Department of Defense Key Performance Parameter (KPP) implemented through a mandatory Sustainment Metric consisting of an Availability KPP and two supporting Key System Attributes (KSAs), materiel reliability and ownership cost. Sandia National Laboratories (Sandia), in conjunction with several US Army organizations, developed the analytical foundation, assumptions, and brigade-level modeling approach to support lifecycle, fleet-wide A{sub m} modeling and analysis of a complex Army weapon system. Like operational availability (A{sub o}), A{sub m} is dependent on reliability, but A{sub m} is also affected by other factors that do not impact A{sub o}. The largest influences on A{sub m} are technology insertion and reset downtimes. A{sub m} is a different metric from A{sub o}. Whereas A{sub o} is an operational measure, A{sub m} is more of a programmatic measure that spans a much larger timeframe, additional sources of downtime, and additional sources of unscheduled maintenance.

Gunther, David W. (US Army); Anderson, Dennis James; Martin, Jeffrey A. (US Army); Hoffman, Matthew J.

2010-10-01T23:59:59.000Z

197

U.S. Army Corps of Engineers Buffalo District Office 1776 Niagara Street, Buffalo, New York, 14207  

Office of Legacy Management (LM)

Army Corps of Engineers Army Corps of Engineers Buffalo District Office 1776 Niagara Street, Buffalo, New York, 14207 Explanation of Significant Differences for the Rattlesnake Creek Portion of the Ashland Sites Tonawanda, New York September 20, 2004 Formerly Utilized Sites Remedial Action Program Explanation of Significant Differences for the Rattlesnake Creek Portion of the Ashland Sites Table of Contents I. INTRODUCTION 1 II. SITE mSTORY, CONTAMINATION AND SELECTED REMEDy 2 A. Site History 2 B. Original Remedy 3 III. BASIS FOR TmS DOCUMENT.................................*...................*..........*................*.**** 3 A. Summary of Additional Information 3 B. References 4 IV. DESCRIPTION OF SIGNIFICANT DIFFERENCES 4 V. SUPPORT AGENCY COMMENTS 5 VI. STATUTORY DETERMINATIONS 5

198

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class in same GDB as the well points FC, with one polygon field record (may be multiple polygon rings) per field_name. Overlapping buffers for the same field name are dissolved and unioned (see figure below). Adds an attribute PCTFEDLAND which can be populated using the VBA

199

Well drilling apparatus  

SciTech Connect

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

200

This regulation supersedes EC 1105-2-410, dated 22 August 2008. DEPARTMENT OF THE ARMY EC 1165-2-209  

E-Print Network (OSTI)

the procedures for ensuring the quality and credibility of U.S. Army Corps of Engineers (USACE) decision-2-209 U.S. Army Corps of Engineers CECW-CP Washington, D.C. 20314-1000 Circular No. 1165-2-209 31 Jan 2010, implementation, and operations and maintenance documents and work products. This EC puts quality on equal footing

US Army Corps of Engineers

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

well | OpenEI  

Open Energy Info (EERE)

43 43 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280543 Varnish cache server well Dataset Summary Description The California Division of Oil, Gas, and Geothermal Resources contains oil, gas, and geothermal data for the state of California. Source California Division of Oil, Gas, and Geothermal Resources Date Released February 01st, 2011 (3 years ago) Date Updated Unknown Keywords California data gas geothermal oil well Data application/vnd.ms-excel icon California district 1 wells (xls, 10.1 MiB) application/vnd.ms-excel icon California district 2 wells (xls, 4 MiB) application/vnd.ms-excel icon California district 3 wells (xls, 3.8 MiB) application/zip icon California district 4 wells (zip, 11.2 MiB)

202

Petroleum well costs.  

E-Print Network (OSTI)

??This is the first academic study of well costs and drilling times for Australia??s petroleum producing basins, both onshore and offshore. I analyse a substantial (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

203

Phenomenal well-being  

E-Print Network (OSTI)

rated against the experience of the individual?s other possible lives. Unlike well-being, PWB is guaranteed to track more robust experiential benefits that a person gets out of living a life. In this work, I discuss the concept of well-being, including...

Campbell, Stephen Michael

2006-08-16T23:59:59.000Z

204

ETHICS FURLOUGH GUIDANCE 1. This information paper provides general ethics guidance for Army employees who want to  

E-Print Network (OSTI)

ETHICS FURLOUGH GUIDANCE 1. This information paper provides general ethics guidance for Army that they remain subject to the "normal" ethics rules (e.g., Joint Ethics Regulation), when furloughed. Some is with a prohibited source, the STOCK Act requires that they notify the appropriate ethics office within 3-days

US Army Corps of Engineers

205

The Disarmament School: US Policy for the Disarmament and Demobilization of the Germany Army, November-December 1944  

E-Print Network (OSTI)

Military Tradition. This demilitarization of Germany was the chief goal of victory and means of ensuring lasting peace in Europe. In November and December of 1944, the US Army hosted the Disarmament School, a series of lectures by experts in the field...

Wilkerson, Joseph Jr

2009-08-11T23:59:59.000Z

206

H:/fctshts/rad_fs.ppt U.S. Army Corps of Engineers Buffalo District April, 1998  

E-Print Network (OSTI)

exposure to ionizing radiation cannot be avoided. Exposures can be natural or man-made. Natural sources include cosmic rays and naturally-occurring radionuclides in the earth and air, and are consideredH:/fctshts/rad_fs.ppt Fact Sheet Radiation U.S. Army Corps of Engineers ·Buffalo District ·April

US Army Corps of Engineers

207

APPENDIX A DISTRIBUTION LIST Federal Government Agencies Army Corps of Engineers, Sacramento District Headquarter Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DISTRIBUTION LIST Federal Government Agencies Army Corps of Engineers, Sacramento District Headquarter Office Engineering/Design Branch, Regulatory Branch, Planning Branch 1325 J Street, Room 1350 Sacramento, California 95814 Phone: (916) 557-5250 Fax: (916) 557-5306 Department of the Interior San Francisco Regional Office - AS, AZ, CA, CNMI, GU, HI, NV Ms. Patricia Sanderson Port Regional Environmental Officer Department of the Interior 333 Bush Street San Francisco, CA 94104 Phone: 415-296-3350 Email: patricia_port@ios.doi.gov Website: http://www.doi.gov/pmb/oepc/san-francisco.cfm EPA Region 9 - AS, AZ, CA, GU, HI, MP, NV Mr. Scott Sysum Department of Energy Reviewer Environmental Review Office Environmental Protection Agency

208

Notices ACTION: Notice of Intent. SUMMARY: The U.S. Army Corps of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Federal Register 5 Federal Register / Vol. 76, No. 189 / Thursday, September 29, 2011 / Notices ACTION: Notice of Intent. SUMMARY: The U.S. Army Corps of Engineers, Charleston District intends to prepare a Draft Environmental Impact Statement (DEIS) to assess the potential social, economic and environmental effects of the proposed construction and operation of a gold mine in order to extract and process gold from the Haile ore body in wetlands and streams associated with Haile Gold Mine Creek, by Haile Gold Mine, Inc. (Haile) in the vicinity of Kershaw, in Lancaster County, South Carolina. The DEIS will assess potential effects of a range of alternatives. DATES: General Public Scoping Meeting: One Public Scoping meeting is planned for Thursday October 27, 2011 beginning at 5 p.m. EDT at the Andrew

209

Artificial intelligence technology assessment for the US Army Depot System Command  

SciTech Connect

This assessment of artificial intelligence (AI) has been prepared for the US Army's Depot System Command (DESCOM) by Pacific Northwest Laboratory. The report describes several of the more promising AI technologies, focusing primarily on knowledge-based systems because they have been more successful in commercial applications than any other AI technique. The report also identifies potential Depot applications in the areas of procedural support, scheduling and planning, automated inspection, training, diagnostics, and robotic systems. One of the principal objectives of the report is to help decisionmakers within DESCOM to evaluate AI as a possible tool for solving individual depot problems. The report identifies a number of factors that should be considered in such evaluations. 22 refs.

Pennock, K A

1991-07-01T23:59:59.000Z

210

Energy Engineering Analysis Program (EEAP), William Beaumont Army Medical Center, Fort Bliss, Texas. Executive summary  

SciTech Connect

The purpose of this study was to perform a complete energy audit and analysis of William Beaumont Army Medical Center (WBAMC) under the guidelines of the Energy Engineering Analysis Program (EEAP) at Fort Bliss in El Paso, Texas. Project documentation was prepared for all economically feasible energy conservation opportunities (ECOs). This report summarizes the work, including (1) Performing a complete energy audit and analysis for the entire hospital facility. (2) Developing a metering plan for the facility. (3) Identifying all ECOs and performing complete evaluations, including low cost/no cost items. (4) Preparing project documentation for all economically justifiable ECOs. (5) Listing and prioritizing all recommended energy conservation projects. and (6) Preparing a comprehensive report which documents the work accomplished, the results, and the recommendations.

NONE

1984-08-01T23:59:59.000Z

211

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class...

212

Shock Chlorination of Wells  

E-Print Network (OSTI)

Shock chlorination is a method of disinfecting a water well. This publication gives complete instructions for chlorinating with bleach or with dry chlorine. It is also available in Spanish as publication L-5441S...

McFarland, Mark L.; Dozier, Monty

2003-06-11T23:59:59.000Z

213

Economic design of wells  

Science Journals Connector (OSTI)

...year, c is the cost per lb of diesel fuel, and Co is the cost per...program was written in terms of diesel-powered wells, modifications...charac- teristics of pump-engine combinations and are again...water encountered. There is a fundamental difference between the design...

R. F. Stoner; D. M. Milne; P. J. Lund

214

Investigation of the Integration of Interstitial Building Spaces on Costs and Time of Facility Maintenance for U.S. Army Hospitals  

E-Print Network (OSTI)

The U.S. Army Medical Department (AMEDD) has used the interstitial building system (IBS) as a design component for some of the hospitals in its healthcare infrastructure portfolio. Department of Defense (DoD) leadership is aware of increases...

Leveridge, Autumn Tamara

2013-04-30T23:59:59.000Z

215

A new glide path: re-architecting the Flight School XXI Enterprise at the U.S. Army Aviation Center of Excellence  

E-Print Network (OSTI)

This thesis utilizes eight Enterprise Architecture views to analyze the U.S. Army Aviation Center of Excellence's Flight School XXI Enterprise and provides recommendations to improve the effectiveness and efficiency of ...

Enos, James R. (James Robert)

2010-01-01T23:59:59.000Z

216

A review of "The Dynastic State and the Army under Louis XIV: Royal Service and Private Interest, 1661-1701." by Guy Rowlands  

E-Print Network (OSTI)

society and agriculture, and economic development in early modern England. Guy Rowlands. The Dynastic State and the Army under Louis XIV: Royal Service and Private Interest, 1661-1701. Cambridge: Cambridge University Press, 2002. xxv + 404 pp. $70... society and agriculture, and economic development in early modern England. Guy Rowlands. The Dynastic State and the Army under Louis XIV: Royal Service and Private Interest, 1661-1701. Cambridge: Cambridge University Press, 2002. xxv + 404 pp. $70...

Wendy F. Kasinec

2005-01-01T23:59:59.000Z

217

Imperial Standard-Bearers: Nineteenth-Century Army Officers' Wives in British India and the American West  

E-Print Network (OSTI)

life provided by veterans at dances, dinners and parlor visits assisted the newly commissioned men, an invaluable process that Smith terms ?folkways.? Thus, formal 6 and casual instruction created ?nation-builders,? professional officer class who... events. In some instances she commanded a garrison, issued orders to enlisted men , acted as a magistrate in military legal affairs.9 In considering American army officers? wives and their experiences, Glenda Riley acknowledges that ?scores...

McInnis, Verity

2012-07-16T23:59:59.000Z

218

Technical Assessment for the CPC FD-7x-1500 Wind Turbine located at Tooele Army Base, Tooele Utah  

SciTech Connect

The CPC FD-7x-1500 Wind Turbine was installed with funding from the Energy Conservation Investment Program (ECIP). Since its installation, the turbine has been plagued with multiple operational upsets causing unacceptable down time. In an effort to reduce down time, the Army Corps of Engineers requested the Idaho National Laboratory conduct an assessment of the turbine to determine its viability as an operational turbine.

Robert J. Turk; Kurt S. Myers; Jason W. Bush

2012-08-01T23:59:59.000Z

219

French Army Medical Services in the mid-nineteenth century: a medical history of the French Crimean expedition  

E-Print Network (OSTI)

throughout the war as one army's health went from pitiable to commendable while the other' s demonstrated an opposite trend. Most histories of the war concentrate on the British effort. The French did not have a Florence Nightingale; hence their medical... was generally more popular among British than among French doctors. Gaspard Scrive, Medecin-Principal of 7 the French expeditionary force, estimated that, in French hospitals in the Crimea, chloroform was used on 20, 000 operations. Furthermore, J. B. L...

Harbison, Burton Earl

1987-01-01T23:59:59.000Z

220

Echo?Ranging Device Used to Measure the Size of a Well at Camp Century  

Science Journals Connector (OSTI)

The echo?ranging device used to determine the size of a heat?sink well at Camp Century Greenland is briefly described. A rotating bariumtitanate narrow?beam transducer served as both transmitter and receiver. Short 500?kc/sec acoustic pulses were generated at the transducer by shock excitation. The device was designed to operate to a maximum range of 500 ft when suspended from a 1200?ft cable. A graphic recorder presented the echo time as a horizontal cross section of the well. The configuration of the well was determined by repeating the horizontal scan at successive depths. Tests at Camp Century revealed that the well was approximately 200 ft in diam with a water depth of approximately 100 ft. Good repeatability and an accuracy of less than 6 in. was demonstrated. The volume of the well was determined to be approximately 2 million cu ft. [Work supported by the U. S. Army.

O. Charles Mullineaux

1964-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Pollution prevention opportunity assessments of US Army Corps of Engineers Civil Works Facilities  

SciTech Connect

This project summary describes three Pollution Prevention Opportunity Assessments conducted at US Army Corps of Engineers Civil Works facilities under the Waste Reduction Evaluations at Federal Sites (WREAFS) Program. The purposes of the WREAFS Program are to identify new technologies and techniques for reducing wastes from industrial processes at Federal sites, and to enhance the implementation of pollution prevention through technology transfer. New techniques and technologies for reducing waste generation are identified through pollution prevention opportunity assessments (PPOA) and may be further evaluated through joint research, development, and demonstration projects. The assessments were conducted using the procedures outlined in EPA`s Facility Pollution Prevention Guide. The assessments had two major phases. The first phase quantified waste generation and management practices. The second phase identified and evaluated the feasibility of opportunities and techniques to eliminate, reduce, or recycle wastes. The facilities studied in the PPOAs were: a navigation lock and dam; a warehouse and a maintenance and repair facility; a hydroelectric power plant; and a flood control dam and reservoir with associated public recreation areas. Other Federal agencies, such as the Bureau of Reclamation and the Tennessee Valley Authority have similar functions and facilities, as do states and the private sector. Thus, the results of the PPOAs described in the three full reports have applicability to a broad audience.

NONE

1995-08-01T23:59:59.000Z

222

Estimates of energy consumption by building type and end use at U.S. Army installations  

SciTech Connect

This report discusses the use of LBNL`s End-use Disaggregation Alogrithm (EDA) to 12 US Army installations nationwide in order to obtain annual estimates of electricity use for all major building types and end uses. The building types include barrack, dining hall, gymnasium, administration, vehicle maintenance, hospital, residential, warehouse, and misc. Up to 8 electric end uses for each type were considered: space cooling, ventilation (air handling units, fans, chilled and hot water pumps), cooking, misc./plugs, refrigeration, exterior and interior lighting, and process loads. Through building simulations, we also obtained estimates of natural gas space heating energy use. Average electricity use for these 12 installations and Fort Hood are: HVAC, misc., and indoor lighting end uses consumed the most electricity (28, 27, and 26% of total[3.8, 3.5, and 3.3 kWh/ft{sup 2}]). Refrigeration, street lighting, exterior lighting, and cooking consumed 7, 7, 3, and 2% of total (0.9, 0.9, 0.4, and 0.3 kWh/ft{sup 2})

Konopacki, S.J.; Akbari, H.

1996-08-01T23:59:59.000Z

223

Nutritional status and random blood glucose, cholesterol and triglyceride test among Malaysian Army (MA) personnel in Kuala Lumpur  

SciTech Connect

With the rising trend of obesity among the general population, it is also important to assess the obesity and health status among military population. The aim of this study was to determine the prevalence of overweight and obesity among Malaysian Army (MA) personnel as well as the relationship between selected socio-demographics factors, antropometric profiles, body composition and random blood test value. A cross sectional study involving 378 male military personnel aged between 20 to 48 years old was conducted at two MA bases in Kuala Lumpur between November and December 2012. Antropometric measurements included height, weight and waist circumference (WC). Body fat percentage was measured using bioelectrical impedance analysis method (Tanita TBF-300A). Mean height, weight, BMI, WC, body fat percentage, age, monthly income and duration of service were 1.71 0.6 m, 71.7 12.2 kg, 24.6 4.1 kg/m{sup 2}, 87.0 10.0 cm, 23.4 6.6%, 29.1 5.5 years, RM 2115.12 860.70 and 9.9 5.6 years respectively. According to WHO (1998) classification of BMI, 3.2% of the subjects were underweight, 54.8% normal, 32.8% overweight and 9.3% obese. It was obeserved that 40.2% of the subjects had waist circumference value of 90 cm or more and were considered high risk for diebetes and cardiovascular diseases. This study found that BMI was highly correlated with weight (r=0.925, p<0.05), WC (r=0.852, p<0.05) and body fat percentage. Body fat percentage also show high correlation with weight (r=0.759, p<0.05) and WC (r=0.768, p<0.05. The result from 173 of 378 subjects that were selected for random blood test found that 4.6%, 3.5% and 26.0% had diabetes, high cholesterol and high triglyceride respectively. There was a weak correlation between random blood glucose level with weight (r=0.221, p<0.05), BMI (r=0.243, p<0.05), WC (r=0.298, p<0.05), body fat percentage (r=0.163, p<0.05) and age (r=0.223, p<0.05). Random blood cholesterol level had significant correlation with weight (r=0.284, p<0.05), BMI (r=0.260, p<0.05), WC (r=0.362, p<0.05) and body fat percentage (r=0.313, p<0.05). It was also noted that random blood triglyceride level was significantly correlated with weight (r=0.223, p<0.05), BMI (r=0.312, p<0.05), WC (r=0.288, p<0.05), body fat percentage (r=0.287, p<0.05) and age (r=0.268 p<0.05). These results call for attention to the existence of overweight and obesity as well as the risk of non-communicable diseases among military population. Therefore, future intervention from the aspect of nutritional education and health awareness can benefit thus optimizing the health status of MA military personnel.

Nadiy, I.; Razalee, S.; Zalifah, M. K. [Nutrition Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,43600, Selangor (Malaysia); Zulkeffeli, M. J. [Department of Health Service, Ministry of Defense, Level 11, Menara Park, 50450 (Malaysia)

2013-11-27T23:59:59.000Z

224

Well Permits (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

Well permits are required for the installation of wells in private and public space. Wells are defined as any trest hole, shaft, or soil excavation created by any means including, but not limited...

225

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land  

Open Energy Info (EERE)

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Single-Well And Cross-Well Seismic Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary

226

Preliminary assessment report for Army Aviation Support Facility 2, Installation 25075, Westover Air Force Base, Chicopee, Massachusetts. Installation Restoration Program  

SciTech Connect

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Massachusetts Army National Guard (MAARNG) property known as the Army Aviation Support Facility 2 (AASF 2) near Chicopee, Massachusetts. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF 2 is a 10-acre site located in the western portion of Massachusetts, in the town of Chicopee, in the county of Hampden. The facilities included in this PA are Building 7400, adjacent paved areas, grassy areas, and the hazardous waste drum storage buildings. The environmentally significant operations (ESOS) associated with the property are (1) the waste drum storage area, (2) abandoned underground storage tanks (USTs), and (3) refueling activities.

Haffenden, R.; Flaim, S.

1993-08-01T23:59:59.000Z

227

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

Drumheller, D.S.

1998-10-20T23:59:59.000Z

228

The enlisted soldier of the United States Army: a study of the Seventh Regiment, U.S. Infantry, 1815-1860  

E-Print Network (OSTI)

THE ENLISTED SOLDIER OF THE UNITED STATES ARMY A STUDY OF THE SEVENTH REGIMENT, U. S. INFANTRY, 1815-1860 A Thesis ROBERT PAUL WETTEMANN, JR. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF ARTS December 1995 Major Subject: History THE ENLISTED SOLDIER OF THE UNITED STATES ARMY: A STUDY OF THE SEVENTH REGIMENT, U. S. INFANTRY, 1815-1860 A Thesis ROBERT PAUL WETTEMANN, JR. Submitted to Texas A8r...

Wettemann, Robert Paul

2012-06-07T23:59:59.000Z

229

Health And Wellness Department Of Health And Wellness  

E-Print Network (OSTI)

Health And Wellness Department Of Health And Wellness Lutchmie Narine, Chair, 315-443-9630 426 The Department of Health and Wellness offers a 123-credit Bachelor of Science degree (B.S.) in public health. Our graduates are prepared to work in community health education and health promotion in public health agencies

McConnell, Terry

230

Exploratory Well | Open Energy Information  

Open Energy Info (EERE)

Exploratory Well Exploratory Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Well Details Activities (8) Areas (3) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a well Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Well: An exploratory well is drilled for the purpose of identifying the

231

Well Monitoring Systems for EGS  

Energy.gov (U.S. Department of Energy (DOE))

Well Monitoring Systems for EGS presentation at the April 2013 peer review meeting held in Denver, Colorado.

232

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells (Redirected from Development Wells) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir

233

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Production Wells:

234

Wellness Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and assistance to DOE employees through a variety of programs and resources geared toward enhancing their mental and physical well-being. Wellness programs include: Accommodations, the Child Development Centers, the Employee Assistance Program (EAP), the Forrestal (FOHO) and Germantown (GOHO) Fitness Centers, the Occupational Health Clinics and the DOE WorkLife4You Program. Programs Disability Services Child Development Centers Headquarters Employee Assistance Program (EAP) Headquarters Occupational Health Clinics Headquarters Accommodation Program DOE Worklife4You Program Health Foreign Travel Health & Wellness Tips

235

Well Deepening | Open Energy Information  

Open Energy Info (EERE)

Well Deepening Well Deepening Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Deepening Details Activities (5) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Well Deepening:

236

Observation Wells | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Observation Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Observation Wells Details Activities (7) Areas (7) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Total dissolved solids, fluid pressure, flow rates, and flow direction Thermal: Monitors temperature of circulating fluids Dictionary.png Observation Wells: An observation well is used to monitor important hydrologic parameters in a geothermal system that can indicate performance, longevity, and transient processes. Other definitions:Wikipedia Reegle

237

well records | OpenEI  

Open Energy Info (EERE)

well records well records Dataset Summary Description The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This dataset is comprised of 50 recent well record permits from 2/9/11 - 3/18/11. The dataset lists the well name, county, operator, field, and date approved, among other fields. State's make oil and gas data publicly available for a range of topics. Source Geological Survey of Alabama Date Released February 09th, 2011 (3 years ago) Date Updated March 18th, 2011 (3 years ago) Keywords Alabama board gas oil state well records Data application/vnd.ms-excel icon Well records 2/9/11 - 3/18/11 (xls, 28.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License

238

Hawthorne, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

4032°, -118.3525748° 4032°, -118.3525748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9164032,"lon":-118.3525748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Hawthorne, Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

°, -118.624578° °, -118.624578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5246441,"lon":-118.624578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

The Hawthorne effect and energy awareness  

Science Journals Connector (OSTI)

...effects of sustained energy conservation programs seem...consumers habituate to the messages, or have increasing...Social norms and energy conservation . J Public Econ 95 ( 9 ): 1082...this study and The Energy and Behavior Group...

Daniel Schwartz; Baruch Fischhoff; Tamar Krishnamurti; Fallaw Sowell

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Hawthorne effect and energy awareness  

Science Journals Connector (OSTI)

...rented* Average household size* Average...Indian, Asian, Hispanic, Pacific Islander, other)* Total households (block, tract...American, Asian, Hispanic/Latino, White...answer) *Only households in the treatment...

Daniel Schwartz; Baruch Fischhoff; Tamar Krishnamurti; Fallaw Sowell

2013-01-01T23:59:59.000Z

242

National Wetlands Inventory The U.S. Army Corps of Engineers (Corps) as of 2006 has accepted the administrative responsibility for  

E-Print Network (OSTI)

National Wetlands Inventory The U.S. Army Corps of Engineers (Corps) as of 2006 has accepted the administrative responsibility for the National Wetland Plant List from the U.S. Fish and Wildlife Service (FWS). In early 2009 the FWS removed the published 1988 and 1996 wetland plant lists from their National Wetland

US Army Corps of Engineers

243

Well Monitoring System for EGS  

Energy.gov (U.S. Department of Energy (DOE))

EGS well monitoring tools offer a unique set of solutions which will lower costs and increase confidence in future geothermal projects.

244

Thermal well-test method  

DOE Patents (OSTI)

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

245

Volume XVI, No. 5 A publication of the U.S. Army Installation Management Agency  

E-Print Network (OSTI)

................................................................................................................................................................ 19 Sky blue water towers and nutmeg brown fire hydrants by Larry H. Black and L. Baxter Lawrence 19 windmills with solar-powered wells by Kevin M. Casey 31 Fort Belvoir ­ home base for fuel cell vehicles 32

US Army Corps of Engineers

246

1982 geothermal well drilling summary  

SciTech Connect

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

247

Quantum well multijunction photovoltaic cell  

DOE Patents (OSTI)

A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

Chaffin, Roger J. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

248

Pressure analysis for horizontal wells  

SciTech Connect

This paper presents horizontal-well test design and interpretation methods. Analytical solutions are developed that can be handled easily by a desktop computer to carry out design as well as interpretation with semilog and log-log analysis. These analytical solutions point out the distinctive behavior of horizontal wells: (1) at early time, there is a circular radial flow in a vertical plane perpendicular to the well, and (2) at late time, there is a horizontal pseudoradial flow. Each type of flow is associated with a semilog straight line to which semilog analysis has to be adapted. The horizontal pseudoradial flow takes into account a pseudoskin depending on system geometry, which is a priori defined and estimated. Practical time criteria are proposed to determine the beginning and the end of each type of flow and to provide a guide to semilog analysis and well test design. The authors study the behavior of uniform-flux or infinite-conductivity horizontal wells, with wellbore storage and skin. The homogeneous reservoir is infinite or limited by impermeable or constant-pressure boundaries. A method is also outlined to transform all our solutions for homogeneous reservoirs into corresponding solutions for double-porosity reservoirs.

Davlau, F.; Mouronval, G.; Bourdarot, G.; Curutchet, P.

1988-12-01T23:59:59.000Z

249

Optimization of fractured well performance of horizontal gas wells  

E-Print Network (OSTI)

................................................24 3.4 Ideal Number of Transverse Fractures..........................................26 3.5 Constant Volume Transverse Fractures ........................................32 3.6... of a longitudinal fracture..............................................10 2.5 Example of horizontal well with longitudinal fracture performance .............11 2.6 DVS representation of transverse fractures...

Magalhaes, Fellipe Vieira

2009-06-02T23:59:59.000Z

250

Well record | OpenEI  

Open Energy Info (EERE)

Well record Well record Dataset Summary Description This dataset contains oil and gas drilling and permit records for February 2011. State oil and gas boards and commissions make oil and gas data and information open to the public. To view the full range of data contained at the Alaska Oil and Gas Conservation Commission, visit http://doa.alaska.gov/ogc/ Source Alaska Oil and Gas Conservation Commission Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords Alaska Commission gas oil Well record Data application/vnd.ms-excel icon http://doa.alaska.gov/ogc/drilling/dindex.html (xls, 34.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Monthly Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

251

American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army Project 276 Renewable Resource Development on Department of Defense Bases in Alaska: Challenges and Opportunities  

SciTech Connect

The potential to increase utilization of renewable energy sources among military facilities in Alaska through coordinated development and operation is the premise of this task. The US Army Pacific Command requested assistance from PNNL to help develop a more complete understanding of the context for wheeling power within Alaska, including legal and regulatory barriers that may prohibit the DOD facilities from wheeling power among various locations to optimize the development and use of renewable resources.

Warwick, William M.

2010-09-30T23:59:59.000Z

252

Health-hazard evaluation report HETA 88-369-2141, Raymond W. Bliss Army Community Hospital, Ft. Huachuca, Arizona  

SciTech Connect

In response to a request from a representative of the Raymond W. Bliss Army Community Hospital concerning indoor air quality at Greely Hall, Fort Huachuca (SIC-9711), Arizona, an environmental and ventilation survey was conducted. Greely Hall was a three story, multipurpose building with approximately 120,000 feet per floor. The building housed primarily offices, but also had a cafeteria, auditorium, computer rooms, conference rooms and electronics maintenance area. Over 2100 persons worked in the building. Average carbon-dioxide (124389) levels were 584 parts per million (ppm) in the morning, increasing to 1040ppm for the last measurements made that day. The levels ranged from 350 to 1000ppm in the morning to 800 to 1800ppm in the afternoon. Inordinate temperature increases during the day were found in some areas of the building. Many of the air handling units had inoperable or closed main outside air dampers. Maintenance was poor. Improperly maintained or poorly draining condesate pans, renovation of the building without upgrading the ventilation systems and insufficient maintenance personnel were some of the problems identified. The authors conclude that the potential for thermal comfort problems and microbial contamination existed. The authors recommend measures to remedy these situations.

Klein, M.; Gunter, B.

1991-09-01T23:59:59.000Z

253

Fuel-conservation evaluation of US Army helicopters. Part 6. Performance calculator evaluation. Final report for period ending January 1981  

SciTech Connect

The US Army Aviation Engineering Flight Activity conducted an evaluation of Flight Management Calculator for the UH-1H. The calculator was a Hewlett-Packard HP-41CV. The performance calculator was evaluated for flight planning and in-flight use during 14 mission flights simulating operational conditions. The calculator was much easier to use in-flight than the operator's manual data. The calculator program needs improvement in the areas of pre-flight planning and execution speed. The mission flights demonstrated a 19% fuel saving using optimum over normal flight profiles in warm temperatures (15/sup 0/C above standard). Savings would be greater at colder temperatures because of increasing compressibility effects. Acceptable accuracy for individual aircraft under operational conditions may require a regressive analog model in which individual aircraft data are used to update the program. The performance data base for the UH-1H was expanded with level flight and hover data to thrust coefficients and Mach numbers to the practical limits of aircraft operation.

Dominick, F.; Lockwood, R.A.

1986-07-01T23:59:59.000Z

254

A new well surveying tool  

E-Print Network (OSTI)

directional well was to tip the entire rig, then block up one side of the rotary table so as to incline the uppermost joint of the drill pipe. The accuracy obtained by this method left much to be desired. The technique of controlled directional drilling... by Surveying Device for S and 19 , N and 41 . 21 3. Comparison of Measured Angles and Angles Indicated by Surveying Device for NE snd 9 , W and 45 . . . . . . . ~ 22 ABSTRNl T Ever since the advent of rotary drilling the petroleum industry has been...

Haghighi, Manuchehr Mehdizabeh

1966-01-01T23:59:59.000Z

255

Health Education & Wellness - HPMC Occupational Health Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Wellness Health Education & Wellness Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Health Coaching Health Fairs and...

256

Category:Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells page? For detailed information on Production Wells, click here. Category:Production Wells Add.png Add a new Production Wells Technique Pages in category...

257

Number of Producing Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Producing Gas Wells Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2007 2008 2009 2010 2011 2012 View History U.S. 452,945 476,652 493,100 487,627 514,637 482,822 1989-2012 Alabama 6,591 6,860 6,913 7,026 7,063 6,327 1989-2012 Alaska 239 261 261 269 277 185 1989-2012 Arizona 7 6 6 5 5 5 1989-2012 Arkansas 4,773 5,592 6,314 7,397 8,388 8,538 1989-2012 California 1,540 1,645 1,643 1,580 1,308 1,423 1989-2012 Colorado 22,949 25,716 27,021 28,813 30,101 32,000 1989-2012 Gulf of Mexico 2,552 1,527 1,984 1,852 1,559 1,474 1998-2012 Illinois 43 45 51 50 40 40 1989-2012 Indiana 2,350 525 563 620 914 819 1989-2012 Kansas

258

System for stabbing well casing  

SciTech Connect

Apparatus for stabbing well casing to join casing sections to each other, includes a rotary table assembly for supporting a casing section in a well bore, a derrick over the rotary table assembly, a crown block at the top of the derrick, a first piston and cylinder subassembly pivotally mounted on one side of the derrick over the rotary table assembly and below the crown block for pivotation about a horizontal axis, a second piston and cylinder subassembly pivotally mounted on a second side of the derrick for pivotation about a horizontal axis. The second piston and cylinder subassembly is located over the rotary table assembly and below the crown block and extends substantially normal to the direction of extension of the first piston and cylinder subassembly. The cooperating casing clamping elements are carried on the piston rods of the first and second piston and cylinder subassemblies, and counter balancing subassemblies are connected to the first and second piston and cylinder subassemblies for pivoting the first and second piston and cylinder subassemblies to a vertically extending inoperative position.

McArthur, J.R.

1984-04-03T23:59:59.000Z

259

Ultra Thin Quantum Well Materials  

SciTech Connect

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

260

Visualizing motion in potential wells  

Science Journals Connector (OSTI)

The concept of potential-energy diagrams is of fundamental importance in the study of quantum physics. Yet students are rarely exposed to this powerful alternative description in introductory classes and thus have difficulty comprehending its significance when they encounter it in beginning-level quantum courses. We describe a learning unit that incorporates a sequence of computer-interfaced experiments using dynamics or air-track systems. This unit is designed to make the learning of potential-energy diagrams less abstract. Students begin by constructing the harmonic or square-well potential diagrams using either the velocity data and assuming conservation of energy or the force-displacement graph for the elasticinteraction of an object constrained by springs or bouncing off springy blocks. Then they investigate the motion of a rider magnetinteracting with a configuration of field magnets and plot directly the potential-energy diagrams using a magnetic field sensor. The ease of measurement allows exploring the motion in a large variety of potential shapes in a short duration class.

Pratibha Jolly; Dean Zollman; N. Sanjay Rebello; Albena Dimitrova

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Measurement of polynuclear aromatic hydrocarbon concentrations in the plume of Kuwait oil well fires  

SciTech Connect

Following their retreat from Kuwait during February and March of 1991, the Iraqi Army set fire to over 500 oil wells dispersed throughout the Kuwait oil fields. During the period of sampling from July to August 1991, it was estimated that between 3.29 {times} 10{sup 6} barrels per day of crude oil were combusted. The resulting fires produced several plumes of black and white smoke that coalesced to form a composite ``super`` plume. Because these fires were uncontrolled, significant quantities of organic materials were dispersed into the atmosphere and drifted throughout the Middle East. The organic particulants associated with the plume of the oil well fires had a potential to be rich in polynuclear aromatic hydrocarbon (PAH) compounds. Based on the extreme mutagenic and carcinogenic activities of PAHs found in laboratory testing, a serious health threat to the population of that region potentially existed. Furthermore, the Kuwait oil fire plumes represented a unique opportunity to study the atmospheric chemistry associated with PAHs in the plume. If samples were collected near the plume source and from the plume many kilometers downwind from the source, comparisons could be made to better understand atmospheric reactions associated with particle-bound and gas-phase PAHs. To help answer health-related concerns and to better understand the fate and transport of PAHs in an atmospheric environment, a sampling and analysis program was developed.

Olsen, K.B.; Wright, C.W.; Veverka, C. [Pacific Northwest Lab., Richland, WA (United States); Ball, J.C. [Ford Motor Co., Dearborn, MI (United States). Scientific Research Lab.; Stevens, R. [US Environmental Protection Agency (United States). Atmospheric Research and Exposure Assessment Lab.

1995-03-01T23:59:59.000Z

262

Environment US Army Corps  

E-Print Network (OSTI)

military customers. The new Regional Energy, Sustainable Design and Life Cycle Cost Analysis Centers practices used at Fort Belvoir, Va. Leaders in the new Regional Energy, Sustainable Design and Life Cycle assignments running the gamut from ones devoted to wind, contract methods, solar thermal energy, converting

US Army Corps of Engineers

263

WELDON SPRING FORMER ARMY  

E-Print Network (OSTI)

.S. Department of Energy (DOE) and listed on the National Priorities List as Weldon Spring Quarry/Plant/Pits site production lines, and eight areas where explosive wastes were burned. Approximately 5,000 people live within. As part of a removal action, Burning Ground #1 was fenced to eliminate any potential exposures while

264

Army Energy Security Considerations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in China, 1.4 mbd increase in India. Hurricanes Katrina and Rita shut down 27% of US oil refining capacity, production is still off 400,000 barrels per day. US oil imports...

265

Army Regulation 38510 Headquarters  

E-Print Network (OSTI)

for motorcycle safety; defines mandatory motorcycle training and the Progressive Motorcycle Program (paras 11 personal protective equipment while operating motorcycles and off-road and all-terrain vehicles

US Army Corps of Engineers

266

Health and Wellness Guide for Students Introduction  

E-Print Network (OSTI)

dimensions of health and wellness. The 7 dimensions are: Physical Wellness � Taking care of your body Wellness � Taking care of what's around you 2Health andWellness Guide for Students #12;Physical Wellness � Communicate with your partner if you have questions or concerns � Meet with a Health Care Provider on campus

267

Proceedings: Special session on the rehabilitation of US Army Training Lands, Second Annual Conference of the Society for Ecological Restoration, held in Chicago, Illinois, April 29--May 3, 1990  

SciTech Connect

US Army lands are currently being degraded at a rate that often exceeds natural resource conservation goals. The US Army Construction Engineering Research Laboratories is developing and implementing the Integrated Training Area Management (ITAM) program at several installations in the United States and Germany to reverse the rate of degradation and maintain realistic training habitat. The ITAM program includes environmental education/awareness tools, revegetation and erosion-control technologies, standardized land-monitoring methodologies, and computerized land-management decision-support systems that are integrated with military training mission requirements to provide a long-term, land-management program.

Hinchman, R.R. [comp.

1993-05-01T23:59:59.000Z

268

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network (OSTI)

Oil, Gas, . . 81 and Geothermal Well Tests (abstract) W.has been testing geothermal wells for about three years, andof Oil, Gas, and Geothermal Well Tests W. E. Brigham

Authors, Various

2011-01-01T23:59:59.000Z

269

Capping of Water Wells for Future Use  

E-Print Network (OSTI)

in determining the condition of your well, contact: S your local groundwater conservation dis- trict http://www.tceq.state.tx.us/permitting/ water_supply/groundwater/districts.html S a licensed water well driller in your area S the Water Well Drillers Program... are the steps in capping a well? The landowner, a licensed well driller or a licensed pump installer may cap a well. There are several steps involved. The well casing should extend above the ground surface to limit the risk of water entering the well...

Lesikar, Bruce J.; Mechell, Justin

2007-09-04T23:59:59.000Z

270

Functionalized Graphene Nanoroads for Quantum Well Device. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoroads for Quantum Well Device. Functionalized Graphene Nanoroads for Quantum Well Device. Abstract: Using density functional theory, a series of calculations of structural and...

271

Observation Wells (Ozkocak, 1985) | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Activity Date Usefulness useful DOE-funding Unknown Notes Reinjection test wells can be used to obtain quite precise measurements of reservoir permeability....

272

EPA - UIC Well Classifications | Open Energy Information  

Open Energy Info (EERE)

Well Classifications Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - UIC Well Classifications Author Environmental Protection Agency Published...

273

Helicopter magnetic survey conducted to locate wells  

SciTech Connect

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3s (NPR-3) Teapot Dome Field near Casper, Wyoming. The surveys purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

274

Thank you for joining: 360WELLNESS  

E-Print Network (OSTI)

shortly. If you are experiencing technical difficulties with Adobe Connect, please call 1 March 22, 2012 12 pm ­ 1pm ET #12;360° WELLNESS: Achieving Wellness At Work And At Home Workshop & Self-Assessment © Joe Rosenlicht, Certified Coach 3 #12;8 Wellness Areas Wellness Nutrition Brain Power Fitness Sleep

Vertes, Akos

275

Track 4: Employee Health and Wellness  

Energy.gov (U.S. Department of Energy (DOE))

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 4: Employee Health and Wellness

276

Definition: Artesian Well | Open Energy Information  

Open Energy Info (EERE)

Well Well Jump to: navigation, search Dictionary.png Artesian Well An artesian well is a water well that doesn't require a pump to bring water to the surface; this occurs when there is enough pressure in the aquifer. The pressure causes hydrostatic equilibrium and if the pressure is high enough the water may even reach the ground surface in which case the well is called a flowing artesian well.[1] View on Wikipedia Wikipedia Definition See Great Artesian Basin for the water source in Australia. An artesian aquifer is a confined aquifer containing groundwater under positive pressure. This causes the water level in a well to rise to a point where hydrostatic equilibrium has been reached. This type of well is called an artesian well. Water may even reach the ground surface if the natural

277

The Centers for Disease Control and Prevention (CDC) provides independent oversight to the U.S. Army's chemical weapons elimination program and serves as an important element in ensuring the  

E-Print Network (OSTI)

to the U.S. Army's chemical weapons elimination program and serves as an important element in ensuring is prevention with vigilance. The CDC chemical weapons elimination team's mission is to protect public health and nonstockpile chemical weapons. This mission is mandated by Public Laws 91-121, 91-441, and 99

278

Superfund record of decision (EPA Region 3): Tobyhanna Army Depot, operable unit 3, area of Concern (AOC) 37, building 10-c and area of concern (AOC) 38, building s-90, Monroe County, Tobyhanna, PA, July 12, 1996  

SciTech Connect

This decision document presents a determination that no further action is necessary to protect human health and the environment for Operable Unit No. 3 (OU3), Building 10-C and Building S-90 at the Tobyhanna Army Depot, Tobyhanna Monroe County, Pennsylvania (TYAD).

NONE

1996-08-01T23:59:59.000Z

279

New well control companies stress planning, engineering  

SciTech Connect

The technology for capping a blowing well has not changed during the last 50 years. Still, operators are finding new ways of using well control companies' expertise to help avoid potentially disastrous situations. This trend is especially critical given the current environmentally sensitive and cost-cutting times facing the oil industry. While regulatory agencies world-wide continue to hinder well control efforts during an offshore event, well control companies are focusing on technologies to make their job easier. Some of the most exciting are the hydraulic jet cutter, which gained fame in Kuwait, and electromagnetic ranging for drilling more accurate relief wells. With the number of subsea wells increasing, subsea intervention is a major target for future innovations. Well control companies are experiencing a change in their role to the offshore oil industry. Well control professionals discuss this expanded responsibility as well as other aspects of offshore blowouts including regulatory hindrances, subsea intervention and future technologies.

Bell, S.; Wright, R.

1994-04-01T23:59:59.000Z

280

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

282

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

283

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling, Federal Energy Management Program (FEMP) (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Program Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Located near Louisville, Kentucky, Fort Knox is home to the U.S. Army's Armor Center, Armor School, Recruiting Command, and numerous other facilities. The post has a daytime population of more than 30,000 people and more than 3,000 family housing units. In total, Fort Knox encompasses 11 million square feet of conditioned space across more than 109,000 acres. A military post of this size consumes a significant amount of energy. Fort Knox is acutely aware of the need for sustainability to ensure continuous operations and meet Federal energy goals and requirements.

284

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling, Federal Energy Management Program (FEMP) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Program Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. Located near Louisville, Kentucky, Fort Knox is home to the U.S. Army's Armor Center, Armor School, Recruiting Command, and numerous other facilities. The post has a daytime population of more than 30,000 people and more than 3,000 family housing units. In total, Fort Knox encompasses 11 million square feet of conditioned space across more than 109,000 acres. A military post of this size consumes a significant amount of energy. Fort Knox is acutely aware of the need for sustainability to ensure continuous operations and meet Federal energy goals and requirements.

285

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

286

RFI Well Integrity 06 JUL 1400  

Energy.gov (U.S. Department of Energy (DOE))

This PowerPoint report entitled "Well Integrity During Shut - In Operations: DOE/DOI Analyses" describes risks and suggests risk management recommendations associated with shutting in the well.

287

Well Owner's Guide To Water Supply  

E-Print Network (OSTI)

's groundwater and guidelines, including national drinking water standards, to test well water to insure safe drinking water in private wells. National drinking water standards and common methods of home water .....................22 Contaminants in Water........................................23 Drinking Water Guidelines

Fay, Noah

288

Essays on Well-Being in Japan.  

E-Print Network (OSTI)

??This dissertation is comprised of four papers on well-being in Japan and aims to examine three important measures of well-being: perceptions of job insecurity, self-reported (more)

Kuroki, Masanori

2011-01-01T23:59:59.000Z

289

Method for the magnetization of well casing  

SciTech Connect

A well casing is magnetized by traversing an internal magnetizer along and within the well casing while periodically reversing the direction of the magnetic field of the magnetizer to create a plurality of magnetic flux leakage points along the well casing.

Hoehn, G.L. Jr.

1984-08-14T23:59:59.000Z

290

Calculator program aids well cost management  

SciTech Connect

A TI-59 calculator program designed to track well costs on daily and weekly bases can dramatically facilitate the task of monitoring well expenses. The program computes the day total, cumulative total, cumulative item-row totals, and day-week total. For carrying these costs throughout the drilling project, magnetic cards can store the individual and total cumulative well expenses.

Doyle, C.J.

1982-01-18T23:59:59.000Z

291

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...Analyses of 8,000 offshore wells in the Gulf of Mexico show that 1112% of wells developed pressure in the outer...underground gas storage, and even geothermal energy (1620). We...to learn about how often wells fail, when and why they...

Robert B. Jackson

2014-01-01T23:59:59.000Z

292

Spontaneous Potential Well Log | Open Energy Information  

Open Energy Info (EERE)

Spontaneous Potential Well Log Spontaneous Potential Well Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Spontaneous Potential Well Log Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: SP technique originally applied to locating sulfide ore-bodies. Stratigraphic/Structural: -Formation bed thickness and boundaries -Detection and tracing of faults -Permeability and porosity Hydrological: Determination of fluid flow patterns: electrochemical coupling processes due to variations in ionic concentrations, and electrokinetic coupling processes due to fluid flow in the subsurface.

293

Regulations of Wells (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations of Wells (Florida) Regulations of Wells (Florida) Regulations of Wells (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Florida Program Type Environmental Regulations Siting and Permitting Provider Florida Department of Environmental Protection The Department of Environmental Protection regulates the construction, repair, and abandonment of wells, as well as the persons and businesses undertaking such practices. Governing boards of water management districts

294

Step-out Well | Open Energy Information  

Open Energy Info (EERE)

Step-out Well Step-out Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Step-out Well Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Step-out Well: A well drilled outside of the proven reservoir boundaries to investigate a

295

Well purge and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

Schalla, Ronald (Kennewick, WA); Smith, Ronald M. (Richland, WA); Hall, Stephen H. (Kennewick, WA); Smart, John E. (Richland, WA); Gustafson, Gregg S. (Redmond, WA)

1995-01-01T23:59:59.000Z

296

Well purge and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.

Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.

1995-10-24T23:59:59.000Z

297

Geothermal Well Completion Tests | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Completion Tests Geothermal Well Completion Tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Completion Tests Abstract This paper reviews the measurements that are typically made in a well immediately after drilling is completed - the Completion Tests. The objective of these tests is to determine the properties of the reservoir, and of the reservoir fluid near the well. A significant amount of information that will add to the characterisation of the reservoir and the well, can only be obtained in the period during and immediately after drilling activities are completed. Author Hagen Hole Conference Petroleum Engineering Summer School; Dubrovnik, Croatia; 2008/06/09 Published N/A, 2008 DOI Not Provided Check for DOI availability: http://crossref.org

298

MIMO Control during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract A drilling system consists of a rotating drill string, which is placed into the well. The drill fluid is pumped through the drill string and exits through the choke valve. An important scope of the drill fluid is to maintain a certain pressure gradient along the length of the well. Well construction is a complex job in which annular pressures must be kept inside the operational window (limited by fracture and pore pressure). Monitoring bottom hole pressure to avoid fluctuations out of operational window limits is an extremely important job, in order to guarantee safe conditions during drilling. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. In this work, a non linear mathematical model (gas-liquid-solid), representing an oil well drilling system, was developed, based on mass and momentum balances. Besides, for implementing classic control (PI), alternative control schemes were analyzed using mud pump flow rate, choke opening index and weight on bit as manipulated variables in order to control annulus bottomhole pressure and rate of penetration. Classic controller tuning was performed for servo and regulatory control studies, under MIMO frameworks.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

299

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

300

Stimulation Technologies for Deep Well Completions  

SciTech Connect

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

Stephen Wolhart

2005-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hawaii Well Construction & Pump Installation Standards Webpage...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Well Construction & Pump Installation Standards Webpage Abstract This webpage provides...

302

SAFETY & WELLNESS Annual Report 2012-2013  

E-Print Network (OSTI)

HEALTH, SAFETY & WELLNESS Annual Report 2012-2013 #12;HEALTH, SAFETY & WELLNESS UPDATE ON SAFETY PROGRAMS The professionals working in the Health and Safety team and Rehabilitation Services group have had a very successful year in supporting individuals to take accountability for their own safety and health

Sinnamon, Gordon J.

303

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

304

The local dimensions of defence: the standing army and militia in Norfolk, Suffolk and Essex, 1649-1660  

E-Print Network (OSTI)

the lower Thames Basin which comprised most of southern Essex. To the west lay the sandy coastal margin which ran from north- east Essex along the Suffolk coast up to Yarmouth, and the western part of Norfolk was sandy as well. The Chiltern hills cut... of shingle, sand and chalk which between Sheringham and Cromer became an almost continuous barrier against any possible landing from the sea. Cromer itself provided a beach landing place and the main point of access to the hinterland east of Wells, but had...

Ive, Jeremy George Augustus

1987-03-13T23:59:59.000Z

305

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

306

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

307

Geopressured-geothermal well activities in Louisiana  

SciTech Connect

Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

John, C.J.

1992-10-01T23:59:59.000Z

308

GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells |  

Open Energy Info (EERE)

GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells GRR/Section 19-WA-f - Water Well NOI for Replacement or Additional Wells < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-f - Water Well NOI for Replacement or Additional Wells 19-WA-f - Water Well NOI for Replacement or Additional Wells.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 90.44.100 Revised Code of Washington 18.104.048 Washington Administrative Code 173-160-151 Triggers None specified A developer seeking to use ground water for an activity may need to drill a new well in a different location than a previous well, drill an additional well at an existing location, or drill a replacement well at the same

309

DPTM/ IMWE-LVW-PL (913) 684-3775/ thomas.cowan@us.army.mil 21 Sep 2009 UNCLASSIFIED  

E-Print Network (OSTI)

(Garrison DES) · Employee Assistance Program Overview (Garrison DHR) · DPW Projects/ Recycling/ Energy Policy Update; (Garrison DPW) · DFMWR / Resiliency Center/ Civilian Wellness Program: (Garrison DFMWR) · Severe Weather Update - Thunderstorm/ Tornado (Garrison DPTM) · Closing Remarks: Mr Ormond · Question

US Army Corps of Engineers

310

Production-systems analysis for fractured wells  

SciTech Connect

Production-systems analysis has been in use for many years to design completion configurations on the basis of an expected reservoir capacity. The most common equations used for the reservoir calculations are for steady-state radial flow. Most hydraulically fractured wells require the use of an unsteady-state production simulator to predict the higher flow rates associated with the stimulated well. These high flow rates may present problems with excessive pressure drops through production tubing designed for radial-flow production. Therefore, the unsteady-state nature of fractured-well production precludes the use of steady-state radial-flow inflow performance relationships (IPR's) to calculate reservoir performance. An accurate prediction of fractured-well production must be made to design the most economically efficient production configuration. It has been suggested in the literature that a normalized reference curve can be used to generate the IPR's necessary for production-systems analysis. However, this work shows that the reference curve for fractured-well response becomes time-dependent when reservoir boundaries are considered. A general approach for constructing IPR curves is presented, and the use of an unsteady-state fractured-well-production simulator coupled with the production-systems-analysis approach is described. A field case demonstrates the application of this method to fractured wells.

Hunt, J.L. (Halliburton Services (US))

1988-11-01T23:59:59.000Z

311

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

312

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

313

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

314

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7,279 6,446 3,785 3,474 3,525 Total................................................................... 7,279 6,446 3,785 3,474 3,525 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7,279 6,446 3,785 3,474 3,525 Nonhydrocarbon Gases Removed ..................... 788 736 431

315

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,206 15,357 16,957 17,387 18,120 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 463,929 423,672 401,396 369,624 350,413 From Oil Wells.................................................. 63,222 57,773 54,736 50,403 47,784 Total................................................................... 527,151 481,445 456,132 420,027 398,197 Repressuring ...................................................... 896 818 775 714 677 Vented and Flared.............................................. 527 481 456 420 398 Wet After Lease Separation................................

316

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9 8 7 9 6 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 368 305 300 443 331 From Oil Wells.................................................. 1 1 0 0 0 Total................................................................... 368 307 301 443 331 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 368 307 301 443 331 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

317

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 98 96 106 109 111 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 869 886 904 1,187 1,229 From Oil Wells.................................................. 349 322 288 279 269 Total................................................................... 1,218 1,208 1,193 1,466 1,499 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 5 12 23 Wet After Lease Separation................................ 1,218 1,208 1,188 1,454 1,476 Nonhydrocarbon Gases Removed .....................

318

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4 4 4 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 7 7 6 6 5 Total................................................................... 7 7 6 6 5 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 7 7 6 6 5 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

319

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

320

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

322

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

323

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

324

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

325

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 380 350 400 430 280 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 1,150 2,000 2,050 1,803 2,100 Total................................................................... 1,150 2,000 2,050 1,803 2,100 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 1,150 2,000 2,050 1,803 2,100 Nonhydrocarbon Gases Removed .....................

326

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

327

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 1,502 1,533 1,545 2,291 2,386 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 899 1,064 1,309 1,464 3,401 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 899 1,064 1,309 1,464 3,401 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 899 1,064 1,309 1,464 3,401 Nonhydrocarbon Gases Removed .....................

328

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

329

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

330

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

331

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7 7 5 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 34 32 22 48 34 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 34 32 22 48 34 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 34 32 22 48 34 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

332

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

333

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ......................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells...................................................... 0 0 0 0 0 From Oil Wells........................................................ 0 0 0 0 0 Total......................................................................... 0 0 0 0 0 Repressuring ............................................................ 0 0 0 0 0 Vented and Flared .................................................... 0 0 0 0 0 Wet After Lease Separation...................................... 0 0 0 0 0 Nonhydrocarbon Gases Removed............................ 0 0 0 0 0 Marketed Production

334

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

335

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

336

Method of gravel packing a subterranean well  

SciTech Connect

This patent describes a method of gravel packing a well bore penetrating a subterranean formation. It comprises blocking a first group of apertures in a liner with an immobile gel; positioning the liner within the well bore thereby defining a first annulus between the liner and the well bore; transporting a slurry comprised of gravel suspended in a fluid into the first annulus, the fluid flowing through a second group of apertures in the liner while the gravel is deposited within the first annulus to form a gravel pack; and thereafter removing substantially all of the gel from the first group of apertures.

Not Available

1991-11-05T23:59:59.000Z

337

Discussion of productivity of a horizontal well  

SciTech Connect

The authors of this paper has been using several of the analytical equations and numerical simulation to evaluate the productivity of horizontal wells that have near-wellbore damage. Through this evaluation, the author found that here are inconsistencies in the way the skin factor is introduced into the analytical equations. This discussion shows the corrections needed in various analytical equations to obtain consistency with numerical simulation. In the numerical simulation shown here, skin factor is simulated by assignment of a reduced permeability to nodes near the well. The author would appreciate any comments Babu and Odeh could make on this aspect of horizontal wells.

Gilman, J.R. (Marathon Oil Company (US))

1991-02-01T23:59:59.000Z

338

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 17 20 18 15 15 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,412 1,112 837 731 467 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 1,412 1,112 837 731 467 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 1,412 1,112 837 731 467 Nonhydrocarbon Gases Removed ..................... 198 3 0 0 0 Marketed Production

339

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 0 0 0 0 0 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 0 0 0 0 0 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ..................... 0 0 0 0 0 Marketed Production ..........................................

340

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging (Redirected from Definition:Single-Well And Cross-Well Seismic) Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246"

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) |  

Open Energy Info (EERE)

Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes Data from these wells is proprietary, and so were unavailable for inclusion

342

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well | Open  

Open Energy Info (EERE)

GRR/Section 19-WA-e - Water Well Notice of Intent for New Well GRR/Section 19-WA-e - Water Well Notice of Intent for New Well < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-WA-e - Water Well Notice of Intent for New Well 19-WA-e - Water Well Notice of Intent for New Well.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington 18.104.048 Washington Administrative Code 173-160-151 Triggers None specified A developer seeking to use ground water for an activity may need to drill a new well to access the ground water. When a developer needs to drill a new well, the developer must complete the Notice of Intent (NOI) to Drill a Well form and submit the form to the Washington State Department of Ecology

343

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

344

Maazama Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maazama Well Geothermal Area Maazama Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maazama Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8965,"lon":-121.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Willow Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Well Geothermal Area Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Willow Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.6417,"lon":-150.095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Wellness & Additional Benefits | Careers | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working at ORNL Working at ORNL Benefits Wellness and Other Incentives View Open Positions View Postdoctoral Positions Create A Profile Internal applicants please apply here View or update your current application or profile. External applicants Internal applicants Internet Explorer Browser preferred for ORNL applicants. Chrome is not currently supported. For more information about browser compatibility please refer to the FAQs. If you have difficulty using the online application system or need an accommodation to apply due to a disability, please email ORNLRecruiting@ornl.gov or phone 1-866-963-9545 Careers Home | ORNL | Careers | Working at ORNL | Wellness and Other Incentives SHARE Wellness & Additional Benefits Wellness Program Employees have many opportunities to maintain and improve their health

347

6981 well-provided recreation facility [n  

Science Journals Connector (OSTI)

recr. (Well-provisioned recreation installation and equipment);sinstalacin [f] de recreo intensivo (Equipamiento recreacional de gran variedad y de gran calidad);fquipement [m] de loisirs lourd (...

2010-01-01T23:59:59.000Z

348

Two-phase flow in horizontal wells  

SciTech Connect

Flow in horizontal wells and two-phase flow interaction with the reservoir were investigated experimentally and theoretically. Two-phase flow behavior has been recognized as one of the most important problems in production engineering. The authors designed and constructed a new test facility suitable for acquiring data on the relationship between pressure drop and liquid holdup along the well and fluid influx from the reservoir. For the theoretical work, an initial model was proposed to describe the flow behavior in a horizontal well configuration. The model uses the inflow-performance-relationship (IPR) approach and empirical correlations or mechanistic models for wellbore hydraulics. Although good agreement was found between the model and experimental data, a new IPR apart from the extension of Darcy`s law must be investigated extensively to aid in the proper design of horizontal wells.

Ihara, Masaru [Japan National Oil Corp., Chiba (Japan); Yanai, Koji [Nippon Kokan Corp., Yokohama (Japan); Yanai, Koji

1995-11-01T23:59:59.000Z

349

Well Record or History | Open Energy Information  

Open Energy Info (EERE)

History Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Well Record or HistoryLegal Published NA Year Signed or Took Effect 2013...

350

Groundwater well with reactive filter pack  

DOE Patents (OSTI)

A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

351

Groundwater well with reactive filter pack  

DOE Patents (OSTI)

A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

1998-09-08T23:59:59.000Z

352

Polariton dispersion of periodic quantum well structures  

Science Journals Connector (OSTI)

We studied the polariton dispersion relations of a periodic quantum-well structure with a period in the vicinity of half the exciton resonance wavelength, i.e., the Bragg structure. We classified polariton mod...

A. V. Mintsev; L. V. Butov; C. Ell; S. Mosor

2002-11-01T23:59:59.000Z

353

Geological well log analysis. Third ed  

SciTech Connect

Until recently, well logs have mainly been used for correlation, structural mapping, and quantitive evaluation of hydrocarbon bearing formations. This third edition of Geologic Well Log Analysis, however, describes how well logs can be used for geological studies and mineral exploration. This is done by analyzing well logs for numerous parameters and indices of significant mineral accumulation, primarily in sediments. Contents are: SP and Eh curves as redoxomorphic logs; sedimentalogical studies by log curve shapes; exploration for stratigraphic traps; continuous dipmeter as a structural tool; continuous dipmeter as a sedimentation tool; Paleo-facies logging and mapping; hydrogeology 1--hydrodynamics of compaction; hydrogeology 2--geostatic equilibrium; and hydrogeology 3--hydrodynamics of infiltration. Appendixes cover: Computer program for calculating the dip magnitude, azimuth, and the degree and orientation of the resistivity anisotrophy; a lithology computer program for calculating the curvature of a structure; and basic log analysis package for HP-41CV programmable calculator.

Pirson, S.J.

1983-01-01T23:59:59.000Z

354

California Water Well Standards | Open Energy Information  

Open Energy Info (EERE)

Legal Document- OtherOther: California Water Well StandardsLegal Published NA Year Signed or Took Effect 2104 Legal Citation Not provided DOI Not Provided Check for DOI...

355

Slim wells for exploration purposes in Mexico  

SciTech Connect

To invest in the construction of wells with definitive designs considerably increases the cost of a geothermal electric project in its analysis and definition stage. The Federal Commission for Electricity (Comision Federal de Electricidad, CFE) has concentrated on the task to design wells which casing and cementing programs would provide the minimum installation necessary to reach the structural objective, to confirm the existence of geothermal reservoirs susceptible to commercial exploitation, to check prior geological studies, to define the stratigraphic column and to obtain measurements of pressure, temperature and permeability. Problems of brittle, hydratable and permeable formations with severe circulation losses, must be considered within the design and drilling programs of the wells. This work explains the slim wells designs used in the exploration of three geothermal zones in Mexico: Las Derrumbadas and Acoculco in the State of Puebla and Los Negritos in the State of Michoacan.

Vaca Serrano, J.M.E.; Soto Alvarez, M.

1996-12-31T23:59:59.000Z

356

Effects of military-authorized activities on the San Joaquin kit fox (Vulpes velox macrotis) at Camp Roberts Army National Guard Training Site, California  

SciTech Connect

The effects of military-authorized activities on San Joaquin kit fox (Vulpes velox macrotis) were investigated at Camp Roberts Army National Guard Training Site from 1988 to 1991. Military-authorized activities included military training exercises, facilities maintenance, new construction, controlled burning, livestock grazing, and public-access hunting. Positive effects of the military included habitat preservation, preactivity surveys, and natural resources management practices designed to conserve kit foxes and their habitat. Perceived negative effects such as entrapment in dens, shootings during military exercises, and accidental poisoning were not observed. Foxes were observed in areas being used simultaneously by military units. Authorized activities were known to have caused the deaths of three of 52 radiocollared foxes recovered dead: one became entangled in concertina wire, one was believed shot by a hunter, and one was struck by a vehicle. Entanglement in communication wire may have contributed to the death of another radiocollared fox that was killed by a predator. Approximately 10% of kit fox dens encountered showed evidence of vehicle traffic, but denning sites did not appear to be a limiting factor for kit foxes.

Berry, W.H.; Standley, W.G.; O`Farrell, T.P.; Kato, T.T.

1992-10-01T23:59:59.000Z

357

Project management improves well control events  

SciTech Connect

During a well control operation, the efficient use of personnel and equipment, through good project management techniques, contributes to increased safety and ensures a quality project. The key to a successful blowout control project is to use all resources in the most efficient manner. Excessive use of resources leads to unnecessary expenditures and delays in bringing the project under control. The Kuwait well control project, which involved more than 700 blowouts, was accomplished in a much shorter time (8 months) than first estimated (5 years). This improvement partly resulted from the application of sound project management techniques. These projects were prime examples of the need for a formal project management approach to handling wild well projects. There are many examples of projects that were successful in controlling wells but were economic disasters. Only through the effective application of project management can complex well control projects be completed in reasonable time frames at reasonable cost. The paper describes team management, project scope, organizational structures, scheduling, tracking models, critical path method, and decision trees.

Oberlender, G.D. [Oklahoma State Univ., Stillwater, OK (United States); Abel, L.W. [Wild Well Control Inc., Spring, TX (United States)

1995-07-10T23:59:59.000Z

358

Snubdrilling a new well in Venezuela  

SciTech Connect

A new well was successfully drilled using a snubbing jack. The drill bit was rotated using a rotary table, downhole motors and combination of the two. Expected high-pressure zones prompted this use of ``snubdrilling.`` The primary objective was to drill a vertical well through underlying sands and gain information about formation pressures. This data would aid in the drilling of a relief well using a conventional drilling rig. The secondary objective was to relieve pressure by putting this new well on production. In addition to special high-pressure drilling jobs, there are other drilling applications where snubbing jacks are a feasible alternative to conventional rotary drilling rigs or coiled tubing units. Slimhole, underbalanced and flow drilling, and sidetracking of existing wells are excellent applications for snubdrilling. Advantages of snubdrilling vs. coiled tubing drilling, include ability to rotate drillstrings, use high-torque downhole motors, pump at high rates and pressures, apply significant overpull in case of stuck pipe, and run casing and liners without rigging down. Shortcomings of drilling with snubbing jacks compared to coiled tubing are the need to stop circulation while making new connections and inability to run continuous cable inside workstrings.

Aasen, J.

1995-12-01T23:59:59.000Z

359

Number of Producing Gas Wells (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Count) Count) Data Series: Wellhead Price Imports Price Price of Imports by Pipeline Price of LNG Imports Exports Price Price of Exports by Pipeline Price of LNG Exports Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

360

Definition: Single-Well And Cross-Well Seismic Imaging | Open Energy  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search Dictionary.png Single-Well And Cross-Well Seismic Imaging Single well seismic imaging (SWSI) is the application of borehole seismic sources and receivers on the same string within a single borehole in order to acquire CMP type shot gathers. Cross well seismic places sources and receivers in adjacent wells in order to image the interwell volume.[1] Also Known As SWSI References ↑ http://library.seg.org/ Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Single-Well_And_Cross-Well_Seismic_Imaging&oldid=690246" Category:

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Salt Wells Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Project Salt Wells Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333°, -118.33444444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.580833333333,"lon":-118.33444444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 21,507 32,672 33,279 34,334 35,612 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,473,792 1,466,833 1,476,204 1,487,451 1,604,709 From Oil Wells.................................................. 139,097 148,551 105,402 70,704 58,439 Total................................................................... 1,612,890 1,615,384 1,581,606 1,558,155 1,663,148 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................

363

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 94 95 100 117 117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 13,527 13,846 15,130 14,524 15,565 From Oil Wells.................................................. 42,262 44,141 44,848 43,362 43,274 Total................................................................... 55,789 57,987 59,978 57,886 58,839 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 3,290 3,166 2,791 2,070 3,704 Wet After Lease Separation................................ 52,499 54,821 57,187 55,816 55,135

364

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 997 1,143 979 427 437 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 109,041 131,608 142,070 156,727 171,915 From Oil Wells.................................................. 5,339 5,132 5,344 4,950 4,414 Total................................................................... 114,380 136,740 147,415 161,676 176,329 Repressuring ...................................................... 6,353 6,194 5,975 6,082 8,069 Vented and Flared.............................................. 2,477 2,961 3,267 3,501 3,493 Wet After Lease Separation................................

365

GeoWells International | Open Energy Information  

Open Energy Info (EERE)

GeoWells International GeoWells International Jump to: navigation, search Name GeoWells International Place Nairobi, Kenya Sector Geothermal energy, Solar, Wind energy Product Kenya-based geothermal driller. The company also supplies and installs wind and solar units. Coordinates -1.277298°, 36.806261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-1.277298,"lon":36.806261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 42,475 42,000 45,000 46,203 47,117 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 264,139 191,889 190,249 187,723 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 264,139 191,889 190,249 187,723 197,217 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 264,139 191,889 190,249 187,723 197,217 Nonhydrocarbon Gases Removed

367

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 9,907 13,978 15,608 18,154 20,244 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,188,657 1,467,331 1,572,728 1,652,504 1,736,136 From Oil Wells.................................................. 137,385 167,656 174,748 183,612 192,904 Total................................................................... 1,326,042 1,634,987 1,747,476 1,836,115 1,929,040 Repressuring ...................................................... 50,216 114,407 129,598 131,125 164,164 Vented and Flared.............................................. 9,945 7,462 12,356 16,685 16,848

368

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 71 68 69 61 61 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 648 563 531 550 531 From Oil Wells.................................................. 10,032 10,751 9,894 11,055 11,238 Total................................................................... 10,680 11,313 10,424 11,605 11,768 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 1,806 2,043 1,880 2,100 2,135 Wet After Lease Separation................................ 8,875 9,271 8,545 9,504 9,633 Nonhydrocarbon Gases Removed

369

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 60,577 63,704 65,779 68,572 72,237 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 5,859,358 4,897,366 4,828,188 4,947,589 5,074,067 From Oil Wells.................................................. 999,624 855,081 832,816 843,735 659,851 Total................................................................... 6,858,983 5,752,446 5,661,005 5,791,324 5,733,918 Repressuring ...................................................... 138,372 195,150 212,638 237,723 284,491 Vented and Flared.............................................. 32,010 26,823 27,379 23,781 26,947

370

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 15,700 16,350 17,100 16,939 20,734 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 4,260,529 1,398,981 1,282,137 1,283,513 1,293,204 From Oil Wells.................................................. 895,425 125,693 100,324 94,615 88,209 Total................................................................... 5,155,954 1,524,673 1,382,461 1,378,128 1,381,413 Repressuring ...................................................... 42,557 10,838 9,754 18,446 19,031 Vented and Flared.............................................. 20,266 11,750 10,957 9,283 5,015 Wet After Lease Separation................................

371

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

372

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 36,000 40,100 40,830 42,437 44,227 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 150,000 130,853 157,800 159,827 197,217 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 150,000 130,853 157,800 159,827 197,217 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 150,000 130,853 157,800 159,827 197,217

373

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year.................................... 4,359 4,597 4,803 5,157 5,526 Production (million cubic feet) Gross Withdrawals From Gas Wells ................................................ 555,043 385,915 380,700 365,330 333,583 From Oil Wells .................................................. 6,501 6,066 5,802 5,580 5,153 Total................................................................... 561,544 391,981 386,502 370,910 338,735 Repressuring ...................................................... 13,988 12,758 10,050 4,062 1,307 Vented and Flared .............................................. 1,262 1,039 1,331 1,611 2,316 Wet After Lease Separation................................

374

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,321 4,331 4,544 4,539 4,971 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 61,974 71,985 76,053 78,175 87,292 From Oil Wells.................................................. 8,451 9,816 10,371 8,256 10,546 Total................................................................... 70,424 81,802 86,424 86,431 97,838 Repressuring ...................................................... 1 0 0 2 5 Vented and Flared.............................................. 488 404 349 403 1,071 Wet After Lease Separation................................ 69,936 81,397 86,075 86,027 96,762

375

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 3,051 3,521 3,429 3,506 3,870 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 71,545 71,543 76,915 R 143,644 152,495 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 71,545 71,543 76,915 R 143,644 152,495 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 71,545 71,543 76,915 R 143,644 152,495 Nonhydrocarbon Gases Removed

376

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

5 5 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,948 35,217 35,873 37,100 38,574 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 1,484,269 1,484,856 1,432,966 1,391,916 1,397,934 From Oil Wells.................................................. 229,437 227,534 222,940 224,263 246,804 Total................................................................... 1,713,706 1,712,390 1,655,906 1,616,179 1,644,738 Repressuring ...................................................... 15,280 20,009 20,977 9,817 8,674 Vented and Flared.............................................. 3,130 3,256 2,849 2,347 3,525 Wet After Lease Separation................................

377

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 5,775 5,913 6,496 5,878 5,781 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 17,741 27,632 36,637 35,943 45,963 From Oil Wells.................................................. 16 155 179 194 87 Total................................................................... 17,757 27,787 36,816 36,137 46,050 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 17,757 27,787 36,816 36,137 46,050 Nonhydrocarbon Gases Removed

378

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

9 9 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,000 4,825 6,755 7,606 3,460 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 156,333 150,972 147,734 157,039 176,221 From Oil Wells.................................................. 15,524 16,263 14,388 12,915 11,088 Total................................................................... 171,857 167,235 162,122 169,953 187,310 Repressuring ...................................................... 8 0 0 0 0 Vented and Flared.............................................. 206 431 251 354 241 Wet After Lease Separation................................ 171,642 166,804

379

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

1 1 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 4,178 4,601 3,005 3,220 3,657 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 244,826 264,809 260,554 254,488 259,432 From Oil Wells.................................................. 36,290 36,612 32,509 29,871 31,153 Total................................................................... 281,117 301,422 293,063 284,359 290,586 Repressuring ...................................................... 563 575 2,150 1,785 1,337 Vented and Flared.............................................. 1,941 1,847 955 705 688 Wet After Lease Separation................................

380

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Well-test data from geothermal reservoirs  

SciTech Connect

Extensive well testing in geothermal resources has been carried out throughout the western United States and in northern Mexico since 1975. Each resource tested and each well test conducted by LBL during the eight-year period are covered in brief. The information, collected from published reports and memoranda, includes test particulars, special instrumentation, data interpretation when available, and plots of actual data. Brief geologic and hydrologic descriptions of the geothermal resources are also presented. The format is such that well test descriptions are grouped, in the order performed, into major sections according to resource, each section containing a short resource description followed by individual test details. Additional information regarding instrumentation is provided. Source documentation is provided throughout to facilitate access to further information and raw data.

Bodvarsson, M.G.; Benson, S.M.

1982-09-01T23:59:59.000Z

382

Apparatus for stringing well pipe of casing  

SciTech Connect

An apparatus for use in running a string of threaded well pipe or casing in a vertical configuration in a deep well bore which is adapted to convert a top head drive drilling rig for use in running each length of pipe into the well bore. A drive spindle adaptor is provided which may be securely attached in a removably mounted manner to the rotary drive spindle or sub of a top head drive drilling rig. The drive spindle includes a pair of opposing, outwardly extending lugs disposed at a right angle to the axial direction of the spindle and a true centering guide means. A collar is included which is provided with frictional gripping members for removably securing the collar to one end of a length of conventional pipe and a pair of axially extending, spaced ears which cooperate upon engagement with said lugs on said spindle adaptor to transfer rotary motion of said spindle to said length of pipe.

Sexton, J.L.

1984-04-17T23:59:59.000Z

383

Apparatus for rotating and reciprocating well pipe  

SciTech Connect

This patent describes an apparatus for simultaneously rotating and reciprocating well pipe, having an upper end, and mechanically utilizing a rotary table attached to a drilling rig, comprising: a rotating pipe clamp assembly having an irregular cross-sectional mid-member and clamp members for releasably gripping the well pipe connected to the ends of the mid-member for rotation therewith; a square block for fitting to the rotary table square and having a selected grooved interior configuration; a torque transmitting means fitted into the grooves having openings therethrough having the same irregular cross-section as the mid-member cross-section; and a torque limiting means connecting the torque transmitting means and the block for limiting torque applied through the well pipe via the clamp assembly and the torque transmitting means.

Davis, K.D.

1988-04-12T23:59:59.000Z

384

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 7,068 7,425 7,700 8,600 8,500 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 241,776 224,560 224,112 194,121 212,276 From Oil Wells.................................................. 60,444 56,140 56,028 48,530 53,069 Total................................................................... 302,220 280,700 280,140 242,651 265,345 Repressuring ...................................................... 2,340 2,340 2,340 2,340 2,340 Vented and Flared.............................................. 3,324 3,324 3,324 3,324 3,324 Wet After Lease Separation................................

385

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

7 7 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 13,487 14,370 14,367 12,900 13,920 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 81,545 81,723 88,259 87,608 94,259 From Oil Wells.................................................. 0 0 0 0 0 Total................................................................... 81,545 81,723 88,259 87,608 94,259 Repressuring ...................................................... 0 0 0 0 0 Vented and Flared.............................................. 0 0 0 0 0 Wet After Lease Separation................................ 81,545 81,723 88,259 87,608 94,259 Nonhydrocarbon Gases Removed

386

Number of Gas and Gas Condensate Wells  

Gasoline and Diesel Fuel Update (EIA)

3 3 2000 2001 2002 2003 2004 Number of Gas and Gas Condensate Wells Producing at End of Year ................................... 33,897 33,917 34,593 33,828 33,828 Production (million cubic feet) Gross Withdrawals From Gas Wells................................................ 98,551 97,272 97,154 87,993 85,018 From Oil Wells.................................................. 6,574 2,835 6,004 5,647 5,458 Total................................................................... 105,125 100,107 103,158 93,641 90,476 Repressuring ...................................................... NA NA NA 0 NA Vented and Flared.............................................. NA NA NA 0 NA Wet After Lease Separation................................ 105,125 100,107 103,158

387

Resonator-quantum well infrared photodetectors  

SciTech Connect

We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

Choi, K. K., E-mail: kwong.k.choi.civ@mail.mil; Sun, J.; Olver, K. [Electro-Optics and Photonics Division, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States)] [Electro-Optics and Photonics Division, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States); Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A. [Instrument Systems and Technology Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)] [Instrument Systems and Technology Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

2013-11-11T23:59:59.000Z

388

2-M Probe At Alum Area (Kratt, Et Al., 2010) | Open Energy Information  

Open Energy Info (EERE)

Alum Area (Kratt, Et Al., 2010) Alum Area (Kratt, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Alum Geothermal Area (Kratt, Et Al., 2010) Exploration Activity Details Location Alum Geothermal Area Exploration Technique 2-M Probe Activity Date Usefulness useful DOE-funding Unknown Notes More than 100 new 2m measurements at Astor Pass, Nevada resolved additional details of near-surface thermal outflow in this blind geothermal system References Christopher Kratt, Chris Sladek, Mark Coolbaugh (2010) Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse Wells, Hawthorne Army Depot, Terraced Hills, And Other Areas In Nevada Retrieved from "http://en.openei.org/w/index.php?title=2-M_Probe_At_Alum_Area_(Kratt,_Et_Al.,_2010)&oldid=402957"

389

2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) Exploration Activity Details Location Columbus Salt Marsh Area Exploration Technique 2-M Probe Activity Date Usefulness useful DOE-funding Unknown Notes At Columbus Salt Marsh, Nevada, additional 2m measurements better defined the shape of a blind, shallow thermal anomaly; also at this location deeper temperature measurements were used to develop a near-surface temperature gradient. References Christopher Kratt, Chris Sladek, Mark Coolbaugh (2010) Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse Wells, Hawthorne Army Depot, Terraced Hills, And Other Areas In Nevada

390

2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) Exploration Activity Details Location Astor Pass Geothermal Area Exploration Technique 2-M Probe Activity Date Usefulness useful DOE-funding Unknown Notes More than 100 new 2m measurements at Astor Pass, Nevada resolved additional details of near-surface thermal outflow in this blind geothermal system References Christopher Kratt, Chris Sladek, Mark Coolbaugh (2010) Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse Wells, Hawthorne Army

391

Economic evaluation of smart well technology  

E-Print Network (OSTI)

. At this pivotal time the role of emerging technologies is of at most importance. Smart or intelligent well technology is one of the up and coming technologies that have been developed to assist improvements in field development outcome. In this paper a...

Al Omair, Abdullatif A.

2007-09-17T23:59:59.000Z

392

ATHLETICS AND RECREATION Health, Wellness and Recreation  

E-Print Network (OSTI)

ATHLETICS AND RECREATION Health, Wellness and Recreation 5 July 1.00pm ­ 4.00pm Attendees: Louise and recreation for UBC. Anticipating this `work in progress' outcome from our initial discussion, the approach and recreation as it is currently structured? 2 Closer attention to level/degree of competition vs other drivers

Handy, Todd C.

393

Well performance under solutions gas drive  

SciTech Connect

A fully implicit black-oil simulator was written to predict the drawdown and buildup responses for a single well under Solution Gas Drive. The model is capable of handling the following reservoir behaviors: Unfractured reservoir, Double-Porosity system, and Double Permeability-Double Porosity model of Bourdet. The accuracy of the model results is tested for both single-phase liquid flow and two-phase flow. The results presented here provide a basis for the empirical equations presented in the literature. New definitions of pseudopressure and dimensionless time are presented. By using these two definitions, the multiphase flow solutions correlate with the constant rate liquid flow solution for both transient and boundary-dominated flow. For pressure buildup tests, an analogue for the liquid solution is constructed from the drawdown pseudopressure, similar to the reservoir integral of J. Jones. The utility of using the producing gas-oil ration at shut in to compute pseudopressures and pseudotimes is documented. The influence of pressure level and skin factor on the Inflow Performance Relationship (IPR) of wells producing solution gas drive systems is examined. A new definition of flow efficiency that is based on the structure of the deliverability equations is proposed. This definition avoids problems that result when the presently available methods are applied to heavily stimulated wells. The need for using pseudopressures to analyze well test data for fractured reservoirs is shown. Expressions to compute sandface saturations for fractured systems are presented.

Camacho-Velazquez, R.G.

1987-01-01T23:59:59.000Z

394

Flow tests of the Willis Hulin well  

SciTech Connect

The Hulin well was tested between 20,100 and 20,700 feet down in layers of brine-saturated clean sand with occasional intervening layers of shale. The characteristics of the brine and gas were determined in this interval and an initial determination of the reservoir properties were made.

Randolph, P.L.; Hayden, C.G.; Rogers, L.A.

1992-02-01T23:59:59.000Z

395

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...oil and natural gas wells passing through drinking-water aquifers (14). In PNAS, Ingraffea et al. (5) examine one of...Jackson RB ( 2014 ) The environmental costs and benefits of fracking. Annu Rev Environ Resour, in press . 12 Nicot JP Scanlon...

Robert B. Jackson

2014-01-01T23:59:59.000Z

396

T2WELL/ECO2N  

Energy Science and Technology Software Center (OSTI)

002966IBMPC00 T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water http:..esd.lbl.gov/tough/licensing.html

397

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

398

Single-Well and Cross-Well Resistivity | Open Energy Information  

Open Energy Info (EERE)

Single-Well and Cross-Well Resistivity Single-Well and Cross-Well Resistivity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well and Cross-Well Resistivity Details Activities (14) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip and structural features in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

399

Fracturing pressures and near-well fracture geometry of arbitrarily oriented and horizontal wells  

SciTech Connect

The hydraulic fracturing of arbitrarily oriented and horizontal wells is made challenging by the far more complicated near-well fracture geometry compared to that of conventional vertical wells. This geometry is important both for hydraulic fracture propagation and the subsequent post-treatment well performance. Fracture tortuosity of arbitrarily oriented and horizontal wells is likely to cause large initiation pressures and reduction in the fracture widths. This paper presents a comprehensive study of the effects of important variables, including the principal stresses, wellbore orientation, and perforation configuration on fracture geometry. Initiation pressures, the contact between arbitrarily oriented wells and the fracture plane, and the near-well fracture geometry are determined and discussed. This study also shows that because of the near-well stress concentration the fracture width at the wellbore is always smaller than the maximum fracture width. This can have important consequences during hydraulic fracturing.

Chen, Z.; Economides, M.J.

1995-12-31T23:59:59.000Z

400

Single-Well And Cross-Well Seismic (Majer, 2003) | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic (Majer, 2003) Single-Well And Cross-Well Seismic (Majer, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well And Cross-Well Seismic (Majer, 2003) Exploration Activity Details Location Unspecified Exploration Technique Single-Well And Cross-Well Seismic Activity Date Usefulness not indicated DOE-funding Unknown Notes The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology,  

Open Energy Info (EERE)

Salt Wells Area (Nevada Bureau of Mines and Geology, Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis AMP Resources, LLC drilled one of the first operating wells, Industrial Production Well PW-2, in the spring of 2005 under geothermal project area permit #568. Notes The well was completed to a depth of 143.6 m and a peak temperature of 145°C, as indicated by static temperature surveys. Wellhead temperatures at PW-2 were 140°C at a flow rate of 157.7 liters per minute, and no

402

Hawthorne, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

1073183°, -73.7959666° 1073183°, -73.7959666° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1073183,"lon":-73.7959666,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells  

E-Print Network (OSTI)

EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS A Thesis IAN MARIE BERTHELOT Submitted to the Office of Graduate Studies of Texas AdtM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Petroleum Engineering EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS by JAN MARIE BERTIIELOT Appmved...

Berthelot, Jan Marie

2012-06-07T23:59:59.000Z

404

Lalamilo Wells Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Lalamilo Wells Wind Farm Facility Lalamilo Wells Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hawaiian Electric Light Co. Developer Lalamilo Ventures Energy Purchaser Hawaii Electric Light Co. Location Big Island HI Coordinates 19.9875°, -155.765556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.9875,"lon":-155.765556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Lost Circulation Experience in Geothermal Wells  

SciTech Connect

Lost circulation during drilling and cementing in geothermal wells is a problem common to most geothermal areas. Material and rig time costs due to lost circulation often represent one fourth or more of the total well cost. Assessment of the general drilling and completion practices commonly used for handling lost circulation have been surveyed and evaluated under a study sponsored by Sandia National Laboratories. Results of this study, including interviews with geothermal production companies and with drilling fluid service companies, are reported in the paper. Conclusions and recommendations are presented for control of lost circulation during geothermal operations. Recent improvements in lost circulation materials and techniques and potential equipment solutions to the lost circulation problem are discussed. Research needs are also identified.

Goodman, M. A.

1981-01-01T23:59:59.000Z

406

Consortium for Petroleum & Natural Gas Stripper Wells  

SciTech Connect

The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The SWC represents a partnership between U.S. petroleum and natural gas producers, trade associations, state funding agencies, academia, and the NETL. This document serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Drafting and releasing the 2007 Request for Proposals; (2) Securing a meeting facility, scheduling and drafting plans for the 2007 Spring Proposal Meeting; (3) Conducting elections and announcing representatives for the four 2007-2008 Executive Council seats; (4) 2005 Final Project Reports; (5) Personal Digital Assistant Workshops scheduled; and (6) Communications and outreach.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

407

GAS INJECTION/WELL STIMULATION PROJECT  

SciTech Connect

Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

John K. Godwin

2005-12-01T23:59:59.000Z

408

Recent developments in well test analysis  

SciTech Connect

The analysis of pressure transient data in terms of model parameter values is part of the reservoir description process and must be regarded as complementary to other branches of this activity. The advantage of transient pressure data is the depth of investigation achieved by the propagating pressure disturbance. However, the problem of an interpretation`s lack of uniqueness always exists. The objective of well test analysis is to help increase the understanding of the reservoir structure so that ultimate recovery can be improved. This pressure transient analysis review summarizes the major developments that have occurred since the derivative technique was introduced in 1982. This is the first in a series that discusses recent and future developments in well test analysis.

Stewart, G. [Edinburgh Petroleum Services Ltd. (United Kingdom)]|[Heriot-Watt Univ., Edinburgh (United Kingdom)

1997-08-01T23:59:59.000Z

409

Boise geothermal injection well: Final environmental assessment  

SciTech Connect

The City of Boise, Idaho, an Idaho Municipal Corporation, is proposing to construct a well with which to inject spent geothermal water from its hot water heating system back into the geothermal aquifer. Because of a cooperative agreement between the City and the US Department of Energy to design and construct the proposed well, compliance to the National Environmental Policy Act (NEPA) is required. Therefore, this Environmental Assessment (EA) represents the analysis of the proposed project required under NEPA. The intent of this EA is to: (1) briefly describe historical uses of the Boise Geothermal Aquifer; (2) discuss the underlying reason for the proposed action; (3) describe alternatives considered, including the No Action Alternative and the Preferred Alternative; and (4) present potential environmental impacts of the proposed action and the analysis of those impacts as they apply to the respective alternatives.

NONE

1997-12-31T23:59:59.000Z

410

Drop pressure optimization in oil well drilling  

Science Journals Connector (OSTI)

In this research work we are interested in minimizing losses existing when drilling an oil well. This would essentially improve the load losses by acting on the rheological parameters of the hydraulic and drilling mud. For this rheological tests were performed using a six-speed rotary viscometer (FANN 35). We used several rheological models to accurately describe the actual rheological behavior of drilling mud oil-based according to the Pearson's coefficient and to the standard deviation. To model the problem we established a system of equations that describe the essential to highlight purpose and various constraints that allow for achieving this goal. To solve the problem we developed a computer program that solves the obtained equations in Visual Basic language system. Hydraulic and rheological calculation was made for in situ application. This allowed us to estimate the distribution of losses in the well.

2014-01-01T23:59:59.000Z

411

Gas well operation with liquid production  

SciTech Connect

Prediction of liquid loading in gas wells is discussed in terms of intersecting tubing or system performance curves with IPR curves and by using a more simplified critical velocity relationship. Different methods of liquid removal are discussed including such methods as intermittent lift, plunger lift, use of foam, gas lift, and rod, jet, and electric submersible pumps. Advantages, disadvantages, and techniques for design and application of the methods of liquid removal are discussed.

Lea, J.F.; Tighe, R.E.

1983-02-01T23:59:59.000Z

412

Energy loss rate in disordered quantum well  

SciTech Connect

We report the effect of dynamically screened deformation potential on the electron energy loss rate in disordered semiconductor quantum well. Interaction of confined electrons with bulk acoustic phonons has been considered in the deformation coupling. The study concludes that the dynamically screened deformation potential coupling plays a significant role as it substantially affects the power dependency of electron relaxation on temperature and mean free path.

Tripathi, P.; Ashraf, S. S. Z. [Centre of Excellence in Nanomaterials, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Hasan, S. T. [Physics Department, Faculty of Science, The M.S. University of Baroda, Vadodara-390002 (India); Sharma, A. C. [Physics Department, Sibli National College, Azamgarh-276128 (India)

2014-04-24T23:59:59.000Z

413

Program solves for gas well inflow performance  

SciTech Connect

A Windows-based program, GasIPR, can solve for the gas well inflow performance relationship (IPR). The program calculates gas producing rates at various pressures and is applicable for both turbulent and non-turbulent flow. It also has the following capabilities: computes PVT properties {gamma}{sub g}, P{sub c}, T{sub c}, heating value, Z, {mu}{sub g}, B{sub g}, and {rho}{sub g} from input gas composition data; calculates the Reynolds number (N{sub Re}) and shows the gas flow rates at the sandface at which the turbulence effect must be considered; helps the user to optimize the net perforation interval (h{sub p}) so that the turbulence effect can be minimized; and helps the user to evaluate the sensitivity of formation permeability on gas flow rate for a new play. IPR is a critical component in forecasting gas well deliverability. IPRs are used for sizing optimum tubing configurations and compressors, designing gravel packs, and solving gas well loading problems. IPR is the key reference for nodal analysis.

Engineer, R. [AERA Energy LLC, Bakersfield, CA (United States); Grillete, G. [Bechtel Petroleum Operations Inc., Tupman, CA (United States)

1997-10-20T23:59:59.000Z

414

Method of drilling and casing a well  

SciTech Connect

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

415

Vibration of Generalized Double Well Oscillators  

E-Print Network (OSTI)

We have applied the Melnikov criterion to examine a global homoclinic bifurcation and transition to chaos in a case of a double well dynamical system with a nonlinear fractional damping term and external excitation. The usual double well Duffing potential having a negative square term and positive quartic term has been generalized to a double well potential with a negative square term and a positive one with an arbitrary real exponent $q > 2$. We have also used a fractional damping term with an arbitrary power $p$ applied to velocity which enables one to cover a wide range of realistic damping factors: from dry friction $p \\to 0$ to turbulent resistance phenomena $p=2$. Using perturbation methods we have found a critical forcing amplitude $\\mu_c$ above which the system may behave chaotically. Our results show that the vibrating system is less stable in transition to chaos for smaller $p$ satisfying an exponential scaling low. The critical amplitude $\\mu_c$ as an exponential function of $p$. The analytical results have been illustrated by numerical simulations using standard nonlinear tools such as Poincare maps and the maximal Lyapunov exponent. As usual for chosen system parameters we have identified a chaotic motion above the critical Melnikov amplitude $\\mu_c$.

Grzegorz Litak; Marek Borowiec; Arkadiusz Syta

2006-10-20T23:59:59.000Z

416

Remote down-hole well telemetry  

DOE Patents (OSTI)

The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

2004-07-20T23:59:59.000Z

417

Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes  

SciTech Connect

The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

1989-09-01T23:59:59.000Z

418

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

419

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

420

Production Well Performance Enhancement using Sonication Technology  

SciTech Connect

The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: Laboratory studies Mathematical modeling Sonic tool design and development Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

2005-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Treating paraffin deposits in producing oil wells  

SciTech Connect

Paraffin deposition has been a problem for operators in many areas since the beginning of petroleum production from wells. An extensive literature search on paraffin problems and methods of control has been carried out, and contact was made with companies which provide chemicals to aid in the treatment of paraffin problems. A discussion of the nature of paraffins and the mechanisms of this deposition is presented. The methods of prevention and treatment of paraffin problems are summarized. Suggested procedures for handling paraffin problems are provided. Suggestions for areas of further research testing are given.

Noll, L.

1992-01-01T23:59:59.000Z

422

Apparatus for use in rejuvenating oil wells  

SciTech Connect

A sub incorporating a check valve is connected into the lower end of a well pipestring. This valve will pass hot steam injected down the pipestring to the formations to loosen up the thick crude oil. The check valve prevents back flow and thus will hold the high pressure steam. To resume production, the production pump can then be lowered through the pipestring. The pump itself is provided with an extended probe member which will unseat the check valve when the pump is in proper position so that production pumping can resume.

Warnock, C.E. Sr.

1983-07-19T23:59:59.000Z

423

CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to  

Open Energy Info (EERE)

CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description This "geothermal central plant" concept will provide ground source loop energy as a utility to be shared by the academic and residential buildings on the soon-to-be-constructed campus.

424

Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984) | Open Energy  

Open Energy Info (EERE)

Edmiston & Benoit, 1984) Edmiston & Benoit, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Exploratory Well Activity Date 1980 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This paper seeks to (1) describe several moderate-temperature (150-200°C) geothermal systems discovered and drilled during the early 1980s that had not been documented previously in the literature, (2) summarize and compare

425

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

426

Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program  

SciTech Connect

Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

Not Available

1981-06-01T23:59:59.000Z

427

Third invitational well-testing symposium: well testing in low permeability environments  

SciTech Connect

The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted. (DLC)

Doe, T.W.; Schwarz, W.J. (eds.)

1981-03-01T23:59:59.000Z

428

Well testing in coalbed methane (CBM) wells: An environmental remediation case history  

SciTech Connect

In 1993, methane seepage was observed near coalbed methane wells in southwestern Colorado. Well tests were conducted to identify the source of the seeps. The well tests were complicated by two-phase flow, groundwater flow, and gas readsorption. Using the test results, production from the area was simulated. The cause of the seeps was found to be depressuring in shallow coal near the surface, and a remediation plan using water injection near the seep area was formulated.

Cox, D.P.; Young, G.B.C.; Bell, M.J.

1995-12-31T23:59:59.000Z

429

Well injection valve with retractable choke  

SciTech Connect

An injection valve is described for use in a well conduit consisting of: a housing having a bore, a valve closure member in the bore moving between open and closed positions, a flow tube telescopically movable in the housing for controlling the movement of the valve closure member, means for biasing the flow tube in a direction for allowing the valve closure member to move to the closed position, an expandable and contractible fluid restriction connected to the flow tube and extending into the bore for moving the flow tube to the open position in response to injection fluid, but allowing the passage of well tools through the valve, the restriction contractible in response to fluid flow, the restriction includes, segments movable into and out of the bore, and biasing means yieldably urging the segments into the bore, a no-go shoulder on the flow tube, and releasable lockout means between the flow tube and the housing for locking the flow tube and valve in the open position.

Pringle, R.E.

1986-07-22T23:59:59.000Z

430

Productivity and Injectivity of Horizontal Wells  

SciTech Connect

A general wellbore flow model is presented to incorporate not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow. Influence of inflow or outflow on the wellbore pressure drop is analyzed. New friction factor correlations accounting for both inflow and outflow are also developed. The greatest source of uncertainty is reservoir description and how it is used in simulators. Integration of data through geostatistical techniques leads to multiple descriptions that all honor available data. The reality is never known. The only way to reduce this uncertainty is to use more data from geological studies, formation evaluation, high resolution seismic, well tests and production history to constrain stochastic images. Even with a perfect knowledge about reservoir geology, current models cannot do routine simulations at a fine enough scale. Furthermore, we normally don't know what scale is fine enough. Upscaling introduces errors and masks some of the physical phenomenon that we are trying to model. The scale at which upscaling is robust is not known and it is probably smaller in most cases than the scale actually used for predicting performance. Uncertainties in the well index can cause errors in predictions that are of the same magnitude as those caused by reservoir heterogeneities. Simplified semi-analytical models for cresting behavior and productivity predictions can be very misleading.

Khalid Aziz; Sepehr Arababi; Thomas A. Hewett

1997-04-29T23:59:59.000Z

431

Spatially indirect excitons in coupled quantum wells  

SciTech Connect

Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.

Lai, Chih-Wei Eddy

2004-03-01T23:59:59.000Z

432

Hydrologic Tests at Characterization Well R-14  

SciTech Connect

Well R-14 is located in Ten Site Canyon and was completed at a depth of 1316 ft below ground surface (bgs) in August 2002 within unassigned pumiceous deposits located below the Puye Formation (fanglomerate). The well was constructed with two screens positioned below the regional water table. Individual static depths measured for each isolated screen after the Westbay{trademark} transducer monitoring system was installed in mid-December 2002 were nearly identical at 1177 ft bgs, suggesting only horizontal subsurface flow at this time, location, and depth. Screen 1 straddles the geologic contact between the Puye fanglomerate and unassigned pumiceous deposits. Screen 2 is located about 50 ft deeper than screen 1 and is only within the unassigned pumiceous deposits. Constant-rate, straddle-packer, injection tests were conducted at screen 2, including two short tests and one long test. The short tests were 1 minute each but at different injection rates. These short tests were used to select an appropriate injection rate for the long test. We analyzed both injection and recovery data from the long test using the Theis, Theis recovery, Theis residual-recovery, and specific capacity techniques. The Theis injection, Theis recovery, and specific capacity methods correct for partial screen penetration; however, the Theis residual-recovery method does not. The long test at screen 2 involved injection at a rate of 10.1 gallons per minute (gpm) for 68 minutes and recovery for the next 85 minutes. The Theis analysis for screen 2 gave the best fit to residual recovery data. These results suggest that the 158-ft thick deposits opposite screen 2 have a transmissivity (T) equal to or greater than 143 ft{sup 2}/day, and correspond to a horizontal hydraulic conductivity (K) of at least 0.9 ft/day. The specific capacity method yielded a T value equal to or greater than 177 ft{sup 2}/day, and a horizontal K of at least 1.1 ft/day. Results from the injection and recovery phases of the test at screen 2 were similar to those from the residual-recovery portion of the test, but were lower by a factor of about two. The response to injection was typical for a partially penetrating well screen in a very thick aquifer.

S. McLin; W. Stone

2004-08-01T23:59:59.000Z

433

Natural Gas Prices: Well Above Recent Averages  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The recent surge in spot prices at the Henry Hub are well above a typical range for 1998-1999 (in this context, defined as the average, +/- 2 standard deviations). Past price surges have been of short duration. The possibility of a downward price adjustment before the end of next winter is a source of considerable risk for storage operators who acquire gas at recent elevated prices. Storage levels in the Lower 48 States were 7.5 percent below the 5-year average (1995-1999) by mid-August (August 11), although the differential is only 6.4 percent in the East, which depends most heavily on storage to meet peak demand. Low storage levels are attributable, at least in part, to poor price incentives: high current prices combined with only small price

434

PSA_Well_Completion_Report.book  

Office of Legacy Management (LM)

Restoration Restoration Project U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Environmental Restoration Project U.S. Department of Energy National Nuclear Security Administration Nevada Site Office Nevada Environmental Restoration Project Well Completion Report for Corrective Action Unit 447, Project Shoal Area Churchill County, Nevada Revision No.: 0 September 2006 Approved for public release; further dissemination unlimited. DOE/NV--1166 Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.ntis.gov/ordering.htm Available electronically at http://www.osti.gov/bridge

435

CNTA_Well_Installation_Report.book  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration Nuclear Security Administration Nevada Site Office Environmental Restoration Division Nevada Environmental Restoration Project Well Installation Report for Corrective Action Unit 443, Central Nevada Test Area Nye County, Nevada Revision No.: 0 January 2006 Approved for public release; further dissemination unlimited. DOE/NV--1102 Uncontrolled When Printed Available for public sale, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis.gov Online ordering: http://www.ntis.gov/ordering.htm Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

436

New multilateral well architecture in heterogeneous reservoirs  

E-Print Network (OSTI)

the drilling of the main horizontal well and it is cemented together with the main horizontal section. The pressure and structural integrity of these junctions is critical requirement. This integrity does not have to be compromised by any additional... with 15 horizontal lateral model Case 1 Case 6 CMG Results Eclipse Results CMG Results K v/Kh J STBD/psi J STBD/psi J(Case6)/J(Case 1) J STBD/psi J(Case6)/J(Case1) 1 13.85 12.95 93.5% 13.06 94% 0.1 5.73 5.14 89.7% 5.37 93.7% 0.01 1.93 1...

Jia, Hongqiao

2004-09-30T23:59:59.000Z

437

Remote system for subsea wells tested  

SciTech Connect

At its experimental submarine station in the Grondin field offshore the West African state of Gabon, Societe Nationale Elf-Aquitaine has run a series of inspection, repair, and maintenance tests on two producing wells using a robot controlled from the surface. Designed for water depths beyond the range of divers, the TIM robot has a pair of manipulator arms and a rotating telescopic crane installed on a 14 by 7.6 ft carriage. Five television cameras fitted at various spots on the robot allow surface operators to direct TIM in such tasks as (1) installing a jumper pipe between a Christmas tree and the manifold, (2) connecting a jumper electric cable and hydraulic hose, (3) locally operating a safety valve, and (4) removing a guide line. During 104 hr of seabed experience, TIM outperformed divers, particularly in jobs requiring great strength.

Vielvoye, R.

1981-05-04T23:59:59.000Z

438

Kuwait poised for massive well kill effort  

SciTech Connect

This paper reports that full scale efforts to extinguish Kuwait's oil well fires are to begin. The campaign to combat history's worst oil fires, originally expected to begin in mid-March, has been hamstrung by logistical problems, including delays in equipment deliveries caused by damage to Kuwait's infrastructure. Meantime, production from a key field off Kuwait--largely unaffected by the war--is expected to resume in May, but Kuwaiti oil exports will still be hindered by damaged onshore facilities. In addition, Kuwait is lining up equipment and personnel to restore production from its heavily damaged oil fields. Elsewhere in the Persian Gulf, Saudi Arabia reports progress in combating history's worst oil spills but acknowledges a continuing threat.

Not Available

1991-04-08T23:59:59.000Z

439

Drilling of wells with top drive unit  

SciTech Connect

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

440

Catching sparks from well-forged neutralinos  

Science Journals Connector (OSTI)

In this paper we present a new search technique for electroweakinos, the superpartners of electroweak gauge and Higgs bosons, based on final states with missing transverse energy, a photon, and a dilepton pair, ?+??+?+ET. Unlike traditional electroweakino searches, which perform best when m?2,30?m?10,m??m?10>mZ, our search favors nearly degenerate spectra; degenerate electroweakinos typically have a larger branching ratio to photons, and the cut m???mZ effectively removes on shell Z boson backgrounds while retaining the signal. This feature makes our technique optimal for well-tempered scenarios, where the dark matter relic abundance is achieved with interelectroweakino splittings of ?2070??GeV. Additionally, our strategy applies to a wider range of scenarios where the lightest neutralinos are almost degenerate, but only make up a subdominant component of the dark mattera spectrum we dub well forged. Focusing on bino-Higgsino admixtures, we present optimal cuts and expected efficiencies for several benchmark scenarios. We find bino-Higgsino mixtures with m?2,30?190??GeV and m?2,30?m?10?30??GeV can be uncovered after roughly 600??fb?1 of luminosity at the 14TeV LHC. Scenarios with lighter states require less data for discovery, while scenarios with heavier states or larger mass splittings are harder to discriminate from the background and require more data. Unlike many searches for supersymmetry, electroweakino searches are one area where the high luminosity of the next LHC run, rather than the increased energy, is crucial for discovery.

Joseph Bramante; Antonio Delgado; Fatemeh Elahi; Adam Martin; Bryan Ostdiek

2014-11-11T23:59:59.000Z

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Flow in geothermal wells: Part III. Calculation model for self-flowing well  

SciTech Connect

The theoretical model described predicts the temperature, pressure, dynamic dryness fraction, and void fraction along the vertical channel of two-phase flow. The existing data from operating wells indicate good agreement with the model. (MHR)

Bilicki, Z.; Kestin, J.; Michaelides, E.E.

1981-06-01T23:59:59.000Z

442

US Army Corps of Engineers  

E-Print Network (OSTI)

for the future. We commend this interview to all those interested in the development of twentieth century .............................................. 4 Camp Hocking

US Army Corps of Engineers

443

China battles army of invaders  

Science Journals Connector (OSTI)

... says Sun. One of these induces trees to release large amounts of the compound 3-carene a strong attractant to the beetles that is not released in response to ... The finding has led to a series of successful projects to trap beetles using 3-carene. The approach, says Sun, is part of an integrated pest-management programme, launched ...

Jane Qiu

2013-11-27T23:59:59.000Z

444

ARMY SERiWE FORCES  

Office of Legacy Management (LM)

E.Stiltz, Masonville, New Jersey Bated at%&- hj.this 3& day ofs&w 1945 4. Approved: Contracting Officer lo-264 Cl C. Karl; Captain; C; E Authorized Representative of the...

445

Process Improvement at Army Installations  

E-Print Network (OSTI)

and pressed, and the cans are then placed on a conveyor belt. On this conveyor belt, which constitutes one of the production bottlenecks, a plastic cap and starter cap is installed in each can. The final steps for each can include installing the lid... each fuse. Load and Packout When the cans arrive at the Load and Packout building, they are manually removed and loaded on to both sides of a conveyor belt. The conveyor transports the cans to the tape and stencil machine where they are hand...

Northrup, J.; Smith, E. D.; Lin, M.; Baird, J.

446

Army Regulation 4201 Facilities Engineering  

E-Print Network (OSTI)

and management, mil- itary construction program development and execution, master planning, utilities services of the United States for use by the National Guard; single project-owned or leased civil works facilities as tenants when support is provided by another government agency. In areas outside the United States, Status

US Army Corps of Engineers

447

Well test imaging - a new method for determination of boundaries from well test data  

SciTech Connect

A new method has been developed for analysis of well test data, which allows the direct calculation of the location of arbitrary reservoir boundaries which are detected during a well test. The method is based on elements of ray tracing and information theory, and is centered on the calculation of an instantaneous {open_quote}angle of view{close_quote} of the reservoir boundaries. In the absence of other information, the relative reservoir shape and boundary distances are retrievable in the form of a Diagnostic Image. If other reservoir information, such as 3-D seismic, is available; the full shape and orientation of arbitrary (non-straight line or circular arc) boundaries can be determined in the form of a Reservoir Image. The well test imaging method can be used to greatly enhance the information available from well tests and other geological data, and provides a method to integrate data from multiple disciplines to improve reservoir characterization. This paper covers the derivation of the analytical technique of well test imaging and shows examples of application of the technique to a number of reservoirs.

Slevinsky, B.A.

1997-08-01T23:59:59.000Z

448

Well completion report on installation of horizontal wells for in-situ remediation tests  

SciTech Connect

A project to drill and install two horizontal vapor extraction/air-injection wells at the Savannah River Site (SRS), Aiken, South Carolina, was performed in September and October of 1988. This study was performed to test the feasibility of horizontal drilling technologies in unconsolidated sediments and to evaluate the effectiveness of in-situ air stripping of volatile organics from the ground water and unsaturated soils. A tremendous amount of knowledge was obtained during the drilling and installation of the two test wells. Factors of importance to be considered during design of another horizontal well drilling program follow. (1) Trips in and out of the borehole should be minimized to maintain hole stability. No reaming to enlarge the hole should be attempted. (2) Drilling fluid performance should be maximized by utilizing a low solids, low weight, moderate viscosity, high lubricity fluid. Interruption of drilling fluid circulation should be minimized. (3) Well materials should possess adequate flexibility to negotiate the curve. A flexible guide should be attached to the front of the well screen to guide the screen downhole. (4) Sands containing a minor amount of clay are recommended for completion targets, as better drilling control in the laterals was obtained in these sections.

Kaback, D.S.; Looney, B.B.; Corey, J.C.; Wright, L.M.

1989-08-01T23:59:59.000Z

449

ARSENIC IN PRIVATE WELLS IN NH YEAR 1 FINAL REPORT  

E-Print Network (OSTI)

performed geospatial analysis of the well water arsenic estimates and survey results and produced the maps .................................................................................................. 7 Well water quality...................................................................................................... 7 Well water testing

Bucci, David J.

450

Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...  

Open Energy Info (EERE)

Area Exploration Technique Well Log Data Activity Date - 1988 Usefulness useful DOE-funding Unknown Exploration Basis The study reports well log data from five wells...

451

Development and application of a transient well index  

E-Print Network (OSTI)

transient well index and the Peaceman well index were compared to analytical solutions. A good match was observed between simulated well tests using the proposed transient well index and the corresponding analytical solutions, even on coarse grids (e...

Yildiz, Tabiat Tan

2012-06-07T23:59:59.000Z

452

Uncertainty Quantification and Calibration in Well Construction Cost Estimates  

E-Print Network (OSTI)

or to individual cost components. Application of the methodology to estimation of well construction costs for horizontal wells in a shale gas play resulted in well cost estimates that were well calibrated probabilistically. Overall, average estimated...

Valdes Machado, Alejandro

2013-08-05T23:59:59.000Z

453

Cement fatigue and HPHT well integrity with application to life of well prediction  

E-Print Network (OSTI)

In order to keep up with the worlds energy demands, oil and gas producing companies have taken the initiative to explore offshore reserves or drill deeper into previously existing wells. The consequence of this, however, has to deal with the high...

Ugwu, Ignatius Obinna

2009-05-15T23:59:59.000Z

454

Segmentation of complex geophysical structures with well Running title: Image segmentation with well data.  

E-Print Network (OSTI)

with well data. Authors: Christian Gout�, and Carole Le Guyader. Complete affiliation: � Universit�e de 96822-2273 , USA. chris gout@cal.berkeley.edu : INSA de Rennes 20 Avenue des Buttes de Co�esmes CS 14315 35043 Rennes, France. carole.le-guyader@insa-rennes.fr Corresponding author : Christian Gout

Boyer, Edmond

455

Energy level spectroscopy of InSb quantum wells using quantum-well LED emission  

Science Journals Connector (OSTI)

We have investigated the low-temperature optical properties of InSb quantum-well (QW) light-emitting diodes, with different barrier compositions, as a function of well width. Three devices were studied: QW1 had a 20 nm undoped InSb quantum well with a barrier composition of Al0.143In0.857Sb, QW2 had a 40 nm undoped InSb well with a barrier composition of Al0.077In0.923Sb, and QW3 had a 100 nm undoped InSb well with a barrier composition of Al0.025In0.975Sb. For QW1, the signature of two transitions (CB1-HH1 and CB1-HH2) can be seen in the measured spectrum, whereas for QW2 and QW3 the signature of a large number of transitions is present in the measured spectra. In particular transitions to HH2 can be seen, the first time this has been observed in AlInSb/InSb heterostructures. To identify the transitions that contribute to the measured spectra, the spectra have been simulated using an eight-band k.p calculation of the band structure together with a first-order time-dependent perturbation method (Fermi golden rule) calculation of spectral emittance, taking into account broadening. In general there is good agreement between the measured and simulated spectra. For QW2 we attribute the main peak in the experimental spectrum to the CB2-HH1 transition, which has the highest overall contribution to the emission spectrum of QW2 compared with all the other interband transitions. This transition normally falls into the category of forbidden transitions, and in order to understand this behavior we have investigated the momentum matrix elements, which determine the selection rules of the problem.

T. G. Tenev; A. Palyi; B. I. Mirza; G. R. Nash; M. Fearn; S. J. Smith; L. Buckle; M. T. Emeny; T. Ashley; J. H. Jefferson; C. J. Lambert

2009-02-02T23:59:59.000Z

456

Prairie Canal Well No. 1, Calcasieu Parish, Louisiana. Volume II. Well test data. Final report  

SciTech Connect

The following are included in appendices: field test data, field non-edited data, raw data, tentative method of testing for hydrogen sulfide in natural gas using length of stain tubes, combined sample log, report on reservoir fluids study, well test analysis, analysis of solids samples from primary zone, chemical analysis procedures, scale and corrosion evaluation, laboratory report on scale deposits, and sand detector strip charts. (MHR)

Not Available

1981-01-01T23:59:59.000Z

457

RAPID/Geothermal/Well Field/Colorado | Open Energy Information  

Open Energy Info (EERE)

the Use of Wells, "Geothermal Well" means a well that is constructed for the purpose of exploration, use of a geothermal resource, or reinjection of a geothermal fluid. A permit...

458

Property:WellFieldParasiticConsump | Open Energy Information  

Open Energy Info (EERE)

Name WellFieldParasiticConsump Property Type Number Description Well-Field Parasitic Consumption (MWh). Pages using the property "WellFieldParasiticConsump" Showing 2 pages using...

459

Economic viability of multiple-lateral horizontal wells  

E-Print Network (OSTI)

Horizontal wells are gaining popularity throughout the petroleum industry as a means to increase well productivity and enhance incremental economics. Horizontal wells provide greater reservoir exposure and are useful in intersecting additional pay...

Smith, Christopher Jason

2012-06-07T23:59:59.000Z

460

Masco Home Services/WellHome | Open Energy Information  

Open Energy Info (EERE)

WellHome Jump to: navigation, search Name: Masco Home ServicesWellHome Place: Taylor, MI Website: http:www.mascohomeserviceswe References: Masco Home ServicesWellHome1...

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Science and Technology for Sustainable Well-Being  

Science Journals Connector (OSTI)

...to well-being and sustainability, before turning...Well-Being and Sustainability Human well-being rests on a foundation of three pillars, the preservation...to the challenge of sustainability for ocean systems and...

John P. Holdren

2008-01-25T23:59:59.000Z

462

UTM Well Coordinates for the Boise Hydrogeophysical Research Site (BHRS)  

SciTech Connect

A series of oscillatory pumping tests were performed at the BHRS. The data collected from these wells will be used to tomographically image the shallow subsurface. This excel file only contains well coordinates for all wells at the Boise site.

David Lim

2014-12-19T23:59:59.000Z

463

UTM Well Coordinates for the Boise Hydrogeophysical Research Site (BHRS)  

DOE Data Explorer (OSTI)

A series of oscillatory pumping tests were performed at the BHRS. The data collected from these wells will be used to tomographically image the shallow subsurface. This excel file only contains well coordinates for all wells at the Boise site.

David Lim

464

Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

well Deep Blue No. 1. Notes Well log data was collected in Deep Blue No. 1 upon its completion. The logging was conducted by Welaco Well Analysis Corporation. Temperature,...

465

RAPID/Geothermal/Well Field/Utah | Open Energy Information  

Open Energy Info (EERE)

if they meet the requirements of Section 73-3-8, they will be approved by the State Engineer on a well-to-well basis or as a group of wells which comprise an operating unit and...

466

Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...  

Open Energy Info (EERE)

395. Notes Among these wells were exploration and monitoring wells drilled near the Fish Hatchery Springs in preparation for the siting of a second binary geothermal power...

467

RAPID/Geothermal/Well Field/California | Open Energy Information  

Open Energy Info (EERE)

& Well Field Permit Agency: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Drilling & Well Field Permit Before drilling can commense,...

468

Hydraulics and Well Testing of Engineered Geothermal Reservoirs...  

Open Energy Info (EERE)

Hydraulics and Well Testing of Engineered Geothermal Reservoirs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydraulics and Well Testing of...

469

Sustainability Assessment of Workforce Well-Being and Mission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainability Assessment of Workforce Well-Being and Mission Readiness Sustainability Assessment of Workforce Well-Being and Mission Readiness Presentation by Dr. Jodi Jacobsen,...

470

Development Wells At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Development Wells At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Glass Buttes Area (DOE GTP)...

471

NMOSE-Proof of Completion of Well | Open Energy Information  

Open Energy Info (EERE)

Citation NMOSE-Proof of Completion of Well (2014). Retrieved from "http:en.openei.orgwindex.php?titleNMOSE-ProofofCompletionofWell&oldid727378" Categories: References...

472

ELIMINATING THE WELLBORE RESPONSE IN TRANSIENT WELL TEST ANALYSIS  

E-Print Network (OSTI)

Steam-Water Flow in Geothermal Wells", J. Pet. Tech. , ~, p.Storage Effects in Geothermal Wells," Soc. Pet. Eng. J. ,

Miller, C.W.

2014-01-01T23:59:59.000Z

473

US Department of Energy, Bonneville Power Administration US Army Corps of Engineers, North Pacific Division Columbia River System Operation Review Canadian Entitlement Allocation Extension Agreements Record of Decision; April 29, 1997  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia River System Operation Review Columbia River System Operation Review Final Environmental Impact Statement Canadian Entitlement Allocation Extension Agreements Record of Decision Summary The Administrator and Chief Executive Officer (CEO) of the Bonneville Power Administration (BPA), acting for BPA, and, as Chairman of the United States Entity (the Administrator and the Division Engineer, North Pacific Division of the United States Army Corps of Engineers), acting on behalf of the United States Entity, has decided to adopt for the Canadian Entitlement Allocation Extension Agreements (CEAEA) a federal hydroelectric projects allocation of 72.5 percent and a non-Federal hydroelectric projects allocation of 27.5 percent. The Columbia River Treaty (Treaty), ratified in 1964, required the construction of three

474

Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report  

SciTech Connect

The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

1989-01-01T23:59:59.000Z

475

Definition: Stepout-Deepening Wells | Open Energy Information  

Open Energy Info (EERE)

Stepout-Deepening Wells Stepout-Deepening Wells Jump to: navigation, search Dictionary.png Stepout-Deepening Wells A well drilled at a later time over remote, undeveloped portions of a partially developed continuous reservoir rock. A deepening well is reentering a well and drilling to a deeper reservoir. Often referred to as an "infield exploration well" in the oil and gas industry.[1] Also Known As delayed development well References ↑ http://www.answers.com/topic/step-out-well Ste LikeLike UnlikeLike You like this.Sign Up to see what your friends like. p-out-well: a well drilled in the expected extent of a reservoir that is being developed but at a significant distance, usually two or more drilling and spacing units, from the nearest producer in that reservoir. A step-out

476

Cost analysis of oil, gas, and geothermal well drilling  

Science Journals Connector (OSTI)

Abstract This paper evaluates current and historical drilling and completion costs of oil and gas wells and compares them with geothermal wells costs. As a starting point, we developed a new cost index for US onshore oil and gas wells based primarily on the API Joint Association Survey 19762009 data. This index describes year-to-year variations in drilling costs and allows one to express historical drilling expenditures in current year dollars. To distinguish from other cost indices we have labeled it the Cornell Energy Institute (CEI) Index. This index has nine sub-indices for different well depth intervals and has been corrected for yearly changes in drilling activity. The CEI index shows 70% higher increase in well cost between 2003 and 2008 compared to the commonly used Producer Price Index (PPI) for drilling oil and gas wells. Cost trends for various depths were found to be significantly different and explained in terms of variations of oil and gas prices, costs, and availability of major well components and services at particular locations. Multiple methods were evaluated to infer the cost-depth correlation for geothermal wells in current year dollars. In addition to analyzing reported costs of the most recently completed geothermal wells, we investigated the results of the predictive geothermal well cost model WellCost Lite. Moreover, a cost database of 146 historical geothermal wells has been assembled. The CEI index was initially used to normalize costs of these wells to current year dollars. A comparison of normalized costs of historical wells with recently drilled ones and WellCost Lite predictions shows that cost escalation rates of geothermal wells were considerably lower compared to hydrocarbon wells and that a cost index based on hydrocarbon wells is not applicable to geothermal well drilling. Besides evaluating the average well costs, this work examined economic improvements resulting from increased drilling experience. Learning curve effects related to drilling multiple similar wells within the same field were correlated.

Maciej Z. Lukawski; Brian J. Anderson; Chad Augustine; Louis E. Capuano Jr.; Koenraad F. Beckers; Bill Livesay; Jefferson W. Tester

2014-01-01T23:59:59.000Z

477

Distribution and Production of Oil and Gas Wells by State  

Gasoline and Diesel Fuel Update (EIA)

Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Distribution and Production of Oil and Gas Wells by State Release date: January 7, 2011 | Next Release Date: To be determined Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are now available for most states for the years 1995 to 2009. Graphs displaying historical behavior of well production rate are also available. To download data for all states and all years, including years prior to 1995, in an Excel spreadsheet XLS (4,000 KB). The quality and completeness of data is dependent on update lag times and the quality of individual state and commercial source databases. Undercounting of the number of wells occurs in states where data is sometimes not available at the well level but only at the lease level. States not listed below will be added later as data becomes available.

478

Salt Wells, Eight Mile Flat | Open Energy Information  

Open Energy Info (EERE)

Salt Wells, Eight Mile Flat Salt Wells, Eight Mile Flat Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells, Eight Mile Flat Abstract Abstract unavailable. Author Nevada Bureau of Mines and Geology Published Online Nevada Encyclopedia, 2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells, Eight Mile Flat Citation Nevada Bureau of Mines and Geology. Salt Wells, Eight Mile Flat [Internet]. 2009. Online Nevada Encyclopedia. [updated 2009/03/24;cited 2013/08/07]. Available from: http://www.onlinenevada.org/articles/salt-wells-eight-mile-flat Related Geothermal Exploration Activities Activities (1) Areas (1) Regions (0) Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Salt Wells Geothermal Area

479

Category:Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Well Log Techniques page? For detailed information on Well Log Techniques as exploration techniques, click here. Category:Well Log Techniques Add.png Add a new Well Log Techniques Technique Pages in category "Well Log Techniques" The following 17 pages are in this category, out of 17 total. A Acoustic Logs C Caliper Log Cement Bond Log Chemical Logging Cross-Dipole Acoustic Log D Density Log F FMI Log G Gamma Log I Image Logs M Mud Logging N Neutron Log P Pressure Temperature Log R Resistivity Log Resistivity Tomography S Single-Well and Cross-Well Resistivity Spontaneous Potential Well Log Stoneley Analysis

480

Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso  

Open Energy Info (EERE)

Stratigraphy: Interpretation of New Wells in the Coso Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This paper focuses on the interpretation of the additional wells (4 bore holes) and comparison to the previous wells. Preliminary correlation between wells is also presented. Analyses from multiple boreholes show fluid stratigraphy that correlates from well to well. The wells include large producers, small to moderate producers, problem producers, injectors, and non producers Author(s): Dilley, L.M.; Newman, D.L. ; McCulloch, J.; Wiggett, G. Published: Geothermal Resource Council Transactions 2005, 1/1/2005

Note: This page contains sample records for the topic "wells hawthorne army" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981  

SciTech Connect

The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

Not Available

1982-01-01T23:59:59.000Z

482

Multi-well sample plate cover penetration system  

SciTech Connect

An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.

Beer, Neil Reginald (Pleasanton, CA)

2011-12-27T23:59:59.000Z

483

RAPID/Geothermal/Well Field/Idaho | Open Energy Information  

Open Energy Info (EERE)

Any person, owner or operator who proposes to construct a well for the production of or exploration for geothermal resources or to construct an injection well shall first apply...

484

RAPID/Geothermal/Well Field/Hawaii | Open Energy Information  

Open Energy Info (EERE)

& Well Field Permit A developer seeking to drill, modify, or modify the use of a well for exploration or development must receive a drilling or modification permit prior to...

485

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

486

Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms  

E-Print Network (OSTI)

......................................................................................................................... 65 x LIST OF FIGURES FIGURE Page 1 Algorithm for single generation of GA.... well location......................................................... 40 11 Maximum function fitness value vs generation number for Case 1........... 41 12 Case 2 fitness value vs. well location...

Gibbs, Trevor Howard

2011-08-08T23:59:59.000Z

487

Diffusion Multilayer Sampling of Ground Water in Five Wells at...  

Office of Environmental Management (EM)

Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona,...

488

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

489

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

490

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

491

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

492

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

493

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

494

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

495

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

496

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

497

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

498

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

499

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

500

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...