Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Well fluid isolation and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. A seal may be positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Purged well fluid is stored in a riser above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

Schalla, Ronald (Kennewick, WA); Smith, Ronald M. (Richland, WA); Hall, Stephen H. (Kennewick, WA); Smart, John E. (Richland, WA)

1995-01-01T23:59:59.000Z

2

Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Downhole Fluid Sampling Downhole Fluid Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Fluid Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Gas composition and source of fluids. Thermal: Water temperature. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Downhole Fluid Sampling: Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole

3

Well purge and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.

Schalla, Ronald (Kennewick, WA); Smith, Ronald M. (Richland, WA); Hall, Stephen H. (Kennewick, WA); Smart, John E. (Richland, WA); Gustafson, Gregg S. (Redmond, WA)

1995-01-01T23:59:59.000Z

4

Well purge and sample apparatus and method  

DOE Patents (OSTI)

The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly with a packer, pump and exhaust, that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. The packer is positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion. 8 figs.

Schalla, R.; Smith, R.M.; Hall, S.H.; Smart, J.E.; Gustafson, G.S.

1995-10-24T23:59:59.000Z

5

Fluid sampling tool  

DOE Patents (OSTI)

A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

1999-05-25T23:59:59.000Z

6

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

7

Fluid sampling system for a nuclear reactor  

DOE Patents (OSTI)

A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

1994-01-01T23:59:59.000Z

8

Vapor port and groundwater sampling well  

DOE Patents (OSTI)

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

9

Fluid Inclusion Stratigraphy: Interpretation of New Wells in...  

Open Energy Info (EERE)

Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Fluid Inclusion Stratigraphy: Interpretation of New Wells in the...

10

Fully Coupled Well Models for Fluid Injection and Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target...

11

Definition: Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Downhole Fluid Sampling Jump to: navigation, search Dictionary.png Downhole Fluid Sampling Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole fluid sampling is typically performed to monitor water quality, study recharge and flow in groundwater systems, and evaluate resource potential of geothermal reservoirs. Analysis of both the liquid and gas fractions of the reservoir fluid allows for detailed characterize the chemical, thermal, or hydrological properties of the subsurface hydrothermal system. View on Wikipedia Wikipedia Definition Ret Like Like You like this.Sign Up to see what your friends like.

12

Fluid sampling apparatus and method  

DOE Patents (OSTI)

Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis. 3 figs.

Yeamans, D.R.

1998-02-03T23:59:59.000Z

13

Effects of fracturing fluid recovery upon well performance and ultimate recovery of hydraulically fractured gas wells  

E-Print Network (OSTI)

EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS A Thesis IAN MARIE BERTHELOT Submitted to the Office of Graduate Studies of Texas AdtM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject: Petroleum Engineering EFFECTS OF FRACTURING FLUID RECOVERY UPON WELL PERFORMANCE AND ULTIMATE RECOVERY OF HYDRAULICALLY FRACTURED GAS WELLS by JAN MARIE BERTIIELOT Appmved...

Berthelot, Jan Marie

2012-06-07T23:59:59.000Z

14

Fluid-Rock Characterization and Interactions in NMR Well Logging  

SciTech Connect

The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

Hirasaki, George J.; Mohanty, Kishore K.

2003-02-10T23:59:59.000Z

15

Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso  

Open Energy Info (EERE)

Stratigraphy: Interpretation of New Wells in the Coso Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This paper focuses on the interpretation of the additional wells (4 bore holes) and comparison to the previous wells. Preliminary correlation between wells is also presented. Analyses from multiple boreholes show fluid stratigraphy that correlates from well to well. The wells include large producers, small to moderate producers, problem producers, injectors, and non producers Author(s): Dilley, L.M.; Newman, D.L. ; McCulloch, J.; Wiggett, G. Published: Geothermal Resource Council Transactions 2005, 1/1/2005

16

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

E-Print Network (OSTI)

Imaging Fluid Flow in Geothermal Wells Using Distributed16 Imaging Fluid Flow in Geothermal Wells Using Distributedflow processes near a geothermal well under heating and

Freifeld, B.

2011-01-01T23:59:59.000Z

17

Fluid-Rock Characterization and Interactions in NMR Well Logging  

SciTech Connect

The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

George J. Hirasaki; Kishore K. Mohanty

2005-09-05T23:59:59.000Z

18

Studying rheological behavior of nanoclay as oil well drilling fluid  

Science Journals Connector (OSTI)

Bentonite is commonly used to control the rheology and filtrate loss required for water-based drilling fluids. In this study, the effect ... modification on fluid viscosity and its dispersion in oil-wet fluids we...

M. Mohammadi; M. Kouhi; A. Sarrafi; M. Schaffie

2013-09-01T23:59:59.000Z

19

Diffusion Multilayer Sampling of Ground Water in Five Wells at...  

Office of Environmental Management (EM)

Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona, Site Diffusion Multilayer Sampling of Ground Water in Five Wells at the Tuba City, Arizona,...

20

Multi-well sample plate cover penetration system  

SciTech Connect

An apparatus for penetrating a cover over a multi-well sample plate containing at least one individual sample well includes a cutting head, a cutter extending from the cutting head, and a robot. The cutting head is connected to the robot wherein the robot moves the cutting head and cutter so that the cutter penetrates the cover over the multi-well sample plate providing access to the individual sample well. When the cutting head is moved downward the foil is pierced by the cutter that splits, opens, and folds the foil inward toward the well. The well is then open for sample aspiration but has been protected from cross contamination.

Beer, Neil Reginald (Pleasanton, CA)

2011-12-27T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fluid samplers: sampling music keyboards having fluidly continuous action and sound, without being electrophones  

Science Journals Connector (OSTI)

Present-day sampling music keyboards are electronic instruments that fall under the last (5th) category of the Hornbostel Sachs musical instrument classification scheme. Conversely, we first propose an entirely acoustic/mechanical mellotron-like sampling ... Keywords: fluid sampling, fluid user-interfaces, hydraulophones, interactive art, tangible user interfaces, water-based immersive multimedia

Steve Mann; Ryan E. Janzen

2007-09-01T23:59:59.000Z

22

CORRELATIONS BETWEEN VAPOR SATURATION, FLUID COMPOSITION, AND WELL DECLINE IN LARDERELLO  

SciTech Connect

A large body of field data from Larderello shows striking temporal correlations between decline of well flow-rate, produced gas/steam ratio, chloride concentration and produced vapor fraction. The latter is inferred from measured concentrations of non-condensible gases in samples of well fluid, using chemical phase equilibrium principles. Observed temporal changes in the vapor fractions can be interpreted in term of a ''multiple source'' model, as suggested by D'Amore and Truesdell (1979). This provides clues to the dynamics of reservoir depletion, and to the evaluation of well productivity and longevity.

D'Amore, F.; Pruess, K.

1985-01-22T23:59:59.000Z

23

Fluid Inclusion Stratigraphy Interpretation of New Wells in the...  

Open Energy Info (EERE)

Field Abstract This paper is the fifth in a series about the development of the FIS method. Fluid Inclusion Stratigraphy (FIS) is a new technique being developed to map...

24

Reducing or stopping the uncontrolled flow of fluid such as oil from a well  

DOE Patents (OSTI)

The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

Hermes, Robert E

2014-02-18T23:59:59.000Z

25

Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Salt Wells Area (Coolbaugh, Et Al., Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Water Sampling Activity Date 2005 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study of surface geothermal features at Salt Wells, in order to evaluate the relationship between these features and structures that control geothermal fluid flow. Notes Water from six hot springs/seeps (out of some 20 seasonal discharges identified, with hot spring temperatures ranging from 39.1-81.6°C and cold seep temperatures between 5-7°C) and playa groundwaters were sampled and

26

Interference well testingvariable fluid flow rate  

Science Journals Connector (OSTI)

At present when conducting an interference well test a constant flow rate (at the 'active' well) is utilized and the type-curve matching technique (where only 23 values of pressure drops are matched) is used to estimate the porositytotal compressibility product and formation permeability. For oil and geothermal reservoirs with low formation permeability the duration of the test may require a long period of time and it can be difficult to maintain a constant flow rate. The qualitative term 'long' period of time means that (at a given distance between the 'active' and 'observational' well) more test time (for low permeability formations) is needed to obtain tangible pressure drops in the 'observational' well. In this study we present working equations which will allow us to process field data when the flow rate at the 'active' well is a function of time. The shut-in period is also considered. A new method of field data processing, where all measured pressure drops are utilized, is proposed. The suggested method allows us to make use of the statistical theory to obtain error estimates on the regression parameters. It is also shown that when high precision (resolution) pressure gauges are employed the pressure time derivative equations can be used for the determination of formation hydraulic diffusivity. An example is presented to demonstrate the data processing procedure.

I M Kutasov; L V Eppelbaum; M Kagan

2008-01-01T23:59:59.000Z

27

Determining circulating fluid temperature in drilling, workover, and well-control operations  

SciTech Connect

Estimation of fluid temperature in both flow conduits (drillpipe or tubing and the annulus) is required to ascertain the fluid density and viscosity and, in turn, to calculate the pressure drop or the maximum allowable pumping rate for a number of operations. These operations include drilling, workover, and well control. The fluid temperature estimation becomes critical for high-temperature or geothermal reservoirs where significant heat exchange occurs or when fluid properties are temperature sensitive, such as for a non-Newtonian fluid. In this work, the authors present an analytical model for the flowing fluid temperature in the drillpipe/tubing and in the annulus as a function of well depth and circulation time. The model is based on an energy balance between the formation and the fluid in the drillpipe.tubing and annulus. Steady-state heat transfer is assumed in the wellbore while transient heat transfer takes place in the formation. solutions are obtained for two possible scenarios: (1) the fluid flows down the annulus and up the drillpipe/tubing, and (2) the fluid flows down the tubing and up the annulus. The analytic model developed is cast in a set of simple algebraic equations for rapid implementation. The authors also show that the maximum temperature occurs not at the well bottom, but at some distance higher from the bottom for flow up the annulus.

Kabir, C.S. [Chevron Overseas Petroleum Technology Co. (Kuwait); Hasan, A.R.; Ameen, M.M. [Univ. of North Dakota, Grand Forks, ND (United States); Kouba, G.E.

1996-06-01T23:59:59.000Z

28

Sampling and Analysis Procedures for Gas, Condensate, Brine, and Solids: Pleasant Bayou Well Test, 1988-Present  

SciTech Connect

This section covers analyses performed on gas. Chemical analyses can only be related to well performance if the quantity of the various fluids are known. The IGT on-line data computer system measures the flowrate, the pressures, and the temperatures every 10 seconds. These values are automatically recorded over operator selected intervals both on magnetic media and on paper. This allows review of samples versus operating conditions. This paper covers analyses performed on gas, including: An approximate sampling schedule during flow tests; On-site sample handling and storage of gas samples; Addresses of laboratories that perform off site analyses; Sample shipping instructions; Data archiving; and Quality Control/Quality Assurance. It is expected that the above procedures will change as the flow test progresses, but deviations from the written procedures should be approved by C. Hayden of IGT and noted on the results of the analysis.

Hayden, Chris

1988-01-01T23:59:59.000Z

29

Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside, 2003) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside, 2003) Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 - 2002 Usefulness not useful DOE-funding Unknown Exploration Basis The objective of the study was to expand knowledge of Nevada's geothermal resource potential by providing new geochemical data from springs in less studied geothermal areas and to refine geochemical data from springs for which only incomplete data were available. This work fills in gaps in publicly available geochemical data, thereby enabling comprehensive

30

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...

31

In situ stress, fracture, and fluid flow analysis in Well 38C...  

Open Energy Info (EERE)

situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to...

32

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an  

Open Energy Info (EERE)

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Abstract Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

33

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Details Activities (2) Areas (1) Regions (0) Abstract: Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

34

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

Co-Produced Fluids from Oil and Gas Wells Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Coproduced Fluids for Oil and Gas Wells Project Description The geothermal organic Rankine cycle (ORC) system will be installed at an oil field operated by Encore Acquisition in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. The data and knowledge acquire during the O & M phase can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

35

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL AND HIGHLY DEVIATED WELLS  

E-Print Network (OSTI)

Louisiana State University Abstract In oil well drilling, the efficient transport of drilled cuttings from pipe and excessive frictional pressure losses while drilling directional and horizontal oil wellsPREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL

Ullmer, Brygg

36

Fluid Inclusion Gas Analysis  

SciTech Connect

Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

Dilley, Lorie

2013-01-01T23:59:59.000Z

37

Drilling fluid technology for horizontal wells to protect the formations in unconsolidated sandstone heavy oil reservoirs  

Science Journals Connector (OSTI)

Major factors that cause damage in drilling in unconsolidated sandstone heavy oil reservoirs include: invasion of solids in drilling fluid, incompatibility between the liquid phase of drilling fluid and crude oil, and hydration and expansion of reservoir clay minerals. Therefore, a solid-free weak gel drilling fluid system for horizontal wells to protect the formations was developed that contains seawater + 0.1%0.2% NaOH + 0.2% Na2CO3+ 0.7% VIS + 2.0% FLO + 2.0% JLX, weighed with \\{KCl\\} or sodium formate. The drilling fluid system has unique rheological properties, temporally independent gel strength, and excellent lubricating and inhibition performance. It is compatible with formation fluids, it not only meets the needs of horizontal well drilling, but also effectively protects the reservoir. The technique is well performed in tens of horizontal wells in offshore oilfields, such as WC13-1, BZ34-1, NP35-2, and BZ25-1 oilfields.

Yue Qiansheng; Liu Shujie; Xiang Xingjin

2010-01-01T23:59:59.000Z

38

Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up exploration drilling target; Create short term jobs and long term employment through resource exploration, development and power plant operation; Extend and adapt the DOE sub-soil 2 meter probe technology to gas sampling.

39

Acoustic resonance determination of the effect of light hydrocarbons on wax appearance points in a Njord well fluid  

SciTech Connect

Wax formation and deposition in pipelines and process equipment pose severe problems for petroleum companies, especially during transportation of crude oil in offshore environments. The light hydrocarbons present in the crude oil can play an important role in the shift of wax appearance points by increasing the solubilities of the heavier components. The following work was undertaken to study the effect of light hydrocarbons on wax appearance points in a Njord well fluid for Norsk Hydro, Norway. An automated high-pressure spherical acoustic resonator (50.8-mm-diameter) assembly designed and fabricated for that purpose has been used to measure resonance frequencies in a Njord well fluid (stabilized oil sample) provided by Norsk Hydro and blended with the appropriate amount of a synthetically prepared gaseous mixture containing six light hydrocarbons (Cl to C6), at pressures from 2 to 107 bar and temperatures in the range 35 to 50{degrees}C. Results on the present method to locate the wax appearance points in the Njord well fluid are presented. A figure showing experimental wax appearance points as a function of pressure is presented. The results are compared with those predicted by the Norsk Hydro model.

Colgate, S.O.; Sivaraman, A.

1996-01-01T23:59:59.000Z

40

Method and apparatus for determining distribution of fluids in a porous sample  

SciTech Connect

Apparatus for use in expelling fluid from a porous sample is described. It consists of: a chamber adapted to receive a porous sample having an arcuate outer extremity the curvature of which substantially corresponds to the arc of a circle; means connecting the chamber to a rotatable shaft mounted substantially on the center of curvature of the arcuate outer extremity of the chamber; means for rotating the shaft, whereby the spinning of a fluid-saturated porous sample contained in the chamber will expel fluid from the sample; and means for capturing fluid expelled from the sample.

Christiansen, R.L.

1989-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well  

Open Energy Info (EERE)

Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well Drilling Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well Drilling Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project area encompasses 6,273 acres of both private and federal lands including water and surface rights. It is reasonable to expect a capacity of about 20 MW. GeothermEx estimated a potential capacity of 40 MW. Black Warrior is a large blind geothermal prospect near the Pyramid Lake Indian Reservation that was identified by reconnaissance temperature gradient drilling in the 1980s by Philips Petroleum but was never tested through deep exploration drilling. Although the 10 square miles of high heat flow in the area reveals significant energy potential it also makes selection of an optimal exploration drilling target difficult.

42

Well-Plate Formats and Microfluidics Applications of Laminar Fluid Diffusion Interfaces to HTP Screening  

Science Journals Connector (OSTI)

Microfluidic disposables are presented that are compatible with standard well plate readers and robotic filling systems. The disposables perform extractions and sample cleanup procedures using the diffusion-ba...

Bernhard H. Weigl; Christopher J. Morris

2001-01-01T23:59:59.000Z

43

Surface tension and vaporliquid phase coexistence of the square-well fluid  

E-Print Network (OSTI)

are compared with predictions from the statistical associating fluid theory SAFT , and SAFT is shown to give has been applied with the statistical associating fluid theory SAFT treatment of associating fluids

Singh, Jayant K.

44

Development of the semi-empirical equation of state for square-well chain fluid based on the Statistical Associating Fluid Theory (SAFT)  

Science Journals Connector (OSTI)

A semi-empirical equation of state for the freely jointed square-well chain fluid is developed. This equation of state is based on Wertheims thermodynamic perturbation theory (TPT) and the statistical associatin...

Min Sun Yeom; Jaeeon Chang; Hwayong Kim

2000-01-01T23:59:59.000Z

45

Direct determination of fluid-solid coexistence of square-well fluids confined in narrow cylindrical hard pores  

E-Print Network (OSTI)

-liquid coexistence, such as Gibbs ensemble Monte Carlo GEMC ,5 Gibbs­Duhem integration GDI ,6,7 grand- canonical the free energy calculation and GDI to determine the fluid-solid coexistence and the metastable fluid-volume-biased method in conjunction with GDI to develop the full vapor-solid, vapor-liquid, and liquid- solid phase

Singh, Jayant K.

46

AN ADAPTIVE SAMPLING APPROACH TO INCOMPRESSIBLE PARTICLE-BASED FLUID  

E-Print Network (OSTI)

uid simulation . . . . . . . . . . . . . . . . . . . . 19 1. Particle-in-cell and uid-implicit-particle method . . . 21 E. Fluid simulation coupled with octree based structure . . . 22 1. Combination of octree . . . . . . . . . . . . . . . . . . 22 2.... Finding the smallest common enclosing cells by region 26 7. Finding neighbors . . . . . . . . . . . . . . . . . . . . 27 8. Constructing the poisson equation . . . . . . . . . . . 28 a. The pressure gradient . . . . . . . . . . . . . . . . 28 b...

Hong, Woo-Suck

2010-01-16T23:59:59.000Z

47

Isopach map of black shale in the Sonyea Group (from well sample studies)  

SciTech Connect

A map containing information on black shale deposits in the Sonyea Group in Western New York State was produced from well sample studies. (DC)

Kamakaris, D.G.; Van Tyne, A.M.

1980-01-01T23:59:59.000Z

48

Isopach map of black shale in the West Falls Formation (from well sample studies)  

SciTech Connect

Maps of western New York State and Lake Erie were prepared containing information on black shale deposits in the West Falls Formation from well sample studies. (DC)

Kamakaris, D.G.; Van Tyne, A.M.

1980-01-01T23:59:59.000Z

49

Isopach map of black shale in the Hamilton Group (from well sample studies)  

SciTech Connect

A map of western New York State and Lake Erie was prepared containing information on black shale deposits in the Hamilton Group from well sample studies. (DC)

Kamakaris, D.G.; Van Tyne, A.M.

1980-01-01T23:59:59.000Z

50

Isopach map of black shale in the Java Formation (from well sample studies)  

SciTech Connect

A map of western New York State and Lake Erie was prepared containing information on black shale deposits in the Java Formation from well sample studies. (DC)

Kamakaris, D.G.; Van Tyne, A.M.

1980-01-01T23:59:59.000Z

51

Isopach map of black shale in the Genesee Group (from well sample studies)  

SciTech Connect

A map of western New York State was prepared containing information on black shale deposits in the Genesee Group from well samples. (DC)

Kamakaris, D.G.; Van Tyne, A.M.

1980-01-01T23:59:59.000Z

52

Application of computational fluid dynamics to aerosol sampling and concentration  

E-Print Network (OSTI)

, FLUENT 6 is used to analyze the performance of aerosol sampling and concentration devices including inlet components (impactors), cyclones, and virtual impactors. The ? ? k model was used to predict particle behavior in Inline Cone Impactor (ICI) and Jet...

Hu, Shishan

2009-05-15T23:59:59.000Z

53

Synthesis and Evaluation of a New Cationic Surfactant for Oil-Well Drilling Fluid  

Science Journals Connector (OSTI)

A new additive cationic surfactant for drilling fluid was synthesized by alkylation of coal ... results when utilized in the formulation of both oil-based mud and synthetic-based mud as...

Soad A. Mahmoud; Mona M. Dardir

2011-01-01T23:59:59.000Z

54

Candidate Well Selection for the Test of Degradable Biopolymer as Fracturing Fluid  

E-Print Network (OSTI)

for environment and health effects of hydraulic fracturing becomes intense, many efforts are made to replace the conventional fracturing fluid with more environment-friendly materials. The degradable biopolymer is one of the novel materials that is injected...

Hwang, Yun Suk

2012-02-14T23:59:59.000Z

55

Evaluation of polymer free drill-in fluids for use in high productivity, horizontal well completions  

E-Print Network (OSTI)

Advancements in deepwater drilling have necessitated the use of more specialized reservoir drill-in fluids (RDIF). These RDIFs must exhibit unique rheological properties while minimizing formation damage. Xanthan gum biopolymer is generally used...

Falla Ramirez, Jorge H

2012-06-07T23:59:59.000Z

56

Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells  

DOE Patents (OSTI)

A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

Vail, W.B. III.

1993-02-16T23:59:59.000Z

57

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early  

Open Energy Info (EERE)

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview Of The Data, Regional Patterns Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I, Early Overview Of The Data, Regional Patterns Details Activities (1) Areas (1) Regions (0) Abstract: The Roving Automated Rare Gas Analysis (RARGA) lab of Berkeley's Physics Department was deployed in Yellowstone National Park for a 19 week period commencing in June, 1983. During this time 66 gas and water samples representing 19 different regions of hydrothermal activity within and around the Yellowstone caldera were analyzed on site. Routinely, the abundances of five stable noble gases and the isotopic compositions of He,

58

Isopach map of black shale in the Perrysburg FM. (and equivalent section) (from well sample studies)  

SciTech Connect

A map of western New York State and Lake Erie was prepared containing information on black shale deposits in the Perrysburg FM. (and equivalent section) from well sample studies. (DC)

Kamakaris, D.G.; Van Tyne, A.M.

1980-01-01T23:59:59.000Z

59

A Mineralogical Petrographic And Geochemical Study Of Samples From Wells In  

Open Energy Info (EERE)

Mineralogical Petrographic And Geochemical Study Of Samples From Wells In Mineralogical Petrographic And Geochemical Study Of Samples From Wells In The Geothermal Field Of Milos Island (Greece) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Mineralogical Petrographic And Geochemical Study Of Samples From Wells In The Geothermal Field Of Milos Island (Greece) Details Activities (0) Areas (0) Regions (0) Abstract: This paper presents a study of hydrothermal alteration on Milos island, Greece. Examination of cores and cuttings from the two drill sites, obtained from a depth of about 1100 m in Milos geothermal field, showed that the hydrothermal minerals occurring in the rock include: K-feldspar, albite, chlorite, talc, diopside, epidote, muscovite, tremolite, kaolinite, montmorillonite, alunite, anhydrite, gypsum, calcite, and opaque minerals.

60

Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) | Open Energy  

Open Energy Info (EERE)

Shevenell & Garside, 2003) Shevenell & Garside, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Water Sampling Activity Date 2002 - 2002 Usefulness not useful DOE-funding Unknown Exploration Basis The objective of the study was to expand knowledge of Nevada's geothermal resource potential by providing new geochemical data from springs in less studied geothermal areas and to refine geochemical data from springs for which only incomplete data were available. This work fills in gaps in publicly available geochemical data, thereby enabling comprehensive evaluation of Nevada's geothermal resource potential.

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Salt Wells Area (Henkle, Et Al., 2005) Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Soil Sampling Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

62

Report of testing and sampling of municipal supply well PM-4  

SciTech Connect

During drilling of regional aquifer characterization borehole R-25, located in the western part of Los Alamos National Laboratory (LANL) at Technical Area (TA) 16, groundwater samples were collected from perched zones of saturation and the regional aquifer that contained elevated levels of high explosive (HE) compounds. One of the nearest Los Alamos County municipal supply wells potentially located down gradient from borehole R-25 is PM-4, located on Mesita del Buey at the west end of TA-54. During the winter of 1998 and 1999 the pump in PM-4 had been removed from the well for scheduled maintenance by the Los Alamos County Public Utilities Department (PUD). Because the pump was removed from PM-4, the opportunity existed to enter the well to (1) perform tests to determine where within the regional aquifer groundwater entered the well and (2) collect groundwater samples from the producing zones for analyses to determine if HE contaminants were present in discrete zones within the regional aquifer. The report of the activities that were performed during March 1999 for the testing and sampling of municipal supply well PM-4 is provided. The report provides a description of the field activities associated with the two phases of the project, including (1) the results of the static and dynamic spinner log surveys, and (2) a description of the sampling activities and the field-measured groundwater quality parameters that were obtained during sampling activities. This report also provides the analytical results of the groundwater samples and a brief discussion of the results of the project.

Richard J. Koch; Patrick Longmire; David B. Rogers; Ken Mullen

1999-12-01T23:59:59.000Z

63

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

Energy.gov (U.S. Department of Energy (DOE))

Project objective: A New Geothermal Well Imaging Tool. 1.To develop a robust and easily deployable DTPS for monitoring in geothermal wells; and 2. Develop the associated analysis methodology for flow imaging; and?when possible by wellbore conditions?to determine in situthermal conductivity and basal heat flux.

64

Surge Block Method for Controlling Well Clogging and Sampling Sediment during Bioremediation  

SciTech Connect

A surge block treatment method (i.e. inserting a solid rod plunger with a flat seal that closely fits the casing interior into a well and stocking it up and down) was performed for the rehabilitation of wells clogged with biomass and for the collection of time series sediment samples during in situ bioremediation tests for U(VI) immobilization at a the U.S. Department of Energy site in Oak Ridge, TN. The clogging caused by biomass growth had been controlled by using routine surge block treatment for18 times over a nearly four year test period. The treatment frequency was dependent of the dosage of electron donor injection and microbial community developed in the subsurface. Hydraulic tests showed that the apparent aquifer transmissivity at a clogged well with an inner diameter (ID) of 10.16 cm was increased by 8 13 times after the rehabilitation, indicating the effectiveness of the rehabilitation. Simultaneously with the rehabilitation, the surge block method was successfully used for collecting time series sediment samples composed of fine particles (clay and silt) from wells with ID 1.9 10.16 cm for the analysis of mineralogical and geochemical composition and microbial community during the same period. Our results demonstrated that the surge block method provided a cost-effective approach for both well rehabilitation and frequent solid sampling at the same location.

Wu, Wei-min [Stanford University] [Stanford University; Watson, David B [ORNL] [ORNL; Luo, Jian [Stanford University] [Stanford University; Carley, Jack M [ORNL] [ORNL; Mehlhorn, Tonia L [ORNL] [ORNL; Kitanidis, Peter K. [Stanford University] [Stanford University; Jardine, Philip [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Criddle, Craig [Stanford University] [Stanford University

2013-01-01T23:59:59.000Z

65

Application of Multi-rate Flowing Fluid Electric ConductivityLogging Method to Well DH-2, Tono Site, Japan  

SciTech Connect

The flowing fluid electric conductivity (FEC) logging method, wellbore fluid is replaced with de-ionized water, following which FEC profiles in the wellbore are measured at a series of times while the well is pumped at a constant rate. Locations were fluid enters the wellbore show peaks in the FEC logs, which may be analyzed to infer inflow strengths and salinities of permeable features intersected by the wellbore. In multi-rate flowing FEC logging, the flowing FEC logging method is repeated using two or more pumping rates, which enables the transmissivities and inherent pressure heads of these features to be estimated as well. We perform multi-rate FEC logging on a deep borehole in fractured granitic rock, using three different pumping rates. Results identify 19 hydraulically conducting fractures and indicate that transmissivity, pressure head, and salinity vary significantly among them. By using three pumping rates rather than the minimum number of two, we obtain an internal consistency check on the analysis that provides a measure of the uncertainty of the results. Good comparisons against static FEC profiles and against independent chemical, geological, and hydrogeological data have further enhanced confidence in the results of the multi-rate flowing FEC logging method.

Doughty, Christine; Takeuchi, Shinji; Amano, Kenji; Shimo, Michito; Tsang, Chin-Fu

2004-10-04T23:59:59.000Z

66

Vapor-liquid critical and interfacial properties of square-well fluids in slit pores  

E-Print Network (OSTI)

Jayant K. Singh,1,a and Sang Kyu Kwak2 1 Department of Chemical Engineering, Indian Institute and the shift of the vapor-liquid critical point. Nevertheless, in recent years, with the discovery of well

Singh, Jayant K.

67

Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Henkle, Et Al., 2005) Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details Location Salt Wells Area Exploration Technique Water Sampling Activity Date - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Adsorbed mercury soil geochemical surveys and radiometric geophysical surveys were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle Jr. et al. in 2005. Mercury soil vapor surveys were not widely used in geothermal exploration in the western US at the time, although the association of mercury vapors with geothermal

68

E-Print Network 3.0 - acoustic energy-driven fluid Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

search results for: acoustic energy-driven fluid Page: << < 1 2 3 4 5 > >> 1 Acoustic Identification of Unknown Fluids Summary: Acoustic Identification of Unknown Fluids...

69

Effects of oil and gas well-drilling fluids on the biomass and community structure of microbiota that colonize sands in running seawater  

Science Journals Connector (OSTI)

Well-drilling fluid and a number of the known components (barite, clay, Aldacide, Surflo, and Dowicide, were tested for effects on the biomass and community structure of the microbiota that colonize marine san...

Glen A. Smith; Janet S. Nickels

1982-01-01T23:59:59.000Z

70

Laboratory tests to evaluate and study formation damage with low-density drill-in fluids (LDDIF) for horizontal well completions in low pressure and depleted reservoirs  

E-Print Network (OSTI)

The increasing number of open hole horizontal well completions in low-pressure and depleted reservoirs requires the use of non-damaging low-density drill-in fluids (LDDIF) to avoid formation damage and realize optimum well productivity. To address...

Chen, Guoqiang

2012-06-07T23:59:59.000Z

71

E-Print Network 3.0 - artesian wells Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

that have Summary: was 89 mgd (July 19, 1999) which falls well below Delaware's historic peak day of 93 mgd (July 18, 1997... environmentalecosystem damage as well. Thus,...

72

E-Print Network 3.0 - alas quantum wells Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

are themselves constructed using well Source: Balaram , P. - Molecular Biophysics Unit, Indian Institute of Science, Bangalore Collection: Biology and Medicine 10 NANO EXPRESS...

73

E-Print Network 3.0 - asymmetric quantum wells Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

transitions are well resolved... BY MULTIPLE QUANTUM NMR: n-PENTYL CYANOBIPHENYL S. SINTON and A. PINES Department of Chemistry. Lawrence... The multiple quantum NhlR spectrum...

74

E-Print Network 3.0 - abandoned wells metodologia Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

metodologias e alguns mtodos de desenvolvimento de ontologias assim como algumas... terms and relations comprising the vocabulary of a topic area, as well as the rules for...

75

E-Print Network 3.0 - animal well-being Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEARCH THE UNIVERSITY OF NORTH CAROLINA AT GREENSBORO Summary: and contribute to their health, comfort and well-being; animal care activities are directed by a veterinarian......

76

Phase Behavior of the Restricted Primitive Model and Square-Well Fluids from Monte Carlo Simulations in the Grand Canonical Ensemble  

E-Print Network (OSTI)

Phase Behavior of the Restricted Primitive Model and Square-Well Fluids from Monte Carlo of Chemical Engineering, Cornell University, Ithaca, NY 14853-5201 and Institute for Physical Science and Technology and Department of Chemical Engineering, University of Maryland, College Park, MD 20742

77

Formation damage studies of lubricants used with drill-in fluids systems on horizontal open-hole wells  

E-Print Network (OSTI)

Tests were conducted to evaluate the effect of lubricants in formation damage. Two types of lubricants were tested along with two types of drill-in fluids. The DIF's tested included a sized-calcium carbonate (SCC) and a sized-salt (SS). Also a set...

Gutierrez, Fernando A

2012-06-07T23:59:59.000Z

78

E-Print Network 3.0 - axillary drainage fluid Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

5 > >> 1 International Conference on Mechanical Engineering, December 26-28, 2001, Dhaka, Bangladeshpp. IV 37-40 Section IV: Fluid Mechanics 37 Summary: . (1957) defined the...

79

E-Print Network 3.0 - all-pressure fluid drop Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and Environmental Engineering, University of California at Santa Barbara Collection: Engineering 4 Drop Impact of Newtonian and Elastic Fluids Submitted by Summary: Drop...

80

E-Print Network 3.0 - assess fluid responsiveness Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brown, Alan - Department of Aerospace and Ocean Engineering, Virginia Tech Collection: Engineering 12 Effect of Resins and DBSA on Asphaltene Precipitation from Petroleum Fluids...

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

E-Print Network 3.0 - analysis interaction fluide Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basin, and propose that hydrocarbons play a critical role in fluid-rock interactions... uranium showings in the Kombolgie Basin of Australia reveal the complexities of ......

82

Analytical Data Report for Sediment Samples Collected From 200 BP 5 OU, C7514 (299-E28-30) L-Well  

SciTech Connect

This an analytical data report for samples received from BP-5 L Well. This report is being prepared for CHPRC.

Lindberg, Michael J.

2010-06-18T23:59:59.000Z

83

Fluid Volumes: The Program FLUIDS  

Science Journals Connector (OSTI)

This chapter describes the program FLUIDS. The mathematical model underlying this program contains over 200 variables and describes control mechanisms of body fluid volumes and electrolytes as well as respirat...

Fredericus B. M. Min

1993-01-01T23:59:59.000Z

84

Integrated Sample Processing by On-Line Supercritical Fluid ExtractionGel Permeation Chromatography  

Science Journals Connector (OSTI)

......reduction in sample handling and processing time...organic sol vent use and handling in the laboratory is...for separation of all materials (5); gels of polystyrene...reduction in sample-handling and processing time...Figure 1 shows a flow diagram of the in tegrated SFE-GPC......

David L. Stalling; Said Saim; Kenneth C. Kuo; Jim J. Stunkel

1992-12-01T23:59:59.000Z

85

Exploratory Well | Open Energy Information  

Open Energy Info (EERE)

Exploratory Well Exploratory Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Well Details Activities (8) Areas (3) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a well Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Well: An exploratory well is drilled for the purpose of identifying the

86

Fluid transport container  

DOE Patents (OSTI)

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

1995-11-14T23:59:59.000Z

87

Sampling and Analysis Instruction for Installation of UPR-100-N-17 Bioremediation Wells and Performance of Bioventing Pilot Tests  

SciTech Connect

Sampling and analytical requirements for in situ bioremediation pilot study for remediation of vadose zone petroleum hydrocarbon contamination.

W. S. Thompson

2008-12-30T23:59:59.000Z

88

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Details Activities (1) Areas (1) Regions (0) Abstract: Vein and alteration assemblages from eight Coso wells have been collected and their fluid-inclusion gases analyzed by quadrupole mass spectrometry. Four major types of alteration were sampled: 1) young calcite-hematite-pyrite veins; 2) wairakite or epidote veins and alteration that are spatially associated with deep reservoirs in the main field and eastern wells; 3) older sericite and pyrite wallrock alteration; and 4) stilbite-calcite veins that are common in cooler or marginal portions of

89

EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI  

SciTech Connect

Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

2004-03-01T23:59:59.000Z

90

Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling  

E-Print Network (OSTI)

while using a custom oil-based drilling mud, and the coresIn addition, the oil-based drilling fluid used during coringto remove the rind of oil-based drilling fluids. Zones that

Kneafsey, Timothy J.

2010-01-01T23:59:59.000Z

91

Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation  

E-Print Network (OSTI)

while using a custom oil-based drilling mud, and the coresIn addition, the oil-based drilling fluid used during coringto remove the rind of oil-based drilling fluids. Zones that

Collett, T.J. Kneafsey, T.J., H. Liu, W. Winters, R. Boswell, R. Hunter, and T.S.

2012-01-01T23:59:59.000Z

92

Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling  

SciTech Connect

Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

2009-09-01T23:59:59.000Z

93

Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation  

SciTech Connect

Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

2011-06-01T23:59:59.000Z

94

Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices.  

E-Print Network (OSTI)

??This thesis examines, in detail, the procedures and practices undertaken in the drilling and completion phases of a Gulf of Mexico horizontal well in an (more)

Lacewell, Jason Lawrence

2012-01-01T23:59:59.000Z

95

Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices  

E-Print Network (OSTI)

This thesis examines, in detail, the procedures and practices undertaken in the drilling and completion phases of a Gulf of Mexico horizontal well in an unconsolidated sand. In particular, this thesis presents a detailed case history analysis...

Lacewell, Jason Lawrence

2012-06-07T23:59:59.000Z

96

Simultaneous Determination of Arsenic and Antimony Species in Environmental Samples using Bis(trifluoroethyl)dithiocarbamate Chelation and Supercritical Fluid Chromatography  

Science Journals Connector (OSTI)

......experiments, all water samples analyzed...sample was placed in a ground glass-stoppered...ciation of interstitial waters obtained from contaminated...for Hazardous Waste Remediation Research of the University...and the quality of ground water in a lead-zinc......

K.E. Laintz; G.M. Shieh; C.M. Wai

1992-04-01T23:59:59.000Z

97

Analysis of FY 2005/2006 Hydrologic Testing and Sampling Results for Well ER-12-4, Nevada Test Site, Nye County, Nevada, Rev. No.: 0  

SciTech Connect

This report documents the analysis of data collected for ER-12-4 during the fiscal year (FY) 2005 Rainier Mesa/Shoshone Mountain well development and hydraulic testing program (herein referred to as the ''testing program'') and hydraulic response data from the FY 2006 Sampling Program. Well ER-12-4 was constructed and tested as a part of the Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain, Phase I drilling program during FY 2005. These activities were conducted on behalf of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) for the Underground Test Area (UGTA) Subproject. As shown on Figure 1-1, ER-12-4 is located in central Rainier Mesa, in Area 12 of the Nevada Test Site (NTS). Figure 1-2 shows the well location in relation to the tunnels under Rainier Mesa. The well was drilled to a total depth (TD) of 3,715 feet (ft) below ground surface (bgs) (surface elevation 6,883.7 ft above mean sea level [amsl]) in the area of several tunnels mined into Rainier Mesa that were used historically for nuclear testing (NNSA/NSO, 2006). The closest nuclear test to the well location was MIGHTY OAK (U-12t.08), conducted in the U-12t Tunnel approximately 475 ft north of the well site. The MIGHTY OAK test working point elevation was located at approximately 5,620 ft amsl. The MIGHTY OAK test had an announced yield of ''less than 20 kilotons'' (DOE/NV, 2000). The purpose of this hydrogeologic investigation well is to evaluate the deep Tertiary volcanic section below the tunnel level, which is above the regional water table, and to provide information on the section of the lower carbonate aquifer - thrust plate (LCA3), located below the Tertiary volcanic section (SNJV, 2005b). Details on the drilling and completion program are presented in the ''Completion Report for Well ER-12-4 Corrective Action Unit 99: Rainier Mesa-Shoshone Mountain'' (NNSA/NSO, 2006). Participants in ER-12-4 testing activities were: Stoller-Navarro Joint Venture (SNJV), Bechtel Nevada (BN), Desert Research Institute (DRI), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and the U.S. Geological Survey (USGS). Stoller-Navarro Joint Venture served as the lead contractor responsible for providing site supervision, development and testing services, and waste management services; BN provided construction and engineering support services; DRI provided well logging services and participated in groundwater sampling and laboratory analyses; LANL and LLNL participated in groundwater sampling and laboratory analyses; and the USGS performed laboratory analyses. Analyses of data from the ER-12-4 testing program presented in this document were performed by SNJV except as noted. These same contractors participated in the FY 2006 Sampling Program.

Bill Fryer

2006-09-01T23:59:59.000Z

98

Prairie Canal Well No. 1, Calcasieu Parish, Louisiana. Volume II. Well test data. Final report  

SciTech Connect

The following are included in appendices: field test data, field non-edited data, raw data, tentative method of testing for hydrogen sulfide in natural gas using length of stain tubes, combined sample log, report on reservoir fluids study, well test analysis, analysis of solids samples from primary zone, chemical analysis procedures, scale and corrosion evaluation, laboratory report on scale deposits, and sand detector strip charts. (MHR)

Not Available

1981-01-01T23:59:59.000Z

99

Fluid Inclusion Analysis At Coso Geothermal Area (1999) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area Fluid Inclusion Analysis At Coso Geothermal Area (1999) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1999 Usefulness not indicated DOE-funding Unknown Exploration Basis Well and steam sample comparison Notes Vein and alteration assemblages from eight Coso wells have been collected and their fluid-inclusion gases analyzed by quadrupole mass spectrometry. Four major types of alteration were sampled: 1) young calcite-hematite-pyrite veins; 2) wairakite or epidote veins and alteration that are spatially associated with deep reservoirs in the main field and eastern wells; 3) older sericite and pyrite wallrock alteration; and 4) stilbite-calcite veins that are common in cooler or marginal portions of

100

GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open Energy  

Open Energy Info (EERE)

FLUID PROPENE AND PROPANE: INDICATORS OF FLUID FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Details Activities (1) Areas (1) Regions (0) Abstract: The use of fluid inclusion gas analysis propene/propene ratios is investigated. Ratios of these species are affected by geothermal fluid temperature and oxidations state. Our purpose is to determine if analyses of these species in fluid inclusions these species to can be used to interpret fluid type, history, or process. Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY |  

Open Energy Info (EERE)

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a method currently being developed for use in geothermal systems to identify fractures and fluid types. This paper is the third in a series of papers on the development of FIS. Fluid inclusion gas chemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow and reservoir seals. Previously we showed that FIS analyses identify fluid types and

102

Analytical Data Report for Sediment Samples Collected From 200 BP 5 OU, C5860 (299-E29-545) K-Well  

SciTech Connect

This is an analytical data report for sediments received fro BP 5 K Well. This report is prepared for CHPRC

Lindberg, Michael J.

2010-06-18T23:59:59.000Z

103

oil-base(d) (rotary) drilling fluid  

Science Journals Connector (OSTI)

oil-base(d) (rotary) drilling fluid, oil-base(d) fluid [Used primarily for drilling-in or recomputing wells in formations subject ... with low formation pressures. See remark under drilling fluid] ...

2014-08-01T23:59:59.000Z

104

Summary of micrographic analysis of selected core samples from Well ER-20-6{number_sign}1 in support of matrix diffusion testing  

SciTech Connect

ER-20-6{number_sign}1 was cored to determine fracture and lithologic properties proximal to the BULLION test cavity. Selected samples from ER-20-6{number_sign}1 were subjected to matrix and/or fracture diffusion experiments to assess solute movement in this environment. Micrographic analysis of these samples suggests that the similarity in bulk chemical composition results in very similar mineral assemblages forming along natural fractures. These samples are all part of the mafic-poor Calico Hills Formation and exhibit fracture-coating mineral assemblages dominated by mixed illite/smectite clay and illite, with local opaline silica (2,236 and 2, 812 feet), and zeolite (at 2,236 feet). Based on this small sample population, the magnitude to which secondary phases have formed on fracture surfaces bears an apparently inverse relationship to the competency of the host lithology, reflected by variations in the degree of fracturing and the development of secondary phases on fracture surfaces. In the flow breccia at 2,851 feet, thinly developed, localized coatings are developed along persistent open fracture apertures in this competent rock type. Fractures in the devitrified lava from 2,812 feet are irregular, and locally blocked by secondary mineral phases. Natural fractures on the zeolitized tuff from 2,236 feet are discontinuous and irregular and typically obstructed with secondary mineral phases. There are also a second set of clean fractures in the 2,236 foot sample which lack secondary mineral phases and are interpreted to have been induced by the BULLION test. Based on these results, it is expected that matrix diffusion will be enhanced in samples where potentially transmissive fractures exhibit the greatest degree of obstruction (2,236>2,812=2,835>2,851). It is unclear what influence the induced fractures observed at 2,236 feet may have on diffusion given the lack of knowledge on their extent. It is assumed that the bulk matrix diffusion characteristics of the sample at 2,835 feet will be equivalent to the unfractured characteristics of the sample at 2,812 feet.

IT Corporation, Las Vegas

1998-09-25T23:59:59.000Z

105

Observation Wells | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Observation Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Observation Wells Details Activities (7) Areas (7) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Total dissolved solids, fluid pressure, flow rates, and flow direction Thermal: Monitors temperature of circulating fluids Dictionary.png Observation Wells: An observation well is used to monitor important hydrologic parameters in a geothermal system that can indicate performance, longevity, and transient processes. Other definitions:Wikipedia Reegle

106

Electric Power Generation from Coproduced Fluids from Oil and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

107

A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field,  

Open Energy Info (EERE)

Fluid-Inclusion Investigation Of The Tongonan Geothermal Field, Fluid-Inclusion Investigation Of The Tongonan Geothermal Field, Philippines Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field, Philippines Details Activities (0) Areas (0) Regions (0) Abstract: At least 660 fluid-inclusion homogenization temperature (Th) and 44 freezing temperature (Tm) measurements, mainly on anhydrite crystals sampled to 2.5 km depth from 28 wells, record thermal and chemical changes in the Tongonan geothermal field. Interpretations of the Th (175-368°C range). Tm (-0.3 to -12.7°C range) and crushing stage observations indicate that early trapped fluids contained up to (approximate)2 mol% CO2 (now measured at <0.4 mol%). reservoir temperatures have decreased by

108

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the location of the heat source Notes Fluids have been sampled from 9 wells and 2 fumaroles from the East Flank of the Coso hydrothermal system with a view to identifying, if possible, the location and characteristics of the heat source inflows into this portion of the geothermal field. Preliminary results show that there has been extensive vapor loss in the system, most probably in response to

109

Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation  

E-Print Network (OSTI)

future gas hydrate core handling and preservation in sand-gas-hydrate-bearing zones, in which the sediments (particularly the sands)sand deposits are primarily being investigated in the Mount Elbert well, much of the worlds natural gas hydrate

Collett, T.J. Kneafsey, T.J., H. Liu, W. Winters, R. Boswell, R. Hunter, and T.S.

2012-01-01T23:59:59.000Z

110

Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling  

E-Print Network (OSTI)

future gas hydrate core handling and preservation in sand-gas-hydrate-bearing zones, in which the sediments (particularly the sands)sand deposits are primarily being investigated in the Mount Elbert well, much of the worlds natural gas hydrate

Kneafsey, Timothy J.

2010-01-01T23:59:59.000Z

111

Hanford wells  

SciTech Connect

Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

Chamness, M.A.; Merz, J.K.

1993-08-01T23:59:59.000Z

112

Introduction Fluid/Jeans  

E-Print Network (OSTI)

Introduction Fluid/DMSC Fluid/Jeans Comments Fluid/Kinetic Hybrid Modeling of the Thermosphere;Introduction Fluid/DMSC Fluid/Jeans Comments Outline 1 Fluid/DMSC 2 Fluid/Jeans 3 Comments Justin Erwin Fluid/Kinetic Hybrid Modeling of the Thermosphere of Pluto #12;Introduction Fluid/DMSC Fluid/Jeans Comments Motivation

Johnson, Robert E.

113

Fluid Mechanics and Homeland Security  

E-Print Network (OSTI)

Fluid Mechanics and Homeland Security Gary S. Settles Mechanical and Nuclear Engineering Department and sampling, explosive detection, microfluidics and labs-on-a-chip, chem- ical plume dispersal in urban security combines established fluids topics like plume dispersion with others that are new

Settles, Gary S.

114

Sampling for Bacteria in Wells (Spanish)  

E-Print Network (OSTI)

C?mo Tomar Muestras de Pozos (para an?lisis bacteriol?gico) E-126S 11/01 Las muestras de agua para an?lisis bacteriol?gico siempre deben ser tomadas en envases esterilizados. El procedimiento para tomar las muestras de agua es el siguiente: 1...

Lesikar, Bruce J.

2001-11-15T23:59:59.000Z

115

Pahute Mesa Well Development and Testing Analyses for Wells ER-20-7, ER-20-8 #2, and ER-EC-11, Revision 1  

SciTech Connect

This report analyzes the following data collected from ER-20-7, ER-20-8 No.2, and ER-EC-11 during WDT operations: (1) Chemical indicators of well development (Section 2.0); (2) Static hydraulic head (Section 3.0); (3) Radiochemistry and geochemistry (Section 4.0); (4) Drawdown observed at locations distal to the pumping well (Section 5.0); and (5) Drilling water production, flow logs, and temperature logs (Section 6.0). The new data are further considered with respect to existing data as to how they enhance or change interpretations of groundwater flow and transport, and an interim small-scale conceptual model is also developed and compared to Phase I concepts. The purpose of well development is to remove drilling fluids and drilling-associated fines from the formation adjacent to a well so samples reflecting ambient groundwater water quality can be collected, and to restore hydraulic properties near the well bore. Drilling fluids can contaminate environmental samples from the well, resulting in nonrepresentative measurements. Both drilling fluids and preexisting fines in the formation adjacent to the well can impede the flow of water from the formation to the well, creating artifacts in hydraulic response data measured in the well.

Greg Ruskauff

2011-12-01T23:59:59.000Z

116

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells (Redirected from Development Wells) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir

117

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Production Wells:

118

Well Deepening | Open Energy Information  

Open Energy Info (EERE)

Well Deepening Well Deepening Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Deepening Details Activities (5) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Well Deepening:

119

Sampling apparatus  

DOE Patents (OSTI)

A sampling apparatus is provided for sampling substances from solid surfaces. The apparatus includes first and second elongated tubular bodies which telescopically and sealingly join relative to one another. An absorbent pad is mounted to the end of a rod which is slidably received through a passageway in the end of one of the joined bodies. The rod is preferably slidably and rotatably received through the passageway, yet provides a selective fluid tight seal relative thereto. A recess is formed in the rod. When the recess and passageway are positioned to be coincident, fluid is permitted to flow through the passageway and around the rod. The pad is preferably laterally orientable relative to the rod and foldably retractable to within one of the bodies. A solvent is provided for wetting of the pad and solubilizing or suspending the material being sampled from a particular surface. 15 figs.

Gordon, N.R.; King, L.L.; Jackson, P.O.; Zulich, A.W.

1989-07-18T23:59:59.000Z

120

Sampling apparatus  

DOE Patents (OSTI)

A sampling apparatus is provided for sampling substances from solid surfaces. The apparatus includes first and second elongated tubular bodies which telescopically and sealingly join relative to one another. An absorbent pad is mounted to the end of a rod which is slidably received through a passageway in the end of one of the joined bodies. The rod is preferably slidably and rotatably received through the passageway, yet provides a selective fluid tight seal relative thereto. A recess is formed in the rod. When the recess and passageway are positioned to be coincident, fluid is permitted to flow through the passageway and around the rod. The pad is preferably laterally orientable relative to the rod and foldably retractable to within one of the bodies. A solvent is provided for wetting of the pad and solubilizing or suspending the material being sampled from a particular surface.

Gordon, Norman R. (Kennewick, WA); King, Lloyd L. (Benton, WA); Jackson, Peter O. (Richland, WA); Zulich, Alan W. (Bel Air, MD)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fluid inflation  

SciTech Connect

In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

Chen, X. [Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom); Firouzjahi, H. [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Namjoo, M.H. [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, M., E-mail: x.chen@damtp.cam.ac.uk, E-mail: firouz@ipm.ir, E-mail: mh.namjoo@ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

2013-09-01T23:59:59.000Z

122

Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Groundwater Sampling Groundwater Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Groundwater Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Determination of mixing ratios between different fluid end-members. Determination of fluid recharge rates and residence times. Thermal: Water temperature. Dictionary.png Groundwater Sampling: Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater sampling

123

Paleotemperatures preserved in fluid inclusions in halite  

SciTech Connect

A variety of paleoclimate proxy records allow determination of relative warming or cooling. However, if we are to understand climate change, quantification of past temperature fluctuations is essential. Our research indicates that fluid inclusions in halite can yield homogenization temperatures that record surface brine temperatures at the time of halite precipitation. To avoid problems with stretching, leaking, and initial trapping of air, samples with primary, single-phase (liquid) fluid inclusions are chilled in a freezer to nucleate vapor bubbles. We tested the reliability of this method of obtaining fluid-inclusion homogenization temperatures using modern salts precipitated at Badwater Basin, Death Valley, California. Homogenization temperatures correlate well with measured brine temperatures. The same method is applied to fluid inclusions in Pleistocene halite from a core taken at the same location in Death Valley. Results are at several scales, recording diurnal temperature variations, seasonal temperature fluctuations, and longer-term warming and cooling events that correlate with major changes in the sedimentary environment related to climate. This technique is uniquely instrumental for paleoclimate studies because it offers actual, not just proxy, paleotemperature data. 27 refs., 17 figs.

Roberts, S.M.; Spencer, R.J. [Univ. of Calgary, Alberta (Canada)] [Univ. of Calgary, Alberta (Canada)

1995-10-01T23:59:59.000Z

124

Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Sampling Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Sampling Details Activities (7) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Gas composition and source of fluids. Thermal: Anomalous flux is associated with active hydrothermal activity. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Gas Sampling: Gas sampling is done to characterize the chemical, thermal, and hydrological properties of a surface or subsurface hydrothermal system.

125

Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA  

SciTech Connect

A spatial survey of the chemical and isotopic composition of fluids from the Long Valley hydrothermal system was conducted. Starting at the presumed hydrothermal upwelling zone in the west moat of the caldera, samples were collected from the Casa Diablo geothermal field and a series of monitoring wells defining a nearly linear, ~;;14 km long, west-to-east trend along the proposed fluid flow path (Sorey et al., 1991). Samples were analyzed for the isotopes of water, Sr, Ca, and noble gases, the concentrations of major cations and anions and total CO2. Our data confirm earlier models in which the variations in water isotopes along the flow path reflect mixing of a single hydrothermal fluid with local groundwater. Variations in Sr data are poorly constrained and reflect fluid mixing, multiple fluid-pathways or water-rock exchange along the flow path as suggested by Goff et al. (1991). Correlated variations among total CO2, noble gases and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2, noble gases) driving calcite precipitation as the fluid flows west-to-east across the caldera. This is the first evidence that Ca isotopes may trace and provide definitive evidence of calcite precipitation along fluid flow paths in geothermal systems.

Brown, Shaun; Kennedy, Burton; DePaolo, Donald; Evans, William

2008-08-01T23:59:59.000Z

126

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Area (Goff & Janik, 2002) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. At shallow depths in the caldera References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Long_Valley_Caldera_Area_(Goff_%26_Janik,_2002)&oldid=692525

127

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Redondo_Area_(Goff_%26_Janik,_2002)&oldid=692533"

128

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff &  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis-_Fluid_At_Valles_Caldera_-_Sulphur_Springs_Area_(Goff_%26_Janik,_2002)&oldid=692539"

129

Spontaneous Potential Well Log | Open Energy Information  

Open Energy Info (EERE)

Spontaneous Potential Well Log Spontaneous Potential Well Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Spontaneous Potential Well Log Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: SP technique originally applied to locating sulfide ore-bodies. Stratigraphic/Structural: -Formation bed thickness and boundaries -Detection and tracing of faults -Permeability and porosity Hydrological: Determination of fluid flow patterns: electrochemical coupling processes due to variations in ionic concentrations, and electrokinetic coupling processes due to fluid flow in the subsurface.

130

Fluid Inclusion Analysis | Open Energy Information  

Open Energy Info (EERE)

Fluid Inclusion Analysis Fluid Inclusion Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fluid Inclusion Analysis Details Activities (20) Areas (11) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Fluid composition at a point in time and space Thermal: The minimum temperature of fluid inclusion formation Cost Information Low-End Estimate (USD): 17.571,757 centUSD 0.0176 kUSD 1.757e-5 MUSD 1.757e-8 TUSD / sample Median Estimate (USD): 17.571,757 centUSD 0.0176 kUSD 1.757e-5 MUSD 1.757e-8 TUSD / sample High-End Estimate (USD): 26.782,678 centUSD

131

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

132

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

133

RAPID/Geothermal/Well Field/Colorado | Open Energy Information  

Open Energy Info (EERE)

the Use of Wells, "Geothermal Well" means a well that is constructed for the purpose of exploration, use of a geothermal resource, or reinjection of a geothermal fluid. A permit...

134

MIMO Control during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract A drilling system consists of a rotating drill string, which is placed into the well. The drill fluid is pumped through the drill string and exits through the choke valve. An important scope of the drill fluid is to maintain a certain pressure gradient along the length of the well. Well construction is a complex job in which annular pressures must be kept inside the operational window (limited by fracture and pore pressure). Monitoring bottom hole pressure to avoid fluctuations out of operational window limits is an extremely important job, in order to guarantee safe conditions during drilling. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. In this work, a non linear mathematical model (gas-liquid-solid), representing an oil well drilling system, was developed, based on mass and momentum balances. Besides, for implementing classic control (PI), alternative control schemes were analyzed using mud pump flow rate, choke opening index and weight on bit as manipulated variables in order to control annulus bottomhole pressure and rate of penetration. Classic controller tuning was performed for servo and regulatory control studies, under MIMO frameworks.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

135

Method of gravel packing a subterranean well  

SciTech Connect

This patent describes a method of gravel packing a well bore penetrating a subterranean formation. It comprises blocking a first group of apertures in a liner with an immobile gel; positioning the liner within the well bore thereby defining a first annulus between the liner and the well bore; transporting a slurry comprised of gravel suspended in a fluid into the first annulus, the fluid flowing through a second group of apertures in the liner while the gravel is deposited within the first annulus to form a gravel pack; and thereafter removing substantially all of the gel from the first group of apertures.

Not Available

1991-11-05T23:59:59.000Z

136

Sampling device for withdrawing a representative sample from single and multi-phase flows  

DOE Patents (OSTI)

A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

Apley, Walter J. (Pasco, WA); Cliff, William C. (Richland, WA); Creer, James M. (Richland, WA)

1984-01-01T23:59:59.000Z

137

Fluid chemistry and temperatures prior to exploitation at the Las Tres Vrgenes geothermal field, Mexico  

Science Journals Connector (OSTI)

Generation of electricity at the Las Tres Vrgenes (LTV) geothermal field, Mexico, began in 2001. There are currently nine geothermal wells in the field, which has an installed electricity generating capacity of 10MWe. The chemical and temperature conditions prevailing in the field prior to its exploitation have been estimated, including their central tendency and dispersion parameters. These conditions were computed on the basis of: (i) geochemical data on waters from springs and domestic wells, and on geothermal well fluids (waters and gases); most of the sampling took place between 1995 and 1999; (ii) fluid inclusion studies; (iii) geothermometric data; and (iv) static formation temperatures computed using a modified quadratic regression Horner method. Fluid inclusion homogenization temperatures (in the 100290C range) suggest that there is a high-temperature fluid upflow zone near wells LV3 and LV4 in the southern part of the field. Computed average chemical equilibrium temperatures for the geothermal fluids are ?260C, based on the Na/K and SiO2 geothermometers, and ?265C, based on the H2/Ar, and CO2/Ar geothermometers. In general, the fluid inclusion homogenization temperatures are consistent with geothermometric data, as well as with static formation temperatures. Some of the observed differences could be related to well interference effects and different fluid production/sampling depths. The deeper geothermal waters show higher concentrations of Cl, Na, K, B, Ba, but lower concentrations of SO4, Ca, and Mg than the shallower waters. Fluid inclusion salinities are also higher in the deeper rocks. The measured Na/Cl ratios of the geothermal well waters are more or less uniform throughout the field and are very similar to that of seawater, strongly suggesting a seawater component in the fluid of the LTV system. The heat stored in the LTV geothermal system was estimated to be at least 9נ1012MJ, of which some 4נ1011MJ (equivalent to about 148MWe for 30 years of operation, assuming a conversion efficiency of ?35%) might be extracted using wells. These results indicate that the installed capacity at LTV could be safely increased from the current 10MWe.

Surendra P. Verma; Kailasa Pandarinath; Edgar Santoyo; Eduardo Gonzlez-Partida; Ignacio S. Torres-Alvarado; Enrique Tello-Hinojosa

2006-01-01T23:59:59.000Z

138

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) |  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) (Redirected from Water-Gas Samples At Coso Geothermal Area (2004)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness useful DOE-funding Unknown Exploration Basis To determine effectiveness of FIS for geothermal exploration Notes In order to test FIS for geothermal exploration, drill chips were analyzed from Coso well 83-16, which were selected at 1000 ft intervals by Joseph Moore. Sequential crushes done by our CFS (crushfast-scan) method (Norman

139

Soil Sampling At Molokai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Soil Sampling At Molokai Area (Thomas, 1986) Soil Sampling At Molokai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Molokai Area (Thomas, 1986) Exploration Activity Details Location Molokai Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Due to the very small potential market on the island of Molokai for geothermal energy, only a limited effort was made to confirm a resource in the identified PGRA. An attempt was made to locate the (now abandoned) water well that was reported to have encountered warm saline fluids. The well was located but had caved in above the water table and thus no water sampling was possible. Temperature measurements in the open portion of the well were performed, but no temperatures significantly above ambient were

140

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Characteristics of Basin and Range Geothermal Systems with Fluid...  

Open Energy Info (EERE)

Our ability to distinguish between moderate and high temperature systems using fluid chemistry has been limited by often inaccurate estimates based on shallow samples and by a...

142

Downhole Fluid Analyzer Development  

SciTech Connect

A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

Bill Turner

2006-11-28T23:59:59.000Z

143

Real-time quadrupole mass spectrometer analysis of gas in boreholefluid samples acquired using the U-Tube sampling methodology  

SciTech Connect

Sampling of fluids in deep boreholes is challenging becauseof the necessity to minimize external contamination and maintain sampleintegrity during recovery. The U-tube sampling methodology was developedto collect large volume, multiphase samples at in situ pressures. As apermanent or semi-permanent installation, the U-tube can be used forrapidly acquiring multiple samples or it may be installed for long-termmonitoring applications. The U-tube was first deployed in Liberty County,TX to monitor crosswell CO2 injection as part of the Frio CO2sequestration experiment. Analysis of gases (dissolved or separate phase)was performed in the field using a quadrupole mass spectrometer, whichserved as the basis for determining the arrival of the CO2 plume. Thepresence of oxygen and argon in elevated concentrations, along withreduced methane concentration, indicate sample alteration caused by theintroduction of surface fluids during borehole completion. Despiteproducing the well to eliminate non-native fluids, measurementsdemonstrate that contamination persists until the immiscible CO2injection swept formation fluid into the observationwellbore.

Freifeld, Barry M.; Trautz, Robert C.

2006-01-11T23:59:59.000Z

144

Transient Temperature Modeling For Wellbore Fluid Under Static and Dynamic Conditions  

E-Print Network (OSTI)

for geothermal wells and prediction of injection fluid temperatures. In this thesis, development and usage of three models for transient fluid temperature are presented. Two models predict transient temperature of flowing fluid under separate flow configurations...

Ali, Muhammad

2014-04-22T23:59:59.000Z

145

Decontaminating Flooded Wells  

E-Print Network (OSTI)

This publication explains how to decontaminate and disinfect a well, test the well water and check for well damage after a flood....

Boellstorff, Diana; Dozier, Monty; Provin, Tony; Dictson, Nikkoal; McFarland, Mark L.

2005-09-30T23:59:59.000Z

146

September 2004 Water Sampling  

Office of Legacy Management (LM)

event. Sampling Protocol Wells USGS-4 and USGS-8 were sampled using dedicated bladder pumps. Data from these wells are qualified with an "F" flag in the database indicating the...

147

Single-Well and Cross-Well Resistivity | Open Energy Information  

Open Energy Info (EERE)

Single-Well and Cross-Well Resistivity Single-Well and Cross-Well Resistivity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well and Cross-Well Resistivity Details Activities (14) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Identify different lithological layers, rock composition, mineral, and clay content Stratigraphic/Structural: -Fault and fracture identification -Rock texture, porosity, and stress analysis -determine dip and structural features in vicinity of borehole -Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

148

Supercritical Fluid Extraction of Wood Pulps  

Science Journals Connector (OSTI)

......capillary column inlet system which was main tained...great concern in this study because (a) their relative...McNally and J.R. Wheeler. J. Chromatogr. 447...Chaplin, and N.R. Foster. J. Supercrit. Fluids...Wells, and N.R. Foster. J. Supercrit. Fluids......

A.J. Sequeira; L.T. Taylor

1992-10-01T23:59:59.000Z

149

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

150

Well Log Data At Dixie Valley Geothermal Area (Barton, Et Al...  

Open Energy Info (EERE)

Borehole televiewer, temperature and flowmeter data was recorded in the wells. Fracture and fluid flow data from wells within and outside of the active producing reservoir...

151

Well control procedures for extended reach wells  

E-Print Network (OSTI)

been found to be critical to the success of ERD are torque and drag, drillstring design, wellbore stability, hole cleaning, casing design, directional drilling optimization, drilling dynamics and rig sizing.4 Other technologies of vital importance... are the use of rotary steerable systems (RSS) together with measurement while drilling (MWD) and logging while drilling (LWD) to geosteer the well into the geological target.5 Many of the wells drilled at Wytch Farm would not have been possible to drill...

Gjorv, Bjorn

2004-09-30T23:59:59.000Z

152

Fluid dynamics kill Wyoming icicle  

SciTech Connect

Control of a blowout in which a portion of the drill collar string was extending through the rotary table and into the derrick was compounded by ice building up on the derrick and substructure. However, the momentum kill procedure proved successful. Topics considered in this paper include oil wells, natural gas wells, sleeves, rotary drills, drilling rigs, fluid mechanics, occupational safety, blowouts, drill pipes, rotary drilling, ice removal, and freezing.

Grace, R.D.

1987-04-01T23:59:59.000Z

153

Viscosity of a nucleonic fluid  

E-Print Network (OSTI)

The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

Aram Z. Mekjian

2012-03-21T23:59:59.000Z

154

Performance-Oriented Drilling Fluids Design System with a Neural Network Approach  

Science Journals Connector (OSTI)

Drilling fluids play a key role in the minimization of well bore problems when drilling oil or gas wells, usually the design of drilling fluids is depended on many experiments with experience. Rule-based and case-based reasoning drilling fluid system ... Keywords: artificial neural network, drilling fluid, performance-oriented

Yongbin Zhang; Yeli Li; Peng Cao

2009-11-01T23:59:59.000Z

155

Groundwater and Wells (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

156

2-M Probe Survey At Salt Wells Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Salt Wells Area (Coolbaugh, Et Al., 2006) Salt Wells Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe Survey At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique 2-M Probe Survey Activity Date 2005 - 2006 Usefulness useful DOE-funding Unknown Exploration Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study of surface geothermal features at Salt Wells, in order to evaluate the relationship between these features and structures that control geothermal fluid flow. Notes This study used a modified version of the 2 m temperature probe survey,

157

Radiometrics At Salt Wells Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Radiometrics At Salt Wells Area (Coolbaugh, Et Al., 2006) Radiometrics At Salt Wells Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Radiometrics At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Radiometrics Activity Date 2005 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study of surface geothermal features at Salt Wells, in order to evaluate the relationship between these features and structures that control geothermal fluid flow. Notes Borate minerals tincalconite and borax, sodium sulfate minerals mirabilite

158

Water Sampling At International Geothermal Area, Philippines (Wood, 2002) |  

Open Energy Info (EERE)

Water Sampling At International Geothermal Area Water Sampling At International Geothermal Area Philippines (Wood, 2002) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

159

Plugging Abandoned Water Wells  

E-Print Network (OSTI)

. It is recommended that before you begin the process of plugging an aban- doned well that you seek advice from your local groundwater conservation district, a licensed water well driller in your area, or the Water Well Drillers Program with the Texas Department... hire a licensed water well driller or pump installer to seal and plug an abandoned well. Well contractors have the equipment and an understanding of soil condi- tions to determine how a well should be properly plugged. How can you take care...

Lesikar, Bruce J.

2002-02-28T23:59:59.000Z

160

Standardization of Thermo-Fluid Modeling in Modelica.Fluid  

E-Print Network (OSTI)

Thermo-Fluid Systems, Modelica 2003 Conference, Linkping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

Franke, Rudiger

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Water Sampling Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Water Sampling Details Activities (51) Areas (45) Regions (5) NEPA(2) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Water sampling is done to characterize the geothermal system under investigation. A geothermal water typically has a unique chemical signature

162

Definition: Fluid Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Fluid Lab Analysis Fluid Lab Analysis Jump to: navigation, search Dictionary.png Fluid Lab Analysis Fluid lab analysis encompasses a broad array of techniques used for the analysis of water and gas samples. These analyses are used in a variety of disciplines to quantify the chemical components and properties of groundwater systems. In geothermal exploration and development, fluid analyses often provide a first look into the characteristics of a hydrothermal system, and are routinely used in ongoing monitoring of geothermal reservoirs.[1] View on Wikipedia Wikipedia Definition Water chemistry analyses are carried out to identify and quantify the chemical components and properties of a certain water. This include pH, major cations and anions, trace elements and isotopes. Water chemistry

163

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy  

Open Energy Info (EERE)

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Details Activities (1) Areas (1) Regions (0) Abstract: A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Models are created using cross-sections and fence diagrams. A thick condensate and boiling zone is indicated across the western portion

164

Borehole breakdown pressure with drilling fluidsI. Empirical results  

Science Journals Connector (OSTI)

Mining and civil engineering industries sometimes use drilling muds for stabilizing a borehole during drilling wells for methane drainage, geothermal energy and radioactive waste disposal. Standard theories predicting borehole breakdown pressure assume breakdown occurs when a small fracture initiates at a location where the largest tangential stress at the borehole reaches the tensile strength of formation. Fracturing tests conducted in this study, however, showed that when drilling fluid was used as an injection fluid, borehole breakdown did not occur even if a fracture initiated at a borehole wall. Borehole breakdown occurred when the initiated fracture became unstable after significant growth [with 0.76 cm (0.3 in.) to 7.62 cm (3 in.) in length]. The test results showed that all drilling muds had a tendency to seal narrow natural fractures or fractures induced by high borehole pressure. The sealing effect of the mud stabilized fractures and prevented fracture propagation. This effect is one of the primary factors for controlling wellbore stability. In this work [1], more than 40 large rock samples [76.2 76.2 76.2 cm (30 30 30 in.)] were fractured to test the drilling fluid effect on fracture initiation and fracture propagation around a borehole. The results show that borehole breakdown pressure is highly dependent on the Young's modulus of the formation, wellbore size and type of the drilling fluids. Note that the conventional linear wellbore stability theory has ignored all these facts. The results of this experiment are intended to apply to the lost circulation problems from an induced fracture or to the interpretation of the in situ stress measurements with gelled fluids where drilling or fracturing fluids contain significant amount of solid components. Similar phenomena occur for the standard hydraulic fracturing fluids; however, the process zone and the high flow friction at the narrow fracture tip become as important as the gel and solid plugging effect shown in this paper. Hence, the results should be modified before being applied to standard fracturing fluids.

N. Morita; A.D. Black; G.-F. Fuh

1996-01-01T23:59:59.000Z

165

Horizontal well IPR calculations  

SciTech Connect

This paper presents the calculation of near-wellbore skin and non-Darcy flow coefficient for horizontal wells based on whether the well is drilled in an underbalanced or overbalanced condition, whether the well is completed openhole, with a slotted liner, or cased, and on the number of shots per foot and phasing for cased wells. The inclusion of mechanical skin and the non-Darcy flow coefficient in previously published horizontal well equations is presented and a comparison between these equations is given. In addition, both analytical and numerical solutions for horizontal wells with skin and non-Darcy flow are presented for comparison.

Thomas, L.K.; Todd, B.J.; Evans, C.E.; Pierson, R.G.

1996-12-31T23:59:59.000Z

166

Environmentally safe fluid extractor  

DOE Patents (OSTI)

An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

Sungaila, Zenon F. (Orland Park, IL)

1993-01-01T23:59:59.000Z

167

HEAT TRANSFER FLUIDS  

E-Print Network (OSTI)

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

168

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Goff & Janik, 2002) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from HDR well References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long

169

Underground Wells (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

170

Fluid force transducer  

DOE Patents (OSTI)

An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

Jendrzejczyk, Joseph A. (Warrenville, IL)

1982-01-01T23:59:59.000Z

171

Economic design of wells  

Science Journals Connector (OSTI)

...concepts and the general principles outlined...with wells of the general configuration shown...internal com- bustion engine. It is assumed that...analysis, consider a diesel- powered well of...modified to use either a general expression for performance...written in terms of diesel-powered wells...

R. F. Stoner; D. M. Milne; P. J. Lund

172

Acoustic measurement of the Deepwater Horizon Macondo well flow rate  

E-Print Network (OSTI)

On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and ...

Camilli, Richard

173

Transient and Pseudosteady-State Productivity of Hydraulically Fractured Well  

E-Print Network (OSTI)

Numerical simulation method is used in this work to solve the problem of transient and pseudosteady-state flow of fluid in a rectangular reservoir with impermeable boundaries. Development and validation of the numerical solution for various well-fracture...

Lumban Gaol, Ardhi

2012-10-19T23:59:59.000Z

174

Development Wells At Long Valley Caldera Geothermal Area (Suemnicht...  

Open Energy Info (EERE)

Diablo field between 1993 and 1995 prompted the construction of the Basalt Canyon Pipeline later in 2005 to support the MP-I plant with additional fluids from wells 57-22 and...

175

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class in same GDB as the well points FC, with one polygon field record (may be multiple polygon rings) per field_name. Overlapping buffers for the same field name are dissolved and unioned (see figure below). Adds an attribute PCTFEDLAND which can be populated using the VBA

176

Well drilling apparatus  

SciTech Connect

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

177

Detecting low levels of radionuclides in fluids  

DOE Patents (OSTI)

An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

Patch, Keith D. (Lexington, MA); Morgan, Dean T. (Sudbury, MA)

2000-01-01T23:59:59.000Z

178

Definition: Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Isotopic Analysis- Fluid Jump to: navigation, search Dictionary.png Isotopic Analysis- Fluid Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable. Fluid isotopes are used to characterize a fluids origin, age, and/or interaction with rocks or other fluids based on unique isotopic ratios or concentrations.[1] View on Wikipedia Wikipedia Definition Isotope geochemistry is an aspect of geology based upon study of the relative and absolute concentrations of the elements and their isotopes in

179

well | OpenEI  

Open Energy Info (EERE)

43 43 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280543 Varnish cache server well Dataset Summary Description The California Division of Oil, Gas, and Geothermal Resources contains oil, gas, and geothermal data for the state of California. Source California Division of Oil, Gas, and Geothermal Resources Date Released February 01st, 2011 (3 years ago) Date Updated Unknown Keywords California data gas geothermal oil well Data application/vnd.ms-excel icon California district 1 wells (xls, 10.1 MiB) application/vnd.ms-excel icon California district 2 wells (xls, 4 MiB) application/vnd.ms-excel icon California district 3 wells (xls, 3.8 MiB) application/zip icon California district 4 wells (zip, 11.2 MiB)

180

Step-out Well | Open Energy Information  

Open Energy Info (EERE)

Step-out Well Step-out Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Step-out Well Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Step-out Well: A well drilled outside of the proven reservoir boundaries to investigate a

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal Well Completion Tests | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Completion Tests Geothermal Well Completion Tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Completion Tests Abstract This paper reviews the measurements that are typically made in a well immediately after drilling is completed - the Completion Tests. The objective of these tests is to determine the properties of the reservoir, and of the reservoir fluid near the well. A significant amount of information that will add to the characterisation of the reservoir and the well, can only be obtained in the period during and immediately after drilling activities are completed. Author Hagen Hole Conference Petroleum Engineering Summer School; Dubrovnik, Croatia; 2008/06/09 Published N/A, 2008 DOI Not Provided Check for DOI availability: http://crossref.org

182

Surface Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Gas Sampling Surface Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Gas Sampling Details Activities (12) Areas (10) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Gas composition and source of fluids. Thermal: Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Surface Gas Sampling: Gas sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface hydrothermal system. Other definitions:Wikipedia Reegle Introduction

183

Petroleum well costs.  

E-Print Network (OSTI)

??This is the first academic study of well costs and drilling times for Australia??s petroleum producing basins, both onshore and offshore. I analyse a substantial (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

184

Water Sampling At International Geothermal Area, New Zealand (Wood, 2002) |  

Open Energy Info (EERE)

International Geothermal Area, New Zealand (Wood, 2002) International Geothermal Area, New Zealand (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area New Zealand (Wood, 2002) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley

185

Water Sampling At Heber Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Heber Area (Wood, 2002) Heber Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Heber Area (Wood, 2002) Exploration Activity Details Location Heber Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

186

Developments in geothermal energy in Mexicopart nineteen. Corrosion in Mexican geothermal wells  

Science Journals Connector (OSTI)

The Instituto de Investigaciones Elctricas and the Comisin Federal de Electricidad have initiated a collaborative study to define the specifications of steels for use in geothermal well construction in Mexico. Tests have been designed to characterize and control identifiable factors affecting corrosion. The study includes three main areas of activity: (a) studies of cases of material failure from several Mexican fields were made; (b) studies of general, localized and stress corrosion of sample coupons exposed to geothermal fluid were made in wellhead pressure chambers; (c) laboratory tests are being carried out under controlled hydrodynamic conditions.

J.A. Sampedro; N. Rosas; R. Daz; B. Domnguez

1988-01-01T23:59:59.000Z

187

Phenomenal well-being  

E-Print Network (OSTI)

rated against the experience of the individual?s other possible lives. Unlike well-being, PWB is guaranteed to track more robust experiential benefits that a person gets out of living a life. In this work, I discuss the concept of well-being, including...

Campbell, Stephen Michael

2006-08-16T23:59:59.000Z

188

Ca, Sr, O and D isotope approach to defining the chemical evolution of hydrothermal fluids: Example from Long Valley, CA, USA  

Science Journals Connector (OSTI)

Abstract We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ?16km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150180C is fractionated by ca. ?0.3 to ?0.5 relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.

Shaun T. Brown; B. Mack Kennedy; Donald J. DePaolo; Shaul Hurwitz; William C. Evans

2013-01-01T23:59:59.000Z

189

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR  

Open Energy Info (EERE)

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids. This method is being studied for application to geothermal wells and is funded by the California Energy Commission. Fluid inclusion gas geochemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow

190

Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California  

SciTech Connect

Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

Boles, James [Professor

2013-05-24T23:59:59.000Z

191

Geothermal well log interpretation state of the art. Final report  

SciTech Connect

An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

1980-01-01T23:59:59.000Z

192

Surface sampling concentration and reaction probe  

DOE Patents (OSTI)

A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

Van Berkel, Gary J; Elnaggar, Mariam S

2013-07-16T23:59:59.000Z

193

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output: Polygon feature class...

194

Shock Chlorination of Wells  

E-Print Network (OSTI)

Shock chlorination is a method of disinfecting a water well. This publication gives complete instructions for chlorinating with bleach or with dry chlorine. It is also available in Spanish as publication L-5441S...

McFarland, Mark L.; Dozier, Monty

2003-06-11T23:59:59.000Z

195

Fiber optic fluid detector  

DOE Patents (OSTI)

Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

Angel, S.M.

1987-02-27T23:59:59.000Z

196

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging (Redirected from Single-Well And Cross-Well Seismic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation.

197

Laboratory data in support of hydraulically fracturing EGSP OH Well No. 3. Final report  

SciTech Connect

Geologic and geophysical interpretations of data from the EGSP OH Well No. 3 show that an organically lean shale has a gradual transition with depth to an organically rich shale and that two layers (bound each shale formation. The laboratory test program was designed to understand the containment and productivity of a hydraulic fracture induced in this well to enhance gas production from the shale. The porosity in the formations of interest, including the upper barrier, the lower barrier, and the organic shales, varied from 6 to 10 percent. The porosity of each formation averaged about 8%. Densities and ultrasonic velocities were used to evaluate dynamic moduli. Over the tested intervals moduli consistently increased with depth. This indicates the possibility of upward migration of an induced fracture. Perforations, therefore, should be limited to the lower portion of the pay sand and it is also advisable to use low injection rates. Of the four fracturing fluids tested, the two code-named Dow II and Hal I caused, respectively, the least amount of matrix permeability damage to the organically lean and organically rich shales. However, the damage caused by the other fracturing fluids were not severe enough to cause any significant permanent reduction in well productivity. The fracture conductivity tests under the influence of fracturing fluids indicated that Hal I and Dow I caused, respectively, the least amount of multilayered fracture conductivity damage to the organically lean and organically rich samples. For monolayer fracture conductivities Dow I caused least damage to the organically lean shale. With the exception of Dow III all other fluids showed good results in the monolayer tests for organically rich shales. In the situation where both the lean and the rich shales are to be fractured together, the use of either Hal I or Dow I is indicated.

Ahmed, U.; Swartz, G.C.; Scnatz, J.F.

1980-12-01T23:59:59.000Z

198

Hydrologic Data and Evaluation for Model Validation Wells, MV-1, MV-2, and MV-3 near the Project Shoal Area  

SciTech Connect

In 2006, a drilling campaign was conducted at the Project Shoal Area (PSA) to provide information for model validation, emplace long-term monitoring wells, and develop baseline geochemistry for long term hydrologic monitoring. Water levels were monitored in the vicinity of the drilling, in the existing wells HC-1 and HC-6, as well as in the newly drilled wells, MV-1, MV-2 and MV-3 and their associated piezometers. Periodic water level measurements were also made in existing wells HC-2, HC-3, HC-4, HC-5 and HC-7. A lithium bromide chemical tracer was added to drilling fluids during the installation of the monitoring and validation (MV) wells and piezometers. The zones of interest were the fractured, jointed and faulted horizons within a granitic body. These horizons generally have moderate hydraulic conductivities. As a result, the wells and their shallower piezometers required strenuous purging and development to remove introduced drilling fluids as evidenced by bromide concentrations. After airlift and surging well development procedures, the wells were pumped continuously until the bromide concentration was less then 1 milligram per liter (mg/L). Water quality samples were collected after the well development was completed. Tritium scans were preformed before other analyses to ensure the absence of high levels of radioactivity. Tritium levels were less than 2,000 pico-curies per liter. Samples were also analyzed for carbon-14 and iodine-129, stable isotopes of oxygen and hydrogen, as well as major cations and anions. Aquifer tests were performed in each MV well after the bromide concentration fell below acceptable levels. Water level data from the aquifer tests were used to compute aquifer hydraulic conductivity and transmissivity

B. Lyles; P. Oberlander; D. Gillespie; D. Donithan; J. Chapman; J. Healey

2007-02-14T23:59:59.000Z

199

Well completion report on installation of horizontal wells for in-situ remediation tests  

SciTech Connect

A project to drill and install two horizontal vapor extraction/air-injection wells at the Savannah River Site (SRS), Aiken, South Carolina, was performed in September and October of 1988. This study was performed to test the feasibility of horizontal drilling technologies in unconsolidated sediments and to evaluate the effectiveness of in-situ air stripping of volatile organics from the ground water and unsaturated soils. A tremendous amount of knowledge was obtained during the drilling and installation of the two test wells. Factors of importance to be considered during design of another horizontal well drilling program follow. (1) Trips in and out of the borehole should be minimized to maintain hole stability. No reaming to enlarge the hole should be attempted. (2) Drilling fluid performance should be maximized by utilizing a low solids, low weight, moderate viscosity, high lubricity fluid. Interruption of drilling fluid circulation should be minimized. (3) Well materials should possess adequate flexibility to negotiate the curve. A flexible guide should be attached to the front of the well screen to guide the screen downhole. (4) Sands containing a minor amount of clay are recommended for completion targets, as better drilling control in the laterals was obtained in these sections.

Kaback, D.S.; Looney, B.B.; Corey, J.C.; Wright, L.M.

1989-08-01T23:59:59.000Z

200

Compound and Elemental Analysis At Salt Wells Area (Coolbaugh, Et Al.,  

Open Energy Info (EERE)

Coolbaugh, Et Al., Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 2005 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study of surface geothermal features at Salt Wells, in order to evaluate the relationship between these features and structures that control geothermal fluid flow. Notes Water from six hot springs/seeps (out of some 20 seasonal discharges

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Well injection valve with retractable choke  

SciTech Connect

An injection valve is described for use in a well conduit consisting of: a housing having a bore, a valve closure member in the bore moving between open and closed positions, a flow tube telescopically movable in the housing for controlling the movement of the valve closure member, means for biasing the flow tube in a direction for allowing the valve closure member to move to the closed position, an expandable and contractible fluid restriction connected to the flow tube and extending into the bore for moving the flow tube to the open position in response to injection fluid, but allowing the passage of well tools through the valve, the restriction contractible in response to fluid flow, the restriction includes, segments movable into and out of the bore, and biasing means yieldably urging the segments into the bore, a no-go shoulder on the flow tube, and releasable lockout means between the flow tube and the housing for locking the flow tube and valve in the open position.

Pringle, R.E.

1986-07-22T23:59:59.000Z

202

Drilling, Sampling, and Well-Installation Plan for the IFC Well Field, 300 Area  

SciTech Connect

The 300 Area was selected as a location for an IFC because it offers excellent opportunities for field research on the influence of mass-transfer processes on uranium in the vadose zone and groundwater. The 300 Area was the location of nuclear fuel fabrication facilities and has more than 100 waste sites. Two of these waste sites, the North and South Process Ponds received large volumes of process waste from 1943 to 1975 and are thought to represent a significant source of the groundwater uranium plume in the 300 Area. Geophysical surveys and other characterization efforts have led to selection of the South Process Pond for the IFC.

Bjornstad, Bruce N.; Horner, Jacob A.

2008-05-05T23:59:59.000Z

203

Economic design of wells  

Science Journals Connector (OSTI)

...year, c is the cost per lb of diesel fuel, and Co is the cost per...program was written in terms of diesel-powered wells, modifications...charac- teristics of pump-engine combinations and are again...water encountered. There is a fundamental difference between the design...

R. F. Stoner; D. M. Milne; P. J. Lund

204

Two-phase flow in horizontal wells  

SciTech Connect

Flow in horizontal wells and two-phase flow interaction with the reservoir were investigated experimentally and theoretically. Two-phase flow behavior has been recognized as one of the most important problems in production engineering. The authors designed and constructed a new test facility suitable for acquiring data on the relationship between pressure drop and liquid holdup along the well and fluid influx from the reservoir. For the theoretical work, an initial model was proposed to describe the flow behavior in a horizontal well configuration. The model uses the inflow-performance-relationship (IPR) approach and empirical correlations or mechanistic models for wellbore hydraulics. Although good agreement was found between the model and experimental data, a new IPR apart from the extension of Darcy`s law must be investigated extensively to aid in the proper design of horizontal wells.

Ihara, Masaru [Japan National Oil Corp., Chiba (Japan); Yanai, Koji [Nippon Kokan Corp., Yokohama (Japan); Yanai, Koji

1995-11-01T23:59:59.000Z

205

Thermodynamics and Fluids  

Science Journals Connector (OSTI)

... AN important section of the work of modern chemical engineers lies in the application of thermodynamics to problems of fluid systems. This volume, the fourth in the series, is ... properties of physical systems and to the transport properties of fluids. The first section on thermodynamics has been written by Dr. R. Strickland Constable of the Chemical Engineering Department at ...

J. M. COULSON

1958-09-27T23:59:59.000Z

206

Tracer dye transport from a well fitted with a downhole heat exchanger, Klamath Falls, Oregon  

SciTech Connect

Low or medium temperature geothermal resources are often used for space and domestic hot water heating. If the resource is located at reasonably shallow depths and adjacent to a major population centre large amounts of relatively cheap, clean heat can be provided. Geothermal fluid is often brought to the surface, either under natural artesian pressure or by pumping, to be used in surface heat exchangers (SHEs). This method generally requires a second well for disposal of the cooled fluid and a substantial capital outlay for pumps and heat exchangers. Large amounts of heat can be extracted from just one or two wells using surface heat exchangers and the method can prove very cost effective in areas with a high density of energy intensive users. For smaller heat loads surface heat exchangers can become expensive and in many instances a downhole heat exchanger (DHE) installed directly in the well bore is capable of supplying cheap heat to a smaller number of users. This report first describes the methods used to carry out the series of dye tests, from well selection to injection of the dye samples. It then discusses the results of these tests in terms of how much dye was recovered, where it was recovered from and how long it took to arrive. The results of the concurrent temperature monitoring work and DHE heat output performance are also presented. Some recommendations are made for any future testing. 13 refs., 42 figs.

Dunstall, M.G.

1990-02-01T23:59:59.000Z

207

Gas Flux Sampling (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling (Laney, 2005) Gas Flux Sampling (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Design of Sampling Strategies to Detect CO2 Emissions From Hidden Geothermal Systems, Lewicki, Oldenburg and Kennedy. The objective of this project is to investigate geothermal CO2 monitoring in the near surface as a tool to discover hidden geothermal reservoirs. A primary goal of this project is to develop an approach that places emphasis on cost and time-efficient near-surface exploration methods and yields results to guide and focus more cost-intensive geophysical measurements, installation of deep wells, and geochemical analyses of deep fluids. To this end, we present (1) the physical properties of CO2 key to its transport in the

208

MAX Fluid Dynamics facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MAX Fluid Dynamics facility MAX Fluid Dynamics facility Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr MAX Fluid Dynamics facility Providing high resolution data for development of computational tools that model fluid flow and heat transfer within complex systems such as the core of a nuclear reactor. 1 2 3 4 5 Hot and cold air jets are mixed within a glass tank while laser-based anemometers and a high-speed infrared camera characterize fluid flow and heat transfer behavior. Click on image to view larger size image.

209

Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Alvord Hot Springs Area (Wood, Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location Alvord Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

210

Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Beowawe Hot Springs Area (Wood, Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details Location Beowawe Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

211

Well control simulation with the Macintosh II computer  

E-Print Network (OSTI)

equipment parameters are defined. When the simulation process is initiated, a series of windows representing the driller's control panel, the choke panel, and the wellbore in cross-sectional profile may be viewed. The simulation process is controlled...: EXPERIMENTS WITH BUBBLE MIGRATION VELOCITY VITA 157 174 182 LIST OF TABLES Table 1 Default Well Configuration 2 Kick Pressures from a Simulated Gas Kick 3 Kick Fluid Properties for a Simulated Oil Kick B-1 Gas Kick Fluid Properties B-2 Oil Kick...

Wallis, Gregory Tad

1991-01-01T23:59:59.000Z

212

Clay-based geothermal drilling fluids  

SciTech Connect

The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

1982-11-01T23:59:59.000Z

213

Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Fluid Activity Date 1983 - 1986 Usefulness useful DOE-funding Unknown Notes Fumarolic CO2 sampled at Casa Diablo reportedly contained deltaC13 values of -5.6 to -5.7 (Taylor and...

214

Fluid Inclusion Analysis At Coso Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area Fluid Inclusion Analysis At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) To determine if analyses of fluid propene and propane species in fluid inclusions can be used to interpret fluid type, history, or process. 2) To evaluate the geology and thermal history of the East Flank, in order to better understand how the rocks will behave during hydro-fracturing. Notes 1) Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between producing and the non-producing

215

Solvent-vented injection in the analysis of agrochemicals by capillary supercritical fluid chromatography  

Science Journals Connector (OSTI)

Capillary supercritical fluid chromatography was performed with solvent-vented injection. Dilute samples of agrochemical mixtures were chromatographed and a study of detector response vs. quantity injected made.

S. Ashraf; K. D. Bartle; A. A. Clifford; I. L. Davies; R. Moulder

1990-12-01T23:59:59.000Z

216

Single-Well And Cross-Well Seismic Imaging | Open Energy Information  

Open Energy Info (EERE)

Single-Well And Cross-Well Seismic Imaging Single-Well And Cross-Well Seismic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Single-Well And Cross-Well Seismic Imaging Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Borehole Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

217

September 2004 Water Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

and October 2013 and October 2013 Groundwater Sampling at the Bluewater, New Mexico, Disposal Site December 2013 LMS/BLU/S00813 This page intentionally left blank U.S. Department of Energy DVP-August and October 2013, Bluewater, New Mexico December 2013 RIN 13085537 and 13095651 Page i Contents Sampling Event Summary ...............................................................................................................1 Private Wells Sampled August 2013 and October 2013, Bluewater, NM, Disposal Site ................3 Data Assessment Summary ..............................................................................................................5 Water Sampling Field Activities Verification Checklist .............................................................7

218

The Importance of Rheology in the Determination of the Carrying Capacity of Oil-Drilling Fluids  

Science Journals Connector (OSTI)

The ability of a drilling fluid to convey drill cuttings from a well is not fully ... cuttings travel with a lower velocity than the drilling fluid and they can accumulate in the ... lead to degradation of the cu...

M. A. Lockyer; J. M. Davies; T. E. R. Jones

1980-01-01T23:59:59.000Z

219

Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry  

SciTech Connect

The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. (Los Alamos National Lab., NM (USA)); Medina, V. (Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico)

1991-07-01T23:59:59.000Z

220

Multiphase fluid characterization system  

DOE Patents (OSTI)

A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

Sinha, Dipen N.

2014-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fluid pumping apparatus  

DOE Patents (OSTI)

A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

West, Phillip B. (Idaho Falls, ID)

2006-01-17T23:59:59.000Z

222

Basic fluid system trainer  

DOE Patents (OSTI)

A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

1993-01-01T23:59:59.000Z

223

Low temperature barriers with heat interceptor wells for in situ processes  

DOE Patents (OSTI)

A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.

McKinzie, II, Billy John (Houston, TX)

2008-10-14T23:59:59.000Z

224

A new type of whole oil-based drilling fluid  

Science Journals Connector (OSTI)

Abstract To meet the demand of ultra-deep well drilling and shale gas well drilling, organic clay and a oil-based filtrate reducer were developed and a whole oil-based drilling fluid formula was optimized. The performance of organic clay, oil-based filtrate reducer and the whole oil-based drilling fluid were evaluated in laboratory, and the whole oil-based drilling fluid was applied in drilling process for further test of its performance. Long carbon chain quaternary ammonium salt was used as modifying agents when synthesizing organobentonites. Oil-based filtrate reducer was synthesized with monomers of lignite and amine class. The laboratory tests show that the organic clay can effectively increase the viscosity of oil-based drilling fluid and the oil-based filtrate reducer can reduce the fluid loss. Their performances were better than additives of the same kind at home and abroad. The organic clay and oil-based filtrate reducer had great compatibility with the other additives in oil-based drilling fluid. Based on the optimal additives addition amount tests, the whole oil-based drilling fluid formula was determined and the test results show that the performances of the whole oil-based drilling fluids with various densities were great. The laboratory tests show that the oil-based drilling fluid developed was high temperature resistant, even at 200 C, as density varies from 0.90 to 2.0 g/cm3, it still held good performance with only a little fluid loss, good inhibition, great anti-pollution, and good reservoir protection performance. Field application result shows that the performance of the oil-based drilling fluid is stable with great ability to maintain wellbore stability and lower density than the water-based drilling fluid; drilling bits can be used much longer and the average penetration rate is increased; the oil-based drilling fluid can satisfy the drilling requirements.

Jiancheng LI; Peng YANG; Jian GUAN; Yande SUN; Xubing KUANG; Shasha CHEN

2014-01-01T23:59:59.000Z

225

The Effect of Cement Mechanical Properties and Reservoir Compaction on HPHT Well Integrity  

E-Print Network (OSTI)

in maintaining wellbore integrity. During the production process in HPHT wells, the pressure differential inside the casing and the surrounding formation is larger than the conventional wells. The stress induced by fluid withdrawal in highly compact reservoirs...

Yuan, Zhaoguang

2012-11-15T23:59:59.000Z

226

Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Dixie Valley Geothermal Field Area Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

227

Accounting for Remaining Injected Fracturing Fluid  

E-Print Network (OSTI)

The technology of multi-stage fracturing of horizontal wells made the development of shale gas reservoirs become greatly successful during the past decades. A large amount of fracturing fluid, usually from 53,000 bbls to 81,400 bbls, is injected...

Zhang, Yannan

2013-12-06T23:59:59.000Z

228

Surface water paleotemperatures and chemical compositions from fluid inclusions in Permian Nippewalla Group halite  

SciTech Connect

Quantitative climatic data for the Permian have been determined from Nippewalla Group halite. The middle Permian Nippewalla Group of Kansas and Oklahoma consists of several hundred feet of bedded halite, anhydrite, and red beds. Study of core and surface samples suggest that this halite was deposited by ephemeral lakes. Fluid inclusions provide evidence for the geochemistry of these Permian saline lake waters, including temperatures, salinities, and chemical compositions. Primary fluid inclusions are well-preserved in the Nippewalla halite. They are 5 - 30 [mu]m cubic inclusions situated along chevron and cornet growth bands. Most are one phase aqueous inclusions, but some also contain anhydride [open quote]accidental[close quotes] crystals. Rare two phase liquid-vapor inclusions may have formed by subaqueous outgassing or trapping of air at the water surface. Fluid inclusion freezing-melting behavior and leachate analyses suggest that Nippewalla halite precipitated from Na-Cl-rich waters with lesser quantities of SO[sub 4], Mg, K, Al, and Si. This composition may be a product of long-term weathering. Surface water paleotemperatures were determined from one phase aqueous fluid inclusions. Homogenization temperatures range from 32 to 46[degrees]C in primary fluid inclusions and are consistent (within 3[degrees]C) along individual chevrons and cornets. These homogenization temperatures are interpreted to represent maximum surface water temperatures. These fluid inclusion data are significant in addressing global change problems. Temperatures and chemistries in these Permian lake waters agree with some modern shallow saline lake waters and with Permian climate models. This study suggests that this Permian environment was relatively similar to its modern counterparts.

Benison, K.C. (Univ. of Kansas, Lawrence, KS (United States))

1996-01-01T23:59:59.000Z

229

Surface water paleotemperatures and chemical compositions from fluid inclusions in Permian Nippewalla Group halite  

SciTech Connect

Quantitative climatic data for the Permian have been determined from Nippewalla Group halite. The middle Permian Nippewalla Group of Kansas and Oklahoma consists of several hundred feet of bedded halite, anhydrite, and red beds. Study of core and surface samples suggest that this halite was deposited by ephemeral lakes. Fluid inclusions provide evidence for the geochemistry of these Permian saline lake waters, including temperatures, salinities, and chemical compositions. Primary fluid inclusions are well-preserved in the Nippewalla halite. They are 5 - 30 {mu}m cubic inclusions situated along chevron and cornet growth bands. Most are one phase aqueous inclusions, but some also contain anhydride {open_quote}accidental{close_quotes} crystals. Rare two phase liquid-vapor inclusions may have formed by subaqueous outgassing or trapping of air at the water surface. Fluid inclusion freezing-melting behavior and leachate analyses suggest that Nippewalla halite precipitated from Na-Cl-rich waters with lesser quantities of SO{sub 4}, Mg, K, Al, and Si. This composition may be a product of long-term weathering. Surface water paleotemperatures were determined from one phase aqueous fluid inclusions. Homogenization temperatures range from 32 to 46{degrees}C in primary fluid inclusions and are consistent (within 3{degrees}C) along individual chevrons and cornets. These homogenization temperatures are interpreted to represent maximum surface water temperatures. These fluid inclusion data are significant in addressing global change problems. Temperatures and chemistries in these Permian lake waters agree with some modern shallow saline lake waters and with Permian climate models. This study suggests that this Permian environment was relatively similar to its modern counterparts.

Benison, K.C. [Univ. of Kansas, Lawrence, KS (United States)

1996-12-31T23:59:59.000Z

230

Surface Water Sampling | Open Energy Information  

Open Energy Info (EERE)

Surface Water Sampling Surface Water Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Surface Water Sampling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids Thermal: Water temperature Dictionary.png Surface Water Sampling: Water sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Other definitions:Wikipedia Reegle Introduction Surface water sampling of hot and cold spring discharges has traditionally

231

Fluid driven reciprocating apparatus  

DOE Patents (OSTI)

An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

Whitehead, J.C.

1997-04-01T23:59:59.000Z

232

Flow monitoring and control system for injection wells  

DOE Patents (OSTI)

A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

Corey, John C. (212 Lakeside Dr., Aiken, SC 29803)

1993-01-01T23:59:59.000Z

233

Flow monitoring and control system for injection wells  

DOE Patents (OSTI)

A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

Corey, J.C.

1993-02-16T23:59:59.000Z

234

Lost Circulation Experience in Geothermal Wells  

SciTech Connect

Lost circulation during drilling and cementing in geothermal wells is a problem common to most geothermal areas. Material and rig time costs due to lost circulation often represent one fourth or more of the total well cost. Assessment of the general drilling and completion practices commonly used for handling lost circulation have been surveyed and evaluated under a study sponsored by Sandia National Laboratories. Results of this study, including interviews with geothermal production companies and with drilling fluid service companies, are reported in the paper. Conclusions and recommendations are presented for control of lost circulation during geothermal operations. Recent improvements in lost circulation materials and techniques and potential equipment solutions to the lost circulation problem are discussed. Research needs are also identified.

Goodman, M. A.

1981-01-01T23:59:59.000Z

235

Homothetic perfect fluid space-times  

E-Print Network (OSTI)

A brief summary of results on homotheties in General Relativity is given, including general information about space-times admitting an r-parameter group of homothetic transformations for r>2, as well as some specific results on perfect fluids. Attention is then focussed on inhomogeneous models, in particular on those with a homothetic group $H_4$ (acting multiply transitively) and $H_3$. A classification of all possible Lie algebra structures along with (local) coordinate expressions for the metric and homothetic vectors is then provided (irrespectively of the matter content), and some new perfect fluid solutions are given and briefly discussed.

J. Carot; A. M. Sintes

1996-07-24T23:59:59.000Z

236

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

237

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

238

View dependent fluid dynamics  

E-Print Network (OSTI)

VIEW DEPENDENT FLUID DYNAMICS A Thesis by BRIAN ARTHUR BARRAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2006 Major Subject: Visualization... Sciences VIEW DEPENDENT FLUID DYNAMICS A Thesis by BRIAN ARTHUR BARRAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Donald...

Barran, Brian Arthur

2006-08-16T23:59:59.000Z

239

Production Well Performance Enhancement using Sonication Technology  

SciTech Connect

The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: Laboratory studies Mathematical modeling Sonic tool design and development Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

2005-12-31T23:59:59.000Z

240

Carbon-bearing fluids at nanoscale interfaces  

SciTech Connect

The behaviour of fluids at mineral surfaces or in confined geometries (pores, fractures) typically differs from their bulk behaviour in many ways due to the effects of large internal surfaces and geometrical confinement. We summarize research performed on C-O-H fluids at nanoscale interfaces in materials of interest to the earth and material sciences (e.g., silica, alumina, zeolites, clays, rocks, etc.), emphasizing those techniques that assess microstructural modification and/or dynamical behaviour such as gravimetric analysis, small-angle (SANS) neutron scattering, and nuclear magnetic resonance (NMR). Molecular dynamics (MD) simulations will be described that provide atomistic characterization of interfacial and confined fluid behaviour as well as aid in the interpretation of the neutron scattering results.

Cole, David [Ohio State University; Ok, Salim [Ohio State University, Columbus; Phan, A [Ohio State University, Columbus; Rother, Gernot [ORNL; Striolo, Alberto [Oklahoma University; Vlcek, Lukas [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Capillary tension and imbibition sequester frack fluid in Marcellus gas shale  

Science Journals Connector (OSTI)

...gone. Introducing 10 4 m 3 of fracking fluid per horizontal well...sequester the remaining charge of fracking fluid in a matrix porosity of...Formation brine to shallow aquifers in Pennsylvania . Proc Natl Acad...rocks Devonian drilling muds fracking fluids gas shale ground water...

Terry Engelder

2012-01-01T23:59:59.000Z

242

Department of Industrial Engineering Fall 2012 FLUID PERFORMANCE IN THE MACHINING OF DUCTILE &  

E-Print Network (OSTI)

PENNSTATE Department of Industrial Engineering Fall 2012 FLUID PERFORMANCE IN THE MACHINING fluids may mitigate microstructure problems at or just below machined surfaces, as well as have two different machining fluids, Quakercool 7020 and Quakercool 3750, of CGI, gray, and ductile cast

Demirel, Melik C.

243

Raft River monitor well potentiometric head responses and water...  

Open Energy Info (EERE)

one season cannot be sampled the next. In addition, information on well construction, completion, and production is often unreliable or not available. These data are to be...

244

Soil Gas Sampling | Open Energy Information  

Open Energy Info (EERE)

Soil Gas Sampling Soil Gas Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Soil Gas Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Identify concealed faults that act as conduits for hydrothermal fluids. Hydrological: Identify hydrothermal gases of magmatic origin. Thermal: Differentiate between amagmatic or magmatic sources heat. Dictionary.png Soil Gas Sampling: Soil gas sampling is sometimes used in exploration for blind geothermal resources to detect anomalously high concentrations of hydrothermal gases

245

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

246

Visually simulating realistic fluid motion  

E-Print Network (OSTI)

where 0 stands for obstacle cell, S surface cell, F full cell, I inlet cell, U outlet cell and the cells not marked are empty cells . . . . . . 34 12 Area weighting interpolation scheme for determining local fluid velocity for a marker k [9] . . 35... in the fluid. It is measured as the force on the face of a unit cube, inserted into the fluid. If the pressure varies in the fluid, the fluid will move due to the acceleration generated by the pressure force. The pressure at a point is isotropic in a fluid...

Naithani, Priyanka

2012-06-07T23:59:59.000Z

247

Flow monitoring and control system for injection wells  

DOE Patents (OSTI)

The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Corey, J.C.

1991-01-01T23:59:59.000Z

248

Electrorheological fluid under elongation, compression, and shearing  

Science Journals Connector (OSTI)

Electrorheological (ER) fluid based on zeolite and silicone oil under elongation, compression, and shearing was investigated at room temperature. Dc electric fields were applied on the ER fluid when elongation and compression were carried out on a self-constructed test system. The shear yield stress, presenting the macroscopic interactions of particles in the ER fluid along the direction of shearing and perpendicular to the direction of the electric field, was also obtained by a HAAKE RV20 rheometer. The tensile yield stress, presenting the macroscopic interactions of particles in the ER fluid along the direction of the electric field, was achieved as the peak value in the elongating curve with an elongating yield strain of 0.150.20. A shear yield angle of about 1518.5 reasonably connected tensile yield stress with shear yield stress, agreeing with the shear yield angle tested well by other researchers. The compressing tests showed that the ER fluid has a high compressive modulus under a small compressive strain lower than 0.1. The compressive stress has an exponential relationship with the compressive strain when it is higher than 0.1, and it is much higher than shear yield stress.

Y. Tian; Y. Meng; H. Mao; S. Wen

2002-03-06T23:59:59.000Z

249

Integrated Geothermal Well Testing: Test Objectives and Facilities  

SciTech Connect

A new and highly integrated geothermal well test program was designed for three geothermal operators in the US (MCR, RGI and Mapco Geothermal). This program required the design, construction and operation of new well test facilities. The main objectives of the test program and facilities are to investigate the critical potential and worst problems associated with the well and produced fluids in a period of approximately 30 days. Field and laboratory investigations are required to determine and quantify the problems of fluid production, utilization and reinjection. The facilities are designed to handle a flow rate from a geothermal well of one million pounds per hour at a wellhead temperature of approximately 268 C (515 F). The facilities will handle an entire spectrum of temperature and rate conditions up to these limits. All pertinent conditions for future fluid exploitations can be duplicated with these facilities, thus providing critical information at the very early stages of field development. The new well test facilities have been used to test high temperature, liquid-dominated geothermal wells in the Imperial Valley of California. The test facilities still have some problems which should be solvable. The accomplishments of this new and highly integrated geothermal well test program are described in this paper.

Nicholson, R. W.; Vetter, O. J.

1981-01-01T23:59:59.000Z

250

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

251

Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 - 2005 Usefulness useful DOE-funding Unknown Exploration Basis Determine if fluid inclusion stratigraphy is applicable to geothermal Notes Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids.Fluid inclusion gas geochemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow and reservoir seals. Analyses from

252

Relativistic viscoelastic fluid mechanics  

SciTech Connect

A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

Fukuma, Masafumi; Sakatani, Yuho [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

2011-08-15T23:59:59.000Z

253

Metallization of fluid hydrogen  

Science Journals Connector (OSTI)

...P. Tunstall Metallization of fluid hydrogen W. J. Nellis 1 A. A. Louis 2 N...The electrical resistivity of liquid hydrogen has been measured at the high dynamic...which structural changes are paramount. hydrogen|metallization of hydrogen|liquid...

1998-01-01T23:59:59.000Z

254

Isotopic Analysis Fluid At Coso Geothermal Area (1997) | Open Energy  

Open Energy Info (EERE)

Fluid At Coso Geothermal Area (1997) Fluid At Coso Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1997) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1997 Usefulness not indicated DOE-funding Unknown Exploration Basis Identify the source of chlorine Notes The 36Cl/Cl values for several geothermal water samples and reservoir host rock samples have been measured. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic

255

Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Area (Wood, 2002) Hot Lake Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

256

Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Hot Springs Area (Wood, 2002) Hot Springs Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location Crane Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

257

Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Mickey Hot Springs Area (Wood, Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location Mickey Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

258

Water Sampling At Salton Sea Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Salton Sea Area (Wood, 2002) Salton Sea Area (Wood, 2002) Exploration Activity Details Location Salton Sea Area Exploration Technique Water Sampling Activity Date Usefulness not useful DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two. Our results indicate that

259

Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Umpqua Hot Springs Area (Wood, Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location Umpqua Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

260

Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Mccredie Hot Springs Area (Wood, 2002) Mccredie Hot Springs Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details Location Mccredie Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) | Open  

Open Energy Info (EERE)

2002) 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity Details Location Zim's Hot Springs Geothermal Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

262

Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Wood, 2002) Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

263

Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) |  

Open Energy Info (EERE)

Wood, 2002) Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) Exploration Activity Details Location Belknap-Foley-Bigelow Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

264

Well Deepening At Lightning Dock Geothermal Area (Witcher, 2006...  

Open Energy Info (EERE)

Number DE-FC07-00AL66977 Notes This project deepened a well and took 4 samples from wells around the Lightning Docks KGRA and performed extensive chamical and isotope analysis...

265

Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this research is to develop a method to identify fracture systems in wells using fluid inclusion gas analysis of drill chips.

266

Well Permits (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

Well permits are required for the installation of wells in private and public space. Wells are defined as any trest hole, shaft, or soil excavation created by any means including, but not limited...

267

Magnetically stimulated fluid flow patterns  

ScienceCinema (OSTI)

Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

Martin, Jim; Solis, Kyle

2014-08-06T23:59:59.000Z

268

Fluid Flow Modeling in Fractures  

E-Print Network (OSTI)

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

269

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land  

Open Energy Info (EERE)

Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Single-Well And Cross-Well Seismic Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary

270

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest,  

Open Energy Info (EERE)

Van Soest, Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow

271

Ultra Thin Quantum Well Materials  

SciTech Connect

This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would open many markets for waste heat recovery applications. By installing Hi-Z's materials in applications in which electricity could be produced from waste heat sources could result in significant energy savings as well as emissions reductions. For example, if QW thermoelectric generators could be introduced commercially in 2015, and assuming they could also capture an additional 0.1%/year of the available waste heat from the aluminum, steel, and iron industries, then by 2020, their use would lead to a 2.53 trillion Btu/year reduction in energy consumption. This translates to a $12.9 million/year energy savings, and 383.6 million lb's of CO2 emissions reduction per year. Additionally, Hi-Z would expect that the use of QW TE devices in the automotive, manufacturing, and energy generation industries would reduce the USA's petroleum and fossil fuel dependence, and thus significantly reduce emissions from CO2 and other polluting gasses such as NOx, SOx, and particulate matter (PM), etc.

Dr Saeid Ghamaty

2012-08-16T23:59:59.000Z

272

Fluid Mechanics Virtual Fluids Lab Demonstration  

E-Print Network (OSTI)

1 In this lab you can model viscous flow in circular pipe with or without heat transfer densities.) 1. Coarse gird 2. Medium grid 3. Fine grid In this sample we choose "Medium" meshdensity #12;6 Step 3 Cont'd In this step we have generated the grid for the purpose of discretization, to translate

Kostic, Milivoje M.

273

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

274

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network (OSTI)

Flow of Fluids in Oil Reservoirs," Physics (Jan. 1934), 5.Flow of Fluids in Oil Reservoirs, Physics, V. ~, pages 20-Due to the fact that oil reservoirs are g~ner ally closed

Authors, Various

2011-01-01T23:59:59.000Z

275

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

Drumheller, D.S.

1998-10-20T23:59:59.000Z

276

Oscillating fluid power generator  

SciTech Connect

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

277

Bailer for top head drive rotary well drills  

SciTech Connect

A bailer mounted to the derrick of a top head drive well drilling rig is described. The bailer includes a winch line drum mounted by a bracket to the derrick. A positive displacement hydraulic motor mounts one end of the drum and receives fluid under pressure from the existing hydraulic pressure supply. Valving is provided to allow reverse operation of the motor so equipment can either be raised or lowered relative to the derrick. The hydraulic delivery line to the motor includes a one way restrictor that will allow relatively free passage of fluid to the motor in a driving or lifting mode but will reverse flow of fluid from the motor, thereby affording a braking effect for lowering a load at a selected rate.

Bartholomew, L.

1980-09-23T23:59:59.000Z

278

Health And Wellness Department Of Health And Wellness  

E-Print Network (OSTI)

Health And Wellness Department Of Health And Wellness Lutchmie Narine, Chair, 315-443-9630 426 The Department of Health and Wellness offers a 123-credit Bachelor of Science degree (B.S.) in public health. Our graduates are prepared to work in community health education and health promotion in public health agencies

McConnell, Terry

279

Acoustic concentration of particles in fluid flow  

SciTech Connect

An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

2010-11-23T23:59:59.000Z

280

Thermal extraction analysis of five Los Azufres production wells  

SciTech Connect

Thermal energy extraction from five wells supplying 5-MWe wellhead generators in three zones of the Los Azufres geothermal field has been examined from production and chemical data compiled over 14-years of operation. The data, as annual means, are useful in observing small-scale changes in reservoir performance with continuous production. The chemical components are chloride for quality control and the geothermometer elements for reservoir temperatures. The flowrate and fluid enthalpy data are used to calculate the thermal extraction rates. Integration of these data provides an estimate of the total energy extracted from the zone surrounding the well. The combined production and chemical geothermometer data are used to model the produced fluid as coming from just-penetrating wells for which the annual produced mass originates from a series of concentric hemispheric shells moving out into the reservoir. Estimates are made of the drawdown distance into the reservoir and the far-field conditions.

Kruger, Paul; Quijano, Luis

1995-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method of drilling and casing a well  

SciTech Connect

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

282

Spinodal phase decomposition with dissipative fluid dynamics  

SciTech Connect

The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics including not only shear and bulk viscosity but also heat conduction, as well as a gradient term in the local pressure. The degree of spinodal amplification is calculated along specific dynamical phase trajectories and the results suggest that the effect can be greatly enhanced by tuning the collision energy so that maximum compression occurs inside the region of spinodal instability.

Randrup, J., E-mail: JRandrup@LBL.gov [Lawrence Berkeley Laboratory, Nuclear Science Division (United States)

2012-06-15T23:59:59.000Z

283

Recent Developments in Geothermal Drilling Fluids  

SciTech Connect

In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

1981-01-01T23:59:59.000Z

284

Supercritical Fluid Extraction as a Sample Introduction Method for Chromatography  

Science Journals Connector (OSTI)

......332: 107 (1985). 12. R.J. Skelton, Jr., C.C. Johnson, and...2: 73 (1986). 25. J.R. Wheeler and M.E.P. McNally. Fresenius Z. Anal. Chem...1988). 26. M.E.P. McNally and J.R. Wheeler. J. Chromatogr......

Marion R. Andersen; John T. Swanson; Nathan L. Porter; Bruce E. Richter

285

Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I...  

Open Energy Info (EERE)

< 3 times the air value. Authors B. M. Kennedy, M. A. Lynch, J. H. Reynolds and S. P. Smith Published Journal Geochimica et Cosmochimica Acta, 1985 DOI 10.1016...

286

Well Monitoring Systems for EGS  

Energy.gov (U.S. Department of Energy (DOE))

Well Monitoring Systems for EGS presentation at the April 2013 peer review meeting held in Denver, Colorado.

287

Anthrax Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

Anthrax Anthrax Sampling and Decontamination: Technology Trade-Offs Phillip N. Price, Kristina Hamachi, Jennifer McWilliams, and Michael D. Sohn Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley CA 94720 September 12, 2008 This work was supported by the Office of Science, Office of High Energy Physics, Homeland Security under the U.S. Department of Energy under Contract No. DE-AC02-05CH1123. Contents 1 Executive Summary 3 1.1 How much sampling is needed to decide if a building is safe? . . . . . . . 3 1.1.1 Sampling Nomogram . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 How many characterization samples should be taken? . . . . . . . . . . . 7 1.3 What decontamination method should be used? . . . . . . . . . . . . . . . 7 1.4 Post-decontamination sampling . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 What are rules of thumb for cost and effort? . . . . . . . . . . . .

288

Volatiles in hydrothermal fluids- A mass spectrometric study of fluid  

Open Energy Info (EERE)

Volatiles in hydrothermal fluids- A mass spectrometric study of fluid Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Details Activities (4) Areas (4) Regions (0) Abstract: A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. Analyses are in progress on inclusions from the Salton Sea, Valles Caldera, Geysers, and Coso geothermal systems. Author(s): Mckibben, M. A.

289

Wellness Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and assistance to DOE employees through a variety of programs and resources geared toward enhancing their mental and physical well-being. Wellness programs include: Accommodations, the Child Development Centers, the Employee Assistance Program (EAP), the Forrestal (FOHO) and Germantown (GOHO) Fitness Centers, the Occupational Health Clinics and the DOE WorkLife4You Program. Programs Disability Services Child Development Centers Headquarters Employee Assistance Program (EAP) Headquarters Occupational Health Clinics Headquarters Accommodation Program DOE Worklife4You Program Health Foreign Travel Health & Wellness Tips

290

Metallization of Fluid Nitrogen and the Mott Transition in Highly Compressed Low-Z Fluids  

Science Journals Connector (OSTI)

Electrical conductivities are reported for degenerate fluid nitrogen at pressures up to 180GPa (1.8Mbar) and temperatures of ?7000??K. These extreme quasi-isentropic conditions were achieved with multiple-shock compression generated with a two-stage light-gas gun. Nitrogen undergoes a nonmetal-metal transition at 120GPa, probably in the monatomic state. These N data and previous conductivity data for H, O, Cs, and Rb are used to develop a general picture of the systematics of the nonmetal-metal transition in these fluids. Specifically, the density dependences of electrical conductivities in the semiconducting fluid are well correlated with the radial extent of the electronic charge-density distributions of H, N, O, Cs, and Rb atoms. These new data for N scale with previous data for O, as expected from their similar charge-density distributions.

R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis

2003-06-18T23:59:59.000Z

291

well records | OpenEI  

Open Energy Info (EERE)

well records well records Dataset Summary Description The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This dataset is comprised of 50 recent well record permits from 2/9/11 - 3/18/11. The dataset lists the well name, county, operator, field, and date approved, among other fields. State's make oil and gas data publicly available for a range of topics. Source Geological Survey of Alabama Date Released February 09th, 2011 (3 years ago) Date Updated March 18th, 2011 (3 years ago) Keywords Alabama board gas oil state well records Data application/vnd.ms-excel icon Well records 2/9/11 - 3/18/11 (xls, 28.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License

292

Notes 09. Fluid inertia and turbulence in fluid film bearings  

E-Print Network (OSTI)

When fluid inertia effects are important. Bulk-flow model for inertial flows. Turbulence and inertia in short length journal bearings and open end dampers....

San Andres, Luis

2009-01-01T23:59:59.000Z

293

Thermodynamic Model for Fluid-Fluid Interfacial Areas in Porous...  

NLE Websites -- All DOE Office Websites (Extended Search)

areas are important in controlling the rate of mass and energy transfer between fluid phases in porous media. We present a modified thermodynamically based model (TBM) to...

294

Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials  

SciTech Connect

Currently there are few standardized experimental practices in the field of fluid stage transmission electron microscopy. To obtain consistency in this emerging field, a crucial step is to establish the common artifacts and electron beam-sample interactions that can occur. Recently many unintended phenomena have been observed during in situ fluid stage scanning transmission electron microscopy (STEM) experiments, including growth of crystals on the fluid stage windows, repulsion of particles from the irradiated area, bubble formation, and the loss of atomic information during prolonged imaging of individual nanoparticles. Here we provide a comprehensive review of these fluid stage artifacts, and we present new experimental evidence that sheds light on their origins in terms of experimental apparatus issues and indirect electron beam sample interactions with the fluid layer. The results here will provide a methodology for minimizing fluid stage imaging artifacts and acquiring quantitative in situ observations of nanomaterial behavior in a liquid environment.

Woehl, Taylor J.; Jungjohann, K. L.; Evans, James E.; Arslan, Ilke; Ristenpart, William D.; Browning, Nigel D.

2013-04-01T23:59:59.000Z

295

Optimization of Performance Qualifiers during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract An optimization analysis of the drilling process constitutes a powerful tool for operating under desired pressure levels (inside operational window) and, simultaneously, maximizing the rate of penetration, which must be harmonized with the conflicting objective of minimizing the specific energy. The drilling efficiency is improved as the rate of penetration is increased, however, there are conflicts with performance qualifiers, such as down hole tool life, footage, vibrations control, directional effectiveness and hydraulic scenarios. Concerning hydraulic effects, the minimization of the specific energy must be constrained by annulus bottom hole pressure safe region, using the operational window, placed above porous pressure and below fracture pressure. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. The objective being tracked is operating under desired pressure levels, which assures process safety, also reducing costs. In this scenario, optimization techniques are important tools for narrow operational windows, commonly observed at deepwater and pre-salt layer environments. The major objective of this paper is developing an optimization methodology for minimizing the specific energy, also assuring safe operation (inside operational window), despite the inherent process disturbances, under a scenario that maximization of ROP (rate of penetration) is a target.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

296

Isotopic Analysis- Fluid At Coso Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1982) Analysis- Fluid At Coso Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1982) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine recharge for the system Notes Thirty-nine water samples were collected from the Coso geothermal system and vicinity and were analyzed for major chemical constituents and deltaD and delta18O. Non-thermal ground waters from the Coso Range were found to be isotopically heavier than non-thermal ground waters from the Sierra Nevada to the west. The deltaD value for the deep thermal water at Coso is

297

Cytospin preparations are superior to common smears in the detection of monosodium urate crystals in low-cellular synovial fluids  

Science Journals Connector (OSTI)

In cases of gout with a low synovial fluid (SF) ... ,000/?l) SF samples of patients with gout. We determined the number of MSU crystals ... samples of 17 patients with MSU-crystal-proven gout and compared the two...

Christoph Robier; Mariana Stettin; Franz Quehenberger

2014-12-01T23:59:59.000Z

298

Apparatus and method for rapid separation and detection of hydrocarbon fractions in a fluid stream  

DOE Patents (OSTI)

An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.

Sluder, Charles S.; Storey, John M.; Lewis, Sr., Samuel A.

2013-01-22T23:59:59.000Z

299

E-Print Network 3.0 - astrophysical accretion flows Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sample search results for: astrophysical accretion flows Page: << < 1 2 3 4 5 > >> 1 Astronomy 202: Astrophysical Gas Dynamics LL Fluid Mechanics by Landau & Lifshitz Summary:...

300

Well Monitoring System for EGS  

Energy.gov (U.S. Department of Energy (DOE))

EGS well monitoring tools offer a unique set of solutions which will lower costs and increase confidence in future geothermal projects.

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thermal well-test method  

DOE Patents (OSTI)

A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

Tsang, C.F.; Doughty, C.A.

1984-02-24T23:59:59.000Z

302

Preliminary report on fluid inclusions from halites in the Castile and lower Salado formations of the Delaware Basin, southeastern New Mexico. [Freezing-point depression  

SciTech Connect

A suite of samples composed primarily of halite from the upper Castile and lower Salado Formations of the Permian Basin was selected from Waste Isolation Pilot Plant (WIPP) core for a reconnaissance study of fluid inclusions. Volume percent of these trapped fluids averaged 0.7% to 1%. Freezing-point depressions varied widely and appeared to be unrelated to fluid-inclusion type, to sedimentary facies, or to stratigraphic depth. However, because very low freezing points were usually associated with anhydrite, a relation may exist between freezing-point data and lithology. Dissolved sulfate values were constant through the Castile, then decreased markedly with lesser depth in the lower Salado. This trend correlates very well with observed mineralogy and is consistent with an interpretation of the occurrence of secondary polyhalite as a result of gypsum or anhydrite alteration with simultaneous consumption of dissolved sulfate from the coexisting fluids. Together with the abundance and distribution of fluid inclusions in primary or ''hopper'' crystal structures, this evidence suggests that inclusions seen in these halites did not migrate any significant geographical distance since their formation. 28 refs., 17 figs., 2 tabs.

Stein, C.L.

1985-09-01T23:59:59.000Z

303

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

304

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion  

E-Print Network (OSTI)

Aero-Acoustic Analysis of Wells Turbine for Ocean Wave Energy Conversion Ralf Starzmann Fluid the water wave motion into a bi-directional air flow, which in turn drives an air turbine. The Wells turbine the environmental impact of an in situ Wells turbine in more detail requires an in depth understanding

Frandsen, Jannette B.

305

Generic effluent monitoring system certification for salt well portable exhauster  

SciTech Connect

Tests were conducted to verify that the Generic Effluent Monitoring System (GEMS), as it is applied to the Salt Well Portable Exhauster, meets all applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the air sampling probe location and the transport of the sample to the collection devices. The criteria covering air sampling probe location ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in the report. The tests demonstrated that the GEMS/Salt Well Exhauster system meets all applicable performance criteria. Pacific Northwest National Laboratory conducted the testing using a mockup of the Salt Well Portable Exhauster stack at the Numatec Hanford Company`s 305 Building. The stack/sampling system configuration tested was designed to provide airborne effluent control for the Salt Well pumping operation at some U.S. Department of Energy (DOE) radioactive waste storage tanks at the Hanford Site, Washington. The portable design of the exhauster allows it to be used in other applications and over a range of exhaust air flowrates (approximately 200 - 1100 cubic feet per minute). The unit includes a stack section containing the sampling probe and another stack section containing the airflow, temperature and humidity sensors. The GEMS design features a probe with a single shrouded sampling nozzle, a sample delivery line, and sample collection system. The collection system includes a filter holder to collect the sample of record and an in-line detector head and filter for monitoring beta radiation-emitting particles.

Glissmeyer, J.A.; Maughan, A.D.

1997-09-01T23:59:59.000Z

306

Petascale Adaptive Computational Fluid Dynamics | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Petascale Adaptive Computational Fluid Dynamics Petascale Adaptive Computational Fluid Dynamics PI Name: Kenneth Jansen PI Email: jansen@rpi.edu Institution: Rensselaer Polytechnic Institute The specific aim of this request for resources is to examine scalability and robustness of our code on BG/P. We have confirmed that, during the flow solve phase, our CFD flow solver does exhibit perfect strong scaling to the full 32k cores on our local machine (CCNI-BG/L at RPI) but this will be our first access to BG/P. We are also eager to study the performance of the adaptive phase of our code. Some aspects have scaled well on BG/L (e.g., refinement has produced adaptive meshes that take a 17 million element mesh and perform local adaptivity on 16k cores to match a requested size field to produce a mesh exceeding 1 billion elements) but other aspects (e.g.,

307

MOLECULAR DESIGN OF COLLOIDS IN SUPERCRITICAL FLUIDS  

SciTech Connect

The environmentally benign, non-toxic, non-flammable fluids water and carbon dioxide (CO2) are the two most abundant and inexpensive solvents on earth. Emulsions of these fluids are of interest in many industrial processes, as well as CO2 sequestration and enhanced oil recovery. Until recently, formation of these emulsions required stabilization with fluorinated surfactants, which are expensive and often not environmentally friendly. In this work we overcame this severe limitation by developing a fundamental understanding of the properties of surfactants the CO2-water interface and using this knowledge to design and characterize emulsions stabilized with either hydrocarbon-based surfactants or nanoparticle stabilizers. We also discovered a new concept of electrostatic stabilization for CO2-based emulsions and colloids. Finally, we were able to translate our earlier work on the synthesis of silicon and germanium nanocrystals and nanowires from high temperatures and pressures to lower temperatures and ambient pressure to make the chemistry much more accessible.

Keith P. Johnston

2009-04-06T23:59:59.000Z

308

Apparatus for operating a gas and oil producing well  

SciTech Connect

Apparatus is disclosed for automatically operating a gas and oil producing well of the plunger lift type, including a comparator for comparing casing and tubing pressures, a device for opening the gas delivery valve when the difference between casing and tubing pressure is less than a selected minimum value, a device for closing the gas discharge valve when casing pressure falls below a selected casing bleed value, an arrival sensor switch for initially closing the fluid discharge valve when the plunger reaches the upper end of the tubing, and a device for reopening the fluid discharge valve at the end of a given downtime period in the event that the level of oil in the tubing produces a pressure difference greater than the given minimum differential value, and the casing pressure is greater than lift pressure. The gas discharge valve is closed if the pressure difference exceeds a selected maximum value, or if the casing pressure falls below a selected casing bleed value. The fluid discharge valve is closed if tubing pressure exceeds a maximum safe value. In the event that the plunger does not reach the upper end of the tubing during a selected uptime period, a lockout indication is presented on a visual display device, and the well is held shut-in until the well differential is forced down to the maximum differential setting of the device. When this occurs, the device will automatically unlock and normal cycling will resume.

Wynn, S. R.

1985-07-02T23:59:59.000Z

309

Fracturing Fluid Characterization Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation Page Documentation Page 1. Report No. DE - FC 21 - 92MC29077 2. 3. Recipient's Accession No. 5. Report Date August 31, 2000 4. Title and Subtitle Fracturing Fluid Characterization Facility 6. 7. Author(s) The University of Oklahoma 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 9. Performing Organization Name and Address The University of Oklahoma Sarkeys Energy Center T301 100 E Boyd St Norman, OK 73019 11. Contract (C) or Grant (G) No. DOE:DE FC21 92 MC29077 13. Type of Report & Period Covered Final Report 09 30 92 - 03 31 00 12. Sponsoring Organization Name and Address US Dept of Energy - FETL 3610 Collins Ferry Road Morgantown, WV 26505 14. 15. Supplementary Notes Several technical papers were prepared and presented at various Society of Petroleum Engineers Conferences and US

310

Numerical simulation of fluid flow in porous/fractured media  

SciTech Connect

Theoretical models of fluid flow in porous/fractured media can help in the design of in situ fossil energy and mineral extraction technologies. Because of the complexity of these processes, numerical solutions are usually required. Sample calculations illustrate the capabilities of present day computer models.

Travis B.J.; Cook, T.L.

1981-01-01T23:59:59.000Z

311

Fluid-driven deformation of a soft granular material  

E-Print Network (OSTI)

Compressing a porous, fluid-filled material will drive the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through the Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid. In growing, melting, granular, and fibrous materials, these interactions can be extremely complex. Here, we present a high-resolution measurement of poromechanical deformation driven by fluid injection. We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multi-scale deformation field. While a continuum model based on a modification of conventional poroelastic theory captures certain macroscopic features of the deformation, the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe novel grain-scale plasticity and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.

Christopher W. MacMinn; Eric R. Dufresne; John S. Wettlaufer

2014-05-28T23:59:59.000Z

312

Viscosity of Quantum Hall Fluids  

Science Journals Connector (OSTI)

The viscosity of quantum fluids with an energy gap at zero temperature is related to the adiabatic curvature on the space parametrizing flat background metrics. For quantum Hall fluids on two-dimensional tori, the quantum viscosity is computed. It turns out to be isotropic, constant, and proportional to the magnetic field strength.

J. E. Avron; R. Seiler; P. G. Zograf

1995-07-24T23:59:59.000Z

313

LECTURES IN ELEMENTARY FLUID DYNAMICS  

E-Print Network (OSTI)

LECTURES IN ELEMENTARY FLUID DYNAMICS: Physics, Mathematics and Applications J. M. McDonough Departments of Mechanical Engineering and Mathematics University of Kentucky, Lexington, KY 40506-0503 c 1987, 1990, 2002, 2004, 2009 #12;Contents 1 Introduction 1 1.1 Importance of Fluids

McDonough, James M.

314

1982 geothermal well drilling summary  

SciTech Connect

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

315

The influence of fluid properties on the success of hydraulic fracturing operations  

SciTech Connect

Hydroxypropylguar based fluids are the most commonly used fluids for hydraulic fracturing. Through the addition of borate ions the polymer present in the fluid can crosslink to form a high viscosity gel. Prior to placement in the fracture the fluid is required to have a low viscosity to minimize friction losses in the tubular goods. A high viscosity fluid is required in the fracture for several reasons, primarily to suspend the proppant and to minimize fluid loss into the formation. This paper describes a new method which can be used to model the gelation reaction of crosslinking fluids. By modeling the dynamic properties of the fluid it is possible to predict the physical state of the fluid at any time during a fracturing treatment. Small amplitude oscillatory measurements are applied to fluid samples in a cone-and-plate geometry. The change in the dynamic properties with time can be fitted to a simple model which can then be used to determine the gel time for the fluid. Methods used to distinguish between the liquid and gel state are also discussed.

Power, D.J.; Boger, D.V. [Univ. of Melbourne, Victoria (Australia); Paterson, L.

1994-12-31T23:59:59.000Z

316

Quantum well multijunction photovoltaic cell  

DOE Patents (OSTI)

A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

Chaffin, Roger J. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

317

Pressure analysis for horizontal wells  

SciTech Connect

This paper presents horizontal-well test design and interpretation methods. Analytical solutions are developed that can be handled easily by a desktop computer to carry out design as well as interpretation with semilog and log-log analysis. These analytical solutions point out the distinctive behavior of horizontal wells: (1) at early time, there is a circular radial flow in a vertical plane perpendicular to the well, and (2) at late time, there is a horizontal pseudoradial flow. Each type of flow is associated with a semilog straight line to which semilog analysis has to be adapted. The horizontal pseudoradial flow takes into account a pseudoskin depending on system geometry, which is a priori defined and estimated. Practical time criteria are proposed to determine the beginning and the end of each type of flow and to provide a guide to semilog analysis and well test design. The authors study the behavior of uniform-flux or infinite-conductivity horizontal wells, with wellbore storage and skin. The homogeneous reservoir is infinite or limited by impermeable or constant-pressure boundaries. A method is also outlined to transform all our solutions for homogeneous reservoirs into corresponding solutions for double-porosity reservoirs.

Davlau, F.; Mouronval, G.; Bourdarot, G.; Curutchet, P.

1988-12-01T23:59:59.000Z

318

In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid  

E-Print Network (OSTI)

in the Logatchev hydro- thermal field. Two samples were collected over 24 min from the same spot and further three. The micro- bial composition of the fifth sample (plume) is con- siderably different. Although a significant hints that single hydro- thermal fluid samples collected on a small spatial scale may also reflect

Girguis, Peter R.

319

Effective perfect fluids in cosmology  

SciTech Connect

We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.

Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Rome (Italy); Bellazzini, Brando, E-mail: guillermo.ballesteros@unige.ch, E-mail: brando.bellazzini@pd.infn.it [Dipartimento di Fisica, Universit di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

2013-04-01T23:59:59.000Z

320

DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG  

Open Energy Info (EERE)

DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG GRAPHS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG GRAPHS Details Activities (1) Areas (1) Regions (0) Abstract: This is the fourth paper in a series on developing fluid inclusion stratigraphy (FIS) as a logging tool for geothermal bore holes. Here we address methods of displaying analyses and plotting gas ratios used for data interpretation on mudlog plots. The goal is to develop a rapid method of data display and interpretation for the up to 10,000 analyses returned by a geothermal well FIS analysis. Author(s): Norman, D.I.; Dilley, L.M.; McCulloch, J. Published: PROCEEDINGS, Thirtieth Workshop on Geothermal Reservoir

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Integrated mineralogical and fluid inclusion study of the Coso geothermal  

Open Energy Info (EERE)

mineralogical and fluid inclusion study of the Coso geothermal mineralogical and fluid inclusion study of the Coso geothermal systems, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Integrated mineralogical and fluid inclusion study of the Coso geothermal systems, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems on the margins of the Basin and Range province that is associated with recent volcanic activity. This system, which is developed entirely in fractured granitic and metamorphic rocks, consists of a well-defined thermal plume that originates in the southern part of the field and then flows upward and laterally to the north. Fluid inclusion homogenization temperatures and salinities demonstrate that cool, low salinity ground waters were present

322

Isotopic Analysis- Fluid At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Analysis- Fluid At Coso Geothermal Area (1990) Analysis- Fluid At Coso Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References Whelan, J. A. (1 September 1990) Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California. Supplement.

323

Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids  

SciTech Connect

A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

Not Available

1981-01-01T23:59:59.000Z

324

Optimization of fractured well performance of horizontal gas wells  

E-Print Network (OSTI)

................................................24 3.4 Ideal Number of Transverse Fractures..........................................26 3.5 Constant Volume Transverse Fractures ........................................32 3.6... of a longitudinal fracture..............................................10 2.5 Example of horizontal well with longitudinal fracture performance .............11 2.6 DVS representation of transverse fractures...

Magalhaes, Fellipe Vieira

2009-06-02T23:59:59.000Z

325

Definition: Field Sampling | Open Energy Information  

Open Energy Info (EERE)

Field Sampling Field Sampling Jump to: navigation, search Dictionary.png Field Sampling Systematic field sampling is critical for reliable characterize a geothermal resource. Some of the physical and chemical properties of rock samples can be estimated by visual inspection, but accurate determination of these properties requires detailed laboratory analysis. Surface or subsurface fluid sampling is also routinely performed to characterize the chemical, thermal, or hydrological properties of a hydrothermal system. Combinations of these sampling techniques have traditionally been used to obtain important information used to determine whether or not a viable power generation or heat utilization facility can be developed at a prospect. Soil sampling is a less commonly used method for exploration of

326

oil-emulsion (rotary) drilling fluid  

Science Journals Connector (OSTI)

oil-emulsion (rotary) drilling fluid, oil-emulsion fluid [Used where low fluid-loss, very thin cake, and good lubrication of the drill pipe are of primary importance, such as in directional drilling ...

2014-08-01T23:59:59.000Z

327

Lattice Boltzmann simulations of complex fluids  

Science Journals Connector (OSTI)

......research-article Articles Lattice Boltzmann simulations of complex fluids...OX1 3NP, UK We discuss how lattice Boltzmann simulations can be used to model...binary and lamellar fluids. lattice Boltzmann|complex fluids|shear flow......

J. M. YEOMANS; ALEXANDER J. WAGNER

2000-10-01T23:59:59.000Z

328

Multipurpose Acoustic Sensor for Downhole Fluid Monitoring  

Energy.gov (U.S. Department of Energy (DOE))

Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition.

329

Finite element simulation of electrorheological fluids  

E-Print Network (OSTI)

Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...

Rhyou, Chanryeol, 1973-

2005-01-01T23:59:59.000Z

330

Testing of the Pleasant Bayou Well through October 1990  

SciTech Connect

Pleasant Bayou location was inactive from 1983 until the cleanout of the production and disposal wells in 1986. The surface facilities were rehabilitated and after shakedown of the system, additional repair of wellhead valves, and injection of an inhibitor pill, continuous long-term production was started in 1988. Over two years of production subsequent to that are reviewed here, including: production data, brine sampling and analysis, hydrocarbon sampling and analysis, solids sampling and analysis, scale control and corrosion monitoring and control.

Randolph, P.L.; Hayden, C.G.; Mosca, V.L.; Anhaiser, J.L.

1992-08-01T23:59:59.000Z

331

Well record | OpenEI  

Open Energy Info (EERE)

Well record Well record Dataset Summary Description This dataset contains oil and gas drilling and permit records for February 2011. State oil and gas boards and commissions make oil and gas data and information open to the public. To view the full range of data contained at the Alaska Oil and Gas Conservation Commission, visit http://doa.alaska.gov/ogc/ Source Alaska Oil and Gas Conservation Commission Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords Alaska Commission gas oil Well record Data application/vnd.ms-excel icon http://doa.alaska.gov/ogc/drilling/dindex.html (xls, 34.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Monthly Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

332

Chemical stimulation techniques for geothermal wells: experiments on the three-well EGS system at Soultz-sous-Forts, France  

Science Journals Connector (OSTI)

Rock matrix stimulation is a method of enhancing well production or injection within a broad range of challenging environments, varying from naturally fractured limestones to sandstones with complex mineralogy. A common and often successful stimulation option, matrix acidizing, utilizes acids that react and remove mineral phases restricting fluid flow. Reviewed is the technology of chemical treatments available for oil, gas and geothermal wells and the key elements and results of the chemical reservoir stimulation program at the Soultz-sous-Forts, France, Enhanced Geothermal System Project.

Sandrine Portier; Franois-David Vuataz; Patrick Nami; Bernard Sanjuan; Andr Grard

2009-01-01T23:59:59.000Z

333

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

E-Print Network (OSTI)

before and after hydraulic fracturing. Temperature databefore and after hydraulic fracturing of the Elba Quartzitebefore and after hydraulic fracturing of the Lower Narrows

Freifeld, B.

2011-01-01T23:59:59.000Z

334

Surface tension and vapor-liquid phase coexistence of confined square-well fluid  

E-Print Network (OSTI)

,4 Gibbs-Duhem integration GDI ,5 and N-P-T +test particle.6­8 Panagiotopoulos used GEMC to obtain, Sarkisov and Monson used GDI to get the phase behavior in a disordered porous structure,10 and Forsman

Singh, Jayant K.

335

Effectiveness of continuous hot-fluid stimulation of high viscosity oil wells  

E-Print Network (OSTI)

TABLE OF CONTENTS LIST OF TABLES . LIST OF FIGURES INTRODUCTION . PROCEDURES RESULTS AND DISCUSSION Cycling Method TABLE OF CONTENTS Page Vl , V111 lx 13 13 Effects of Control Temperature on the Cycling Method . Effects of kv/kh rat1o... Method and the Cycling Method in a 50 Ft Formation With kv/kh = I/3 Comparison of Net Rate Between the Mid-point Injection Method and the Cycling Method in a 50 Ft Formation With kv/kh = 1/3 31 32 34 35 36 25 26 Comparison of Production...

Oetama, Teddy

1983-01-01T23:59:59.000Z

336

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells  

Energy.gov (U.S. Department of Energy (DOE))

The primary objective of this project is to demonstrate the technical and economic feasibility of generating electricity from non-conventional low temperature (150 to 300 F) geothermal resources in oil and gas settings.

337

Computational fluid dynamic applications  

SciTech Connect

The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

2000-04-03T23:59:59.000Z

338

Fluid flow monitoring device  

DOE Patents (OSTI)

A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

1993-11-30T23:59:59.000Z

339

Fluid flow monitoring device  

DOE Patents (OSTI)

A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

1993-01-01T23:59:59.000Z

340

Tracing Geothermal Fluids  

SciTech Connect

Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

Michael C. Adams; Greg Nash

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

New Environmentally Friendly Dispersants for High Temperature Invert-Emulsion Drilling Fluids Weighted by Manganese Tetraoxide  

E-Print Network (OSTI)

filtration. 3. Specific fluid weight is required to hydrostatically balance formation pressures and to control the well column. The desired fluid density is attained by addition of weighting agents like barite and calcium carbonate. OBMs are water...) minimized drilling problems related to water-sensitive shales. Also, Bennett (1984) mentioned that mineral-oil based invert-emulsion fluids have greater tolerance to the contaminants such as carbonates, hydrogen sulfide, anhydrite, salt, or cement...

Rehman, Abdul

2012-02-14T23:59:59.000Z

342

Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces  

E-Print Network (OSTI)

The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.

Gary B. Davies; Timm Krger; Peter V. Coveney; Jens Harting

2014-07-01T23:59:59.000Z

343

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

344

Gel Evolution in Oil Based Drilling Fluids.  

E-Print Network (OSTI)

?? Drilling fluids make up an essential part of the drilling operation. Successful drilling operations rely on adequate drilling fluid quality. With the development of (more)

Sandvold, Ida

2012-01-01T23:59:59.000Z

345

Shale Gas Development Challenges: Fracture Fluids | Department...  

Office of Environmental Management (EM)

Fluids Shale Gas Development Challenges: Fracture Fluids More Documents & Publications Natural Gas from Shale: Questions and Answers Shale Gas Glossary FracFocus 2.0 Task Force...

346

Chemically Reactive Working Fluids | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemically Reactive Working Fluids for the Capture and Transport of Concentrated Solar Thermal Energy for Power Generation Chemically Reactive Working Fluids SunShot CSP...

347

Acoustic Concentration Of Particles In Fluid Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. Available for thumbnail of...

348

Fluid Gravity Engineering Rocket motor flow analysis  

E-Print Network (OSTI)

Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External young scientists/engineers Fluid Gravity Engineering Ltd #12;

Anand, Mahesh

349

Lattice Boltzmann model for compressible fluids  

Science Journals Connector (OSTI)

We formulate a lattice Boltzmann model which simulates compressible fluids. By choosing the parameters of the equilibrium distribution appropriately, we are able to select the sound speed (which may be set arbitrarily low), bulk viscosity, and kinematic viscosity. This model simulates compressible flows and can include shocks. With a proper rescaling and zero-sound speed, this model simulates Burgerss equation. The viscosity determined by a Chapman-Enskog expansion compares well with that measured from simulations. We also compare the exact solutions of Burgerss equation on the unit circle to solutions of our lattice Boltzmann model, again finding reasonable agreement.

F. J. Alexander; H. Chen; S. Chen; G. D. Doolen

1992-08-15T23:59:59.000Z

350

Water Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Kilauea East Rift Area (Thomas, Water Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Studies of groundwater and coastal spring- sources that have identified thermal fluids on the lower East Rift Zone date back to the early part of this century (Guppy, 1906). More recent investigations of temperature and groundwater chemistry were performed for the HGP geoscience program (Macdonald, 1977; McMurtry et al., 1977; Epp and Halunen, 1979). Epp and Halunen (1979) identified several warm water wells, one having a temperature in excess of 90degrees C, and coastal springs in lower Puna; temperature profiles obtained by this study indicated that in some

351

Noise removal from measurements while drilling an oil well  

Science Journals Connector (OSTI)

Systems to acquire borehole data during the drilling of oil and gas wells make use of measurement while drilling (MWD). One feature of this system is that it is able to do real?time measuring from a borehole; therefore there has been a lot of MWD use on drilling sites in recent years. There are a few types of MWD. Mud pulse?type MWD which uses a drilling circuit fluid is superior to the rest because of its reliability accuracy of data and less disturbance of the drilling schedule. The drilling circuit fluid is raised to a high pressure by a mud pump; borehole data which are recorded by the surface measuring system are contaminated by the pumping noise. Therefore it is necessary to remove the pumping noise to get objective data. This report describes the pumping noise removal system and the method used for the telemetry system from 2000 m depth.

Kazuho Hosono; Haruki Moriyama

1996-01-01T23:59:59.000Z

352

Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA,  

Open Energy Info (EERE)

Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA, Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA, Including Warm Ground, Borate Deposits, and Siliceous Alteration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Surface Indicators of Geothermal Activity at Salt Wells, Nevada, USA, Including Warm Ground, Borate Deposits, and Siliceous Alteration Abstract Surface indicators of geothermal activity are often present above blind or concealed geothermal systems in the Great Basin, but their expressions are sometimes subtle. When mapped in detail, these indicators yield valuable information on the location, structural controls, and potential subsurface reservoir temperatures of geothermal fluids. An example is provided by the Salt Wells geothermal system in Churchill County, Nevada, USA, where

353

Three fluid hydrodynamics of spin-1 Bose-Einstein condensates  

E-Print Network (OSTI)

We study excitations of the spin-1 Bose gas at finite temperatures and in the presence of a not so strong magnetic field, or equivalently, when the gas sample is partially polarized. Motivated by the success of two-fluid hydrodynamics of scalar superfluids we develop a three-fluid hydrodynamic description to treat the low frequency and long wavelength excitations of the spin-1 Bose gas. We derive the coupled linear hydrodynamic equations of the three sounds and evaluate them numerically in a self-consistent mean field approximation valid for the dilute gas at the intermediate and critical temperature regions. In this latter region we identify the critical mode.

Gergely Szirmai; Peter Szepfalusy

2011-12-14T23:59:59.000Z

354

Three fluid hydrodynamics of spin-1 Bose-Einstein condensates  

E-Print Network (OSTI)

We study excitations of the spin-1 Bose gas at finite temperatures and in the presence of a not so strong magnetic field, or equivalently, when the gas sample is partially polarized. Motivated by the success of two-fluid hydrodynamics of scalar superfluids we develop a three-fluid hydrodynamic description to treat the low frequency and long wavelength excitations of the spin-1 Bose gas. We derive the coupled linear hydrodynamic equations of the three sounds and evaluate them numerically in a self-consistent mean field approximation valid for the dilute gas at the intermediate and critical temperature regions. In this latter region we identify the critical mode.

Szirmai, Gergely

2011-01-01T23:59:59.000Z

355

Well-posedness of the free-surface incompressible Euler equations with or without surface tension  

E-Print Network (OSTI)

We provide a new method for treating free boundary problems in perfect fluids, and prove local-in-time well-posedness in Sobolev spaces for the free-surface incompressible 3D Euler equations with or without surface tension for arbitrary initial data, and without any irrotationality assumption on the fluid. This is a free boundary problem for the motion of an incompressible perfect liquid in vacuum, wherein the motion of the fluid interacts with the motion of the free-surface at highest-order.

Daniel Coutand; Steve Shkoller

2006-11-15T23:59:59.000Z

356

E-Print Network 3.0 - amniotic fluid samples Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and Medicine 67 Ultrastructure of the Reproductive System of the Black Swamp Snake (Seminatrix pygaea). VI. Anterior Summary: . As in other amniotes, the functions...

357

Evaluation of subsurface fracture geometry using fluid pressure response to  

Open Energy Info (EERE)

subsurface fracture geometry using fluid pressure response to subsurface fracture geometry using fluid pressure response to solid earth tidal strain Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Evaluation of subsurface fracture geometry using fluid pressure response to solid earth tidal strain Details Activities (1) Areas (1) Regions (0) Abstract: The nature of solid earth tidal strain and surface load deformation due to the influence of gravitational forces and barometric pressure loading are discussed. The pore pressure response to these types of deformation is investigated in detail, including the cases of a confined aquifer intersected by a well and a discrete fracture intersected by a well. The integration of the tidal response method with conventional pump tests in order to independently calculate the hydraulic parameters of the

358

Variable rate analysis of transient well test data using semi-analytical methods  

E-Print Network (OSTI)

. 4. 2. 1 Fetkovich and Vienot Data. . 4. 2. 2 Streltsova Data . 4. 2. 3 Low Productivity Gas Well DS-1 4. 2. 4 Low Productivity Gas Well CSW-1. 4. 2. 5 Low Productivity Gas Well AC-6. . 4. 2. 6 Low Productivity Gas Well TGA-21 4. 2. 7 Low... with the Material Balance Deconvolution Method and Calculated Sandface Rates . . . . . . . . . . . . . . . . . . 75 4. 1 Reservoir and Fluid Properties and Comparison of Analysis Results for Rate Normalization and Material Balance Deconvolution - Fetkovich...

Johnston, Jennifer L.

1992-01-01T23:59:59.000Z

359

Fluid Imaging | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Fluid Imaging Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Fluid Imaging 2 Geothermal ARRA Funded Projects for Fluid Imaging Geothermal Lab Call Projects for Fluid Imaging Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

360

Bio-inspired fluid locomotion  

E-Print Network (OSTI)

We have developed several novel methods of locomotion at low Reynolds number, for both Newtonian and non-Newtonian fluids: Robosnails 1 and 2, which operate on a lubrication layer, and the three-link swimmer which moves ...

Chan, Brian, 1980-

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Self-similar perfect fluids  

E-Print Network (OSTI)

Space-times admitting an $r$-parameter Lie group of homotheties are studied for $r > 2$ devoting a special attention to those representing perfect fluid solutions to Einstein's field equations.

J. Carot; A. M. Sintes

2000-05-16T23:59:59.000Z

362

Biocatalytic transformations of hydrothermal fluids  

Science Journals Connector (OSTI)

...emission into oxygenated ambient seawater. The large metabolic and physiological...emission into oxygenated ambient seawater. The large metabolic and physiological...DNA (the reproducing genetic storage for each species), individual...where entrained oxygenated seawater mixes with hydrothermal fluid...

1997-01-01T23:59:59.000Z

363

Atomistic methods in fluid simulation  

Science Journals Connector (OSTI)

...easily describable by traditional methods, as ICF involves a complex coupling between fluid instabilities and combustion processes at very small length and times scales. One contribution of 13 to a Theme Issue Turbulent mixing and beyond . Figure...

2010-01-01T23:59:59.000Z

364

Study on the flow production characteristics of deep geothermal wells  

Science Journals Connector (OSTI)

This paper describes a study on the potential flow production characteristics of three non-producing, deep (average depth 4000 m) geothermal wells in the Cerro Prieto geothermal field. The expected production characteristics of these wells were computed in order to determine whether their inability to sustain flow was due to: (1) heat loss effects in the well; (2) the influence of casing diameters; (3) transient temperature effects during the first days of well discharge, and/or (4) the effects of secondary low-enthalpy inflows. For the study, the conservation equations of mass, momentum and energy for two-phase homogeneous flow were solved for the wellbore, since homogeneous flow provides the simplest technique for analyzing two-phase flows when the flow patterns are not well established. The formation temperature distribution was computed assuming radial transient heat conduction. The numerical model was validated by comparison with analytical solutions and with measured pressure and temperature profiles of well H-17 from the Los Humeros geothermal field, Mexico. It was found that the wells should have sustained production. The early heat losses were so large that the flow needed to be induced, and flow will be sustained only after a few days of induced discharge. For well M-202, the analysis suggests that the inflow of secondary colder fluids was responsible for stopping the flow in this well.

Alfonso Garcia-Gutierrez; Gilberto Espinosa-Paredes; Isa??as Hernandez-Ramirez

2002-01-01T23:59:59.000Z

365

Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening  

E-Print Network (OSTI)

Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well equipment and techniques required to dispense nanoliter volumes of fluid. Plug-based microfluidics confines techniques that rely on microfluidic cartridges preloaded with nano- liter plugs of reagents. 96-Well plates

Ismagilov, Rustem F.

366

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto  

E-Print Network (OSTI)

;1. INTRODUCTION A drill-string is a slender structure used in oil wells to penetrate the soil in search of oilDRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill

Boyer, Edmond

367

A new well surveying tool  

E-Print Network (OSTI)

directional well was to tip the entire rig, then block up one side of the rotary table so as to incline the uppermost joint of the drill pipe. The accuracy obtained by this method left much to be desired. The technique of controlled directional drilling... by Surveying Device for S and 19 , N and 41 . 21 3. Comparison of Measured Angles and Angles Indicated by Surveying Device for NE snd 9 , W and 45 . . . . . . . ~ 22 ABSTRNl T Ever since the advent of rotary drilling the petroleum industry has been...

Haghighi, Manuchehr Mehdizabeh

1966-01-01T23:59:59.000Z

368

Health Education & Wellness - HPMC Occupational Health Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Wellness Health Education & Wellness Health Education & Wellness Downloads & Patient Materials Health & Productivity Health Calculators & Logs Health Coaching Health Fairs and...

369

Fluid Inclusion Analysis At Coso Geothermal Area (2002) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (2002) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2002 Usefulness useful DOE-funding Unknown Notes Analyses were averaged and plotted verses depth (Figure 4). Fluid inclusion gas analyses done on vein minerals from drill hole 68-6 that we earlier analyzed (Adams 2000) were plotted for comparison in order to confirm that similar analyses are obtained from chips and vein minerals. This comparison is far from ideal. The drill holes are better than a kilometer apart, samples analyzed in the two bore holes are not from the same depths, and the chip analyses were performed on the new dual quadrupole system that

370

Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal  

Open Energy Info (EERE)

Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Details Activities (1) Areas (1) Regions (0) Abstract: Hydrothermal alteration and the active vapor-dominated geothermal system at The Geysers, CA are related to a composite hypabyssal granitic pluton emplaced beneath the field 1.1 to 1.2 million years ago. Deep drill holes provide a complete transect across the thermal system and samples of the modern-day steam. The hydrothermal system was liquid-dominated prior to formation of the modern vapor-dominated regime at 0.25 to 0.28 Ma. Maximum

371

Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon |  

Open Energy Info (EERE)

Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Details Activities (2) Areas (1) Regions (0) Abstract: Isotopic compositions were determined for hydrothermal quartz, calcite, and siderite from core samples of the Newberry 2 drill hole, Oregon. The Δ15O values for these minerals decrease with increasing temperatures. The values indicate that these hydrothermal minerals precipitated in isotopic equilibrium with water currently present in the reservoirs. The Δ18O values of quartz and calcite from the andesite and basalt flows (700-932 m) have isotopic values which require that the equilibrated water Δ18O values increase slightly (- 11.3 to -9.2‰) with

372

Fluid-Rock Interaction: A Reactive Transport Approach  

Science Journals Connector (OSTI)

...fluid-rock interaction systems as well-mixed reactors was challenged and it was shown how an...Q, Lichtner PC, Zhang D (2007) An improved lattice Boltzmann model for multicomponent...Eric H. editor CNRS-Universite Paul Sabatier, Laboratoire de Mecanisme de Transfert...

Carl I. Steefel; Kate Maher

373

Provisional Patent Application Electrostatic Fluid Deionization, particularly Seawater Desalination  

E-Print Network (OSTI)

, using deionization as a first stage of water purification instead of a final stage, and preferring small cost operation It performs well on a small scale, enabling portable units It can be performed Desalination by Kim E Lumbard SUMMARY OF THE INVENTION [P 1] This invention pertains to fluid purification

McEliece, Robert J.

374

Category:Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells page? For detailed information on Production Wells, click here. Category:Production Wells Add.png Add a new Production Wells Technique Pages in category...

375

Number of Producing Gas Wells  

U.S. Energy Information Administration (EIA) Indexed Site

Producing Gas Wells Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2007 2008 2009 2010 2011 2012 View History U.S. 452,945 476,652 493,100 487,627 514,637 482,822 1989-2012 Alabama 6,591 6,860 6,913 7,026 7,063 6,327 1989-2012 Alaska 239 261 261 269 277 185 1989-2012 Arizona 7 6 6 5 5 5 1989-2012 Arkansas 4,773 5,592 6,314 7,397 8,388 8,538 1989-2012 California 1,540 1,645 1,643 1,580 1,308 1,423 1989-2012 Colorado 22,949 25,716 27,021 28,813 30,101 32,000 1989-2012 Gulf of Mexico 2,552 1,527 1,984 1,852 1,559 1,474 1998-2012 Illinois 43 45 51 50 40 40 1989-2012 Indiana 2,350 525 563 620 914 819 1989-2012 Kansas

376

System for stabbing well casing  

SciTech Connect

Apparatus for stabbing well casing to join casing sections to each other, includes a rotary table assembly for supporting a casing section in a well bore, a derrick over the rotary table assembly, a crown block at the top of the derrick, a first piston and cylinder subassembly pivotally mounted on one side of the derrick over the rotary table assembly and below the crown block for pivotation about a horizontal axis, a second piston and cylinder subassembly pivotally mounted on a second side of the derrick for pivotation about a horizontal axis. The second piston and cylinder subassembly is located over the rotary table assembly and below the crown block and extends substantially normal to the direction of extension of the first piston and cylinder subassembly. The cooperating casing clamping elements are carried on the piston rods of the first and second piston and cylinder subassemblies, and counter balancing subassemblies are connected to the first and second piston and cylinder subassemblies for pivoting the first and second piston and cylinder subassemblies to a vertically extending inoperative position.

McArthur, J.R.

1984-04-03T23:59:59.000Z

377

Transparent fluids for 157-nm immersion lithography  

E-Print Network (OSTI)

- gineers. [DOI: 10.1117/1.1637366] Subject terms: 157-nm lithography; immersion fluid; perfluoropolyether

Rollins, Andrew M.

378

Pitch-catch only ultrasonic fluid densitometer  

DOE Patents (OSTI)

The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

1999-01-01T23:59:59.000Z

379

Pitch-catch only ultrasonic fluid densitometer  

DOE Patents (OSTI)

The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

Greenwood, M.S.; Harris, R.V.

1999-03-23T23:59:59.000Z

380

Fluid Mechanics IB Lecturer: Dr Natalia Berloff  

E-Print Network (OSTI)

-efficient aircraft design, hydroelectric power, chemical processing, jet-driven cutting tools · our fluid environment

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Experimental characterisation of nonlocal photon fluids  

E-Print Network (OSTI)

Quantum gases of atoms and exciton-polaritons are nowadays a well established theoretical and experimental tool for fundamental studies of quantum many-body physics and suggest promising applications to quantum computing. Given their technological complexity, it is of paramount interest to devise other systems where such quantum many-body physics can be investigated at a lesser technological expense. Here we examine a relatively well-known system of laser light propagating through thermo-optical defocusing media: based on a hydrodynamical description of light as a quantum fluid of interacting photons, we propose such systems as a valid, room temperature alternative to atomic or exciton-polariton condensates for studies of many-body physics. First, we show that by using a technique traditionally used in oceanography, it is possible to perform a direct measurement of the single-particle part of the dispersion relation of the elementary excitations on top of the photon fluid and to detect its global flow. Then, ...

Vocke, David; Marino, Francesco; Wright, Ewan M; Carusotto, Iacopo; Faccio, Daniele

2015-01-01T23:59:59.000Z

382

ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl,and CO2  

SciTech Connect

ECO2N is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic sequestration of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O-NaCl-CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for the temperature, pressure and salinity conditions of interest (10 C {le} T {le} 110 C; P {le} 476 bar; salinity up to full halite saturation). Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-phase mixtures. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. This report gives technical specifications of ECO2N and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously investigated in a code intercomparison study.

Pruess, Karsten

2005-08-11T23:59:59.000Z

383

Isotopic Analysis- Fluid At Lightning Dock Geothermal Area (Witcher...  

Open Energy Info (EERE)

Number DE-FC07-00AL66977 Notes This project deepened a well and took 4 samples from wells around the Lightning Docks KGRA and performed extensive chamical and isotope analysis...

384

Method of determining interwell oil field fluid saturation distribution  

DOE Patents (OSTI)

A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

1981-01-01T23:59:59.000Z

385

Pressure and temperature drawdown well testing: similarities and differences  

Science Journals Connector (OSTI)

Temperature and pressure are the most frequently observed physical parameters in boreholes. The same differential diffusivity equation describes the transient flow of incompressible fluid in porous media and heat conduction in solids. The similarities and differences in the techniques of pressure and temperature well testing are discussed. It is shown that the mathematical model of pressure well tests based on the presentation of the borehole as an infinitely long linear source with a constant fluid flow rate in an infinite-acting homogeneous reservoir cannot be used in temperature well testing. A new technique has been developed for the determination of the formation thermal conductivity, initial temperature, skin factor and contact thermal resistance. It is assumed that the volumetric heat capacity of formations is known and the instantaneous heater's wall temperature and time data are available for a cylindrical probe with a constant heat flow rate placed in a borehole. A semi-analytical equation is used to approximate the dimensionless wall temperature of the heater. A simulated example is presented to demonstrate the data processing procedure.

L V Eppelbaum; I M Kutasov

2006-01-01T23:59:59.000Z

386

Dynamic fluid loss in hydraulic fracturing under realistic shear conditions in high-permeability rocks  

SciTech Connect

A study of the dynamic fluid loss of hydraulic fracturing fluids under realistic shear conditions is presented. During a hydraulic fracturing treatment, a polymeric solution is pumped under pressure down the well to create and propagate a fracture. Part of the fluid leaks into the rock formation, leaving a skin layer of polymer or polymer filter cake, at the rock surface or in the pore space. This study focuses on the effects of shear rate and permeability on dynamic fluid-loss behavior of crosslinked and linear fracturing gels. Previous studies of dynamic fluid loss have mainly been with low-permeability cores and constant shear rates. Here, the effect of shear history and fluid-loss additive on the dynamic leakoff of high-permeability cores is examined.

Navarrete, R.C.; Cawiezel, K.E.; Constien, V.G. [Dowell Schlumberger, Tulsa, OK (United States)

1996-08-01T23:59:59.000Z

387

Geophysical logs from water wells in the Yakima area, Washington  

SciTech Connect

The logs include: natural gamma, gamma gamma, neutron neutron, neutron gamma, caliper, fluid temperature, fluid resistivity, wall resistivity, spontaneous potential, and flow meter.

Biggane, J.H.

1983-01-01T23:59:59.000Z

388

Mechanisms of formation damage in matrix permeability geothermal wells  

SciTech Connect

A laboratory study was conducted at simulated in-situ geothermal conditions to identify the mechanisms responsible for significant declines in permeability. Testing was conducted on core material retrieved from the East Mesa KGRA, (known geothermal resource area) Imperial Valley, California. In this paper, apparatus, procedures and results are described. Damage in this formation, which was not originally thought to be water sensitive, is attributed to cation exchange and the removal processes which alter the stability of the clay structures. Fluid shearing dislodges particles, which clog pore throats and irreversibly reduce permeability. The implications of these findings on operating procedures and production of the well can be significant and are discussed. 7 refs.

Bergosh, G.L.; Enniss, D.O.

1981-01-01T23:59:59.000Z

389

Visualizing motion in potential wells  

Science Journals Connector (OSTI)

The concept of potential-energy diagrams is of fundamental importance in the study of quantum physics. Yet students are rarely exposed to this powerful alternative description in introductory classes and thus have difficulty comprehending its significance when they encounter it in beginning-level quantum courses. We describe a learning unit that incorporates a sequence of computer-interfaced experiments using dynamics or air-track systems. This unit is designed to make the learning of potential-energy diagrams less abstract. Students begin by constructing the harmonic or square-well potential diagrams using either the velocity data and assuming conservation of energy or the force-displacement graph for the elasticinteraction of an object constrained by springs or bouncing off springy blocks. Then they investigate the motion of a rider magnetinteracting with a configuration of field magnets and plot directly the potential-energy diagrams using a magnetic field sensor. The ease of measurement allows exploring the motion in a large variety of potential shapes in a short duration class.

Pratibha Jolly; Dean Zollman; N. Sanjay Rebello; Albena Dimitrova

1998-01-01T23:59:59.000Z

390

Analyzing Aqueous Solution Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives  

E-Print Network (OSTI)

Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are gelled fracturing and slick-water fracturing. Both methods utilize up to several million gallons of water-based fluid per well in a...

Plamin, Sammazo Jean-bertrand

2013-09-29T23:59:59.000Z

391

Analizing Aqueous Imbibition into Shale and the Effects of Optimizing Critical Fracturing Fluid Additives  

E-Print Network (OSTI)

Two methods of hydraulic fracturing most widely utilized on unconventional shale gas and oil reservoirs are gelled fracturing and slick-water fracturing. Both methods utilize up to several million gallons of water-based fluid per well in a...

Qureshi, Maha

2013-09-29T23:59:59.000Z

392

Formation of capillary structures with highly viscous fluids in plane microchannels  

E-Print Network (OSTI)

during oil transport in pipelines with the buildup of wax on walls4 ­ or advantageous, such as during in volcanic conduits,9 oil transport in pipelines,10 as well as the microflow of viscoelastic fluids.11

Cubaud, Thomas

393

Fluid substitution in carbonate rocks based on the Gassmann equation and EshelbyWalsh theory  

Science Journals Connector (OSTI)

Abstract Fluid substitution in carbonate rocks is more difficult than it is in clastic rocks for two reasons. Firstly, the rock physics modeling uncertainties in carbonate rocks, this is due to the difficulty of accurately acquiring the moduli of carbonate rocks' solid matrix because the experimental data on carbonate rocks have not been as thoroughly studied as silici-clastic sedimentary rocks. Secondly, due to the complex pore systems of carbonate rocks, it is very difficult to model pore geometry of carbonates, and hence hard to assess how the elastic properties change as fluid saturation changes based on the traditional Biot and Gassmann theories. In order to solve these problems, we present a new fluid substitution equation of carbonate rocks using the Gassmann equation and EshelbyWalsh theory (GEW) in this paper. Then, the specific procedures of how to calculate the moduli of carbonate rocks' solid matrix and how to measure the effect of pore geometry in fluid substitution based on the new fluid substation equation were illustrated by experimental testing about 12 carbonate rock samples in different fluid saturation scenarios and logging data. Finally, we further compared the new fluid substitution method with the conventional Gassmann fluid substitution based on the experimental data. The results verified that the new method is more accurate and reliable in the fluid substitution of complex carbonate rocks.

Quanxiong Feng; Lian Jiang; Mingquan Liu; Huan Wan; Li Chen; Wei Xiao

2014-01-01T23:59:59.000Z

394

Nonmonotone line search methods with variable sample size  

E-Print Network (OSTI)

The nonmonotone line search framework is embedded with a variable sample size ... the line search combines well with the variable sample size scheme as.

2014-02-17T23:59:59.000Z

395

Ultrasonic bubble point sensor for petroleum fluids in remote and hostile environments  

Science Journals Connector (OSTI)

The bubble point is one of the most important physical properties of petroleum fluids. Present practice requires the shipment of samples to laboratories, a time-consuming process that compromises sample integrity. We have devised a method by which the bubble point can be estimated rapidly in a 5 mm diameter flow line immediately after a sample has been withdrawn from a subsurface rock formation. To measure the bubble point, the sample is isolated and depressurized. Measurement efficiency requires rapid depressurization, which often causes fluids to supersaturate. However, this problem can be mitigated by cavitation. We have found that it is possible to cavitate fluids at pressures of several megapascals, as long as the fluid is near its bubble point pressure. An ultrasonic transducer is used to simultaneously nucleate and detect bubbles at or near the thermodynamic bubble point. The cavitated bubbles produce fluctuations in the acoustic properties of the fluid that are detected in the near field or resonated volume of a transducer by measuring the fluctuations of the transducer's electrical properties. The variance of electrical properties increases by orders of magnitude in the presence of bubbles. The method has been demonstrated to work over a wide range of temperatures, pressures and fluids.

N W Bostrom; D D Griffin; R L Kleinberg; K K Liang

2005-01-01T23:59:59.000Z

396

Fluid Inclusion Analysis At Coso Geothermal Area (2003) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area Coso Geothermal Area (2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis 1) Fracture/stress analysis. 2)To determine the driver of the relationship between hydrogen and organic species. Notes 1) Fluid inclusion analyses of cuttings from well 83-16 were used to determine the temperatures of vein mineralization. 2) Measurement of organic compounds in fluid inclusions shows that there are strong relationships between H2 concentrations and alkane/alkene ratios and benzene concentrations. Inclusion analyses that indicate H2 concentrations > 0.001 mol % typically have ethane > ethylene, propane > propylene, and

397

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer (OSTI)

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

398

Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas  

Science Journals Connector (OSTI)

...earthquakes occurred near wells with similar injection...seismically quiescent injection wells. It has been recognized...including the production of geothermal energy (3), secondary...occurred near injection wells disposing of fluid wastes...border to the Gulf of Mexico. In Texas, about 25...

Cliff Frohlich

2012-01-01T23:59:59.000Z

399

Compressor bleed cooling fluid feed system  

DOE Patents (OSTI)

A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

Donahoo, Eric E; Ross, Christopher W

2014-11-25T23:59:59.000Z

400

Summary of wells validated during fiscal years 1991 to 1992  

SciTech Connect

The Well Validation Project was initiated in fiscal year 1990, with the intended purpose to evaluate wells on the Nevada Test Site. During fiscal years 1991 and 1992, a temperature/electrical conductivity logging tool was redesigned and a thermal-pulse flowmeter logging tool was developed. Seven wells were evaluated during this time period: USGS HTH {number_sign}1, UE-18r, UE-14b, HTH {open_quotes}E{close_quotes}, USGS Test Well B Ex., UE-1q, and UE-5n. The validation techniques used at each site varied depending on the site-specific objectives. Thermal-pulse flowmeter surveys were carried out in several of the wells with limited success. The thermal-pulse flowmeter was designed for boreholes 2 to 6 inches in diameter, most wells at the Nevada Test Site are generally much larger in diameter, 10 to 24 inches. Therefore, the thermal-pulse flowmeter was outfitted with an inflatable rubber packer, which constricts borehole flow through the thermal-pulse flowmeter, increasing the resolution. The thermal-pulse flowmeter can be outfitted with various-sized packers depending on the borehole diameter to be evaluated; these packers are commercially available. The packers are inflated with borehole fluid via a small submersible pump which was designed, built, and tested as part of this study.

Lyles, B.F.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Recent developments in geothermal drilling fluids  

SciTech Connect

Three recent development efforts are described, aimed at solving some of these drilling fluid problems. The Sandia aqueous foam studies are still in the laboratory phase; NL Baroid's polymeric deflocculant is being field tested; and the Mudtech high temperature mud was field tested several months ago. The aqueous foam studies are aimed at screening available surfactants for temperture and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260/sup 0/C and 310/sup 0/C and several of these candidates appear very promising. A polymeric deflocculant was developed for water-based muds which shows promise in laboratory tests of retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 500/sup 0/F. A high temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May of last year. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test. (MHR)

Kelsey, J.R.; Rand, P.B.; Nevins, M.J.; Clements, W.R.; Hilscher, L.W.; Remont, L.J.; Matula, G.W.; Bailey, D.N.

1981-01-01T23:59:59.000Z

402

Contact lines for fluid surface adhesion  

E-Print Network (OSTI)

When a fluid surface adheres to a substrate, the location of the contact line adjusts in order to minimize the overall energy. This adhesion balance implies boundary conditions which depend on the characteristic surface deformation energies. We develop a general geometrical framework within which these conditions can be systematically derived. We treat both adhesion to a rigid substrate as well as adhesion between two fluid surfaces, and illustrate our general results for several important Hamiltonians involving both curvature and curvature gradients. Some of these have previously been studied using very different techniques, others are to our knowledge new. What becomes clear in our approach is that, except for capillary phenomena, these boundary conditions are not the manifestation of a local force balance, even if the concept of surface stress is properly generalized. Hamiltonians containing higher order surface derivatives are not just sensitive to boundary translations but also notice changes in slope or even curvature. Both the necessity and the functional form of the corresponding additional contributions follow readily from our treatment.

Markus Deserno; Martin M. Mueller; Jemal Guven

2007-03-01T23:59:59.000Z

403

A Universe with a generalized ghost dark energy and Van der Waals fluid interacting with a fluid  

E-Print Network (OSTI)

In this paper we consider an unusual connection between different fluids. Having established a research goal we would like to consider a toy model of the Universe and investigate its behavior, especially for later time evolution for well known facts. The main goal of the article is to consider a toy model of the Universe with generalized ghost dark energy, Van der Waals gas and a phenomenologically modified fluid. The origin of the last component can be understood as a result of interaction between some original fluid and some source of energy or matter in Universe. By unusual connection we mean an assumption that generalized ghost dark energy has its contribution to the model by an interaction term $Q$ and we suppose an interaction $Q=3Hb(\\rho_{\\small{tot}}-\\rho_{GDe})$ of the form. Graphical analysis is performed and the questions of validity of the generalized second law of thermodynamics and stability of the model also approached in this paper.

M. Khurshudyan; B. Pourhassan; E. Chubaryan

2014-02-22T23:59:59.000Z

404

Directed flow fluid rinse trough  

DOE Patents (OSTI)

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

1996-01-01T23:59:59.000Z

405

Directed flow fluid rinse trough  

DOE Patents (OSTI)

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

Kempka, S.N.; Walters, R.N.

1996-07-02T23:59:59.000Z

406

Working fluid for Rankine cycle  

SciTech Connect

A Rankine cycle working fluid is disclosed containing a mixture of 2,2,3,3tetrafluoropropanol and water, which is low toxic, incombustible, nonexplosive, noncorrosive and stable, and also has a high critical temperature and forms azeotropic-like composition. It is suited for use in a rankine cycle using heat source of low temperature.

Aomi, H.; Enjo, N.

1980-11-11T23:59:59.000Z

407

Scaled Tests and Modeling of Effluent Stack Sampling Location Mixing  

SciTech Connect

The Pacific Northwest National Laboratory researchers used a computational fluid dynamics (CFD) computer code to evaluate the mixing at a sampling system location of a research and development facility. The facility requires continuous sampling for radioactive air emissions. Researchers sought to determine whether the location would meet the criteria for uniform air velocity and contaminant concentration as prescribed in the American National Standard Institute (ANSI) standard, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Standard ANSI/HPS N13.1-1999 requires that the sampling location be well-mixed and stipulates specific tests (e.g., velocity, gas, and aerosol uniformity and cyclonic flow angle) to verify the extent of mixing.. The exhaust system for the Radiochemical Processing Laboratory was modeled with a CFD code to better understand the flow and contaminant mixing and to predict mixing test results. The CFD results were compared to actual measurements made at a scale-model stack and to the limited data set for the full-scale facility stack. Results indicated that the CFD code provides reasonably conservative predictions for velocity, gas, and aerosol uniformity. Cyclonic flow predicted by the code is less than that measured by the required methods. In expanding from small to full scale, the CFD predictions for full-scale measurements show similar trends as in the scale model and no unusual effects. This work indicates that a CFD code can be a cost-effective aid in design or retrofit of a facilitys stack sampling location that will be required to meet Standard ANSI/HPS N13.1-1999.

Recknagle, Kurtis P.; Yokuda, Satoru T.; Ballinger, Marcel Y.; Barnett, J. M.

2009-02-01T23:59:59.000Z

408

Geothermal-Reservoir Well-Stimulation Program. Program status report  

SciTech Connect

Seven experimental fracture stimulation treatments completed to date and the laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Six of the seven stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments in Raft River and the two in Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or flow rate. The acid etching treatment in the well at The Geysers did not have any material effect on producing rate.

Not Available

1982-05-01T23:59:59.000Z

409

Two-phase fluid flow through nozzles and abrupt enlargements  

SciTech Connect

The behavior of a fluid undergoing a phase change from liquid to vapor while flowing through a duct is of interest to engineers in many practical situations. For the case of interest to us, geothermal hot water flowing through various channels (well bores, surface pipes, equipment, etc.) may reach its flash point and choke point under appropriate conditions. The proper design of energy conversion systems depends on the ability of the engineer to predict this behavior with an acceptable degree of accuracy. The present study was in part motivated by the task of designing the blow-down, two-phase fluid flow test facility at Brown University. In that facility, a refrigerant (dichlorotetrafluoroethane or R-114) is boosted to a selected stagnation state and allowed to flow through a nozzle orifice into a long straight tube. The operation relies on the fluid being choked at the inlet section, and under certain circumstances, at the downstream section as well. A simple schematic of the test section is shown. This paper treats the problem generically and analytically, making use of the basic laws of fluid mechanics and thermodynamics. Specific calculations have been performed using R-114 as the flowing medium. They attempt to identify and describe all possible flow conditions in and downstream of the nozzle for all possible stagnation conditions.

Olia, H.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.

1983-10-01T23:59:59.000Z

410

Inverse Fluid Convection Problems in Enclosures  

E-Print Network (OSTI)

Efficiency, security, and reliability of industrial and domestic processes essentially depend on the deep understanding of their actual processes of fluid flow and heat transfer. Actual processes of fluid flow control and ...

Zhao, Fu-Yun

2012-01-01T23:59:59.000Z

411

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03T23:59:59.000Z

412

Engine with a solid working fluid  

Science Journals Connector (OSTI)

... fluids: the fluid may be steam, petrol vapour/air mixture or air (in the Stirling engine), but all depend on cycles involving simultaneous changes of temperature and pressure. Now ...

Robert W. Cahn

1975-05-22T23:59:59.000Z

413

Heterogeneous perturbation of fluid density and solid elastic strain in consolidating porous media  

E-Print Network (OSTI)

The occurrence of heterogeneous perturbations of fluid mass density and solid elastic strain of a porous continuum, as a consequence of its undrained response is a very important topic in theoretical and applied poromechanics. The classical Mandel--Cryer effect provides an explanation of fluid overpressure in the central region of a porous sample, immediately after the application of the loading. However this effect fades away when the fluid leaks out of the porous network. Here this problem is studied within the framework of a second gradient theory and a thorough description of the static and the dynamics of the phenomenon is given.

P. Artale Harris; E. N. M. Cirillo; G. Sciarra

2014-07-20T23:59:59.000Z

414

Specialized Materials and Fluids and Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

Below are the project presentations and respective peer review results for Specialized Materials and Fluids and Power Plants.

415

Supercritical Fluid Attachment of Palladium Nanoparticles on...  

NLE Websites -- All DOE Office Websites (Extended Search)

Attachment of Palladium Nanoparticles on Aligned Carbon Nanotubes. Supercritical Fluid Attachment of Palladium Nanoparticles on Aligned Carbon Nanotubes. Abstract: Nanocomposite...

416

Fluid Interface Reactions, Structures and Transport  

NLE Websites -- All DOE Office Websites (Extended Search)

fluid by local bond relaxation, charge redistribution, dissolution, precipitation, sorption and porosity developmentdestruction. Heretofore, interfaces have been described...

417

Geothermal reservoir well stimulation program. First-year progress report  

SciTech Connect

The Geothermal Reservoir Well Stimulation Program (GRWSP) group planned and executed two field experiments at the Raft River KGRA during 1979. Well RRGP-4 was stimulated using a dendritic (Kiel) hydraulic fracture technique and Well RRGP-5 was stimulated using a conventional massive hydraulic fracture technique. Both experiments were technically successful; however, the post-stimulation productivity of the wells was disappointing. Even though the artificially induced fractures probably successfully connected with the natural fracture system, reservoir performance data suggest that productivity remained low due to the fundamentally limited flow capacity of the natural fractures in the affected region of the reservoir. Other accomplishments during the first year of the program may be summarized as follows: An assessment was made of current well stimulation technology upon which to base geothermal applications. Numerous reservoirs were evaluated as potential candidates for field experiments. A recommended list of candidates was developed which includes Raft River, East Mesa, Westmorland, Baca, Brawley, The Geysers and Roosevelt Hot Springs. Stimulation materials (fracture fluids, proppants, RA tracer chemicals, etc.) were screened for high temperature properties, and promising materials selected for further laboratory testing. Numerical models were developed to aid in predicting and evaluating stimulation experiments. (MHR)

Not Available

1980-02-01T23:59:59.000Z

418

2014 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS  

E-Print Network (OSTI)

for Civil and Environmental Engineers · Stochastic Hydrology · Water Resources Management · Fluid Mechanics2014 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS AND WATER RESOURCES ENGINEERING RESEARCH AREAS SELECTED COURSES FACILITIES The Environmental Fluid Mechanics and Water Resources program at the Georgia

Wang, Yuhang

419

Spatially indirect excitons in coupled quantum wells  

SciTech Connect

Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.

Lai, Chih-Wei Eddy

2004-03-01T23:59:59.000Z

420

Health and Wellness Guide for Students Introduction  

E-Print Network (OSTI)

dimensions of health and wellness. The 7 dimensions are: Physical Wellness � Taking care of your body Wellness � Taking care of what's around you 2Health andWellness Guide for Students #12;Physical Wellness � Communicate with your partner if you have questions or concerns � Meet with a Health Care Provider on campus

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Use of Clays as Drilling Fluids and Filters  

Science Journals Connector (OSTI)

In geotechnical engineering, drilling fluid is a fluid used to drill boreholes into the earth. In drilling rigs, drilling fluids help to do drill for exploration of oil and natural gas. Liquid drilling fluid is o...

Swapna Mukherjee

2013-01-01T23:59:59.000Z

422

Fluid structure interaction modelling for the vibration of tube bundles, part I: analysis of the fluid flow in a tube bundle  

SciTech Connect

It is well known that a fluid may strongly influence the dynamic behaviour of a structure. Many different physical phenomena may take place, depending on the conditions: fluid flow, fluid at rest, little or high displacements of the structure. Inertial effects can take place, with lower vibration frequencies, dissipative effects also, with damping, instabilities due to the fluid flow (Fluid Induced Vibration). In this last case the structure is excited by the fluid. Tube bundles structures are very common in the nuclear industry. The reactor cores and the steam generators are both structures immersed in a fluid which may be submitted to a seismic excitation or an impact. In this case the structure moves under an external excitation, and the movement is influence by the fluid. The main point in such system is that the geometry is complex, and could lead to very huge sizes for a numerical analysis. Homogenization models have been developed based on the Euler equations for the fluid. Only inertial effects are taken into account. A next step in the modelling is to build models based on the homogenization of the Navier-Stokes equations. The papers presents results on an important step in the development of such model: the analysis of the fluid flow in a oscillating tube bundle. The analysis are made from the results of simulations based on the Navier-Stokes equations for the fluid. Comparisons are made with the case of the oscillations of a single tube, for which a lot of results are available in the literature. Different fluid flow pattern may be found, depending in the Reynolds number (related to the velocity of the bundle) and the Keulegan Carpenter number (related to the displacement of the bundle). A special attention is paid to the quantification of the inertial and dissipative effects, and to the forces exchanges between the bundle and the fluid. The results of such analysis will be used in the building of models based on the homogenization of the Navier-Stokes equations for the fluid. (authors)

Desbonnets, Quentin; Broc, Daniel [CEA, Lab Etudes Mecan Sism, DEN, SEMT, DM2S, F-91191 Gif Sur Yvette, (France)

2012-07-01T23:59:59.000Z

423

Failure of a gas well to respond to a foam hydraulic fracturing treatment  

SciTech Connect

Well No. 1 (not the real name of the well) is not producing gas at maximum capacity following a foam hydraulic fracturing treatment performed upon completion of the well in 1987. The failure of the stimulation treatment, which has affected other wells throughout the field, was due to a combination of three factors: (1) downward fracture growth and proppant settling during injection (2) embedment due to a high pressure drawdown in the wellbore during flowback procedures, and (3) poor cleanup of the fracture fluid due to high capillary pressures. The following are recommendations to help improve future fracturing treatments throughout the field: (1) Fracture at lower treating pressures; (2) Improve perforating techniques; (3) Change flowback procedures; and (4) Evaluate using N{sub 2} as a fracture fluid.

Rauscher, B.D.

1996-12-31T23:59:59.000Z

424

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) |  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2004 Usefulness useful DOE-funding Unknown Exploration Basis To determine effectiveness of FIS for geothermal exploration Notes In order to test FIS for geothermal exploration, drill chips were analyzed from Coso well 83-16, which were selected at 1000 ft intervals by Joseph Moore. Sequential crushes done by our CFS (crushfast-scan) method (Norman 1996) show that chips have a high density of homogeneous fluid inclusions.

425

Borehole data package for the 100-K area ground water wells, CY 1994  

SciTech Connect

Borehole, hydrogeologic and geophysical logs, drilling, as-built diagrams, sampling, and well construction information and data for RCRA compliant groundwater monitoring wells installed in CY 1994 at the 100-K Basins.

Williams, B.A.

1994-12-27T23:59:59.000Z

426

Completion Report for Well Cluster ER-6-1  

SciTech Connect

Well Cluster ER-6-1 was constructed for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Division at the Nevada Test Site, Nye County, Nevada. This work was initiated as part of the Groundwater Characterization Project, now known as the Underground Test Area Project. The well cluster is located in southeastern Yucca Flat. Detailed lithologic descriptions with stratigraphic assignments for Well Cluster ER-6-1 are included in this report. These are based on composite drill cuttings collected every 3 meters and conventional core samples taken below 639 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 11 samples to resolve complex interrelationships between several of the Tertiary tuff units. Additionally, paleontological analyses by the U.S. Geological Survey confirmed the stratigraphic assignments below 539 meters within the Paleozoic sedimentary section. All three wells in the Well ER-6-1 cluster were drilled within the Quaternary and Tertiary alluvium section, the Tertiary volcanic section, and into the Paleozoic sedimentary section.

Bechtel Nevada

2004-10-01T23:59:59.000Z

427

Completion Report for Well ER-2-1  

SciTech Connect

Well ER-2-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (formerly Nevada Operations Office), in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in February and March of 2003, as part of a hydrogeologic investigation program for the Yucca Flat/Climax Mine Corrective Action Unit in the northeastern portion of the Nevada Test Site. Well ER-2-1 was drilled as part of the Yucca Flat Corrective Action Unit Phase I drilling initiative. The well is located in north central Yucca Flat within Area 2 of the Nevada Test Site, and provided information regarding the radiological and physical environment near underground nuclear tests conducted in a saturated volcanic aquifer setting. Detailed lithologic descriptions with stratigraphic assignments are included in this report. These are based on composite drill cuttings collected every 3 meters and 83 sidewall samples taken at various depths between 113.7 and 754.4 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 27 samples of drill cuttings. The well was collared in tuffaceous alluvium, and penetrated Tertiary-age tuffs of the Timber Mountain and Paintbrush Groups, Calico Hills and Wahmonie Formations, Crater Flat Group, Grouse Canyon Formation, before reaching total depth in the Tunnel Bed Formation.

Bechtel Nevada

2004-10-01T23:59:59.000Z

428

Microsoft Word - RUL_1Q2011_Gas_Samp_Results_7Wells  

Office of Legacy Management (LM)

31 March 2011 31 March 2011 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom-hole locations (BHLs) of the seven gas wells sampled are between 0.75 and 0.90 mile from the Project Rulison detonation point. All wells sampled are producing gas from the Williams Fork Formation. Background: Project Rulison was the second test under the Plowshare Program to stimulate natural-gas recovery from tight sandstone formations. On 10 September 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation. Samples Collected: * 7 gas samples from 7 wells * 7 produced water samples from 6 wells and 1 drip tank; one well was dry Findings:

429

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network (OSTI)

Oil, Gas, . . 81 and Geothermal Well Tests (abstract) W.has been testing geothermal wells for about three years, andof Oil, Gas, and Geothermal Well Tests W. E. Brigham

Authors, Various

2011-01-01T23:59:59.000Z

430

E-Print Network 3.0 - andalusian population sample Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

worldwide population, pro- viding a well-established structure for Y... - tance to the Middle East. Unfortunately, samples from the appropriate ... Source: Cavalli-Sforza, Luigi...

431

Silica recovery and control in Hawaiian geothermal fluids  

SciTech Connect

A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

Thomas, D.M.

1992-06-01T23:59:59.000Z

432

Silica recovery and control in Hawaiian geothermal fluids. Final report  

SciTech Connect

A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

Thomas, D.M.

1992-06-01T23:59:59.000Z

433

Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii  

SciTech Connect

A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

West, H.B.; Delanoy, G.A.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States). Hawaii Inst. of Geophysics); Gerlach, D.C. (Lawrence Livermore National Lab., CA (United States)); Chen, B.; Takahashi, P.; Thomas, D.M. (Hawaii Univ., Honolulu, HI (United States) Evans (Charles) and Associates, Redwood City, CA (United States))

1992-01-01T23:59:59.000Z

434

Capping of Water Wells for Future Use  

E-Print Network (OSTI)

in determining the condition of your well, contact: S your local groundwater conservation dis- trict http://www.tceq.state.tx.us/permitting/ water_supply/groundwater/districts.html S a licensed water well driller in your area S the Water Well Drillers Program... are the steps in capping a well? The landowner, a licensed well driller or a licensed pump installer may cap a well. There are several steps involved. The well casing should extend above the ground surface to limit the risk of water entering the well...

Lesikar, Bruce J.; Mechell, Justin

2007-09-04T23:59:59.000Z

435

Functionalized Graphene Nanoroads for Quantum Well Device. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoroads for Quantum Well Device. Functionalized Graphene Nanoroads for Quantum Well Device. Abstract: Using density functional theory, a series of calculations of structural and...

436

Observation Wells (Ozkocak, 1985) | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Activity Date Usefulness useful DOE-funding Unknown Notes Reinjection test wells can be used to obtain quite precise measurements of reservoir permeability....

437

EPA - UIC Well Classifications | Open Energy Information  

Open Energy Info (EERE)

Well Classifications Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - UIC Well Classifications Author Environmental Protection Agency Published...

438

Laser heating of aqueous samples on a micro-optical-electro-mechanical system  

DOE Patents (OSTI)

A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

Beer, Neil Reginald; Kennedy, Ian

2013-02-05T23:59:59.000Z

439

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

Fincke, J.R.

1982-05-04T23:59:59.000Z

440

Sample holder for X-ray diffractometry  

DOE Patents (OSTI)

A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

Hesch, Victor L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Helicopter magnetic survey conducted to locate wells  

SciTech Connect

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3s (NPR-3) Teapot Dome Field near Casper, Wyoming. The surveys purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

442

Development and assessment of electronic manual for well control and blowout containment  

E-Print Network (OSTI)

Fig. 1.4 ? Spindletop Lucas well blowout (1901) 17 As the rotary rig took over for the cable tool rig, and the depth of the wells kept getting deeper, there was a need to control the higher pressures encountered. The developments... this is not achieved, there might be an unscheduled inflow of fluids into the well. Most commonly, the occurrence of a kick is due to the rig crew not doing their job of managing the well pressures adequately. With the event of a kick follows the need...

Grottheim, Odd Eirik

2005-11-01T23:59:59.000Z

443

Micro-analysis of plaque fluid from single-site fasted plaque  

SciTech Connect

Despite the site-specific nature of caries, nearly all data on the concentration of ions relevant to the level of saturation of plaque fluid with respect to calcium phosphate minerals or enamel are from studies that used pooled samples. A procedure is described for the collection and analysis of inorganic ions relevant to these saturation levels in plaque fluid samples collected from a single surface on a single tooth. Various methods for examining data obtained by this procedure are described, and a mathematical procedure employing potential plots is recommended.

Vogel, G.L.; Carey, C.M.; Chow, L.C.; Tatevossian, A. (American Dental Association Health Foundation, Gaithersburg, MD (USA))

1990-06-01T23:59:59.000Z

444

Completion Report for Well ER-8-1  

SciTech Connect

Well ER-8-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in October and November of 2002 as part of a Hydrogeologic investigation program for the Yucca Flat/Climax Mine Corrective Action Unit in the northeastern portion of the Nevada Test Site. Well ER-8-1 is located at the north end of Yucca Flat approximately 580 meters south-southeast of the surface exposure of the Climax granitic intrusive. Detailed lithologic descriptions with stratigraphic assignments are included in this report. These are based on composite drill cuttings samples collected every 3 meters, and 21 sidewall samples taken at various depths between 351.1 and 573.0 meters, supplemented by incomplete geophysical log data. Detailed petrographic, geochemical, and mineralogical studies of rock samples were conducted on 22 samples of drill cuttings. Drilling began in tuffaceous alluvium, and the borehole penetrated Tertiary age bedded tuffs of the Volcanics of Oak Spring Butte and carbonate sediments of Paleozoic age, which were encountered at a depth of 334 meters. The borehole unexpectedly penetrated granite at the depth of 538.9 meters in which drilling was stopped. Contact metamorphic rocks and intrusive dikes associated with the Cretaceous-age granitic intrusive and at least one significant fault zone were encountered.

Bechtel Nevada

2004-11-01T23:59:59.000Z

445

Rotational viscometer for high-pressure, high-temperature fluids  

DOE Patents (OSTI)

The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer include a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. Means are provided to generate an output indicative of the phase difference between the two waveforms. The viscometer is comparatively simple, inexpensive, rugged, and does not require shaft seals.

Carr, K.R.

1983-06-06T23:59:59.000Z

446

Thank you for joining: 360WELLNESS  

E-Print Network (OSTI)

shortly. If you are experiencing technical difficulties with Adobe Connect, please call 1 March 22, 2012 12 pm ­ 1pm ET #12;360° WELLNESS: Achieving Wellness At Work And At Home Workshop & Self-Assessment © Joe Rosenlicht, Certified Coach 3 #12;8 Wellness Areas Wellness Nutrition Brain Power Fitness Sleep

Vertes, Akos

447

Track 4: Employee Health and Wellness  

Energy.gov (U.S. Department of Energy (DOE))

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 4: Employee Health and Wellness

448

Artificial trapping of a stable high-density dipolar exciton fluid  

Science Journals Connector (OSTI)

We present compelling experimental evidence for a successful electrostatic trapping of two-dimensional dipolar excitons that results in stable formation of a well-confined, high-density and spatially uniform dipolar exciton fluid. We show that, for at least half a microsecond, the exciton fluid sustains a density higher than the critical density for degeneracy if the exciton fluid temperature reaches the lattice temperature within that time. This method should allow for the study of strongly interacting bosons in two dimensions at low temperatures, and possibly lead towards the observation of quantum phase transitions of two-dimensional interacting excitons, such as superfluidity and crystallization.

Gang Chen, Ronen Rapaport, L. N. Pffeifer, K. West, P. M. Platzman, Steven Simon, Z. Vrs, and D. Snoke

2006-07-14T23:59:59.000Z

449

Definition: Artesian Well | Open Energy Information  

Open Energy Info (EERE)

Well Well Jump to: navigation, search Dictionary.png Artesian Well An artesian well is a water well that doesn't require a pump to bring water to the surface; this occurs when there is enough pressure in the aquifer. The pressure causes hydrostatic equilibrium and if the pressure is high enough the water may even reach the ground surface in which case the well is called a flowing artesian well.[1] View on Wikipedia Wikipedia Definition See Great Artesian Basin for the water source in Australia. An artesian aquifer is a confined aquifer containing groundwater under positive pressure. This causes the water level in a well to rise to a point where hydrostatic equilibrium has been reached. This type of well is called an artesian well. Water may even reach the ground surface if the natural

450

Multiple source/multiple target fluid transfer apparatus  

DOE Patents (OSTI)

A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

Turner, T.D.

1997-08-26T23:59:59.000Z

451

On equivalence of high temperature series expansion and coupling parameter series expansion in thermodynamic perturbation theory of fluids  

SciTech Connect

The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids.

Sai Venkata Ramana, A., E-mail: asaivenk@barc.gov.in [Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

2014-04-21T23:59:59.000Z

452

AUTOMATING GROUNDWATER SAMPLING AT HANFORD  

SciTech Connect

Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

2009-01-16T23:59:59.000Z

453

Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems  

SciTech Connect

Rare earth element (REE) and yttrium (Y) concentrations were measured in fluids collected from deep-sea hydrothermal systems including the Mid-Atlantic Ridge (MAR), i.e., Menez Gwen, Lucky Strike, TAG, and Snakepit; the East Pacific Rise (EPR), i.e., 13{degree}N and 17--19{degree}S; and the Lau (Vai Lili) and Manus (Vienna Woods, PacManus, Desmos) Back-arc Basins (BAB) in the South-West Pacific. In most fluids, Y is trivalent and behaves like Ho. Chondrite normalized Y-REE (Y-REE{sub N}) concentrations of fluids from MAR, EPR, and two BAB sites, i.e., Vai Lili and Vienna Woods, showed common patterns with LREE enrichment and positive Eu anomalies. REE analysis of plagioclase collected at Lucky Strike strengthens the idea that fluid REE contents, are controlled by plagioclase phenocrysts. Other processes, however, such as REE complexation by ligands (Cl{sup {minus}}, F{sup {minus}}, So{sub 4}{sup 2{minus}}), secondary phase precipitation, and phase separation modify REE distributions in deep-sea hydrothermal fluids. REE speciation calculations suggest that aqueous REE are mainly complexed by Cl{sup {minus}} ions in hot acidic fluids from deep-sea hydrothermal systems. REE concentrations in the fluid phases are, therefore, influenced by temperature, pH, and duration of rock-fluid interaction. Unusual Y-REE{sub N} patterns found in the PacManus fluids are characterized by depleted LREE and a positive Eu anomaly. The Demos fluid sample shows a flat Y-REE{sub N} pattern, which increases regularly from LREE to HREE with no Eu anomaly. These Manus Basin fluids also have an unusual major element chemistry with relatively high Mg, So{sub 4}, H{sub 2}S, and F contents, which may be due to the incorporation of magmatic fluids into heated seawater during hydrothermal circulation. REE distribution in PacManus fluids may stem from a subseafloor barite precipitation and the REE in Demos fluids are likely influenced by the presence of sulfate ions.

Douville, E. [Univ. Bretagne Occidentale, Brest (France). Dept. de Chimie] [Univ. Bretagne Occidentale, Brest (France). Dept. de Chimie; [IFREMER Centre de Brest, Plouzane (France); Appriou, P. [Univ. Bretagne Occidentale, Brest (France)] [Univ. Bretagne Occidentale, Brest (France); Bienvenu, P. [CEA Cadarache, Saint Paul Lez Durance (France). Lab. d`Analyses Radiochimiques et Chimiques] [CEA Cadarache, Saint Paul Lez Durance (France). Lab. d`Analyses Radiochimiques et Chimiques; Charlou, J.L.; Donval, J.P.; Fouquet, Y. [IFREMER Centre de Brest, Plouzane (France)] [IFREMER Centre de Brest, Plouzane (France); Gamo, Toshitaka [Univ. of Tokyo, Nakano, Tokyo (Japan). Ocean Research Inst.] [Univ. of Tokyo, Nakano, Tokyo (Japan). Ocean Research Inst.

1999-03-01T23:59:59.000Z

454

Immersible solar heater for fluids  

DOE Patents (OSTI)

An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Kronberg, James W. (Aiken, SC)

1995-01-01T23:59:59.000Z

455

An Analytical Approach to the Quantitation of Known Drugs in Human Biological Samples by HPLC  

Science Journals Connector (OSTI)

......protein is insoluble (e.g., muscle) some homogenisation or solubilising step is required before drug extraction can pro- ceed. For gelatinous samples (e.g., seminal fluid, sputum, etc.), liquefaction is needed and we find sonication most useful......

A. Bye; M.E. Brown

1977-09-01T23:59:59.000Z

456

New well control companies stress planning, engineering  

SciTech Connect

The technology for capping a blowing well has not changed during the last 50 years. Still, operators are finding new ways of using well control companies' expertise to help avoid potentially disastrous situations. This trend is especially critical given the current environmentally sensitive and cost-cutting times facing the oil industry. While regulatory agencies world-wide continue to hinder well control efforts during an offshore event, well control companies are focusing on technologies to make their job easier. Some of the most exciting are the hydraulic jet cutter, which gained fame in Kuwait, and electromagnetic ranging for drilling more accurate relief wells. With the number of subsea wells increasing, subsea intervention is a major target for future innovations. Well control companies are experiencing a change in their role to the offshore oil industry. Well control professionals discuss this expanded responsibility as well as other aspects of offshore blowouts including regulatory hindrances, subsea intervention and future technologies.

Bell, S.; Wright, R.

1994-04-01T23:59:59.000Z

457

Cerro Prieto cold water injection: effects on nearby production wells  

SciTech Connect

The liquid-dominated Cerro Prieto geothermal field of northern Baja California, Mexico has been under commercial exploitation since 1973. During the early years of operation, all waste brines were sent to an evaporation pond built west of the production area. In 1989, cooled pond brines began to be successfully injected into the reservoir along the western boundary of the geothermal system. The injection rate varied over the years, and is at present about 20% of the total fluid extracted. As expected under the continental desert conditions prevailing in the area, the temperature and salinity of the pond brines change with the seasons, being higher during the summer and lower during the winter. The chemistry of pond brines is also affected by precipitation of silica, oxidation of H{sub 2}S and reaction with airborne clays. Several production wells in the western part of the field (CP-I area) showed beneficial effects from injection. The chemical (chloride, isotopic) and physical (enthalpy, flow rate) changes observed in producers close to the injectors are reviewed. Some wells showed steam flow increases, in others steam flow decline rates flattened. Because of their higher density, injected brines migrated downward in the reservoir and showed up in deep wells.

Truesdell, A.H.; Lippmann, M.J.; De Leon, J.; Rodriguez, M.H.

1999-07-01T23:59:59.000Z

458

An Experimental Setup to Study the Settling Behavior of Epoxy Based Fluids  

E-Print Network (OSTI)

because it is very cheap compared to other materials like epoxy. However, cement can easily get contaminated by sea water or brines present in wells as completion fluids. Therefore, to be able to use cement it has to be placed at the bottom of the well...

El-Mallawany, Ibrahim Ismail

2012-07-16T23:59:59.000Z

459

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New  

Open Energy Info (EERE)

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Abstract The Valles caldera in New Mexico hosts a high-temperature geothermal system, which is manifested in a number of hot springs discharging in and around the caldera. In order to determine the fluid pathways and the origin of chloride in this system, we measured 36Cl/Cl ratios in waters from high-temperature drill holes and from surface springs in this region. The waters fall into two general categories: recent meteoric water samples with low Cl- concentrations (< 10 mg/L) and relatively high 36Cl/Cl ratios

460

Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis-Fluid At Raft River Geothermal Area Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not useful DOE-funding Unknown Exploration Basis Determine which reservoir model best matches the isotope data. Notes 1) Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and nearby. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. 2) Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Analysis of fluid inclusions in halite  

SciTech Connect

A technique has been developed to drill into fluid inclusions in halite, to extract the inclusions fluids, and to determine the concentration of all of the major and some of the minor constituents in these fluids. The minimum diameter of usable fluid inclusions is ca. 250 ..mu..m. After dilution, the fluids are analyzed by ion chromatography and coulometry. Uncertainties in the concentration of the major cations and anions is on the order of 4%. The analytical scheme provides much more precise analyses of inclusion fluids than have been available to date. The analyses are a useful starting point for reconstructing the composition of the sea water from which the evaporite brines evolved.

Lazar, B.; Holland, H.D.

1988-02-01T23:59:59.000Z

462

Influence of pressure, temperature, and pore fluid on the frequency-dependent attenuation of elastic waves in Berea sandstone  

Science Journals Connector (OSTI)

The effects of pore fluid, effective stress, pore fluid pressure, and temperature on the frequency dependence of elastic wave attenuation in Berea sandstone are interrelated in a series of systematic experiments. The attenuation of both the extensional and torsional modes of cylindrical samples of the sandstone is measured on the frequency range 330 kHz. To simulate conditions within the earth, the sandstone is subjected to confining stress to 70.0 MPa and temperature from 24.0 C to 120.0 C. Confining pressure and pore fluid pressure are varied independently. Data for two different pore fluids, brine and n-heptane, suggest that a scaling law exists for the pressure and temperature dependence of the attenuation in terms of the pore fluid. The logarithmic decrement of the sandstone is almost frequency independent in a vacuum evacuated sample, but shows a linear frequency dependence, once the sample is saturated. Extrapolation of this linear trend to low frequencies suggests that the decrement in fluid-filled sandstone is effectively frequency independent at seismic frequencies (process is apparently influenced most strongly by chemical processes at the pore fluid-matrix interface accompanied by subtle changes in the sandstone matrix dimensions.

Stephen G. OHara

1985-07-01T23:59:59.000Z

463

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

464

Apparatus for unloading pressurized fluid  

DOE Patents (OSTI)

An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

Rehberger, K.M.

1994-01-04T23:59:59.000Z

465

System and method for filling a plurality of isolated vehicle fluid circuits through a common fluid fill port  

SciTech Connect

A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.

Sullivan, Scott C; Fansler, Douglas

2014-10-14T23:59:59.000Z

466

Studies of complexity in fluid systems  

SciTech Connect

This is the final report of Grant DE-FG02-92ER25119, ''Studies of Complexity in Fluids'', we have investigated turbulence, flow in granular materials, singularities in evolution of fluid surfaces and selective withdrawal fluid flows. We have studied numerical methods for dealing with complex phenomena, and done simulations on the formation of river networks. We have also studied contact-line deposition that occurs in a drying drop.

Nagel, Sidney R.

2000-06-12T23:59:59.000Z

467

Vibratory pumping of a free fluid stream  

DOE Patents (OSTI)

A vibratory fluid pump having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments.

Merrigan, Michael A. (Santa Cruz, NM); Woloshun, Keith A. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

468

Vibratory pumping of a free fluid stream  

DOE Patents (OSTI)

A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.

Merrigan, M.A.; Woloshun, K.A.

1990-11-13T23:59:59.000Z

469

E-Print Network 3.0 - average magnetic well Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

... Source: Ecole Polytechnique, Centre de mathmatiques Collection: Mathematics 90 TEST RESULTS OF HTS COILS AND AN R&D MAGNET FOR RIA* , M. Anerella, M. Harrison, J....

470

Completion Report for Well ER-EC-5  

SciTech Connect

Well ER-EC-5 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in the summer of 1999 as part of the U.S. Department of Energy's hydrogeologic investigation program in the Western Pahute Mesa - Oasis Valley region just west of the Nevada Test Site. A 44.5-centimeter surface hole was drilled and cased off to a depth of 342.6 meters below ground surface. The borehole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 762.0 meters. One completion string with three isolated slotted intervals was installed in the well. A preliminary composite, static water level was measured at the depth of 309.9 meters, 40 days after installation of the completion string. Detailed lithologic descriptions with stratigraphic assignments are included in the report. These are based on composite drill cuttings collected every 3 meters, and 18 sidewall samples taken at various depths below 349.6 meters, supplemented by geophysical log data and results from detailed chemical and mineralogical analyses of rock samples. The well penetrated Tertiary-age tuffs of the Thirsty Canyon Group, caldera moat-filling sedimentary deposits, lava of the Beatty Wash Formation, and landslide breccia and tuffs of the Timber Mountain Group. The well reached total depth in welded ashflow tuff of the Ammonia Tanks Tuff after penetrating 440.1 meters of this unit, which is also the main water-producing unit in the well. The geologic interpretation of data from this well constrains the western margin of the Ammonia Tanks caldera to the west of the well location.

Bechtel Nevada

2004-10-01T23:59:59.000Z

471

Fluid inclusion geochemistry of halite from the Silurian A-1 Evaporite, Michigan Basin  

SciTech Connect

Fluids trapped in primary, inclusion-rich halite from the Silurian A-1 Evaporite of the Michigan Basin were analyzed to determine their elemental and isotopic composition and so constrain the fluid chemistry and regional variability of parent brines. The samples were collected from stratigraphically more complete basin center and basin margin cores than hitherto have been available. These include both inclusion-rich whole rock chips and fluids leached with isopropanol from crushed, inclusion-rich halite. Elemental ratios were determined relative to Mg, which is present only in the fluid phase of monomineralic halite samples and acts as a normalizing parameter against which to quantify fluid inclusion chemistry. Stable isotope ratios were determined on fluids collected from inclusion-rich halite by vacuum-thermal decrepitation. Inclusion fluids define a geochemical trend characterized by a Ca:Mg ratio of 1.4 [+-] 0.47, an Sr:Mg ratio of 0.015 [+-] 0.004 and a K:Mg ratio of 0.5 [+-] 0.17. Fluids are also depleted in SO[sub 4]. Importantly, these values are significantly different from any Michigan Basin formation brines and also cannot be derived from evaporation of modern seawater without extensive diagenetic modification. Two explanations of the data are possible. Pervasive syndepositional dolomitization and anhydrite precipitation may have altered Silurian brines of initial modern seawater composition, as has been suggested for similar data. However, consistently high cation ratios in the A-1 Evaporite on a regional scale demand striking uniformity in the timing and location of such reactions. Alternatively, Silurian seawater may have had elevated Ca:Mg, Sr:Mg and possibly K:Mg ratios relative to modern seawater.

Leibold, A.W.; Walter, L.M.; Huston, T.J.; O'Neil, J.R. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Geological Sciences)

1992-01-01T23:59:59.000Z

472

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, J.R.

1980-05-02T23:59:59.000Z

473

Heat Transfer Fluids Containing Nanoparticles | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transfer Fluids Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a...

474

Sandia National Laboratories: Computational Fluid Dynamics Simulations...  

NLE Websites -- All DOE Office Websites (Extended Search)

Canal, Yakima Washington Sandia Publishes Five Reports on the Environmental Effects of Wave-Energy Converters Computational Fluid Dynamics Simulations Provide Insight for Rotor...

475

DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...  

Open Energy Info (EERE)

This is the fourth paper in a series on developing fluid inclusion stratigraphy (FIS) as a logging tool for geothermal bore holes. Here we address methods of displaying...

476

Fluid casting of particle-based articles  

DOE Patents (OSTI)

A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.

Menchhofer, Paul (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

477

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

478

RFI Well Integrity 06 JUL 1400  

Energy.gov (U.S. Department of Energy (DOE))

This PowerPoint report entitled "Well Integrity During Shut - In Operations: DOE/DOI Analyses" describes risks and suggests risk management recommendations associated with shutting in the well.

479

Well Owner's Guide To Water Supply  

E-Print Network (OSTI)

's groundwater and guidelines, including national drinking water standards, to test well water to insure safe drinking water in private wells. National drinking water standards and common methods of home water .....................22 Contaminants in Water........................................23 Drinking Water Guidelines

Fay, Noah

480

Essays on Well-Being in Japan.  

E-Print Network (OSTI)

??This dissertation is comprised of four papers on well-being in Japan and aims to examine three important measures of well-being: perceptions of job insecurity, self-reported (more)

Kuroki, Masanori

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wells fluid sampling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA  

E-Print Network (OSTI)

isotope data for geothermal wells (Figure 3) are consistentof Ca and CO 2 in geothermal wells adjacent to the Casa16 and locations of geothermal well samples (gray circles).

Brown, Shaun

2010-01-01T23:59:59.000Z

482

sediment samples | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

sediment samples sediment samples Leads No leads are available at this time. Diffusional Motion of Redox Centers in Carbonate Electrolytes . Abstract: Ferrocene (Fc) and...

483

Water and Sediment Sampling  

NLE Websites -- All DOE Office Websites (Extended Search)

analytical laboratory limit below which any level present cannot be determined) Note: Sediment sample locations are co-located with off-site surface water sample locations. Surface...

484

Particle-fluid heat/mass transfer: Newtonian and non-Newtonian fluids  

Science Journals Connector (OSTI)

A new model based on the boundary layer analysis is developed for particle-fluid heat/mass transfer. The proposed model enables a unified consideration ... results with data for Newtonian and non-Newtonian fluids

Y. Kawase

1992-01-01T23:59:59.000Z

485

Method for the magnetization of well casing  

SciTech Connect

A well casing is magnetized by traversing an internal magnetizer along and within the well casing while periodically reversing the direction of the magnetic field of the magnetizer to create a plurality of magnetic flux leakage points along the well casing.

Hoehn, G.L. Jr.

1984-08-14T23:59:59.000Z

486

Calculator program aids well cost management  

SciTech Connect

A TI-59 calculator program designed to track well costs on daily and weekly bases can dramatically facilitate the task of monitoring well expenses. The program computes the day total, cumulative total, cumulative item-row totals, and day-week total. For carrying these costs throughout the drilling project, magnetic cards can store the individual and total cumulative well expenses.

Doyle, C.J.

1982-01-18T23:59:59.000Z

487

The integrity of oil and gas wells  

Science Journals Connector (OSTI)

...Analyses of 8,000 offshore wells in the Gulf of Mexico show that 1112% of wells developed pressure in the outer...underground gas storage, and even geothermal energy (1620). We...to learn about how often wells fail, when and why they...

Robert B. Jackson

2014-01-01T23:59:59.000Z

488

Well blowout rates in California Oil and Gas District 4--Update and Trends  

SciTech Connect

Well blowouts are one type of event in hydrocarbon exploration and production that generates health, safety, environmental and financial risk. Well blowouts are variously defined as 'uncontrolled flow of well fluids and/or formation fluids from the wellbore' or 'uncontrolled flow of reservoir fluids into the wellbore'. Theoretically this is irrespective of flux rate and so would include low fluxes, often termed 'leakage'. In practice, such low-flux events are not considered well blowouts. Rather, the term well blowout applies to higher fluxes that rise to attention more acutely, typically in the order of seconds to days after the event commences. It is not unusual for insurance claims for well blowouts to exceed US$10 million. This does not imply that all blowouts are this costly, as it is likely claims are filed only for the most catastrophic events. Still, insuring against the risk of loss of well control is the costliest in the industry. The risk of well blowouts was recently quantified from an assembled database of 102 events occurring in California Oil and Gas District 4 during the period 1991 to 2005, inclusive. This article reviews those findings, updates them to a certain extent and compares them with other well blowout risk study results. It also provides an improved perspective on some of the findings. In short, this update finds that blowout rates have remained constant from 2005 to 2008 within the limits of resolution and that the decline in blowout rates from 1991 to 2005 was likely due to improved industry practice.

Jordan, Preston D.; Benson, Sally M.

2009-10-01T23:59:59.000Z

489

Calculating single layer production contribution of heavy oil commingled wells by analysis of aromatic parameters in whole-oil GC-MS  

Science Journals Connector (OSTI)

Traditional fluid production profile logging is not usually suitable for heavy-viscous crude oil wells. Biodegradation of heavy oil can lead to the loss of n-ahkanes, and the use of chromatogram fingerprint techn...

Yaohui Xu; Li Ma; Linxiang Li; Wenfu Cui; Xiaowei Cheng; Xiaoping Wang

2014-03-01T23:59:59.000Z

490

Green Algae as Model Organisms for Biological Fluid Dynamics  

E-Print Network (OSTI)

In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

Raymond E. Goldstein

2014-09-08T23:59:59.000Z

491

Green Algae as Model Organisms for Biological Fluid Dynamics  

E-Print Network (OSTI)

In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these re...

Goldstein, Raymond E

2014-01-01T23:59:59.000Z