National Library of Energy BETA

Sample records for wells drilled dollars

  1. U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  2. U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  3. U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Oil Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  5. U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  6. U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  7. Well drilling apparatus and method

    DOE Patents [OSTI]

    Alvis, Robert L.; Newsom, Melvin M.

    1977-01-01

    Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

  8. U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

  9. U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled...

    Gasoline and Diesel Fuel Update (EIA)

    Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

  10. Subsea well template for directional drilling

    SciTech Connect (OSTI)

    Goldsmith, R.G.

    1988-07-05

    A method is described for drilling widely spaced boreholes into a hydrocarbon producing subsea formation comprising the steps of: positioning a subsea drilling template on the bottom of a body of water, the subsea drilling template including laterally disposed, substantially cylindrical drilling guides having a longitudinal axis wherein at least one of the drilling guides has its longitudinal axis disposed at an angle of less than 90/sup 0/ relative to a horizontal plane passing through the subsea drilling template; mooring a drilling vessel floating on the surface of the body of water in a first position relative to the subsea drilling template using a plurality of mooring catenaries; extending a drill string from the floating vessel to the subsea template, the drill string passing into the one of the drilling guides along its longitudinal axis which is disposed at an angle of less than 90/sup 0/; drilling a borehole below the template into the hydrocarbon producing subsea formation; repositioning the drilling vessel to another position relative to the subsea template by adjusting the mooring catenaries; extending the drill string from the vessel into another of the drilling guides; drilling another borehole below the template; and repeating the steps of repositioning the drilling vessel, extending the drill string and drilling the widely spaced boreholes.

  11. Oil and Gas Well Drilling | Open Energy Information

    Open Energy Info (EERE)

    Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not Provided Check for...

  12. Costs of Crude Oil and Natural Gas Wells Drilled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

  13. Idaho Well Construction and Drilling Forms Webpage | Open Energy...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Well Construction and Drilling Forms Webpage Citation Idaho Department...

  14. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  15. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  16. Horizontal underbalanced drilling of gas wells with coiled tubing

    SciTech Connect (OSTI)

    Cox, R.J.; Li, J.; Lupick, G.S.

    1999-03-01

    Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

  17. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory...

  18. Application of water-base mud in deep well drilling

    SciTech Connect (OSTI)

    Li, Y.; Qian, F.; Lo, P.

    1982-01-01

    This paper reports the results of laboratory research and field practice on the application of temperature resistant water-base muds for deep drilling in Sichuan Province, China. The major problems discussed include mud stability; adjustment and control of mud properties under high temperatures and pressures; the effect of pH on the properties of mud systems. Some means of solving these and other problems involved in deep well drilling are proposed.

  19. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

  20. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    SciTech Connect (OSTI)

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  1. Coiled tubing buckling implication in drilling and completing horizontal wells

    SciTech Connect (OSTI)

    Wu, J.; Juvkam-Wold, H.C.

    1995-03-01

    This paper discusses coiled tubing buckling and load transmission when drilling and completing horizontal wells. Comprehensive analyses and new equations are presented to predict buckling of coiled tubing, slack-off weight transmission, actual bit weight or packer load, and maximum horizontal length. Coiled tubing lock-up and yield due to buckling are also discussed. These equations can also be used for other coiled tubing operations, such as coiled tubing workover, coiled tubing well stimulation, and even for conventional joint-connected drill strings. Calculations based on the equations presented are also compared with the previous literature.

  2. U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Real Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0...

  3. In-well vapor stripping drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-03-13

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  4. Surface control bent sub for directional drilling of petroleum wells

    DOE Patents [OSTI]

    Russell, Larry R.

    1986-01-01

    Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

  5. EM Telemetry Tool for Deep Well Drilling Applications

    SciTech Connect (OSTI)

    Jeffrey M. Gabelmann

    2005-11-15

    This final report discusses the successful development and testing of a deep operational electromagnetic (EM) telemetry system, produced under a cooperative agreement with the United States Department of Energy's National Energy Technology Laboratory. This new electromagnetic telemetry system provides a wireless communication link between sensors deployed deep within oil and gas wells and data acquisition equipment located on the earth's surface. EM based wireless telemetry is a highly appropriate technology for oil and gas exploration in that it avoids the need for thousands of feet of wired connections. In order to achieve the project performance objectives, significant improvements over existing EM telemetry systems were made. These improvements included the development of new technologies that have improved the reliability of the communications link while extending operational depth. A key element of the new design is the incorporation of a data-fusion methodology which enhances the communication receiver's ability to extract very weak signals from large amounts of ambient environmental noise. This innovative data-fusion receiver based system adapts advanced technologies, not normally associated with low-frequency communications, and makes them work within the harsh drilling environments associated with the energy exploration market. Every element of a traditional EM telemetry system design, from power efficiency to reliability, has been addressed. The data fusion based EM telemetry system developed during this project is anticipated to provide an EM tool capability that will impact both onshore and offshore oil and gas exploration operations, for conventional and underbalanced drilling applications.

  6. Geopressured-geothermal well report. Volume I. Drilling and completion

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Gladys McCall site activities are covered through the completion of the test well and salt water disposal well. The test well was drilled to a total depth of 16,510 feet, then plugged back to 15,831 feet. Three 4'' diameter diamond cores were taken for analysis. An existing well on site, the Getty-Butts Gladys McCall No. 1, was reentered and completed to a depth of 3514 feet as a salt water disposal well. The geologic interpretation of the Gladys McCall site indicated target sands for testing at 15,080 feet through 15, 831 feet. Reservoir fluid temperature at this depth is estimated to be approximately 313/sup 0/F and pressure is estimated to be +-12,800 psi. The preliminary reservoir volume estimate is 3.6 billion barrels of brine. The design wells program includes environmental monitoring of the Gladys McCall site by Louisiana State University. Field stations are set up to monitor surface and ground water quality, subsidence, land loss and shoreline erosion, and seismicity. As of December 31, 1981 the study shows no significant impact on the environment by site operations.

  7. Planning and well evaluations improve horizontal drilling results

    SciTech Connect (OSTI)

    Hovda, S. )

    1994-10-31

    A systematic approach, including better planning and performance evaluation, improved the horizontal drilling efficiency of a multiwell program in the Oseberg field in the North Sea. The horizontal drilling program in the Oseberg field is one of the most comprehensive horizontal drilling programs in the North Sea. The present horizontal drilling program consists of 14 oil producers from the C platform and 18 from the B platform. Total horizontal displacement varies from around 1,500 m to 5,540 m. The lengths of the horizontal section vary from 600 m to 1,500 m. The paper discusses will planning, directional drilling, drilling problems with coal seams and orientation, true vertical depth control, horizontal liner cement, spacer system, cement slurries, job execution, and results.

  8. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOE Patents [OSTI]

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  9. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    SciTech Connect (OSTI)

    Fairbank, Brian D.; Smith, Nicole

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag, seismic, and gravity data sets are in good agreement, illustrating two or more major range-bounding faults and buried northwest trending faults. The intersections of these fault systems provide the primary targets for drilling.

  10. The drilling of a horizontal well in a mature oil field

    SciTech Connect (OSTI)

    Rougeot, J.E.; Lauterbach, K.A.

    1991-01-01

    This report documents the drilling of a medium radius horizontal well in the Bartlesville Sand of the Flatrock Field, Osage County, Oklahoma by Rougeot Oil and Gas Corporation (Rougeot) of Sperry, Oklahoma. The report includes the rationale for selecting the particular site, the details of drilling the well, the production response, conclusions reached, and recommendations made for the future drilling of horizontal wells. 11 figs., 2 tabs.

  11. U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 4,232 1950's 4,335 4,609 4,781 4,761 4,740 4,819 4,901 5,036 4,993 5,021 1960's 5,170 5,099 5,124 4,878 5,509 5,672 5,700 5,758 5,914 6,054 1970's 6,247 5,745 5,880 6,243 5,855 5,913 6,010 5,902 6,067 6,011 1980's 5,727 5,853 5,504 5,141 5,565 5,865 6,069 6,104 6,182 6,028 1990's 6,838 6,641 6,930 6,627 6,671

  12. U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,225 1950's 3,077 3,255 3,520 3,401 3,512 3,699 3,574 3,605 3,631 3,844 1960's 3,889 3,782 4,239 4,143 4,207 4,446 3,900 3,901 4,311 4,437 1970's 4,714 4,633 4,725 4,851 4,599 4,415 4,439 4,662 4,600 4,517 1980's 4,214 4,226 4,184 3,974 4,205 4,306 4,236 4,390 4,704 4,684 1990's 4,755 4,629

  13. U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Exploratory Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,658 1950's 3,733 4,059 4,334 4,447 4,408 4,498 4,425 4,488 4,449 4,602 1960's 4,575 4,799 4,790 4,933 4,980 5,007 5,117 5,188 5,589 5,739 1970's 5,700 5,796 5,882 5,808 5,649 5,674 5,607 5,605 5,812 5,716 1980's 5,533 5,582 5,367 4,800 5,178 5,317 5,447 5,294 5,748 5,579 1990's 5,685 5,658 5,480

  14. U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 5,682 1950's 5,466 5,497 6,071 5,654 6,059 5,964 6,301 6,898 6,657 6,613 1960's 6,298 6,457 6,728 6,370 7,547 7,295 8,321 7,478 7,697 8,092 1970's 7,695 7,649 7,400 6,596 6,456 6,748 6,777 6,625 6,662 6,630 1980's 6,604 6,772 6,921 6,395 6,502 6,787 6,777 6,698 6,683 6,606 1990's 7,100 7,122 6,907 6,482 6,564

  15. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  16. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  17. Shallow gas well drilling with coiled tubing in the San Juan Basin

    SciTech Connect (OSTI)

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

    1996-12-31

    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  18. U.S. Footage Drilled for Dry Exploratory and Developmental Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Dry Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  19. U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. U.S. Footage Drilled for Dry Developmental Wells (Thousand Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells (Thousand Feet) U.S. Footage Drilled for Dry Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  1. U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's...

  2. U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's...

  3. U.S. Footage Drilled for Dry Exploratory Wells (Thousand Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells (Thousand Feet) U.S. Footage Drilled for Dry Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 26,439...

  4. U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs...

    Open Energy Info (EERE)

    for Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells...

  5. U.S. Geothermal Drills Prolific Well at Neal Hot Springs | Open...

    Open Energy Info (EERE)

    Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Prolific Well at Neal Hot Springs Abstract NA Author U.S. Geothermal...

  6. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling...

    Open Energy Info (EERE)

    Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Phase 2 Reese River Geothermal...

  7. Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.

    1992-06-01

    This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

  8. Underbalanced coiled-tubing-drilled horizontal well in the North Sea

    SciTech Connect (OSTI)

    Wodka, P.; Tirsgaard, H.; Damgaard, A.P.; Adamsen, C.J.

    1996-05-01

    Maersk Olie and Gas A/S (Maersk Oil) has drilled a 3,309-ft-long near-horizontal drainhole with coiled tubing to a total measured depth (MD) of 11,000 ft in the Danish sector of the North Sea. The well was completed in may 1994 as a 3{1/2}-in. openhole producer in the Gorm field chalk reservoir. Part of the well was drilled at underbalanced conditions, and oil production rates of up to 1,100 STB/D were reached during drilling. Conventional well-test equipment was used for handling returns. A nearby process facilities platform supplied lift gas and received the produced hydrocarbons during the drilling phase. Worth noting are the penetration of several chert layers, the fairly long reach, and the application of geosteering. Indications were that the well productivity was significantly improved compared with that of a conventionally drilled well, but problems were experienced with borehole stability in a fractured region.

  9. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    SciTech Connect (OSTI)

    Henkle, William R.; Ronne, Joel

    2008-06-15

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  10. Unique aspects of drilling and completing hot-dry-rock geothermal wells

    SciTech Connect (OSTI)

    Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

    1983-01-01

    Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

  11. Subsea BOP stack built for Caspian drilling

    SciTech Connect (OSTI)

    Not Available

    1991-12-16

    This paper reports that Shaffer Inc. completed construction of a multi-million dollar subsea drilling system for Caspmorneftegas, an operating company in the Republic of Azerbaijan. The subsea stack will be installed on the semisubmersible drilling rig Shelf 7 currently under construction in Astrakan in the Soviet Union. Shelf 7 will drill wells in the Caspian Sea, one of the most prolific production areas in the Soviet Union.

  12. Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin

    Broader source: Energy.gov [DOE]

    The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide injection test in Decatur, Illinois.

  13. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect (OSTI)

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  14. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

  15. Statement of Work for Drilling Four CERCLA Groundwater Monitoring Wells During Fiscal Year 2006, 300-FF-5 Operable Unit

    SciTech Connect (OSTI)

    Williams, Bruce A.

    2005-10-10

    This document contains the statement of work required to drill, characterize, and construct the proposed groundwater monitoring wells at 300-FF-5 Operable Unit during FY 2006.

  16. Recovery Act Funds Expand Groundwater Treatment at Hanford Site: Contractor CH2M HILL drills record number of wells

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Workers at the Hanford Site have surpassed goals for drilling wells to detect and remove contamination from groundwater.

  17. Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Discover new 260F and 300F geothermal reservoirs in Oregon. To demonstrate the application of high precision geophysics for well targeting. Demonstrate a combined testing approach to Flowing Differential Self Potential (FDSP) and electrical tomography resistivity as a guide to exploration and development. Demonstrate utility and benefits of sump-less drilling for a low environmental impact. Create both short and long term employment through exploration, accelerated development timeline and operation.

  18. Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application

    Reports and Publications (EIA)

    1993-01-01

    Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

  19. DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS

    SciTech Connect (OSTI)

    Johnson, F.; Fox, K.

    2013-10-02

    The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

  20. U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled

    Gasoline and Diesel Fuel Update (EIA)

    (Feet per Well) and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,720 1950's 3,893 4,103 4,214 4,033 4,028 3,981 3,942 4,021 3,916 3,935 1960's 3,889 3,994 4,070 4,063 4,042 4,059 4,013 3,825 4,153 4,286 1970's 4,385 4,126 4,330 4,369 3,812 3,943 3,895 4,025 4,017 3,966 1980's 3,801 3,923 3,793 3,662 3,791 3,906 3,999

  1. U.S. Average Depth of Dry Exploratory and Developmental Wells Drilled (Feet

    Gasoline and Diesel Fuel Update (EIA)

    per Well) Exploratory and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,473 1950's 3,445 3,706 3,983 4,004 4,004 4,161 4,079 4,126 4,110 4,275 1960's 4,248 4,311 4,524 4,552 4,598 4,723 4,573 4,616 5,053 5,195 1970's 5,265 5,305 5,377 5,403 5,191 5,073 5,014 5,120 5,183 5,071 1980's 4,791 4,827 4,691 4,320 4,631 4,733 4,763

  2. U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per

    Gasoline and Diesel Fuel Update (EIA)

    Well) Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,412 1950's 3,766 3,837 4,015 4,373 4,365 4,339 4,734 4,950 4,801 5,120 1960's 5,321 5,145 5,186 5,198 5,171 5,337 5,474 5,629 5,716 5,531 1970's 5,644 5,670 5,259 5,286 5,173 5,238 4,960 5,053 5,066 5,082 1980's 5,093 5,149 5,453 5,187 5,158 5,193 5,080 5,112 5,155 5,038 1990's

  3. Drilling and abandonment preparation of CO₂ storage wells – Experience from the Ketzin pilot site

    SciTech Connect (OSTI)

    Prevedel, Bernhard; Martens, Sonja; Norden, Ben; Henninges, Jan; Freifeld, Barry M.

    2014-12-31

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO₂ research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO₂ were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation of the observation well Ktzi 202 shortly after shut-in of CO₂ injection. The experience with the first CO₂ well killing operation will be reviewed.

  4. Drilling and abandonment preparation of CO₂ storage wells – Experience from the Ketzin pilot site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prevedel, Bernhard; Martens, Sonja; Norden, Ben; Henninges, Jan; Freifeld, Barry M.

    2014-12-31

    At Ketzin, located west of Berlin, the GFZ German Centre for Geosciences is operating Europe's largest CO₂ research storage site. This pilot site has been developed since 2004 and is comprised of one combined injection/observation well and four monitoring wells. From June 2008 to August 2013, a total of 67 kilotons of CO₂ were safely injected into the sandstone units of the Upper Triassic Stuttgart Formation in a depth between 630 to 650 m. The paper discusses the well designs and lessons learned in drilling engineering and operations. The abandonment phase started in Ketzin with the first plug cementation ofmore » the observation well Ktzi 202 shortly after shut-in of CO₂ injection. The experience with the first CO₂ well killing operation will be reviewed.« less

  5. Design, drilling, and testing of a deviated HTHP exploration well in the North Sea

    SciTech Connect (OSTI)

    Seymour, K.P.; MacAndrew, R.

    1994-12-01

    Significant quantities of hydrocarbon reserves are contained in North Sea high-temperature, high-pressure (HTHP) reservoirs. Development of these reserves will require deviated wells. This paper outlines the planning, drilling, and testing of the first deviated HTHP well in the UK Sector of the North Sea. The high temperature requires mud systems, downhole equipment, and tools designed to work at elevated temperatures. The convergence of pore and fracture pressures leads to problems owing to the narrow band of mud weight between inducing losses and inducing a kick. This aspect of these wells probably causes the most trouble. The high mud weights required for well control leads to a situation where, owing to the large difference between formation-fluid and mud pressure gradients, mud overbalance becomes so high at the bottom of long permeable hole sections that differential sticking becomes likely. These problems are magnified when drilling small-diameter directional holes. The most important single factor in controlling these problems is the mud system design.

  6. McGinness Hills Well 27A-10 Daily Drilling Report Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Knudsen, Steven

    2014-03-25

    This data should be used with the daily drilling record and other data which can be obtained from the contact listed below

  7. McGinness Hills Well 27A-10 Daily Drilling Report Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Knudsen, Steven

    This data should be used with the daily drilling record and other data which can be obtained from the contact listed below

  8. Laboratory development and field application of a novel water-based drill-in fluid for geopressured horizontal wells

    SciTech Connect (OSTI)

    Dobson, J.W.; Harrison, J.C.; Hale, A.H.

    1996-12-31

    Research has identified a novel water-based drill-in fluid for drilling and completing geopressured horizontal wells. This fluid has a unique combination of properties which make it especially suitable for geopressured applications. They include the use of calcium and/or zinc bromide as a base brine, minimal concentration of calcium carbonate as bridging material, low plastic viscosity, tight fluid loss control, good filter cake properties, and excellent return permeability. This drill-in fluid has been used successfully to drill a 1,200 foot production interval, 4.75 inch diameter wellbore in the Gulf of Mexico with a system weight of 13.2 lbm/gal, bottom hole temperature of 185{degrees} F., and a 1400 to 1700 psi overbalance. The system functioned very well in both the drilling and completion operations. Fluid rheology was easily maintainable and the hole conditions were excellent without torque or drag problems. Initial production data suggests that the well is producing at expected rates with low drawdown pressure.

  9. Selection of area and specific site for drilling a horizontal well in Calhoun County, West Virginia

    SciTech Connect (OSTI)

    Reeves, T.K.; Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1992-03-01

    This report discusses the data collection and analysis procedures used to establish criteria for geologic and engineering studies conducted by BDM to select a general area for more detailed study and a specific site for the drilling of a cooperative well with an industry partner, the Consolidated Natural Gas Development Company (CNGD). The results of detailed geologic studies are presented for two areas in Calhoun County, West Virginia, and one area along the Logan-Boone County line in West Virginia. The effects of Appalachian Basin tectonics and the Rome Trough Rift system were identified on seismic lines made available by (CNGD). These helped to identify and define the trapping mechanisms which had been effective in each area. Engineering analyses of past production histories provided data to support selection of target areas and then to select a specific site that met the project requirements for production, reservoir pressure, and risk. A final site was selected in Lee District at the southwestern margin of the Sand Ridge gas field based on the combination of a geologic trapping mechanism and reservoir pressures which were projected as 580 psi with a stress ratio of 0.53.

  10. Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia. Final report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

    1992-03-01

    This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

  11. Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up exploration drilling target; Create short term jobs and long term employment through resource exploration, development and power plant operation; Extend and adapt the DOE sub-soil 2 meter probe technology to gas sampling.

  12. Reverse trade mission on the drilling and completion of geothermal wells

    SciTech Connect (OSTI)

    Not Available

    1989-09-09

    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. DE-FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  13. Drilling equipment to shrink

    SciTech Connect (OSTI)

    Silverman, S.

    2000-01-01

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  14. User Coupled Confirmation Drilling Program case study: City of Alamosa, Colorado, Alamosa No. 1 geothermal test well

    SciTech Connect (OSTI)

    Zeisloft, J.; Sibbett, B.S.

    1985-08-01

    A 7118 ft (2170 m) deep geothermal test well was drilled on the south edge of the city of Alamosa, Colorado as part of the Department of Energy's User Coupled Confirmation Drilling Program. The project was selected on the bases of a potential direct heat geothermal resource within the Rio Grande rift graben and resource users in Alamosa. The well site was selected on the hypothesis of a buried horst along which deep thermal fluids might be rising. In addition, there were city wells that were anomalous in temperature and the location was convenient to potential application. The Alamosa No. 1 penetrated 2000 ft (610 m) of fine clastic rocks over 4000 ft (1219 m) of volcaniclastic rock resting on precambrian crystalline rock at a depth of 6370 ft (1942 m). Due to poor hole conditions, geophysical logs were not run. The stabilized bottom hole temperature was 223/sup 0/F (106/sup 0/C) with a gradient of 2.6/sup 0/F/100 ft (47/sup 0/C/km). Limited testing indicated a very low production capacity. 16 refs., 6 figs.

  15. Downhole fluid sampling at the SSSDP (Salton Sea Scientific Drilling Project) California State 2-14 well, Salton Sea, California

    SciTech Connect (OSTI)

    Goff, F.; Shevenell, L.; Grigsby, C.O.; Dennis, B.

    1987-07-01

    In situ fluid sampling activities were conducted at the Salton Sea Scientific Drilling Project (SSSDP) well during late December 1985 and late March 1986 to obtain unflashed samples of Salton Sea brine. In late December, three sampling runs were made to depths of approximately 1800 m and temperatures of 300/sup 0/C. In late March, 10 sampling runs were made to depths of approximately 3150 m and temperatures of 350/sup 0/C. In brief, the Los Alamos tool obtained samples from four of eight runs; the Lawrence Berkeley tool obtained samples from one of one run; the Leutert Instruments, Inc., tool obtained samples from zero of three runs; and the USGS quartz crystal experiment was lost in the well. The most complete sample was obtained from run No. 11, using the Los Alamos sampler and Sandia battery pack/controller on a wireline. About 1635 ml of brine, two noble gas samples, and two bulk gas samples were collected from this run. Samples of brine and gas from productive runs have been distributed to about 15 researchers for various types of analyses. Chemical analyses by the Los Alamos and US Geological Survey analytical teams are presented in this report, although they are not corrected for flashing and precipitation.

  16. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    SciTech Connect (OSTI)

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified the DOE on February 13, 2014 that it would not be able to complete the project objectives before the recovery act awards deadline and submitted a mutual termination request to the DOE which was accepted.

  17. FAR Dollar Threshold Changes

    Broader source: Energy.gov [DOE]

    Attached is a table summarizing the new FAR dollar thresholds. These thresholds became effective on October 1, 2010.

  18. Use of Biostratigraphy to Increase Production, Reduce Operating Costs and Risks and Reduce Environmental Concerns in Oil Well Drilling

    SciTech Connect (OSTI)

    Edward Marks

    2005-09-09

    In the Santa Maria Basin, Santa Barbara County, California, four wells were processed and examined to determine the age and environment parameters in the oil producing sections. From west to east, we examined Cabot No. 1 Ferrero-Hopkins,from 3917.7 m (12850 ft) to 4032 m (13225 ft); Sun No. 5 Blair, from 3412 m (11190 ft) to 3722.5 m (12210 ft); Triton No. 10 Blair, from 1552 m (5090 ft) to 1863 m (6110 ft); and OTEC No. 1 Boyne, from 2058 m (6750 ft) to 2528 m (8293 ft). Lithic reports with lithic charts were prepared and submitted on each well. These tested for Sisquoc Fm lithology to be found in the Santa Maria area. This was noted in the OTEC No. 1 Boyne interval studied. The wells also tested for Monterey Fm. lithology, which was noted in all four wells examined. Composite samples of those intervals [combined into 9.15 m (30 foot) intervals] were processed for paleontology. Although the samples were very refractory and siliceous, all but one (Sun 5 Blair) yielded index fossil specimens, and as Sun 5 Blair samples below 3686 m (12090 ft) were processed previously, we were able to make identifications that would aid this study. The intervals examined were of the Sisquoc Formation, the Low Resistivity and the High Resistivity sections of the Monterey Formation. The Lower Sisquoc and the top of the late Miocene were identified by six index fossils: Bolivina barbarana, Gyroidina soldanii rotundimargo, Bulimina montereyana, Prunopyle titan, Axoprunum angelinum and Glyphodiscus stellatus. The Low Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, late Mohnian: Nonion goudkoffi, Brizalina girardensis, Cibicides illingi, Siphocampe nodosaria, Stephanogonia hanzawai, Uvigerina modeloensis, Buliminella brevior, Tytthodiscus sp.and the wide geographic ranging index pelagic fossil, Sphaeroidinellopsis subdehiscens. The High Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, early Mohnian: Bolivina aff hughesi, Rotalia becki, Suggrunda californica, Virgulina grandis, Virgulina ticensis, Bulimina ecuadorana, Denticula lauta and Nonion medio-costatum. Please see Appendix B, Fig. 1, Neogene Zones, p. 91 and Appendix C, chart 5, p. 99 By the use of Stratigraphy, employing both Paleontology and Lithology, we can increase hydrocarbon production, reduce operating costs and risks by the identification of the productive sections, and reduce environmental concerns by drilling less dry holes needlessly.

  19. Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    be made and then locations for further drilling can be narrowed down. Once a confident reservoir model is made Development Drilling methods can be employed. A geothermal well...

  20. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect (OSTI)

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  1. EA-2012: Strategic Test Well (s) Planning and Drilling for Long-Term Methane Hydrate Production Testing in Alaska

    Broader source: Energy.gov [DOE]

    DOE is preparing an EA that evaluates the potential environmental impacts of providing financial support for planning, analysis, and engineering services to support a proposed project of Petrotechnical Resources of Alaska with Japan Oil, Gas and Metals National Corporation to perform gas hydrate drilling and testing on the North Slope of Alaska.

  2. Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well

    SciTech Connect (OSTI)

    Rodgers, R.W.

    1982-06-01

    The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within one mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.

  3. HydroPulse Drilling

    SciTech Connect (OSTI)

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  4. Geopressured-geothermal drilling and testing plan: Magma Gulf/Technadril-Dept. of Energy MGT-DOE AMOCO Fee No. 1 well, Cameron Parish, Lousiana

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    The following topics are covered: generalized site activities, occupational health and safety, drilling operations, production testing, environmental assessment and monitoring plan, permits, program management, reporting, and schedule. (MHR)

  5. Coiled-tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Newman, K.R.

    1993-12-01

    For several years, CT has been used to drill scale and cement in cased wells. Recently, CT has been used (in place of a rotary drilling rig) to drill vertical and horizontal open holes. At this time, < 30 openhole CT drilling (CTD) jobs have been performed. However, there is a tremendous interest in this technique in the oil industry; many companies are actively involved in developing CTD technology. This paper discusses CTD applications and presents an engineering analysis of CTD. This analysis attempts to define the limits of what can and cannot be done with CTD. These limits are calculated with CT and drilling models used for other applications. The basic limits associated with CTD are weight and size, CT force and life, and hydraulic limits. Each limit is discussed separately. For a specific application, each limit must be considered.

  6. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  7. Horizontal drilling improves recovery in Abu Dhabi

    SciTech Connect (OSTI)

    Muhairy, A.A. ); Farid, E.A. )

    1993-09-13

    Both onshore and offshore Abu Dhabi, horizontal wells have increased productivity three to four times more than that from vertical and deviated wells in the same reservoirs. Horizontal drilling technology was first applied in Abu Dhabi in February 1988, and through March 1993, 48 wells have been horizontally drilled. During the 5 years of horizontal drilling, the experience gained by both operating company and service company personnel has contributed to a substantial improvement in drilling rate, and hence, a reduction in drilling costs. The improvements in drilling and completions resulted from the following: The horizontal drilling and completion operations were analyzed daily, and these follow-up analyses helped optimize the planning of subsequent wells. The bits and bottom hole assemblies were continuously analyzed for optimum selections. Steerable drilling assemblies were found very effective in the upper sections of the wells. The paper describes drilling activities onshore and offshore, completion design, and the outlook for future well drilling.

  8. Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III

    SciTech Connect (OSTI)

    Pacific Operators Offshore, Inc.

    2001-04-04

    The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a series of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.

  9. Drilling Productivity Report

    Reports and Publications (EIA)

    2016-01-01

    Energy Information Administration’s (EIA) new Drilling Productivity Report (DPR) takes a fresh look at oil and natural gas production, starting with an assessment of how and where drilling for hydrocarbons is taking place. The DPR uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells produce both.

  10. Logs of wells and boreholes drilled during hydrogeologic studies at Lawrence Livermore National Laboratory Site 300, January 1, 1982--June 30, 1988: January 1, 1982 through June 30, 1988

    SciTech Connect (OSTI)

    Toney, K.C.; Crow, N.B.

    1988-01-01

    We present the hydrogeologic well logs for monitor wells and exploratory boreholes drilled at Lawrence Livermore National Laboratory (LLNL) Site 300 between the beginning of environmental investigations in June 1982 and the end of June 1988. These wells and boreholes were drilled as part of studies made to determine the horizontal and vertical distribution of volatile organic compounds (VOCs), high explosive (HE) compounds, and tritium in soil, rock, and ground water at Site 300. The well logs for 293 installations comprise the bulk of this report. We have prepared summaries of Site 300 geology and project history that provide a context for the well logs. Many of the logs in this report have also been published in previous topical reports, but they are nevertheless included in order to make this report a complete record of the wells and boreholes drilled prior to July 1988. A commercially available computer program, LOGGER has been used since late 1985 to generate these logs. This report presents details of the software programs and the hardware used. We are presently completing a project to devise a computer-aided design (CAD) system to produce hydrogeologic cross sections and fence diagrams, utilizing the digitized form of these logs. We find that our system produces publication-quality well and exploratory borehole logs at a lower cost than that of logs drafted by traditional methods.

  11. Drilling technology/GDO

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  12. Fundamental Research on Percussion Drilling: Improved rock mechanics

    Office of Scientific and Technical Information (OSTI)

    full-scale laboratory investigations Michael S. Bruno 58 GEOSCIENCES; 02 PETROLEUM; 03 NATURAL GAS; ROCK DRILLING; PRESSURE DEPENDENCE; ROCK MECHANICS; ROTARY DRILLING; WELL...

  13. The Iea'S Role In Advanced Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production...

  14. Dollar and Energy Savings Loans

    Broader source: Energy.gov [DOE]

    The Nebraska Dollar and Energy Savings Loan program was created in 1990 using oil overcharge funds. The program, administered by the Nebraska Energy Office, makes available low-interest loans for...

  15. Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  16. Geothermal drilling in Cerro Prieto

    SciTech Connect (OSTI)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  17. Proposed Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  18. Proposed Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  19. Parcperdue geopressure-geothermal project. Study a geopressured reservoir by drilling and producing a well in a limited geopressured water sand. Final technical report, September 28, 1979-December 31, 1983

    SciTech Connect (OSTI)

    Hamilton, J.R.; Stanley, J.G.

    1984-01-15

    The behavior of geopressured reservoirs was investigated by drilling and producing a well in small, well defined, geopressured reservoir; and performing detailed pressure transient analysis together with geological, geophysical, chemical, and physical studies. The Dow-DOE L. R. Sweezy No. 1 well was drilled to a depth of 13,600 feet in Parcperdue field, just south of Lafayette, Louisiana, and began production in April, 1982. The production zone was a poorly consolidated sandstone which constantly produced sand into the well stream, causing damage to equipment and causing other problems. The amount of sand production was kept manageable by limiting the flow rate to below 10,000 barrels per day. Reservoir properties of size, thickness, depth, temperature, pressure, salinity, porosity, and permeability were close to predicted values. The reservoir brine was undersaturated with respect to gas, containing approximately 20 standard cubic feet of gas per barrel of brine. Shale dewatering either did not occur or was insignificant as a drive mechanism. Production terminated when the gravel-pack completion failed and the production well totally sanded in, February, 1983. Total production up to the sanding incident was 1.94 million barrels brine and 31.5 million standard cubic feet gas.

  20. Drill string enclosure

    DOE Patents [OSTI]

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  1. Drill string enclosure

    DOE Patents [OSTI]

    Jorgensen, Douglas K. (Idaho Falls, ID); Kuhns, Douglass J. (Idaho Falls, ID); Wiersholm, Otto (Idaho Falls, ID); Miller, Timothy A. (Idaho Falls, ID)

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  2. The IEA's role in advanced geothermal drilling.

    SciTech Connect (OSTI)

    Hoover, Eddie Ross; Jelacic, Allan; Finger, John Travis; Tyner, Craig E.

    2004-06-01

    This paper describes an 'Annex', or task, that is part of the International Energy Agency's Geothermal Implementing Agreement. Annex 7 is aimed at improving the state of the art in geothermal drilling, and has three subtasks: an international database on drilling cost and performance, a 'best practices' drilling handbook, and collaborative testing among participating countries. Drilling is an essential and expensive part of geothermal exploration, production, and maintenance. High temperature, corrosive fluids, and hard, fractured formations increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production and injection well field can account for approximately half the capital cost for a geothermal power project. Geothermal drilling cost reduction can take many forms, e.g., faster drilling rates, increased bit or tool life, less trouble (twist-offs, stuck pipe, etc.), higher per-well production through multilaterals, and others. Annex 7 addresses all aspects of geothermal well construction, including developing a detailed understanding of worldwide geothermal drilling costs, understanding geothermal drilling practices and how they vary across the globe, and development of improved drilling technology. Objectives for Annex 7 include: (1) Quantitatively understand geothermal drilling costs and performance from around the world and identify ways to improve costs, performance, and productivity. (2) Identify and develop new and improved technologies for significantly reducing the cost of geothermal well construction. (3) Inform the international geothermal community about these drilling technologies. (4) Provide a vehicle for international cooperation, collaborative field tests, and data sharing toward the development and demonstration of improved geothermal drilling technology.

  3. Establishing nuclear facility drill programs

    SciTech Connect (OSTI)

    1996-03-01

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  4. Optimizing drilling performance using a selected drilling fluid

    DOE Patents [OSTI]

    Judzis, Arnis; Black, Alan D.; Green, Sidney J.; Robertson, Homer A.; Bland, Ronald G.; Curry, David Alexander; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  5. Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana

    SciTech Connect (OSTI)

    1982-02-01

    The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

  6. Impedance matched joined drill pipe for improved acoustic transmission

    DOE Patents [OSTI]

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  7. Rotary blasthole drilling update

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  8. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

  9. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect (OSTI)

    Pyle, D. E.

    1981-01-01

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  10. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    SciTech Connect (OSTI)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

  11. Multi-gradient drilling method and system

    DOE Patents [OSTI]

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  12. Status Report A Review of Slimhole Drilling

    SciTech Connect (OSTI)

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  13. Vale exploratory slimhole: Drilling and testing

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1996-06-01

    During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  14. Newberry exploratory slimhole: Drilling and testing

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  15. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  16. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  17. Potter Drilling | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94063 Product: Potter Drilling was founded in 2004 to develop and commercialize novel drilling technology. References: Potter Drilling1 This article is a stub. You can...

  18. Dollars from Sense | Open Energy Information

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: Dollars from Sense: The Economic Benefits of Renewable Energy AgencyCompany Organization: United States Department of Energy Partner:...

  19. Core Drilling Demonstration

    Broader source: Energy.gov [DOE]

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  20. RAPID/Geothermal/Well Field/Alaska | Open Energy Information

    Open Energy Info (EERE)

    At a Glance Jurisdiction: Alaska Drilling & Well Field Permit Agency: Alaska Division of Oil and Gas Drilling & Well Field Permit All wells drilled in support or in search of the...

  1. Hydromechanical drilling device

    DOE Patents [OSTI]

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  2. Handbook of Best Practices for Geothermal Drilling Released

    Broader source: Energy.gov [DOE]

    The Handbook of Best Practices for Geothermal Drilling, funded by the U.S. Department of Energy’s Geothermal Technologies Program and prepared by Sandia National Laboratories, focuses on the complex process of drilling a geothermal well.

  3. Coiled tubing drilling requires economic and technical analyses

    SciTech Connect (OSTI)

    Gary, S.C. )

    1995-02-20

    Field experience has proven that coiled tubing drilling is a technical and economic option on some wells; however, coiled tubing drilling is not the solution to every drilling prospect or production-enhancement job. To determine if coiled tubing drilling is viable, the geographic, technical, and economic aspects of each project must be considered in detail. Generally, with some limitations, coiled tubing drilling is feasible primarily when jointed pipe cannot be used effectively. Also, coiled tubing drilling may be more appropriate because of some special well site requirements, such as environmental regulations requiring less surface disturbance. The paper discusses technical considerations which need to be considered, economic feasibility, limitations of well types (new shallow wells, conventional reentry, through-tubing reentry, and underbalanced drilling), and outlook for further growth in the coiled tubing drilling industry.

  4. High Temperature 300°C Directional Drilling System

    SciTech Connect (OSTI)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100 hours.

  5. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  6. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  7. An Investigation for Disposal of Drill Cuttings into Unconsolidated...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 02 PETROLEUM; DRILLING FLUIDS; MINERAL WASTES; ROCK MECHANICS; SANDSTONES; CLAYS; DISPOSAL WELLS; ABANDONED WELLS; ...

  8. San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet) San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars per Thousand Cubic Feet) ...

  9. Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Penitas, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  10. Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Alamo, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  11. New Mexico Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Industrial Price (Dollars ... Referring Pages: Natural Gas Industrial Price New Mexico Natural Gas Prices Natural Gas ...

  12. ,"Minnesota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Industrial Price (Dollars ... 6:58:24 AM" "Back to Contents","Data 1: Minnesota Natural Gas Industrial Price (Dollars ...

  13. Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Imports Price (Dollars per ... Referring Pages: Natural Gas Imports Price Minnesota U.S. Natural Gas Imports & Exports ...

  14. Minnesota Natural Gas Industrial Price (Dollars per Thousand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Industrial Price (Dollars ... Referring Pages: Natural Gas Industrial Price Minnesota Natural Gas Prices Natural Gas ...

  15. Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet) Port Nikiski, AK Liquefied Natural Gas Exports to Japan (Dollars per Thousand Cubic Feet)...

  16. Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Wellhead Price (Dollars ... Referring Pages: Natural Gas Wellhead Price Texas Natural Gas Prices Natural Gas Wellhead

  17. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  18. Deep drilling phase of the Pen Brand Fault Program

    SciTech Connect (OSTI)

    Stieve, A.

    1991-05-15

    This deep drilling activity is one element of the Pen Branch Fault Program at Savannah River Site (SRS). The effort will consist of three tasks: the extension of wells PBF-7 and PBF-8 into crystalline basement, geologic and drilling oversight during drilling operations, and the lithologic description and analysis of the recovered core. The drilling program addresses the association of the Pen Branch fault with order fault systems such as the fault that formed the Bunbarton basin in the Triassic.

  19. State-of-the-art in coalbed methane drilling fluids

    SciTech Connect (OSTI)

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

  20. Evolution of coiled tubing drilling technology accelerates

    SciTech Connect (OSTI)

    Simmons, J.; Adam, B.

    1993-09-01

    This paper reviews the status of coiled tubing technology in oil and gas drilling operations. The paper starts with a description of current coiled tubing technology and provides a cost comparison between conventional and coiled tubing drilling. The results show that offshore operations are already competitive while onshore operations will still lag behind conventional drilling methods. A list of known coiled tubing drilling operations is provided which gives the current borehole diameters and depths associated with this technology. The paper then goes on to provide the advantages and disadvantages of the technology. The advantages include improved well control, a continuous drillstring, reduced mobilization costs, simplified logging and measurement-while drilling measurements, and less tripping required. The disadvantages include high friction with the borehole wall, downhole motors required, limited drillhole size, and fatigued or damaged sections of the tubing cannot be removed. Finally, a review of the reliability of this technology is provided.

  1. Remote drill bit loader

    DOE Patents [OSTI]

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  2. Remote drill bit loader

    DOE Patents [OSTI]

    Dokos, James A. (Idaho Falls, ID)

    1997-01-01

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

  3. Training and Drills

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

  4. Active Suppression of Drilling System Vibrations For Deep Drilling

    SciTech Connect (OSTI)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  5. Handbook of Best Practices for Geothermal Drilling

    Broader source: Energy.gov [DOE]

    This handbook focuses on the complex process of drilling a geothermal well, including techniques and hardware that have proven successful for both direct use and electricity generation around the world.

  6. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    Revenue (Thousands Dollars) (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 ...

  7. An overview of McKittrick coiled tubing drilling project

    SciTech Connect (OSTI)

    Ewert, D.P.; Ramagno, R.A.; Hurkmans, R.S.

    1995-12-31

    In an effort to reduce drilling costs on thermal wells, service companies began reducing casing sizes and well pad location sizes in 1993. Based on a successful four-well pilot project completed in early 1994 at the Belridge Field, a 115-well steam injector project was completed in the McKittrick Field in late 1994, of which 68 wells were drilled with coiled tubing. This paper will discuss why slimhole completions and coiled tubing drilling were selected for this project, the operational aspects of drilling 68 wells in 92 working days, and conclusions about the project.

  8. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect (OSTI)

    Kent Perry

    2009-04-30

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

  9. Guiding drilling operations

    SciTech Connect (OSTI)

    Not Available

    1985-06-01

    Artificial intelligence (AI) was the overriding theme at this year's Offshore Technology Conference (OTC) exhibition and conference, with the emphasis more on drilling rather than production methods. A wide range of electronic aids to improve accuracy and speed in drilling operations - from calculators to computers - is described.

  10. Distributed downhole drilling network

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  11. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect (OSTI)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  12. Drill drive mechanism

    DOE Patents [OSTI]

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  13. Step-out Well | Open Energy Information

    Open Energy Info (EERE)

    step-out well should be drilled where there is some evidence of a permeable formation linked with the main reservoir. The well should be drilled in a location to where if it is an...

  14. :- : DRILLING URANIUM BILLETS ON A

    Office of Legacy Management (LM)

    . . . . . . . 6 4. FIRST BILLET DRILLING TEST . .. .. . . . . . . . 10 4.1 Feedstock . . ... . . . . . . . 13 5. SECOND BILLET DRILLING TEST .. . . . . . . . . . 13 5.1 Feedstock . . ...

  15. Exploration Drilling | Open Energy Information

    Open Energy Info (EERE)

    of drilling for the purpose of determining the physical properties and boundaries of a reservoir. Other definitions:Wikipedia Reegle Introduction Exploration drilling is an...

  16. Computational Approach to Photonic Drilling of Silicon Carbide

    SciTech Connect (OSTI)

    Samant, Anoop N; Daniel, Claus; Chand, Ronald H; Blue, Craig A; Dahotre, Narendra B

    2009-01-01

    The ability of lasers to carry out drilling processes in silicon carbide ceramic was investigated in this study. A JK 701 pulsed Nd:YAG laser was used for drilling through the entire depth of silicon carbide plates of different thicknesses. The laser parameters were varied in different combinations for a well controlled drilling through the entire thickness of the SiC plates. A drilling model incorporating effects of various physical phenomena such as decomposition, evaporation induced recoil pressure, and surface tension was developed. Such comprehensive model was capable of advance prediction of the energy and time required for drilling a hole through any desired depth of material.

  17. Productivity and injectivity of horizontal wells. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; OIL WELLS; DAMAGE; WELL DRILLING; WELL COMPLETION; EQUATIONS; PROGRESS REPORT This report...

  18. South America: everybody is drilling almost everywhere

    SciTech Connect (OSTI)

    Not Available

    1980-08-15

    A group of studies describes accomplishments in 1980 in South America drilling and producing. There may be 3285 wells drilled during 1980, with the majority in Venezuela, Argentina and Peru, compared with a 2934 total for all countries on the continent in 1979. Reserves at the end of 1979 in South America exceeded 27 billion bbl, and production averaged 3.8 million bpd. Individual country reports are given for Venezuela, Argentina, Brazil, Trinidad, Peru, Ecuador, Colombia, Chile, Bolivia, Paraguay, Urauguay, and Guyana.

  19. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005...

  20. Drilling fluid filter

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  1. Subsurface drill string

    DOE Patents [OSTI]

    Casper, William L.; Clark, Don T.; Grover, Blair K.; Mathewson, Rodney O.; Seymour, Craig A.

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  2. Drilling Productivity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Drilling Productivity Report Report Background and Methodological Overview August 2014 Updated March 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Drilling Productivity Report: Report Background and Methodological Overview i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data,

  3. MACHINERY RESONANCE AND DRILLING

    SciTech Connect (OSTI)

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  4. Test report for core drilling ignitability testing

    SciTech Connect (OSTI)

    Witwer, K.S.

    1996-08-08

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

  5. Sidetracking technology for coiled-tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Doremus, D.M.; Hearn, D.D.; Rike, E.A.; Paslay, P.R.

    1996-05-01

    Coiled-tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and re-entry applications. Through-tubing drilling has evolved as a major application for CT drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. This paper describes the three technologies developed for sidetracking and presents a mathematical model of forces, penetration rates, and torques for window milling with the cement-sidetracking (CS) technique. Window milling has been a seat of the pants operation in the past. To the authors` knowledge, this is the first published work on the mechanics of window milling. The results from several yard tests and one field test are presented and show some of the problems associated with sidetracking.

  6. While drilling system and method

    DOE Patents [OSTI]

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  7. Well Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Well tests are conducted to quantify well characteristics, production potential, and reservoir properties. Well tests are essential for exploration and production drilling,...

  8. Proper bit selection improves ROP in coiled tubing drilling

    SciTech Connect (OSTI)

    King, W.W. )

    1994-04-18

    Using the correct type of bit can improve the rate of penetration (ROP) and therefore the economics of coiled tubing drilling operations. Key factors, based on studies of the coiled tubing jobs to date, are that the drilling system must be analyzed as a whole system and that both the drill bit type and the formation compressive strength are critical components in this analysis. Once a candidate job has been qualified technically for drilling with coiled tubing, the job will have to be justified economically compared to conventional drilling. A key part of the economic analysis is predicting the ROP in each formation to be drilled to establish a drilling time curve. This prediction should be based on the key components of the system, including the following: hydraulics, motor capabilities, weight on bit (WOB), rock compressive strength, and bit type. This analysis should not base expected ROPs and offset wells drilled with conventional rigs and equipment. Furthermore, a small-diameter bit should not be selected simply by using the International Association of Drilling Contractor (IADC) codes of large-diameter bits used in offset wells. Coiled tubing drilling is described, then key factors in the selection are discussed.

  9. Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand Cubic Feet) Kenai, AK Liquefied Natural Gas Exports to Taiwan (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr...

  10. Price of California Natural Gas Exports (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    California Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of California Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  11. Natural Gas Citygate Price in California (Dollars per Thousand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California (Dollars per Thousand Cubic Feet) Natural Gas Citygate Price in California (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 ...

  12. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per...

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015...

  13. Portal, ND Compressed Natural Gas Exports to Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Portal, ND Compressed Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 ...

  14. Calais, ME Compressed Natural Gas Exports to Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Calais, ME Compressed Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 ...

  15. Arizona Price of Natural Gas Sold to Commercial Consumers (Dollars...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Arizona Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May...

  16. Deep Water Drilling to Catalyze the Global Drilling Fluids Market...

    Open Energy Info (EERE)

    Deep Water Drilling to Catalyze the Global Drilling Fluids Market Home > Groups > Renewable Energy RFPs John55364's picture Submitted by John55364(100) Contributor 13 May, 2015 -...

  17. Category:Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Drilling Techniques page? For detailed information on Drilling...

  18. Further advances in coiled-tubing drilling

    SciTech Connect (OSTI)

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.

    1995-05-01

    The use of coiled tubing (CT) to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefits of being able to drill at balance, safely and in a controlled manner, with nitrogen to reduce downhole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing formation damage. This paper describes such a horizontal re-entry drilled in the shallow depleted waterflooded reservoir Barenburg in northern Germany. The scope of work for this project included (1) cutting windows through 6 5/8- and 9 5/8-in. casing, (2) drilling a 5 7/8-in.-medium-radius curve, (3) running a 5-in. liner and a 5 1/2-in. parasitic string for nitrogen injection, (4) drilling a 4 3/8-in. horizontal with nitrogen to maintain a balanced condition, (5) running openhole logs, and (6) running 3 1/2-in. slotted liner. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the CT injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting pipe and downhole tools was placed on the substructure. The development of a surface-controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8-in. CT. This program represents a significant extension of the capabilities of drilling with CT.

  19. Batch drilling program cuts time, costs for Liuhua development

    SciTech Connect (OSTI)

    Gray, G.E.; Hall, K.H.; Mu, H.C.

    1996-08-12

    The efficiency of batch drilling operations and the appropriate use of technology, teamwork, and thorough planning helped cut several days off the time to drill each of 10 subsea wells for the Liuhua 11-1 development project in the South China Sea. The overall development program calls for drilling and completing 20 subsea horizontal wells. The rig-of-opportunity phase was the initial phase of this development and used a contract rig to establish the subsea wellhead array and initiate drilling of the development wells. The wellhead array was the first critical step. It was the foundation for the building block construction process used to create Liuhua`s subsea production system on the seabed. The paper discusses conductor operations, batch drilling operations, surface hole section, intermediate and production hole sections, the ten wells, application of technology, and overall results.

  20. Combination drilling and skiving tool

    DOE Patents [OSTI]

    Stone, William J.

    1989-01-01

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  1. Further advances in coiled-tubing drilling

    SciTech Connect (OSTI)

    Eide, E.; Brinkhorst, J.; Voelker, H.; Burge, P.; Ewen, R.L.

    1994-12-31

    The use of coiled tubing to drill horizontal re-entry wells has received considerable interest in the industry over the last two years. The benefit of being able to drill at balance, safely and in a controlled manner, using nitrogen to reduce down hole pressure while drilling highly depleted reservoirs, provides an advantage over conventional techniques, particularly in reducing impairment to the formation. The paper describes such a horizontal re-entry drilled in the shallow depleted water flooded reservoir Barenburg in Northern Germany. The entire program was executed with no intervention from a conventional rig or workover hoist. A special structure to be positioned over the well to support the coiled tubing injector head and to provide a work platform had to be constructed for this type of operation. A dedicated mast for lifting of pipe and down hole tools was placed on the substructure. The development of a surface controlled orienting tool and an adjustable motor provided excellent directional capabilities on a 2 3/8 in. coiled tubing. This program represents a significant extension of the capabilities of drilling with coiled tubing.

  2. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a variety of applications. Risks will be minimized since Drill Bit SWD will not interfere with the drilling operation, and can be performed in a relatively quiet environment when the pumps are turned off. The new source must be integrated with other Measurement While Drilling (MWD) tools. To date, each of the oil companies and service companies contacted have shown interest in participating in the commercialization of the low-frequency SeismicPULSER{trademark} source. A technical paper has been accepted for presentation at the 2009 Offshore Technology Conference (OTC) in a Society of Exploration Geologists/American Association of Petroleum Geophysicists (SEG/AAPG) technical session.

  3. Sidetracking technology for coiled tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Hearn, D.D.; Rike, E.A.

    1995-12-31

    Coiled tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and reentry applications. A new market has evolved as being a major application for CT drilling. This market is through-tubing drilling. The lower cost of mobilization of a coiled tubing unit (CTU) to an offshore platform or Arctic wellsite vs. a rotary rig provides additional economic incentive. In addition, the ease of drilling 4-3/4-in. and smaller boreholes with CT is an advantage in a region which does not have an established practice of slimhole drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. The three technologies (cement sidetracking, whipstock in cement, and through-tubing whipstock) that have been developed for sidetracking are described in this paper. A mathematical model of forces, penetration rates, and torques for window milling with the cement sidetracking technique is presented. Window milling has been a {open_quotes}seat of the pants{close_quotes} operation in the past, to the authors` knowledge, this is the first published work on the mechanics of window milling. The analysis has shed much light on the interaction between motor bending stiffness, motor bend angle, and allowable advance rates for {open_quotes}time drilling.{close_quotes} The results from several yard tests are presented, and indicate some of the problems associated with sidetracking. The photographs of the sectioned hole/window illustrate the ledges caused downhole from {open_quotes}minor{close_quotes} bottomhole assembly (BHA) changes. The cement sidetrack technique has been successfully applied many times in the field, and the results of one of these field applications is presented.

  4. Pros and cons of hydraulic drilling

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    The advantages and disadvantages of using hydraulic drilling are discussed. The low maintenance, energy efficiency, drilling speeds, and operating costs are the main advantages of the hydraulic drills. The economics and maintenance of air drills are also compared.

  5. Drilling subsurface wellbores with cutting structures

    DOE Patents [OSTI]

    Mansure, Arthur James; Guimerans, Rosalvina Ramona

    2010-11-30

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  6. Development and Manufacture of Cost-Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie

    2008-12-31

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  7. Soda Lake Well Lithology Data and Geologic Cross-Sections (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Comprehensive catalogue of drill-hole data in spreadsheet, shapefile, and Geosoft database ... area; Well Lithology Data; Drill-hole database; Geologic Cross-Sections; Gravity ...

  8. All 2015 Tables_2014 Dollars.xlsx

    Gasoline and Diesel Fuel Update (EIA)

    c. Real Average Annual Coal Transportation Costs from Coal Basin to State by Railroad (2014 dollars per ton) Coal Supply Basin Destination State 2008 2009 2010 2011 2012 2013 2014 Northern Appalachia Delaware W - W W - W W Northern Appalachia Florida - W W W - - W Northern Appalachia Georgia - W - W - - W Northern Appalachia Indiana 21.53 17.54 17.87 20.00 W 20.82 21.39 Northern Appalachia Kentucky - - W W W - - Northern Appalachia Maine - - - - W - - Northern Appalachia Maryland 21.36 21.14

  9. All 2015 Tables_2014 Dollars.xlsx

    Gasoline and Diesel Fuel Update (EIA)

    b. Real Average Annual Coal Transportation Costs from State to State by Waterway (2014 dollars per ton) Origin State Destination State 2008 2009 2010 2011 2012 2013 2014 Alabama Alabama 4.65 4.66 5.08 3.84 W 4.58 W Alabama Ohio W - - - - - - Colorado Alabama W - - - - - - Colorado Florida 12.14 13.75 14.25 W - - - Colorado Indiana W W - W - - - Colorado Iowa W - - - - - - Colorado Kentucky W - - - - - - Colorado Mississippi - - W - - - - Colorado Ohio - W - - - - - Illinois Alabama W W W W W W W

  10. Drilling ban yields verdict

    SciTech Connect (OSTI)

    Nation, L.M.

    1992-01-01

    This paper briefly reviews a lawsuit which is under appeal by the State of Michigan regarding a takings claim filed over a petroleum exploration site. The dispute arose as a result of a 1987 decision by the Michigan Department of Natural Resources forbidding the property owners from developing the mineral rights leased to Miller Brothers in the Huron/Manistee National Forest. This area is bisected by a trend of Silurian Niagaran reef complexes which has a known production history throughout the State. The dunes area of the national forest has been deemed a wilderness area. As a result of the State's decision, the courts have awarded a sum of 71 million dollars to the developer to cover damages and lost resources. The reserve estimates were taken from adjacent areas which showed that the Niagaran reefs are relatively consistent in their yield.

  11. Drill bit assembly for releasably retaining a drill bit cutter

    DOE Patents [OSTI]

    Glowka, David A. (Austin, TX); Raymond, David W. (Edgewood, NM)

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  12. Evaluation of slurry injection technology for management of drilling wastes.

    SciTech Connect (OSTI)

    Veil, J. A.; Dusseault, M. B.

    2003-02-19

    Each year, thousands of new oil and gas wells are drilled in the United States and around the world. The drilling process generates millions of barrels of drilling waste each year, primarily used drilling fluids (also known as muds) and drill cuttings. The drilling wastes from most onshore U.S. wells are disposed of by removing the liquids from the drilling or reserve pits and then burying the remaining solids in place (called pit burial). This practice has low cost and the approval of most regulatory agencies. However, there are some environmental settings in which pit burial is not allowed, such as areas with high water tables. In the U.S. offshore environment, many water-based and synthetic-based muds and cuttings can be discharged to the ocean if discharge permit requirements are met, but oil-based muds cannot be discharged at all. At some offshore facilities, drilling wastes must be either hauled back to shore for disposal or disposed of onsite through an injection process.

  13. Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution ... Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices Price for ...

  14. Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price Minnesota Natural Gas Prices Natural Gas ...

  15. Minnesota Natural Gas Exports (Price) All Countries (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) ... Referring Pages: Natural Gas Exports Price Minnesota U.S. Natural Gas Imports & Exports ...

  16. California Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) California Natural Gas Vehicle Fuel ... Referring Pages: Natural Gas Vehicle Fuel Price California Natural Gas Prices Natural Gas ...

  17. ,"New Hampshire Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  18. ,"North Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  19. ,"Mississippi Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  20. ,"Maryland Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  1. ,"Tennessee Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  2. ,"Nebraska Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  3. ,"New Jersey Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  4. ,"South Carolina Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  5. ,"South Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  6. ,"Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  7. ,"Rhode Island Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  8. ,"New York Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  9. ,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  10. ,"New Mexico Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012...

  11. ,"Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  12. ,"Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  13. ,"Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  14. ,"Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  15. ,"Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  16. ,"Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  17. ,"Michigan Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  18. ,"Massachusetts Natural Gas Imports Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  19. ,"Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  20. ,"Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  1. ,"Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  2. ,"Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  3. ,"Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  4. ,"California Natural Gas Imports Price All Countries (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2014...

  5. ,"Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  6. ,"Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  7. ,"Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  8. ,"Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  9. ,"Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  10. ,"Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  11. ,"Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  12. ,"Texas Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  13. ,"Georgia Natural Gas Imports Price All Countries (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2014...

  14. ,"Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  15. ,"Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  16. ,"Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  17. ,"Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  18. ,"Idaho Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  19. ,"Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  20. ,"Montana Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  1. ,"Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  2. ,"Mississippi Natural Gas Imports Price All Countries (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2014...

  3. ,"Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  4. ,"Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  5. ,"Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  6. ,"Vermont Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  7. ,"Washington Natural Gas Imports Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  8. ,"Maine Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  9. ,"Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  10. ,"Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  11. ,"Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  12. ,"California Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  13. ,"Nebraska Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  14. ,"Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  15. ,"Tennessee Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  16. ,"Maryland Natural Gas Imports Price All Countries (Dollars per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2014...

  17. Texas Natural Gas Price Sold to Electric Power Consumers (Dollars...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Texas Natural Gas ... Referring Pages: Natural Gas Electric Power Price Texas Natural Gas Prices Natural Gas ...

  18. Texas Price of Natural Gas Sold to Commercial Consumers (Dollars...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Texas Price of Natural Gas ... Referring Pages: Average Commercial Price Texas Natural Gas Prices Average Commercial

  19. ,"Washington Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1012015 10:56:55 AM" "Back to Contents","Data 1: Washington Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

  20. ,"United States Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:58:41 AM" "Back to Contents","Data 1: United States Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" ...

  1. ,"United States Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:58:42 AM" "Back to Contents","Data 1: United States Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" ...

  2. ,"Massachusetts Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:46 AM" "Back to Contents","Data 1: Massachusetts Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MA3"...

  3. Apparatus in a drill string

    DOE Patents [OSTI]

    Hall, David R.; Dahlgren, Scott; Hall, Jr., Tracy H.; Fox, Joe; Pixton, David S.

    2007-07-17

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

  4. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-07-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  5. Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-05-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  6. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  7. Development Drilling | Open Energy Information

    Open Energy Info (EERE)

    Iceland.1 Best Practices Developmental drilling should only begin once a dependable reservoir model has been established and there is a good amount of certainty that the...

  8. Transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  9. Drilling Methods | Open Energy Information

    Open Energy Info (EERE)

    Information Provided by Technique Lithology: StratigraphicStructural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term....

  10. Hole cleaning imperative in coiled tubing drilling operations

    SciTech Connect (OSTI)

    Rameswar, R.M.; Mudda, K.

    1995-09-01

    Annular flow modeling in coiled tubing applications is essential for optimizing mud rheology and keeping the hole clean. Cuttings transport in coiled tubing drilling must be optimized, particularly the modeling of hole cleaning capabilities. The effects of two different muds in contrasting geometries on hold cleaning efficiency are considered, with the simulation performed using Petrocalc 14. Coiled tubing is widely used to drill new vertical and horizontal wells, and in re-entry operations. Horizontal well problems are subsequently modeled, where annular eccentricities can range anywhere from concentric to highly offset, given the highly buckled or helically deflected states of many drill coils.

  11. NMOCD - Form G-101 - Application for Permit to Drill, Deepen...

    Open Energy Info (EERE)

    NMOCD - Form G-101 - Application for Permit to Drill, Deepen, or Plug Back Geothermal Resources Well Jump to: navigation, search OpenEI Reference LibraryAdd to library General:...

  12. Property:ExplorationPermit-Drilling | Open Energy Information

    Open Energy Info (EERE)

    ExplorationAlaska + All wells drilled in support or in search of the recovery or production of geothermal resources must comply with 20 AAC 25.705-.740. The developer...

  13. Activity plan: Directional drilling and environmental measurements while drilling

    SciTech Connect (OSTI)

    Myers, D.A.

    1998-07-16

    This activity plan describes the testing of directional drilling combined with environmental measurements while drilling at two Hanford Site locations. A cold test is to be conducted at the 105A Mock Tank Leak Facility in the 200 East Area. A hot test is proposed to be run at the 216-B-8 tile field north of the 241-B Tank Farm in 200 East Area. Criteria to judge the success, partial success or failure of various aspects of the test are included. The TWRS program is assessing the potential for use of directional drilling because of an identified need to interrogate the vadose zone beneath the single-shell tanks. Because every precaution must be taken to assure that investigation activities do not violate the integrity of the tanks, control of the drill bit and ability to follow a predetermined drill path are of utmost importance and are being tested.

  14. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  15. All 2015 Tables_2014 Dollars.xlsx

    Gasoline and Diesel Fuel Update (EIA)

    Real Average Annual Coal Transportation Costs, By Primary Transport Mode and Supply Region (2014 dollars per ton) Coal Supply Region 2008 2009 2010 2011 2012 2013 2014 Northern Appalachia 16.51 17.02 18.05 19.25 20.70 21.74 20.79 Central Appalachia 22.85 21.74 23.23 23.14 23.39 24.29 24.14 Southern Appalachia 17.33 15.55 16.97 W W W W Illinois Basin 8.38 9.20 11.87 15.11 15.66 15.45 15.15 Powder River Basin 18.32 17.22 18.58 20.84 21.40 22.01 22.10 Uinta Region 26.96 20.13 21.77 20.91 19.54

  16. All 2015 Tables_2014 Dollars.xlsx

    Gasoline and Diesel Fuel Update (EIA)

    b. Real Average Annual Coal Transportation Costs from Coal Basin to State by Waterway (2014 dollars per ton) Coal Supply Basin Destination State 2008 2009 2010 2011 2012 2013 2014 Northern Appalachia Florida W - W W W - - Northern Appalachia Indiana W W W W 11.06 W W Northern Appalachia Kentucky 6.09 5.58 5.13 5.70 5.80 5.89 6.36 Northern Appalachia Mississippi - - W - W - - Northern Appalachia Ohio 5.71 4.15 3.54 3.94 3.26 3.96 3.99 Northern Appalachia Pennsylvania 3.84 3.71 4.00 3.82 3.98 4.21

  17. Relating horsepower to drilling productivity

    SciTech Connect (OSTI)

    Givens, R.; Williams, G.; Wingfield, B.

    1996-12-31

    Many technological advancements have been made in explosive products and applications over the last 15 years resulting in productivity and cost gains. However, the application of total energy (engine horsepower) in the majority of rotary drilling technology, has remained virtually unchanged over that period. While advancements have been made in components, efficiency, and types of hydraulic systems used on drills, the application of current hydraulic technology to improve drilling productivity has not been interactive with end users. This paper will investigate how traditional design assumptions, regarding typical application of horsepower in current rotary drill systems, can actually limit productivity. It will be demonstrated by numeric analysis how changing the partitioning of available hydraulic energy can optimize rotary drill productivity in certain conditions. Through cooperative design ventures with drill manufacturers, increased penetration rates ranging from 20% to 100% have been achieved. Productivity was increased initially on some rigs by careful selection of optional hydraulic equipment. Additional gains were made in drilling rates by designing the rotary hydraulic circuit to meet the drilling energies predicted by computer modeling.

  18. OM300 Direction Drilling Module

    SciTech Connect (OSTI)

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  19. Jack-up rig for marine drilling

    SciTech Connect (OSTI)

    Mueller, S. R.

    1981-05-26

    This invention relates to a mobile drilling platform of the jack -up type equipped with a special system which allows the said drilling platform to work as a drilling derrick and alternatively as a hoisting crane rig for marine service.

  20. GRED STUDIES AND DRILLING OF AMERICULTURE STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM

    SciTech Connect (OSTI)

    Witcher, James

    2006-08-01

    This report summarizes the GRED drilling operations in the AmeriCulture State 2 well with an overview of the preliminary geologic and geothermal findings, from drill cuttings, core, geophysical logs and water geochemical sampling.

  1. Percussive Hammer Enables Geothermal Drilling | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Percussive Hammer Enables Geothermal Drilling Percussive Hammer Enables Geothermal Drilling May 14, 2015 - 7:00pm Addthis Through funding by the Energy Department, Sandia National ...

  2. Category:Exploration Drilling | Open Energy Information

    Open Energy Info (EERE)

    Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Exploration Drilling page? For detailed information on...

  3. Alpine Geothermal Drilling | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Alpine Geothermal Drilling Name: Alpine Geothermal Drilling Address: PO Box 141 Place: Kittredge, Colorado Zip: 80457 Region: Rockies Area Sector: Geothermal...

  4. Directional Drilling Systems | Open Energy Information

    Open Energy Info (EERE)

    Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... "format":"googlemaps3","type":"ROADMAP","t...

  5. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect (OSTI)

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  6. A dynamic model for underbalanced drilling with coiled tubing

    SciTech Connect (OSTI)

    Rommetveit, R.; Vefring, E.H.; Wang, Z.; Bieseman, T.; Faure, A.M.

    1995-11-01

    A model for underbalanced drilling with coiled tubing has been developed which takes into account all important factors contributing to the process. This model is a unique tool to plan and execute underbalanced or near balance drilling operations. It is a transient, one-dimensional multi-phase flow model with the following components: Lift gas system model, multiphase hydraulics model, reservoir-wellbore interaction model, drilling model, models for multiphase fluids (lift gas, produced gas, mud, foam, produced gas, oil, water and cuttings). Various alternative geometries for gas injection are modeled as well as all important operations during underbalanced drilling with coiled tubing. The model as well as some simulation results for its use are presented in this paper.

  7. DEVELOPMENT OF NEW DRILLING FLUIDS

    SciTech Connect (OSTI)

    David B. Burnett

    2003-08-01

    The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

  8. Advanced Mud System for Microhole Coiled Tubing Drilling

    SciTech Connect (OSTI)

    Kenneth Oglesby

    2008-12-01

    An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

  9. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect (OSTI)

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  10. Geothermal drilling problems and their impact on cost

    SciTech Connect (OSTI)

    Carson, C.C.

    1982-01-01

    Historical data are presented that demonstrate the significance of unexpected problems. In extreme cases, trouble costs are the largest component of well costs or severe troubles can lead to abandonment of a hole. Drilling experiences from US geothermal areas are used to analyze the frequency and severity of various problems. In addition, average trouble costs are estimated based on this analysis and the relationship between trouble and depth is discussed. The most frequent drilling and completion problem in geothermal wells is lost circulation. This is especially true for resources in underpressured, fractured formations. Serious loss of circulation can occur during drilling - because of this, the producing portions of many wells are drilled with air or aerated drilling fluid and the resulting corrosion/erosion problems are tolerated - but it can also affect the cementing of well casing. Problems in bonding the casing to the formation result from many other causes as well, and are common in geothermal wells. Good bonds are essential because of the possibility of casing collapse due to thermal cycling during the life of the well. Several other problems are identified and their impacts are quantified and discussed.

  11. ,"California Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California Natural Gas Industrial Price ...

  12. ,"West Virginia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: West Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035WV3" "Date","West Virginia Natural Gas Industrial Price ...

  13. ,"Virginia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035VA3" "Date","Virginia Natural Gas Industrial Price ...

  14. ,"New Mexico Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: New Mexico Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035NM3" "Date","New Mexico Natural Gas Industrial Price ...

  15. Laredo, TX Liquefied Natural Gas Exports to Mexico (Dollars per...

    Gasoline and Diesel Fuel Update (EIA)

    to Mexico (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 16.950 - No Data Reported; -- Not Applicable; NA Not Available; W ...

  16. Laredo, TX Liquefied Natural Gas Exports Price (Dollars per Thousand...

    Gasoline and Diesel Fuel Update (EIA)

    Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015 17 - No Data Reported; -- Not Applicable; NA Not Available; W ...

  17. ,"Texas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035TX3" "Date","Texas Natural Gas Industrial Price ...

  18. ,"Texas Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: Texas Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045TX3" "Date","Texas Natural Gas Price Sold to ...

  19. ,"Vermont Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"10302015 12:25:04 PM" "Back to Contents","Data 1: Vermont Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035VT3" "Date","Vermont...

  20. ,"Pennsylvania Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    302015 12:24:52 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035PA3" "Date","Pennsylvania...

  1. ,"Utah Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"10302015 12:25:01 PM" "Back to Contents","Data 1: Utah Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035UT3" "Date","Utah Natural...

  2. ,"Missouri Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    302015 12:24:33 PM" "Back to Contents","Data 1: Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MO3" "Date","Missouri...

  3. ,"Maine Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:53 AM" "Back to Contents","Data 1: Maine Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  4. ,"Utah Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:16 AM" "Back to Contents","Data 1: Utah Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  5. ,"Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:45 AM" "Back to Contents","Data 1: Idaho Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  6. ,"Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:44 AM" "Back to Contents","Data 1: Iowa Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  7. ,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:36 AM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3" "Date","Idaho...

  8. ,"Mississippi Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:57 AM" "Back to Contents","Data 1: Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MS3" "Date","Mississippi...

  9. ,"Maryland Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:48 AM" "Back to Contents","Data 1: Maryland Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MD3" "Date","Maryland...

  10. ,"Nebraska Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:04 AM" "Back to Contents","Data 1: Nebraska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035NE3" "Date","Nebraska...

  11. ,"Tennessee Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:16:24 AM" "Back to Contents","Data 1: Tennessee Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035TN3" "Date","Tennessee...

  12. ,"Louisiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:44 AM" "Back to Contents","Data 1: Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035LA3" "Date","Louisiana...

  13. ,"Maine Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:49 AM" "Back to Contents","Data 1: Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ME3" "Date","Maine...

  14. ,"Connecticut Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:27 AM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CT3" "Date","Connecticut...

  15. ,"Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:35 AM" "Back to Contents","Data 1: Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IA3" "Date","Iowa Natural...

  16. ,"Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:16 AM" "Back to Contents","Data 1: Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OR3" "Date","Oregon...

  17. ,"Minnesota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:53 AM" "Back to Contents","Data 1: Minnesota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MN3" "Date","Minnesota...

  18. ,"Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:41 AM" "Back to Contents","Data 1: Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KS3" "Date","Kansas...

  19. ,"Florida Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:31 AM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida...

  20. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:19 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  1. ,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:18 AM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska...

  2. ,"Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:13 AM" "Back to Contents","Data 1: Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OH3" "Date","Ohio Natural...

  3. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:42 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  4. ,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:15 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OK3" "Date","Oklahoma...

  5. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:29 AM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware...

  6. ,"Arizona Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:22 AM" "Back to Contents","Data 1: Arizona Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AZ3" "Date","Arizona...

  7. ,"Indiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:39 AM" "Back to Contents","Data 1: Indiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IN3" "Date","Indiana...

  8. ,"Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:34 AM" "Back to Contents","Data 1: Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035HI3" "Date","Hawaii...

  9. ,"Montana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:58 AM" "Back to Contents","Data 1: Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MT3" "Date","Montana...

  10. ,"Illinois Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:38 AM" "Back to Contents","Data 1: Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035IL3" "Date","Illinois...

  11. ,"Arkansas Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:21 AM" "Back to Contents","Data 1: Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AR3" "Date","Arkansas...

  12. ,"Michigan Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:51 AM" "Back to Contents","Data 1: Michigan Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MI3" "Date","Michigan...

  13. ,"Georgia Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:32 AM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia...

  14. ,"Colorado Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:25 AM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado...

  15. Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price (Dollars per Thousand Cubic Feet) Freeport, TX Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2016 10.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Price of

  16. RAPID/Geothermal/Well Field/Idaho | Open Energy Information

    Open Energy Info (EERE)

    DWR, and file drilling records upon completion. Local Well Field Process not available Policies & Regulations IDAPA 37.03.04.045 - Abandonment of Geothermal Resource Wells IDWS...

  17. U.S. Dry Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 5,369 1950's 6,507 7,487 7,669 7,816 8,541 8,620 8,993 8,252 7,530 8,012 1960's 8,697 8,309 8,263 8,076 8,743 8,221 6,808 5,886 5,373 5,735 1970's 4,869 4,357 4,757 4,368 5,283 6,517 6,986 7,702 8,586 8,662 1980's 11,704 15,553 15,072 14,149 14,563 12,257 7,232 6,115 5,408 4,302 1990's 4,703 4,492 3,734 4,004 3,050 3,040 3,341 3,777 3,156 2,337 2000's 2,805 2,865 2,472 2,685 2,732 3,191 3,659 3,399 3,708 2,470

  18. U.S. Dry Exploratory Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 7,228 1950's 8,292 9,539 10,090 10,633 10,389 11,832 13,118 11,904 10,632 10,577 1960's 9,515 9,022 8,815 8,686 8,951 8,005 8,419 7,360 7,439 8,001 1970's 6,162 5,952 6,134 5,952 6,833 7,129 6,772 7,283 7,965 7,437 1980's 9,081 12,400 11,307 10,206 11,321 8,954 5,567 5,052 4,711 3,934 1990's 3,793 3,390 2,550 2,509 2,465 2,279 2,246 2,178 1,649 1,167 2000's 1,341 1,733 1,282 1,297 1,350 1,462 1,547 1,582 1,715

  19. U.S. Dry Developmental Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    U.S. DEPARTMENT OF ENERGY U.S. ENERGY INFORMATION ADMINISTRATION Washington, DC 20585 OMB No. 1905-0174 Form Expires: 09/30/2017 Version No. : 2015.01 FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT REFERENCE YEAR 2014 This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. Title 18 USC 1001 makes it a criminal offense for any person knowingly

  20. U.S. Dry Exploratory Wells Drilled (Number of Elements)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 538 411 431 367 454 477 530 601 502 551 501 589 1974 490 486 492 532 570 556 608 617 590 622 644 626 1975 624 453 572 551 543 539 623 595 611 689 638 691 1976 679 523 596 538 501 535 526 548 574 593 572 587 1977 549 480 566 527 586 570 593 590 682 716 695 729 1978 653 537 629 624 624 645 699 678 689 765 701 721 1979 572 471 527 530 561 603 612 712 679 732 714 724 1980 724 614 617 629 683 757 772 839 845 845 838 918 1981 1,014 812 914 919

  1. Footage Drilled for Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    Stocks 9,195 17,987 17,396 17,991 18,525 19,638 1993-2016 PAD District 1 2,995 2,384 2,433 1,901 2,242 2,546 1993-2016 Connecticut 1993-2005 Delaware 1993-2010 Florida 959 847 827 652 926 877 1993-2016 Georgia 257 263 310 220 175 221 1993-2016 Maine 1993-2014 Maryland 1993-2009 Massachusetts 4 4 4 5 4 4 1993-2016 New Hampshire 1993-2006 New Jersey 785 225 168 384 534 804 1993-2016 New York 17 20 24 11 14 23 1993-2016 North Carolina 380 369 417 167 170 191 1993-2016 Pennsylvania 72 94 74 26

  2. Costs of Crude Oil and Natural Gas Wells Drilled

    Gasoline and Diesel Fuel Update (EIA)

    07/31/2015 Next Release Date: 0

  3. Footage Drilled for Crude Oil and Natural Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    Values shown for the current two months are preliminary. Values shown for the previous two months may be revised to account for late submissions and corrections. Final revisions to monthly and annual values are available upon publication of the June Petroleum Marketing Monthly. Annual averages that precede the release of the June Petroleum Marketing Monthly are calculated from monthly data. Data through 2014 are final. Effective January 2009, selected crude streams were discontinued and new

  4. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  5. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  6. U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry...

    Gasoline and Diesel Fuel Update (EIA)

    Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil, Natural Gas, and Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1...

  7. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect (OSTI)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

  8. Reducing the risk, complexity and cost of coiled tubing drilling

    SciTech Connect (OSTI)

    Portman, L.

    1999-07-01

    Drilling vertical well extensions with coiled tubing, particularly in the underbalanced state, exploits the inherent strengths of coiled tubing including: The ability to enter slim holes against a live well head; The use of small equipment that is fast to rig up and down; and The ability to trip quickly and maintain a steady pressure downhole with continuous circulation. Coiled tubing has successfully been used to deepen hundreds of wells, yet this application has only received sporadic attention. There are some very important technical considerations when drilling non-directionally with coiled tubing that must be addressed to ensure a commercially successful job. A recent vertical drilling job carried out in Western Australia illustrates the critical engineering aspects of an underbalanced, non-directional, coiled tubing drilling job. This job was completed for Arc Energy in April 1999 and produced a well that stabilized at 1.1 MMcfd, where three other wells drilled conventionally into these zones had shown only trace amounts of hydrocarbon.

  9. Preliminary Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.

  10. Preliminary Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.

  11. Exploration Drilling and Technology Demonstration At Fort Bliss

    SciTech Connect (OSTI)

    Barker, Ben; Moore, Joe; Segall, Marylin; Nash, Greg; Simmons, Stuart; Jones, Clay; Lear, Jon; Bennett, Carlon

    2014-02-26

    The Tularosa-Hueco basin in south-central New Mexico has long been known as an extensional area of high heat flow. Much of the basin is within the Fort Bliss military reservation, which is an exceptionally high value customer for power independent of the regional electric grid and for direct use energy in building climate control. A series of slim holes drilled in the 1990s established the existence of a thermal anomaly but not its practical value. This study began in 2009 with a demonstration of new exploration drilling technology. The subsequent phases reported here delivered a useful well, comparative exploration data sets and encouragement for further development. A production-size well, RMI56-5, was sited after extensive study of archival and newly collected data in 2010-2011. Most of 2012 was taken up with getting state and Federal authorities to agree on a lead agency for permitting purposes, getting a drilling permit and redesigning the drilling program to suit available equipment. In 2013 we drilled, logged and tested a 924 m well on the McGregor Range at Fort Bliss using a reverse circulation rig. Rig tests demonstrated commercial permeability and the well has a 7-inch slotted liner for use either in production or injection. An August 2013 survey of the completed well showed a temperature of 90 C with no reversal, the highest such temperature in the vicinity. The well’s proximity to demand suggests a potentially valuable resource for direct use heat and emergency power generation. The drilling produced cuttings of excellent size and quality. These were subjected to traditional analyses (thin sections, XRD) and to the QEMScan™ for comparison. QEMScan™ technology includes algorithms for determining such properties of rocks as density, mineralogy, heavy/light atoms, and porosity to be compared with direct measurements of the cuttings. In addition to a complete cuttings set, conventional and resistivity image logs were obtained in the open hole before the well was cased.

  12. Advanced Drilling Systems for EGS

    Broader source: Energy.gov [DOE]

    Project objectives: Apply Novateks Stinger® and JackBit® technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

  13. Geothermal well stimulation program

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    The stimulation of geothermal production wells presents some new and challenging problems. Formation temperatures in the 275 to 550/sup 0/F range can be expected and the behavior of fracturing fluids and fracture proppants at these temperatures in a hostile brine environment must be carefully evaluated in laboratory tests. To avoid possible damage to the producing horizon of the formation, the high-temperature chemical compatibility between the in situ materials and the fracturing fluids, fluid loss additives, and proppants must be verified. In geothermal wells, the necessary stimulation techniques are required to be capable of initiating and maintaining the flow of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional oil field stimulation. The objective of well stimulation is to initiate and maintain additional fluid production from existing wells at a lower cost than either drilling new replacement wells or multiply redrilling existing wells. The economics of well stimulation will be vastly enhanced when proven stimulation techniques can be implemented as part of the well completion (while the drilling rig is still over the hole) on all new wells exhibiting some form of flow impairment. Results from 7 stimulation tests are presented and planned tests are described.

  14. California Natural Gas Imports Price All Countries (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price All Countries (Dollars per Thousand Cubic Feet) California Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 9.15 2.83 2010's 4.76 3.57 -- 3.59 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Imports Price

  15. International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars

    U.S. Energy Information Administration (EIA) Indexed Site

    per Thousand Cubic Feet) Dollars per Thousand Cubic Feet) International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.71 2.03 2.00 2.33 2000's 2.77 4.85 3.01 -- -- 11.20 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S.

  16. Diesel prices dip below the 4 dollar mark

    U.S. Energy Information Administration (EIA) Indexed Site

    Diesel prices dip below the 4 dollar mark The U.S. average retail price for on-highway diesel fuel dipped below the 4-dollar mark for the first time since late January to $3.99 a gallon on Monday. That's down 1.3 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.15 a gallon, down 2.3 cents from a week ago. Prices were lowest in the Gulf Coast region at 3.92 a gallon, down 2 cents. This

  17. North Dakota Natural Gas Exports (Price) All Countries (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) (Price) All Countries (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's -- -- -- 5.15 -- -- -- -- -- -- 2010's -- -- -- -- 14.71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  18. Louisiana Natural Gas Exports (Price) From All Countries (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) (Price) From All Countries (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Exports (Price) From All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.07 9.63 11.80 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural

  19. Maryland Natural Gas Imports Price All Countries (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price All Countries (Dollars per Thousand Cubic Feet) Maryland Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's -- -- -- 4.69 6.21 8.57 7.51 7.25 9.09 4.05 2010's 5.37 5.30 13.82 15.29 8.34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  20. Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price All Countries (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 13 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Imports Price

  1. Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.82 1.63 2.51 2.76 2.79 2.91 2000's 3.75 7.85 -- -- -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  2. Acoustic data transmission through a drill string

    DOE Patents [OSTI]

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  3. Logging with coiled tubing less effective than with drill pipe

    SciTech Connect (OSTI)

    Van Den Bosch, R. )

    1994-01-31

    Coiled tubing offered neither economic nor operational advantages over drill pipe for conveying logging tools in open hole shallow horizontal wells in Germany. In the past 2 years, Mobil Erdgas-Erdoel GMbH (MEEG) participated in completing eight shallow horizontal wells. These were medium-to-short radius wells at measured depths of between 850 and 2,000 m. The average horizontal section was 350 m. The logging tools were conveyed by coiled tubing or drill pipe. MEEG attempted to log five wells with coiled tubing-conveyed tools, four with 1 1/2-in. tubing. Total depth was reached reliably in only one well, the shallowest and with the shortest horizontal section. Simulation programs were unreliable for calculating the downhole forces of the coil/tool combination or predicting possible helical lockups. In wells with drill pipe-conveyed logs, the tool combination could always be pushed to total depth, and the operations were generally faster and cost less than logging with coiled tubing. Also, drill pipe allowed longer and heavier tool strings. For reliable operations, coiled tubing needs to be more rigid, rig-up/rig-down times need to be improved, and the simulation programs must be more reliable for predicting downhole lock-up.

  4. Downhole drilling network using burst modulation techniques

    DOE Patents [OSTI]

    Hall; David R. , Fox; Joe

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  5. Microhole High-Pressure Jet Drill for Coiled Tubing

    SciTech Connect (OSTI)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

  6. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2...

  7. U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. U.S. Footage Drilled for Natural Gas Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. U.S. Footage Drilled for Crude Oil Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. Geochemical Mud Logging of geothermal drilling

    SciTech Connect (OSTI)

    Tonani, F.B.; Guidi, M.; Johnson, S.D.

    1988-01-01

    The experience and results described in the present paper were developed over nearly two decades, with a major R&D project around 1980. The expression Geochemical Mud Logging (GML) has ill defined meaning in the geothermal industry, and ought to be specified. We refer here to GML as featuring mud and formation fluid tracer(s) and temperature as the bare essentials and with specified accuracies. Air and water logging are expected to be less demanding with regard to analysis accuracy, but are not discussed in this report. During application of GML to several drill holes with low formation permeabilities and under conditions of high temperature and high mud weight, GML as specified, revealed unexpected influx of formation brine. Such influx was a recurring feature that has been referenced to individual fractures and reflects both fracture size and permeability. As a consequence, continuous or subcontinuous sampling of mud systems appears more cost effective than trying to keep up with cumulative changes of bulk mud composition; although, the latter approach is more sensitive to extremely low rate, steady, inflow of formation fluid into the mud system. It appears, that based on this influx of formation fluid, permeability can be estimated well before mud losses are detected and/or drill strings are stuck. The main advantages of GML are: (1) the capability to assess formation temperature and permeability in nearly real time, resulting in (a) assessments of undisturbed formation and (b) having data in hand for holes lost during drilling operations and (2) being effective under conditions of very high temperatures where electrical logs are very costly and less reliable. Estimated cost for GML is $1500 per day (1982) based on assessments of R&D operations. However, extrapolating to larger scale services and to different operating conditions is indeed difficult. GML cost is probably the only significant point of controversy with regard to GML being a viable evaluation tool.

  11. Coiled tubing drilling (CTD) moves to commercial viability

    SciTech Connect (OSTI)

    Romagno, R. ); Walker, R. )

    1994-12-01

    Shell Western E and P, Inc. (SWEPI) California Drilling Operations was interested in coiled tubing (CT) for drilling slimhole steam injectors. A four-well pilot project at South Belridge field, Kern County, Calif., was targeted for immediate CT use. Well programs included completion, a goal not previously attempted on wells drilled from surface with CT. This paper reviews the primary project focus which was to develop slimhole steam injectors and improve injection profiles in lower Tulare formation E and G sands. Feasibility of drilling wells with CT and having CT crews run and cement completion tubulars in place was an issue to be determined. Conventional tubing installation is usually outside the scope of CT operations, so it was not known if this would be technically or economically feasible. Another goal was to refine personnel expertise to further develop CTD services as a successful business line. Other items targeted for investigation were: deviation control; lost circulation solutions; WOB optimization to obtain maximum ROP; potential steam blowout intervals; and high temperature. Finally, economic feasibility of using CTD as a rotary rig alternative for specific applications like slimhole wells on sites where surface location is limited was to be determined.

  12. Exploratory Well At Long Valley Caldera Geothermal Area (Suemnicht...

    Open Energy Info (EERE)

    Exploratory Well Activity Date 1985 - 1985 Usefulness useful DOE-funding Unknown Exploration Basis After several temperature-gradient holes were drilled in 1982 to the...

  13. RAPID/Geothermal/Well Field/California | Open Energy Information

    Open Energy Info (EERE)

    necessary drilling fees to DOGGR. Following review, DOGGR will issue a Permit to Conduct Geothermal Operations to the developer. Local Well Field Process not available Policies &...

  14. Optical coherence tomography guided dental drill

    DOE Patents [OSTI]

    DaSilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

  15. Filter for a drill string

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Briscoe, Michael; McPherson, James

    2007-12-04

    A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

  16. McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) McAllen, TX Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet) Decade ...

  17. Price of Gulf of Mexico Natural Gas LNG Imports (Nominal Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Nominal Dollars per Thousand Cubic Feet) Price of Gulf of Mexico Natural Gas LNG Imports (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  18. ,"Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Imports From Peru (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0NUS-NPEPMLDMCF" "Date","Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars per ...

  19. ,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet)" "Sourcekey","N9102CN3" "Date","Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand ...

  20. ,"Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Imports From Canada (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0NUS-NCAPMLDMCF" "Date","Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars per ...

  1. ,"Price of U.S. Liquefied Natural Gas Imports From Egypt (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Imports From Egypt (Dollars per Thousand Cubic Feet)" "Sourcekey","N9103EG3" "Date","Price of U.S. Liquefied Natural Gas Imports From Egypt (Dollars per Thousand ...

  2. Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indonesia (Dollars per Thousand Cubic Feet) Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  3. Price of Babb, MT Liquefied Natural Gas Exports to Canada (Dollars...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Babb, MT Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Price of Babb, MT Liquefied Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Year...

  4. Price of Compressed U.S. Natural Gas Exports to Canada (Dollars...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Canada (Dollars per Thousand Cubic Feet) Price of Compressed U.S. Natural Gas Exports to Canada (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  5. Conformable apparatus in a drill string

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Fox, Joe

    2007-08-28

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

  6. RAPID/Geothermal/Well Field/Texas | Open Energy Information

    Open Energy Info (EERE)

    wells. A geothermal well is a well drilled within the established limits of a designated geothermal field. 16 TAC 3.79. If the proposed well is located in a Texas Groundwater...

  7. Soda Lake Well Lithology Data and Geologic Cross-Sections

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31

    Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross?sections in Adobe Illustrator format.

  8. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  9. CFPL installs products pipeline with directional drilling

    SciTech Connect (OSTI)

    1996-01-01

    Central Florida Pipeline Company (CFPL), a subsidiary of GATX Terminals Corp., Tampa, FL, has used directional drilling under seven water bodies in Hillsborough, Polk and Osceola Counties in constructing its new pipeline from Tampa to Orlando. Primary reason for using directional drilling is to protect the environment by minimizing water turbidity while the 16-inch diameter, 109-mile refined petroleum products pipeline is being installed. Total cost of the project is pegged at $68.5 million. Directional drilling enabled the pipe to be placed about 20 feet below the bottom of: The Alafia River in Riverview with 999 feet drilled; Port Sutton Channel near the Port of Tampa with 2,756 feet drilled; Reedy Creek Swamp at the intersection of Interstate 4 and Highway 192 which had 1,111 feet drilled; Wetland {number_sign}70 southwest of Lake Wales with 1,575 feet drilled; Peace River south of Bartow had 2,470 feet drilled; Bonnet Creek west of Kissimmee had 693 feet drilled. Shingle Creek near the borders of Osceola and Orange Counties with 1,700 feet drilled. This paper reviews the design plans for construction and the emergency response plans should a rupture occur in the line.

  10. Final report on the design and development of a Rolling Float Meter for drilling-fluid outflow measurement

    SciTech Connect (OSTI)

    Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wright, E.K.; Glowka, D.A.

    1998-03-01

    Lost circulation, which is the loss of well drilling fluids to the formation while drilling, is a common problem encountered while drilling geothermal wells. The rapid detection of the loss of well drilling fluids is critical to the successful and cost-effective treatment of the wellbore to stop or minimize lost circulation. Sandia National Laboratories has developed an instrument to accurately measure the outflow rate of drilling fluids while drilling. This instrument, the Rolling Float Meter, has been under development at Sandia since 1991 and is now available for utilization by interested industry users. This report documents recent Rolling Float Meter design upgrades resulting from field testing and industry input, the effects of ongoing testing and evaluation both in the laboratory and in the field, and the final design package that is available to transfer this technology to industry users.

  11. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  12. Price of Maine Natural Gas Exports (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Maine Natural Gas Exports (Dollars per Thousand Cubic Feet) (Dollars per Thousand Cubic Feet) Price of Maine Natural Gas Exports (Dollars per Thousand Cubic Feet) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- 5.62 2010's 4.53 4.46 4.30 8.43 6.68 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  13. U.S. Average Depth of Crude Oil Developmental Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Estimated Production from Reserves (Billion Cubic Feet) Estimated Production from Reserves (Billion Cubic Feet) U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,405 1980's 3,405 3,316 3,248 3,355 3,518 3,454 3,443 3,351 3,192 3,099 1990's 2,936 2,968 3,031 2,868 2,907 2,886 2,938 3,022 3,136 3,313 2000's 3,299 3,193 2,988 2,855 2,742

  14. Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.94 1.99 1.53 2.25 2.31 2.03 2.14 2000's 5.43 5.00 2.36 -- -- 8.46 5.65 6.55 8.33 4.08 2010's 6.72 6.78 10.09 12.94 11.79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring

  15. Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2.70 1990's 3.04 2.80 2.86 2.14 2.14 2.53 2.97 2.83 2.62 2.78 2000's 4.28 5.69 4.33 5.79 6.39 8.25 8.25 8.51 9.74 6.34 2010's 6.54 5.81 4.90 5.72 6.61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  16. Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5.25 4.00 4.17 4.00 2.80 2.64 1990's 2.85 2.86 2.96 2.89 2.89 1.05 1.09 1.09 1.40 1.86 2000's 4.39 5.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  17. Washington Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.48 1990's 1.61 1.51 1.47 1.81 1.81 1.23 1.43 1.69 1.71 2.17 2000's 4.28 4.76 3.01 4.76 5.31 7.11 6.21 6.61 8.19 3.99 2010's 4.22 3.96 2.72 3.62 4.32 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  18. Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1980's 2.40 2.60 3.33 3.33 2.78 2.40 2.00 1.45 1.60 1.40 1990's 1.39 1.42 1.29 1.70 2.06 0.93 2.26 2.19 2.38 2.52 2000's 2.69 3.66 3.97 4.48 3.89 4.25 NA 5.27 5.33 4.00 2010's 4.92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.28 0.28 0.28 1970's 0.28 0.27 0.30 0.42 0.44 0.67 0.68 0.80 0.86 1.33 1980's 2.13 2.33 2.80 3.00 3.25 3.16 2.50 2.25 2.15 2.40 1990's 2.35 2.20 1.95 2.71 2.76 2.84 2000's NA NA NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 12.45 8.97 7.74 6.08 6.66 5.68 5.21 5.11 2000's 7.51 8.84 8.84 10.72 12.65 14.60 18.39 20.57 24.04 15.26 2010's 16.31 18.59 13.70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1.33 1980's 3.67 3.68 3.91 3.80 4.00 3.75 2.71 2.95 3.10 1990's 3.10 2.88 3.01 3.19 3.02 3.02 3.51 2.98 2.40 2.22 2000's 4.29 3.58 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Idaho Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Idaho Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2.04 1990's 2.12 2.01 1.83 2.02 1.60 0.94 1.22 1.60 1.60 2.04 2000's 3.79 4.71 2.83 4.72 5.30 7.13 6.22 6.31 7.88 3.86 2010's 4.19 3.90 2.59 3.34 4.14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  3. Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.29 0.13 1970's 0.24 0.23 0.22 0.24 0.30 0.33 0.34 0.40 1980's 3.75 3.50 3.75 3.75 3.75 3.50 1990's 1.57 1.32 1.56 1.57 1.49 1.70 1.56 1.70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  4. Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.16 1970's 0.30 0.32 0.34 0.54 0.97 0.98 1.09 1.39 1.57 1980's 1.73 2.71 2.46 2.33 2.57 2.43 1.20 1.68 1.53 2.05 1990's 2.25 2.46 2.51 2.17 1.28 1.24 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.13 0.14 1970's 0.16 0.18 0.28 0.35 0.40 0.70 0.99 1.20 1.29 1.86 1980's 1.90 2.47 2.62 2.84 2.78 2.77 2.57 2.24 2.19 2.15 1990's 2.11 2.17 2.15 2.30 2.40 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.88 5.26 5.97 8.28 6.46 7.24 4.14 5.00 5.02 5.93 2000's 4.90 8.64 6.75 7.10 9.30 9.95 13.53 10.83 8.30 5.15 2010's 3.76 3.40 7.96 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.74 1990's 1.88 1.70 1.73 1.70 1.71 1.85 2.22 2.63 2.67 2.43 2000's 3.61 4.42 3.42 5.00 5.61 9.04 6.64 6.98 9.76 3.89 2010's 4.84 7.57 7.98 14.40 14.59 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  8. Maine Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's 4.50 4.47 3.49 5.85 6.44 9.40 7.73 7.57 9.77 4.48 2010's 4.94 4.40 3.45 4.86 9.71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Imports

  9. Massachusetts Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2.27 1990's 2.80 3.08 2.88 2.50 2.59 2.48 2.92 2.81 2.59 2.49 2000's 3.34 4.30 3.39 4.41 5.16 6.65 7.58 7.32 10.34 5.90 2010's 4.86 4.77 3.69 5.49 8.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  10. Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.59 3.90 3.65 4.97 2.32 4.22 4.51 3.70 2.41 4.65 2000's 2.72 6.88 4.99 7.09 5.94 10.33 13.05 12.84 13.80 12.99 2010's 12.48 4.28 14.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.93 1990's 1.70 1.60 2.02 2.16 1.90 2.89 2.84 2.15 2.60 2000's 4.28 4.63 3.21 5.88 6.51 9.93 7.44 7.03 9.55 4.50 2010's 4.73 4.38 2.88 4.02 8.34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  12. Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.48 1990's 1.44 1.38 1.52 1.66 1.47 1.23 1.88 2.15 1.82 2.03 2000's 3.72 3.98 3.00 5.21 5.71 7.77 6.74 6.66 8.22 3.88 2010's 4.13 3.75 2.45 3.23 4.39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  13. Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.46 1980's 3.26 3.73 4.32 4.53 4.35 3.88 3.20 2.16 2.14 2.14 1990's 1.70 1.74 1.77 1.79 1.87 1.79 1.35 2.09 1.98 2.22 2000's 3.65 3.66 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.30 0.30 0.30 1970's 0.31 0.31 0.32 0.33 0.51 0.51 1.14 1.26 1.31 1.68 1980's 2.85 2.15 3.69 3.30 3.00 3.02 2.45 2.08 2.08 2.19 1990's 2.30 1.88 1.85 2.29 2.15 1.72 2000's NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Procedures control total mud losses while drilling in deep water

    SciTech Connect (OSTI)

    Dewar, J. ); Halkett, D. )

    1993-11-01

    In the deepwater (830-1,000 m) drilling program offshore Philippines, reefal limestones were encountered in which total mud losses could be expected because of the presence of large fractures. The danger was that a sudden drop in hydrostatic head (resulting from the losses) could allow any natural gas to enter the well bore quickly. The gas could then migrate up the well bore and form hydrates in the blowout preventers (BOPs). Once hydrates form, they are difficult to remove and can make a BOP stack inoperable. To combat this potential problem, containment procedures were developed to cope with these fluid losses. The philosophy behind the procedures was to prevent hydrocarbons from entering the well bore and, if they did enter, to ensure that they did not move up the well bore and into the riser. Additionally, procedures were developed to allow drilling to continue during the losses and the curing of losses.

  17. Warroad, MN Natural Gas Pipeline Exports (Price) Canada (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) (Price) Canada (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA 2000's NA NA NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 04/29/2016 Next Release Date: 05/31/2016 Referring Pages: U.S. Price of

  18. Nevada Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Wellhead Price Nevada Natural Gas Prices Natural Gas Wellhead Price

  19. High Temperature Battery for Drilling Applications

    SciTech Connect (OSTI)

    Josip Caja

    2009-12-31

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  20. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  1. Loaded Transducer Fpr Downhole Drilling Component

    DOE Patents [OSTI]

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  2. Crude Oil and Natural Gas Drilling Activity

    Gasoline and Diesel Fuel Update (EIA)

    Drilling Activity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Oct-14 Nov-14 Dec-14...

  3. Columbia Gas preserves wetlands with directional drilling

    SciTech Connect (OSTI)

    Luginbuhl, K.K.; Gartman, D.K.

    1995-10-01

    This paper reviews the use of directional drilling to install a 12 inch natural gas pipeline near Avon, Ohio. As a result of increased demand, the utility decided that it would need additional lines for pressure control with the only feasible route being through a forested and scrub/shrub wetland. This paper reviews the permitting requirements along with the directional drilling design and operation. Unfortunately during drilling, bentonite drilling fluids came to the surface requiring remedial action procedures. The paper then provides a detailed clean up strategy and makes recommendations on how to prevent such a break through in the future.

  4. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling...

  5. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect (OSTI)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to the identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  6. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect (OSTI)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore, the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  7. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    SciTech Connect (OSTI)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  8. Electric motor for laser-mechanical drilling

    SciTech Connect (OSTI)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  9. Balanced pressure techniques applied to geothermal drilling

    SciTech Connect (OSTI)

    Dareing, D.W.

    1981-08-01

    The objective of the study is to evaluate balanced pressure drilling techniques for use in combating lost circulation in geothermal drilling. Drilling techniques evaluated are: aerated drilling mud, parasite tubing, concentric drill pipe, jet sub, and low density fluids. Based on the present state of the art of balanced pressure drilling techniques, drilling with aerated water has the best overall balance of performance, risk, availability, and cost. Aerated water with a 19:1 free air/water ratio reduce maximum pressure unbalance between wellbore and formation pressures from 1000 psi to 50 psi. This pressure unbalance is within acceptable operating limits; however, air pockets could form and cause pressure surges in the mud system due to high percent of air. Low density fluids used with parasite tubing has the greatest potential for combating lost circulation in geothermal drilling, when performance only is considered. The top portion of the hole would be aerated through the parasite tube at a 10:1 free air/mud ratio and the low density mud could be designed so that its pressure gradient exactly matches the formation pore pressure gradient. The main problem with this system at present is the high cost of ceramic beads needed to produce low density muds.

  10. Comparative analysis of core drilling and rotary drilling in volcanic terrane

    SciTech Connect (OSTI)

    Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr.

    1987-04-01

    Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

  11. Geopressured geothermal drilling and completions technology development needs

    SciTech Connect (OSTI)

    Maish, A.B.

    1981-03-01

    Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

  12. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  13. Rapid Deployment Drilling System for on-site inspections under a Comprehensive Test Ban Preliminary Engineering Design

    SciTech Connect (OSTI)

    Maurer, W.C.; Deskins, W.G.; McDonald, W.J.; Cohen, J.H.; Heuze, F.E.; Butler, M.W.

    1996-09-01

    While not a new drilling technology, coiled-tubing (CT) drilling continues to undergo rapid development and expansion, with new equipment, tools and procedures developed almost daily. This project was undertaken to: analyze available technological options for a Rapid Deployment Drilling System (RDDS) CT drilling system: recommend specific technologies that best match the requirements for the RDDS; and highlight any areas where adequate technological solutions are not currently available. Postshot drilling is a well established technique at the Nevada Test Site (NTS). Drilling provides essential data on the results of underground tests including obtaining samples for the shot zone, information on cavity size, chimney dimensions, effects of the event on surrounding material, and distribution of radioactivity.

  14. Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar...

  15. Drill string splined resilient tubular telescopic joint for balanced load drilling of deep holes

    SciTech Connect (OSTI)

    Garrett, W.R.

    1981-08-04

    A drill string splined resilient tubular telescopic joint for balanced load deep well drilling comprises a double acting damper having a very low spring rate upon both extension and contraction from the zero deflection condition. Preferably the spring means itself is a double acting compression spring means wherein the same spring means is compressed whether the joint is extended or contracted. The damper has a like low spring rate over a considerable range of deflection, both upon extension and contraction of the joint, but a gradually then rapidly increased spring rate upon approaching the travel limits in each direction. Stacks of spring rings are employed for the spring means, the rings being either shaped elastomer-metal sandwiches or, preferably, roller belleville springs. The spline and spring means are disposed in an annular chamber formed by mandrel and barrel members constituting the telescopic joint. The spring rings make only such line contact with one of the telescoping members as is required for guidance therefrom, and no contact with the other member. The chamber containing the spring means, and also containing the spline means, is filled with lubricant, the chamber being sealed with a pressure seal at its lower end and an inverted floating seal at its upper end. Magnetic and electrical means are provided to check for the presence and condition of the lubricant. To increase load capacity the spring means is made of a number of components acting in parallel.

  16. Drill string splined resilient tubular telescopic joint for balanced load drilling of deep holes

    SciTech Connect (OSTI)

    Garrett, W.R.

    1984-03-06

    A drill string splined resilient tubular telescopic joint for balanced load deep well drilling comprises a double acting damper having a very low spring rate upon both extension and contraction from the zero deflection condition. Stacks of spring rings are employed for the spring means, the rings being either shaped elastomer-metal sandwiches or, preferably, roller Belleville springs. The spline and spring means are disposed in an annular chamber formed by mandrel and barrel members constituting the telescopic joint. The chamber containing the spring means, and also containing the spline means, is filled with lubricant, the chamber being sealed with a pressure seal at its lower end and an inverted floating seal at its upper end. A prototype includes of this a bellows seal instead of the floating seal at the upper end of the tool, and a bellows in the side of the lubricant chamber provides volume compensation. A second lubricant chamber is provided below the pressure seal, the lower end of the second chamber being closed by a bellows seal and a further bellows in the side of the second chamber providing volume compensation. Modifications provide hydraulic jars.

  17. Communication adapter for use with a drilling component

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Hall; Jr.; H. Tracy; Bradford, Kline; Rawle, Michael

    2007-04-03

    A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.

  18. Technology Development and Field Trials of EGS Drilling Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS ...

  19. European Geothermal Drilling Experience-Problem Areas and Case...

    Office of Scientific and Technical Information (OSTI)

    Drilling Experience-Problem Areas and Case Studies Baron, G.; Ungemach, P. 15 GEOTHERMAL ENERGY; BOREHOLES; DRILLING; EVALUATION; EXPLORATION; GEOTHERMAL RESOURCES; ITALY;...

  20. Property:ExplorationPermit-PreDrilling | Open Energy Information

    Open Energy Info (EERE)

    not involving drilling (pre-drilling exploration). RAPIDGeothermalExplorationNew Mexico + No permit required if the activity does not significantly damage or alter the land....

  1. Geotechnical Drilling in New-Zealand | Open Energy Information

    Open Energy Info (EERE)

    2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geotechnical Drilling in New-Zealand Citation SonicSampDrill. Geotechnical...

  2. Evaluation of Emerging Technology for Geothermal Drilling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of ...

  3. A study of geothermal drilling and the production of electricity from geothermal energy

    SciTech Connect (OSTI)

    Pierce, K.G.; Livesay, B.J.

    1994-01-01

    This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

  4. Industry survey for horizontal wells. Final report

    SciTech Connect (OSTI)

    Wilson, D.D.; Kaback, D.S. [CDM Federal Programs Corp., Denver, CO (United States); Denhan, M.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Watkins, D. [CDM Federal Programs Corp., Aiken, SC (United States)

    1993-07-01

    An international survey of horizontal environmental wells was performed during May and June of 1993. The purpose of the survey was to provide the environmental industry with an inventory of horizontal environmental wells and information pertaining to the extent of the use of horizontal environmental wells, the variety of horizontal environmental well applications, the types of geologic and hydrogeologic conditions within which horizontal environmental wells have been installed, and the companies that perform horizontal environmental well installations. Other information, such as the cost of horizontal environmental well installations and the results of tests performed on the wells, is not complete but is provided as general information with the caveat that the information should not be used to compare drilling companies. The result of the survey is a catalogue of horizontal environmental wells that are categorized by the objective or use of the wells, the vertical depth of the wells, and the drilling company contracted to install the wells.

  5. Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.23 0.24 0.28 0.36 0.49 0.73 0.89 1.26 1980's 1.73 2.25 2.96 3.19 2.94 3.01 2.29 1.85 1.78 1.97 1990's 1.94 2.61 2.44 2.23 1.88 1.59 2.57 2.52 2.17 2.04 2000's 3.44 4.13 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  6. Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.27 0.28 0.31 0.38 0.53 0.81 1.49 1.40 1980's 2.09 2.81 3.33 3.59 3.49 3.35 3.37 2.68 2.59 2.63 1990's 2.05 1.86 1.93 2.27 2.14 1.83 2.60 3.22 2.59 2.20 2000's 2.66 5.05 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  7. Washington Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.24 0.28 0.33 0.44 0.65 0.78 1.67 1.92 2.38 1980's 3.92 4.34 4.72 3.98 3.72 3.12 2.52 2.11 1.99 2.06 1990's 2.04 1.98 1.89 1.37 1.84 1.78 1.77 1.89 1.76 2.03 2000's 3.07 2.82 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  8. Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.23 0.23 1970's 0.25 0.25 0.26 0.27 0.30 0.44 0.54 1.74 2.09 1.61 1980's 4.50 2.83 3.53 3.52 3.52 3.30 2.79 2.29 2.12 2.04 1990's 2.14 1.31 1.26 0.96 1.36 0.36 1.20 1.16 0.95 2.56 2000's 3.32 3.67 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  9. Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.26 1970's 0.27 0.34 0.39 0.43 0.48 0.71 1.02 1.40 1.57 1.81 1980's 1.98 2.17 2.71 3.24 3.19 3.08 2.84 2.58 2.55 2.55 1990's 2.54 2.38 2.35 2.46 2.43 2.33 2.63 2.70 2.95 2.43 2000's 4.06 4.54 4.52 5.90 6.65 9.03 7.75 7.59 7.88 4.36 2010's 4.63 - = No Data Reported; -- = Not Applicable; NA

  10. Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.14 0.15 1970's 0.16 0.16 0.16 0.19 0.28 0.32 0.50 0.79 0.90 1.12 1980's 1.51 1.88 2.74 2.83 2.72 2.47 1.71 1.47 1.55 1.59 1990's 1.57 1.47 1.70 1.88 1.70 1.44 2.21 2.32 1.77 2.05 2000's 3.63 4.03 2.94 4.97 5.52 7.21 6.32 6.24 7.56 3.53 2010's 4.71 - = No Data Reported; -- = Not Applicable;

  11. Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  12. Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  13. California Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) California Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.30 1970's 0.29 0.35 0.35 0.39 0.45 0.47 0.69 0.73 0.85 1.75 1980's 2.16 2.90 3.30 4.14 4.13 3.70 3.56 3.02 2.55 2.39 1990's 2.40 2.19 1.40 0.53 0.33 1.01 1.63 1.47 1.93 2.08 2000's 3.62 4.70 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  14. Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.17 1970's 0.18 0.19 0.21 0.22 0.27 0.49 0.72 1.00 1.31 1.53 1980's 2.17 2.58 2.78 2.78 2.81 2.62 2.71 2.57 2.24 1.75 1990's 1.75 1.79 1.89 1.86 1.78 1.45 1.97 2.44 1.98 1.66 2000's 3.89 3.86 NA -- -- - = No Data Reported; -- = Not Applicable; NA =

  15. Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.35 0.68 0.30 1970's 0.32 0.32 0.35 0.40 0.50 0.58 0.59 1.50 2.60 2.53 1980's 2.76 2.94 3.53 3.30 3.18 3.71 2.53 2.52 2.13 2.97 1990's 3.68 3.08 2.95 3.53 2.62 2.20 3.50 1.54 3.00 0.59 2000's 4.82 4.93 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  16. Florida Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.18 0.20 1970's 1.98 0.21 0.24 0.30 0.34 0.36 0.49 0.72 0.85 1.35 1980's 1.77 2.38 2.58 2.65 2.90 2.80 1.79 2.11 1.85 2.00 1990's 2.17 2.11 2.06 2.85 1.50 1.55 2.37 2.38 2.38 2.33 2000's 3.81 3.45 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  17. Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.23 0.25 0.28 0.32 0.36 0.67 0.90 1.35 1980's 2.10 2.78 3.11 3.22 3.26 3.23 3.32 2.50 2.41 2.69 1990's 2.19 2.08 2.08 2.24 2.14 1.93 2.62 3.09 2.48 2.18 2000's 3.30 4.57 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  18. Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.20 0.20 1970's 0.21 0.22 0.23 0.27 0.29 0.54 0.58 0.83 0.98 1.11 1980's 1.78 2.12 2.56 3.07 2.88 2.97 2.73 2.68 2.53 2.17 1990's 2.06 2.29 2.44 1.97 1.88 1.66 2.63 2.68 2.27 2.48 2000's 3.12 3.94 NA -- -- -- - = No Data

  19. Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.21 0.21 1970's 0.21 0.23 0.25 0.27 0.28 0.38 0.45 0.81 0.86 1.21 1980's 1.73 2.18 2.91 3.21 3.02 3.11 2.78 2.52 2.69 2.17 1990's 2.17 2.46 2.51 1.38 1.03 1.05 2.47 2.58 2.27 2.16 2000's 3.69 4.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  20. Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.17 1970's 0.18 0.19 0.23 0.24 0.27 0.33 0.41 0.51 0.61 1.14 1980's 1.57 1.95 2.45 2.76 2.71 2.55 2.29 2.05 2.14 1.80 1990's 1.59 1.69 5.24 1.56 1.20 1.15 1.83 1.81 1.39 1.65 2000's 2.57 3.01 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA =

  1. Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.19 0.20 0.20 0.22 0.31 0.42 0.46 0.70 0.84 1.11 1980's 1.61 2.07 2.60 2.67 2.73 2.66 2.21 1.78 1.81 1.82 1990's 1.83 1.73 1.73 2.14 2.08 1.58 2.33 2.36 2.02 2.22 2000's 3.68 3.99 3.20 5.64 5.96 8.72 6.93 7.02 8.73 3.82 2010's 4.23 - = No Data Reported; -- = Not

  2. Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.26 0.25 1970's 0.25 0.24 0.21 0.23 0.24 0.27 0.32 0.39 0.61 1.04 1980's 0.46 0.48 0.78 0.55 0.55 0.59 0.65 0.55 0.93 0.85 1990's 1.14 1.55 1.91 2.44 1.37 1.42 2.23 2.60 2.73 2000's 3.75 4.15 5.98 4.50 6.25 7.43 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not

  3. Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.26 1970's 0.27 0.26 0.31 0.39 0.50 0.63 0.89 1.01 1.20 1.74 1980's 2.35 2.86 3.19 3.58 3.76 3.60 3.60 3.24 3.18 3.16 1990's 3.00 2.79 2.71 2.38 1.96 1.67 2.21 2.19 1.77 1.77 2000's 2.44 3.47 2.16 4.01 3.85 5.30 NA NA 5.63 3.92 2010's 3.79 - = No Data Reported; -- = Not Applicable; NA

  4. Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.18 1970's 0.18 0.21 0.27 0.23 0.29 0.50 0.71 0.73 1.15 1.60 1980's 2.32 3.21 3.91 3.78 3.47 3.17 2.13 1.94 1.86 1.97 1990's 1.76 1.66 1.64 1.73 1.49 1.24 1.66 1.73 1.42 1.63 2000's 3.30 3.93 3.06 5.13 5.83 8.54 6.84 6.70 8.80 3.73 2010's 4.17 - = No Data Reported; -- = Not

  5. Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.08 0.09 0.10 1970's 0.10 0.12 0.12 0.24 0.25 0.43 0.45 0.72 0.85 1.21 1980's 1.45 1.91 2.15 2.41 2.46 2.39 2.05 1.80 1.70 1.55 1990's 1.79 1.66 1.62 1.55 1.46 1.36 1.41 1.59 1.53 1.68 2000's 2.84 3.12 2.39 3.73 4.51 6.57 5.53 5.72 7.50 3.16 2010's 3.64 - = No Data Reported; -- = Not Applicable;

  6. Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.18 0.17 1970's 0.17 0.18 0.18 0.18 0.34 0.54 0.51 0.65 0.68 0.85 1980's 0.83 1.45 1.99 2.93 2.24 3.01 2.82 2.42 2.66 2.23 1990's 2.26 2.06 1.78 1.81 1.60 1.19 1.43 1.53 1.30 1.36 2000's 2.26 2.16 1.52 3.17 3.22 4.29 NA 4.86 6.22 2.97 2010's 3.98 - = No Data Reported; -- = Not Applicable;

  7. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable;

  8. Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.25 1970's 0.25 0.24 0.15 0.15 0.17 0.30 0.39 0.40 0.52 0.52 1980's 0.73 0.62 0.63 0.73 0.73 0.74 0.50 0.94 1.27 1.36 1990's 1.38 1.48 1.41 1.42 1.27 1.64 1.61 1.82 1.32 1.37 2000's 1.76 1.99 2.13 2.41 3.42 4.75 5.79 5.63 7.39 2.93 2010's 3.17 - = No Data Reported; -- = Not Applicable;

  9. Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.18 1970's 0.17 0.18 0.18 0.18 0.20 0.28 0.28 0.33 0.37 0.41 1980's 2.59 3.08 2.90 1.80 1990's 1.20 1.50 1.85 1.30 1.40 1.20 1.65 2.40 1.88 2.08 2000's 3.50 4.12 2.60 4.33 5.12 6.86 5.70 5.98 7.09 3.19 2010's 4.11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.16 1970's 0.16 0.17 0.17 0.18 0.26 0.35 0.53 0.58 0.75 0.96 1980's 0.70 1.81 2.13 2.29 2.54 2.55 2.51 2.29 1.94 2.41 1990's 2.06 1.92 2.15 2.81 2.65 3.02 3.82 4.03 3.92 4.10 2000's 5.23 4.99 4.43 5.17 5.68 7.26 6.43 6.61 8.72 3.43 2010's 3.84 - = No Data Reported; -- = Not Applicable;

  11. California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.30 0.31 0.31 1970's 0.32 0.33 0.37 0.37 0.44 0.70 0.94 1.17 1.36 1.70 1980's 2.17 2.57 3.09 3.57 3.80 3.36 2.89 2.37 2.39 2.32 1990's 2.36 2.46 2.34 2.38 1.50 1.73 1.82 2.41 1.97 2.36 2000's 4.81 6.93 2.92 5.04 5.65 7.45 6.47 6.62 8.38 3.96 2010's 4.87 - = No Data Reported; -- = Not

  12. Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.14 1970's 0.15 0.16 0.16 0.18 0.20 0.26 0.48 0.81 0.84 1.41 1980's 1.47 1.97 3.17 3.38 3.43 2.90 2.05 1.76 1.59 1.52 1990's 1.55 1.41 1.37 1.61 1.39 0.95 1.37 2.23 1.90 2.18 2000's 3.67 3.84 2.41 4.54 5.21 7.43 6.12 4.57 6.94 3.21 2010's 3.96 - = No Data Reported; -- = Not Applicable;

  13. Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.23 0.24 0.23 1970's 0.24 0.25 0.15 0.14 0.14 0.39 0.52 0.69 0.71 1.05 1980's 1.35 2.08 1.55 2.09 3.38 2.51 1.23 1.71 1.57 1.71 1990's 2.01 1.72 2.01 2.09 1.97 1.90 2.30 2.18 2.09 2.19 2000's 3.51 3.28 3.11 5.41 6.30 9.11 6.01 5.78 7.58 4.05 2010's 4.13 - = No Data Reported; -- = Not Applicable;

  14. Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.14 0.14 1970's 0.14 0.14 0.14 0.16 0.17 0.17 0.42 0.48 0.57 0.76 1980's 0.77 0.92 1.51 1.57 1.49 1.27 1.21 1.15 1.36 1.44 1990's 1.56 1.37 1.54 1.80 1.60 1.36 1.92 2.05 1.70 1.80 2000's 3.21 3.66 2.61 4.33 4.94 6.51 5.61 5.69 6.85 3.16 2010's 4.23 - = No Data Reported; -- = Not Applicable;

  15. Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.25 1970's 0.25 0.25 0.25 0.35 0.50 0.54 0.55 0.55 0.58 0.95 1980's 0.89 1.01 1.52 1.51 1.70 2.39 1.88 1.82 2.56 2.13 1990's 2.24 2.03 1.92 2.28 2.24 1.64 2.55 2.66 2.39 2.07 2000's 3.16 4.78 3.01 4.54 5.26 6.84 8.83 7.35 8.42 NA 2010's 4.47 - = No Data Reported; -- = Not Applicable;

  16. Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 1.65 1970's 0.18 0.18 0.19 0.22 0.26 0.27 0.36 0.58 0.66 0.99 1980's 1.45 1.83 2.53 2.75 2.71 2.48 2.30 2.06 2.10 1.83 1990's 1.85 1.62 1.79 1.72 1.64 1.36 2.12 2.34 1.90 2.04 2000's 3.49 3.21 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  17. Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.32 0.28 0.35 0.47 0.61 0.82 1.77 1.98 2.53 1980's 4.41 4.75 4.90 4.19 3.90 3.13 2.35 2.00 1.90 2.09 1990's 2.16 2.32 2.16 1.71 1.86 1.77 1.77 1.80 1.84 1.98 2000's 2.74 2.91 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA =

  18. Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.24 1970's 0.25 0.29 0.31 0.32 0.40 0.54 0.60 0.92 0.94 1.42 1980's 1.89 2.34 3.02 3.20 3.09 3.06 2.63 2.38 2.36 2.35 1990's 2.57 2.41 2.41 2.83 2.47 2.00 2.71 2.72 2.08 1.97 2000's 3.59 4.76 NA -- -- -- - = No Data Reported; -- = Not

  19. Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  20. Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA =

  1. Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.19 0.19 1970's 0.19 0.22 0.24 0.25 0.27 0.38 0.50 0.69 0.84 1.25 1980's 2.41 2.74 3.08 3.28 3.29 3.17 3.19 2.37 2.27 2.72 1990's 2.15 1.94 1.94 2.08 2.01 1.81 2.48 2.98 2.41 2.30 2000's 3.30 4.75 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  2. Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.23 0.26 0.25 1970's 0.32 0.36 0.37 0.38 0.40 0.42 0.62 0.68 0.94 1.24 1980's 1.65 2.30 4.29 4.11 3.36 3.60 3.22 2.14 2.46 2.71 1990's 2.67 2.79 2.91 2.71 2.13 2.00 2.74 2.67 2.27 1.86 2000's 2.14 3.06 NA -- -- -- - = No Data Reported; -- = Not

  3. Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.27 0.27 1970's 0.27 0.28 0.29 0.35 0.46 0.56 0.71 0.98 1.67 1.60 1980's 2.98 3.73 3.63 3.86 3.95 3.54 2.95 2.64 2.39 2.03 1990's 1.86 0.50 0.57 0.26 0.20 0.54 1.04 0.95 0.69 0.78 2000's 1.32 1.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  4. Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.19 1970's 0.20 0.21 0.23 0.24 0.28 0.36 0.46 0.73 0.88 1.28 1980's 1.75 2.34 2.91 3.06 2.94 2.92 2.44 1.99 1.87 2.09 1990's 2.11 2.33 2.34 2.37 1.98 1.82 2.63 2.62 2.33 2.19 2000's 3.37 4.28 NA -- -- - = No Data Reported; -- = Not Applicable; NA

  5. Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.21 0.23 0.25 0.26 0.29 0.39 0.48 0.80 0.87 1.20 1980's 1.71 2.12 2.81 3.04 2.92 2.86 2.61 2.41 2.78 1.94 1990's 1.77 2.05 2.31 2.01 0.91 1.19 2.34 2.43 2.02 2.14 2000's 2.48 4.86 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  6. Montana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.11 0.11 1970's 0.11 0.12 0.17 0.21 0.23 0.42 0.46 0.73 0.83 1.16 1980's 1.29 1.90 2.87 3.00 3.04 2.51 2.28 1.86 1.65 1.57 1990's 1.75 1.76 1.63 2.15 1.53 1.16 1.44 1.77 1.72 2.12 2000's 2.96 2.48 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  7. Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.15 0.15 1970's 0.16 0.16 0.18 0.19 0.24 0.32 0.42 0.57 0.73 1.10 1980's 1.36 1.81 2.35 2.56 2.55 2.51 2.40 2.20 1.77 1.86 1990's 1.70 1.43 1.54 1.79 1.34 1.33 2.10 2.54 2.01 1.96 2000's 2.81 3.56 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  8. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.20 1970's 0.20 0.22 0.23 0.26 0.29 0.32 0.47 0.72 1.10 1.32 1980's 1.84 2.59 3.00 3.10 3.15 3.12 3.11 2.37 2.30 2.60 1990's 2.17 3.02 2.24 2.34 2.13 1.93 2.63 2.95 2.55 2.21 2000's 3.13 4.90 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  9. Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.32 0.30 0.35 0.44 0.51 0.74 1.64 1.70 1980's 1.76 2.55 3.00 2.50 3.50 2.48 1.78 1.31 1.50 1.65 1990's 1.65 1.72 1.79 2.65 2.16 1.54 2.54 2.55 2.15 2.28 2000's 4.09 3.60 3.41 5.22 6.90 9.55 6.78 6.63 8.85 3.83 2010's 4.35 - = No Data Reported; -- = Not

  10. Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  11. Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.16 0.15 1970's 0.15 0.17 0.17 0.19 0.41 0.48 0.50 0.61 0.64 0.72 1980's 1.12 1.10 3.06 3.40 4.08 3.52 2.90 1.88 2.39 1.58 1990's 1.70 1.54 1.63 1.77 1.54 1.15 1.39 1.86 1.73 1.93 2000's 3.28 3.52 1.99 4.11 5.24 7.16 5.49 NA 6.15 3.38 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA =

  12. Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.15 0.15 0.16 0.18 0.25 0.34 0.41 0.64 0.79 1.13 1980's 1.92 2.77 3.22 3.18 3.32 3.01 2.52 1.76 1.53 1.24 1990's 1.16 1.06 1.13 1.99 2.05 1.78 2.57 2.42 1.78 1.97 2000's 3.34 3.49 2.70 4.13 4.96 6.86 5.85 4.65 6.86 3.40 2010's 4.30 - = No Data Reported; -- = Not Applicable;

  13. Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar power Finished groundwater well head with solar power How does LANL determine where to put a monitoring well? Project teams routinely review groundwater monitoring data to verify adequate placement of wells and to plan the siting of additional wells as needed. RELATED IMAGES

  14. High Temperature Tools and Sensors, Down-hole Pumps and Drilling |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Below are the project presentations and respective peer review results for High Temperature Tools and Sensors, Down-hole Pumps and Drilling. Multiparameter Fiber Optic Sensing System for Monitoring Enhanced Geothermal Systems, Dr. Aaron J. Knobloch, GE Global Research High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems, Norman Turnquist, GE Global Research Pressure Sensor and Telemetry Methods for Measurement While Drilling in Geothermal Wells, Vinayak

  15. New Wells Provide Information on Groundwater at Pahute Mesa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 28, 2012 New Wells Provide Information on Groundwater at Pahute Mesa New wells drilled near historic underground test areas in Nevada are helping scientists get a clearer understanding of the groundwater in these areas while contributing to the design of a long-term monitoring system. Drilled from September to October 2012, these two wells will supplement a network of more than 20 existing characterization wells in an area called Pahute Mesa, which extends from the northwestern portion

  16. Final Technical Report for “A Heliportable Sonic Drilling Platform for Microhole Drilling and Exploration”

    SciTech Connect (OSTI)

    Lucon, Peter

    2008-05-05

    The Phase I objectives were fully achieved the execution of a program that included the: • Development of a comprehensive model of the sonic drill technology and interaction of the dynamic drilling parameters with the impedance of the earth. • Operation and measurement of the sonic drilling process in the field at full scale. • Comparison of the analytical and experimental results to form an objective and quantified approach to describe the fundamental phenomena and to develop a methodology for automated control of the sonic drilling process. • Conceptual design of a modular sonic drilling system that can be transported to remote sites by helicopter. As a result, the feasibility of a commercially viable sonic drilling technology that can produce microholes up to 1,500 feet in depth, and that is field deployable to remote, environmentally sensitive sites via a helicopter, has been demonstrated.

  17. Thrust bearing assembly for a downhole drill motor

    SciTech Connect (OSTI)

    Geczy, B. A.

    1985-12-24

    A bidirectional thrust bearing assembly is used between a downhole fluid motor and a rock bit for drilling oil wells. The bearing assembly has a stationary housing with radial journal bearing sleeves and a rotatable drive shaft also having radial bearing sleeves. A pair of oppositely facing thrust bearing rings are mounted in the housing. A second pair of thrust bearing rings are mounted on the shaft so as to have faces opposing the bearing faces on the first pair of rings. Belleville springs resiliently bias a pair of the thrust bearing rings apart and carry the thrust load between such rings. Each ring has a plurality of inserts of hard material, preferably polycrystalline diamond, at the bearing surface. Means are provided for circulating drilling fluid from the motor through the thrust bearing faces for forming hydrodynamic fluid bearing films in the bearing interfaces.

  18. drilling-tools | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drilling-tools Tally II: Pipe Tally Sheet for Pocket PC allows users to conveniently build an inventory or tally sheet for tubular products and downhole tools. It is designed to ...

  19. Drills and Classes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drills and Classes Drills and Classes As part of the continuing effort to provide a safer workplace, the Headquarters Occupant Emergency Planning Team is pleased to announce that continuous training sessions will be held on various topics. First Aid, CPR, and AED Training Warden, Monitor, and Assistant Training Occupant Emergency Training Videos First Aid, CPR, and AED Training The Office of Administration (MA-40) is sponsoring First Aid, Cardiopulmonary Resuscitation (CPR) and Automated

  20. Geomechanical Modeling for Thermal Spallation Drilling (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Geomechanical Modeling for Thermal Spallation Drilling Citation Details In-Document Search Title: Geomechanical Modeling for Thermal Spallation Drilling Authors: Walsh, S D ; Lomov, I ; Roberts, J J Publication Date: 2011-05-05 OSTI Identifier: 1113520 Report Number(s): LLNL-PROC-483098 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: Geothermal Resources Council 35th Annual Meeting, San Diego, CA, United