National Library of Energy BETA

Sample records for welfare systems reforms

  1. Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements EAS ...

  2. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  3. Integrated hydrocarbon reforming system and controls

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian

    2003-11-04

    A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.

  4. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement An ...

  5. Auxiliary reactor for a hydrocarbon reforming system

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  6. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  7. SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER

    SciTech Connect (OSTI)

    Dennis Witmer

    2003-12-01

    New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell

  8. Integrated solar thermochemical reaction system for steam methane reforming

    SciTech Connect (OSTI)

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; Fritz, Brad G.; Cameron, Richard J.; Humble, Paul H.; TeGrotenhuis, Ward E.; Dagle, Robert A.; Wegeng, Robert S.

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heat exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.

  9. Integrated solar thermochemical reaction system for steam methane reforming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; Fritz, Brad G.; Cameron, Richard J.; Humble, Paul H.; TeGrotenhuis, Ward E.; Dagle, Robert A.; Wegeng, Robert S.

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heatmore » exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.« less

  10. Partial oxidation fuel reforming for automotive power systems.

    SciTech Connect (OSTI)

    Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

    1999-09-07

    For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

  11. Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR Aftertreatment System Meeting Emissions Useful Life Requirement | Department of Energy System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement An advanced exhaust aftertreatment system developed to meet EPA 2010 and final Tier 4 emission regulations show substantial

  12. Columbia River Hatchery Reform System-Wide Report.

    SciTech Connect (OSTI)

    Warren, Dan

    2009-04-16

    The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations. With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations for

  13. The low-temperature partial-oxidation reforming of fuels for transportation fuel cell systems

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.

    1996-12-31

    Passenger cars powered by fuel cell propulsion systems with high efficiency offer superior fuel economy, very low to zero pollutant emissions, and the option to operate on alternative and/or renewable fuels. Although the fuel cell operates on hydrogen, a liquid fuel such as methanol or gasoline is more attractive for automotive use because of the convenience in handling and vehicle refueling. Such a liquid fuel must be dynamically converted (reformed) to hydrogen on board the vehicle in real time to meet fluctuating power demands. This paper describes the low-temperature Argonne partial-oxidation reformer (APOR) developed for this application. The APOR is a rapid-start, compact, lightweight, catalytic device that is efficient and dynamically responsive. The reformer is easily controlled by varying the feed rates of the fuel, water, and air to satisfy the rapidly changing system power demands during the vehicle`s driving cycle.

  14. An Innovative Injection and Mixing System for Diesel Fuel Reforming

    SciTech Connect (OSTI)

    Spencer Pack

    2007-12-31

    This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the

  15. The low-temperature partial oxidation reforming of fuels for transportation fuel cell systems

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.

    1996-12-31

    Argonne`s partial-oxidation reformer (APOR) is a compact, lightweight, rapid-start, and dynamically responsive device to convert liquid fuels to H{sub 2} for use in automotive fuel cells. An APOR catalyst for methanol has been developed and tested; catalysts for other fuels are being evaluated. Simple in design, operation, and control, the APOR can help develop efficient fuel cell propulsion systems.

  16. Slab reformer

    DOE Patents [OSTI]

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1985-03-12

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  17. Slab reformer

    DOE Patents [OSTI]

    Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.

  18. Slab reformer

    DOE Patents [OSTI]

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  19. FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS

    SciTech Connect (OSTI)

    Kelly Jezierski; Andrew Tadd; Johannes Schwank; Roland Kibler; David McLean; Mahesh Samineni; Ryan Smith; Sameer Parvathikar; Joe Mayne; Tom Westrich; Jerry Mader; F. Michael Faubert

    2010-07-30

    The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were

  20. Onboard fuel reformers for fuel cell vehicles: Equilibrium, kinetic and system modeling

    SciTech Connect (OSTI)

    Kreutz, T.G.; Steinbugler, M.M.; Ogden, J.M.

    1996-12-31

    On-board reforming of liquid fuels to hydrogen for use in proton exchange membrane (PEM) fuel cell electric vehicles (FCEVs) has been the subject of numerous investigations. In many respects, liquid fuels represent a more attractive method of carrying hydrogen than compressed hydrogen itself, promising greater vehicle range, shorter refilling times, increased safety, and perhaps most importantly, utilization of the current fuel distribution infrastructure. The drawbacks of on-board reformers include their inherent complexity [for example a POX reactor includes: a fuel vaporizer, a reformer, water-gas shift reactors, a preferential oxidation (PROX) unit for CO cleanup, heat exchangers for thermal integration, sensors and controls, etc.], weight, and expense relative to compressed H{sub 2}, as well as degraded fuel cell performance due to the presence of inert gases and impurities in the reformate. Partial oxidation (POX) of automotive fuels is another alternative for hydrogen production. This paper provides an analysis of POX reformers and a fuel economy comparison of vehicles powered by on-board POX and SRM fuel processors.

  1. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect (OSTI)

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  2. Diesel Reforming for Solid Oxide Fuel Cell Application

    SciTech Connect (OSTI)

    Liu, D-J.; Sheen, S-H.; Krumpelt, M.

    2005-01-27

    This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

  3. Bringing electricity reform to the Philippines

    SciTech Connect (OSTI)

    Fe Villamejor-Mendoza, Maria

    2008-12-15

    Electricity reforms will not translate to competition overnight. But reforms are inching their way forward in institutions and stakeholders of the Philippine electricity industry, through regulatory and competition frameworks, processes, and systems promulgated and implemented. (author)

  4. Reformer assisted lean NO.sub.x catalyst aftertreatment system and method

    DOE Patents [OSTI]

    Kalyanaraman, Mohan; Park, Paul W.; Ragle, Christie S.

    2010-06-29

    A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver-containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, a second catalyst composed of a copper-containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range, a hydrocarbon compound for injection into the gas stream upstream of the first catalyst to provide a reductant, and a reformer for reforming a portion of the hydrocarbon compound into H.sub.2 and/or oxygenated hydrocarbon for injection into the gas stream upstream of the first catalyst. The second catalyst is adapted to facilitate the reaction of reducing NOx into N.sub.2, whereby the intermediates are produced via the first catalyst reacting with NOx and hydrocarbons.

  5. Internal reforming fuel cell assembly with simplified fuel feed

    SciTech Connect (OSTI)

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  6. Applications of solar reforming technology

    SciTech Connect (OSTI)

    Spiewak, I.; Tyner, C.E.; Langnickel, U.

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  7. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  8. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  9. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  10. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  11. Device for cooling and humidifying reformate

    DOE Patents [OSTI]

    Zhao, Jian Lian; Northrop, William F.

    2008-04-08

    Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.

  12. Plasma-catalyzed fuel reformer

    DOE Patents [OSTI]

    Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

    2013-06-11

    A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

  13. Catalytic reforming methods

    DOE Patents [OSTI]

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  14. Non-catalytic recuperative reformer

    SciTech Connect (OSTI)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  15. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for Tank 48H Treatment Project (TTP) | Department of Energy Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System.

  16. Steam reforming of fuel to hydrogen in fuel cells

    DOE Patents [OSTI]

    Fraioli, Anthony V.; Young, John E.

    1984-01-01

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  17. Steam reforming of fuel to hydrogen in fuel cell

    DOE Patents [OSTI]

    Young, J.E.; Fraioli, A.V.

    1983-07-13

    A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  18. NETL - Fuel Reforming Facilities

    SciTech Connect (OSTI)

    2013-06-12

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  19. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  20. Plasmatron Fuel Reformer Development and Internal Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications ...

  1. Development of a Rapid-Start On-Board Automotive Steam Reformer

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Fischer, Christopher M.; Davis, James M.

    2004-04-29

    The paper reports on the status of efforts to engineer a microchannel steam reforming system to enable a rapid cold start capability. The steam reformer is intended to be coupled with a WGS and PROX reactor to provide reformate to a PEM fuel cell for an automotive propulsion application. A compact and efficient microchannel steam reformer was previously developed that required ~15 minutes to accomplish a cold start. The objective of the current work was to reduce this start time to <30 seconds without sacrificing steady-state efficiency. The paper describes the changes made in the reforming system to enable cold start capability and presents data on reformate flow and temperature transients during cold start testing. The results demonstrate that the system is capable of producing reformate within 22 seconds after a cold start. A strategy for integrating the system with a WGS and PROX reactor to provide a rapid start fuel processing system is described.

  2. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  3. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  4. Steam reformer with catalytic combustor

    DOE Patents [OSTI]

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  5. Hydrogen Generation from Biomass-Derived Carbohydrates via Aqueous-Phase Reforming

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Virent Energy Systems, Inc. at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  6. Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  7. Autothermal reforming catalyst having perovskite structure

    DOE Patents [OSTI]

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  8. SAMRUK KAZYNA National Welfare Fund | Open Energy Information

    Open Energy Info (EERE)

    Fund Jump to: navigation, search Name: SAMRUK-KAZYNA National Welfare Fund Place: Kazakhstan Sector: Hydro, Solar, Wind energy Product: Kazakhstan-based project developer in...

  9. Design, Modeling, and Validation of a Flame Reformer for LNT External

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bypass Regeneration | Department of Energy Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_midlam-mohler.pdf (432.95 KB) More Documents & Publications Eaton Aftertreatment System (EAS) for On-Highway Diesel Engines Diesel Reformers for On-board Hydrogen Applications

  10. Distributed Bio-Oil Reforming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Bio-Oil Reforming R. Evans, S. Czernik, R. French, M. Ratcliff National ... GAS 7 BIOMASS BIO-OIL CHAR For reactor or export Gas recycle For fluidization or export ...

  11. Distributed Bio-Oil Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Bio-Oil Reforming Distributed Bio-Oil Reforming Presentation by NREL's Robert Evans at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming ...

  12. Before House Committee on Oversight and Government Reform | Department...

    Office of Environmental Management (EM)

    House Committee on Oversight and Government Reform Before House Committee on Oversight and Government Reform Before House Committee on Oversight and Government Reform By: Secretary...

  13. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O.; Magrini, Kim; Landin, Steven M.; Ritland, Marcus A.

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  14. Method of steam reforming methanol to hydrogen

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA)

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  15. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2006-04-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the tenth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2006. This quarter saw progress in six areas. These areas are: (1) The effect of catalyst dimension on steam reforming, (2) Transient characteristics of autothermal reforming, (3) Rich and lean autothermal reformation startup, (4) Autothermal reformation degradation with coal derived methanol, (5) Reformate purification system, and (6) Fuel cell system integration. All of the projects are proceeding on or slightly ahead of schedule.

  16. Reforming The Government Hiring Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming The Government Hiring Process Reforming The Government Hiring Process November 19, 2010 - 10:10am Addthis Rita R. Franklin Rita R. Franklin Director, Office of the Ombudsman What does this mean for me? In the video, Deputy Secretary Daniel Poneman highlights the Department's "Time-to-Hire Tracking and Reporting System." The Department reduced the end-to-end time-to-hire from 174 calendar days for Fiscal Year FY 2009 to 100 days for FY 2010. Wednesday, Deputy Secretary Daniel

  17. Integrated reformer and shift reactor

    DOE Patents [OSTI]

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  18. NEPA Contracting Reform Guidance

    Office of Environmental Management (EM)

    ... document control system to enter, track, and retrieve public ... In accordance with the terms of the contracts, the ... Internet by performing a search using keywords such as ...

  19. Steam Reforming of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  20. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect (OSTI)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  1. Evaluation of Partial Oxidation Reformer Emissions

    SciTech Connect (OSTI)

    Unnasch, Stefan; Fable, Scott; Waterland, Larry

    2006-01-06

    In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

  2. Fuel Chemistry and Bed Performance in a Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    2006-04-01

    The objective of this research is to address critical issues that inhibit successful commercialization of low-temperature BLG systems, including the steam reforming technology developed by Manufacturing and Technology Conversion International, Inc.

  3. OXIDATION OF FUELS IN THE COOL FLAME REGIME FOR COMBUSTION AND REFORMING FOR FUEL CELLS.

    SciTech Connect (OSTI)

    NAIDJA,A.; KRISHNA,C.R.; BUTCHER,T.; MAHAJAN,D.

    2002-08-01

    THE REVIEW INTEGRATES RECENT INVESTIGATIONS ON AUTO OXIDATION OF FUEL OILS AND THEIR REFORMING INTO HYDROGEN RICH GAS THAT COULD SERVE AS A FEED FOR FUEL CELLS AND COMBUSTION SYSTEMS.

  4. NEPA Contracting Reform Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    defining early what contractors should accomplish < establishing contracts ahead of time < minimizing cost while maintaining quality by * maximizing competition and use of incentives * using past performance information in awarding work * managing the NEPA process as a project This guidance provides: < model statements of work < information on contract types and incentives < direction on effective NEPA contract management by the NEPA Document Manager < a system for measuring

  5. Before the House Oversight and Government Reform Subcommittee on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology, Information Policy, Intergovernmental Relations, and Procurement Reform | Department of Energy Oversight and Government Reform Subcommittee on Technology, Information Policy, Intergovernmental Relations, and Procurement Reform Before the House Oversight and Government Reform Subcommittee on Technology, Information Policy, Intergovernmental Relations, and Procurement Reform Before the Subcommittee on Technology, Information Policy, Intergovernmental Relations and Procurement

  6. Promoting energy efficiency in reforming electricity markets

    SciTech Connect (OSTI)

    Clinton, J.; Kozloff, K.

    1998-07-01

    Many developing countries are initiating power sector reforms to stimulate private investment, increase operation and management efficiencies, and recover the full costs of power. Reforms may include unbundling generation, transmission, distribution and retail services; commercial management; competition; and private ownership. This paper draws upon six country case studies--Argentina, Chile, New Zealand, Norway, the United Kingdom, and the US--to identify major models of power reforms and their implications for energy efficiency--both positive and negative. There are both structural and institutional features of reform that may discourage commercial offerings of end-use efficiency services. Valuable lessons are discussed regarding what reforms and policies have worked to promote energy efficiency and which have not. Several models are offered for how developing countries can promote energy efficiency under some of the more common forms of power sector restructuring. Conclusions and recommendations are directed at key decision-makers in developing countries contemplating power sector reforms.

  7. Pyrochem Catalysts for Diesel Fuel Reforming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrochem Catalysts for Diesel Fuel Reforming Success Story Converting heavy hydrocarbons, such as diesel and coal-based fuels, into hydrogen-rich synthesis gas is a necessary step for fuel cells and other applications. The high sulfur and aromatic content of these fuels poses a major technical challenge since these components can deactivate reforming catalysts. Taking on this challenge, NETL researchers invented a novel fuel-reforming catalyst that overcomes limitations of current catalysts by

  8. Cost Analysis of Bio-Derived Liquids Reforming (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of Bio-Derived Liquids Reforming Brian James Directed Technologies, Inc. 6 November 2007 This presentation does not contain any proprietary, confidential, or otherwise restricted information Objective * Assess cost of H 2 from bio-derived liquids * Looking at forecourt scale systems: 100-1500kg/day * Emphasis on Ethanol * Looking at both "conventional" and "advanced" systems * Interaction with the Researchers is bi-directional * Researchers help me with

  9. Unfunded Mandates Reform Act; Intergovernmental Consultation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) ...

  10. Federal Information Technology Acquisition Reform Act (FITARA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Information Technology Acquisition Reform Act (FITARA) Data Resources FITARA Resources Available for Download: DOE IT Policy Archive: ZIP IT Leadership Directory: HTML | ...

  11. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics ... Reviewer's Comments Weaknesses * Requires integration into overall production, ...

  12. Cost Analysis of Bio-Derived Liquids Reforming (Presentation) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Bio-Derived Liquids Reforming (Presentation) Cost Analysis of Bio-Derived Liquids Reforming (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 03_dti_cost_analysis_bio-derived_liquids_reforming.pdf (471.59 KB) More Documents & Publications BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Bio-Derived Liquids to Hydrogen Distributed Reforming Working

  13. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G.

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  14. Design, Modeling, and Validation of a Flame Reformer for LNT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration ...

  15. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Office of Environmental Management (EM)

    Meeting - November 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting - November 2007 The Bio-Derived Liquids to Hydrogen Distributed Reforming ...

  16. Diesel Reformers for On-board Hydrogen Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reformers for On-board Hydrogen Applications Diesel Reformers for On-board Hydrogen ... More Documents & Publications On-Board Ammonia Generation Using Delphi Diesel Fuel ...

  17. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Broader source: Energy.gov (indexed) [DOE]

    The Working Group is addressing technical challenges to distributed reforming of biomass-derived, renewable liquid fuels to hydrogen, including the reforming, water-gas shift, and ...

  18. Diesel Reforming for Fuel Cell Auxiliary Power Units

    SciTech Connect (OSTI)

    Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

    2005-01-27

    This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

  19. High Pressure Ethanol Reforming for Distributed Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure Ethanol Reforming for Distributed Hydrogen Production High Pressure Ethanol Reforming for Distributed Hydrogen Production Presentation by S. Ahmed and S.H.D. Lee at the ...

  20. Hearing Before the House Oversight and Government Reform Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oversight and Government Reform Subcommittee on Information Technology and Subcommittee on Government Operations Hearing Before the House Oversight and Government Reform ...

  1. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling ...

  2. Recuperative Reforming (RR) for H2 Enhanced Combustion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recuperative Reforming (RR) for H2 Enhanced Combustion Recuperative Reforming (RR) for H2 Enhanced Combustion 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations ...

  3. Before the House Oversight and Government Reform Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oversight and Government Reform Subcommittee on Government Management, Organization, and Procurement Before the House Oversight and Government Reform Subcommittee on Government...

  4. Fuel cell integrated with steam reformer

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  5. Olefins from High Yield Autothermal Reforming Process

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2012-03-06

    The autothermal reforming method employs an improved dehydrogenation process for olefin production, utilizing platinum based dehydrogenation catalysts in the presence of oxygen. The autothermal process requires no external energy input following ignition and produces high conversions and yields from the gaseous hydrocarbon feeds. Autothermal reforming is an effective solution that meets the high demands of the chemical market industry by producing high yields...

  6. Steam reforming of low-level mixed waste. Final report

    SciTech Connect (OSTI)

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  7. New model accurately predicts reformate composition

    SciTech Connect (OSTI)

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  8. Animal Welfare Act (7 U.S.C. 2031 et seq.)

    Broader source: Energy.gov [DOE]

    The Animal Welfare Act of 1966 regulates the treatment of animals in research, exhibition, transport, and by dealers.

  9. Animal Welfare Act (7 U.S.C. 2031 et seq.) (1966)

    Broader source: Energy.gov [DOE]

    The Animal Welfare Act of 1966 regulates the treatment of animals in research, exhibition, transport, and by dealers.

  10. Page 8015 TITLE 42-THE PUBLIC HEALTH AND WELFARE §

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8015 TITLE 42-THE PUBLIC HEALTH AND WELFARE § 17013 § 17013. Advanced technology vehicles manufac- turing incentive program (a) Definitions In this section: (1) Advanced technology vehicle The term ''advanced technology vehicle'' means an ultra efficient vehicle or a light duty vehicle that meets- (A) the Bin 5 Tier II emission standard es- tablished in regulations issued by the Ad- ministrator of the Environmental Protec- tion Agency under section 202(i) of the Clean Air Act (42 U.S.C.

  11. Bio-Derived Liquid Distributed Reforming Outcomes Map | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Liquid Distributed Reforming Outcomes Map Bio-Derived Liquid Distributed Reforming Outcomes Map This is a "pre-decisional draft of the Bio-Derived Liquid Distributed Reforming Outcomes Map. biliwg06_schlasner.pdf (36.88 KB) More Documents & Publications Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review Distributed Reforming of Biomass Pyrolysis Oils (Presentation) Bio-Derived Liquids to

  12. Electricity reform abroad and US investment

    SciTech Connect (OSTI)

    1997-10-01

    This report reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom (UK) to illustrate how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries in these countries, which have become the largest targets of U.S. foreign investment in electricity. Two calculations of foreign investment are used. One is the foreign direct investment series produced by the U.S. Department of Commerce. The other is based on transactions in electric utilities of the three countries. The electricity reform and privatization experiences reviewed may offer some insight as to how the U.S. electricity industry might develop as a result of recent domestic reform efforts and deregulation at the state and national levels. 126 refs., 23 figs., 27 tabs.

  13. Distributed Reforming of Biomass Pyrolysis Oils (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis Oils DOE Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting November 6 and 7 2007 R. J. Evans, NREL D. M. Steward, NREL Innovation / Overview Biomass pyrolysis produces a liquid product, bio-oil, which contains a wide spectrum of components that can be efficiently, stored, and shipped, to a site for renewable hydrogen production and converted to H2 at moderate severity

  14. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  15. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  16. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  17. Thermal chemical recuperation method and system for use with gas turbine systems

    DOE Patents [OSTI]

    Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  18. Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

    SciTech Connect (OSTI)

    Mann, M.K.

    1995-08-01

    The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus{trademark} to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product.

  19. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOE Patents [OSTI]

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  20. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  1. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  2. Thermally integrated staged methanol reformer and method

    SciTech Connect (OSTI)

    Skala, Glenn William; Hart-Predmore, David James; Pettit, William Henry; Borup, Rodney Lynn

    2001-01-01

    A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

  3. Agenda for the Derived Liquids to Hydrogen Distributed Reforming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anderson o H2A Overview, NREL, Darlene Steward o Bio-Derived Liquids to Hydrogen ... Bio-Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ...

  4. Before House Committee on Oversight and Government Reform | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Oversight and Government Reform Before House Committee on Oversight and Government Reform Testimony of Daniel Poneman, Deputy Secretary of Energy Before House Committee on Oversight and Government Reform 8-1-13_ Daniel_Pohema FT HOGR.pdf (42.28 KB) More Documents & Publications Email from BPA Acting Administrator Eliot Mainzer -- July 19, 2013 Gregory H. Friedman: Provided for The Committee on Oversight and Government Reform U.S. House of Representatives MANAGEMENT ALERT:

  5. Distributed Reforming of Biomass Pyrolysis Oils (Presentation) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Biomass Pyrolysis Oils (Presentation) Distributed Reforming of Biomass Pyrolysis Oils (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 06_nrel_distributed_reforming_biomass_pyrolysis_oils.pdf (301.5 KB) More Documents & Publications Distributed Bio-Oil Reforming Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D

  6. Hydrogen Production: Biomass-Derived Liquid Reforming | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass-Derived Liquid Reforming Hydrogen Production: Biomass-Derived Liquid Reforming Photo of cylindrical reactor vessel and associated piping and equipment in the Thermochemical Process Development Unit at NREL Liquids derived from biomass resources-including ethanol and bio-oils-can be reformed to produce hydrogen in a process similar to natural gas reforming. Biomass-derived liquids can be transported more easily than their biomass feedstocks, allowing for semi-central

  7. Hydrogen Production: Natural Gas Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Reforming Hydrogen Production: Natural Gas Reforming Photo of Petroleum Refinery Natural gas reforming is an advanced and mature production process that builds upon the existing natural gas pipeline delivery infrastructure. Today, 95% of the hydrogen produced in the United States is made by natural gas reforming in large central plants. This is an important technology pathway for near-term hydrogen production. How Does It Work? Natural gas contains methane (CH4) that can be used to

  8. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Reforming Targets Arlene F. Anderson Technology Development Manager, U.S. DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group and Hydrogen Production Technical Team Review November 6, 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), launched

  9. Distributed Reforming of Renewable Liquids via Water Splitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Oxygen Transport Membrane (OTM) (Presentation) Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) ...

  10. Utility Regulation and Business Model Reforms for Addressing the Financial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Distributed Solar on Utilities | Department of Energy Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Implementing a range of alternative utility-rate reforms could minimize solar

  11. DOE Safety and Security Reform Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety and Security Reform Meeting DOE Safety and Security Reform Meeting Meeting Date: August 13, 2010 HSS senior managers with lead responsibilities in DOE's safety and security reform activities met with labor union representatives to discuss approach and process for the engagement of worker stakeholders in the reform efforts. Documents Available for Download Meeting Agenda (74.42 KB) Meeting Summary (95.69 KB) More Documents & Publications Work Group Telecom (Draft Charters) Focus Group

  12. High Pressure Ethanol Reforming for Distributed Hydrogen Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pressure Ethanol Reforming for Distributed Hydrogen Production High Pressure Ethanol Reforming for Distributed Hydrogen Production Presentation by S. Ahmed and S.H.D. Lee at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting. biliwg06_ahmed_anl.pdf (638.37 KB) More Documents & Publications BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Bio-Derived Liquids to Hydrogen

  13. Hydrogen from Biomass by Autothermal Reforming | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Biomass by Autothermal Reforming Hydrogen from Biomass by Autothermal Reforming Presentation by Lanny D. Schmidt at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting. biliwg06_schmidt_umn.pdf (247.23 KB) More Documents & Publications Biofuels Report Final Integrated Short Contact Time Hydrogen Generator (SCPO) Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen Separation and Purification Working

  14. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology 2004_deer_bromberg.pdf (404.01 KB) More Documents & Publications Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment Onboard

  15. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  16. Method for forming synthesis gas using a plasma-catalyzed fuel reformer

    SciTech Connect (OSTI)

    Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele

    2015-04-28

    A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.

  17. Hydrocarbon reforming catalyst material and configuration of the same

    DOE Patents [OSTI]

    Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

    1996-06-18

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

  18. Hydrocarbon reforming catalyst material and configuration of the same

    DOE Patents [OSTI]

    Singh, Prabhakar; Shockling, Larry A.; George, Raymond A.; Basel, Richard A.

    1996-01-01

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

  19. Autothermal hydrodesulfurizing reforming method and catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael; Kopasz, John P.; Ahmed, Shabbir; Kao, Richard Li-chih; Randhava, Sarabjit Singh

    2005-11-22

    A method for reforming a sulfur-containing carbonaceous fuel in which the sulfur-containing carbonaceous fuel is mixed with H.sub.2 O and an oxidant, forming a fuel/H.sub.2 O/oxidant mixture. The fuel H.sub.2 O/oxidant mixture is brought into contact with a catalyst composition comprising a dehydrogenation portion, an oxidation portion and a hydrodesulfurization portion, resulting in formation of a hydrogen-containing gas stream.

  20. Steam reforming as a method to treat Hanford underground storage tank (UST) wastes

    SciTech Connect (OSTI)

    Miller, J.E.; Kuehne, P.B.

    1995-07-01

    This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale.

  1. High Efficiency Solar-based Catalytic Structure for CO{sub 2} Reforming

    SciTech Connect (OSTI)

    Menkara, Hisham

    2013-09-30

    Throughout this project, we developed and optimized various photocatalyst structures for CO{sub 2} reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO{sub 2} reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solution containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO{sub 2} into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).

  2. Evaluation of Fluidized Bed Steam Reforming (FBSR) Technology for Sodium Bearing Wastes from Idaho and Hanford Using the Bench-Top Steam Reformer (BSR)

    SciTech Connect (OSTI)

    PAUL, BURKET

    2005-02-28

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes, but especially aqueous high sodium wastes at Hanford, Idaho National Engineering and Environmental Laboratory (INEEL), and the Savannah River Site (SRS). To help the Department of Energy (DOE) make informed decisions about this technology for sodium bearing wastes further experimental data are needed. All work described in this study has been performed with non-radioactive simulants and compared to non-radioactive pilot scale testing at other facilities. The desired plan is to provide a laboratory scale system that correlates to the pilot and plant scale systems such that the chemistry of Fluidized Bed Steam Reforming (FBSR) can be optimized on a small scale, then verified at the pilot scale. Once verified, this will enable laboratory scale demonstrations of actual radioactive wastes. The Savannah River National Laboratory (SRNL) developed the Bench-top Steam Reformer (BSR) to fill this need. The development of the BSR is the focus of this study. In addition, the characterization of the FBSR products produced in the BSR from simulants of the INEEL Sodium-Bearing Waste (SBW) stream and the Hanford Low Activity Waste (LAW) stream are documented and compared to pilot scale testing of these same simulants at the INEEL pilot-scale test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) Center in Idaho Falls, ID.

  3. Intelligence Reform and Terrorism Prevention Act - December 17, 2004 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Intelligence Reform and Terrorism Prevention Act - December 17, 2004 Intelligence Reform and Terrorism Prevention Act - December 17, 2004 December 17, 2004 To reform the intelligence community and the intelligence and intelligence-related activities of the United States Government, and for other purposes. SEC. 102. (a) DIRECTOR OF NATIONAL INTELLIGENCE.-(1) There is a Director of National Intelligence who shall be appointed by the President, by and with the advice and

  4. Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transport Membrane (OTM) (Presentation) | Department of Energy Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 11_anl_distributed_reforming_using_otm.pdf (809.59 KB) More Documents & Publications Cost

  5. Hiring Reform Memoranda and Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hiring Reform Memoranda and Action Plan Hiring Reform Memoranda and Action Plan Memoranda and Action Plan to support the President's mandate directing the improvement of the Federal recruitment and hiring process throughout the Federal government. Hiring Reform Memoranda and Action Plan (6.76 MB) Responsible Contacts Kenneth Venuto Director, Office of Human Capital Management E-mail kenneth.venuto@hq.doe.gov More Documents & Publications Chief Human Capital Officer Memo on Improving DOE

  6. Secretary Moniz to Present Project Management Reforms to the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Academy of Public Administration | Department of Energy to Present Project Management Reforms to the National Academy of Public Administration Secretary Moniz to Present Project Management Reforms to the National Academy of Public Administration January 12, 2015 - 10:30am Addthis News Media Contact 202-586-4940 Secretary Moniz to Present Project Management Reforms to the National Academy of Public Administration WASHINGTON- On Thursday, January 15, Energy Secretary Ernest Moniz will give a

  7. Federal Information Technology Acquisition Reform Act (FITARA) Data

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources | Department of Energy Information Technology Acquisition Reform Act (FITARA) Data Resources Federal Information Technology Acquisition Reform Act (FITARA) Data Resources FITARA Resources Available for Download: DOE IT Policy Archive: ZIP IT Leadership Directory: HTML | JSON | PDF CIO Governance Board Membership List: HTML | JSON | PDF DOE IT Reform Cost Savings: JSON | PDF DOE IT Policies policyarchive.zip (1.36 MB) bureaudirectory.html (8.07 KB) bureaudirectory.json (10.48 KB)

  8. Hearing Before the House Oversight and Government Reform Subcommittee on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Technology and Subcommittee on Government Operations | Department of Energy Oversight and Government Reform Subcommittee on Information Technology and Subcommittee on Government Operations Hearing Before the House Oversight and Government Reform Subcommittee on Information Technology and Subcommittee on Government Operations 5-18-16_Michael_Johnson FT HOGR (383.24 KB) More Documents & Publications U.S. Department of Energy Federal Information Technology Acquisition Reform Act

  9. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), launched in October 2006, provides a forum for effective communication and collaboration among participants in DOE Fuel Cell Technologies Office (FCT) cost-shared research directed at distributed bio-liquid reforming. The Working Group includes individuals from DOE, the national laboratories, industry, and academia.

  10. Hydrogen generation from plasmatron reformers and use for diesel exhaust

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aftertreatment | Department of Energy generation from plasmatron reformers and use for diesel exhaust aftertreatment Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment 2003 DEER Conference Presentation: Massachusetts Institute of Technology 2003_deer_bromberg.pdf (739.71 KB) More Documents & Publications H2-Assisted NOx Traps: Test Cell Results Vehicle Installations Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle

  11. Pyrochem Catalysts for Diesel Fuel Reforming - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Return to Search Pyrochem Catalysts for Diesel Fuel Reforming National Energy Technology...

  12. Hydrogen generation from plasmatron reformers and use for diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H2-Assisted NOx Traps: Test Cell Results Vehicle Installations Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Onboard Plasmatron ...

  13. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  14. New process model proves accurate in tests on catalytic reformer

    SciTech Connect (OSTI)

    Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. )

    1994-07-25

    A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.

  15. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 07anlhighpressuresteamethanolref...

  16. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  17. Secretary Moniz to Present Project Management Reforms to the...

    Broader source: Energy.gov (indexed) [DOE]

    Secretary Moniz to Present Project Management Reforms to the National Academy of Public Administration WASHINGTON- On Thursday, January 15, Energy Secretary Ernest Moniz will give ...

  18. Cost Analysis of Bio-Derived Liquids Reforming (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of Bio-Derived Liquids Reforming Brian James Directed Technologies, Inc. 6 November 2007 This presentation does not contain any proprietary, confidential, or ...

  19. Regulatory and Financial Reform of Federal Research Policy: Recommenda...

    Office of Environmental Management (EM)

    for regulatory reform that would improve research universities' ability to carry out their missions without requiring a significant financial investment by the Federal government. ...

  20. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets

    Broader source: Energy.gov [DOE]

    Presentation by Arlene Anderson at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  1. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  2. Fuel Reformation: Catalyst Requirements in Microchannel Architectures

    SciTech Connect (OSTI)

    King, David L.; Brooks, Kriston P.; Fischer, Christopher M.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

    2005-09-06

    Microchannel reactors have unique capabilities for onboard hydrocarbon fuel processing, due to their ability to provide process intensification through high heat and mass transfer, leading to smaller and more efficient reactors. The catalyst requirements in microchannel devices are demanding, requiring high activity, very low deactivation rates, and strong adherence to engineered substrate. Each unit operation benefits from microchannel architecture: the steam reforming reactor removes heat transfer limitations, allowing the catalyst to operate at elevated temperatures at the kinetic limit; the water gas shift reactor uses unique temperature control to reduce catalyst volume requirements; the PROX reactor provides high CO conversion and minimizes H2 oxidation through effective control of reactor temperature.

  3. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Presented at the 2007 ...

  4. Electricity Reform Abroad and U.S. Investment

    Reports and Publications (EIA)

    1997-01-01

    Reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom in an attempt to better understand how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries of Argentina, Australia, and the United Kingdom.

  5. Catalytic glycerol steam reforming for hydrogen production

    SciTech Connect (OSTI)

    Dan, Monica Mihet, Maria Lazar, Mihaela D.

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  6. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  7. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  8. System Design - Lessons Learned, Generic Concepts, Characteristics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hoffman Don Hoffman Ship Systems & Engineering Research ... Ship Service Fuel Cell Program Lessons Learned Distribution ... Program * Low Temperature PEM with ATR reformer Low ...

  9. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday, November 6, 2007 H 2 Gen Innovations, Inc. Alexandria, Virginia www.h2gen.com 2 Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics - Summary unique H2A inputs * Ethanol Reformer - Key performance metrics - Summary unique H2A inputs * Questions from 2007 Merit Review 3 H 2 Gen

  10. Reforming natural gas markets: the antitrust alternative

    SciTech Connect (OSTI)

    Lambert, J.D.; Gilfoyle, N.P.

    1983-05-12

    Although the centerpiece of the Department of Energy's proposed legislation is gradual decontrol of all wellhead natural gas prices by Jan. 1, 1986, it also addresses the structural problems that have contributed to the current market disorder. Intended to promote increased competition in the marketing of natural gas, the provisions are based on fundamental tenets of antitrust law. This review of relevant antitrust principles as they relate to the natural gas industry places the remedial features of the proposed legislation in legal context. These features concern the pipelines' contract carrier obligation, gas purchase contract modifications, and limitations on passthrough of purchase gas costs. Should the legislation fail to pass, private antitrust litigation will remain as an inducement to structural and economic reform in the gas industry.

  11. Hydrocarbon fuel reforming catalyst and use thereof

    DOE Patents [OSTI]

    Ming, Qimin; Healey, Todd; Irving, Patricia Marie

    2006-06-27

    The subject invention is a catalyst consisting of an oxide or mixed oxide support and bimetallic catalytically active compounds. The supporting oxide can be a single oxide, such as Al.sub.2O.sub.3; it also can be a mixture of oxides, such as Y.sub.2O.sub.3 stabilized ZrO.sub.2 (YSZ), Al.sub.2O.sub.3 with CeO.sub.2, Al.sub.2O.sub.3 with YSZ and others. The bimetallic compounds, acting as active components, are selected from platinum, and ruthenium, prepared in an appropriate ratio. The catalyst is used in the steam reforming of hydrocarbons to produce hydrogen for applications such as polymer electrolyte membrane fuel cells.

  12. On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization

    SciTech Connect (OSTI)

    Cozzolino, Raffaello Tribioli, Laura

    2015-03-10

    Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor, two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.

  13. Making contracting work better and cost less: Report of the Contract Reform Team

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    In June 1993, Secretary of Energy Hazel O`Leary formed a Contract Reform Team, chaired by Deputy Secretary Bill White, to evaluate the contracting practices of the Department of Energy and to formulate specific proposals for improving those practices. This report summarizes the results of the work of the Contract Reform Team. It recommends actions for implementation that will significantly improve the Department`s contracting practices and will enable the Department to help create a government that -- in the words of Vice President Gore -- {open_quotes}works better and costs less.{close_quotes} These actions and the deadlines for their implementation are listed. Among other things, they recommend replacing the Department`s standard Management and Operating Contract with a new Performance-Based Management Contract and strengthening the Department`s systems for selecting and managing contractors.

  14. Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf (2.66 MB) More Documents & Publications Intelligence Reform and Terrorism Prevention Act - December 17, 2004 Bond Amendment, Security Clearances - January 1, 2008 National Historic Preservation Act (1966, amended 2014)

  15. Thermally efficient melting and fuel reforming for glass making

    DOE Patents [OSTI]

    Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

    1991-10-15

    An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

  16. Thermally efficient melting and fuel reforming for glass making

    DOE Patents [OSTI]

    Chen, Michael S.; Painter, Corning F.; Pastore, Steven P.; Roth, Gary S.; Winchester, David C.

    1991-01-01

    An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

  17. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. 08_osu_bio-ethanol_steam_reforming.pdf (6.45 MB) More Documents & Publications Investigation of Reaction Networks and Active Sites In Bio-Ethanol Steam Reforming

  18. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 01doebio-derivedliquidstoh2refor...

  19. Before the House Committee on Oversight and Government Reform...

    Broader source: Energy.gov (indexed) [DOE]

    on Oversight and Government Reform, U.S. House of Representatives By: Deputy Secretary Daniel Poneman, U.S. Department of Energy FinalTestimonyPoneman0922111.pdf More Documents...

  20. Process Reform, Security and Suitability- December 17, 2008

    Broader source: Energy.gov [DOE]

    This is to report on the progress made to improve the timeliness and effectiveness of our hiring and clearing decisions and the specific plan to reform the process further, in accordance with our initial proposals made in April ofthis year.

  1. Regulatory and Financial Reform of Federal Research Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory and Financial Reform of Federal Research Policy Recommendations to the NRC Committee on Research Universities January 21, 2011 Introduction At the request of the National Research Council (NRC) Committee on Research Universities, the Council on Governmental Relations (COGR), the Association of American Universities (AAU), and the Association of Public and Land-grant Universities (APLU) have assembled a set of ten recommendations for regulatory reform that would improve research

  2. Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Group (BILIWG) Hydrogen Production Technical Team Research Review | Department of Energy Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review This is the agenda for the working group sessions held in Laurel, Maryland on November 6, 2007. biliwg_agenda.pdf (145.59 KB) More Documents

  3. Regulatory and Financial Reform of Federal Research Policy: Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the NRC Committee on Research Universities | Department of Energy and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities Regulatory and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities At the request of the National Research Council (NRC) Committee on Research Universities, the Council on Governmental Relations (COGR), the Association of American Universities (AAU), and the

  4. Criterion buys Akzo`s naphtha reforming catalysts business

    SciTech Connect (OSTI)

    Rotman, D.

    1993-12-08

    In a move that further consolidates the refinery catalysts market, Criterion Catalyst (Houston) has bought Akzo`s reforming business for an undisclosed price. The acquisition gives Criterion-a joint venture between Shell and American Cyanamid-roughly 35% of the $50-million/year worldwide reforming market. Akzo says it is quitting the business to focus on larger refinery catalysts applications in hydroprocessing and fluid cracking catalysts.

  5. Comments on Request For Information regarding Reducing Regulatory Reform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issued February 3, 2011 (Federal Register /Vol. 76, No. 23 /Thursday, February 3, 2011 /Notices). | Department of Energy Request For Information regarding Reducing Regulatory Reform issued February 3, 2011 (Federal Register /Vol. 76, No. 23 /Thursday, February 3, 2011 /Notices). Comments on Request For Information regarding Reducing Regulatory Reform issued February 3, 2011 (Federal Register /Vol. 76, No. 23 /Thursday, February 3, 2011 /Notices). I have reviewed the Request For Information

  6. Hydrogen-based power generation from bioethanol steam reforming

    SciTech Connect (OSTI)

    Tasnadi-Asztalos, Zs. Cormos, C. C. Agachi, P. S.

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  7. Role of metal-support interactions on the activity of Pt and Rh catalysts for reforming methane and butane.

    SciTech Connect (OSTI)

    Rossignol, C.; Krause, T.; Krumpelt, M.

    2002-01-11

    For residential fuel cell systems, reforming of natural gas is one option being considered for providing the H{sub 2} necessary for the fuel cell to operate. Industrially, natural gas is reformed using Ni-based catalysts supported on an alumina substrate, which has been modified to inhibit coke formation. At Argonne National Laboratory, we have developed a new family of catalysts derived from solid oxide fuel cell technology for reforming hydrocarbon fuels to generate H{sub 2}. These catalysts consist of a transition metal supported on an oxide-ion-conducting substrate, such as ceria, that has been doped with a small amount of a non-reducible element, such as gadolinium, samarium, or zirconium. Unlike alumina, the oxide-ion-conducting substrate has been shown to induce strong metal-support interactions. Metal-support interactions are known to play an important role in influencing the catalytic activity of many metals supported on oxide supports. Based on results from temperature-programmed reduction/oxidation and kinetic reaction studies, this paper discusses the role of the metal and the substrate in the metal-support interactions, and how these interactions influence the activity and the selectivity of the catalyst in reforming methane and butane to hydrogen for use in fuel cell power systems.

  8. Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Implementing a range of alternative utility-rate reforms could minimize solar value losses at increasing levels of distributed PV penetration (see Barbose et al. 2016). In conjunction with the technical issues described above, the connections between distributed PV and electric distribution systems hinge on utility business models and regulations. As PV deployment has leapt forward and presaged a truly significant solar contribution, however, it has become clear that utilities’ traditional treatment of distributed PV cannot be taken for granted—nor can the future value and deployment of distributed PV. At the heart of this issue is net energy metering (NEM). Under NEM, PV owners can sell to a utility the electricity they generate but cannot consume on site, often at full retail rates. This widespread policy has helped drive the rapid growth of distributed PV, but the success has raised concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. The resulting reform efforts have revolved largely around changing NEM rules and retail rate structures. Most of the reforms to date address NEM concerns by reducing the benefits provided to distributed PV customers and thus constraining PV deployment. A new analysis estimates that eliminating NEM nationwide, by compensating exports of PV electricity at wholesale rather than retail rates would cut cumulative distributed PV deployment by 20% in 2050 compared with a continuation of current policies. This would slow the PV cost reductions that arise from larger scale and market certainty. It could also thwart achievement of the SunShot deployment goals even if the initiative’s cost targets are achieved. This undesirable prospect is stimulating the development of alternative reform strategies that address concerns about distributed PV compensation without

  9. Utility Regulation and Business Model Reforms for Advancing the Financial Impacts of Distributed Solar on Utilities

    Broader source: Energy.gov [DOE]

    Implementing a range of alternative utility-rate reforms could minimize solar value losses at increasing levels of distributed PV penetration (see Barbose et al. 2016). In conjunction with the technical issues described above, the connections between distributed PV and electric distribution systems hinge on utility business models and regulations. As PV deployment has leapt forward and presaged a truly significant solar contribution, however, it has become clear that utilities’ traditional treatment of distributed PV cannot be taken for granted—nor can the future value and deployment of distributed PV. At the heart of this issue is net energy metering (NEM). Under NEM, PV owners can sell to a utility the electricity they generate but cannot consume on site, often at full retail rates. This widespread policy has helped drive the rapid growth of distributed PV, but the success has raised concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. The resulting reform efforts have revolved largely around changing NEM rules and retail rate structures. Most of the reforms to date address NEM concerns by reducing the benefits provided to distributed PV customers and thus constraining PV deployment. A new analysis estimates that eliminating NEM nationwide, by compensating exports of PV electricity at wholesale rather than retail rates would cut cumulative distributed PV deployment by 20% in 2050 compared with a continuation of current policies. This would slow the PV cost reductions that arise from larger scale and market certainty. It could also thwart achievement of the SunShot deployment goals even if the initiative’s cost targets are achieved. This undesirable prospect is stimulating the development of alternative reform strategies that address concerns about distributed PV compensation without

  10. THOR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    D. W. Marshall; N. R. Soelberg; K. M. Shaber

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  11. THOR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

  12. Development of a selective oxidation CO removal reactor for methanol reformate gas

    SciTech Connect (OSTI)

    Okada, Shunji; Takatani, Yoshiaki; Terada, Seijo; Ohtani, Shinichi

    1996-12-31

    This report forms part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quotes}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns laboratory-scale tests aimed at reducing by selective oxidation to a level below 10 ppm the carbon monoxide (CO) contained to a concentration of around 1% in reformate gas.

  13. Final Report DOE Grant No. DE-FG02-03ER83817 Integrated Reactor Design for Hydrogen Production from Biomass-Sourced Reactants Streams Using the Aqueous-Phase Carbohydrate Reforming (ACR) Process

    SciTech Connect (OSTI)

    Randy D. Cortright

    2005-05-04

    In this Phase I Small Business Innovation research project Virent Energy Systems (Virent) attempted to demonstrate the feasibility of generating high yields of hydrogen by developing the appropriate reactor system for the novel liquid-phase reforming of aqueous-phase carbohydrate streams derived from biomass. In this project platinum-based catalysts were initially utilized to establish the technical feasibility of reactor design for reforming carbohydrates found in biomass to hydrogen.

  14. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  15. DOE regulatory reform initiative vitrified mixed waste

    SciTech Connect (OSTI)

    Carroll, S.J.; Holtzscheiter, E.W.; Flaherty, J.E.

    1997-12-31

    The US Department of Energy (DOE) is charged with responsibly managing the largest volume of mixed waste in the United States. This responsibility includes managing waste in compliance with all applicable Federal and State laws and regulations, and in a cost-effective, environmentally responsible manner. Managing certain treated mixed wastes in Resource Conservation and Recovery Act (RCRA) permitted storage and disposal units (specifically those mixed wastes that pose low risks from the hazardous component) is unlikely to provide additional protection to human health and the environment beyond that afforded by managing these wastes in storage and disposal units subject to requirements for radiological control. In October, 1995, the DOE submitted a regulatory reform proposal to the Environmental Protection Agency (EPA) relating to vitrified mixed waste forms. The technical proposal supports a regulatory strategy that would allow vitrified mixed waste forms treated through a permit or other environmental compliance mechanism to be granted an exemption from RCRA hazardous waste regulation, after treatment, based upon the inherent destruction and immobilization capabilities of vitrification technology. The vitrified waste form will meet, or exceed the performance criteria of the Environmental Assessment (EA) glass that has been accepted as an international standard for immobilizing radioactive waste components and the LDR treatment standards for inorganics and metals for controlling hazardous constituents. The proposal further provides that vitrified mixed waste would be responsibly managed under the Atomic Energy Act (AEA) while reducing overall costs. Full regulatory authority by the EPA or a State would be maintained until an acceptable vitrified mixed waste form, protective of human health and the environment, is produced.

  16. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-03-13

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  17. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  18. Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_bonadies.pdf (748.07 KB) More Documents & Publications Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions Performance Evaluation of the Delphi Non-Thermal Plasma System Under Transient and Steady State Conditions LNT + SCR Aftertreatment for Medium-Heavy Duty Applications: A

  19. PROMOTING THE ECONOMY AND CULTURAL WELFARE OF NOGALES AND SANTA CRUZ COUNTY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kino Park Nogales, Arizona 85621 Phone Number: (520) 287-3685 Fax Number: (520) 287-3687 Email: info@thenogaleschamber.org Website: www.thenogaleschamber.org PROMOTING THE ECONOMY AND CULTURAL WELFARE OF NOGALES AND SANTA CRUZ COUNTY June 20 th , 2016 Christopher Lawrence United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Re: Nogales Interconnection Project Presidential Permit Application Dear Mr. Lawrence: We are writing this letter in urgency for the U.S.

  20. System for the co-production of electricity and hydrogen

    DOE Patents [OSTI]

    Pham, Ai Quoc; Anderson, Brian Lee

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  1. Integral reactor system and method for fuel cells

    DOE Patents [OSTI]

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  2. Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA...

    Open Energy Info (EERE)

    Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Jump to: navigation, search Statute Name Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Year 1987 Url...

  3. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  4. Hydrogen Production via Reforming of Bio-Derived Liquids | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Production via Reforming of Bio-Derived Liquids Hydrogen Production via Reforming of Bio-Derived Liquids Presentation by Yong Wang and David King at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting. biliwg06_wang_pnnl.pdf (841.57 KB) More Documents & Publications Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen Separation and Purification Working Group (PURIWG) & Hydrogen Production

  5. Method for improving catalyst function in auto-thermal and partial oxidation reformer-based processors

    DOE Patents [OSTI]

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.

    2014-08-26

    The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  6. Mexico`s economic reform: Energy and the Constitution

    SciTech Connect (OSTI)

    Rubio, L.

    1993-12-31

    Oil is a fundamental component of nationhood in Mexico. The 1938 expropriation of oil resources concluded a process of internal political consolidation and thus became the most important symbol of nationalism. Mexico has been undergoing a process of economic reform that has altered the country`s economic structure and has subjected it to international competition. Oil in particular and energy in general have been left untouched. There is recognition that without an equal reform of the energy industry, the potential for success will be significantly limited. While the Constitution allows private investment in the industry--with the exception of the resource properties themselves--the Regulatory Law bans any private participation. Because of its political sensitivity, however, amending the law in order to reform the oil industry will necessitate a domestic initiative rather than foreign pressure. In this perspective, NAFTA served to slow and postpone the reform of the industry, rather than the opposite. Once NAFTA is well in place, the industry will have to face competition.

  7. Understanding electricity market reforms and the case of Philippine deregulation

    SciTech Connect (OSTI)

    Santiago, Andrea; Roxas, Fernando

    2010-03-15

    The experience of the Philippines offers lessons that should be relevant to any country seeking to deregulate its power industry. Regardless of structure, consumers must face the real price of electricity production and delivery that is closer to marginal cost. Politically motivated prices merely shift the burden from ratepayers to taxpayers. And any reform should work within a reasonable timetable. (author)

  8. NEPA Contracting Reform Guidance (December 1996)

    Broader source: Energy.gov [DOE]

    This guidance provides: model statements of work, information on contract types and incentives, direction on effective NEPA contract management by the NEPA Document Manager, a system for measuring...

  9. NEPA Contracting Reform Guidance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidance also provides: model statements of work, direction on NEPA contract management by NEPA Document Manager; a system for measuring NEPA costs and for evaluating contractor ...

  10. Distributed Reforming of Biomass Pyrolysis Oils (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    forecourt assumptions Catalyst Experimental Results -Rhodium catalyst closest to equilibrium, but system did not include added water CH 3 OH % conversion CO wt. % C CO 2 wt. % C ...

  11. Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment

    SciTech Connect (OSTI)

    Nicholas R. Soelberg

    2004-01-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

  12. Negative Valve Overlap Reforming Chemistry in Low-Oxygen Environments

    SciTech Connect (OSTI)

    Szybist, James P; Steeper, Richard R.; Splitter, Derek A; Kalaskar, Vickey B; Pihl, Josh A; Daw, C Stuart

    2014-01-01

    Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) and other forms of advanced combustion. When fuel is injected into O2-deficient NVO conditions, a portion of the fuel can be converted to products containing significant levels of H2 and CO. Additionally, other short chain hydrocarbons are produced by means of thermal cracking, water-gas shift, and partial oxidation reactions. The present study experimentally investigates the fuel reforming chemistry that occurs during NVO. To this end, two very different experimental facilities are utilized and their results are compared. One facility is located at Oak Ridge National Laboratory, which uses a custom research engine cycle developed to isolate the NVO event from main combustion, allowing a steady stream of NVO reformate to be exhausted from the engine and chemically analyzed. The other experimental facility, located at Sandia National Laboratories, uses a dump valve to capture the exhaust from a single NVO event for analysis. Results from the two experiments are in excellent trend-wise agreement and indicate that the reforming process under low-O2 conditions produces substantial concentrations of H2, CO, methane, and other short-chain hydrocarbon species. The concentration of these species is found to be strongly dependent on fuel injection timing and injected fuel type, with weaker dependencies on NVO duration and initial temperature, indicating that NVO reforming is kinetically slow. Further, NVO reforming does not require a large energy input from the engine, meaning that it is not thermodynamically expensive. The implications of these results on HCCI and other forms of combustion are discussed in detail.

  13. GUIDANCE ON APPLICATION OF FEDERAL VACANCIES REFORM ACT OF 1998 Page 1 of 13

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APPLICATION OF FEDERAL VACANCIES REFORM ACT OF 1998 Page 1 of 13 GUIDANCE ON APPLICATION OF FEDERAL VACANCIES REFORM ACT OF 1998 This memorandum provides guidance on the application of the Federal Vacancies Reform Act of1998 to vacancies in Senate-confirmed offices within the executive branch. March 22, 1999 MEMORANDUM FOR AGENCY GENERAL COUNSELS On October 21, 1998, the Federal Vacancies Reform Act of 1998 ("Vacancies Reform Act" or "Act") was signed into law. ( ) The

  14. Thermodynamic analysis of tar reforming through auto-thermal reforming process

    SciTech Connect (OSTI)

    Nurhadi, N. Diniyati, Dahlia; Efendi, M. Ade Andriansyah; Istadi, I.

    2015-12-29

    Fixed bed gasification is a simple and suitable technology for small scale power generation. One of the disadvantages of this technology is producing tar. So far, tar is not utilized yet and being waste that should be treated into a more useful product. This paper presents a thermodynamic analysis of tar conversion into gas producer through non-catalytic auto-thermal reforming technology. Tar was converted into components, C, H, O, N and S, and then reacted with oxidant such as mixture of air or pure oxygen. Thus, this reaction occurred auto-thermally and reached chemical equilibrium. The sensitivity analysis resulted that the most promising process performance occurred at flow rate of air was reached 43% of stoichiometry while temperature of process is 1100°C, the addition of pure oxygen is 40% and preheating of oxidant flow is 250°C. The yield of the most promising process performance between 11.15-11.17 kmol/h and cold gas efficiency was between 73.8-73.9%.The results of this study indicated that thermodynamically the conversion of tar into producer gas through non-catalytic auto-thermal reformingis more promising.

  15. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect (OSTI)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  16. Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Oxide Fuel Cell Market Opportunity US Stationary - APU & CHP Natural Gas, LPG European ... Hot Reformate Desulfurizer Non-Regenerating Bed SOFC System Integration 21 DOE ...

  17. Note on the structural stability of gasoline demand and the welfare economics of gasoline taxation

    SciTech Connect (OSTI)

    Kwast, M.L.

    1980-04-01

    A partial adjustment model is used to investigate how the 1973 to 1974 oil embargo affected the structural stability of gasoline demand and to compute the welfare effects of higher gasoline taxes. A variety of statistical tests are used to demonstrate the structural stability of gasoline demand in spite of higher prices. A case study demonstrates only modest price elasticity in response to increased taxes. Higher excise taxes are felt to be justified, however, as an efficient source of revenue even though their effect on demand is limited. 17 references, 4 tables. (DCK)

  18. Winners and losers in a world with global warming: Noncooperation, altruism, and social welfare

    SciTech Connect (OSTI)

    Caplan, A.J.; Ellis, C.J.; Silva, E.C.D.

    1999-05-01

    In this paper, global warming is an asymmetric transboundary externality which benefits some countries or regions and harms others. Few environmental problems have captured the public`s imagination as much and attracted as much scrutiny as global warming. The general perception is that global warming is a net social bad, and that across-the-board abatement of greenhouse gas emissions is therefore desirable. Despite many interesting academic contributions, not all of the basic economics of this phenomenon have been fully worked out. The authors use a simple two-country model to analyze the effects of global warming on resource allocations, the global-warming stock, and national and global welfare.

  19. Interim report:feasibility of microscale glucose reforming for renewable hydrogen.

    SciTech Connect (OSTI)

    Norman, Kirsten (New Mexico Institute of Mining and Technology, Socorro, NM)

    2007-03-01

    Micro-scale aqueous steam reforming of glucose is suggested as a novel method of H{sub 2} production for micro fuel cells. Compact fuel cell systems are a viable alternative to batteries as a portable electrical power source. Compared with conventional lithium polymer batteries, hydrocarbon powered fuel cells are smaller, weigh less, and have a much higher energy density. The goal of this project is to develop a hydrocarbon powered microfuel processor capable of driving an existing microfuel cell, and this interim report provides a summary of the engineering information for microscale reforming of carbohydrates and the summarizes the work completed as of September 2006. Work on this program will continue. Gas analysis of the gas evolved from glucose breakdown using a quadrupole mass spectrometer is now possible due do significant modifications to the vacuum chamber and to the mass spectrometer electronics. Effective adhesion of Pt/Al{sub 2}O{sub 3} to 316SS microstructured catalyst plates is still under investigation. Electrophoretic and dip coat methods of catalyst deposition have produced coatings with poor adhesion and limited available Pt surface area.

  20. Phase 2 TWR Steam Reforming Test for Sodium-Bearing Waste Treatment

    SciTech Connect (OSTI)

    Nicholas R. Soelberg; Doug Marshall; Dean Taylor; Steven Bates

    2004-01-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste (SBW) is stored in stainless steel tanks a the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory (INEEL). Steam reforming is a candidate technology being investigated for converting the SBW into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. Fluidized bed steam reforming technology, licensed to ThermoChem Waste Remediation, LLC (TWR) by Manufacturing Technology Conversion International, was tested in two phases using an INEEL (Department of Energy) fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center in Idaho Falls, Idaho. The Phase 1 tests were reported earlier. The Phase 2 tests are reported here. For Phase 2, the process feed rate, reductant stoichiometry, and process temperature were varied to identify and demonstrate how the process might be optimized to improve operation and product characteristics. The first week of testing was devoted primarily to process chemistry and the second week was devoted more toward bed stability and particle size control.

  1. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (BILIWG), Hydrogen Separation and Purification Working Group (PURIWG) & Hydrogen Production Technical Team | Department of Energy Working Group (BILIWG), Hydrogen Separation and Purification Working Group (PURIWG) & Hydrogen Production Technical Team Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen Separation and Purification Working Group (PURIWG) & Hydrogen Production Technical Team 2007 Annual and Merit Review Reports compiled for the

  2. Olefins from High Yield Autothermal Reforming Process - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Olefins from High Yield Autothermal Reforming Process DOE Grant Recipients University of Minnesota Contact University of Minnesota About This Technology <span id="Caption"><span id="ctl00_MainContentHolder_zoomimage_defaultCaption">Isobutylene is used to produce fuel additives.</span></span> Isobutylene is used to produce fuel additives. <span id="Caption"><span

  3. NNSA Contract Reform in Action: Supply Chain Management Center | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Contract Reform in Action: Supply Chain Management Center December 22, 2009 As part of NNSA's commitment to being a responsible steward of tax dollars, NNSA Administrator Thomas D'Agostino (then the head of Defense Programs) created the Supply Chain Management Center (SCMC) in 2006 and selected Honeywell, operator of the Kansas City Plant, as the lead contractor for managing the initiative. Since Management and Operating (M&O) contractors spend

  4. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    SciTech Connect (OSTI)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád; Cormos, Călin C.

    2013-11-13

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H{sub 2}, CO, CO{sub 2}, CH{sub 4} were analyzed. The concentrations of the main products (H{sub 2} and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.

  5. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser

    DOE Patents [OSTI]

    Shockling, L.A.

    1991-09-10

    An electrochemical apparatus is made having a generator section containing electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one hot gaseous spent fuel recirculation channel, where the spent fuel recirculation channel, passes from the generator chamber to combine with the fresh feed fuel inlet to form a reformable mixture, where a reforming chamber contains an outer portion containing reforming material, an inner portion preferably containing a mixer nozzle and a mixer-diffuser, and a middle portion for receiving spent fuel, where the mixer nozzle and mixer-diffuser are preferably both within the reforming chamber and substantially exterior to the main portion of the apparatus, where the reformable mixture flows up and then backward before contacting the reforming material, and the mixer nozzle can operate below 400 C. 1 figure.

  6. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser

    DOE Patents [OSTI]

    Shockling, Larry A.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one hot gaseous spent fuel recirculation channel (46), where the spent fuel recirculation channel (46), passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) to form a reformable mixture, where a reforming chamber (54) contains an outer portion containing reforming material (56), an inner portion preferably containing a mixer nozzle (50) and a mixer-diffuser (52), and a middle portion (64) for receiving spent fuel, where the mixer nozzle (50) and mixer-diffuser (52) are preferably both within the reforming chamber (54) and substantially exterior to the main portion of the apparatus, where the reformable mixture flows up and then backward before contacting the reforming material (56), and the mixer nozzle (50) can operate below 400.degree. C.

  7. U.S. Department of Energy Federal Information Technology Acquisition Reform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act (FITARA) Common Baseline Implementation Plan and Self-Assessment | Department of Energy S. Department of Energy Federal Information Technology Acquisition Reform Act (FITARA) Common Baseline Implementation Plan and Self-Assessment U.S. Department of Energy Federal Information Technology Acquisition Reform Act (FITARA) Common Baseline Implementation Plan and Self-Assessment The DOE Federal Information Technology Acquisition Reform Act (FITARA) Implementation Plan provides the framework

  8. Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation In 2006 the National Highway Traffic Safety Administration (NHTSA) established new requirements for the light truck Corporate Average Fuel Economy (CAFE) standards. In the new rule, there are Unreformed CAFE standards for model years (MY) 2008 through 2010 using the same CAFE calculations as in the past, and there are Reformed CAFE standards

  9. A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Desulfation | Department of Energy A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and Desulfation A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration and Desulfation 2004 Diesel Engine Emissions Reduction (DEER) Conference: ArvinMeritor 2004_deer_crane.pdf (430.54 KB) More Documents & Publications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Use of a Diesel Fuel Processor for Rapid and Efficient

  10. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids S. Ahmed, S. Lee, D. Papadias, and R. Kumar November 6, 2007 Laurel, MD Research sponsored by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Rationale and objective Rationale „ Steam reforming of liquid fuels at high pressures can reduce hydrogen compression costs - Much less energy is needed to pressurize liquids (fuel and water) than compressing gases (reformate or

  11. Modeling the Effects of Steam-Fuel Reforming Products on Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of ... Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

  12. Understanding the Chemistry of H2 Production for 1-Propanol Reforming...

    Office of Scientific and Technical Information (OSTI)

    Chemistry of H2 Production for 1-Propanol Reforming: Pathway and Support Modification Effects Citation Details In-Document Search Title: Understanding the Chemistry of H2 ...

  13. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  14. A Fast Start-up On-Board Fuel Reformer for NOx Adsorber Regeneration...

    Broader source: Energy.gov (indexed) [DOE]

    04 Diesel Engine Emissions Reduction (DEER) Conference: ArvinMeritor 2004deercrane.pdf (430.54 KB) More Documents & Publications Plasmatron Fuel Reformer Development and Internal ...

  15. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOE Patents [OSTI]

    Dederer, J.T.; Hager, C.A.

    1998-03-31

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

  16. The Lessons of Practice: Domestic Policy Reform as a Way to Address...

    Open Energy Info (EERE)

    Lessons of Practice: Domestic Policy Reform as a Way to Address Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Lessons of Practice: Domestic Policy...

  17. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOE Patents [OSTI]

    Dederer, Jeffrey T.; Hager, Charles A.

    1998-01-01

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

  18. DIESEL REFORMERS FOR LEAN NOX TRAP REGENERATION AND OTHER ON-BOARD HYDROGEN APPLICATIONS

    SciTech Connect (OSTI)

    Mauss, M; Wnuck, W

    2003-08-24

    Many solutions to meeting the 2007 and 2010 diesel emissions requirements have been suggested. On board production of hydrogen for in-cylinder combustion and exhaust after-treatment provide promising opportunities for meeting those requirements. Other benefits may include using syngas to rapidly heat up exhaust after-treatment catalysts during engine startup. HydrogenSource's development of a catalytic partial oxidation reformer for generating hydrogen from ultra-low sulfur diesel fuel is presented. The system can operate on engine exhaust and diesel fuel with no water tank. Test data for hydrogen regeneration of a lean NOx trap is presented showing 90% NOx conversion at temperatures as low as 150 degrees C and 99% conversion at 300 degrees C. Finally, additional efforts required to fully understand the benefits and commercial challenges of this technology are discussed.

  19. Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors

    DOE Patents [OSTI]

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

    2013-01-08

    The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  20. Energy Reform: New Paradigm forMexico's Growth

    U.S. Energy Information Administration (EIA) Indexed Site

    14th, 2014 Energy Reform: New Paradigm for Mexico's growth Gustavo Hernández-García General Director & CEO www. .com pep.pemex The information made available here is for information purposes only and does not imply any commitment to accept any suggestions.. The presentation of this information does not constitute an offer to submit a bid or to award any contract, nor does it imply that Pemex E&P assumes any kind of obligation whatsoever. Pemex E&P shall not be liable for any errors

  1. Catalytic Reforming Downstream Processing of Fresh Feed Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 2,668 2,629 2,824 2,727 2,894 2,994 2010-2016 PADD 1 192 183 180 188 193 195 2010-2016 East Coast 175 167 164 174 176 177

  2. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    SciTech Connect (OSTI)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  3. Ethanol Steam Reforming on Co/CeO2: The Effect of ZnO Promoter...

    Office of Scientific and Technical Information (OSTI)

    Ethanol Steam Reforming on CoCeO2: The Effect of ZnO Promoter Citation Details In-Document Search Title: Ethanol Steam Reforming on CoCeO2: The Effect of ZnO Promoter A series of ...

  4. Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_bonadies.pdf (1.07 MB) More Documents & Publications Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions Delphi On-board Ammonia Generation (OAG) On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer

  5. Effect of ZnO facet on ethanol steam reforming over Co/ZnO (Journal...

    Office of Scientific and Technical Information (OSTI)

    Effect of ZnO facet on ethanol steam reforming over CoZnO Citation Details In-Document Search Title: Effect of ZnO facet on ethanol steam reforming over CoZnO The effects of ZnO ...

  6. Modified Ni-Cu catalysts for ethanol steam reforming

    SciTech Connect (OSTI)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-13

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N{sub 2} adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  7. Hydrogen generation having CO2 removal with steam reforming

    SciTech Connect (OSTI)

    Kandaswamy, Duraiswamy; Chellappa, Anand S.; Knobbe, Mack

    2015-07-28

    A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding said desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming said desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO2 adsorbent to produce hydrogen and a spent CO2 adsorbent; feeding said hydrogen to the anode side of the fuel cell; regenerating said spent CO2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between said plurality of reforming chambers or compartments in a predetermined timing sequence; and, replacing the spent sulfur adsorbent with a fresh sulfur adsorbent at a predetermined time.

  8. Hydrogen generation having CO.sub.2 removal with steam reforming

    DOE Patents [OSTI]

    Kandaswamy, Duraiswamy; Chellappa, Anand S.; Knobbe, Mack

    2015-07-28

    A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding said desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming said desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO.sub.2 adsorbent to produce hydrogen and a spent CO.sub.2 adsorbent; feeding said hydrogen to the anode side of the fuel cell; regenerating said spent CO.sub.2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between said plurality of reforming chambers or compartments in a predetermined timing sequence; and, replacing the spent sulfur adsorbent with a fresh sulfur adsorbent at a predetermined time.

  9. Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor

    SciTech Connect (OSTI)

    Shamsuddin Ilias

    2006-03-10

    In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential

  10. NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance

    SciTech Connect (OSTI)

    Rangan, M.; Yung, M. M.; Medlin, J. W.

    2012-06-01

    Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al{sub 2}O{sub 3}-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H{sub 2}S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C{sub 2}H{sub 4} on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C{sub 2}H{sub 4} adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C{sub 2}H{sub 4} adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

  11. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  12. Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Jose A.; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernandez-Garica, Marcos; et al

    2014-11-26

    The ethanol steam reforming (ESR) reaction was studied over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (moreThe Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.less

  13. Modeling of On-Cell Reforming Reaction for Planar SOFC Stacks

    SciTech Connect (OSTI)

    Yang, Choongmo; Lim, Hyung-Tae; Hwang, Soon Cheol; Kim, Dohyung; Lai, Canhai; Koeppel, Brian J.; Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2011-05-30

    Planar Solid Oxide Fuel Cell (SOFC) stack is known to suffer thermal problem from high stack temperature during operation to generate high current. On-Cell Reforming (OCR) phenomenon is often used to reduce stack temperature by an endothermic reaction of steam-methane reforming process. RIST conducted single-cell experiment to validate modeling tool to simulate OCR performance including temperature measurement. 2D modeling is used to check reforming rate during OCR using temperature measurement data, and 3D modeling is used to check overall thermal performance including furnace boundary conditions.

  14. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy held a kick-off meeting for the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) on October 24, 2006, in Baltimore, Maryland. The Working Group is addressing technical challenges to distributed reforming of biomass-derived, renewable liquid fuels to hydrogen, including the reforming, water-gas shift, and hydrogen recovery and purification steps. The meeting provided the opportunity for researchers to share their experiences in converting bio-derived liquids to hydrogen with each other and with members of the DOE Hydrogen Production Technical Team.

  15. Plasmatron-catalyst system

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2004-09-21

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  16. Plasmatron-catalyst system

    DOE Patents [OSTI]

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  17. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H. (Honeove Falls, NY)

    2002-01-01

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  18. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H.

    2003-06-10

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  19. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  20. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  1. A Novel Slurry-Based Biomass Reforming Process Final Technical Report

    SciTech Connect (OSTI)

    Emerson, Sean C.; Davis, Timothy D.; Peles, A.; She, Ying; Sheffel, Joshua; Willigan, Rhonda R.; Vanderspurt, Thomas H.; Zhu, Tianli

    2011-09-30

    hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed Raney Ni

  2. 97e Intermediate Temperature Catalytic Reforming of Bio-Oil for Distributed Hydrogen Production

    SciTech Connect (OSTI)

    Marda, J. R.; Dean, A. M.; Czernik, S.; Evans, R. J.; French, R.; Ratcliff, M.

    2008-01-01

    With the world's energy demands rapidly increasing, it is necessary to look to sources other than fossil fuels, preferably those that minimize greenhouse emissions. One such renewable source of energy is biomass, which has the added advantage of being a near-term source of hydrogen. While there are several potential routes to produce hydrogen from biomass thermally, given the near-term technical barriers to hydrogen storage and delivery, distributed technologies such that hydrogen is produced at or near the point of use are attractive. One such route is to first produce bio-oil via fast pyrolysis of biomass close to its source to create a higher energy-density product, then ship this bio-oil to its point of use where it can be reformed to hydrogen and carbon dioxide. This route is especially well suited for smaller-scale reforming plants located at hydrogen distribution sites such as filling stations. There is also the potential for automated operation of the conversion system. A system has been developed for volatilizing bio-oil with manageable carbon deposits using ultrasonic atomization and by modifying bio-oil properties, such as viscosity, by blending or reacting bio-oil with methanol. Non-catalytic partial oxidation of bio-oil is then used to achieve significant conversion to CO with minimal aromatic hydrocarbon formation by keeping the temperature at 650 C or less and oxygen levels low. The non-catalytic reactions occur primarily in the gas phase. However, some nonvolatile components of bio-oil present as aerosols may react heterogeneously. The product gas is passed over a packed bed of precious metal catalyst where further reforming as well as water gas shift reactions are accomplished completing the conversion to hydrogen. The approach described above requires significantly lower catalyst loadings than conventional catalytic steam reforming due to the significant conversion in the non-catalytic step. The goal is to reform and selectively oxidize the bio

  3. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Background Paper

    Broader source: Energy.gov [DOE]

    Paper by Arlene Anderson and Tracy Carole presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group, with a focus on key drivers, purpose, and scope.

  4. Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming

    Office of Energy Efficiency and Renewable Energy (EERE)

    A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences.

  5. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOE Patents [OSTI]

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  6. FIA-16-0031- In the Matter of the Manufactured Housing Association for Regulatory Reform

    Office of Energy Efficiency and Renewable Energy (EERE)

    On June 08, 2016, OHA granted in part a FOIA Appeal filed by the Manufactured Housing Association for Regulatory Reform (Appellant) from a determination issued to it by the Office of Information...

  7. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    SciTech Connect (OSTI)

    Gunther Dieckmann

    2006-06-30

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  8. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Broader source: Energy.gov [DOE]

    Technical paper on the development of a hydrogen reformer, vehicle refueling facility, and PEM fuel cell for Las Vegas, NV presented at the 2002 Annual Hydrogen Review held May 6-8, 2002 in Golden, CO.

  9. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - November 2007 | Department of Energy Meeting - November 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting - November 2007 The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group participated in a Hydrogen Production Technical Team Research Review on November 6, 2007. The meeting provided the opportunity for researchers to share their experiences in converting bio-derived liquids to hydrogen with members of the Department of Energy Hydrogen

  10. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Meeting Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts Hua Song Lingzhi Zhang Umit S. Ozkan* November 6 th , 2007 Heterogeneous Catalysis Research Group Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, OH 43210 *Ozkan.1@osu.edu Biomass to Hydrogen (Environmentally Friendly) Plant cultivation Plant cultivation Saccharification Saccharification / /

  11. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lean NOx Catalysis | Department of Energy NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis 2003 DEER Conference Presentation: Pacific Northwest National Laboratory 2003_deer_aardahl.pdf (962.36 KB) More Documents & Publications Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control Selective reduction of NOx in oxygen rich environments with

  12. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES

    SciTech Connect (OSTI)

    BANNING DL

    2011-02-11

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required. The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.

  13. Tax reform and energy in the Philippines economy: A general equilibrium computation

    SciTech Connect (OSTI)

    Boyd, R.G.; Doroodian, K.; Udomvaech, P.

    1994-12-31

    This paper examines how energy tax cuts, offset with income tax increases, affect production, consumption, and total welfare in the Philippines economy. Our results show that energy tax cuts expand the energy and nonmetal mining sectors, but decrease output in the manufacturing, agricultural, and metal mining sectors. Consumption of all goods and services combined increases as the amount of energy tax reduction increases. Our welfare results, however, are mixed. While the welfare of the mid- and high-income levels increases, that of the lowest income level decreases. These results are robust with respect to changes in the elasticity of substitution in energy production as well as the elasticity of substitution in consumer demand. From the standpoint of economic efficiency, a policy such as this would enhance growth and aggregate income. From an equity standpoint, however, this policy is highly regressive in spite of the fact that the richest households pay proportionately more to finance the energy tax reduction. 18 refs., 10 tabs.

  14. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect (OSTI)

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  15. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS

    SciTech Connect (OSTI)

    Jantzen, C

    2006-01-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

  16. Methods of reforming hydrocarbon fuels using hexaaluminate catalysts

    DOE Patents [OSTI]

    Gardner, Todd H.; Berry, David A.; Shekhawat, Dushyant

    2012-03-27

    A metal substituted hexaaluminate catalyst for reforming hydrocarbon fuels to synthesis gas of the general formula AB.sub.yAl.sub.12-yO.sub.19-.delta., A being selected from alkali metals, alkaline earth metals and lanthanide metals or mixtures thereof. A dopant or surface modifier selected from a transitions metal, a spinel of an oxygen-ion conductor is incorporated. The dopant may be Ca, Cs, K, La, Sr, Ba, Li, Mg, Ce, Co, Fe, Ir, Rh, Ni, Ru, Cu, Pe, Os, Pd, Cr, Mn, W, Re, Sn, Gd, V, Ti, Ag, Au, and mixtures thereof. The oxygen-ion conductor may be a perovskite selected from M'RhO.sub.3, M'PtO.sub.3, M'PdO.sub.3, M'IrO.sub.3, M'RuO.sub.3 wherein M'=Mg, Sr, Ba, La, Ca; a spinel selected from MRh.sub.2O.sub.4, MPt.sub.2O.sub.4, MPd.sub.2O.sub.4, MIr.sub.2O.sub.4, MRu.sub.2O.sub.4 wherein M=Mg, Sr, Ba, La, Ca and mixtures thereof; a florite is selected from M''O.sub.2.

  17. Integrative curriculum reform, domain dependent knowing, and teachers` epistemological theories: Implications for middle-level teaching

    SciTech Connect (OSTI)

    Powell, R.R.

    1998-12-01

    Integrative curriculum as both a theoretical construct and a practical reality, and as a theme-based, problem-centered, democratic way of schooling, is becoming more widely considered as a feasible alternative to traditional middle-level curricula. Importantly for teaching and learning, domain dependence requires teachers to view one area of knowledge as fully interdependent with other areas of knowledge during the learning process. This requires teachers to adopt personal epistemological theories that reflect integrative, domain dependent knowing. This study explored what happened when teachers from highly traditional domain independent school settings encountered an ambitious college-level curriculum project that was designed to help the teachers understand the potential that integrative, domain dependent teaching holds for precollege settings. This study asked: What influence does an integrative, domain dependent curriculum project have on teachers` domain independent, epistemological theories for teaching and learning? Finding an answer to this question is essential if we, as an educational community, are to understand how integrative curriculum theory is transformed by teachers into systemic curriculum reform. The results suggest that the integrative curriculum project that teachers participated in did not explicitly alter their classroom practices in a wholesale manner. Personal epistemological theories of teachers collectively precluded teachers from making any wholesale changes in their individual classroom teaching. However, teachers became aware of integrative curriculum as an alternative, and they expressed interest in infusing integrative practices into their classrooms as opportunities arise.

  18. Hydrogen production from the steam reforming of Dinethyl Ether and Methanol

    SciTech Connect (OSTI)

    Semelsberger, T. A.; Borup, R. L.

    2004-01-01

    This study investigates dimethyl ether (DME) steam reforming for the generation of hydrogen rich fuel cell feeds for fuel cell applications. Methanol has long been considered as a fuel for the generation of hydrogen rich fuel cell feeds due to its high energy density, low reforming temperature, and zero impurity content. However, it has not been accepted as the fuel of choice due its current limited availability, toxicity and corrosiveness. While methanol steam reforming for the generation of hydrogen rich fuel cell feeds has been extensively studied, the steam reforming of DME, CH{sub 3}OCH{sub 3} + 3H{sub 2}O = 2CO{sub 2} + 6H{sub 2}, has had limited research effort. DME is the simplest ether (CH{sub 3}OCH{sub 3}) and is a gas at ambient conditions. DME has physical properties similar to those of LPG fuels (i.e. propane and butane), resulting in similar storage and handling considerations. DME is currently used as an aerosol propellant and has been considercd as a diesel substitute due to the reduced NOx, SOx and particulate emissions. DME is also being considered as a substitute for LPG fuels, which is used extensively in Asia as a fuel for heating and cooking, and naptha, which is used for power generation. The potential advantages of both methanol and DME include low reforming temperature, decreased fuel proccssor startup energy, environmentally benign, visible flame, high heating value, and ease of storage and transportation. In addition, DME has the added advantages of low toxicity and being non-corrosive. Consequently, DME may be an ideal candidate for the generation of hydrogen rich fuel cell feeds for both automotive and portable power applications. The steam reforming of DME has been demonstrated to occur through a pair of reactions in series, where the first reaction is DME hydration followed by MeOH steam reforming to produce a hydrogen rich stream.

  19. Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of n-Heptane

    Broader source: Energy.gov [DOE]

    The effects of blends of base fuel (n-heptane) and fuel-reformed products on the low-temperature combustion process were investigated.

  20. Development of a Catalyst/Sorbent for Methane Reforming

    SciTech Connect (OSTI)

    B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

    2008-12-31

    This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all

  1. Durability Testing of Fluidized Bed Steam Reforming Products

    SciTech Connect (OSTI)

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  2. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  3. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOE Patents [OSTI]

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  4. New Insights into Reaction Mechanisms of Ethanol Steam Reforming on Co-ZrO2

    SciTech Connect (OSTI)

    Sun, Junming; Karim, Ayman M.; Mei, Donghai; Engelhard, Mark H.; Bao, Xinhe; Wang, Yong

    2015-01-01

    The reaction pathway of ethanol steam reforming on Co-ZrO2 has been identified and the active sites associated with each step are proposed. Ethanol is converted to acetaldehyde and then to acetone, followed by acetone steam reforming. More than 90% carbon was found to follow this reaction pathway. N2-Sorption, X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR), in situ X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy, as well as theoretical Density Functional Theory (DFT) calculations have been employed to identify the structure and functionality of the catalysts, which was further used to correlate their performance in ESR. It was found that metallic cobalt is mainly responsible for the acetone steam reforming reactions; while, CoO and basic sites on the support play a key role in converting ethanol to acetone via dehydrogenation and condensation/ketonization reaction pathways. The current work provides fundamental understanding of the ethanol steam reforming reaction mechanisms on Co-ZrO2 catalysts and sheds light on the rational design of selective and durable ethanol steam reforming catalysts.

  5. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights

    SciTech Connect (OSTI)

    Suljo Linic

    2008-12-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  6. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights

    SciTech Connect (OSTI)

    Suljo Linic

    2006-08-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  7. Steam Reforming Technology for Denitration and Immobilization of DOE Tank Wastes

    SciTech Connect (OSTI)

    Mason, J. B.; McKibbin, J.; Ryan, K.; Schmoker, D.

    2003-02-26

    THOR Treatment Technologies, LLC (THOR) is a joint venture formed in June 2002 by Studsvik, Inc. (Studsvik) and Westinghouse Government Environmental Services Company LLC to further develop, market, and deploy Studsvik's patented THORSM non-incineration, steam reforming waste treatment technology. This paper provides an overview of the THORSM steam reforming process as applied to the denitration and conversion of Department of Energy (DOE) tank wastes to an immobilized mineral form. Using the THORSM steam reforming technology to treat nitrate containing tank wastes could significantly benefit the DOE by reducing capital and life-cycle costs, reducing processing and programmatic risks, and positioning the DOE to meet or exceed its stakeholder commitments for tank closure. Specifically, use of the THORSM technology can facilitate processing of up to 75% of tank wastes without the use of vitrification, yielding substantial life-cycle cost savings.

  8. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST

    SciTech Connect (OSTI)

    BANNING DL

    2010-08-03

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required. The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.

  9. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon

    DOE Patents [OSTI]

    Sircar, Shivaji; Hufton, Jeffrey Raymond; Nataraj, Shankar

    2000-01-01

    In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

  10. GAO; Venezuelan reforms do little to spark oil investiment by U. S. firms

    SciTech Connect (OSTI)

    Not Available

    1992-02-03

    This paper reports that Venezuela's 1991 foreign investment reforms did little to encourage U.S. oil companies to invest there despite the overall investment attractiveness of the country's oil sector, says the U.S. General Accounting Office. In a report to Congress, GAO noted Venezuela's oil production peaked in 1970, declined through 1985, and since then has increased by about 21% through 1990. The primary factors affecting continued increases in production through 1996 include Petroleos de Venezuela SA's ability to encourage investment capital, the cost of producing and refining heavy and extra heavy crude oil., and the level of production quotas imposed by the Organization of Petroleum Exporting Countries, of which Venezuela is a member. GAO noted Venezuela implemented policy reforms in 1991 to encourage some foreign and private investment petroleum related ventures. However, these reforms have not yet succeeded in attracting U.S. investment in oil exploration, production, or refining in Venezuela.

  11. System and process for producing fuel with a methane thermochemical cycle

    DOE Patents [OSTI]

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  12. 2009 PILOT SCALE FLUIDIZED BED STEAM REFORMING TESTING USING THE THOR (THERMAL ORGANIC REDUCTION) PROCESS: ANALYTICAL RESULTS FOR TANK 48H ORGANIC DESTRUCTION - 10408

    SciTech Connect (OSTI)

    Williams, M.; Jantzen, C.; Burket, P.; Crawford, C.; Daniel, G.; Aponte, C.; Johnson, C.

    2009-12-28

    TTT steam reforming process ability to destroy organics in the Tank 48 simulant and produce a soluble carbonate waste form. The ESTD was operated at varying feed rates and Denitration and Mineralization Reformer (DMR) temperatures, and at a constant Carbon Reduction Reformer (CRR) temperature of 950 C. The process produced a dissolvable carbonate product suitable for processing downstream. ESTD testing was performed in 2009 at the Hazen facility to demonstrate the long term operability of an integrated FBSR processing system with carbonate product and carbonate slurry handling capability. The final testing demonstrated the integrated TTT FBSR capability to process the Tank 48 simulant from a slurry feed into a greater than 99.9% organic free and primarily dissolved carbonate FBSR product slurry. This paper will discuss the SRNL analytical results of samples analyzed from the 2008 and 2009 THOR{reg_sign} steam reforming ESTD performed with Tank 48H simulant at HRI in Golden, Colorado. The final analytical results will be compared to prior analytical results from samples in terms of organic, nitrite, and nitrate destruction.

  13. Reforming Pyrolysis Aqueous Waste Streams to Process Hydrogen and Hydrocarbons Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Reforming Pyrolysis Aqueous Waste Streams to Process Hydrogen and Hydrocarbons March 27, 2015 Kim Magrini 2 | Bioenergy Technologies Office eere.energy.gov Program Mission: Transform our renewable biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower through targeted research, development, demonstration, and deployment supported through public and private partnerships. Task Goal: Develop, evaluate and characterize reforming and upgrading catalysts

  14. ,"Catalytic Reforming Downstream Processing of Fresh Feed Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    Catalytic Reforming Downstream Processing of Fresh Feed Input" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Catalytic Reforming Downstream Processing of Fresh Feed Input",16,"Monthly","6/2016","1/15/2010" ,"Release Date:","8/31/2016" ,"Next Release

  15. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-04-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

  16. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nickel-ceria catalysts Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource/albums Twitter: AdvLightSource YouTube: AdvancedLightSource Home Science Highlights Journal Covers Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on nickel-ceria catalysts Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on nickel-ceria catalysts Print Monday, 15 August 2016 17:11 Ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) and

  17. On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_hemingway.pdf (420.54 KB) More Documents & Publications Delphi On-board Ammonia Generation (OAG) LNT

  18. Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Kick-Off Meeting Proceedings Hilton Garden Inn-BWI,Baltimore, MD October 24, 2006

    Broader source: Energy.gov [DOE]

    Proceedings from the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  19. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  20. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming...

    Office of Environmental Management (EM)

    ... design work for FBSR remote operations currently ... Industrial Association Systems Engineering Conference, October 20, 2003. Technology Maturation Plan (TMP) ...

  1. FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    HEWITT WM

    2011-04-08

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  2. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-09-30

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  3. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions

    SciTech Connect (OSTI)

    Sun, Junming; Karim, Ayman M.; Li, Xiaohong S.; Rainbolt, James E.; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-09-29

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  4. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    SciTech Connect (OSTI)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    2010-01-01

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of

  5. Before the House Oversight and Government Reform Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Written Statement By: Owen Barwell, Acting Chief Financial Officer, United States Department of Energy Subject: DOE Financial Information Systems FinalTestimonyforOwenBarwell...

  6. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    DOE-DOD Shipboard APU Workshop on March 29, 2011. apu20116roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, ...

  7. Evaluation of the feasibility of ethanol steam reforming in a molten carbonate fuel cell

    SciTech Connect (OSTI)

    Cavallaro, S.; Passalacqua, E.; Maggio, G.; Patti, A.; Freni, S.

    1996-12-31

    The molten carbonate fuel cells (MCFCs) utilizing traditional fuels represent a suitable technological progress in comparison with pure hydrogen-fed MCFCs. The more investigated fuel for such an application is the methane, which has the advantages of low cost and large availability; besides, several authors demonstrated the feasibility of a methane based MCFC. In particular, the methane steam-reforming allows the conversion of the fuel in hydrogen also inside the cell (internal reforming configuration), utilizing the excess heat to compensate the reaction endothermicity. In this case, however, both the catalyst and the cell materials are subjected to thermal stresses due to the cold spots arising near to the reaction sites MCFC. An alternative, in accordance with the recent proposals of other authors, may be to produce hydrogen from methane by the partial oxidation reaction, rather than by steam reforming. This reaction is exothermic ({Delta}H{degrees}=-19.1 kJ/mol H{sub 2}) and it needs to verify the possibility to obtain an acceptable distribution of the temperature inside the cell. The alcohols and, in particular, methanol shows the gas reformed compositions as a function of the steam/ethanol molar ratio, ranging from 1.0 to 3.5. The hydrogen production enhances with this ratio, but it presents a maximum at S/EtOH of about 2.0. Otherwise, the increase of S/EtOH depresses the production of CO and CH{sub 4}, and ethanol may be a further solution for the hydrogen production inside a MCFC. In this case, also, the reaction in cell is less endothermic compared with the methane steam reforming with the additional advantage of a liquid fuel more easily storable and transportable. Aim of the present work is to perform a comparative evaluation of the different solutions, with particular reference to the use of ethanol.

  8. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect (OSTI)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The

  9. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... SMR plus PSA skid to industry standards including B31-3, VIII-1, API 618, NFPA 70A, 497, 496 and CSA 5.99. * Built and tested the major sub-systems including the burner and steam ...

  10. Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernández-García, Marcos; Senanayake, Sanjaya D.; et al

    2014-11-26

    In this study, the ethanol steam reforming (ESR) reaction was examined over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO₂ lattice, with the remaining Ni forming highly dispersed nano NiO (< 2 nm) outside the Ni-W-Ce oxide structure. The nano NiO was reduced to Nimore » under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.« less

  11. Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    SciTech Connect (OSTI)

    Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernández-García, Marcos; Senanayake, Sanjaya D.; Rodriguez, José A.

    2014-11-26

    In this study, the ethanol steam reforming (ESR) reaction was examined over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO₂ lattice, with the remaining Ni forming highly dispersed nano NiO (< 2 nm) outside the Ni-W-Ce oxide structure. The nano NiO was reduced to Ni under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.

  12. Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    SciTech Connect (OSTI)

    Rodriguez, Jose A.; Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; Johnson-Peck, Aaron C.; Zhao, Fuzhen; Michorczyk, Piotr; Kubacka, Anna; Stach, Eric A.; Fernandez-Garica, Marcos; Senanayake, Sanjaya D.

    2014-11-26

    The ethanol steam reforming (ESR) reaction was studied over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO? lattice, with the remaining Ni forming highly dispersed nano NiO (< 2 nm) outside the Ni-W-Ce oxide structure. The nano NiO was reduced to Ni under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.

  13. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect (OSTI)

    Paul A. Erickson

    2005-06-30

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

  14. Steam-reforming of fossil fuels and wastes to produce energy and chemicals without greenhouse gases

    SciTech Connect (OSTI)

    Galloway, T.R.

    1998-07-01

    Worldwide concern has demanded a re-examination of the energy- and chemical-producing plants that use fossil fuel sources and release large quantities of greenhouse gases. Plant retrofits with steam-reformer/gasifiers will increase plant efficiencies, improve economics and avoid releasing troublesome amounts of greenhouse gases, such as carbon dioxide. In this paper, the authors describe and illustrate the several new steam-reforming/gasification plants that are processing waste streams and fossil fuels. These plants range in size from 1 ton/day to 2,000 tons/day. They are commercial and economically successful. These new concepts can be used to both upgrade fossil plants for improved economics while eliminating the release of greenhouse gases. By aggressively retrofitting old coal plants and sequestering CO{sub 2}, a 15% reduction in 1990 CO{sub 2} emissions can be met by the US by 2010.

  15. Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements

    Broader source: Energy.gov [DOE]

    EAS performance results following 500 DeSOx CyclesMeets Off-Road Final Tier 4 and HD On-road Emission Standards

  16. Coal pricing in China: Issues and reform strategy. World Bank discussion paper

    SciTech Connect (OSTI)

    Albouy, Y.

    1991-01-01

    The study assesses the magnitude of coal price distortions left in place by the dual track pricing approach to price reform implemented by China in the 1980s; it examines the economic and financial costs of these distortions and identifies the potential winners and losers of pricing improvements. Finally the report outlines a strategy for gradual price adjustments and liberalization in the coal sector. (Copyright (c) 1991 The International Bank for Reconstruction and Development/The World Bank.)

  17. Development and life evaluation of a steam reforming process for PAFC

    SciTech Connect (OSTI)

    Nagase, S.; Takami, S.; Masuda, M.

    1996-12-31

    This paper reports a life evaluation method for a carbon monoxide (CO) shift process in the steam reforming process for PAFC. A CO shift reactor simulation was developed to evaluate the whole performance of the CO shift process. The calculation results of the simulation almost coincide with the experimental data obtained from a demonstration plant. By evaluating and grasping the sintering trend of the catalyst, and by simulation calculation of the reactor, it became possible to evaluate the performance at targeted operation hours.

  18. Demonstration test of a reformer employing thermal radiation media for multi-megawatt fuel cell applications

    SciTech Connect (OSTI)

    Morita, Y.; Horie, T.; Ogawa, M.; Mizumoto, Y.

    1996-12-31

    The authors made presentation of functions and roles of the thermal radiation media, extensive test results on the thermal radiation media sample and characteristics of an atmospheric 500kw PAFC model facility together with perspective to a 5MW class dispersed-use plant. This paper outlines the specifications and features of a prototype reformer having a capacity of 650kw class PAFC and configuration of atmospheric 500kw PAFC demonstration plant.

  19. Can CO-tolerant Anodes be Economically Viable for PEMFC Applications with Reformates?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, P.; Zhang, Y.; Ye., S.; Wang, J. X.

    2014-10-05

    Several years ago, the answer to this question was negative based on the criteria for an anode with <0.1 mg cm-2 of platinum group metals to perform similarly without and with 50 ppm CO in hydrogen proton exchange membrane fuel cells (PEMFCs). Now, with the amount of CO impurities reduced to 10 ppm in reformates, a <1% performance loss with a 1.5% air-bleed has become a reasonable target. The CO-tolerant catalyst also needs to be dissolution resistant up to 0.93 V, viz., the potential experienced at the anode during startup and shutdown of the fuel cells. We recently demonstrated ourmore » ability to simultaneously enhance activity and stability by using single crystalline Ru@Pt core-shell nanocatalysts. Here, we report that the performance target with reformates was met using bilayer-thick Ru@Pt core-shell nanocatalysts with 0.047 mg cm-2 Pt and 0.024 mg cm-2 Ru loading, supporting a positive prognosis for the economically viable use of reformates in PEMFC applications.« less

  20. Can CO-tolerant Anodes be Economically Viable for PEMFC Applications with Reformates?

    SciTech Connect (OSTI)

    He, P.; Zhang, Y.; Ye., S.; Wang, J. X.

    2014-10-05

    Several years ago, the answer to this question was negative based on the criteria for an anode with <0.1 mg cm-2 of platinum group metals to perform similarly without and with 50 ppm CO in hydrogen proton exchange membrane fuel cells (PEMFCs). Now, with the amount of CO impurities reduced to 10 ppm in reformates, a <1% performance loss with a 1.5% air-bleed has become a reasonable target. The CO-tolerant catalyst also needs to be dissolution resistant up to 0.93 V, viz., the potential experienced at the anode during startup and shutdown of the fuel cells. We recently demonstrated our ability to simultaneously enhance activity and stability by using single crystalline Ru@Pt core-shell nanocatalysts. Here, we report that the performance target with reformates was met using bilayer-thick Ru@Pt core-shell nanocatalysts with 0.047 mg cm-2 Pt and 0.024 mg cm-2 Ru loading, supporting a positive prognosis for the economically viable use of reformates in PEMFC applications.

  1. To tag or not to tag: animal welfare, conservation and stakeholder considerations in fish tracking studies that use electronic tags

    SciTech Connect (OSTI)

    Cooke, Steven J.; Nguyen, Vivian M.; Murchie, Karen J.; Thiem, Jason D.; Donaldson, Michael R.; Hinch, Scott G.; Brown, Richard S.; Fisk, Aaron

    2013-11-01

    The advent and widespread adoption of electronic tags (including biotelemetry and biologging devices) for tracking animals has provided unprecedented information on the biology, management, and conservation of fish in the world’s oceans and inland waters. However, use of these tools is not without controversy. Even when scientific and management objectives may best be achieved using electronic tags, it is increasingly important to further consider other factors such as the welfare of tagged animals (i.e., the role of training and science-based surgical guidelines, anesthetic use, inability to maintain sterile conditions in field environments), the ethics of tagging threatened species vs. using surrogates, stakeholder perspectives on tagging (including aboriginals), as well as use of data emanating from such studies (e.g., by fishers to facilitate exploitation). Failure to do so will have the potential to create conflict and undermine scientific, management and public confidence in the use of this powerful tool. Indeed, there are already a number of examples of where tracking studies using electronic tags have been halted based on concerns raised by researchers, authorities, or stakeholders. Here we present a candid evaluation of several factors that should be considered when determining when to tag or not to tag fish with electronic devices. It is not our objective to judge the merit of previous studies. Rather, we hope to stimulate debate and discussion regarding the use of electronic tags to study fish. Relatedly, there is a need for more research to address these questions (e.g., what level of cleanliness is needed when conducting surgeries, what type of training should be required for fish surgery) including human dimensions studies to understand perspectives of different actors including society as a whole with respect to tagging and tracking studies.

  2. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    SciTech Connect (OSTI)

    Mao, Chien-Pei; Short, John; Klemm, Jim; Abbott, Royce; Overman, Nick; Pack, Spencer; Winebrenner, Audra

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  3. Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods

    DOE Patents [OSTI]

    Liu, Di-Jia; Guan, Jie; Minh, Nguyen

    2010-06-08

    A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.

  4. AB INITIO STUDIES OF COKE FORMATION ON NI CATALYSTS DURING METHANE REFORMING

    SciTech Connect (OSTI)

    David S. Sholl

    2003-09-25

    The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts.

  5. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  6. Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts

    SciTech Connect (OSTI)

    Mei, Donghai; Lebarbier, Vanessa M.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra; Albrecht, Karl O.; Kovarik, Libor; Flake, Matt; Dagle, Robert A.

    2013-06-07

    In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl2O4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl2O4 spinel support are stable during the BSR in the temperature range of 700-850°C. Compared to the Ir/MgAl2O4 catalyst, the Rh/MgAl2O4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function of the H2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR

  7. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    SciTech Connect (OSTI)

    Burket, P

    2009-02-24

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  8. The Effect Of ZnO Addition On Co/C Catalyst For Vapor And Aqueous Phase Reforming Of Ethanol

    SciTech Connect (OSTI)

    Davidson, Stephen; Sun, Junming; Hong, Yongchun; Karim, Ayman M.; Datye, Abhaya K.; Wang, Yong

    2014-02-05

    The effect of ZnO addition on the oxidation behavior of Co along with catalytic performance in vapor and aqueous phase reforming of ethanol were investigated on Co supported on carbon black (XC-72R). Carbon was selected to minimize the support interactions. Effect of ZnO addition during both vapor and aqueous phase reforming were compared at 250 °C. ZnO addition inhibited the reduction of cobalt oxides by H2 and created surface sites for H2O activation. During vapor phase reforming at 450 °C the redox of cobalt, driven by steam oxidation and H2 reduction, trended to an equilibrium of Co0/Co2+. ZnO showed no significant effect on cobalt oxidation, inferred from the minor changes of C1 product yield. Surface sites created by ZnO addition enhanced water activation and oxidation of surface carbon species, increasing CO2 selectivity. At 250 °C cobalt reduction was minimal, in situ XANES demonstrated that ZnO addition significantly facilitated oxidation of Co0 under vapor phase reforming conditions, demonstrated by lower C1 product yield. Sites introduced by ZnO addition improved the COx selectivity at 250 °C. Both Co/C and Co-ZnO/C rapidly oxidized under aqueous phase reaction conditions at 250 °C, showing negligible activity in aqueous phase reforming. This work suggests that ZnO affects the activation of H2O for Co catalysts in ethanol reforming.

  9. Process Options Description for Steam Reforming Flowsheet Model of INEEL Tank Farm Waste

    SciTech Connect (OSTI)

    Taylor, D.D.; Barnes, C.M.; Nichols, T.T.

    2002-05-21

    Technical information is provided herein that is required for development of a steady-state process simulation of a baseline steam reforming treatment train for Tank Farm waste at the Idaho National Engineering and Environmental Laboratory (INEEL). This document supercedes INEEL/EXT-2001-173, produced in FY2001 to support simulation of the direct vitrification treatment train which was the previous process baseline. A process block flow diagram for steam reforming is provided, together with a list of unit operations which constitute the process. A detailed description of each unit operation is given which includes its purpose, principal phenomena present, expected pressure and temperature ranges, key chemical species in the inlet steam, and the proposed manner in which the unit operation is to be modeled in the steady state process simulation. Models for the unit operations may be mechanistic (based on first principles), empirical (based solely on pilot test data without extrapolation) , or by correlations (based on extrapolative or statistical schemes applied to pilot test data). Composition data for the expected process feed streams is provided.

  10. CHARM COST-EFFECTIVE HIGH-EFFICIENCY ADVANCED REFORMING MODULE FINAL TECHNICAL REPORT

    SciTech Connect (OSTI)

    Pollica, Darryl; Cross, James C; Sharma, Atul; Shi, Yanlong; Clawson, Lawrence; O'Brien, Chris; Gilhooly, Kara; Kim, Changsik; Quet, Pierre-Francois

    2009-09-02

    Background Creation of a hydrogen infrastructure is an important prerequisite of widespread fuel cell commercialization, especially for the automotive market. Hydrogen is an attractive fuel since it offers an opportunity to replace petroleum-based fuels, but hydrogen occurs naturally only in chemical compounds like water or hydrocarbons that must be chemically converted to produce it. While an ultimate goal is to produce hydrogen through renewable energy sources, steam methane reforming (SMR) of natural gas is currently the most economical solution to initiate the transition to a hydrogen economy. Centralized hydrogen generation using large industrial SMR plants is already in place to serve customers. Yet, because of the weight and size of cylinders needed to contain hydrogen gas or liquid, transportation of hydrogen may only be economical for short distances. Consequently, distributed natural gas reforming, which trades off the economies of scale of large plants for simplified delivery logistics, is an attractive alternative that could address immediate problems with the lack of hydrogen infrastructure.

  11. Chemical reformer

    SciTech Connect (OSTI)

    Baker, D.L.

    1987-01-13

    This patent describes the process of producing liquid oils from organic waste materials, which comprises: mixing an oil-based carrier with organic waste material selected from the group consisting of organic garbage, raw sewage, sewage sludge and waste paper. The waste material contains at least about 10 weight percent water. The amount of oil-based carrier present is sufficient to permit the mixture to be a more readily flowable material that the corresponding waste material free of oil carrier. The flowable material is pyrolyzed at elevated temperature and pressure to produce the liquid oils. 17. The process of producing liquid oils from organic waste materials selected from the group consisting of organic garbage, raw sewage, sewage sludge, and waste paper, which comprises: mixing an oil-based carrier with organic waste material, the waste material containing at least about 10 weight percent water, the amount of oil-based carrier present being sufficient to permit the mixture to be more readily flowable material than the corresponding waste material free of oil carrier, pyrolysing the flowable material at a temperature of 700/sup 0/ to 950/sup 0/F. and a pressure of 700 to 2,500 p.s.i. to produce the liquid oils, and thereafter passing the heated, substantially continuous stream through heat exchange means to recover heat and to transfer it to an upstream portion of the substantially continuous stream.

  12. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  13. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W.; Bannister, Ronald L.

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  14. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    SciTech Connect (OSTI)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Crawford, C. L.; Daniel, W. E.; Fox, K. M.; Herman, C. C.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.; Brown, C. F.; Qafoku, N. P.; Neeway, J. J.; Valenta, M. M.; Gill, G. A.; Swanberg, D. J.; Robbins, R. A.; Thompson, L. E.

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  15. Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology

    SciTech Connect (OSTI)

    Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-12-01

    Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Offices (NE-ID) and State of Idahos top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62%. The

  16. Steam Reforming of Ethylene Glycol over MgAl₂O₄ Supported Rh, Ni, and Co Catalysts

    SciTech Connect (OSTI)

    Mei, Donghai; Lebarbier, Vanessa M.; Xing, Rong; Albrecht, Karl O.; Dagle, Robert A.

    2015-11-25

    Steam reforming of ethylene glycol (EG) over MgAl₂O₄ supported metal (15 wt.% Ni, 5 wt.% Rh, and 15 wt.% Co) catalysts were investigated using combined experimental and theoretical methods. Compared to highly active Rh and Ni catalysts with 100% conversion, the steam reforming activity of EG over the Co catalyst is comparatively lower with only 42% conversion under the same reaction conditions (500°C, 1 atm, 119,000 h⁻¹, S/C=3.3 mol). However, CH₄ selectivity over the Co catalyst is remarkably lower. For example, by varying the gas hour space velocity (GHSV) such that complete conversion is achieved for all the catalysts, CH₄ selectivity for the Co catalyst is only 8%, which is much lower than the equilibrium CH₄ selectivity of ~ 24% obtained for both the Rh and Ni catalysts. Further studies show that varying H₂O concentration over the Co catalyst has a negligible effect on activity, thus indicating zero-order dependence on H₂O. These experimental results suggest that the supported Co catalyst is a promising EG steam reforming catalyst for high hydrogen production. To gain mechanistic insight for rationalizing the lower CH₃ selectivity observed for the Co catalyst, the initial decomposition reaction steps of ethylene glycol via C-O, O-H, C-H, and C-C bond scissions on the Rh(111), Ni(111) and Co(0001) surfaces were investigated using density functional theory (DFT) calculations. Despite the fact that the bond scission sequence in the EG decomposition on the three metal surfaces varies, which leads to different reaction intermediates, the lower CH₄ selectivity over the Co catalyst, as compared to the Rh and Ni catalysts, is primarily due to the higher barrier for CH₄ formation. The higher S/C ratio enhances the Co catalyst stability, which can be elucidated by the facile water dissociation and an alternative reaction path to remove the CH species as a coking precursor via the HCOH formation. This work was financially supported by the United

  17. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    SciTech Connect (OSTI)

    Adriaan van Heiningen

    2007-06-30

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and agglomeration problems of

  18. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2004-04-01

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

  19. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    SciTech Connect (OSTI)

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  20. AB INITIO STUDIES OF COKE FORMATION ON NI CATALYSTS DURING METHANE REFORMING

    SciTech Connect (OSTI)

    David S. Sholl

    2004-09-25

    The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts. The adsorption and diffusion of atomic H on several flat and stepped Ni surfaces has also been characterized experimentally.

  1. Ab Initio Studies of Coke Formation on Ni Catalysts During Methane Reforming

    SciTech Connect (OSTI)

    David S. Sholl

    2006-03-05

    The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts. The adsorption and diffusion of atomic H on several flat and stepped Ni surfaces has also been characterized experimentally.

  2. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  3. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  4. Electro-catalytic oxidation device for removing carbon from a fuel reformate

    DOE Patents [OSTI]

    Liu, Di-Jia

    2010-02-23

    An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

  5. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect (OSTI)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  6. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic

  7. Modeling of Pressurized Electrochemistry and Steam-Methane Reforming in Solid Oxide Fuel Cells and the Effects on Thermal and Electrical Stack Performance

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2009-03-01

    Summarizes work done to extend the electrochemical performance and methane reforming submodels to include the effects of pressurization and to demonstrate this new modeling capability by simulating large stacks operating on methane-rich fuel under pressurized and non-pressurized conditions. Pressurized operation boosts electrochemical performance, alters the kinetics of methane reforming, and effects the equilibrium composition of methane fuels. This work developed constitutive submodels that couple the electrochemistry, reforming, and pressurization to yield an increased capability of the modeling tool for prediction of SOFC stack performance.

  8. A natural-gas fuel processor for a residential fuel cell system.

    SciTech Connect (OSTI)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.; Japan Institute of Energy

    2009-03-01

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor--namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor--were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing {approx} 48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  9. Plate-Based Fuel Processing System Final Report

    SciTech Connect (OSTI)

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI

  10. Low-Cost Hydrogen Distributed Production System Development

    SciTech Connect (OSTI)

    C.E. Thomas, Ph.D., President Franklin D. Lomax, Ph.D, CTO & Principal Investigator, and Maxim Lyubovski, Ph.D.

    2011-03-10

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen

  11. On the Path to SunShot: Utility Regulatory and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    670 LBNL-1004371 Utility Regulatory and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Cover photos (clockwise from top left): Solar Design Associates, Inc., NREL 08563; SolarReserve; Dennis Schroeder, NREL 30551; and iStock 000075760625 On the Path to SunShot: Utility Regulatory and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Galen Barbose 1 , John Miller 2 , Ben Sigrin 2 , Emerson Reiter 2 ,

  12. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    SciTech Connect (OSTI)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-11-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 25, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process

  13. Hydrogen energy systems studies

    SciTech Connect (OSTI)

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  14. Steady-State Simulation of Steam Reforming of INEEL Tank Farm Waste

    SciTech Connect (OSTI)

    Nichols, Todd Travis; Taylor, Dean Dalton; Wood, Richard Arthur; Barnes, Charles Marshall

    2002-08-01

    A steady-state model of the Sodium-Bearing Waste steam reforming process at the Idaho National Engineering and Environmental Laboratory has been performed using the commercial ASPEN Plus process simulator. The preliminary process configuration and its representation in ASPEN are described. As assessment of the capability of the model to mechanistically predict product stream compositions was made, and fidelity gaps and opportunities for model enhancement were identified, resulting in the following conclusions: 1) Appreciable benefit is derived from using an activity coefficient model for electrolyte solution thermodynamics rather than assuming ideality (unity assumed for all activity coefficients). The concentrations of fifteen percent of the species present in the primary output stream were changed by more than 50%, relative to Electrolyte NRTL, when ideality was assumed; 2) The current baseline model provides a good start for estimating mass balances and performing integrated process optimization because it contains several key species, uses a mechanistic electrolyte thermodynamic model, and is based on a reasonable process configuration; and 3) Appreciable improvement to model fidelity can be realized by expanding the species list and the list of chemical and phase transformations. A path forward is proposed focusing on the use of an improved electrolyte thermodynamic property method, addition of chemical and phase transformations for key species currently absent from the model, and the combination of RGibbs and Flash blocks to simulate simultaneous phase and chemical equilibria in the off-gas treatment train.

  15. Steady-State Simulation of Steam Reforming of INEEL Tank Farm Waste

    SciTech Connect (OSTI)

    Nichols, T.T.; Taylor, D.D.; Wood, R.A.; Barnes, C.M.

    2002-08-15

    A steady-state model of the Sodium-Bearing Waste steam reforming process at the Idaho National Engineering and Environmental Laboratory has been performed using the commercial ASPEN Plus process simulator. The preliminary process configuration and its representation in ASPEN are described. As assessment of the capability of the model to mechanistically predict product stream compositions was made, and fidelity gaps and opportunities for model enhancement were identified, resulting in the following conclusions: (1) Appreciable benefit is derived from using an activity coefficient model for electrolyte solution thermodynamics rather than assuming ideality (unity assumed for all activity coefficients). The concentrations of fifteen percent of the species present in the primary output stream were changed by more than 50%, relative to Electrolyte NRTL, when ideality was assumed; (2) The current baseline model provides a good start for estimating mass balances and performing integrated process optimization because it contains several key species, uses a mechanistic electrolyte thermodynamic model, and is based on a reasonable process configuration; and (3) Appreciable improvement to model fidelity can be realized by expanding the species list and the list of chemical and phase transformations. A path forward is proposed focusing on the use of an improved electrolyte thermodynamic property method, addition of chemical and phase transformations for key species currently absent from the model, and the combination of RGibbs and Flash blocks to simulate simultaneous phase and chemical equilibria in the off-gas treatment train.

  16. Ethanol Steam Reforming on Co/CeO2: The Effect of ZnO Promoter

    SciTech Connect (OSTI)

    Davidson, Stephen; Sun, Junming; Wang, Yong

    2013-12-02

    A series of ZnO promoted Co/CeO2 catalysts were synthesized and characterized using XRD, TEM, H2-TPR, CO chemisorption, O2-TPO, IR-Py, and CO2-TPD. The effects of ZnO on the catalytic performances of Co/CeO2 were studied in ethanol steam reforming. It was found that the addition of ZnO facilitated the oxidation of Co0 via enhanced oxygen mobility of the CeO2 support which decreased the activity of Co/CeO2 in C–C bond cleavage of ethanol. 3 wt% ZnO promoted Co/CeO2 exhibited minimum CO and CH4 selectivity and maximum CO2 selectivity. This resulted from the combined effects of the following factors with increasing ZnO loading: (1) enhanced oxygen mobility of CeO2 facilitated the oxidation of CHx and CO to form CO2; (2) increased ZnO coverage on CeO2 surface reduced the interaction between CHx/CO and Co/CeO2; and (3) suppressed CO adsorption on Co0 reduced CO oxidation rate to form CO2. In addition, the addition of ZnO also modified the surface acidity and basicity of CeO2, which consequently affected the C2–C4 product distributions.

  17. Promotion effect of cobalt-based catalyst with rare earth for the ethanol steam reforming

    SciTech Connect (OSTI)

    Chiou, Josh Y. Z.; Chen, Ya-Ping; Yu, Shen-Wei; Wang, Chen-Bin

    2013-12-16

    Catalytic performance of ethanol steam reforming (ESR) was investigated on praseodymium (Pr) modified ceria-supported cobalt oxide catalyst. The ceria-supported cobalt oxide (Ce-Co) catalyst was prepared by co-precipitation-oxidation (CPO) method, and the doped Pr (5 and 10 wt% loading) catalysts (Pr{sub 5}−Ce−Co and Pr{sub 10}−Ce−Co) were prepared by incipient wetness impregnation method. The reduction pretreatment under 250 and 400 °C (H250 and H400) was also studied. All samples were characterized by XRD, TPR and TEM. Catalytic performance of ESR was tested from 250 to 500 °C in a fixed-bed reactor. The doping of Pr into the ceria lattice has significantly promoted the activity and reduced the coke formation. The products distribution also can be influenced by the different reduction pretreatment. The Pr{sub 10}−Ce−Co−H400 sample is a preferential ESR catalyst, where the hydrogen distribution approaches 73% at 475 °C with less amounts (< 2%) of CO and CH{sub 4}.

  18. Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.; Brown, Christopher F.; Jantzen, Carol; Pierce, Eric M.

    2012-05-01

    The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the ability of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).

  19. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Brown, Christopher F.; Peterson, Reid A.

    2013-10-01

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. This goal of this campaign was study the durability of the FBSR mineral product and the mineral product encapsulated in a monolith to meet compressive strength requirements. This paper gives an overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory.

  20. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect (OSTI)

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I.

    1996-12-31

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  1. The potential role of a carbon tax in U.S. fiscal reform

    SciTech Connect (OSTI)

    McKibbin, Warwick; Morris, Adele; Wilcoxen, Peter; Cai, Yiyong

    2012-07-24

    This paper examines fiscal reform options in the United States with an intertemporal computable general equilibrium model of the world economy called G-Cubed. Six policy scenarios explore two overarching issues: (1) the effects of a carbon tax under alternative assumptions about the use of the resulting revenue, and (2) the effects of alternative measures that could be used to reduce the budget deficit. We examine a simple excise tax on the carbon content of fossil fuels in the U.S. energy sector starting immediately at $15 per metric ton of carbon dioxide (CO2) and rising at 4 percent above inflation each year through 2050. We investigate policies that allow the revenue from the illustrative carbon tax to reduce the long run federal budget deficit or the marginal tax rates on labor and capital income. We also compare the carbon tax to other means of reducing the deficit by the same amount. We find that the carbon tax will raise considerable revenue: $80 billion at the outset, rising to $170 billion in 2030 and $310 billion by 2050. It also significantly reduces U.S. CO2 emissions by an amount that is largely independent of the use of the revenue. By 2050, annual CO2 emissions fall by 2.5 billion metric tons (BMT), or 34 percent, relative to baseline, and cumulative emissions fall by 40 BMT through 2050. The use of the revenue affects both broad economic impacts and the composition of GDP across consumption, investment and net exports. In most scenarios, the carbon tax lowers GDP slightly, reduces investment and exports, and increases imports. The effect on consumption varies across policies and can be positive if households receive the revenue as a lump sum transfer. Using the revenue for a capital tax cut, however, is significantly different than the other policies. In that case, investment booms, employment rises, consumption declines slightly, imports increase, and overall GDP rises significantly relative to baseline through about 2040. Thus, a tax reform that

  2. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    SciTech Connect (OSTI)

    DUNCAN JB

    2010-08-19

    This paper describes the sample selection, sample preparation, environmental, and regulatory considerations for shipment of Hanford radioactive waste samples for treatability studies of the FBSR process at the Savannah River National Laboratory and the Pacific Northwest National Laboratory. The U.S. Department of Energy (DOE) Hanford tank farms contain approximately 57 million gallons of wastes, most of which originated during the reprocessing of spent nuclear fuel to produce plutonium for defense purposes. DOE intends to pre-treat the tank waste to separate the waste into a high level fraction, that will be vitrified and disposed of in a national repository as high-level waste (HLW), and a low-activity waste (LAW) fraction that will be immobilized for on-site disposal at Hanford. The Hanford Waste Treatment and Immobilization Plant (WTP) is the focal point for the treatment of Hanford tank waste. However, the WTP lacks the capacity to process all of the LAW within the regulatory required timeframe. Consequently, a supplemental LAW immobilization process will be required to immobilize the remainder of the LAW. One promising supplemental technology is Fluidized Bed Steam Reforming (FBSR) to produce a sodium-alumino-silicate (NAS) waste form. The NAS waste form is primarily composed of nepheline (NaAlSiO{sub 4}), sodalite (Nas[AlSiO{sub 4}]{sub 6}Cl{sub 2}), and nosean (Na{sub 8}[AlSiO{sub 4}]{sub 6}SO{sub 4}). Semivolatile anions such as pertechnetate (TcO{sub 4}{sup -}) and volatiles such as iodine as iodide (I{sup -}) are expected to be entrapped within the mineral structures, thereby immobilizing them (Janzen 2008). Results from preliminary performance tests using surrogates, suggests that the release of semivolatile radionuclides {sup 99}Tc and volatile {sup 129}I from granular NAS waste form is limited by Nosean solubility. The predicted release of {sup 99}Tc from the NAS waste form at a 100 meters down gradient well from the Integrated Disposal Facility (IDF

  3. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

    SciTech Connect (OSTI)

    Xiong, Haifeng; DelaRiva, Andrew; Wang, Yong; Dayte, Abhaya

    2015-01-01

    Bimetallic PdZn catalysts supported on carbon black (CB) and carbon nanotubes (CNTs) were found to be selective for CO-free H-2 production from ethanol at low temperature (250 degrees C). On Pd, the H-2 yield was low (similar to 0.3 mol H-2/mol ethanol reacted) and the CH4/CO2 ratio was high (similar to 1.7). Addition of Zn to Pd formed the intermetallic PdZn beta phase (atomic ratio of Zn to Pd is 1) with increased H-2 yield (similar to 1.9 mol H-2/mol ethanol reacted) and CH4/CO2 ratio of <1. The higher H-2 yield and low CH4 formation was related to the improved dehydrogenation activity of the L1(0) PdZn beta phase. The TOF increased with particle size and the CNTs provided the most active and selective catalysts, which may be ascribed to pore-confinement effects. Furthermore, no significant changes in either the supports or the PdZn beta particles was found after aqueous-phase reforming (APR) indicating that the metal nanoparticles and the carbon support are hydrothermally stable in the aqueous phase at elevated temperatures and pressures (>200 degrees C, 65 bar). No CO was detected for all the catalysts performed in aqueous-phase reaction, indicating that both monometallic Pd and bimetallic PdZn catalysts have high water-gas shift activity during APR. However, the yield of H-2 is considerably lower than the theoretical value of 6 H-2 per mole ethanol which is due to the presence of oxygenated products and methane on the PdZn catalysts.

  4. Confined partial filament eruption and its reformation within a stable magnetic flux rope

    SciTech Connect (OSTI)

    Joshi, Navin Chandra; Kayshap, Pradeep; Uddin, Wahab; Srivastava, Abhishek K.; Dwivedi, B. N.; Filippov, Boris; Chandra, Ramesh; Choudhary, Debi Prasad E-mail: njoshi98@gmail.com

    2014-05-20

    We present observations of a confined partial eruption of a filament on 2012 August 4, which restores its initial shape within ?2 hr after eruption. From the Global Oscillation Network Group H? observations, we find that the filament plasma turns into dynamic motion at around 11:20 UT from the middle part of the filament toward the northwest direction with an average speed of ?105 km s{sup 1}. A little brightening underneath the filament possibly shows the signature of low-altitude reconnection below the filament eruptive part. In Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 images, we observe an activation of right-handed helically twisted magnetic flux rope that contains the filament material and confines it during its dynamical motion. The motion of cool filament plasma stops after traveling a distance of ?215 Mm toward the northwest from the point of eruption. The plasma moves partly toward the right foot point of the flux rope, while most of the plasma returns after 12:20 UT toward the left foot point with an average speed of ?60 km s{sup 1} to reform the filament within the same stable magnetic structure. On the basis of the filament internal fine structure and its position relative to the photospheric magnetic fields, we find filament chirality to be sinistral, while the activated enveloping flux rope shows a clear right-handed twist. Thus, this dynamic event is an apparent example of one-to-one correspondence between the filament chirality (sinistral) and the enveloping flux rope helicity (positive). From the coronal magnetic field decay index, n, calculation near the flux rope axis, it is evident that the whole filament axis lies within the domain of stability (i.e., n < 1), which provides the filament stability despite strong disturbances at its eastern foot point.

  5. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2007-03-31

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  6. FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC AND NITRATE SALT SUPERNATE

    SciTech Connect (OSTI)

    Jantzen, C; Michael02 Smith, M

    2007-03-30

    About two decades ago a process was developed at the Savannah River Site (SRS) to remove Cs137 from radioactive high level waste (HLW) supernates so the supernates could be land disposed as low activity waste (LAW). Sodium tetraphenylborate (NaTPB) was used to precipitate Cs{sup 137} as CsTPB. The flowsheet called for destruction of the organic TPB by acid hydrolysis so that the Cs{sup 137} enriched residue could be mixed with other HLW sludge, vitrified, and disposed of in a federal geologic repository. The precipitation process was demonstrated full scale with actual HLW waste and a 2.5 wt% Cs137 rich precipitate containing organic TPB was produced admixed with 240,000 gallons of salt supernate. Organic destruction by acid hydrolysis proved to be problematic and other disposal technologies were investigated. Fluidized Bed Steam Reforming (FBSR), which destroys organics by pyrolysis, is the current baseline technology for destroying the TPB and the waste nitrates prior to vitrification. Bench scale tests were designed and conducted at the Savannah River National Laboratory (SRNL) to reproduce the pyrolysis reactions. The formation of alkali carbonate phases that are compatible with DWPF waste pre-processing and vitrification were demonstrated in the bench scale tests. Test parameters were optimized for a pilot scale FBSR demonstration that was performed at the SAIC Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003. An engineering scale demonstration was completed by THOR{reg_sign} Treatment Technologies (TTT) and SRNL in 2006 at the Hazen Research, Inc. test facility in Golden, CO. The same mineral carbonate phases, the same organic destruction (>99.99%) and the same nitrate/nitrite destruction (>99.99%) were produced at the bench scale, pilot scale, and engineering scale although different sources of carbon were used during testing.

  7. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2006-12-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  8. Experimental investigation into the effect of reformer gas addition on flame speed and flame front propagation in premixed, homogeneous charge gasoline engines

    SciTech Connect (OSTI)

    Conte, Enrico; Boulouchos, Konstantinos

    2006-07-15

    The effect of reformer gas addition to gasoline in internal combustion engines is assessed based on in-cylinder measurement techniques. These include ion sensors, an optical spark plug and heat release analysis from the cylinder pressure. A detailed analysis of these measurements is presented, giving insight into the combustion process and into the energy release. The flame front shape and propagation in the combustion chamber are reconstructed and the flame speed is estimated. The laminar flame speed has been observed to increase linearly with the energy fraction of reformer gas in the fuel blend. From pure gasoline to pure reformer gas the laminar flame speed increases by a factor of 4.4. The relative increase in the turbulent flame speed is lower. These results confirm what can be observed from the heat release analysis, that reformer gas addition mainly shortens the first phase of the combustion process. Different reformer gas compositions were tested, varying the ratio of hydrogen to inert species. Finally, flame propagation and flame speed at EGR-burn limit and at lean-burn limit are investigated. (author)

  9. CO2 Reduction by Dry Methane Reforming Over Hexaluminates: A Promising Technology for Decreasing Global Warming in a Cost Effective Manner

    SciTech Connect (OSTI)

    Salazar-Villalpando, M.D.; Gardner, T.H.

    2008-03-01

    Efficient utilization of CO2 can help to decrease global warming. Methane reforming using carbon dioxide has been of interest for many years, but recently that interest has experienced a rapid increase for both environmental and commercial reasons. The use of CO2 provides a source of clean oxygen, which eliminates the need for costly oxygen separation plants. The product of dry reforming is useful syn-gas, which can be used to generate electrical power in a SOFC or in the production of synthetic fuels (hydrocarbons and alcohols). Hexaaluminate catalysts prepared at NETL may represent a product that can be utilized for the conversion of CO2 to syn-gas. In this work, transition metals dispersed in barium hexaaluminate have shown to be promising new catalysts for dry methane reforming. In this investigation, a series of BaNixAl12-yO19-? catalysts with varying Ni content were prepared by co-precipitation followed by calcination at 1400C. CO2 reduction by dry methane reforming was carried out to determine catalyst performance as a function of temperature and carbon formation was also quantified after the reforming tests. Results of catalysts characterization, dispersion and surface area, were correlated to catalytic performance.

  10. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    SciTech Connect (OSTI)

    Sharifi, Mahdi; Haghighi, Mohammad; Abdollahifar, Mozaffar

    2014-12-15

    Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray, Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.

  11. Fossil fuel combined cycle power system

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  12. Ion transport membrane reactor systems and methods for producing synthesis gas

    SciTech Connect (OSTI)

    Repasky, John Michael

    2015-05-12

    Embodiments of the present invention provide cost-effective systems and methods for producing a synthesis gas product using a steam reformer system and an ion transport membrane (ITM) reactor having multiple stages, without requiring inter-stage reactant injections. Embodiments of the present invention also provide techniques for compensating for membrane performance degradation and other changes in system operating conditions that negatively affect synthesis gas production.

  13. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    SciTech Connect (OSTI)

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-11-30

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

  14. Preparation and initial characterization of fluidized bed steam reforming pure-phase standards

    SciTech Connect (OSTI)

    Missimer, D. M.; Rutherford, R. L.

    2013-03-21

    Hanford is investigating the Fluidized Bed Steam Reforming (FBSR) process for their Low Activity Waste. The FBSR process offers a low-temperature continuous method by which liquid waste can be processed with the addition of clay into a sodium aluminosilicate (NAS) waste form. The NAS waste form is mainly comprised of nepheline (NaAlSiO{sub 4}), sodalite (Na{sub 8}[AlSiO{sub 4}]{sub 6}Cl{sub 2}), and nosean (Na{sub 8}[AlSiO{sub 4}]{sub 6}SO{sub 4}). Anions such as perrhenate (ReO{sub 4}{sup -}), pertechnetate (TcO{sub 4}{sup -}), and iodine (I{sup -}) are expected to replace sulfate in the nosean structure and/or chloride in the sodalite mineral structure (atomically bonded inside the aluminosilicate cages that these mineral structures possess). In the FBSR waste form, each of these phases can exist in a variety of solid solutions that differ from the idealized forms observed in single crystals in nature. The lack of understanding of the durability of these stoichiometric or idealized mineral phases complicates the ability to deconvolute the durability of the mixed phase FBSR product since it is a combination of different NAS phases. To better understand the behavior, fabrication and testing of the individual phases of the FBSR product is required. Analytical Development (AD) of the Science and Technology directorate of the Savannah River National Laboratory (SRNL) was requested to prepare the series of phase-pure standards, consisting of nepheline, nosean, and Cl, Re, and I sodalite. Once prepared, X-ray Diffraction (XRD) analyses were used to confirm the products were phase pure. These standards are being used for subsequent characterization studies consisting of the following: single-pass flow-through (SPFT) testing, development of thermodynamic data, and x-ray diffraction (XRD) calibration curves. In addition to the above mentioned phase-pure standards, AD was tasked with fabricating a mixed Tc-Re sodalite.

  15. Cycle Evaluations of Reversible Chemical Reactions for Solar Thermochemical Energy Storage in Support of Concentrating Solar Power Generation Systems

    SciTech Connect (OSTI)

    Krishnan, Shankar; Palo, Daniel R.; Wegeng, Robert S.

    2010-07-25

    The production and storage of thermochemical energy is a possible route to increase capacity factors and reduce the Levelized Cost of Electricity from concentrated solar power generation systems. In this paper, we present the results of cycle evaluations for various thermochemical cycles, including a well-documented ammonia closed-cycle along with open- and closed-cycle versions of hydrocarbon chemical reactions. Among the available reversible hydrocarbon chemical reactions, catalytic reforming-methanation cycles are considered; specifically, various methane-steam reforming cycles are compared to the ammonia cycle. In some cases, the production of an intermediate chemical, methanol, is also included with some benefit being realized. The best case, based on overall power generation efficiency and overall plant capacity factor, was found to be an open cycle including methane-steam reforming, using concentrated solar energy to increase the chemical energy content of the reacting stream, followed by combustion to generate heat for the heat engine.

  16. Effect Of Preparation Methods On The Performance Of Co/Al2O3 Catalysts For Dry Reforming Of Methane

    SciTech Connect (OSTI)

    Ewbank, Jessica L.; Kovarik, Libor; Kenvin, Christian C.; Sievers, Carsten

    2014-01-06

    Two methods, dry impregnation (DI) and controlled adsorption (CA), are used for the preparation of Co/ Al2O3 catalysts for methane dry reforming reactions. Point of zero charge (PZC) measurements, pH-precipitation studies, and adsorption isotherms are used to develop a synthesis procedure in which deposition of Co2+ takes place in a more controlled manner than metal deposition during drying in synthesis by dry impregnation. The possible adsorption phenomena that occur during preparation of Co/Al2O3 catalysts by controlled adsorption are discussed. H2 chemisorption and TEM show that catalysts prepared by CA have smaller average particle sizes and higher dispersions. TPR studies show that for the sample prepared by CA a higher amount of cobalt is reduced to its metallic state and that more CoAl2O4 spinel species are present relative to DI samples. The catalyst prepared by CA shows higher activity and slower deactivation for methane dry reforming than the catalyst prepared by DI. XPS and C, H, N analysis on spent catalysts confirm two types of carbonaceous deposits are formed depending on the preparation method.

  17. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    SciTech Connect (OSTI)

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  18. Enhanced Dry Reforming of Methane on Ni and Ni-Pt Catalysts Synthesized by Atomic Layer Deposition

    SciTech Connect (OSTI)

    Gould, Troy D.; Montemore, Matthew M.; Lubers, Alia M.; Ellis, Lucas D.; Weimer, Alan; Falconer, John L.; Medlin, James W.

    2015-02-25

    Atomic layer deposition (ALD) was used to deposit Ni and Pt on alumina supports to form monometallic and bimetallic catalysts with initial particle sizes of 12.4 nm. The ALD catalysts were more active (per mass of metal) than catalysts prepared by incipient wetness (IW) for dry reforming of methane (DRM), and they did not form carbon whiskers during reaction due to their sufficiently small size. Catalysts modified by Pt ALD had higher rates of reaction per mass of metal and inhibited coking, whereas NiPt catalysts synthesized by IW still formed carbon whiskers. Temperature-programmed reduction of Ni catalysts modified by Pt ALD indicated the presence of bimetallic interaction. Density functional theory calculations suggested that under reaction conditions, the NiPt surfaces form Ni-terminated surfaces that are associated with higher DRM rates (due to their C and O adsorption energies, as well as the CO formation and CH4 dissociation energies).

  19. In situ, energy-dispersive X-ray diffraction study of natural gas conversion by CO[sub 2] reforming

    SciTech Connect (OSTI)

    Ashcroft, A.T. ); Cheetham, A.K. ); Jones, R.H.; Natarajan, S.; Thomas, J.M.; Waller, D. ); Clark, S.M. )

    1993-04-01

    The selective CO[sub 2] reforming of methane to synthesis gas over a rare-earth iridate pyrochlore, Ln[sub 2]Ir[sub 2]O[sub 7] (Ln = Eu), and rare-earth ruthenate pyrochlores, Ln[sub 2]Ru[sub 2]O[sub 7] (Ln = Nd, Sm, Eu, Gd), has been studied in situ by using energy-dispersive X-ray diffraction with synchrotron radiation. Analysis of the diffraction data shows that the oxides are activated by reduction to the platinum group metal, the iridate by a second-order kinetic reaction, and the ruthenates by a first-order process. Temperature programmed reductions under carbon monoxide, hydrogen, and methane establish that the iridates proceed directly to the metal, whereas the ruthenates reduce via an oxygen deficient pyrochlore. 18 refs., 7 figs., 1 tab.

  20. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  1. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101/102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect (OSTI)

    DUNCAN JB; HUBER HJ

    2011-06-08

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  2. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect (OSTI)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  3. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    SciTech Connect (OSTI)

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  4. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping

    2015-11-10

    In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of thismore » study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.« less

  5. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation

    SciTech Connect (OSTI)

    Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping

    2015-11-10

    In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.

  6. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    SciTech Connect (OSTI)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  7. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  8. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  9. Analysis of national pay-as-you-drive insurance systems and other variable driving charges

    SciTech Connect (OSTI)

    Wenzel, T.

    1995-07-01

    Under Pay as You Drive insurance (PAYD), drivers would pay part of their automobile insurance premium as a per-gallon surcharge every time they filled their gas tank. By transfering a portion of the cost of owning a vehicle from a fixed cost to a variable cost, PAYD would discourage driving. PAYD has been proposed recently in California as a means of reforming how auto insurance is provided. PAYD proponents claim that, by forcing drivers to purchase at least part of their insurance every time they refuel their car, PAYD would reduce or eliminate the need for uninsured motorist coverage. Some versions of PAYD proposed in California have been combined with a no-fault insurance system, with the intention of further reducing premiums for the average driver. Other states have proposed PAYD systems that would base insurance premiums on annual miles driven. In this report we discuss some of the qualitative issues surrounding adoption of PAYD and other policies that would convert other fixed costs of driving (vehicle registration, safety/emission control system inspection, and driver license renewal) to variable costs. We examine the effects of these policies on two sets of objectives: objectives related to auto insurance reform, and those related to reducing fuel consumption, CO{sub 2} emissions, and vehicle miles traveled. We pay particular attention to the first objective, insurance reform, since this has generated the most interest in PAYD to date, at least at the state level.

  10. Hydrogen manufacturing using plasma reformers. [Annual progress report], May 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Cohn, D.R.; Bromberg, L.; Hochgreb, S.; O`Brien, C.; Rabinovich, A.

    1995-12-31

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes in particular the possibility of virtual elimination Of C0{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  11. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.

  12. Energy Systems and Population Health

    SciTech Connect (OSTI)

    Ezzati, Majid; Bailis, Rob; Kammen, Daniel M.; Holloway, Tracey; Price, Lynn; Cifuentes, Luis A.; Barnes, Brendon; Chaurey, Akanksha; Dhanapala, Kiran N.

    2004-04-12

    It is well-documented that energy and energy systems have a central role in social and economic development and human welfare at all scales, from household and community to regional and national (41). Among its various welfare effects, energy is closely linked with people s health. Some of the effects of energy on health and welfare are direct. With abundant energy, more food or more frequent meals can be prepared; food can be refrigerated, increasing the types of food items that are consumed and reducing food contamination; water pumps can provide more water and eliminate the need for water storage leading to contamination or increased exposure to disease vectors such as mosquitoes or snails; water can be disinfected by boiling or using other technologies such as radiation. Other effects of energy on public health are mediated through more proximal determinants of health and disease. Abundant energy can lead to increased irrigation, agricultural productivity, and access to food and nutrition; access to energy can also increase small-scale income generation such as processing of agricultural commodities (e.g., producing refined oil from oil seeds, roasting coffee, drying and preserving fruits and meats) and production of crafts; ability to control lighting and heating allows education or economic activities to be shielded from daily or seasonal environmental constraints such as light, temperature, rainfall, or wind; time and other economic resources spent on collecting and/or transporting fuels can be used for other household needs if access to energy is facilitated; energy availability for transportation increases access to health and education facilities and allow increased economic activity by facilitating the transportation of goods and services to and from markets; energy for telecommunication technology (radio, television, telephone, or internet) provides increased access to information useful for health, education, or economic purposes; provision of energy

  13. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides

  14. Fluidized Bed Steam Reforming (FBSR) Mineralization for High Organic and Nitrate Waste Streams for the Global Nuclear Energy Partnership (GNEP)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Williams, M.R. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NOx in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 deg. C) compared to vitrification (1150-1300 deg. C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {>=}1000 deg. C. Pollucite mineralization creates secondary aqueous waste streams and NOx. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O. (authors)

  15. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  16. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  17. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low-Cost Hydrogen-from-Ethanol: A Distributed Production System Low-Cost Hydrogen-from-Ethanol: A Distributed Production System Presentation by C.E. (Sandy) Thomas at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting. biliwg06_thomas_h2gen.pdf (2.44 MB) More Documents & Publications Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) An Energy Evolution:Alternative Fueled Vehicle

  18. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2008-2009 Progress Report.

    SciTech Connect (OSTI)

    Berejikian, Barry A.

    2009-08-18

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia River Basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: The ratio of jack to adult male Chinook salmon were varied in experimental breeding populations to test the hypothesis that reproductive success of the two male phenotypes would vary with their relative frequency in the population. Adult Chinook salmon males nearly always obtained primary access to nesting females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Observed participation in spawning events and adult-to-fry reproductive success of jack and adult males was consistent with a negative frequency-dependent selection model. Overall, jack males sired an average of 21% of the offspring produced across a range of jack male frequencies. Implications of these and additional findings on Chinook salmon hatchery broodstock management will be presented in the FY 2009 Annual Report. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. Expression levels of basic amino acid receptor (BAAR) mRNA in the olfactory epithelium

  19. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C

    2008-12-26

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to

  20. Bimetallic Ni-Rh catalysts with low amounts of Rh for the steam and autothermal reforming of n-butane for fuel-cell applications.

    SciTech Connect (OSTI)

    Ferrandon, M.; Kropf, A. J.; Krause, T.; Chemical Sciences and Engineering Division

    2010-05-15

    Mono-metallic nickel and rhodium catalysts and bimetallic Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}, CeZrO{sub 2} and CeMgOx were prepared and evaluated for catalyzing the steam and autothermal reforming of n-butane. The binary Ni-Rh supported on La-Al{sub 2}O{sub 3} catalysts with low weight loading of rhodium exhibited higher H{sub 2} yields than Ni or Rh alone. The Ni-Rh/CeZrO{sub 2} catalyst exhibited higher performance and no coke formation, compared to the same metals on other supports. A NiAl{sub 2}O{sub 4} spinel phase was obtained on all Ni and Ni-Rh catalysts supported on La-Al{sub 2}O{sub 3}. The presence of rhodium stabilized the spinel phase as well as NiOx species upon reforming while Ni alone was mostly reduced into metallic species. Extended X-ray absorption fine-structure analysis showed evidence of Ni-Rh alloy during preparation and even further after an accelerated aging at 900C in a H{sub 2}/H{sub 2}O atmosphere.

  1. Steam reforming catalyst

    DOE Patents [OSTI]

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  2. Fuel cell power systems for remote applications. Phase 1 final report and business plan

    SciTech Connect (OSTI)

    1998-02-01

    The goal of the Fuel Cell Power Systems for Remote Applications project is to commercialize a 0.1--5 kW integrated fuel cell power system (FCPS). The project targets high value niche markets, including natural gas and oil pipelines, off-grid homes, yachts, telecommunication stations and recreational vehicles. Phase 1 includes the market research, technical and financial analysis of the fuel cell power system, technical and financial requirements to establish manufacturing capability, the business plan, and teaming arrangements. Phase 1 also includes project planning, scope of work, and budgets for Phases 2--4. The project is a cooperative effort of Teledyne Brown Engineering--Energy Systems, Schatz Energy Research Center, Hydrogen Burner Technology, and the City of Palm Desert. Phases 2 through 4 are designed to utilize the results of Phase 1, to further the commercial potential of the fuel cell power system. Phase 2 focuses on research and development of the reformer and fuel cell and is divided into three related, but potentially separate tasks. Budgets and timelines for Phase 2 can be found in section 4 of this report. Phase 2 includes: Task A--Develop a reformate tolerant fuel cell stack and 5 kW reformer; Task B--Assemble and deliver a fuel cell that operates on pure hydrogen to the University of Alaska or another site in Alaska; Task C--Provide support and training to the University of Alaska in the setting up and operating a fuel cell test lab. The Phase 1 research examined the market for power systems for off-grid homes, yachts, telecommunication stations and recreational vehicles. Also included in this report are summaries of the previously conducted market reports that examined power needs for remote locations along natural gas and oil pipelines. A list of highlights from the research can be found in the executive summary of the business plan.

  3. Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report

    SciTech Connect (OSTI)

    1996-01-01

    Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

  4. Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel

    SciTech Connect (OSTI)

    Xie, Chao; Chen, Yongsheng; Engelhard, Mark H.; Song, Chunshan

    2012-04-18

    This work was conducted to clarify the influence of the type of metal and support on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbons. Al2O3-supported noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalysts on different supports (Al2O3, CeO2, SiO2, and MgO), and Pt catalyst supported on CeO2 and Al2O3, were examined for steam reforming of a liquid hydrocarbon fuel (Norpar13 from Exxon Mobil) at 800 C for 55 h. The results indicate that (1) Rh/Al2O3 shows higher sulfur tolerance than the Ru, Pt, and Pd catalysts on the same support; (2) both Al2O3 and CeO2 are promising supports for Rh catalyst to process sulfur-containing hydrocarbons; and (3) Pt/CeO2 exhibits better catalytic performance than Pt/Al2O3 in the reaction with sulfur. TEM results demonstrate that the metal particles in Rh/Al2O3 were better dispersed (mostly in 1-3 nm) compared with the other catalysts after reforming the sulfur-containing feed. As revealed by XPS, the binding energy of Rh 3d for Rh/Al2O3 is notably higher than that for Rh/CeO2, implying the formation of electron-deficient Rh particles in the former. The strong sulfur tolerance of Rh/Al2O3 may be related to the formation of well-dispersed electron-deficient Rh particles on the Al2O3 support. Sulfur K-edge XANES illustrates the preferential formation of sulfonate and sulfate on Rh/Al2O3, which is believed to be beneficial for improving its sulfur tolerance as their oxygen-shielded sulfur structure may hinder direct Rh-S interaction. Due to its strong sulfur tolerance, the carbon deposition on Rh/Al2O3 was significantly lower than that on the Al2O3-supported Ru, Pt, and Pd catalysts after the reaction with sulfur. The superior catalytic performance of CeO2-supported Rh and Pt catalysts in the presence of sulfur can be ascribed mainly to the promotion effect of CeO2 on carbon gasification, leading to much lower carbon deposition compared with the Rh/Al2O3, Rh/MgO, Rh

  5. Hydrogen Generation from Biomass-Derived Surgar Alcohols via the Aqueous-Phase Carbohydrate Reforming (ACR) Process

    SciTech Connect (OSTI)

    Randy Cortright

    2006-06-30

    This project involved the investigation and development of catalysts and reactor systems that will be cost-effective to generate hydrogen from potential sorbitol streams. The intention was to identify the required catalysts and reactors systems as well as the design, construction, and operation of a 300 grams per hour hydrogen system. Virent was able to accomplish this objective with a system that generates 2.2 kgs an hour of gas containing both hydrogen and alkanes that relied directly on the work performed under this grant. This system, funded in part by the local Madison utility, Madison, Gas & Electric (MGE), is described further in the report. The design and development of this system should provide the necessary scale-up information for the generation of hydrogen from corn-derived sorbitol.

  6. Steam reforming of fast pyrolysis-derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl2O4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xing, Rong; Dagle, Vanessa Lebarbier; Flake, Matthew; Kovarik, Libor; Albrecht, Karl O.; Deshmane, Chinmay; Dagle, Robert A.

    2016-02-03

    In this paper we examine the feasibility of steam reforming the mixed oxygenate aqueous fraction derived from fast pyrolysis bio-oils. Catalysts selective towards hydrogen formation and resistant to carbon formation utilizing feeds with relatively low steam-to-carbon (S/C) ratios are desired. Rh (5 wt%), Pt (5 wt%), Ru (5 wt%), Ir (5 wt%), Ni (15 wt%), and Co (15 wt%) metals supported on MgAl2O4 were evaluated for catalytic performance at 500 °C and 1 atm using a complex feed mixture comprising acids, polyols, cycloalkanes, and phenolic compounds. The Rh catalyst was found to be the most active and resistant to carbonmore » formation. The Ni and Co catalysts were found to be more active than the other noble metal catalysts investigated (Pt, Ru, and Ir).« less

  7. Additional Documentation Regarding Policy Flash Number 2010-04: Cease All Funding of the Association of Community Organizations for Reform Now (ACORN)

    Broader source: Energy.gov [DOE]

    In reference to Policy Flash 2010-04, attached is a list of the 361 known affiliates, subsidiaries, and allied organizations of the ACORN Council. Note that the word "ACORN is not always in the name. As this list may not be all inclusive, Contracting Officers should review all available information before determining an entity is not precluded from receiving funding based on an affiliation with ACORN. This list is part of the U.S. House of Representatives Committee on Oversight and Government Reform Republican Staff Report: "Is ACORN Intentionally Structured as a Criminal Enterprise?" (July 23,2009), available at http://revublicans.oversi~t.house.qov/images/stories/Re~orts/20090923ACO....

  8. Alternative Measures of Welfare in Macroeconomic Models

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... To the extent that policy changes require forecasting, a CGE model may not be the ... it can incorporate the direct and indirect costs and benefits of different policies. ...

  9. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The

  10. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect (OSTI)

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J.

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  11. Decontamination Systems Information and Research Program. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Progress reports are presented for the following projects: systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies--drain-enhanced soil flushing (DESF) for organic contaminants removal; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors--monolayer and multilayer self-assembled films for chemical sensors; Winfield Lock and Dam remediation; Winfield cleanup survey; assessment of technologies for hazardous waste site remediation--non-treatment technologies and pilot scale test facility implementation; assessment of environmental remediation storage technology; assessment of environmental remediation excavation technology; assessment of environmental remediation monitoring technology; and remediation of hazardous sites with steam reforming.

  12. Highly Active and Stable MgAl2O4 Supported Rh and Ir Catalysts for Methane Steam Reforming: A Combined Experimental and Theoretical Study

    SciTech Connect (OSTI)

    Mei, Donghai; Glezakou, Vassiliki Alexandra; Lebarbier, Vanessa MC; Kovarik, Libor; Wan, Haiying; Albrecht, Karl O.; Gerber, Mark A.; Rousseau, Roger J.; Dagle, Robert A.

    2014-07-01

    In this work we present a combined experimental and theoretical investigation of stable MgAl2O4 spinel-supported Rh and Ir catalysts for the steam methane reforming (SMR) reaction. Firstly, catalytic performance for a series of noble metal catalysts supported on MgAl2O4 spinel was evaluated for SMR at 600-850°C. Turnover rate at 850°C follows the order: Pd > Pt > Ir > Rh > Ru > Ni. However, Rh and Ir were found to have the best combination of activity and stability for methane steam reforming in the presence of simulated biomass-derived syngas. It was found that highly dispersed ~2 nm Rh and ~1 nm Ir clusters were formed on the MgAl2O4 spinel support. Scanning Transition Electron Microscopy (STEM) images show that excellent dispersion was maintained even under challenging high temperature conditions (e.g. at 850°C in the presence of steam) while Ir and Rh catalysts supported on Al2O3 were observed to sinter at increased rates under the same conditions. These observations were further confirmed by ab initio molecular dynamics (AIMD) simulations which find that ~1 nm Rh and Ir particles (50-atom cluster) bind strongly to the MgAl2O4 surfaces via a redox process leading to a strong metal-support interaction, thus helping anchor the metal clusters and reduce the tendency to sinter. Density functional theory (DFT) calculations suggest that these supported smaller Rh and Ir particles have a lower work function than larger more bulk-like ones, which enables them to activate both water and methane more effectively than larger particles, yet have a minimal influence on the relative stability of coke precursors. In addition, theoretical mechanistic studies were used to probe the relationship between structure and reactivity. Consistent with the experimental observations, our theoretical modeling results also suggest that the small spinel-supported Ir particle catalyst is more active than the counterpart of Rh catalyst for SMR. This work was financially supported by the

  13. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    SciTech Connect (OSTI)

    Mann, M.K.; Spath, P.L.; Kadam, K.

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  14. System Diagram

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Diagram System Diagram Diagram of IO architecture on Hopper Diagram of external IO services on the Hopper system Last edited: 2011-04-14 15:11:1...

  15. System Diagram

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Diagram System Diagram Diagram of I/O architecture on Hopper Diagram of external I/O services on the Hopper system Last edited: 2016-04-29 11:35:23

  16. The influence of nano-architectured CeOx supports in RhPd/CeO₂ for the catalytic ethanol steam reforming reaction

    SciTech Connect (OSTI)

    Divins, N. J.; Senanayake, S. D.; Casanovas, A.; Xu, W.; Trovarelli, A.; Llorca, J.

    2015-01-19

    The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO₂ cubes and CeO₂ rods tailored towards the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO₂-cubes > RhPd/CeO₂ -rods > RhPd/CeO₂- polycrystalline, whereas at temperatures higher than 800 K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO₂-cubes and RhPd/CeO₂ -rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic - oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria

  17. Mechanistic insights of ethanol steam reforming over Ni-CeOx(111): The importance of hydroxyl groups for suppressing coke formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zongyuan; Senanayake, Sanjaya D.; Duchon, Tomas; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matolin, Vladimir; Stacchiola, Dario J.; et al

    2015-07-10

    We have studied the reaction of ethanol and water over NiCeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on NiCeO2-x(111) at varying Ce? concentrations (CeO1.82.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni? is themoreactive phase leading to both the CC and CH cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni?C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metalsupport interaction between nickel and ceria that facilitates oxygen transfer.less

  18. Effect of Metal-Support Interactions in Ni/Al2O3 Catalysts with Low Metal Loading for Methane Dry Reforming

    SciTech Connect (OSTI)

    Ewbank, Jessica L.; Kovarik, Libor; Diallo, Fatoumata Z.; Sievers, Carsten

    2015-03-01

    Types of nickel sites as a function of preparation method have received much attention in the literature. In this work, two preparation methods, controlled adsorption and dry impregnation, are implemented to explore the effect of preparation method on catalytic nickel centers. For controlled adsorption, optimal synthesis conditions are identified using point of zero charge measurements, pH-precipitation experiments, and adsorption isotherms to prepare a catalyst with a high dispersion and strong metal support interactions. Metal support interactions influence the types of nickel sites formed. Thus, comparison of catalysts that differ primarily in metal support interactions, strong metal support interaction (controlled adsorption) and weak metal support interactions (dry impregnation), is of great interest. It is confirmed through characterization techniques; N2 physisorption, H2 chemisorption, temperature programmed reduction (TPR), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS) that the types of nickel sites formed are indeed strongly dependent on preparation method. Methane dry reforming reactivity studies are used to demonstrate the successful application of these catalysts and further probe the types of active centers present. Combustion analysis and XPS of spent catalysts reveal different amounts and nature of carbonaceous deposits as a function of the synthesis method.

  19. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    SciTech Connect (OSTI)

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matolín, Vladimir; Stacchiola, Dario J.; Rodriguez, José A.; Senanayake, Sanjaya D.

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO2-x(111) at varying Ce³⁺ concentrations (CeO1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni⁰ is the active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.

  20. The influence of nano-architectured CeOx supports in RhPd/CeO₂ for the catalytic ethanol steam reforming reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Divins, N. J.; Senanayake, S. D.; Casanovas, A.; Xu, W.; Trovarelli, A.; Llorca, J.

    2015-01-19

    The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO₂ cubes and CeO₂ rods tailored towards the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO₂-cubes > RhPd/CeO₂ -rods > RhPd/CeO₂- polycrystalline, whereas at temperatures higher than 800 K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO₂-cubes and RhPd/CeO₂ -rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic -more » oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria« less

  1. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; Peterson, Erik W.; Zhou, Yinghui; Luo, Si; Zhou, Jing; Matolín, Vladimir; Stacchiola, Dario J.; Rodriguez, José A.; et al

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO2-x(111) at varying Ce³⁺ concentrations (CeO1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria. Ni⁰ is themore » active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.« less

  2. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    SciTech Connect (OSTI)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  3. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Systems File Systems For a general description of the different file systems available on PDSF please see Eliza File Systems and Other File Systems. Below is a summary of how ATLAS uses the various systems: /common In the past ATLAS used /common primarily for their software installations but with cvmfs (see below) this is no longer necessary. ATLAS users also have made personal directories under /common/atlas. However, this is not the intended use of /common, as described on Other File

  4. Pressure Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering > Pressure Systems Privacy and Security Notice Skip over navigation Search the JLab Site Pressure Systems Please upgrade your browser. This site's design is only ...

  5. Computer System,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    undergraduate summer institute http:isti.lanl.gov (Educational Prog) 2016 Computer System, Cluster, and Networking Summer Institute Purpose The Computer System,...

  6. Average System Cost Methodology : Administrator's Record of Decision.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1984-06-01

    Significant features of average system cost (ASC) methodology adopted are: retention of the jurisdictional approach where retail rate orders of regulartory agencies provide primary data for computing the ASC for utilities participating in the residential exchange; inclusion of transmission costs; exclusion of construction work in progress; use of a utility's weighted cost of debt securities; exclusion of income taxes; simplification of separation procedures for subsidized generation and transmission accounts from other accounts; clarification of ASC methodology rules; more generous review timetable for individual filings; phase-in of reformed methodology; and each exchanging utility must file under the new methodology within 20 days of implementation by the Federal Energy Regulatory Commission of the ten major participating utilities, the revised ASC will substantially only affect three. (PSB)

  7. GCtool for fuel cell systems design and analysis : user documentation.

    SciTech Connect (OSTI)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  8. "Research to Improve the Efficacy of Captive Broodstock Programs and Advance Hatchery Reform Throughout the Columbia River Basin." [from the Abstract], 2007-2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Berejikian, Barry A.

    2009-04-08

    This project was developed to conduct research to improve the efficacy of captive broodstock programs and advance hatchery reform throughout the Columbia river basin. The project has three objectives: (1) maintain adaptive life history characteristics in Chinook salmon, (2) improve imprinting in juvenile sockeye salmon, and (3) match wild phenotypes in Chinook and sockeye salmon reared in hatcheries. A summary of the results are as follows: Objective 1: Adult and jack Chinook salmon males were stocked into four replicate spawning channels at a constant density (N = 16 per breeding group), but different ratios, and were left to spawn naturally with a fixed number of females (N = 6 per breeding group). Adult males obtained primary access to females and were first to enter the nest at the time of spawning. Jack male spawning occurred primarily by establishing satellite positions downstream of the courting pair, and 'sneaking' into the nest at the time of spawning. Male dominance hierarchies were fairly stable and strongly correlated with the order of nest entry at the time of spawning. Spawning participation by jack and adult males is consistent with a negative frequency dependent selection model, which means that selection during spawning favors the rarer life history form. Results of DNA parentage assignments will be analyzed to estimate adult-to-fry fitness of each male. Objective 2: To determine the critical period(s) for imprinting for sockeye salmon, juvenile salmon were exposed to known odorants at key developmental stages. Molecular assessments of imprinting-induced changes in odorant receptor gene expression indicated that regulation of odorant expression is influenced by developmental status and odor exposure history. The results suggest that sockeye salmon are capable of imprinting to homing cues during the developmental periods that correspond to several of current release strategies employed as part of the Captive Broodstock program (specifically

  9. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Systems File Systems For a general description of the different file systems available on PDSF please see Eliza File Systems and Other File Systems. Below is a summary of how ALICE uses the various systems: /common ALICE uses /common to build the software that supports its grid-based automated production work. This software includes AliRoot, Geant, AliEn, and XRootD. /eliza6, /eliza8, /eliza17 ALICE has space on 3 elizas: 16TB on /eliza6, 6TB on /eliza8 and 11TB on /eliza17. The space on

  10. File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File Systems File Systems For a general description of the different file systems available on PDSF please see Eliza File Systems and Other File Systems. Below is a summary of how STAR uses the various systems: /common The STAR software is installed on /common. For 32sl44 it is under /common/star/star44 and for sl53 it is under /common/star/star53. In both cases the software consists primarily of a STAR-specific ROOT installation on which releases of the STAR libraries are built as shown on the

  11. Advanced Turbine Systems Program -- Conceptual design and product development. Quarterly report, August 1--October 31, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The objective of Phase 2 of the Advanced Turbine Systems (ATS) Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. This quarterly report, addresses only Task 4, conversion of a gas turbine to a coal-fired gas turbine, which was completed during the quarter and the nine subtasks included in Task 8, design and test of critical components. These nine subtasks address six ATS technologies as follows: catalytic combustion; recuperator; autothermal fuel reformer; high temperature turbine disc; advanced control system (MMI); and ceramic materials.

  12. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System SWATS In the realm of global climate modeling, ... An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located ...

  13. System Effectiveness

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    An effective risk assessment system is needed to address the threat posed by an active or passive insider who, acting alone or in collusion, could attempt diversion or theft of nuclear material. It is critical that a nuclear facility conduct a thorough self-assessment of the material protection, control, and accountability (MPC&A) system to evaluate system effectiveness. Self-assessment involves vulnerability analysis and performance testing of the MPC&A system. The process should lead to confirmation that mitigating features of the system effectively minimize the threat, or it could lead to the conclusion that system improvements or upgrades are necessary to achieve acceptable protection against the threat. Analysis of the MPC&A system is necessary to understand the limits and vulnerabilities of the system to internal threats. Self-assessment helps the facility be prepared to respond to internal threats and reduce the risk of theft or diversion of nuclear material. MSET is a self-assessment or inspection tool utilizing probabilistic risk assessment (PRA) methodology to calculate the system effectiveness of a nuclear facility's MPC&A system. MSET analyzes the effectiveness of an MPC&A system based on defined performance metrics for MPC&A functions based on U.S. and international best practices and regulations. A facility's MC&A system can be evaluated at a point in time and reevaluated after upgrades are implemented or after other system changes occur. The total system or specific subareas within the system can be evaluated. Areas of potential performance improvement or system upgrade can be assessed to determine where the most beneficial and cost-effective improvements should be made. Analyses of risk importance factors show that sustainability is essential for optimal performance. The analyses reveal where performance degradation has the greatest detrimental impact on total system risk and where performance improvements have the greatest reduction in system risk

  14. CALUTRON SYSTEM

    DOE Patents [OSTI]

    Lawrence, E.O.

    1958-08-12

    A calutron system capable of functioning with only a portion of the separation tanks in the system operating is described. The invention is a calutron system comprssing a closed series of alternated tanks and electromagnets having a mid-yoke connecting intermediate positions of the series. dividing the series into twv-o portions, and thereby providing a closed magnetic path through either of the portions.

  15. Fundamental stack and system issues in molten carbonate fuel cell development

    SciTech Connect (OSTI)

    Williams, M.C.; Parsons, E.L. Jr.; Mayfield, M.J.

    1993-12-31

    Stack research and system issues in molten carbonate fuel cell (MCFC) technology development and commercialization are discussed within context of status of MCFC development and commercialization in US. Status of MCFC development is addressed. Major known fundamental stack research issues remaining for the MCFC technology are identified and discussed. The cathode remains a focal point of performance improvement and cost reduction. The various aspects of MCFC power plant network and systems issues are also addressed and discussed. These include cost, heat loss management, startup and shutdown modes, dynamic response, footprint, packaging and integration, parasitic power losses, pressurization and reforming. Potential of MCFC networks is discussed. With the initial demonstration of full-area, fullheight 250-kW to 2-MW MCFC power plants, the spatial configuration of the MCFC stacks into networks in the fuel cell power plant takes on importance for the first time.

  16. Power system

    DOE Patents [OSTI]

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  17. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  18. Technical assessment of compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-02-09

    The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

  19. Electronic system

    DOE Patents [OSTI]

    Robison, G H; Dickson, J F

    1960-11-15

    An electronic system is designed for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. The system comprises separate input means electrically associated with the events under observation an electronic channel associated with each input means, including control means and indicating means; timing means adapted to apply a signal from the input means after a predetermined time to the control means to deactivate each of the channels; and means for resetting the system to its initial condition after the observation of each group of events. (D.L.C.)

  20. SAMPLING SYSTEM

    DOE Patents [OSTI]

    Hannaford, B.A.; Rosenberg, R.; Segaser, C.L.; Terry, C.L.

    1961-01-17

    An apparatus is given for the batch sampling of radioactive liquids such as slurries from a system by remote control, while providing shielding for protection of operating personnel from the harmful effects of radiation.

  1. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  2. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Systems Accelerator Systems MaRIE will provide a capability to address the control of performance and production of weapons materials at the mesoscale. MaRIE fills a critical gap in length scale between the integral scale addressed by studies conducted at DARHT, U1a, NIF, and Z. CONTACT Richard Sheffield (505) 667-1237 Email Revolutionizing Microstructural Physics to Empower Nuclear Energy Realizing MaRIE's full suite of capabilities requires developing and integrating a suite of

  3. Integrated fuel cell energy systems for modern buildings. Final technical report for contract period October 1997 to September 2001

    SciTech Connect (OSTI)

    Woods, Richard

    2001-09-27

    This report summarizes the activities and results of a cooperative agreement. The scope focused on natural gas fuel processing subsystems for fuel cell systems that could be used in modern buildings. The focus of this project was the development of a natural gas (NG) fueled, fuel processing subsystem (FPS) for polymer electrolyte membrane (PEM) fuel cell systems in modern buildings applications. This cooperative development program was coordinated with several parallel programs that were related to integrated fuel processor developments for fuel cell systems. The most significant were the development of an integrated fuel-flexible, fuel processing subsystem (DE-FC02-97EE0482) and internal HbT programs to develop autothermal reforming (ATR) technologies and to develop a commercially viable stationary subsystem.

  4. Systems Studies

    SciTech Connect (OSTI)

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  5. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on how schools apply the science curricula they devise." The program supports systemic reform as called for in state and national reform efforts. Illinois has recently adopted...

  6. Scenario Analysis Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in March, 2007 for their utilization Natural Gas Distributed Reforming R&D * H2Gen ... to lower the part count and simplify integration. *BOC Integrated System: Reforming, ...

  7. Turbine system

    DOE Patents [OSTI]

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  8. ELECTRONIC SYSTEM

    DOE Patents [OSTI]

    Robison, G.H. et al.

    1960-11-15

    An electronic system is described for indicating the occurrence of a plurality of electrically detectable events within predetermined time intervals. It is comprised of separate input means electrically associated with the events under observation: an electronic channel associated with each input means including control means and indicating means; timing means associated with each of the input means and the control means and adapted to derive a signal from the input means and apply it after a predetermined time to the control means to effect deactivation of each of the channels; and means for resetting the system to its initial condition after observation of each group of events.

  9. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  10. FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

    2009-02-07

    Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

  11. Burner systems

    DOE Patents [OSTI]

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  12. Security system

    DOE Patents [OSTI]

    Baumann, Mark J.; Kuca, Michal; Aragon, Mona L.

    2016-02-02

    A security system includes a structure having a structural surface. The structure is sized to contain an asset therein and configured to provide a forceful breaching delay. The structure has an opening formed therein to permit predetermined access to the asset contained within the structure. The structure includes intrusion detection features within or associated with the structure that are activated in response to at least a partial breach of the structure.

  13. WEC system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  14. Gasification system

    DOE Patents [OSTI]

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  15. Gasification system

    DOE Patents [OSTI]

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  16. CONTROL SYSTEM

    DOE Patents [OSTI]

    Shannon, R.H.; Williamson, H.E.

    1962-10-30

    A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)

  17. Directives System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-01-30

    The Department of Energy (DOE) Directives System is the means by which DOE policies, requirements, and responsibilities are developed and communicated throughout the Department. Directives are used to inform, direct, and guide employees in the performance of their jobs, and to enable employees to work effectively within the Department and with agencies, contractors, and the public. Cancels: DOE O 251.1, DOE M 251.1-1

  18. mooring system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mooring system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  19. Monitoring Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  20. Computer System,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System, Cluster, and Networking Summer Institute New Mexico Consortium and Los Alamos National Laboratory HOW TO APPLY Applications will be accepted JANUARY 5 - FEBRUARY 13, 2016 Computing and Information Technology undegraduate students are encouraged to apply. Must be a U.S. citizen. * Submit a current resume; * Offcial University Transcript (with spring courses posted and/or a copy of spring 2016 schedule) 3.0 GPA minimum; * One Letter of Recommendation from a Faculty Member; and * Letter of

  1. Braking system

    DOE Patents [OSTI]

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  2. NREL: Energy Systems Integration - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-level system integration New distribution scenarios such as household DC systems and residential-scale generation and storage integrated with home energy management systems. ...

  3. Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications

    SciTech Connect (OSTI)

    1997-03-01

    The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

  4. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    SciTech Connect (OSTI)

    Rich Chartrand

    2011-08-31

    A program to complete the design, construction and demonstration of a PEMFC system fuelled by Ethanol, LPG or NG for telecom applications was initiated in October 2007. Early in the program the economics for Ethanol were shown to be unfeasible and permission was given by DOE to focus on LPG only. The design and construction of a prototype unit was completed in Jun 2009 using commercially available PEM FC stack from Ballard Power Systems. During the course of testing, the high pressure drop of the stack was shown to be problematic in terms of control and stability of the reformer. Also, due to the power requirements for air compression the overall efficiency of the system was shown to be lower than a similar system using internally developed low pressure drop FC stack. In Q3 2009, the decision was made to change to the Plug power stack and a second prototype was built and tested. Overall net efficiency was shown to be 31.5% at 3 kW output. Total output of the system is 6 kW. Using the new stack hardware, material cost reduction of 63% was achieved over the previous Alpha design. During a November 2009 review meeting Plug Power proposed and was granted permission, to demonstrate the new, commercial version of Plug Power's telecom system at CERL. As this product was also being tested as part of a DOE Topic 7A program, this part of the program was transferred to the Topic 7A program. In Q32008, the scope of work of this program was expanded to include a National Grid demonstration project of a micro-CHP system using hightemperature PEM technology. The Gensys Blue system was cleared for unattended operation, grid connection, and power generation in Aug 2009 at Union College in NY state. The system continues to operate providing power and heat to Beuth House. The system is being continually evaluated and improvements to hardware and controls will be implemented as more is learned about the system's operation. The program is instrumental in improving the efficiency and

  5. Refrigeration system

    SciTech Connect (OSTI)

    Pagani, R.F.; Clarke, K.J.; Avon, E.J.

    1986-11-11

    This patent describes a chamber including an expandable refrigerant system associated therewith. The system comprises reservoir containing an expandable refrigerant coolant and lead piping connecting the reservoir to conduits carrying the coolant therein. The chamber comprises top, bottom and side walls, accordingly defining an interior and an exterior to the chamber, one of the walls comprises a door affording access into the chamber, each of the walls being insulated with insulating material. At least one of the walls comprises a first layer of the insulating material extending thereover adjacent the exterior and a second layer of the insulating material extending thereover adjacent the interior. The reservoir, lead piping and conduits are disposed intermediate the first and second layers of insulating material thereby isolating them from both the interior and exterior. Heat transferring through the at least one wall is substantially absorbed by the coolant and the insulating material cooled by the coolant, before it is able to penetrate through the at least one wall, permitting a product placed in the chamber to effectively maintain or substantially maintain a selected even temperature.

  6. Intelligent Transportation Systems Deployment Analysis System...

    Open Energy Info (EERE)

    Transportation Systems Deployment Analysis System AgencyCompany Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software...

  7. Power Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems; steam, water, fuel, and environmental monitoring systems; alternative energy systems; reliability, availability, and maintainability assessments; and associated...

  8. Transfer system

    DOE Patents [OSTI]

    Kurosawa, Kanji; Koga, Bunichiro; Ito, Hideki; Kiriyama, Shigeru; Higuchi, Shizuo

    2003-05-20

    A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.

  9. Separation system

    DOE Patents [OSTI]

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  10. Full fuel-cycle comparison of forklift propulsion systems.

    SciTech Connect (OSTI)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  11. NREL: Energy Systems Integration - Energy Systems Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Modeling and Control Get the full list of job postings and learn more about working at NREL. Smarter Grid Solutions to Demonstrate Active Network Management System ...

  12. Integrated analysis of the {open_quotes}sponge iron reactor and fuel cell system{close_quotes}

    SciTech Connect (OSTI)

    Lehrhofer, J.; Ghaemi, M.; Wernigg, H.

    1996-12-31

    The system Sponge Iron Reactor/Fuel Cell (SIR/FC) is investigated from the ecological and technical aspects and also the pre-conversion energy chain as a part of the natural gas fuel cycle is analyzed. What are the decisive characteristics of a sponge iron reactor or the basic process cycle sponge iron/hydrogen/iron oxide? This process cycle offers a simple possibility to store the energy of synthesis gases in the form of sponge iron and at the same time to reform and condition these synthesis gases. As {open_quote}product{close_quote} of this energy storage one receives pure hydrogen which is intended for the running of fuel cells.

  13. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Ahluwalia, R.; Hua, T.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Gardiner, M.; Nuclear Engineering Division; TIAX LLC; U.S. DOE

    2010-05-01

    On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2-4 and 1.6-2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  14. The Welfare Impact of Rural Electrification: A Reassessment of...

    Open Energy Info (EERE)

    and Benefits AgencyCompany Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy Topics: Co-benefits assessment, - Energy Access...

  15. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105, Tank AN-103, And AZ-101/102) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-09-18

    Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoid structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.

  16. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  17. Environmental Management System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management System Environmental Management System An Environmental Management System (EMS) is a set of processes and practices that enable an organization to reduce its...

  18. NERSC Scheduled System Outages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scheduled System Outages NERSC Scheduled System Outages Last edited: 2016-04-29 11:35:00

  19. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Storage, Energy Storage Systems, News, News & Events, Partnership, Renewable Energy, Research & Capabilities, Systems Analysis, Water Power Natural Energy ...

  20. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  1. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

    2010-03-03

    On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  2. System of systems modeling and analysis.

    SciTech Connect (OSTI)

    Campbell, James E.; Anderson, Dennis James; Longsine, Dennis E.; Shirah, Donald N.

    2005-01-01

    This report documents the results of an LDRD program entitled 'System of Systems Modeling and Analysis' that was conducted during FY 2003 and FY 2004. Systems that themselves consist of multiple systems (referred to here as System of Systems or SoS) introduce a level of complexity to systems performance analysis and optimization that is not readily addressable by existing capabilities. The objective of the 'System of Systems Modeling and Analysis' project was to develop an integrated modeling and simulation environment that addresses the complex SoS modeling and analysis needs. The approach to meeting this objective involved two key efforts. First, a static analysis approach, called state modeling, has been developed that is useful for analyzing the average performance of systems over defined use conditions. The state modeling capability supports analysis and optimization of multiple systems and multiple performance measures or measures of effectiveness. The second effort involves time simulation which represents every system in the simulation using an encapsulated state model (State Model Object or SMO). The time simulation can analyze any number of systems including cross-platform dependencies and a detailed treatment of the logistics required to support the systems in a defined mission.

  3. Carbon Dioxide Conversion to Valuable Chemical Products over Composite Catalytic Systems

    SciTech Connect (OSTI)

    Dagle, Robert A.; Hu, Jianli; Jones, Susanne B.; Wilcox, Wayne A.; Frye, John G.; White, J. F.; Jiang, Juyuan; Wang, Yong

    2013-05-01

    Presented is an experimental study on catalytic conversion of carbon dioxide into methanol, ethanol and acetic acid. Catalysts having different catalytic functions were synthesized and combined in different ways to enhance selectivity to desired products. The combined catalyst system possessed the following functions: methanol synthesis, Fischer-Tropsch synthesis, water-gas-shift and hydrogenation. Results showed that the methods of integrating these catalytic functions played important role in achieving desired product selectivity. It was speculated that if methanol synthesis sites were located adjacent to the C-C chain growth sites, the formation rate of C2 oxygenates would be enhanced. The advantage of using high temperature methanol catalyst PdZnAl in the combined catalyst system was demonstrated. In the presence of PdZnAl catalyst, the combined catalyst system was stable at temperature of 380oC. It was observed that, at high temperature, kinetics favored oxygenate formation. Results implied that the process can be intensified by operating at high temperature using Pd-based methanol synthesis catalyst. Steam reforming of the byproduct organics was demonstrated as a means to provide supplemental hydrogen. Preliminary process design, simulation, and economic analysis of the proposed CO2 conversion process were carried out. Economic analysis indicates how ethanol production cost was affected by the price of CO2 and hydrogen.

  4. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  5. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  6. NPG_Fellow_Application_System-PIA.pdf

    Energy Savers [EERE]

    NISSAN NISSAN DOE-LPO_Project-Posters_ATVM_Nissan.pdf (260.57 KB) More Documents & Publications Driving Economic Growth: Advanced Technology Vehicles Manufacturing ATVM 1-Page Summary Before the Subcommittee on Economic Growth, Job Creation and Regulatory Affairs - House Committee on Oversight and Governmant Reform

    NISSAN NISSAN NISSAN NISSAN NISSAN NISSAN NISSAN NISSAN NISSAN NISSAN NISSAN NISSAN NISSAN NISSAN NISSAN PROJECT SUMMARY In January 2010, the Department of Energy issued a

  7. Lighting system with thermal management system

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  8. Lighting system with thermal management system

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2015-08-25

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  9. Lighting system with thermal management system

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Seeley, Charles Erklin; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Utturkar, Yogen Vishwas; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2015-02-24

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  10. Solid Oxide Fuel Cell Systems PVL Line

    SciTech Connect (OSTI)

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    test fuel cell components at a scale and under conditions that can be accurately extrapolated to full system performance. This requires specially designed equipment that replicates the pressure (up to 6.5 bara), temperature (about 910 C), anode and cathode gas compositions, flows and power generation density of the full scale design. The SBTS fuel cell anode gas is produced through the reaction of pipeline natural gas with a mixture of steam, CO2, and O2 in a catalytic partial oxidation (CPOX) reactor. Production of the fuel cell anode gas in this manner provides the capability to test a fuel cell with varying anode gas compositions ranging from traditional reformed natural gas to a coal-syngas surrogate fuel. Stark State College and RRFCS have a history of collaboration. This is based upon SSCAs commitment to provide students with skills for advanced energy industries, and RRFCS need for a workforce that is skilled in high temperature fuel cell development and testing. A key to this approach is the access of students to unique SOFC test and evaluation equipment. This equipment is designed and developed by RRFCS, with the participation of SSC interns. In the near-term, the equipment will be used by RRFCS for technology development. When this stage is completed, and RRFCS has moved to commercial products, SSC will utilize this equipment for workforce training. The RRFCS fuel cell design is based upon a unique ceramic substrate architecture in which a porous, flat substrate (tube) provides the support structure for a network of solid oxide fuel cells that are electrically connected in series. These tubes are grouped into a {approx}350-tube repeat configuration, called a stack/block. Stack/block testing, performed at system conditions, provides data that can be confidently scaled to full scale performance. This is the basis for the specially designed and developed test equipment that is required for advancing and accelerating the RRFCS SOFC power system development

  11. Hopper System Diagram

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Diagram System Diagram Diagram of IO architecture on Hopper Diagram of external IO services on the Hopper system Last edited: 2011-04-14 15:11:1...

  12. Systems Integration Competitive Awards

    Broader source: Energy.gov [DOE]

    Through the SunShot Systems Integration efforts, DOE is funding a range of research and development (R&D) projects to advance balance of system hardware technologies, such as racking systems...

  13. Performance Measurement Analysis System

    Energy Science and Technology Software Center (OSTI)

    1989-06-01

    The PMAS4.0 (Performance Measurement Analysis System) is a user-oriented system designed to track the cost and schedule performance of Department of Energy (DOE) major projects (MPs) and major system acquisitions (MSAs) reporting under DOE Order 5700.4A, Project Management System. PMAS4.0 provides for the analysis of performance measurement data produced from management control systems complying with the Federal Government''s Cost and Schedule Control Systems Criteria.

  14. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems and industry analyses Go to the NETL Gasification Systems Program's Systems and Industry Analyses Studies Technology & Cost/Performance Studies NETL Gasification Systems Program's Systems and Industry Analyses Studies provide invaluable information, and help to ensure that the technologies being developed are the best ones to develop. System studies are often used to compare competing technologies, determine the best way to integrate a technology with other technologies, and predict

  15. NETL: Feed Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feed Systems Feed Systems Key Technology includes research on commercial gasifier feed ... of air separation processes with gasification-based power and co-production plants. ...

  16. Securing Control Systems Modems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ......... 17 Figure 5. Man-In-The-Middle attack on modem ... System LAN Local Area Network MITM Man-In-The-Middle OS Operating System PBX ...

  17. NERSC File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sharing between platforms. File systems are configured for different purposes. On each machine you have access to at least three different file system Home: Permanent, relatively...

  18. Genomics and Systems Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genomics and Systems Biology LANL leads the world in computational finishing of microbial ... and experimental biology as the foundation of a dynamic systems biology capability. ...

  19. Genomics and Systems Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genomics and Systems Biology Genomics and Systems Biology Los Alamos scientists perform research in functional genomics and structural genomics, and applications for such work ...

  20. Control system design method

    DOE Patents [OSTI]

    Wilson, David G.; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  1. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... stitutions * InternationalCoal Technology Export C&PS ... * Systems Integration * Plant Designs Central Power ... Boiler System - Indirect Fired Cycles - Pressurized ...

  2. Steam Systems, Retrofit Measure Packages, Hydronic Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program www.buildingamerica.gov Decker Homes Buildings Technologies Program Steam Systems, Retrofit Measure Packages, Hydronic Systems Russell Ruch Elevate Energy Peter Ludwig Elevate Energy July 16, 2014 Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings Contents * Retrofit Measure Packages for steam and hydronic MF buildings that save 25-30% * System Balancing * Steam * Hydronic 2 | Building America Program www.buildingamerica.gov Background

  3. INSENS sensor system

    SciTech Connect (OSTI)

    Myers, D.W.; Baker, J.; Benzel, D.M.; Fuess, D.A.

    1993-09-29

    This paper describes an unattended ground sensor system that has been developed for the immigration and Naturalization Service (INS). The system, known as INSENS, was developed at the Lawrence Livermore National Laboratory for use by the United States Border Patrol. This system assists in the detection of illegal entry of aliens and contraband (illegal drugs, etc.) into the United States along its land borders. Key to the system is its flexible modular design which allows future software and hardware enhancements to the system without altering the fundamental architecture of the system. Elements of the system include a sensor system capable of processing signals from multiple directional probes, a repeater system, and a handheld monitor system. Seismic, passive infrared (PIR), and magnetic probes are currently supported. The design of the INSENS system elements and their performance are described.

  4. Hot Spot Removal System: System description

    SciTech Connect (OSTI)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  5. NREL: Energy Systems Integration Facility - Systems Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for research, development, and demonstration of key components of future energy systems. ... Demonstration of technology to control loads dynamically without affecting occupant ...

  6. Panasonic Ecology Systems formerly Matsushita Ecology Systems...

    Open Energy Info (EERE)

    Ecology Systems Co) Place: Kasugai, Aichi, Japan Zip: 468-8522 Sector: Solar, Wind energy Product: Japanese manufacturer of energy efficient residential and commercial...

  7. Feasibility evaluation of fuel cells for selected heavy-duty transportation systems

    SciTech Connect (OSTI)

    Huff, J.R.; Murray, H.S.

    1982-10-01

    A study of the feasibility of using fuel cell power plants for heavy duty transportation applications is performed. It is concluded that it will be feasible to use fuel cell technology projected as being available by 1995 to 2000 for powering 3000-hp freight locomotives and 6000-hp river boats. The fuel cell power plant is proposed as an alternative to the currently used diesel or diesel-electric system. Phosphoric acid and solid polymer electrolyte fuel cells are determined to be the only applicable technologies in the desired time frame. Methanol, chemically reformed to produce hydrogen, is determined to be the most practical fuel for the applications considered. Feasibility is determined on the basis of weight and volume constraints, compatibility with existing propulsion components, and adequate performance relative to operational requirements. Simulation results show that performance goals are met and that overall energy consumption of heavy duty fuel cell power plants is lower than that of diesels for the same operating conditions. Overall energy consumption is substantially improved over diesel operation for locomotives. Operating cost comparisons are made using assumed diesel fuel and methanol costs. Development areas are identified to achieve the desired fuel cell capabilities. The required activities are in the areas of fuel cell electrode performance, catalyst development, fuel processing, controls, power conditioning, and system integration.

  8. Decontamination systems information and research program. Quarterly report, April--June 1996

    SciTech Connect (OSTI)

    1996-07-01

    This report contains separate reports on the following subtasks: analysis of the Vortec cyclone melting system for remediation of PCB contaminated soils using CFD; drain enhanced soil flushing using prefabricated vertical drains; performance and characteristics evaluation of acrylates as grout barriers; development of standard test protocol barrier design models for desiccation barriers, and for in-situ formed barriers; in-situ bioremediation of chlorinated solvents at Portsmouth Gaseous Diffusion Plant; development of a decision support system and a prototype database for management of the EM50 technology development program; GIS-based infrastructure for site characterization and remediation; treatment of mixed wastes via fluidized bed steam reforming; use of centrifugal membrane technology to treat hazardous/radioactive waste; environmental pollution control devices based on novel forms of carbon; development of instrumental methods for analysis of nuclear wastes and environmental materials; production and testing of biosorbents and cleaning solutions for D and D; use of SpinTek centrifugal membrane and sorbents/cleaning solutions for D and D; West Virginia High Tech Consortium Foundation--Environmental support program; small business interaction opportunities; and approach for assessing potential voluntary environmental protection.

  9. Environmental Management System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management System Environmental Management System An Environmental Management System is a systematic method for assessing mission activities, determining the environmental impacts of those activities, prioritizing improvements, and measuring results. May 30, 2012 The continuous improvement cycle Our Environmental Management System encourages continuous improvement of our environmental performance. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM

  10. Transportation Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  11. Medical imaging systems

    SciTech Connect (OSTI)

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  12. Photovoltaic systems and applications

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  13. A Novel System for Carbon Dioxide Capture Utilizing Electrochemical Membrane Technology

    SciTech Connect (OSTI)

    Ghezel-Ayagh, Hossein; Jolly, Stephen; Patel, Dilip; Hunt, Jennifer; Steen, William A.; Richardson, Carl F.; Marina, Olga A.

    2013-06-03

    FuelCell Energy, Inc. (FCE), in collaboration with Pacific Northwest National Laboratory (PNNL) and URS Corporation, is developing a novel Combined Electric Power and Carbon-Dioxide Separation (CEPACS) system, under a contract from the U.S. Department of Energy (DE-FE0007634), to efficiently and cost effectively separate carbon dioxide from the emissions of existing coal fired power plants. The CEPACS system is based on FCE’s electrochemical membrane (ECM) technology utilizing the Company’s internal reforming carbonate fuel cell products carrying the trade name of Direct FuelCell® (DFC®). The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean and environmentally benign (green) electric power at high efficiency using a supplementary fuel. The overall objective of this project is to successfully demonstrate the ability of FCE’s electrochemical membrane-based CEPACS system technology to separate ≥ 90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue-gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. Also, a key project objective is to show, through a Technical and Economic Feasibility Study and bench scale testing (11.7 m2 area ECM), that the electrochemical membrane-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE objectives for the incremental cost of electricity (COE) for post-combustion CO2 capture.

  14. United Solar Systems Corp USSC aka Bekaert ECD Solar Systems...

    Open Energy Info (EERE)

    Systems Corp USSC aka Bekaert ECD Solar Systems LLC Jump to: navigation, search Name: United Solar Systems Corp (USSC) (aka Bekaert ECD Solar Systems LLC) Place: Middletown...

  15. Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems...

    Open Energy Info (EERE)

    Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name: Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place:...

  16. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  17. Modeling Power Systems as Complex Adaptive Systems

    SciTech Connect (OSTI)

    Chassin, David P.; Malard, Joel M.; Posse, Christian; Gangopadhyaya, Asim; Lu, Ning; Katipamula, Srinivas; Mallow, J V.

    2004-12-30

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today's most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This report explores the state-of-the-art physical analogs for understanding the behavior of some econophysical systems and deriving stable and robust control strategies for using them. We review and discuss applications of some analytic methods based on a thermodynamic metaphor, according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood. We apply these methods to the question of how power markets can be expected to behave under a variety of conditions.

  18. Industry Interactive Procurement System (IIPS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interactive Industry Interactive Procurement System Procurement System (IIPS) (IIPS) Douglas Baptist, Project Manager Information Management Systems Division US Department of ...

  19. Precision Pointing System Development

    SciTech Connect (OSTI)

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  20. Verification of Adaptive Systems

    SciTech Connect (OSTI)

    Pullum, Laura L; Cui, Xiaohui; Vassev, Emil; Hinchey, Mike; Rouff, Christopher; Buskens, Richard

    2012-01-01

    Adaptive systems are critical for future space and other unmanned and intelligent systems. Verification of these systems is also critical for their use in systems with potential harm to human life or with large financial investments. Due to their nondeterministic nature and extremely large state space, current methods for verification of software systems are not adequate to provide a high level of assurance for them. The combination of stabilization science, high performance computing simulations, compositional verification and traditional verification techniques, plus operational monitors, provides a complete approach to verification and deployment of adaptive systems that has not been used before. This paper gives an overview of this approach.