Powered by Deep Web Technologies
Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wt% = Weight percent of undissolved solids in the slurry = Density ...  

high-level radioactive waste stored in underground, tanks at the Hanford site. The ability to continuously monitor the solids weight percent of mixed slurries in these

2

Examination of temperature-induced shape memory of uranium--5. 3-to 6. 9 weight percent niobium alloys  

SciTech Connect

The uranium-niobium alloy system was examined in the range of 5.3-to-6.9 weight percent niobium with respect to shape memory, mechanical properties, metallography, Coefficients of linear thermal expansion, and differential thermal analysis. Shape memory increased with increasing niobium levels in the study range. There were no useful correlations found between shape memory and the other tests. Coefficients of linear thermal expansion tests of as-quenched 5.8 and 6.2 weight percent niobium specimens, but not 5.3 and 6.9 weight percent niobium specimens, had a contraction component on heating, but the phenomenon was not a contributor to shape memory.

Hemperly, V.C.

1976-09-22T23:59:59.000Z

3

"EIA-914 Production Weighted Response Rates, Percent"  

U.S. Energy Information Administration (EIA) Indexed Site

EIA-914 Production Weighted Response Rates, Percent" EIA-914 Production Weighted Response Rates, Percent" "Areas",38353,38384,38412,38443,38473,38504,38534,38565,38596,38626,38657,38687,38718,38749,38777,"application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel"

4

The effect of slightly faster strain rates and internal hydrogen on uranium-0. 8 weight percent titanium alloy mechanical properties  

DOE Green Energy (OSTI)

Mechanical testing of uranium-0.8 wt % titanium (U-0.8 wt % Ti) alloys can affect the outcome of mechanical properties, primarily ductility, by varying the crosshead velocity, which changes the strain rate. However, most specifications that govern mechanical properties of this alloy reference ASTM E-8, which limits the speed to 0.5 in./in. of gage length per minute. Our current procedure for testing U-0.8 Ti is not at the maximum speed permitted in ASTM E-8, so an experiment was designed to evaluate the effect of maximizing the crosshead velocity per ASTM E-8. In order to create a fair assessment, tensile specimens were prepared that were low in internal hydrogen (0.02 ppM) and higher in internal hydrogen (0.36 ppM). External hydrogen effects were minimized by testing in a controlled environment that contained less than 10% relative humidity. Test results showed that for the low hydrogen test group, increasing the crosshead velocity caused a significant increase in reduction in area (RA), but not in elongation. For the higher hydrogen test group, increasing the speed resulted in a significant increase in RA and an increase, though not statistically significant, in elongation. Of equal importance was an observation that strongly suggests a correlation between material defects, like inclusion clusters, and higher hydrogen content, especially at the slower strain rate that would explain the erratic behavior in ductile properties associated with this alloy. As a result of this study, increasing the crosshead velocity to 0.32 in./min is recommended for mechanical testing of U-0.8 Ti alloys. 9 refs., 4 figs., 5 tabs.

Bird, E.L.

1990-10-10T23:59:59.000Z

5

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Supply and Disposition by State, 1996 Table State Estimated Proved Reserves (dry) Marketed Production Total Consumption Alabama................................................................... 3.02 2.69 1.48 Alaska ...................................................................... 5.58 2.43 2.04 Arizona..................................................................... NA 0 0.55 Arkansas.................................................................. 0.88 1.12 1.23 California.................................................................. 1.25 1.45 8.23 Colorado .................................................................. 4.63 2.90 1.40 Connecticut.............................................................. 0 0 0.58 D.C...........................................................................

6

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Delivered to Consumers by State, 1996 Table State Residential Commercial Industrial Vehicle Fuel Electric Utilities Alabama..................................... 1.08 0.92 2.27 0.08 0.23 Alaska ........................................ 0.31 0.87 0.85 - 1.16 Arizona....................................... 0.53 0.92 0.30 3.91 0.70 Arkansas.................................... 0.88 0.98 1.59 0.11 1.24 California.................................... 9.03 7.44 7.82 43.11 11.64 Colorado .................................... 2.12 2.18 0.94 0.58 0.20 Connecticut................................ 0.84 1.26 0.37 1.08 0.38 D.C............................................. 0.33 0.52 - 0.21 - Delaware.................................... 0.19 0.21 0.16 0.04 0.86 Florida........................................

7

min-99.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Joint Statistics of Photon Pathlength Joint Statistics of Photon Pathlength and Cloud Optical Depth Q.-L. Min and L. C. Harrison Atmospheric Sciences Research Center State University of New York Albany, New York Abstract A mean pressure- and temperature-weighted photon pathlength in the atmosphere can be inferred from moderate resolution measurements in the O 2 A-band. We show a pathlength retrieval method and calibration results for measurements from a Rotating Shadowband Spectroradiometer (RSS), and present the joint statistics of pathlength and cloud optical depth for cloudy skies observed at the Southern Great Plains (SGP) site from September 30 to December 22, 1997. Two different population branches are apparent in the scattergram of the pathlength versus cloud optical depth; we attribute these to 1) single-

8

min-98.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Model-Predicted Total Shortwave with Comparison of Model-Predicted Total Shortwave with Measurements Under Overcast Cloud Conditions Q. Min and L. C. Harrison Atmospheric Sciences Research Center State University of New York at Albany Albany, New York Abstract We use surface measurements at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site made with the multifilter rotating shadowband radiometer (MFRSR) and microwave radiometer (MWR) to obtain time-series of cloud optical depths and mean effective droplet radii using the method described by Min and Harrison (1996). We then use these data as inputs to three atmospheric shortwave models, and compare the result to surface pyranometric observations [Baseline Surface Radiation Network (BSRN) and Solar and Infrared Observing System (SIROS)]. We have extended this work

9

U.S. Percent Utilization of Refinery Operable Capacity (Percent)  

U.S. Energy Information Administration (EIA)

Annual : Download Data (XLS File) U.S. Percent Utilization of Refinery Operable Capacity (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1985: 74.0 ...

10

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

1. Estimated rail transportation rates for coal, basin to state, 2008" 1. Estimated rail transportation rates for coal, basin to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Delaware"," W"," $28.49",," W",," $131.87"," 21.6%", 59," W"," 100.0%"

11

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

9. Estimated rail transportation rates for coal, state to state, 2008" 9. Estimated rail transportation rates for coal, state to state, 2008" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $14.43",," W",," $65.38"," 22.1%"," 4,509"," W"," 81.8%"

12

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

2. Estimated rail transportation rates for coal, basin to state, 2009" 2. Estimated rail transportation rates for coal, basin to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin Basin","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Northern Appalachian Basin","Florida"," W"," $38.51",," W",," $140.84"," 27.3%", 134," W"," 100.0%"

13

EIA","Percent  

U.S. Energy Information Administration (EIA) Indexed Site

0. Estimated rail transportation rates for coal, state to state, 2009" 0. Estimated rail transportation rates for coal, state to state, 2009" "comparison of EIA and STB data" ,,"Transportation cost per short ton (nominal)",,,"Percent difference EIA vs. STB ",,"Total delivered cost per short ton (nominal) EIA","Percent transportation cost is of total delivered cost EIA","Shipments (1,000 short tons) EIA","Shipments with transportation rates over total shipments (percent)" "Origin State","Destination State"," STB"," EIA",,,,,,,"STB ","EIA " "Alabama","Alabama"," W"," $13.59",," W",," $63.63"," 21.4%"," 3,612"," W"," 100.0%"

14

Indiana, Illinois, and Kentucky Refining District Percent ...  

U.S. Energy Information Administration (EIA)

Indiana, Illinois, and Kentucky Refining District Percent Utilization of Refinery Operable Capacity (Percent)

15

Variable Average Absolute Percent Differences  

U.S. Energy Information Administration (EIA) Indexed Site

Variable Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 1.0 42.6 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 35.2 18.6 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 34.7 19.7 Total Petroleum Consumption (Table 4) 6.2 66.5 Crude Oil Production (Table 5) 6.0 59.6 Petroleum Net Imports (Table 6) 13.3 67.0 Natural Gas Natural Gas Wellhead Prices (Constant $) (Table 7a) 30.7 26.1 Natural Gas Wellhead Prices (Nominal $) (Table 7b) 30.0 27.1 Total Natural Gas Consumption (Table 8) 7.8 70.2 Natural Gas Production (Table 9) 7.1 66.0 Natural Gas Net Imports (Table 10) 29.3 69.7 Coal Coal Prices to Electric Generating Plants (Constant $)** (Table 11a)

16

ARM - VAP Product - mfrsrcldod1min  

NLE Websites -- All DOE Office Websites (Extended Search)

Productsmfrsrcldodmfrsrcldod1min Productsmfrsrcldodmfrsrcldod1min Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027296 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : MFRSRCLDOD1MIN Derived: Cloud Optical Properties from MFRSR, MWR, Langley Analysis Active Dates 1997.08.21 - 2013.10.08 Originating VAP Process Cloud Optical Properties from MFRSR Using Min Algorithm : MFRSRCLDOD Description The mfrsrcldod1min value-added product produces cloud optical properties (optical depth and effective radius) from multi-filter rotating shadowband radiometer (MFRSR) , micorwave radiomter (MWR) and the Langley analysis Value Added Product (Langley VAP).

17

Percent Yield and Mass of Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Percent Yield and Mass of Water Percent Yield and Mass of Water Name: Lisa Status: educator Grade: 9-12 Location: CA Country: USA Date: Winter 2011-2012 Question: When doing a percent yield activity in lab, we use MgCl hexahydrate and CaSO4. How do we factor the mass of the water that is released during the reaction? Replies: Lisa, Based on your question, I am not quite sure what the experiment is. Are you heating the hydrates and looking at the percent-yield of water removed during the heating? If so, then you would calculate the theoretical yield (using stoichiometry and the balanced chemical equation: MgCl2.6H2O --> MgCl2 + 6H2O) of water released, and compare it to the actual yield of water released in the experiment to get percent yield. Greg (Roberto Gregorius) Canisius College

18

Auditing Categorical SUM, MAX and MIN Queries  

Science Conference Proceedings (OSTI)

Auditing consists in logging answered queries and checking, each time that a new query is submitted, that no sensitive information is disclosed by combining responses to answered queries with the response to the current query. Such a method for controlling ... Keywords: Aggregate function, max-query, min-query, null values, sum-query

Francesco M. Malvestuto

2008-09-01T23:59:59.000Z

19

Michigan Natural Gas Percent Sold to The Commercial Sectors by ...  

U.S. Energy Information Administration (EIA)

Michigan Natural Gas Percent Sold to The Commercial Sectors by Local Distribution Companies (Percent)

20

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

22

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

23

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

24

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

25

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

26

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

27

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

28

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

29

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

30

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

31

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

32

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

33

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

34

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

35

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

36

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

37

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

38

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

39

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

40

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

42

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

43

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

44

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

45

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

46

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

47

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

48

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

49

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

50

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

51

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

52

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

53

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

54

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

55

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

56

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

57

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

58

District of Columbia Natural Gas Percent Sold to The Commercial...  

U.S. Energy Information Administration (EIA) Indexed Site

Percent Sold to The Commercial Sectors by Local Distribution Companies (Percent) District of Columbia Natural Gas Percent Sold to The Commercial Sectors by Local Distribution...

59

Percent of Industrial Natural Gas Deliveries in South Dakota...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Percent of Industrial Natural Gas Deliveries in South Dakota Represented by the Price (Percent) Percent of Industrial Natural Gas...

60

Percent of Commercial Natural Gas Deliveries in South Dakota...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Data (XLS File) Percent of Commercial Natural Gas Deliveries in South Dakota Represented by the Price (Percent) Percent of Commercial Natural Gas...

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A unified framework for max-min and min-max fairness with applications  

Science Conference Proceedings (OSTI)

Max-min fairness is widely used in various areas of networking. In every case where it is used, there is a proof of existence and one or several algorithms for computing it; in most, but not all cases, they are based on the notion of bottlenecks. In ... Keywords: best-effort traffic, elastic traffic, mathematical programming/optimization, max-min fairness, system design

Bozidar Radunovi?; Jean-Yves Le Boudec

2007-10-01T23:59:59.000Z

62

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Michigan - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 9,995 10,600 10,100 11,100 10,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 16,959 20,867 7,345 18,470 17,041 From Oil Wells 10,716 12,919 9,453 11,620 4,470 From Coalbed Wells 0

63

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 West Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 49,364 50,602 52,498 56,813 50,700 Production (million cubic feet) Gross Withdrawals From Gas Wells 191,444 192,896 151,401 167,113 397,313 From Oil Wells 0 0 0 0 1,477 From Coalbed Wells 0

64

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

65

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 New York - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,675 6,628 6,736 6,157 7,176 Production (million cubic feet) Gross Withdrawals From Gas Wells 49,607 44,273 35,163 30,495 25,985 From Oil Wells 714 576 650 629 439 From Coalbed Wells 0

66

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

67

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Virginia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,426 7,303 7,470 7,903 7,843 Production (million cubic feet) Gross Withdrawals From Gas Wells 7,419 16,046 23,086 20,375 21,802 From Oil Wells 0 0 0 0 9 From Coalbed Wells 101,567 106,408

68

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Kentucky - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 16,290 17,152 17,670 14,632 17,936 Production (million cubic feet) Gross Withdrawals From Gas Wells 112,587 111,782 133,521 122,578 106,122 From Oil Wells 1,529 1,518 1,809 1,665 0 From Coalbed Wells 0

69

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Pennsylvania - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 52,700 55,631 57,356 44,500 54,347 Production (million cubic feet) Gross Withdrawals From Gas Wells 182,277 R 188,538 R 184,795 R 173,450 242,305 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0

70

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Texas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 87,556 93,507 95,014 100,966 96,617 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,285,458 4,860,377 4,441,188 3,794,952 3,619,901 From Oil Wells 745,587 774,821 849,560 1,073,301 860,675

71

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Alabama - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 6,860 6,913 7,026 7,063 6,327 Production (million cubic feet) Gross Withdrawals From Gas Wells 158,964 142,509 131,448 116,872 114,407 From Oil Wells 6,368 5,758 6,195 5,975 10,978

72

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Louisiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 19,213 18,860 19,137 21,235 19,792 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,288,559 1,100,007 911,967 883,712 775,506 From Oil Wells 61,663 58,037 63,638 68,505 49,380

73

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 South Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 71 89 102 100 95 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,098 1,561 1,300 933 14,396 From Oil Wells 10,909 11,366 11,240 11,516 689 From Coalbed Wells 0 0 0 0 0

74

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Kansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 17,862 21,243 22,145 25,758 24,697 Production (million cubic feet) Gross Withdrawals From Gas Wells 286,210 269,086 247,651 236,834 264,610 From Oil Wells 45,038 42,647 39,071 37,194 0 From Coalbed Wells 44,066

75

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Arkansas - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,592 6,314 7,397 8,388 8,538 Production (million cubic feet) Gross Withdrawals From Gas Wells 173,975 164,316 152,108 132,230 121,684 From Oil Wells 7,378 5,743 5,691 9,291 3,000

76

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 California - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 1,645 1,643 1,580 1,308 1,423 Production (million cubic feet) Gross Withdrawals From Gas Wells 91,460 82,288 73,017 63,902 120,579 From Oil Wells 122,345 121,949 151,369 120,880 70,900

77

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Oklahoma - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 41,921 43,600 44,000 41,238 40,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,452,148 1,413,759 1,140,111 1,281,794 1,394,859 From Oil Wells 153,227 92,467 210,492 104,703 53,720

78

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Alaska - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 261 261 269 277 185 Production (million cubic feet) Gross Withdrawals From Gas Wells 150,483 137,639 127,417 112,268 107,873 From Oil Wells 3,265,401 3,174,747 3,069,683 3,050,654 3,056,918

79

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

80

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Mississippi - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 2,343 2,320 1,979 5,732 1,669 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,673 337,168 387,026 429,829 404,457 From Oil Wells 7,542 8,934 8,714 8,159 43,421 From Coalbed Wells 7,250

82

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,735 6,426 7,303 7,470 7,903 Production (million cubic feet) Gross Withdrawals From Gas Wells R 6,681 R 7,419 R 16,046 R 23,086 20,375 From Oil Wells 0 0 0 0 0 From Coalbed Wells R 86,275 R 101,567

83

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Michigan - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 9,712 9,995 10,600 10,100 11,100 Production (million cubic feet) Gross Withdrawals From Gas Wells R 80,090 R 16,959 R 20,867 R 7,345 18,470 From Oil Wells 54,114 10,716 12,919 9,453 11,620 From Coalbed Wells 0

84

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Montana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,925 7,095 7,031 6,059 6,477 Production (million cubic feet) Gross Withdrawals From Gas Wells R 69,741 R 67,399 R 57,396 R 51,117 37,937 From Oil Wells 23,092 22,995 21,522 19,292 21,777 From Coalbed Wells

85

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Mississippi - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,315 2,343 2,320 1,979 5,732 Production (million cubic feet) Gross Withdrawals From Gas Wells R 259,001 R 331,673 R 337,168 R 387,026 429,829 From Oil Wells 6,203 7,542 8,934 8,714 8,159 From Coalbed Wells

86

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Indiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 2,350 525 563 620 914 Production (million cubic feet) Gross Withdrawals From Gas Wells 3,606 4,701 4,927 6,802 9,075 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

87

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 New York - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 6,680 6,675 6,628 6,736 6,157 Production (million cubic feet) Gross Withdrawals From Gas Wells 54,232 49,607 44,273 35,163 30,495 From Oil Wells 710 714 576 650 629 From Coalbed Wells 0

88

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Texas - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 76,436 87,556 93,507 95,014 100,966 Production (million cubic feet) Gross Withdrawals From Gas Wells R 4,992,042 R 5,285,458 R 4,860,377 R 4,441,188 3,794,952 From Oil Wells 704,092 745,587 774,821 849,560 1,073,301

89

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Ohio - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 34,416 34,963 34,931 46,717 35,104 Production (million cubic feet) Gross Withdrawals From Gas Wells 79,769 83,511 73,459 30,655 65,025 From Oil Wells 5,072 5,301 4,651 45,663 6,684 From Coalbed Wells 0

90

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Colorado - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 25,716 27,021 28,813 30,101 32,000 Production (million cubic feet) Gross Withdrawals From Gas Wells 496,374 459,509 526,077 563,750 1,036,572 From Oil Wells 199,725 327,619 338,565

91

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 South Dakota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S43. Summary statistics for natural gas - South Dakota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 71 71 89 102 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 422 R 1,098 R 1,561 1,300 933 From Oil Wells 11,458 10,909 11,366 11,240 11,516 From Coalbed Wells 0 0

92

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Illinois - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 43 45 51 50 40 Production (million cubic feet) Gross Withdrawals From Gas Wells RE 1,389 RE 1,188 RE 1,438 RE 1,697 2,114 From Oil Wells E 5 E 5 E 5 E 5 7 From Coalbed Wells RE 0 RE

93

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Colorado - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 22,949 25,716 27,021 28,813 30,101 Production (million cubic feet) Gross Withdrawals From Gas Wells R 436,330 R 496,374 R 459,509 R 526,077 563,750 From Oil Wells 160,833 199,725 327,619

94

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Alaska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 239 261 261 269 277 Production (million cubic feet) Gross Withdrawals From Gas Wells 165,624 150,483 137,639 127,417 112,268 From Oil Wells 3,313,666 3,265,401 3,174,747 3,069,683 3,050,654

95

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Ohio - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 34,416 34,416 34,963 34,931 46,717 Production (million cubic feet) Gross Withdrawals From Gas Wells R 82,812 R 79,769 R 83,511 R 73,459 30,655 From Oil Wells 5,268 5,072 5,301 4,651 45,663 From Coalbed Wells

96

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Kentucky - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 16,563 16,290 17,152 17,670 14,632 Production (million cubic feet) Gross Withdrawals From Gas Wells 95,437 R 112,587 R 111,782 133,521 122,578 From Oil Wells 0 1,529 1,518 1,809 1,665 From Coalbed Wells 0

97

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Utah - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 5,197 5,578 5,774 6,075 6,469 Production (million cubic feet) Gross Withdrawals From Gas Wells R 271,890 R 331,143 R 340,224 R 328,135 351,168 From Oil Wells 35,104 36,056 36,795 42,526 49,947 From Coalbed Wells

98

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 California - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 1,540 1,645 1,643 1,580 1,308 Production (million cubic feet) Gross Withdrawals From Gas Wells 93,249 91,460 82,288 73,017 63,902 From Oil Wells R 116,652 R 122,345 R 121,949 R 151,369 120,880

99

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Utah - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 5,578 5,774 6,075 6,469 6,900 Production (million cubic feet) Gross Withdrawals From Gas Wells 331,143 340,224 328,135 351,168 402,899 From Oil Wells 36,056 36,795 42,526 49,947 31,440 From Coalbed Wells 74,399

100

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Louisiana - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18,145 19,213 18,860 19,137 21,235 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,261,539 R 1,288,559 R 1,100,007 R 911,967 883,712 From Oil Wells 106,303 61,663 58,037 63,638 68,505

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Oklahoma - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 38,364 41,921 43,600 44,000 41,238 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,583,356 R 1,452,148 R 1,413,759 R 1,140,111 1,281,794 From Oil Wells 35,186 153,227 92,467 210,492 104,703

102

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 New Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 42,644 44,241 44,784 44,748 32,302 Production (million cubic feet) Gross Withdrawals From Gas Wells R 657,593 R 732,483 R 682,334 R 616,134 556,024 From Oil Wells 227,352 211,496 223,493 238,580 252,326

103

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 West Virginia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 48,215 49,364 50,602 52,498 56,813 Production (million cubic feet) Gross Withdrawals From Gas Wells R 189,968 R 191,444 R 192,896 R 151,401 167,113 From Oil Wells 701 0 0 0 0 From Coalbed Wells

104

Texas Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas % of Total Residential - Sales (Percent) Texas Natural Gas % of Total Residential - Sales (Percent) Decade...

105

Federal Government Increases Renewable Energy Use Over 1000 Percent...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal...

106

Hawaii Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Hawaii Natural Gas % of Total Residential - Sales (Percent) Hawaii Natural Gas % of Total Residential - Sales (Percent)...

107

Missouri Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Missouri Natural Gas % of Total Residential - Sales (Percent) Missouri Natural Gas % of Total Residential - Sales (Percent)...

108

Alaska Natural Gas % of Total Residential - Sales (Percent)  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) Alaska Natural Gas % of Total Residential - Sales (Percent) Alaska Natural Gas % of Total Residential - Sales (Percent)...

109

Arizona Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Arizona Natural Gas % of Total Residential - Sales (Percent) Arizona Natural Gas % of Total Residential - Sales (Percent)...

110

Iowa Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Iowa Natural Gas % of Total Residential - Sales (Percent) Iowa Natural Gas % of Total Residential - Sales (Percent) Decade...

111

Alabama Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Alabama Natural Gas % of Total Residential - Sales (Percent) Alabama Natural Gas % of Total Residential - Sales (Percent)...

112

Florida Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Florida Natural Gas % of Total Residential - Sales (Percent) Florida Natural Gas % of Total Residential - Sales (Percent)...

113

Wyoming Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Wyoming Natural Gas % of Total Residential - Sales (Percent) Wyoming Natural Gas % of Total Residential - Sales (Percent)...

114

Kentucky Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Kentucky Natural Gas % of Total Residential - Sales (Percent) Kentucky Natural Gas % of Total Residential - Sales (Percent)...

115

Illinois Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Illinois Natural Gas % of Total Residential - Sales (Percent) Illinois Natural Gas % of Total Residential - Sales (Percent)...

116

Nevada Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Nevada Natural Gas % of Total Residential - Sales (Percent) Nevada Natural Gas % of Total Residential - Sales (Percent)...

117

Oregon Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Oregon Natural Gas % of Total Residential - Sales (Percent) Oregon Natural Gas % of Total Residential - Sales (Percent)...

118

Kansas Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Kansas Natural Gas % of Total Residential - Sales (Percent) Kansas Natural Gas % of Total Residential - Sales (Percent)...

119

Tennessee Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Tennessee Natural Gas % of Total Residential - Sales (Percent) Tennessee Natural Gas % of Total Residential - Sales (Percent)...

120

Maine Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Maine Natural Gas % of Total Residential - Sales (Percent) Maine Natural Gas % of Total Residential - Sales (Percent) Decade...

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alabama Natural Gas Percentage Total Commercial Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

122

Utah Natural Gas % of Total Residential Deliveries (Percent)  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

123

California Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

124

Ohio Natural Gas % of Total Residential Deliveries (Percent)  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Ohio Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

125

Wisconsin Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Wisconsin Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

126

Michigan Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Michigan Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

127

Idaho Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Idaho Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

128

Vermont Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Vermont Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

129

Colorado Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

130

Alabama Natural Gas Percentage Total Industrial Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

131

Illinois Natural Gas % of Total Residential Deliveries (Percent...  

Annual Energy Outlook 2012 (EIA)

% of Total Residential Deliveries (Percent) Illinois Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

132

New Mexico Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

133

New Mexico Natural Gas % of Total Vehicle Fuel Deliveries (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Deliveries (Percent) New Mexico Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

134

Texas Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

% of Total Residential Deliveries (Percent) Texas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

135

Utah Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Utah Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

136

West Virginia Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

137

Kansas Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Kansas Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

138

Kentucky Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Kentucky Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

139

Mississippi Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Mississippi Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

140

West Virginia Percent of Historical Oil Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Federal Gulf Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

Federal Gulf Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

142

Alabama Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Alabama Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

143

North Dakota Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

North Dakota Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

144

Pennsylvania Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

Pennsylvania Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

145

Florida Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

146

California Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

California Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

147

United States Percent of Historical Gas Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

148

Alaska Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

149

Colorado Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Colorado Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

150

Texas Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

151

Oklahoma Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Oklahoma Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

152

North Dakota Percent of Historical Oil Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

North Dakota Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

153

Wyoming Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Wyoming Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

154

Florida Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

155

Michigan Percent of Historical Oil Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Michigan Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

156

United States Percent of Historical Oil Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

157

Federal Gulf Percent of Historical Oil Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

Federal Gulf Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

158

South Dakota Percent of Historical Oil Wells by Production Rate ...  

U.S. Energy Information Administration (EIA)

South Dakota Percent of Historical Oil Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

159

Texas Percent of Historical Gas Wells by Production Rate Bracket  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Gas Wells by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

160

Optimization Online - TfMin: Short Reference Manual  

E-Print Network (OSTI)

Jul 23, 2002 ... TfMin: Short Reference Manual. Jean-Baptiste Caillau (caillau ***at*** enseeiht.fr ) Joseph Gergaud (gergaud ***at*** enseeiht.fr)

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Additional Characterization of Min-K TE-1400 Thermal Insulation  

Science Conference Proceedings (OSTI)

Min-K 1400TE (Thermal Ceramics, Augusta, Georgia) insulation material was further characterized at Oak Ridge National Laboratory (ORNL) for use in structural applications under gradient temperature conditions in an inert environment. Original characterization of Min-K was undertaken from April 1997 to July 2008 to determine its high temperature compressive strength and stress relaxation behavior up to 900 C in helium along with the formulation of a general model for the mechanical behavior exhibited by Min-K under these conditions. The additional testing described in this report was undertaken from April 2009 to June 2010 in an effort to further evaluate the mechanical behavior of Min-K when subjected to a variety of conditions including alternative test temperatures and time scales than previously measured. The behavior of Min-K under changing environments (temperature and strain), lateral loads, and additional isothermal temperatures was therefore explored.

Hemrick, James Gordon [ORNL; King, James [ORNL

2011-01-01T23:59:59.000Z

162

Property:Incentive/TechMin | Open Energy Information  

Open Energy Info (EERE)

TechMin TechMin Jump to: navigation, search Property Name Incentive/TechMin Property Type Text Description Technology Minimum. Pages using the property "Incentive/TechMin" Showing 25 pages using this property. (previous 25) (next 25) A Alternative Energy Portfolio Standard + Renewables: 12.5% by 2024 (includes solar-electric minimum) Solar-Electric: 0.5% by 2024 Alternative Energy Portfolio Standard (Pennsylvania) + Tier I: ~8% by compliance year 2020-2021 (includes PV minimum) Tier II: 10% by compliance year 2020-2021 PV: 0.5% by compliance year 2020-2021 Alternative and Renewable Energy Portfolio Standard (West Virginia) + At least 90% must come from eligible resources other than natural gas C City of Austin - Renewables Portfolio Standard (Texas) + 200 MW from solar by 2020

163

Min-kota Fisheries Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Min-kota Fisheries Aquaculture Low Temperature Geothermal Facility Min-kota Fisheries Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Min-kota Fisheries Aquaculture Low Temperature Geothermal Facility Facility Min-kota Fisheries Sector Geothermal energy Type Aquaculture Location Philip, South Dakota Coordinates 44.0394329°, -101.6651441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

164

A Climatological Model for 1-min Precipitation Rates  

Science Conference Proceedings (OSTI)

A model for estimating mean monthly total time occurrence for 1-min precipitation rates from monthly climatological variables has been developed. The model has two components: an estimation algorithm for the mean monthly percentage of time in ...

Paul Tattelman; Kevin P. Larson; Andrew J. Mazzella Jr.

1995-05-01T23:59:59.000Z

165

Utah Percent of Historical Oil Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Utah Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

166

California Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

California Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

167

Ohio Percent of Historical Gas Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Ohio Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

168

West Virginia Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

169

Oklahoma Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Oklahoma Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

170

Pennsylvania Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Pennsylvania Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

171

Texas Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

172

Texas Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Texas Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

173

United States Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

174

United States Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

United States Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

175

Michigan Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Michigan Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

176

Alaska Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

177

Montana Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Montana Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

178

Ohio Percent of Historical Oil Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Ohio Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

179

Florida Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Florida Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

180

Kentucky Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Kentucky Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Arkansas Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Arkansas Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

182

Tennessee Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Tennessee Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

183

West Virginia Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

West Virginia Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

184

Colorado Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Colorado Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

185

Missouri Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Missouri Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

186

Wyoming Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Wyoming Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

187

Alaska Percent of Historical Oil Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

Alaska Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

188

South Dakota Natural Gas % of Total Residential - Sales (Percent...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas % of Total Residential - Sales (Percent) South Dakota Natural Gas % of Total Residential - Sales...

189

South Dakota Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

South Dakota Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

190

South Dakota Natural Gas % of Total Residential Deliveries (Percent...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas % of Total Residential Deliveries (Percent) South Dakota Natural Gas % of Total Residential Deliveries...

191

New Mexico Percent of Historical Gas Well Production (BOE) by ...  

U.S. Energy Information Administration (EIA)

New Mexico Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

192

North Dakota Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) North Dakota Natural Gas % of Total Residential - Sales (Percent) North Dakota Natural Gas % of Total Residential - Sales...

193

New Jersey Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) New Jersey Natural Gas % of Total Residential - Sales (Percent) New Jersey Natural Gas % of Total Residential - Sales...

194

North Carolina Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) North Carolina Natural Gas % of Total Residential - Sales (Percent) North Carolina Natural Gas % of Total Residential - Sales...

195

West Virginia Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) West Virginia Natural Gas % of Total Residential - Sales (Percent) West Virginia Natural Gas % of Total Residential - Sales...

196

Massachusetts Natural Gas % of Total Residential - Sales (Percent...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Massachusetts Natural Gas % of Total Residential - Sales (Percent) Massachusetts Natural Gas % of Total Residential - Sales...

197

Kinetics for the reaction of hydrogen with a plutonium-1 weight percent gallium alloy powder  

Science Conference Proceedings (OSTI)

Kinetics for the reaction of hydrogen with plutonium-1 w/o gallium were measured using powder prepared ''in situ.'' The rates obeyed a first-order rate law and were independent of temperature from -29/degree/ to 355/degree/C. A pressure dependence proportional to P/sup //one-half/ was observed at pressures less than 1 kPa. From 1 to 70 kPa the pressure dependence rapidly decreased. Total pressure dependence could be accurately described by a Langmuir equation. Results indicate an adsorption-controlled reaction at low pressures and a reaction-controlled process at high pressure. 19 refs.

Stakebake, J.L.

1981-11-01T23:59:59.000Z

198

Direct Hydrogenation Magnesium Boride to Magnesium Borohydride: Demonstration of >11 Weight Percent Reversible Hydrogen Storage  

DOE Green Energy (OSTI)

We here for the first time demonstrate direct hydrogenation of magnesium boride, MgB2, to magnesium borohydride, Mg(BH4)2 at 900 bar H2-pressures and 400C. Upon 14.8wt% hydrogen release, the end-decomposition product of Mg(BH4)2 is MgB2, thus, this is a unique reversible path here obtaining >11wt% H2 which implies promise for a fully reversible hydrogen storage material.

Severa, Godwin; Ronnebro, Ewa; Jensen, Craig M.

2010-11-16T23:59:59.000Z

199

Impacts of a 10-Percent Renewable Portfolio Standard  

Reports and Publications (EIA)

This service report addresses the renewable portfolio standard provision of S. 1766. At Senator Murkowski's request it also includes an analysis of the impacts of a renewable portfolio standard patterned after the one called for in S. 1766, but where the required share is based on a 20 percent RPS by 2020 rather than the 10 percent RPS called for in S. 1766.

Alan Beamon

2002-03-01T23:59:59.000Z

200

Energy and Economic Impacts of Implementing Both a 25-Percent RPS and a 25-Percent RFS by 2025  

Reports and Publications (EIA)

This report responds to a request by Senator James Inhofe for analysis of a "25-by-25" proposal that combines a requirement that a 25-percent share of electricity sales be produced from renewable sources by 2025 with a requirement that a 25-percent share of liquid transportation fuel sales also be derived from renewable sources by 2025.

John J. Conti

2007-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Instruction scheduling using MAX-MIN ant system optimization  

Science Conference Proceedings (OSTI)

Instruction scheduling is a fundamental step for mapping an application to a computational device. It takes a behavioral application specification and produces a schedule for the instructions onto a collection of processing units. The objective is to ... Keywords: MAX-MIN ant system, force-directed scheduling, instruction scheduling, list scheduling

Gang Wang; Wenrui Gong; Ryan Kastner

2005-04-01T23:59:59.000Z

202

Federal Government Increases Renewable Energy Use Over 1000 Percent since  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Government Increases Renewable Energy Use Over 1000 Percent Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy consumer in the nation, the federal government now uses 2375 Gigawatt hours (GWh) of renewable energy -- enough to power 225,000 homes or a city the size of El Paso, Texas, for a year. "Particularly in light of tight oil and gas supplies caused by Hurricanes Katrina and Rita, it is important that all Americans - including the

203

Federal Government Increases Renewable Energy Use Over 1000 Percent since  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Government Increases Renewable Energy Use Over 1000 Percent Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal Federal Government Increases Renewable Energy Use Over 1000 Percent since 1999; Exceeds Goal November 3, 2005 - 12:35pm Addthis WASHINGTON, DC - The Department of Energy (DOE) announced today that the federal government has exceeded its goal of obtaining 2.5 percent of its electricity needs from renewable energy sources by September 30, 2005. The largest energy consumer in the nation, the federal government now uses 2375 Gigawatt hours (GWh) of renewable energy -- enough to power 225,000 homes or a city the size of El Paso, Texas, for a year. "Particularly in light of tight oil and gas supplies caused by Hurricanes Katrina and Rita, it is important that all Americans - including the

204

BOSS Measures the Universe to One-Percent Accuracy  

NLE Websites -- All DOE Office Websites (Extended Search)

This and future measures at this precision are the key to determining the nature of dark energy. "One-percent accuracy in the scale of the universe is the most precise such...

205

Impacts of a 15-Percent Renewable Portfolio Standard  

Reports and Publications (EIA)

This analysis responds to a request from Senator Jeff Bingaman that the Energy Information Administration (EIA) analyze a renewable portfolio standard (RPS) requiring that 15 percent of U.S. electricity sales be derived from qualifying renewable energy resources.

Alan Beamon

2007-06-11T23:59:59.000Z

206

Understanding Corn Test Weight  

E-Print Network (OSTI)

Corn test weight (TW) is an often discussed topic of conversation among corn growers. The topic moves to the forefront in years when corn has been stressed at some point during the grain filling period or when the growing season is ended by frost before physiological maturity is reached. In many cases, the concept of test weight is misunderstood. Test weight is volumetric measurement. An official bushel measures 1.244 cubic feet. To measure TW, we usually take the weight of some smaller unit of measure and make a conversion. The official minimum allowable TW for U.S. No. 1 yellow corn is 56 lbs. per bushel, while No. 2 corn is 54 lbs. per bushel. It's unknown how this all started hundreds of years ago, but perhaps it was easier and more fair to sell things based on volume (length x width x height), something a person could see, instead of weight. Today, of course, corn is sold by weight and often in 56-pound blocks that we, for some reason, still call a bushel. Because weight is contingent on moisture content, grain buyers base their price on a "standard " moisture of (usually) 15 or 15.5 percent. Test weight and yield... Sometimes high TW is associated with high grain yield and low TW is associated with low grain yield. In fact, there is a poor relationship between TW and yield. The same TW can exist across a

Mike Rankin

2009-01-01T23:59:59.000Z

207

NETL: News Release - President's Initiative to Seek 90 Percent Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

April 21, 2004 April 21, 2004 President's Initiative to Seek 90 Percent Mercury Removal We Energies to Test TOXECON(tm) Process in Michigan Coal-fired Power Plant WASHINGTON, DC - The Department of Energy (DOE) and We Energies today initiated a joint venture to demonstrate technology that will remove an unprecedented 90 percent of mercury emissions from coal-based power plants. Presque Isle Power Plant - We Energies' Presque Isle Power Plant located on the shores of Lake Superior in the Upper Peninsula of Michigan. As part of the President's Clean Coal Power Initiative of technology development and demonstration, the new project supports current proposals to reduce mercury emissions in the range of 70 percent through a proposed regulation pending before the Environmental Protection Agency or, in the

208

Single Min-Entropy Random Source can be Amplified  

E-Print Network (OSTI)

Expansion and amplification of weak randomness with the help of untrusted quantum devices is a hot topic of current research. Here we contribute with a procedure for amplifying a single weak random source with the help of tri-partite GHZ-type entangled states. If the quality of the source measured in min-entropy rate reaches a fixed threshold $log_2(\\sqrt{3})$, perfect random bits can be produced. Presented procedure works well also on locally bit-fixing random sources, which cannot be characterized as Santha--Vazirani sources and thus using existing amplification procedures cannot be applied.

Martin Plesch; Matej Pivoluska

2013-05-05T23:59:59.000Z

209

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 4.3: 4.3: 4.3: ...

210

U.S. Refinery Yield of Petroleum Coke (Percent)  

U.S. Energy Information Administration (EIA)

U.S. Refinery Yield of Petroleum Coke (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 4.4: 4.6: 4.5: 4.3: 4.1: 4.2: 4.4: 4.3: ...

211

Table 2. Percent of Households with Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of Households with Vehicles, Selected Survey Years " Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08566108 "Household Characteristics" "Census Region and Division" " Northeast",77.22222222,"NA",79.16666667,82.9015544,75.38461538,85.09615385 " New England",88.37209302,"NA",81.81818182,82.9787234,82,88.52459016 " Middle Atlantic ",73.72262774,"NA",78.37837838,82.31292517,74.30555556,83.67346939 " Midwest ",85.51401869,"NA",90.66666667,90.17094017,92.30769231,91.47286822 " East North Central",82,"NA",88.81987578,89.88095238,91.51515152,90.55555556

212

Development of a Dedicated 100 Percent Ventilation Air Heat Pump  

Science Conference Proceedings (OSTI)

The concept of using dedicated 100 percent ventilation makeup air conditioning units to meet indoor air quality standards is attractive because of the inherent advantages. However, it is challenging to design and build direct expansion unitary equipment for this purpose. EPRI teamed with ClimateMaster to develop and test a prototype of a vapor compression heat pump to advance the state of the art in such equipment. The prototype unit provides deep dehumidification and cooling of ventilation air in the su...

2000-12-14T23:59:59.000Z

213

ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction  

DOE Data Explorer (OSTI)

Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

Tom Stoffel; Bev Kay; Aron Habte; Mary Anderberg; Mark Kutchenreiter

214

Near Zero Emissions at 50 Percent Thermal Efficiency  

SciTech Connect

Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called ??Near-Zero Emission at 50 Percent Thermal Efficiency,? and was completed in 2007. The second phase was initiated in 2006, and this phase was named ??Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines.? This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: ? Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. ? Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. ? Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. ? Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. ? Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: ? Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under EPA 2010 emissions regulations. ? Experimentally demonstrate brake efficiency of 48.5% at EPA 2010 emission level at single steady-state point. ? Analytically demonstrated additional brake efficiency benefits using advanced aftertreatment configuration concept and air system enhancement including, but not limited to, turbo-compound, variable valve actuator system, and new cylinder head redesign, thus helping to achieve the final program goals. ? Experimentally demonstrated EPA 2010 emissions over FTP cycles using advanced integrated engine and aftertreatment system. These aggressive thermal efficiency and emissions results were achieved by applying a robust systems technology development methodology. It used integrated analytical and experimental tools for subsystem component optimization encompassing advanced fuel injection system, increased EGR cooling capacity, combustion process optimization, and advanced aftertreatment technologies. Model based controls employing multiple input and output techniques enabled efficient integration of the various subsystems and ensured optimal performance of each system within the total engine package. . The key objective of the NZ-50 program for the second phase was to explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize cylinder-out emissions, targeting a 10% efficiency improvement. The most noteworthy achievements in this phase of the program are summarized as follows: ? Experimentally and analytically evaluated numerous air system improvements related to the turbocharger and variable valve actuation. Some of the items tested proved to be very successful and modifications to the turbine discovered in this program have since been incorporated into production hardware. ? The combustion system development continued with evaluation of various designs of the 2-step piston bowl. Significant improvemen

None

2012-12-31T23:59:59.000Z

215

Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" 8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All Buildings ................",4657,641,576,627,2813,67338,5736,7593,10745,43264 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,366,230,272,1479,6774,1091,707,750,4227 "5,001 to 10,000 ..............",1110,164,194,149,603,8238,1148,1504,1177,4409

216

Table B29. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" 9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled","All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled" "All Buildings ................",4657,1097,1012,751,1796,67338,8864,16846,16966,24662 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,668,352,294,1034,6774,1895,1084,838,2957 "5,001 to 10,000 ..............",1110,282,292,188,348,8238,2026,2233,1435,2544

217

Table B30. Percent of Floorspace Lit When Open, Number of Buildings and Floorspa  

U.S. Energy Information Administration (EIA) Indexed Site

0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" 0. Percent of Floorspace Lit When Open, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit","All Buildings","Not Lita","1 to 50 Percent Lit","51 to 99 Percent Lit","100 Percent Lit" "All Buildings ................",4657,498,835,1228,2096,67338,3253,9187,20665,34233 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,323,351,517,1156,6774,915,1061,1499,3299 "5,001 to 10,000 ..............",1110,114,279,351,367,8238,818,2014,2614,2793

218

Analysis of a 10-Percent RPS - Response letter summarizing principal conclusions of supplement  

Reports and Publications (EIA)

Transmittal letter for the supplement to the Service Report 'Analysis of a 10-Percent RenewablePortfolio Standard'

Alan Beamon

2003-06-30T23:59:59.000Z

219

Weighted Guidelines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

───────────────────────────────────Chapter 15.4-2 (July 2010) 1 Weighted Guidelines [References: FAR 15.4, DEAR 915.4] Overview This section provides guidance for applying the Department of Energy's (DOE) structured approach in determining profit/fee. Background The Federal Acquisition Regulation (FAR) requires consideration of certain factors (described in 15.404-4 as "profit-analysis factors" or "common factors") in developing a structured profit/fee approach. It does not prescribe specific government-wide procedures for profit/fee analysis. Actual profit/fee may vary (FAR 15.404-4(a) (1)) as you perform your profit/fee analysis;

220

Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of  

NLE Websites -- All DOE Office Websites (Extended Search)

0: March 26, 0: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection to someone by E-mail Share Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Facebook Tweet about Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Twitter Bookmark Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Google Bookmark Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Delicious Rank Vehicle Technologies Office: Fact #720: March 26, 2012 Eleven Percent of New Light Trucks Sold have Gasoline Direct Injection on Digg

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

97 percent of special nuclear material de-inventoried from LLNL...  

NLE Websites -- All DOE Office Websites (Extended Search)

97 percent of special nuclear material de-inventoried from LLNL | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

222

Analyses of 1-min Rain Rates Extracted from Weighing Raingage Recordings  

Science Conference Proceedings (OSTI)

A method for extracting 1-min rain rates from original weighing raingage recordings is described. The method allows the retrieval of rates for long periods at approximately 300 United States weather stations. The process combines magnification of ...

Paul Tattelman; Richard W. Knight

1988-08-01T23:59:59.000Z

223

Max-Min characterization of the mountain pass energy level for a class of variational problems  

E-Print Network (OSTI)

We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

Jacopo Bellazzini; Nicola Visciglia

2009-09-01T23:59:59.000Z

224

Max-Min characterization of the mountain pass energy level for a class of variational problems  

E-Print Network (OSTI)

We provide a max-min characterization of the mountain pass energy level for a family of variational problems. As a consequence we deduce the mountain pass structure of solutions to suitable PDEs, whose existence follows from classical minimization argument.

Bellazzini, Jacopo

2009-01-01T23:59:59.000Z

225

Achieving a ten percent greenhouse gas reduction by 2020 Response to  

E-Print Network (OSTI)

ERG/200801 Achieving a ten percent greenhouse gas reduction by 2020 Response to The Nova Scotia. Sandy Cook. #12;Achieving a ten percent greenhouse gas reduction by 2020 1 Introduction In April 2007 matters. Central to the act is the government's commitment to reducing greenhouse gas emissions

Hughes, Larry

226

Ambient aerosol sampling inlet for flow rates of 100 and 400 l/min  

E-Print Network (OSTI)

New bioaerosol sampling inlets were designed and tested that have nominal exhaust flow rates of 100 L/min to 400 L/min, and which have internal fractionators and screens to scalp large, unwanted particles and debris from the transmitted size distribution. These units consist of the same aspiration section, which is a 100 L/min Bell Shaped Inlet (BSI-100), and different pre-separators. The pre-separators are called the IRI-100 (Inline Real Impactor) with an exhaust flow rate of 100 L/min, the IRI-400 (exhaust flow rate of 400 L/min), the IVI-300 (Inline Virtual Impactor for a flow rate of 300 L/min) and the IVI-400. These units were tested in a wind tunnel at speeds of 2, 8, and 24 km/hr with particle sizes between 3 and 20 ?m AD (aerodynamic diameter). The units show wind independent characteristics over the range of wind speeds tested. The aspiration section of the BSI-100 has greater than 85% penetration for particle sizes ? 10 ?m AD. The IRI-100, IRI-400, IVI-300 and IVI-400, when combined with the BSI-100 all provide cutpoints of 11 0.5 ?m AD.

Baehl, Michael Matthew

2007-12-01T23:59:59.000Z

227

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688 square miles. Reducing its contaminated footprint to 243 square miles has proven to be a monumental task, and a challenge the EM team was ready to take on from the beginning. Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated More Documents & Publications 2011 ARRA Newsletters

228

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could Produce 20 Percent of U.S. Electricity By 2030 Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of harnessing wind power to provide up to 20 percent of the nation's total electricity needs by 2030. Entitled "20 Percent Wind Energy by 2030", the report identifies requirements to achieve this goal including reducing the cost of wind technologies, citing new transmission infrastructure, and

229

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 Wind Energy Could Produce 20 Percent of U.S. Electricity By 2030 May 12, 2008 - 11:30am Addthis DOE Report Analyzes U.S. Wind Resources, Technology Requirements, and Manufacturing, Siting and Transmission Hurdles to Increasing the Use of Clean and Sustainable Wind Power WASHINGTON, DC - The U.S Department of Energy (DOE) today released a first-of-its kind report that examines the technical feasibility of harnessing wind power to provide up to 20 percent of the nation's total electricity needs by 2030. Entitled "20 Percent Wind Energy by 2030", the report identifies requirements to achieve this goal including reducing the cost of wind technologies, citing new transmission infrastructure, and

230

Weighted Guidelines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weighted Guidelines Weighted Guidelines Weighted Guidelines More Documents & Publications Weighted Guidelines DOE F 4220.23 OPAM Policy Acquisition Guides...

231

Weighted Guidelines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weighted Guidelines Weighted Guidelines Weighted Guidelines More Documents & Publications Weighted Guidelines OPAM Policy Acquisition Guides DOE F 4220.23...

232

AtMIN7 mediated disease resistance to Pseudomonas syringae in Arabidopsis  

DOE Patents (OSTI)

The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein AtMIN7 mediated protection is enhanced and/or there is a decrease in activity of an AtMIN7 associated virulence protein such as a Pseudomonas syringae pv. tomato DC3000 HopM1. Reagents of the present invention provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

He, Sheng Yang (Okemos, MI); Nomura, Kinya (East Lansing, MI)

2011-07-26T23:59:59.000Z

233

97 percent of special nuclear material de-inventoried from LLNL | National  

National Nuclear Security Administration (NNSA)

97 percent of special nuclear material de-inventoried from LLNL | National 97 percent of special nuclear material de-inventoried from LLNL | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > 97 percent of special nuclear material de-inventoried ... 97 percent of special nuclear material de-inventoried from LLNL Posted By Office of Public Affairs

234

If I generate 20 percent of my national electricity from wind...  

Open Energy Info (EERE)

of generating 20 percent of my total capacity from say wind? And all of it replaces coal powered electricty ? What happended to GDP ? Is the economy a net gain or net loss ?...

235

Figure 75. U.S. electricity demand growth, 1950-2040 (percent, 3 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 75. U.S. electricity demand growth, 1950-2040 (percent, 3-year moving average) Year 3-year moving average Trendline 1950.00

236

MinWind I & II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

MinWind I & II Wind Farm MinWind I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner 'Farmer's Cooperative Developer Farmer's Cooperative with Dan Juhl Energy Purchaser Alliant Energy Location Rock County MN Coordinates 43.6748°, -96.2622° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6748,"lon":-96.2622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

A min-max optimization framework for designing ?? learners: theory and hardware  

Science Conference Proceedings (OSTI)

In this paper, we present a framework for constructing ?? learning algorithms and hardware that can identify and track low-dimensional manifolds embedded in a high-dimensional analog signal space. At the core of the proposed approach is a min-max ... Keywords: ?? conversion, analog-to-digital conversion (ADC), high-dimensional signal processing, manifold learning, multichannel ADC, signal decorrelation

Amit Gore; Shantanu Chakrabartty

2010-03-01T23:59:59.000Z

238

"Dark Web: Exploring and Min-ing the Dark Side of the Web"  

E-Print Network (OSTI)

Title: "Dark Web: Exploring and Min- ing the Dark Side of the Web" Speaker: Director, Prof will review the emerging research in Terrorism Informatics based on a web mining perspective. Recent progress in the internationally re- nowned Dark Web project will be reviewed, including: deep/dark web spider- ing (web sites

Michelsen, Claus

239

Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a  

E-Print Network (OSTI)

Analysis Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a , Inês L considerably. To quantify the influence of factors that drive consumer choices for light bulbs, we conducted incandescent bulbs. About half of the total lighting service (in terms of lumens) was provided by incandes

Michalek, Jeremy J.

240

MinWind III-IX Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III-IX Wind Farm III-IX Wind Farm Jump to: navigation, search Name MinWind III-IX Wind Farm Facility MinWind III-IX Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Energy Purchaser Xcel Energy Location Near Luverne MN Coordinates 43.6505°, -96.3892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6505,"lon":-96.3892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

242

Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone June 3, 2011 - 12:00pm Addthis Media Contacts Donald Metzler Moab Federal Project Director (970) 257-2115 Wendee Ryan S&K Aerospace Public Affairs Manager (970) 257-2145 Grand Junction, CO - One quarter of the uranium mill tailings pile located in Moab, Utah, has been relocated to the Crescent Junction, Utah, site for permanent disposal. Four million tons of the 16 million tons total has been relocated under the Uranium Mill Tailings Remedial Action Project managed by the U.S. Department of Energy (DOE). A little over 2 years ago, Remedial Action Contractor EnergySolutions began

243

Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2, 2012 November 2, 2012 WASHINGTON, D.C. - The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 688 square miles. Reducing its contaminated footprint to 243 square miles has proven to be a monu- mental task, and a challenge the EM team was ready to take on from the beginning. In 2009, EM identified a goal of 40 percent footprint reduction by September 2011 as its High Priority Performance Goal. EM achieved that goal in April 2011, five months ahead of schedule, and continues to achieve footprint reduction, primarily at Savannah River Site and Hanford. Once

244

Moab Reaches 40-Percent Mark in Tailings Removal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Reaches 40-Percent Mark in Tailings Removal Moab Reaches 40-Percent Mark in Tailings Removal Moab Reaches 40-Percent Mark in Tailings Removal December 24, 2013 - 12:00pm Addthis A haul truck carrying a container is loaded with mill tailings at the Moab site. Once loaded and lidded, the container will be placed on a railcar for shipment by train to the Crescent Junction disposal site. A haul truck carrying a container is loaded with mill tailings at the Moab site. Once loaded and lidded, the container will be placed on a railcar for shipment by train to the Crescent Junction disposal site. MOAB, Utah - The Moab Uranium Mill Tailings Remedial Action Project had a productive year, despite continued budget constraints and a first-ever, three-month curtailment of shipping operations last winter. On June 18, the project reached a significant milestone of having shipped 6

245

Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge Partners Pledge 20 Percent Energy Drop Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 Better Buildings Challenge Partners Pledge 20 Percent Energy Drop By 2020 November 9, 2011 - 10:00am Addthis This is the Atlanta Better Buildings Challenge Breakout Session Panel with representatives from the City of Atlanta Office of Sustainability, Southface, the U.S. General Services Administration, and two Atlanta BBC partner organizations. | Photo courtesy of Fred Perry Photography This is the Atlanta Better Buildings Challenge Breakout Session Panel with representatives from the City of Atlanta Office of Sustainability, Southface, the U.S. General Services Administration, and two Atlanta BBC partner organizations. | Photo courtesy of Fred Perry Photography Maria Tikoff Vargas

246

Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test Novel Sorbent Achieves 90 Percent Carbon Capture in DOE-Sponsored Test August 21, 2012 - 1:00pm Addthis Washington, DC - The successful bench-scale test of a novel carbon dioxide (CO2) capturing sorbent promises to further advance the process as a possible technological option for reducing CO2 emissions from coal-fired power plants. The new sorbent, BrightBlack™, was originally developed for a different application by Advanced Technology Materials Inc. (ATMI) , a subcontractor to SRI for the Department of Energy (DOE)-sponsored test at the University of Toledo. Through partnering with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) and others, SRI developed a method to

247

If I generate 20 percent of my national electricity from wind and solar -  

Open Energy Info (EERE)

If I generate 20 percent of my national electricity from wind and solar - If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home > Groups > DOE Wind Vision Community I think that the economics of fossil fuesl are well understood. Some gets to find the fuel and sell it. The fuel and all associated activities factor into the economic equation of the nation and the wrold. What is the economics of generating 20 percent of my total capacity from say wind? And all of it replaces coal powered electricty ? What happended to GDP ? Is the economy a net gain or net loss ? The value of the electricity came into the system, but no coal is bought or sold. Submitted by Jamespr on 6 May, 2013 - 17:46 0 answers Groups Menu You must login in order to post into this group.

248

A numerical study of bench blast row delay timing and its influence on percent-cast  

SciTech Connect

The computer program, DMC (Distinct Motion Code), which was developed for simulating the rock motion associated with blasting, has been used to study the influence of row delay timing on rock motion. The numerical simulations correspond with field observations in that very short delays (< 50ms) and very long delays (> 300ms) produce a lower percent-cast than a medium delay (100 to 200 ms). The DMC predicted relationship between row delay timing and percent-cast is more complex than expected with a dip in the curve where the optimum timing might be expected. More study is required to gain a full understanding of this phenomenon.

Preece, D.S.

1993-11-01T23:59:59.000Z

249

Weights and Measures Division Connections  

Science Conference Proceedings (OSTI)

Office of Weights and Measures Connections. Welcome to the Office of Weights and Measures newsletter Weights and ...

2013-09-11T23:59:59.000Z

250

Ninety-nine percent of women will be financially responsible for themselves or their  

E-Print Network (OSTI)

or their families at some point in their lives, but less than half (47 percent) of working women have a retirement.S. and has reached more than 19,000 people to date. Wi$eUp is available as both an on-line course Calendar for the exact date and time of your annual update training. Agent Planning Work with other

251

Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm  

Science Conference Proceedings (OSTI)

The first results of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field algorithm's global percent tree cover are presented. Percent tree cover per 500-m MODIS pixel is estimated using a supervised regression ...

M. C. Hansen; R. S. DeFries; J. R. G. Townshend; M. Carroll; C. Dimiceli; R. A. Sohlberg

2003-10-01T23:59:59.000Z

252

ARM Energy Balance Bowen Ratio (EBBR) station: surf. heat flux and related data, 30-min  

DOE Data Explorer (OSTI)

The Energy Balance Bowen Ratio (EBBR) system produces 30-min estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity. Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

Cook, David

253

Fe/Al2O3 C2H4 Hata mm/10 min  

E-Print Network (OSTI)

Fe/Al2O3 C2H4 () () () () () () () * () 1. (SWNT) SWNT (CVD) (CNT)[1] Hata mm/10 min SWNT (Super Growth)[2]Al2O3 Fe C2H4 SWNT Fe/Al2O3 C2H4 CVD SWNT CNT CNT 2 SiO2 Al2O3 20 (RBM) 1350 cm-1 (D-Band)Fe G/D RBM Fe SWNT Al 15 nm Fe 0.6 nm CVD TEM Fig. 3 3 nm SWNT

Maruyama, Shigeo

254

ARM Energy Balance Bowen Ratio (EBBR) station: surf. heat flux and related data, 30-min  

SciTech Connect

The Energy Balance Bowen Ratio (EBBR) system produces 30-min estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity. Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

Cook, David

1993-07-04T23:59:59.000Z

255

DOE/SC-ARM/TR-112 Changes to MFRSRCLDOD1MIN Datastream S McFarlane  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Changes to MFRSRCLDOD1MIN Datastream S McFarlane Y Shi May 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

256

Maximal heart rates of 130140beats min-1 have been measured in yellowfin tuna (Thunnus albacares) (Brill, 1987;  

E-Print Network (OSTI)

Maximal heart rates of 130­140beats min-1 have been measured in yellowfin tuna (Thunnus albacares) (Brill, 1987; Farrell et al., 1992; Keen et al., 1995). These heart rates slightly exceed the suggested, skipjack tuna (Katsuwonus pelamis) have maximum heart rates of 154­191 beats min-1 (Brill, 1987; Farrell et

Vellend, Mark

257

Meeting the Challenge: The Prospect of Achieving 30 Percent Savings Through the Weatherization Assistance Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's (DOE's) Weatherization Assistance Program has been installing energy-efficiency measures in low-income houses for over 25 years, achieving savings exceeding 30 percent of natural gas used for space heating. Recently, as part of its Weatherization Plus initiative, the Weatherization Assistance Program adopted the goal of achieving 30 percent energy savings for all household energy usage. The expansion of the Weatherization Assistance Program to include electric baseload components such as lighting and refrigerators provides additional opportunities for saving energy and meeting this ambitious goal. This report documents an Oak Ridge National Laboratory study that examined the potential savings that could be achieved by installing various weatherization measures in different types of dwellings throughout the country. Three different definitions of savings are used: (1) reductions in pre-weatherization expenditures; (2) savings in the amount of energy consumed at the house site, regardless of fuel type (''site Btus''); and (3) savings in the total amount of energy consumed at the source (''source Btus''), which reflects the fact that each Btu* of electricity consumed at the household level requires approximately three Btus to produce at the generation source. In addition, the effects of weatherization efforts on carbon dioxide (CO{sub 2}) emissions are examined.

Schweitzer, M.

2002-05-31T23:59:59.000Z

258

Calculation of oxygen diffusion in plutonium oxide films during the high-temperature oxidation of plutonium-1 weight percent gallium in 500 torr of air  

Science Conference Proceedings (OSTI)

Oxygen self-diffusion in PuO/sub 1.995/ was calculated from rate constants obtained for the parabolic oxidation of the Pu-1 wt % Ga alloy in 500-torr dry air between 250 and 480/degree/C. The activation energy for oxygen vacancy diffusion in the n-type PuO/sub 2-x/ is 22.6 kcal/mole. Results from this investigation are compared with other reported results, and possible explanation for the difference in results is discussed. 21 refs., 5 figs., 1 tab.

Stakebake, J.L.

1988-05-27T23:59:59.000Z

259

Simulation of the vacuum assisted resin transfer molding (VARTM) process and the development of light-weight composite bridging  

E-Print Network (OSTI)

fibers to hold the carbon fiber tows together. Photographsmm) Uni Triax Carbon Percent by Weight Fiber Type/Size FiberT 700 Filler Fiber NA C2-WCL Winding Carbon B T 700 NA C3-WE

Robinson, Marc J.

2008-01-01T23:59:59.000Z

260

Weighted Association Rule Mining using weighted support and significance framework  

Science Conference Proceedings (OSTI)

We address the issues of discovering significant binary relationships in transaction datasets in a weighted setting. Traditional model of association rule mining is adapted to handle weighted association rule mining problems where each item is allowed ... Keywords: WARM algorithm, Weighted Association Rule Mining, significant relationship, weighted downward closure property, weighted support

Feng Tao; Fionn Murtagh; Mohsen Farid

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Light weight phosphate cements  

DOE Patents (OSTI)

A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

Wagh, Arun S. (Naperville, IL); Natarajan, Ramkumar, (Woodridge, IL); Kahn, David (Miami, FL)

2010-03-09T23:59:59.000Z

262

Low Impact Weight Loss Exercises | Fish Oil Weight Loss  

U.S. Energy Information Administration (EIA)

Low Impact Weight Loss Exercises. You want to lose weight, but for whatever reason, you want to or only can perform low impact exercises. No problem.

263

Does One Know the Properties of a MICE Solid or Liquid Absorber toBetter than 0.3 Percent?  

DOE Green Energy (OSTI)

This report discusses the report discusses whether the MICE absorbers can be characterized to {+-}0.3 percent, so that one predict absorber ionization cooling within the absorber. This report shows that most solid absorbers can be characterized to much better than {+-}0.3 percent. The two issues that dominate the characterization of the liquid cryogen absorbers are the dimensions of the liquid in the vessel and the density of the cryogenic liquid. The thickness of the window also plays a role. This report will show that a liquid hydrogen absorber can be characterized to better than {+-}0.3 percent, but a liquid helium absorber cannot be characterized to better and {+-}1 percent.

Green, Michael A.; Yang, Stephanie Q.

2006-02-20T23:59:59.000Z

264

Spatial and Temporal Variations in Long-Term Normal Percent Possible Solar Radiation Levels in the United States  

Science Conference Proceedings (OSTI)

The purpose of this study was to analyze the time and space variations in long-term monthly-averaged daily percent possible solar radiation levels in the United States. Both principal components analysis and harmonic analysis were used to ...

Robert C. Balling Jr.; Randall S. Cerveny

1983-10-01T23:59:59.000Z

265

150,000 r/min-1.5 kW PM Efficiency Improvement by Means of Permeance Coefficient Optimization of 150,000-r/min, 1.5-kW PM Motor  

E-Print Network (OSTI)

University of Technology) This paper describes an ultra high-speed permanent-magnet synchronous motor design. Configuration of ultra high-speed PM motor. Core Coil (Winding) Air Permanent Magnet Shaft Stator Air 2 FEM Optimization of 150,000-r/min, 1.5-kW PM Motor Masaru Kano, Student Member, Toshihiko Noguchi, Member (Nagaoka

Fujimoto, Hiroshi

266

Characterization of Min-K TE-1400 Thermal Insulation (Two-Year Gradient Stress Relaxation Testing Update)  

Science Conference Proceedings (OSTI)

Min-K 1400TE insulation material was characterized at Oak Ridge National Laboratory for use in structural applications under gradient temperature conditions. A previous report (ORNL/TM-2008/089) discusses the testing and results from the original three year duration of the project. This testing included compression testing to determine the effect of sample size and test specimen geometry on the compressive strength of Min-K, subsequent compression testing on cylindrical specimens to determine loading rates for stress relaxation testing, isothermal stress relaxation testing, and gradient stress relaxation testing. This report presents the results from the continuation of the gradient temperature stress relaxation testing and the resulting updated modeling.

Hemrick, James Gordon [ORNL; Lara-Curzio, Edgar [ORNL; King, James [ORNL

2009-09-01T23:59:59.000Z

267

Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours Docket No. EO-05-01. Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours. Arial photograph showing plant and location of predicted SO2 violations, predicted in 2000. Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours More Documents & Publications Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 3, 1, 2 SO2 Case Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by AERMOD-PRIME, Units 4, 1, 2 SO2 Case Mirant Potomac, Alexandria, Virginia: Maximum Impacts Predicted by

268

160,000-r/min, 2.7-kW Electric Drive of Supercharger for Automobiles  

E-Print Network (OSTI)

,000-r/min, 2.7-kW permanent-magnet synchronous motor drive is discussed and its experimental test-supercharger; centrifugal compressor; ultra high- speed permanent magnet synchronous motor; pseudo-current- source inverter, Nagasaki, Nagasaki 851-0392, Japan Abstract--This paper describes an ultra high-speed permanent- magnet

Fujimoto, Hiroshi

269

220,000-r/min, 2-kW Permanent Magnet Motor Drive for Turbocharger Toshihiko Noguchi, Yosuke Takata *  

E-Print Network (OSTI)

220,000-r/min, 2-kW Permanent Magnet Motor Drive for Turbocharger Toshihiko Noguchi, Yosuke Takata-speed permanent-magnet synchronous motor drive, which is embedded in a turbocharger of an internal permanent magnet. Also, it is indispensable to reduce the motor inductance less than 10 (µH) because dc bus

Fujimoto, Hiroshi

270

Transition Time Bounded Low-power Clock Tree Construction Min Pan, Chris Chong-Nuen Chu and J. Morris Chang  

E-Print Network (OSTI)

Transition Time Bounded Low-power Clock Tree Construction Min Pan, Chris Chong-Nuen Chu and J signal extremely tight. Hence, it is necessary to have transition time bounds to construct low-power clock trees in high performance systems. In this paper, we formulate the transition time bounded low-power

Chu, Chris C.-N.

271

transportation Total Percent delivered cost transportation Percent ...  

U.S. Energy Information Administration (EIA)

$12.75 - - - - - 36.0% - 2005 $13.64 - $13.64 - - - - - 36.8% - 2006; $14.50 - $14.04 - - - - - 34.3% - 2007 $15 ...

272

"Table 1. Aeo Reference Case Projection Results" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated"  

U.S. Energy Information Administration (EIA) Indexed Site

Aeo Reference Case Projection Results" Aeo Reference Case Projection Results" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated" "Gross Domestic Product" "Real Gross Domestic Product (Average Cumulative Growth)* (Table 2)",0.9772689079,42.55319149 "Petroleum" "Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a)",35.19047501,18.61702128 "Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b)",34.68652106,19.68085106 "Total Petroleum Consumption (Table 4)",6.150682783,66.4893617 "Crude Oil Production (Table 5)",5.99969572,59.57446809 "Petroleum Net Imports (Table 6)",13.27260615,67.0212766 "Natural Gas"

273

Hui-Min Huang  

Science Conference Proceedings (OSTI)

... Applied the NIST 4D/RCS reference architecture to many systems, including submarine automation simulation, coal mining automation, and ...

2010-10-05T23:59:59.000Z

274

Min Liang | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory and Applications Areas of Expertise ProgrammingCoding, including PHP, Perl, Java, CC++ and more Web and Internet Security Web services and applications design and...

275

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

27 lbs 27 lbs Delivered Curb Weight: 3618 lbs Distribution F/R: 58/42 % GVWR: 4680 lbs GAWR F/R: 2440/2440 lbs Payload: 1062 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 103.2 inches Track F/R: 61.1/60.2 inches Length: 174.5 inches Width: 71.4 inches Height: 69.5 inches Ground Clearance: 7.8 inches Performance Goal: 5.0 inches TIRES Tire Mfg: Continental Tire Model: EcoPlus Tire Size: P235/70R16

276

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

3474 lbs 3474 lbs Delivered Curb Weight: 3435 lbs GVWR: 4718 lbs GAWR F/R: 2491/2436 lbs Distribution F/R: % Payload: 1283 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 106.6 in Track F/R: 61.0/61.0 in Length: 181.3 in Width: 71.6 in Height: 65.3 in Ground Clearance: 7.0 in Performance Goal: 5.0 in TIRES Tire Mfg: General Tire Model: Ameri GS60 Tire Size: P215/70R16 Tire Pressure F/R: 35/35 psi

277

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

90 lbs 90 lbs Delivered Curb Weight: 2936 lbs Distribution F/R: 59/41 % GVWR: 3795 lbs GAWR F/R: 2335/2250 lbs Payload: 905 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 106 inches Track F/R: 59/58 inches Length: 175 inches Width: 67 inches Height: 57.8 inches Ground Clearance: 4.3 inches Performance Goal: 5.0 inches TIRES Tire Mfg: Goodyear Tire Model: Integrity Tire Size: P185/65R15 Tire Pressure F/R: 35/33 psi

278

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

40 lbs 40 lbs Delivered Curb Weight: 3556 lbs Distribution F/R: 58/42 % GVWR: 4665 lbs GAWR F/R: Unavailable Payload: 1109 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 109.3 in Track F/R: 62.0/61.6 in Length: 189.2 in Width: 71.7 in Height: 57.9 in Ground Clearance: 5.9 in Performance Goal: 5.0 in TIRES Tire Mfg: Michellin Tire Model: Energy MXV458 Tire Size: P215/60R16 Tire Pressure F/R: 32/32

279

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

5650 lbs 5650 lbs Delivered Curb Weight: 5579 lbs Distribution F/R: 51.8/48.2 GVWR: 7100 lbs GAWR F/R: 3200/4100 lbs Payload: 1521 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 116.0 in Track F/R: 68.2/67.0 in Length: 202.0 in Width: 79.0 in Height: 74.6 in Ground Clearance: 9.5 in Performance Goal: 5.0 in TIRES Tire Mfg: Bridgestone Tire Model: Dueler H/R Tire Size: P265/65R18 Tire Pressure F/R: 32 psi

280

Maximal Reliability for Unit-weighted Composites  

E-Print Network (OSTI)

Maximal Reliability for Unit-weighted Composites Peter M.Maximal Reliability for Unit-weighted Composites Althoughconsistency coefficient for a unit-weighted composite. The

Peter M. Bentler

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

10 Percent Rule  

NLE Websites -- All DOE Office Websites (Extended Search)

and you can try to explain it. The natural law it illustrates is the second law of thermodynamics; entropy is created in any natural trnasfer of energy. Richard E. Barrans Jr. This...

282

60- to 1-Min Rainfall-Rate Conversion: Comparison of Existing Prediction Methods with Data Obtained in the Southeast Asia Region  

Science Conference Proceedings (OSTI)

Rainfall-rate statistics are frequently derived on the basis of rain gauge recordings with effective integration times of 10 min or longer. The conversion of such data to equivalent statistics for an effective integration time of 1 min is very ...

J. S. Mandeep; S. I. S. Hassan

2008-03-01T23:59:59.000Z

283

Apparatus for molecular weight separation  

DOE Patents (OSTI)

The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

Smith, Richard D. (Richland, WA); Liu, Chuanliang (Haverhill, MA)

2001-01-01T23:59:59.000Z

284

A general weighted grammar library  

Science Conference Proceedings (OSTI)

We present a general weighted grammar software library, the GRM Library, that can be used in a variety of applications in text, speech, and biosequence processing. The underlying algorithms were designed to support a wide variety of semirings ...

Cyril Allauzen; Mehryar Mohri; Brian Roark

2004-07-01T23:59:59.000Z

285

WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

208 VAC 3-Phase 2008 Electric Transportation Applications All Rights Reserved Base Vehicle: 2008 Roush Industries Roush REV VIN: 9BFBT32N767991505 Seatbelt Positions: Two...

286

WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Dual Airbags FUEL TANKS Manufacturer: Dynetek Model: W150H350G8 DOT Type 3 2 Description: Carbon Fiber Wrap Aluminum Lined Number of Tanks: 3 Tank Liquid Volume: 150 liters Total...

287

WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Airbags FUEL TANKS Manufacturer: Dynetek Model: W205H350G89 DOT Type 3 2 Description: Carbon Fiber Wrap Polymer Bladder Number of Tanks: 3 Tank Liquid Volume: 205 liters Total...

288

WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Dual Airbags FUEL TANKS Manufacturer: Dynetek Model: W150H200G8 DOT Type 3 2 Description: Carbon Fiber Wrap over Polymer Bladder Number of Tanks: 3 Tank Liquid Volume: 150 liters...

289

WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

Max Battery Leakage : <0.01 MIU Max DC Charge Current: 17.9 A Max AC Charge Current: 12.6 A Peak AC Demand: 1.51 kW Time to Recharge: To 80%: 6.7 Hours To 100%: 9.4 Hours To...

290

WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

be intruded upon by the batteries or other conversion materials. (16) The controllerinverter shall limit the maximum battery discharge to prevent degradation of battery life (see...

291

Weights  

NLE Websites -- All DOE Office Websites (Extended Search)

be intruded upon by the batteries or other conversion materials. (16) The controllerinverter shall limit the maximum battery discharge to prevent degradation of battery life (see...

292

Guidance for growth factors, projections, and control strategies for the 15 percent rate-of-progress plans  

Science Conference Proceedings (OSTI)

Section 182(b)(1) of the Clean Air Act (Act) requires all ozone nonattainment areas classified as moderate and above to submit a State Implementation Plan (SIP) revision by November 15, 1993, which describes, in part, how the areas will achieve an actual volatile organic compound (VOC) emissions reduction of at least 15 percent during the first 6 years after enactment of the Clean Air Act Amendments of 1990 (CAAA). In addition, the SIP revision must describe how any growth in emissions from 1990 through 1996 will be fully offset. It is important to note that section 182(b)(1) also requires the SIP for moderate areas to provide for reductions in VOC and nitrogen oxides (NOx) emissions as necessary to attain the national primary ambient air quality standard for ozone by November 15, 1996. The guidance document focuses on the procedures for developing 1996 projected emissions inventories and control measures which moderate and above ozone nonattainment areas must include in their rate-of-progress plans. The document provides technical guidance to support the policy presented in the 'General Preamble: Implementation of Title I of the CAAA of 1990' (57 FR 13498).

Not Available

1993-03-01T23:59:59.000Z

293

Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks: Thermal, Electrical and Stress Analysis  

DOE Green Energy (OSTI)

This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anode ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.

Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.; Khaleel, Mohammad A.

2006-04-07T23:59:59.000Z

294

Overlapping repetitions in weighted sequence  

Science Conference Proceedings (OSTI)

Finding repeating patterns is a useful operation that have application in fields such as computing, music and molecular biology. In the latter, a requirement to detect repeating patterns in nucleic or protein sequences are very common in many applications ... Keywords: DNA assembly, covering of strings, molecular weighted sequences, partitioning, periodicity of strings, string algorithms

Ali Alatabbi; Maxime Crochemore; Costas S. Iliopoulos; Tewogboye A. Okanlawon

2012-09-01T23:59:59.000Z

295

Molecular Weight & Energy Transport 7 September 2011  

E-Print Network (OSTI)

Molecular Weight & Energy Transport 7 September 2011 Goals · Review mean molecular weight · Practice working with diffusion Mean Molecular Weight 1. We will frequently use µ, µe, and µI (the mean molecular weight per particle, per free electron, and per ion, respectively). Let's practice computing

Militzer, Burkhard

296

A General Weighted Grammar Library  

E-Print Network (OSTI)

We present a general weighted grammar software library, the GRM Library, that can be used in a variety of applications in text, speech, and biosequence processing. The underlying algorithms were designed to support a wide variety of semirings and the representation and use of very large grammars and automata of several hundred million rules or transitions. We describe several algorithms and utilities of this library and point out in each case their application to several text and speech processing tasks.

Cyril Allauzen; Mehryar Mohri; Brian Roark

2004-01-01T23:59:59.000Z

297

Brief Min-max predictive control techniques for a linear state-space system with a bounded set of input matrices  

Science Conference Proceedings (OSTI)

Min-max predictive control of a linear state-space system with a bounded set of input matrices is studied based on a quadratic performance criterion. Systems with stable and integrating dynamics as well as time-varying and time-invariant uncertainties ... Keywords: Constraint satisfaction, Minimax techniques, Predictive control, Robust control

Jay H. Lee; Brian L. Cooley

2000-03-01T23:59:59.000Z

298

netic stirrer and dissolved completely at 60 C. This solution was heated to 190200 C at a rate of 5 C min1  

E-Print Network (OSTI)

on silicon wafers under a flow of gas mixture of H2 (5 vol.-%) in Ar at 450 C for 30 min. To prepareL). The par- ticles were separated using centrifuge (VWR Scientific, Model V) at 6000 rpm. The precipitate of nitrogen gas, and finally freshly cleaned using a plasma cleaner (Harrick PDC-32G) prior to contact

Odom, Teri W.

299

RTG_12 6 07_min  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use for review and comment only Use for review and comment only Summary of Meeting TEC Routing Topic Group (RTG) Conference Call Thursday, December 6, 2007 3:00 p.m. to 4:30 p.m. Eastern Welcome and Introductions - A. Thrower List of Attendees and Callers: Alex Thrower, DOE/OLM Paul Johnson, ORNL Kevin Blackwell, DOT/FRA Doug Osborn, SNL Mel Massaro, DOT/FRA Jane Beetem, CSG/MW Melissa Bailey, CSG/NE Scott Palmer, BLET Lisa Janairo, CSG/MW Tony Dimond, BLET Barbara Byron, CA Energy Comm'n/WIEB Kurt Colborn, MHF Logistics Dan Fisher, OH PUCO Ralph Hail, Norfolk Southern Christina Nelson, NCSL David Blee, USTC Sean Kice, TN EMA Harry Hopes, CSX Cort Richardson, CSG/NW Jim Williams, WIEB Larry Stern, CVSA Ralph Best, BSC Tim Runyon, IL Dept.Nuc.Safety/CSG/MW Lee Finewood, BAH

300

106099.60 Al min  

Science Conference Proceedings (OSTI)

Table 2   ASME and ASTM specifications for 1060 aluminum...Pipe (gas and oil transmission) ? B 345 Tube (condenser) SB234 B 234 Tube (condenser with integral fins) ? B 404 Tube (drawn) ? B 483 Tube (drawn, seamless) SB210 B 210 Tube (extruded, seamless) SB241 B 241...

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Misun Min | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

accurate modeling for solving petascale-enabled problems in accelerator physics, nanotechnology-based applications, and lattice Boltzmann fluid simulations. Numerical techniques...

302

Energy Aware Scheduling for Weighted Completion Time and Weighted Tardiness  

E-Print Network (OSTI)

The ever increasing adoption of mobile devices with limited energy storage capacity, on the one hand, and more awareness of the environmental impact of massive data centres and server pools, on the other hand, have both led to an increased interest in energy management algorithms. The main contribution of this paper is to present several new constant factor approximation algorithms for energy aware scheduling problems where the objective is to minimize weighted completion time plus the cost of the energy consumed, in the one machine non-preemptive setting, while allowing release dates and deadlines.Unlike previous known algorithms these new algorithms can handle general job-dependent energy cost functions, extending the application of these algorithms to settings outside the typical CPU-energy one. These new settings include problems where in addition, or instead, of energy costs we also have maintenance costs, wear and tear, replacement costs, etc., which in general depend on the speed at which the machine r...

Carrasco, Rodrigo A; Stein, Cliff

2011-01-01T23:59:59.000Z

303

Volatile compound evolution from the programmed temperature pyrolysis of Big Clifty and McKittrick tar sands at a 10 degrees C/min heating rate  

DOE Green Energy (OSTI)

Big Clifty (Kentucky) and McKittrick (California) tar sands were pyrolyzed at a 10{degrees}C/min heating rate from room temperature to 900{degrees}C. The volatile compounds were detected on-line and in real time by tandem mass spectrometry using MS and MS/MS detection. This paper reports the programmed temperature pyrolysis behaviors of Big Clifty and McKittrick tar sands and compares their results. 48 refs., 10 figs., 3 tabs.

Reynolds, J.G.

1989-11-01T23:59:59.000Z

304

Optimum Cycle Length and Discharge Burnup for Nuclear Fuel - A Comprehensive Study for BWRs and PWRs: Phase I: Results Achievable Wi thin the 5 Percent Enrichment Limit  

Science Conference Proceedings (OSTI)

Core reload design and economic analyses show that both pressurized water reactors (PWRs) and boiling water reactors (BWRs) can derive significant benefits by increasing the discharge burnup of their fuel above the currently licensed values. Optimum discharge burnup levels, however, may not be achievable without exceeding the current 5 wt percent limit on enrichment.

2001-12-06T23:59:59.000Z

305

Weights and Measures State Directors IL  

Science Conference Proceedings (OSTI)

State Directors IL. Idaho. Mailing Address, Contact Information. ISDA Bureau of Weights & Measures PO Box 790 Boise, ID 83701. ...

2013-05-07T23:59:59.000Z

306

Weights and Measures Newsletter Archives - Hydrogen  

Science Conference Proceedings (OSTI)

Weights and Measures Newsletter Archives - Hydrogen. Series/B-XXX, Key Words, Article, Issue. B-016, Hydrogen H 2 National ...

2011-09-26T23:59:59.000Z

307

Weights and Measures State Directors N  

Science Conference Proceedings (OSTI)

... Information. NE Division of Weights & Measures 301 Centennial Mall South Box #94757 Lincoln, NE 68509-4757. ... North Dakota. Mailing ...

2013-05-09T23:59:59.000Z

308

Combining forecast weights: Why and how?  

Science Conference Proceedings (OSTI)

This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions

Yip Chee Yin; Ng Kok-Haur; Lim Hock-Eam

2012-01-01T23:59:59.000Z

309

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

365 lbs 365 lbs Delivered Curb Weight: 4510 lbs Distribution F/R: 57/43 % GVWR: 5520 lbs GAWR F/R: 2865/2865 lbs Payload: 1010 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 107.0 inches Track F/R: 62/61.2 inches Length: 187.2 inches Width: 72.6 inches Height: 66.4 inches Ground Clearance: 7.1 inches Performance Goal: 5.0 inches TIRES Tire Mfg: Goodyear Tire Model: Eagle RS-A Tire Size: P215/55R18 Tire Pressure F/R: 30/30 psi Spare Installed: Yes ENgINE Model: 3MZ-FE Output: 208 hp @ 5600 rpm Configuration: DOHC V6 Displacement: 3.3 L Fuel Tank Capacity: 17.2 Gallons Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2006 Lexus RX 400h VIN: JTJHW31U160002575 Seatbelt Positions: Five

310

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

2650 lbs 2650 lbs Delivered Curb Weight 9 : 2615 lbs Distribution F/R 9 (%): 58.6/41.4 GVWR: 3164 lbs GAWR F/R: 1797/1378lbs Payload 5 : 564 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 95.9 in Track F/R: 59.6/59.1 in Length: 160.6 in Width: 68.5 in Height: 54.9 in Ground Clearance: 5.3 in Performance Goal: 5.0 in TIRES Tire Mfg: Dunlop Tire Model: SP Sport 1000m Tire Size: 195 / 55 R16 86V Tire Pressure F/R: 30/30 psi Spare Installed: Yes ENgINE Model: 1.5 L I4 Output 8 : 122 hp @ 6000 rpm Configuration: Inline Four-cylinder Displacement: 1.5 L Fuel Tank Capacity: 10.6 gal Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2011 Honda CRZ EX Hybrid VIN: JHMZF1C64BS002982

311

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

245 lbs 245 lbs Delivered Curb Weight: 4118 lbs GVWR: 5675 lbs GAWR F/R: 2865/3130 lbs Distribution F/R: 59/41 % Payload: 1557 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 106.7 in Track F/R: 61.9/61.1 in Length: 185.3 in Width: 71.5 in Height: 68.6 in Ground Clearance: 5.9 in Performance Goal: 5.0 in TIRES Tire Mfg: Goodyear Tire Model: Integrity Tire Size: P225/65R17 Tire Pressure F/R: 32/32 Spare Installed: Yes ENgINE Model: 3MZ-FE Output: 208 hp @ 5600 rpm Configuration: V6 Displacement: 3.3 L Fuel Tank Capacity: 17.2 gal Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2006 Highlander VIN: JTEDW21A860005681 Seatbelt Positions: Seven Standard Features: Air Conditioning

312

Production of high molecular weight polylactic acid  

DOE Patents (OSTI)

A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

Bonsignore, P.V.

1995-11-28T23:59:59.000Z

313

Production of high molecular weight polylactic acid  

DOE Patents (OSTI)

A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

Bonsignore, Patrick V. (Joilet, IL)

1995-01-01T23:59:59.000Z

314

spaceheat_percent2001.pdf  

Annual Energy Outlook 2012 (EIA)

Products and Services Users can view and download selected pages or entire reports, search for information, download data and analysis applications, and find out about new...

315

The complexity of weighted and unweighted #CSP  

E-Print Network (OSTI)

We give some reductions among problems in (nonnegative) weighted #CSP which restrict the class of functions that needs to be considered in computational complexity studies. Our reductions can be applied to both exact and approximate computation. In particular, we show that a recent dichotomy for unweighted #CSP can be extended to rational-weighted #CSP.

Bulatov, Andrei; Goldberg, Leslie Ann; Jalsenius, Markus; Jerrum, Mark; Richerby, David

2010-01-01T23:59:59.000Z

316

Semiparametrically weighted robust estimation of regression models  

Science Conference Proceedings (OSTI)

A class of two-step robust regression estimators that achieve a high relative efficiency for data from light-tailed, heavy-tailed, and contaminated distributions irrespective of the sample size is proposed and studied. In particular, the least weighted ... Keywords: Adaptive estimation, Asymptotic efficiency, Breakdown point, Least weighted squares

Pavel ek

2011-01-01T23:59:59.000Z

317

LightWeight KerneL  

NLE Websites -- All DOE Office Websites (Extended Search)

Catamount n-Way LightWeight KerneL 1 R&D 100 Entry Catamount n-Way LightWeight KerneL 2 R&D 100 Entry Submitting organization Sandia National Laboratories PO Box 5800 Albuquerque,...

318

The weight filtration for real algebraic varieties  

E-Print Network (OSTI)

Using the work of Guillen and Navarro Aznar we associate to each real algebraic variety a filtered chain complex, the weight complex, which is well-defined up to filtered quasi-isomorphism, and which induces on Borel-Moore homology with Z/2 coefficients an analog of the weight filtration for complex algebraic varieties.

McCrory, Clint

2008-01-01T23:59:59.000Z

319

Maintaining ideal body weight counseling sessions  

SciTech Connect

The purpose of this program is to provide employees with the motivation, knowledge and skills necessary to maintain ideal body weight throughout life. The target audience for this program, which is conducted in an industrial setting, is the employee 40 years of age or younger who is at or near his/her ideal body weight.

Brammer, S.H.

1980-10-09T23:59:59.000Z

320

Query weighting for ranking model adaptation  

Science Conference Proceedings (OSTI)

We propose to directly measure the importance of queries in the source domain to the target domain where no rank labels of documents are available, which is referred to as query weighting. Query weighting is a key step in ranking model adaptation. As ...

Peng Cai; Wei Gao; Aoying Zhou; Kam-Fai Wong

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Weight Watchers on prescription: An observational study of weight change among adults referred to Weight Watchers by the NHS  

E-Print Network (OSTI)

% 50 % > 10% Loss 5-9.9% Loss 0.1-4.9% Loss Weight Change Pe rce nta ge of P art ici pa nts All referrals Completers Figure 3 Percentage of initial weight lost for all first recorded referrals commenced and those completing a first referral course (as... for weight loss. Annals of internal medicine 2007, 147(1):41-50. 12. Cooper Z, Doll HA, Hawker DM, Byrne S, Bonner G, Eeley E, OConnor ME, Fairburn CG: Testing a new cognitive behavioural treatment for obesity: A randomized controlled trial with three...

Ahern, Amy L; Olson, Ashley D; Aston, Louise M; Jebb, Susan A

2011-06-06T23:59:59.000Z

322

AN ASSESSMENT OF MCNP WEIGHT WINDOWS  

SciTech Connect

The weight window variance reduction method in the general-purpose Monte Carlo N-Particle radiation transport code MCNPTM has recently been rewritten. In particular, it is now possible to generate weight window importance functions on a superimposed mesh, eliminating the need to subdivide geometries for variance reduction purposes. Our assessment addresses the following questions: (1) Does the new MCNP4C treatment utilize weight windows as well as the former MCNP4B treatment? (2) Does the new MCNP4C weight window generator generate importance functions as well as MCNP4B? (3) How do superimposed mesh weight windows compare to cell-based weight windows? (4) What are the shortcomings of the new MCNP4C weight window generator? Our assessment was carried out with five neutron and photon shielding problems chosen for their demanding variance reduction requirements. The problems were an oil well logging problem, the Oak Ridge fusion shielding benchmark problem, a photon skyshine problem, an air-over-ground problem, and a sample problem for variance reduction.

J. S. HENDRICKS; C. N. CULBERTSON

2000-01-01T23:59:59.000Z

323

The eect of fast food restaurants on obesity and weight gain  

E-Print Network (OSTI)

We investigate how changes in the supply of fast food restaurants affect weight outcomes of 3 million children and 3 million pregnant women. Among ninth graders, a fast food restaurant within 0.1 miles of a school results in a 5.2 percent increase in obesity rates. Among pregnant women, a fast-food restaurant within 0.5 miles of residence results in a 1.6 percent increase in the probability of gaining over 20 kilos. The implied effects on caloric intake are one order of magnitude larger for children than for mothers, consistent with smaller travel cost for adults. Non-fast food restaurants and future fast-food restaurants are uncorrelated with weight outcomes. (JEL I12, J13, J16, L83) In the public debate over obesity it is often assumed the widespread availability of fast food restaurants is an important determinant of obesity rates. Policy makers in several cities have responded by restricting the availability or content of fast food, or by requiring posting of the caloric content of the meals (Julie Samia Mair, Matthew

Janet Currie; Stefano Dellavigna; Enrico Moretti; Vikram Pathania

2010-01-01T23:59:59.000Z

324

Microdialysis unit for molecular weight separation  

DOE Patents (OSTI)

The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

Smith, Richard D. (Richland, WA); Liu, Chuanliang (Richland, WA)

1999-01-01T23:59:59.000Z

325

Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks and the Effects on Thermal, Electrical, and Mechanical Performance  

Science Conference Proceedings (OSTI)

Numerical simulations were performed to determine the effect that varying the percent on-cell steam-methane reformation would have on the thermal, electrical, and mechanical performance of generic, planar solid oxide fuel cell stacks. The study was performed using three-dimensional model geometries for cross-, co-, and counter-flow configuration stacks of 10x10- and 20x20-cm cell sizes. The analysis predicted the stress and temperature difference would be minimized for the 10x10-cm counter- and cross-flow stacks when 40 to 50% of the reformation reaction occurred on the anode. Gross electrical power density was virtually unaffected by the reforming. The co-flow stack benefited most from the on-cell reforming and had the lowest anode stresses of the 20x20-cm stacks. The analyses also suggest that airflows associated with 15% air utilization may be required for cooling the larger (20x20-cm) stacks.

Recknagle, Kurtis P.; Koeppel, Brian J.; Sun, Xin; Khaleel, Mohammad A.; Yokuda, Satoru T.; Singh, Prabhakar

2007-04-30T23:59:59.000Z

326

Effects of Variations in High Molecular Weight Glutenin Allele Composition and Resistant Starch on Wheat Flour Tortilla Quality  

E-Print Network (OSTI)

Tortilla sales are projected to exceed 9.5 billion by 2014. However, currently no wheat cultivars have been identified that possess the intrinsic quality attributes needed for the production of optimum quality tortillas. Tortillas made with refined wheat flour low in dietary fiber (DF) are popular in the United States due to their sensory properties. This study explored the use of wheat lines (WL) possessing variations in high molecular weight glutenin allele sub-units (HMW-GS) for production of tortillas and also investigated the use of corn based resistant starches (RS), type II (RS2) and wheat based RS type IV (RS4) to increase DF in tortillas. Tortillas were made with 0-15 percent RS and 100 percent whole white wheat (WW). Flour protein profiles, dough, and tortilla properties were evaluated to determine the effects of the allelic variations and RS substitution on tortilla quality. Sensory properties of tortillas with RS were determined. Variations in HMW-GS composition significantly affected the protein quality and tortilla properties. Flour from WL possessing allelic combinations (2*, 17+18, 7, 2+12), (1, 17+18, 5+10), (2*, 17, 2+12) and (1, 2*, 17+18, 2+12) had 12.8-13.3 percent protein. These WL had extensible doughs and produced large diameter tortillas with superior (greater than or equal to 3.0) flexibility after 16 days compared to control. However, WL with (17+18 and 5+10) and (2*, 17+7, 5) produced extensible doughs, large, but less flexible, tortillas compared to control. WL with (2*,17+18,5+10) and (1,2*,7+9,5+10) produced smaller diameter tortillas, but with superior flexibility compared to control. RS2, WW, and cross-linked-pre-gelatinized RS4 (FiberRite) produced hard, less-extensible doughs and thinner tortillas compared to control, due to high water absorption. Cross-linked RS4 (Fibersym) dough and tortillas were comparable to control. 15 percent of RS2 and RS4 increase DF in control to 6 and 14 percent respectively, compare to control (2.8 percent DF). WW tortillas were less acceptable than control in appearance, flavor and texture, while tortillas with 15 percent Fibersym had higher overall acceptability than control. RS2 negatively affected dough machinability and tortilla shelf stability. However, 15 percent RS4 improved the DF in refined flour tortillas to meet FDA's "good source of fiber claim," without negatively affecting dough/tortilla quality.

Jondiko, Tom Odhiambo

2010-12-01T23:59:59.000Z

327

WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE WEIGHTED GUIDELINES PROFIT/FEE OBJECTIVE DOE F 4220.23 (06-95) U.S. DEPARTMENT OF ENERGY 1. CONTRACTOR IDENTIFICATION 2. TYPE OF ACQUISTION ACTION (REFER TO OFPP MANUAL, FEDERAL PROCUREMENT DATA SYSTEMS - PRODUCT AND SERVICE CODES. APRIL 1980) a. Name c. Street address b. Division (If any) d. City e. State f. Zip code a. SUPPLIES & EQUIPMENT b. RESEARCH & DEVELOPMENT c. SERVICES: (1) ARCHITECT-ENGINEER: (2) MANAGEMENT SERVICES: (3) MEDICAL: (4) OTHER (e.g., SUPPORT SERVICES) 3. ACQUISITION INFORMATION a. Purchasing Offices b. Contract type d. FY c. RFP/RFQ No. e. Contract No. PROFIT/FEE OBJECTIVE COMPUTATION PROFIT/FEE CONSIDERATIONS a. MEASUREMENT BASE b. PROFIT/FEE WEIGHT RANGES (%) c. ASSIGNED

328

A Light-Weight Instrumentation System Design  

Science Conference Proceedings (OSTI)

To meet challenging constraints on telemetry system weight and volume, a custom Light-Weight Instrumentation System was developed to collect vehicle environment and dynamics on a short-duration exo-atmospheric flight test vehicle. The total telemetry system, including electronics, sensors, batteries, and a 1 watt transmitter weighs about 1 kg. Over 80 channels of measurement, housekeeping, and telemetry system diagnostic data are transmitted at 128 kbps. The microcontroller-based design uses the automotive industry standard Controller Area Network to interface with and support in-flight control fimctions. Operational parameters are downloaded via a standard asynchronous serial communications intefiace. The basic design philosophy and functionality is described here.

Kidner, Ronald

1999-06-02T23:59:59.000Z

329

Diffusion-Weighted Magnetic Resonance Imaging to Evaluate Major Salivary Gland Function Before and After Radiotherapy  

Science Conference Proceedings (OSTI)

Purpose: To evaluate diffusion-weighted (DW)-MRI as a noninvasive tool to investigate major salivary gland function before and after radiotherapy (RT) for head and neck cancer (HNC). Methods and Materials: DW-MRI was performed in 8 HNC patients before and after parotid-sparing RT (mean dose to the contralateral parotid gland glands were calculated. Findings were compared with salivary gland scintigraphy. Results: Before RT, the mean ADC value at rest was significantly lower in the parotid than in the submandibular glands. During the first 5 min of stimulation, the ADC value of the salivary glands showed a decrease, followed by a steady increase until a peak ADC, significantly higher than the baseline value, was reached after a median of 17 min. The baseline ADC value at rest was significantly higher after RT than before RT in the nonspared salivary glands but not in the spared parotid glands. In the contralateral parotid glands, the same response was seen as before RT. This pattern was completely lost in the nonspared glands. These results corresponded with remaining or loss of salivary function, respectively, as confirmed by salivary gland scintigraphy. Conclusions: Diffusion-weighted-MRI allows noninvasive evaluation of functional changes in the major salivary glands after RT and is a promising tool for investigating radiation-induced xerostomia.

Dirix, Piet [Department of Radiation Oncology, Leuvens Kankerinstituut (LKI), University Hospitals Leuven, Campus Gasthuisberg, Leuven (Belgium)], E-mail: piet.dirix@uzleuven.be; Keyzer, Frederik de; Vandecaveye, Vincent [Department of Radiology, Leuvens Kankerinstituut (LKI), University Hospitals Leuven, Campus Gasthuisberg, Leuven (Belgium); Stroobants, Sigrid [Department of Nuclear Medicine, Leuvens Kankerinstituut (LKI), University Hospitals Leuven, Campus Gasthuisberg, Leuven (Belgium); Hermans, Robert [Department of Radiology, Leuvens Kankerinstituut (LKI), University Hospitals Leuven, Campus Gasthuisberg, Leuven (Belgium); Nuyts, Sandra [Department of Radiation Oncology, Leuvens Kankerinstituut (LKI), University Hospitals Leuven, Campus Gasthuisberg, Leuven (Belgium)

2008-08-01T23:59:59.000Z

330

Prospects for hydrogen production by water electrolysis to be competitive with conventional methods. [Areas of research to reduce capital costs and approach 100 percent energy efficiencies  

SciTech Connect

With the impending unavailability of oil and natural gas, hydrogen will be produced on a large scale in the United States (1) from coal, or (2) by water electrolysis using electricity derived from nuclear or solar energy. In many parts of the world which lack fossil fuels, the latter will be the only possible method. The cost of purification of hydrogen produced from fossil fuels will increase its cost to about the same level as that of electrolytic hydrogen. When hydrogen is required in relatively small quantities too, the electrolytic method is advantageous. To minimize the cost of hydrogen produced by water electrolysis, it is necessary to reduce capital costs and approach 100 percent energy efficiencies. Areas of research, which will be necessary to achieve these goals are: (1) maximization of surface areas of electrodes; (2) use of thin electrolyte layers; (3) increase of operating temperature in alkaline water electrolysis cells to about 120-150/sup 0/C; (4) selection and evaluation of separator materials; (5) electrocatalysis of the hydrogen and oxygen electrode reaction; (6) mixed oxides as oxygen electrodes; and (7) photoelectrochemical effects. The progress made to date and proposed studies on these topics are briefly dealt with in this paper. The General Electric Solid Polymer Water Electrolyzer and Teledyne Alkaline Water Electrolysis Cells, both operating at about 120-150/sup 0/C, look mostpromising in achieving the goals of low capital cost and high energy efficiency. (auth)

Srinivasan, S.; Salzano, F.J.

1976-01-01T23:59:59.000Z

331

Light-weight communal digital libraries  

Science Conference Proceedings (OSTI)

We describe Kepler, a collection of light-weight utilities that allow for simple and quick digital library construction. Kepler bridges the gap between established, organization-backed digital libraries and groups of researchers that wish to publish ... Keywords: Documentation, Performance, Design

Kurt J. Maly; Michael L. Nelson; Mohammad Zubair; Ashraf Amrou; S. Kothasama; Lan Wang; Richard Luce

2004-06-01T23:59:59.000Z

332

Weighted locally linear embedding for dimension reduction  

Science Conference Proceedings (OSTI)

The low-dimensional representation of high-dimensional data and the concise description of its intrinsic structures are central problems in data analysis. In this paper, an unsupervised learning algorithm called weighted locally linear embedding (WLLE) ... Keywords: Feature extraction, Locally linear embedding, Manifold learning, Nonlinear dimensionality reduction

Yaozhang Pan; Shuzhi Sam Ge; Abdullah Al Mamun

2009-05-01T23:59:59.000Z

333

Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Technology Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Technology Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Technology Weight Exemption

334

Information Weighted Consensus for Distributed Estimation in Vision Networks  

E-Print Network (OSTI)

3 Information-weighted Consensus Filter 3.14 Multi-Target Information Consensus 4.1Information-weighted Consensus

Kamal, Ahmed Tashrif

2013-01-01T23:59:59.000Z

335

Magnesium Components Achieve Weight Reduction and Fuel Savings  

NLE Websites -- All DOE Office Websites (Extended Search)

cast mag- nesium can achieve consider- able weight reduction advantages over both steel and aluminum. Furthermore, this favorable weight reduction potential can enable...

336

Low-cost, low-weight CNG cylinder development. Final report  

DOE Green Energy (OSTI)

This program was established to develop and commercialize new high-strength steel-lined, composite hoop-wrapped compressed natural gas (CNG) cylinders for vehicular applications. As much as 70% of the cost of natural gas vehicles can be related to on-board natural gas storage costs. The cost and weight targets for this program represent significant savings in each characteristic when compared to comparable containers available at the initiation of the program. The program objectives were to optimize specific weight and cost goals, yielding CNG cylinders with dimensions that should, allowing for minor modifications, satisfy several vehicle market segments. The optimization process encompassed material, design, and process improvement. In optimizing the CNG cylinder design, due consideration was given to safety aspects relative to national, international, and vehicle manufacturer cylinder standards and requirements. The report details the design and development effort, encompassing plant modifications, material selection, design issues, tooling development, prototype development, and prototype testing. Extenuating circumstances prevented the immediate commercialization of the cylinder designs, though significant progress was made towards improving the cost and performance of CNG cylinders. A new low-cost fiber was successfully employed while the weight target was met and the cost target was missed by less than seven percent.

Richards, Mark E.; Melford, K.; Wong, J.; Gambone, L.

1999-09-01T23:59:59.000Z

337

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A motor vehicle equipped with idle reduction or emissions reduction technology may exceed the maximum gross vehicle weight and axle weight

338

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption The maximum gross weight limit and axle weight limit for any vehicle or combination of vehicles equipped with idle reduction technology may exceed

339

Method for fabricating light weight carbon-bonded carbon fiber composites  

DOE Patents (OSTI)

Ultralight carbon-bonded carbon fiber composites of densities in the range of about 0.04 to 0.10 grams per cubic centimeter are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0.03 to 0.30 liters per minutes per square inch of mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.

Wrenn, Jr., George E. (Clinton, TN); Abbatiello, Leonard A. (Oak Ridge, TN); Lewis, Jr., John (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

340

Method for fabricating light weight carbon-bonded carbon fiber composites  

DOE Patents (OSTI)

The invention is directed to the fabrication of ultralight carbon- bonded carbon fiber composites of densities in the range of about 0. 04 to 0.10 grams per cubic centimeter. The composites are fabricated by forming an aqueous slurry of carbonaceous fibers which include carbonized fibers and 0-50 weight percent fugitive fibers and a particulate thermosetting resin precursor. The slurry is brought into contact with a perforated mandrel and the water is drained from the slurry through the perforations at a controlled flow rate of about 0. 03 to 0.30 liters per minutes per square inch of a mandrel surface. The deposited billet of fibers and resin precursor is heated to cure the resin precursor to bind the fibers together, removed from the mandrel, and then the resin and fugitive fibers, if any, are carbonized.

Wrenn, G.E. Jr.; Abbatiello, L.A.; Lewis, J. Jr.

1987-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

LightWeight KerneL  

NLE Websites -- All DOE Office Websites (Extended Search)

Catamount n-Way Catamount n-Way LightWeight KerneL 1 R&D 100 Entry Catamount n-Way LightWeight KerneL 2 R&D 100 Entry Submitting organization Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185-1319 USA Ron Brightwell Phone: (505) 844-2099 Fax: (505) 845-7442 rbbrigh@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product. _____________________________ Ron Brightwell Joint entry Operating Systems Research 1527 16th NW #5 Washington, DC 20036 USA Trammell Hudson Phone: (240) 283-1700 Fax: (843) 971-9774 hudson@osresearch.net ProduCt name Catamount N-Way (CNW) Lightweight Kernel brief deSCriPtion CNW is an operating system that exploits existing features of multi-core processors

342

A Geographically Weighted Hedonic Pricing Model  

E-Print Network (OSTI)

Wind power is the most important renewable energy source in many countries today, characterized by a rapid and extensive diffusion since the 1990s. However, it has also triggered much debate with regard to the impact on landscape and vista. Therefore, siting processes of wind farm projects are often accompanied by massive public protest, because of visual and aural impacts on the surrounding area. These mostly negative consequences are often reflected in property values and house prices. The aim of this paper is to investigate the impact of wind farms on the surrounding property values by means of a geographically-weighted hedonic pricing model. By comparing the predictive performance of standard Ordinary Least Squares (OLS) regression models and Geographically Weighted Regression (GWR) models, we find that, mainly due to a local clustering bias, global OLS estimation is inadequate for capturing the impacts of wind farm proximity on

Yasin Sunak; Reinhard Madlener; Yasin Sunak; Reinhard Madlener; Y. Sunak; R. Madlener

2012-01-01T23:59:59.000Z

343

Texas Gulf Coast Refinery District API Gravity (Weighted Average ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

344

Texas Gulf Coast Refinery District API Gravity (Weighted ...  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast Refinery District API Gravity (Weighted Average) of Crude Oil Input to Refineries (Degree)

345

Weight control in an automated design environment. [Of aircraft  

SciTech Connect

Results of a program to study weight control in an automated design environment are presented. Automation, computer applications, design coverage and special communication problems are discussed. Results of a tube weight analysis routine, a program of weight control incentives, and results of a special weight reduction program are given.

Staton, R.N.

1987-01-01T23:59:59.000Z

346

Minimizing weighted waiting time variance on a single processor  

Science Conference Proceedings (OSTI)

This paper considers the problem of scheduling n non-preemptive jobs on a single processor. Each job may have different size and weight. The objective is to minimize the weighted waiting time variance (WWTV). It is shown that the proof of one previous ... Keywords: Single processor scheduling, Weighted completion time variance, Weighted waiting time variance

Xiaoyun Xu

2011-11-01T23:59:59.000Z

347

From Hydrogen Fuel Stations to Bean Counters, NIST Weights ...  

Science Conference Proceedings (OSTI)

From Hydrogen Fuel Stations to Bean Counters, NIST Weights and Measures Works to Meet Market Needs. ...

2010-08-23T23:59:59.000Z

348

Weight fluctuations of information storage media  

E-Print Network (OSTI)

In this essentially Unsolved Problems of Noise (UPoN) paper we further study the question recently posed in Fluctuation and Noise Letters (December 2007), if there is and interaction between bodies with correlated information content, and weather the observed weight transients during/after changing the information content in memory devices is due to a new type of interaction, a new type of "fifth force", or it is only a classical mechanism. We briefly discuss the issue of the great experimental uncertainty of the Newtonian gravitation constant. We also mention the peculiar experiments about sudden weight changes of humans and animals at the moment of death. The extended monitoring of four 4GB flash drives with no casing and various information content indicate a significant correlation between their weight variations and the fluctuations of ambient humidity. This is an evidence for the role of humidity and hygroscopic components, at least, for long-term weight fluctuations. A sequence of information changing experiments with such a flash drives at stable humidity conditions shows a significant variability of the transients of the absolute mass with some dependence on the information content. Finally, a related new experiment was carried out with olive oil and chilli pepper powder that was dissolved in it while the mass variations were recorded and a positive mass transient of 0.3 milligram was observed for about 10 minutes. The process represents the writing of new random information into a medium. The only classical interpretation of this mechanism would be the compression of trapped air between the grains by the surface tension of the oil, or that of in pores by capillary forces, and the resulting decrease of the Archimedes force due volume reduction.

Laszlo B. Kish

2008-05-27T23:59:59.000Z

349

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with a qualified auxiliary power unit (APU) may exceed the state's gross vehicle and axle weight limits by up to 400 pounds to

350

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state gross and axle weight limits to compensate for the added

351

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state gross, axle, tandem, or bridge weight limits by up to 400

352

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with idle reduction technology may exceed the state's gross and axle weight limits by up to 400

353

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with qualifying idle reduction technology may exceed the state's gross vehicle weight limits by up to 400 pounds to compensate

354

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with idle reduction technology may exceed the state gross, axle, and tandem weight limits by up to 400 pounds to account

355

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with idle reduction technology may exceed the gross vehicle or internal bridge weight by the amount equal to the

356

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduction Weight Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle or combination of vehicles equipped with idle reduction technology is allowed to exceed the maximum gross vehicle and axle weight

357

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with idle reduction technology may exceed the state's gross and axle weight limits by up to 400

358

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A heavy-duty vehicle that is equipped with qualified idle reduction technology may exceed the Arizona weight limitations specified in Arizona

359

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with qualified idle reduction technology may exceed the state's gross and axle weight limits by up to 400 pounds to compensate

360

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A heavy-duty vehicle equipped with an auxiliary power unit may exceed the state's gross vehicle weight limit by up to 400 pounds to compensate for

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with idle reduction technology may exceed the state's gross, axle, and bridge vehicle weight limits by up to 400 pounds to

362

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with qualified idle reduction technology may exceed the state's vehicle weight limits by up to 400 pounds to compensate

363

Waste Receiving and Processing (WRAP) Facility Weight Scale Analysis Fairbanks Weight Scale Evaluation Results  

SciTech Connect

Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures.

JOHNSON, M.D.

2000-03-13T23:59:59.000Z

364

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with idle reduction technology may exceed the state's

365

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with an auxiliary power unit (APU) or other idle

366

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle equipped with idle reduction technology may exceed the state's

367

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with a fully functional idle reduction system designed to reduce fuel use and emissions from engine idling may exceed the maximum

368

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A vehicle equipped with qualified idle reduction technology may exceed the

369

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any vehicle or combination of vehicles equipped with fully functional idle

370

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A motor vehicle equipped with a fully functional idle reduction system designed to reduce fuel use and emissions from engine idling may exceed the

371

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any heavy-duty vehicle equipped with an auxiliary power unit or other qualified idle reduction technology may exceed the state gross, axle,

372

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption Any motor vehicle equipped with an auxiliary power unit or other idle reduction technology may exceed the gross, single axle, tandem axle, or

373

Alternative Fuels Data Center: Idle Reduction Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Weight Idle Reduction Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Google Bookmark Alternative Fuels Data Center: Idle Reduction Weight Exemption on Delicious Rank Alternative Fuels Data Center: Idle Reduction Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Weight Exemption A commercial vehicle equipped with idle reduction technology may exceed the

374

Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Weight Restriction Weight Restriction Increase for Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on Digg Find More places to share Alternative Fuels Data Center: Weight Restriction Increase for Natural Gas Vehicles on AddThis.com... More in this section... Federal State Advanced Search

375

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle (NGV) Weight Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Weight Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Vehicle (NGV) Weight Exemption

376

Losing Weight with ICME: Accelerating Cost and Performance ...  

Science Conference Proceedings (OSTI)

Symposium, Integrated Computational Materials Engineering: The Customer's Point of View. Presentation Title, Losing Weight with ICME: Accelerating Cost and ...

377

Molecular Weight Effects in Guar Gum Adsorption on Talc  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Water and Energy in Mineral Processing. Presentation Title, Molecular Weight...

378

Complexity of Counting CSP with Complex Weights  

E-Print Network (OSTI)

We give a complexity dichotomy theorem for the counting Constraint Satisfaction Problem (#CSP in short) with complex weights. To this end, we give three conditions for its tractability. Let F be any finite set of complex-valued functions, then we prove that #CSP(F) is solvable in polynomial time if all three conditions are satisfied; and is #P-hard otherwise. Our complexity dichotomy generalizes a long series of important results on counting problems: (a) the problem of counting graph homomorphisms is the special case when there is a single symmetric binary function in F; (b) the problem of counting directed graph homomorphisms is the special case when there is a single not-necessarily-symmetric binary function in F; and (c) the standard form of #CSP is when all functions in F take values in {0,1}.

Cai, Jin-Yi

2011-01-01T23:59:59.000Z

379

A weighted tag similarity measure based on a collaborative weight model  

Science Conference Proceedings (OSTI)

The problem of measuring semantic relatedness between social tags remains largely open. Given the structure of social bookmarking systems, similarity measures need to be addressed from a social bookmarking systems perspective. We address the fundamental ... Keywords: similarity measures, tag similarity, tag weighting, tagging, vector space model

Gokavarapu Srinivas; Niket Tandon; Vasudeva Varma

2010-10-01T23:59:59.000Z

380

The Complexity of Weighted Boolean #CSP , Sangxia Huang2  

E-Print Network (OSTI)

The Complexity of Weighted Boolean #CSP Modulo k Heng Guo1 , Sangxia Huang2 , Pinyan Lu3@gmail.com Abstract We prove a complexity dichotomy theorem for counting weighted Boolean CSP modulo k for any similar to the one for the complex weighted Boolean #CSP, found by [Cai, Lu and Xia, STOC 2009]. Then we

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Robust and Stochastically Weighted Multiobjective Optimization Models and Reformulations  

Science Conference Proceedings (OSTI)

We introduce and study a family of models for multiexpert multiobjective/criteria decision making. These models use a concept of weight robustness to generate a risk-averse decision. In particular, the multiexpert multicriteria robust weighted sum approach ... Keywords: McRow, Pareto optimality, multicriterion optimization, multiexpert optimization, robust optimization, weighted sum method

Jian Hu; Sanjay Mehrotra

2012-07-01T23:59:59.000Z

382

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Weight Limit Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Weight Limit Exemption on AddThis.com... More in this section... Federal State Advanced Search

383

Light-weight radioisotope heater impact tests  

SciTech Connect

The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

Reimus, M.A.H.; Rinehart, G.H.; Herrera, A. [and others

1998-12-31T23:59:59.000Z

384

High flexibility, noncollapsing light weight hose  

DOE Patents (OSTI)

This invention relates generally to a high-flexibility, light weight, noncollapsing hose and more particularly to such a hose having a large size and particularly useful as equipment draining a radioactively contaminated fluid through a noncontaiminated, isolated and restricted space with high confidence against kinking, collapse, or leaking even with large relative motion between the inlet and outlet ends of the hose. In the operation of nuclear facilities, such as nuclear reactors, processing plants for nuclear fuels and related materials, and chemical processing plants, for example, it is necessary to handle radioactively and/or chemically contaminated fluids which in many instances must be conducted, such as for draining purposes, through a noncontaminated, isolated area. Conduction of such contaminated fluids through uncontaminated environments in practice requires the highest confidence that the hose will not kink, collapse, break, or leak even though the hose may be subject to a large amount of motion relative to the inlet and outlet ends of the hose. Any such breaking, or leaking would result in undesirable contamination of the area through which the hose passes which could result in major damage and/or in the requirement to shut down the operation for cleanup and decontamination processing of the area. Additional problems are also encountered in processing plants for contaminated materials due to the fact that hoses conducting the contaminated liquids or gases pass through inaccessible, restricted spaces requiring extreme flexibility in the hose, but with the assurance that the hose will neither kink nor collapse to close off the flow.

Williams, D.A.

1991-02-01T23:59:59.000Z

385

Measurements of the Influence of Acceleration and Temperature of Bodies on their Weight  

SciTech Connect

A brief review of experimental research of the influence of acceleration and temperatures of test mass upon gravitation force, executed between the 1990s and the beginning of 2000 at the St.-Petersburg State University of Information Technologies, Mechanics and Optics in cooperation with D. I. Mendeleev's Institute of Metrology is provided. According to a phenomenological notion, the acceleration of a test mass caused by external action, for example electromagnetic forces, results in changes of the gravitational properties of this mass. Consequences are a dependence upon gravity on the size and sign of test mass acceleration, and also on its absolute temperature. Results of weighing a rotor of a mechanical gyroscope with a horizontal axis, an anisotropic crystal with the big difference of the speed of longitudinal acoustic waves, measurements of temperature dependence of weight of metal bars of nonmagnetic materials, and also measurement of restitution coefficients at quasi-elastic impact of a steel ball about a massive plate are given. In particular, a reduction of apparent mass of a horizontal rotor with relative size 3.10{sup -6} at a speed of rotation of 18.6 thousand rev/min was observed. A negative temperature dependence of the weight of a brass core with relative size near 5.10{sup -4} K{sup -1} at room temperature was measured; this temperature factor was found to be a maximum for light and elastic metals. All observably experimental effects, have probably a general physical reason connected with the weight change dependent upon acceleration of a body or at thermal movement of its microparticles. The reduction of mass at high temperatures is of particular interest for propulsion applications.

Dmitriev, Alexander L. [St-Petersburg State University of Information Technologies, Mechanics and Optics 49, Kronverksky Prospect, St. Petersburg, 97101 (Russian Federation)

2008-01-21T23:59:59.000Z

386

Full length article: Weighted polynomial inequalities in the complex plane  

Science Conference Proceedings (OSTI)

We establish weighted L"p,1@?pKeywords: Bernstein inequality, Marcinkiewicz inequality, Nikolskii inequality, Polynomial, Quasismooth arc, Remez inequality

Vladimir Andrievskii

2012-09-01T23:59:59.000Z

387

Short-Term Energy Outlook Supplement: Energy-weighted industrial...  

U.S. Energy Information Administration (EIA) Indexed Site

Short-Term Energy Outlook Supplement: Energy-weighted industrial production indices December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy...

388

In High Gear: Weights and Measures Week 2013  

Science Conference Proceedings (OSTI)

... the fuel for your vehicle to a cab ... for vehicles using alternative fuels, including electric vehicles. ... groups and regulated industries celebrate Weights ...

2013-03-05T23:59:59.000Z

389

Materials Development for Vehicle Weight Reduction and the ...  

Science Conference Proceedings (OSTI)

For example, weight reduction can also enable wider use of electric and hybrid drive vehicles by improving range or reducing battery size. Heavy-duty trucks can ...

390

Light-Weight Analyzer For Odor Recognition - Energy Innovation ...  

The invention provides a light weight analyzer, e.g., detector, capable of locating clandestine graves. The detector utilizes the very specific and unique chemicals ...

391

Plastic Products Weights in MSW by Category, 2005  

U.S. Energy Information Administration (EIA)

Plastic Products Weights in Municipal Solid Waste (MSW) by Category, 2005 (Thousand Tons) ... with energy recovery, discards to landfill, and other disposal.

392

The Complexity of Weighted Boolean #CSP with Mixed Signs  

E-Print Network (OSTI)

The Complexity of Weighted Boolean #CSP with Mixed Signs Andrei Bulatova , Martin Dyerb , Leslie constraint satisfaction problem (CSP), which corresponds to the case where all functions in have range {0, 1}. The problem we consider here is to compute the partition function of a given instance of weighted CSP; that is

Bulatov, Andrei

393

A liquidity-weighted GARCH model for empirical equity series  

Science Conference Proceedings (OSTI)

This paper develops a new GARCH-family model (named Liquidity-Weighted GARCH or LW-GARCH) for explaining the volatility behaviour of financial time series, with an application on empirical international equity series (consisting both of stock market ... Keywords: ARCH-LM test, Granger causality test, conditional volatility, empirical equity returns, liquidity-weighted GARCH

Cristiana Tudor

2011-07-01T23:59:59.000Z

394

Properties of the hopfield model with weighted patterns  

Science Conference Proceedings (OSTI)

The standard Hopfield model is generalized to the case when input patterns are provided with weights that are proportional to the frequencies of patterns occurrence at the learning process. The main equation is derived by methods of statistical physics, ... Keywords: catastrophic forgetting, hopfield model, weighted patterns

Iakov Karandashev; Boris Kryzhanovsky; Leonid Litinskii

2012-09-01T23:59:59.000Z

395

Weighted trapezoidal approximation-preserving cores of a fuzzy number  

Science Conference Proceedings (OSTI)

Recently, various researchers have proved that approximations of fuzzy numbers may fail to be fuzzy numbers. In this contribution, we suggest a new weighted trapezoidal approximation of an arbitrary fuzzy number, which preserves its cores. We prove that ... Keywords: Core of fuzzy number, Fuzzy numbers, Trapezoidal fuzzy numbers, Weighted approximation

S. Abbasbandy; T. Hajjari

2010-05-01T23:59:59.000Z

396

Weighted Distance Transforms for Images Using Elongated Voxel Grids  

Science Conference Proceedings (OSTI)

In this paper we investigate weighted distance transforms in 3D images using elongated voxel grids. We use a local neighbourhood of size 3 3 3 and assume a voxel grid with equal resolution along two axes and lower along the third. The weights (local ...

Ida-Maria Sintorn; Gunilla Borgefors

2002-04-01T23:59:59.000Z

397

Addressing diverse corpora with cluster-based term weighting  

Science Conference Proceedings (OSTI)

Highly heterogeneous collections present difficulties to term weighting models that are informed by corpus-level frequencies. Collections which span multiple languages or large time periods do not provide realistic statistics on which words are interesting ... Keywords: diverse corpora, multilingual retrieval, term weighting

Peter Organisciak

2013-07-01T23:59:59.000Z

398

Secrets of adaptive support weight techniques for local stereo matching  

Science Conference Proceedings (OSTI)

In recent years, local stereo matching algorithms have again become very popular in the stereo community. This is mainly due to the introduction of adaptive support weight algorithms that can for the first time produce results that are on par with global ... Keywords: Adaptive support weights, Evaluation study, Local stereo matching

Asmaa Hosni; Michael Bleyer; Margrit Gelautz

2013-06-01T23:59:59.000Z

399

One Hundred and Fifty Percent Elasticity.  

E-Print Network (OSTI)

??The sculptural environments I create immerse the viewer in a decrepit vaudevillian past. The sculptures allude to narratives within Community Theater as well as the (more)

Kessler, Eli Mikael

2008-01-01T23:59:59.000Z

400

Radioactive Elements in the Standard Atomic Weights Table.  

Science Conference Proceedings (OSTI)

In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value.

Holden,N.E.

2007-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FY06 High Strength Weight Reduction Materials Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

HigH StrengtH HigH StrengtH WeigHt reduction MaterialS U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2006 Progress Report for High Strength Weight Reduction Materials Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Advanced Materials Technologies Edward Wall Program Manager, OFCVT Rogelio Sullivan Advanced Materials Technologies Team Leader James Eberhardt Chief Scientist March 2006 High Strength Weight Reduction Materials FY 2006 Progress Report CONTENTS 1. INTRODUCTION................................................................................................................................... 1 2. MATERIALS DEVELOPMENT .......................................................................................................... 3

402

A Hybrid DDM Algorithm Based on Weight Function  

Science Conference Proceedings (OSTI)

The High Level Architecture (HLA) has become the focus of distributed interactive simulation's general technology frame. Data Distribution Management (DDM), one of the six services in Run Time Infrastructure (RTI), provides data filtering mechanism to ... Keywords: HLA, DDM, Weight Function

Guisheng Zhang; Xia Zhang; Deyu Li

2008-10-01T23:59:59.000Z

403

Extending the BLEU MT evaluation method with frequency weightings  

Science Conference Proceedings (OSTI)

We present the results of an experiment on extending the automatic method of Machine Translation evaluation BLUE with statistical weights for lexical items, such as tf.idf scores. We show that this extension gives additional information about evaluated ...

Bogdan Babych; Anthony Hartley

2004-07-01T23:59:59.000Z

404

An assessment of the MCNP4C weight window  

Science Conference Proceedings (OSTI)

A new, enhanced weight window generator suite has been developed for MCNP version 4C. The new generator correctly estimates importances in either a user-specified, geometry-independent, orthogonal grid or in MCNP geometric cells. The geometry-independent option alleviates the need to subdivide the MCNP cell geometry for variance reduction purposes. In addition, the new suite corrects several pathologies in the existing MCNP weight window generator. The new generator is applied in a set of five variance reduction problems. The improved generator is compared with the weight window generator applied in MCNP4B. The benefits of the new methodology are highlighted, along with a description of its limitations. The authors also provide recommendations for utilization of the weight window generator.

Christopher N. Culbertson; John S. Hendricks

1999-12-01T23:59:59.000Z

405

Variability of Population-Weighted Seasonal Heating Degree Days  

Science Conference Proceedings (OSTI)

Regional and national heating fuel demand is related to both weather and population density. This study analyzes the variability of population-weighted, seasonal heating degree days for the coterminous 48 states. A risk assessment of unusual ...

Nathaniel B. Guttman

1983-03-01T23:59:59.000Z

406

Theory of Optimal Weighting of Data to Detect Climatic Change  

Science Conference Proceedings (OSTI)

A search for climatic change predicted by climate models can easily yield unconvincing results because of climatic noise, the inherent, unpredictable variability of time-averaged atmospheric data. We describe a weighted average of data that ...

Thomas L. Bell

1986-08-01T23:59:59.000Z

407

Learning and transferring geographically weighted regression trees across time  

Science Conference Proceedings (OSTI)

The Geographically Weighted Regression (GWR) is a method of spatial statistical analysis which allows the exploration of geographical differences in the linear effect of one or more predictor variables upon a response variable. The parameters of this ...

Annalisa Appice; Michelangelo Ceci; Donato Malerba; Antonietta Lanza

2011-10-01T23:59:59.000Z

408

Large weight does not yield an irreducible base  

E-Print Network (OSTI)

Answering a question of Juhasz, Soukup and Szentmikl\\'ossy we show that it is consistent that some first countable space of uncountable weight does not contain an uncountable subspace which has an irreducible base.

Shelah, Saharon

2010-01-01T23:59:59.000Z

409

STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL  

E-Print Network (OSTI)

there is more than one level of floor, wall, or ceiling insulation in a building, or more than one type of a building feature, material, or construction assembly occur in a building, a weighted average

410

Weighted order statistic classifiers with large rank-order margin.  

Science Conference Proceedings (OSTI)

We describe how Stack Filters and Weighted Order Statistic function classes can be used for classification problems. This leads to a new design criteria for linear classifiers when inputs are binary-valued and weights are positive . We present a rank-based measure of margin that can be directly optimized as a standard linear program and investigate its effect on generalization error with experiment. Our approach can robustly combine large numbers of base hypothesis and easily implement known priors through regularization.

Porter, R. B. (Reid B.); Hush, D. R. (Donald R.); Theiler, J. P. (James P.); Gokhale, M. (Maya)

2003-01-01T23:59:59.000Z

411

The Complexity of Weighted Boolean #CSP with Mixed Signs  

E-Print Network (OSTI)

We give a complexity dichotomy for the problem of computing the partition function of a weighted Boolean constraint satisfaction problem. Such a problem is parameterized by a set ? of rational functions, each of which assigns a weight to each variable assignment. Our dichotomy extends previous work in which the weight functions were restricted to being non-negative. We represent a weight function as a product of the form (?1) s g, where the polynomial s determines the sign of the weight and the non-negative function g determines its magnitude. We show that the problem of computing the partition function (the sum of the weights of all possible variable assignments) is computable in polynomial time if either every function in ? can be defined by a pure affine magnitude with a quadratic sign polynomial or every function can be defined by a magnitude of product type with a linear sign polynomial. In all other cases, computing the partition function is FP #P-complete.

Andrei Bulatov; Martin Dyer; Leslie Ann Goldberg; Markus Jalsenius; David Richerby

2009-01-01T23:59:59.000Z

412

Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 3, 2010 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight to someone by E-mail Share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Facebook Tweet about Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Twitter Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Google Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Delicious Rank Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Digg Find More places to share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on AddThis.com...

413

Modeling uncertain variables of the weighted average operation by fuzzy vectors  

Science Conference Proceedings (OSTI)

The paper deals with the fuzzy extension of the weighted average operation. First, we study the convenient ways how uncertain weights and weighted values can be modeled by fuzzy vectors. We show that, in comparison to a tuple of fuzzy numbers that have ... Keywords: Fuzzy probabilities, Fuzzy vector, Fuzzy weighted average, Multiple criteria decision making, Normalized fuzzy weights, Separability of fuzzy vectors

Ond?Ej Pavla?Ka

2011-11-01T23:59:59.000Z

414

DOE to ease weighting of fuels in BEPS plan  

SciTech Connect

The portion of DOE's proposed Building Efficiency Performance Standards (BEPS) which deals with fuel-weighting factors may be eased to consider regional rather than national fuel prices and fuel mixes as a result of criticism expressed at hearings. Critics of the BEPS plan object to the penalties on regions where fossil fuels are used to generate electricity. They question the concept of using weighting factors to influence the mix of fuels used in new buildings. Speakers at the BEPS hearing claimed it will burden the hotel industry by eliminating construction of moderately priced facilities, criticized the statistical base used for the standards, suggested the weighting factors may be counterproductive to national goals, and expressed concern that the complex rules will be difficult to implement. (DCK)

Murnane, T.

1980-04-28T23:59:59.000Z

415

Weight-related Beliefs, Behaviors, and Social Networks of Obese, Young Adult African- American Women: Implications for Healthy Weight Interventions  

E-Print Network (OSTI)

Obesity is a public health concern that affects over 30% of Americans. Approximately 78% of African-American women are overweight/obese, as compared to 46% of Caucasian women. Obese African-American women are at higher risk for associated morbidities (e.g., hypertension, type II diabetes, select cancers, and early mortality) as compared to non-Hispanic whites. Weight gain after young adulthood (ages 20-35) is associated with an increased risk of cardiovascular disease and other health problems later in life. Research that seeks to explain, predict, or control obesity among African-American women has focused on individual behavior change. Few studies have addressed the social contexts within which these behaviors occur. The purpose of this exploratory study was to examine the weight-related beliefs, behaviors, and social network characteristics of obese, young adult African-American women. A conceptual framework based on social support and social network theory guided the design of the study. Ten African-American women between the ages of 20 and 35, self-described as plus-size or full-figured, completed initial informal conversations about weight-related issues and concerns and semi-structured, in-depth face-to-face interviews. Five participants were randomly selected to complete social network profiles to identify potential social influences on weight-related beliefs and behaviors. Results of the initial conversations revealed approximately half of the participants were class III obesity (BMI > 40), reported overall good health, and 70% participated in physical activity at least one day a week. Semi-structured interviews results disclosed two primary reasons for unsuccessful long-term weight loss: (a) inconsistent weight loss behaviors and (b) lack of accountability. Weight-related beliefs and behaviors of study participants were similar to those reported for older adult African-American women. Similarities included (a) mixed levels of body satisfaction; (b) the belief that health is not determined by weight; (c) sedentary lifestyles and; (d) social support from family and friends impacts long-term weight loss success. The five social network profiles indicated participants networks are small, comprised of at least two overweight/obese females, and exhibited positive social support behaviors. Social networks included positive, negative, and non-positive relationships. Social support for weight loss is shared among network members through face-to-face interactions, phone conversations, and use of social media tools such as Facebook, Twitter, and text messaging. Future healthy weight studies would benefit from comprehensive analyses of the social networks of obese, young adult African-American women, inclusive of interviews with social network members. Culture-based healthier weight interventions that organize social support networks through social media tools are promising strategies for promoting healthy weight management among obese, young adult African-American women.

Rollins, Brandy 1982-

2012-12-01T23:59:59.000Z

416

STATUS OF RADIOACTIVE ELEMENTS IN THE ATOMIC WEIGHTS TABLE.  

SciTech Connect

During discussions within the Inorganic Chemistry Division Committee, that dealt with the Periodic Table of the Chemical Elements and the official IUPAC position on its presentation, the following question was raised. When the various chemical elements are presented, each with their appropriate atomic weight value, how should the radioactive elements be presented? The Atomic Weights Commission has treated this question in a number of different ways during the past century, almost in a random manner. This report reviews the position that the Commission has taken as a function of time, as a prelude to a discussion in Ottawa about how the Commission should resolve this question for the future.

HOLDEN,N.E.

2003-08-08T23:59:59.000Z

417

Molecular Weight of Condensed Tannins from Warm-season Perennial Legumes and Its Effect on Condensed Tannin Biological Activity  

E-Print Network (OSTI)

Condensed tannins (CT) are polyphenolic compounds that have demonstrated biological activities in ruminants including suppression of enteric methane (CH4) production, protein binding and suppression of gastrointestinal nematode (GIN) infections. Some forage CT have been reported to be biologically active, whereas others have demonstrated no biological activity at all. While the chemical structure of CT has been postulated to be a key contributing factor affecting biological activity, the specific factors that determine whether or not CT from a specific forage have bioactive properties remain unknown. Results from previous studies have shown that as molecular weight of CT increases, CT biological activity also increases. Others have reported no effect of CT molecular weight on biological activity. The relationship between molecular weight of CT and CT biological activity remains inconclusive. The effect of molecular weight of CT from a variety of warm-season perennial legumes commonly consumed by ruminants on biological activity has not been adequately explored. The objectives of this study were to determine if molecular weight of CT from warm-season perennial legumes could predict the biological activity of CT relative to suppression of enteric CH4 production, protein-binding ability (PB) and anthelmintic activity, and to compare the biological activity of CT from native warm-season perennial legumes to that of the introduced species Lespedeza cuneata, a plant that has gained attention in recent years due its anthelmintic properties. All or a combination of the following warm-season perennial legume species were evaluated for in vitro gas production, protein-precipitable phenolics (PPP) and PB, and percent larval migration inhibition (LMI). Eight North American native warm-season perennial legumes: Leucaena retusa Benth. (littleleaf leadtree), Desmanthus illinoensis (Michx.) MacMill. Ex B.L. Rob. & Fernald (Illinois bundleflower), Lespedeza stuevei Nutt. (tall lespedeza), Mimosa strigillosa Torr. & A. Gray (powderpuff), Neptunia lutea (Leavenworth) Benth. (yellow puff), two ecotypes of Acacia angustissima var. hirta (Nutt.) B.L. Rob (prairie acacia), Desmodium paniculatum (L.) DC. var. paniculatum (panicledleaf ticktrefoil), and two introduced legumes: Arachis glabrata Benth. (rhizoma peanut) and Lespedeza cuneata (Dum. Cours.) G. Don (sericea lespedeza) were included. In vitro CH4 production regressed on CT MW resulted in a R2 of 0.0009 (P = 0.80). There was no correlation between PPP or PB and MW of CT (R^2 0.11; P = 0.17 and R^2 0.02; P = 0.54, respectively). There was a weak correlation between CT MW and percent LMI (R^2 0.34; P = 0.05). The results of our study strongly suggested that CT MW does not explain the biological activities of enteric methane suppression or protein-binding ability. Condensed tannin MW may be involved in anthelmintic activity of CT from the forage legumes surveyed. North American native legumes containing biologically active CT, as compared to introduced species, were identified as having promise for use in ruminant diets.

Naumann, Harley Dean

2013-08-01T23:59:59.000Z

418

Comparison of weighted grey relational analysis for software effort estimation  

Science Conference Proceedings (OSTI)

In recent years, grey relational analysis (GRA), a similarity-based method, has been proposed and used in many applications. However, we found that most traditional GRA methods only consider nonweighted similarity for predicting software development ... Keywords: Grey relational analysis (GRA), Software cost, Software development effort, Software effort estimation, Weighted assignment

Chao-Jung Hsu; Chin-Yu Huang

2011-03-01T23:59:59.000Z

419

RADIOACTIVE ELEMENTS IN THE STANDARD ATOMIC WEIGHTS TABLE  

Science Conference Proceedings (OSTI)

In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value. For the elements, which have no stable characteristic terrestrial isotopic composition, the data on the half-lives and the relative atomic masses for the nuclides of interest for those elements have been evaluated. The values of the half-lives with their uncertainties are listed in the table. The uncertainties are given for the last digit quoted of the half-life and are given in parentheses. A half-life entry for the Table having a value and an uncertainty of 7 {+-} 3 is listed in the half-life column as 7 (3). The criteria to include data in this Table, is to be the same as it has been for over sixty years. It is the same criteria, which are used for all data that are evaluated for inclusion in the Standard Table of Atomic Weights. If a report of data is published in a peer-reviewed journal, that data is evaluated and considered for inclusion in the appropriate table of the biennial report of the Atomic Weights Commission. As better data becomes available in the future, the information that is contained in either of the Tables of Standard Atomic Weights or in the Table of Radioactive Elements may be modified. It should be noted that the appearance of any datum in the Table of the Radioactive Elements is merely for the purposes of calculating an atomic mass value for any sample of a radioactive material, which might have a variety of isotopic compositions and it has no implication as to the priority for claiming discovery of a given element and is not intended to. The atomic mass values have been taken primarily from the 2003 Atomic Mass Table. Mass values for those radioisotopes that do not appear in the 2003 Atomic mass Table have been taken from preliminary data of the Atomic Mass Data Center. Most of the quoted half-lives.

Holden, N.E.; Holden, N.; Holden,N.E.

2011-07-27T23:59:59.000Z

420

Integrating a differential evolution feature weighting scheme into prototype generation  

Science Conference Proceedings (OSTI)

Prototype generation techniques have arisen as very competitive methods for enhancing the nearest neighbor classifier through data reduction. Within the prototype generation methodology, the methods of adjusting the prototypes' positioning have shown ... Keywords: Classification, Differential evolution, Feature weighting, Nearest neighbor, Prototype generation, Prototype selection

Isaac Triguero; JoaquN Derrac; Salvador GarcA; Francisco Herrera

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Optimal Project Feature Weights in Analogy-Based Cost Estimation  

E-Print Network (OSTI)

Optimal Project Feature Weights in Analogy-Based Cost Estimation: Improvement and Limitations, IEEE Abstract--Cost estimation is a vital task in most important software project decisions as measured by standard metrics. Index Terms--Software cost estimation, analogy-based cost estimation, project

422

Weighted median filters with sigma-delta modulation encoding  

Science Conference Proceedings (OSTI)

Digital decimation filters play a fundamental role in oversampled sigma-delta A/D decoders. In this paper, we first show that weighted median (WM) filtering of a demodulated sequence (at the Nyquist rate) can be implemented concurrently in the A/D decoder. ...

G.R. Arce; N.A. Grabowski; N.C. Gallagher

2000-02-01T23:59:59.000Z

423

Forecast of Standard Atomic Weights for the Mononuclidic Elements 2011  

SciTech Connect

In this short report, I will provide an early warning about potential changes to the standard atomic weight values for the twenty mononuclidic and the so-called pseudo-mononuclidic ({sup 232}Th and {sup 231}Pa) chemical elements due to the estimated changes in the mass values to be published in the next Atomic Mass Tables within the next two years. There have been many new measurements of atomic masses, since the last published Atomic Mass Table. The Atomic Mass Data Center has released an unpublished version of the present status of the atomic mass values as a private communication. We can not update the Standard Atomic Weight Table at this time based on these unpublished values but we can anticipate how many changes are probably going to be expected in the next few years on the basis of the forthcoming publication of the Atomic Mass Table. I will briefly discuss the procedures that the Atomic Weights Commission used in deriving the recommended Standard Atomic Weight values and their uncertainties from the atomic mass values. I will also discuss some concern raised about a proposed change in the definition of the mole. The definition of the mole is now connected directly to the mass of a {sup 12}C isotope (which is defined as 12 exactly) and to the kilogram. A change in the definition of the mole will probably impact the mass of {sup 12}C.

Holden, N.E.; Holden, N.; Holden,N.E.

2011-07-27T23:59:59.000Z

424

inverters, offering less weight, higher efficiency, and lower-cost installations.  

E-Print Network (OSTI)

to 10 pounds per square foot of dead weight to the roof structural members, concentrated throughinverters, offering less weight, higher efficiency, and lower- cost installations. The electrical

Johnson, Eric E.

425

Production and Handling Slide 30: UF6 Cylinder Fill Limit Weights  

NLE Websites -- All DOE Office Websites (Extended Search)

Weights Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Cylinder Fill Limit Weights A minimum volume, stated in cubic...

426

Municipal Incineration of Refuse with 2 Percent and 4 Percent Additions of Four Plastics: Polyethylene, Polyurethane,  

E-Print Network (OSTI)

was mercury adsorption onto calcium sulfate (CaSO4), a byproduct of the flue gas desulfurization (FGD) wet., Powers K.W., and Pitoniak E.R. (2004) Method for Purifying Flue Gases from Combustion Sources. PatentCoupling of Advanced Oxidation and Adsorption Processes onto Silica-Titania Composites for Low

Columbia University

427

Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities  

U.S. Energy Information Administration (EIA) Indexed Site

(Percent) (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 1.43 1.38 1.41 1.43 1.47 1.42 1985-2013 PADD 1 0.75 0.73 0.69 0.68 0.73 0.68 1985-2013 East Coast 0.67 0.66 0.61 0.63 0.66 0.57 1985-2013 Appalachian No. 1 2.0 1.72 1.52 1.40 1.55 1.74 1985-2013 PADD 2 1.42 1.34 1.44 1.46 1.61 1.49 1985-2013 Ind., Ill. and Ky. 1.45 1.36 1.47 1.56 1.75 1.67 1985-2013 Minn., Wis., N. Dak., S. Dak. 2.33 2.11 2.18 2.03 2.01 1.69 1985-2013 Okla., Kans., Mo. 0.89 0.89 0.92 0.82 0.87 0.85 1985-2013 PADD 3 1.54 1.48 1.51 1.52 1.54 1.48 1985-2013

428

FORCE RECONSTRUCTION USING THE SUM OF WEIGHTED ACCELERATIONS  

Office of Scientific and Technical Information (OSTI)

i i FORCE RECONSTRUCTION USING THE SUM OF WEIGHTED ACCELERATIONS TECHNIQUE - _-FUkT PRt_EOURE Thomas G. Came, Randy L. Mayas and Vesta I. Bateman .... _ i_ _ :!_ Sandia NationalLaboratories _. .... Albuquerque, NewMexico87185, USA ' _ i_ _ / ABSTRACT important design consideration. This would include payloador satelliteloads duringrocket launches[3]. Force reconstruction is a procedure in which the externally applied force is inferred from measured An applicationthat will be discussed as part of this structuralresponse ratherthan directlymeasured. In paper is the impact into a rigid barrier of a weapon a recently developed technique, the response system with an energy-absorbing nose. The nose acceleration time-histories are multiplied by scalar had been designed to absorb the energy of impact weights and summed to produce the reconstructed and to mitigate the shock to the

429

Learning Feature Weights from Customer Return-Set Selections  

E-Print Network (OSTI)

This paper describes LCW, a procedure for learning customer preferences represented as feature weights by observing customers' selections from return sets. An empirical evaluation on simulated customer behavior indicated that uninformed hypotheses about customer weights lead to low ranking accuracy unless customers place some importance on almost all features or the total number of features is quite small. In contrast, LCW's estimate of the mean preferences of a customer population improved as the number of customers increased, even for larger numbers of features of widely differing importance. This improvement in the estimate of mean customer preferences led to improved prediction of individual customer's rankings, irrespective of the extent of variation among customers and whether a single or multiple retrievals were permitted. The experimental results suggest that the return set that optimizes benefit may be smaller for customer populations with little variation than for customer populations with wide variation.

L. Karl Branting

2004-01-01T23:59:59.000Z

430

A population-based variable neighborhood search for the single machine total weighted tardiness problem  

Science Conference Proceedings (OSTI)

This paper investigates the single machine total weighted tardiness problem, in which a set of independent jobs with distinct processing times, weights, and due dates are to be scheduled on a single machine to minimize the sum of weighted tardiness of ... Keywords: Single machine scheduling, Total weighted tardiness, Variable neighborhood search

Xianpeng Wang; Lixin Tang

2009-06-01T23:59:59.000Z

431

Minimum weight perfect matching in O(1) parallel time  

E-Print Network (OSTI)

Consider a 2-D square array of qubits of infinite extent. We provide a formal proof that the infinite size minimum weight perfect matching problem associated with running a particular class of topological quantum error correction codes on this array can be exactly solved with a corresponding infinite 2-D square array of classical computing devices in constant average time per round of error detection provided physical error rates are below fixed nonzero values, and other physically reasonable assumptions.

Austin G. Fowler

2013-07-06T23:59:59.000Z

432

PET imaging predicts future body weight and cocaine preference  

Science Conference Proceedings (OSTI)

Deficits in dopamine D2/D3 receptor (D2R/D3R) binding availability using PET imaging have been reported in obese humans and rodents. Similar deficits have been reported in cocaine-addicts and cocaine-exposed primates. We found that D2R/D3R binding availability negatively correlated with measures of body weight at the time of scan (ventral striatum), at 1 (ventral striatum) and 2 months (dorsal and ventral striatum) post scan in rats. Cocaine preference was negatively correlated with D2R/D3R binding availability 2 months (ventral striatum) post scan. Our findings suggest that inherent deficits in striatal D2R/D3R signaling are related to obesity and drug addiction susceptibility and that ventral and dorsal striatum serve dissociable roles in maintaining weight gain and cocaine preference. Measuring D2R/D3R binding availability provides a way for assessing susceptibility to weight gain and cocaine abuse in rodents and given the translational nature of PET imaging, potentially primates and humans.

Michaelides M.; Wang G.; Michaelides M.; Thanos P.K. Kim R.; Cho J.; Ananth M.; Wang G.-J.; Volkow N.D.

2011-08-28T23:59:59.000Z

433

THE EFFECT OF A MINIMUM WEIGHT RADIAL REFLECTOR ON SNAP SHIELDING REQUIREMENTS  

SciTech Connect

A model was derived for a minimum-weight radial reflector for SNAP reactors. The effect, which the use of this optimal reflector has on radiation shield weight requirements is investigated. Weights of systems employing conventional and optimal radial reflectors are compared using the FARSE and FARSER computer codes. It is found that for the configuration under study additional shield weight required when the optimal reflector is used is in excess of the reflector weight savings. (auth)

Bernick, R.L.

1963-10-17T23:59:59.000Z

434

Multifoil insulation study for weight reduction. Technical information report  

DOE Green Energy (OSTI)

The purpose of the present task is to develop high temperature multi-foil insulation suitable for use in the SP-100 thermoelectric converter project. Part of this task involves careful examination of alternative foil and foil spacing materials with the goal of effecting significant weight savings over current state-of-the-art foil insulation. This task involved the determination of the state-of-the-art foils, ascertaining what data is available, what additional data is required, preliminary assessment of the suitability of alternate foil and spacer materials, and specific recommendations for additional tests required to qualify new and existing insulation designs for use in the SP-100.

Glazer, S.D.

1984-01-01T23:59:59.000Z

435

Step Complexity Measure for Emergency Operating Procedures - Determining Weighting Factors  

Science Conference Proceedings (OSTI)

In complex systems, such as nuclear power plants (NPPs) or airplane control systems, human error has been regarded as the primary cause of many events. Therefore, to ensure system safety, extensive effort has been made to identify the significant factors that can cause human error. According to related studies, written manuals or operating procedures are revealed as one of the important factors, and the understandability is pointed out as one of the major reasons for procedure-related human errors.Many qualitative checklists have been suggested to evaluate emergency operating procedures (EOPs) of NPPs so as to minimize procedure-related human errors. However, since qualitative evaluations using checklists have some drawbacks, a quantitative measure that can quantify the complexity of EOPs is indispensable.From this necessity, Park et al. suggested the step complexity (SC) measure to quantify the complexity of procedural steps included in EOPs. To verify the appropriateness of the SC measure, averaged step performance time data obtained from emergency training records of the loss-of-coolant accident (LOCA) and the excess steam demand event were compared with estimated SC scores. However, although averaged step performance time data and estimated SC scores show meaningful correlation, some important issues such as determining proper weighting factors have to be clarified to ensure the appropriateness of the SC measure. These were not properly dealt with due to a lack of backup data.In this paper, to resolve one of the important issues, emergency training records are additionally collected and analyzed in order to determine proper weighting factors. The total number of collected records is 66, and the training scenarios cover five emergency conditions including the LOCA, the steam generator tube rupture, the loss of all feedwater, the loss of off-site power, and the station blackout. From these records, average step performance time data are retrieved, and new weighting factors are determined by using a nonlinear regression analysis. The results show that the SC scores quantified by the new weighting factors show statistically meaningful correlation with averaged step performance time data. Thus, it can be concluded that the SC measure can represent the complexity of procedural steps included in EOPs.

Park, Jinkyun; Jung, Wondea; Kim, Jaewhan; Ha, Jaejoo [Korea Atomic Energy Research Institute (Korea, Republic of)

2003-09-15T23:59:59.000Z

436

Weighting and Bayes Nets for Rollup of Surveillance Metrics  

SciTech Connect

The LANL IKE team proposes that the surveillance metrics for several data stream that are used to detect the same failure mode be weighted. Similarly, the failure mode metrics are weighted to obtain a subsystem metric. E.g., if there n data streams (nodes 1-n), the failure mode (node 0) metric is obtained as M{sub 0} = w{sub 1}M{sub 1} + {hor_ellipsis} + w{sub n}M{sub n}, where {Sigma}{sub i=1}{sup n} w{sub i} = 1. This proposal has been implemented with Bayes Nets using the Netica/IKE software by specifying an appropriate conditional probability table (CPT). This CPT is calculated using the same form as (1), where the data stream metrics for the true (T) and false (F) states are replaced by 1 and 0, respectively. Then using this CPT, the failure mode metric calculated by Netica/IKE equals (1). This result has two nice features. First, the rollup Bayes nets is doing can be easily explained. Second, because Bayes Nets can implement this rollup using Netica/IKE, then data marshalling (allocating next year's budget) can be studied. A proof that the claim 'failure mode metric calculated by Netica/IKE equals (1)' for n = 2 and n = 3 follows as well as the sketch of a proof by induction for general n.

Henson, Kriste [Los Alamos National Laboratory; Sentz, Kari [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory

2012-04-30T23:59:59.000Z

437

Approximate Weighted Matching On Emerging Manycore and Multithreaded Architectures  

SciTech Connect

Graph matching is a prototypical combinatorial problem with many applications in computer science and scientific computing, but algorithms for computing optimal matchings are challenging to parallelize. Approximate matching algorithms provide an alternate route for parallelization, and in many contexts compute near-optimal matchings for large-scale graphs. We present sharedmemory parallel implementations for computing half-approximate weighted matching on state-of-the-art multicore (Intel Nehalem and AMD Magny-Cours), manycore (Nvidia Tesla and Nvidia Fermi) and massively multithreaded (Cray XMT) platforms. We provide two implementations: the first implementation uses shared work queues, and is suited to all these platforms; the second implementation is based on dataflow principles, and exploits the architectural features of the Cray XMT. Using a carefully chosen dataset that exhibits characteristics from a wide range of real-world applications, we show scalable performance across different platforms. In particular, for one instance of the input, an R-MAT graph (RMAT-G), we show speedups of: about 32 on 48 cores of an AMD Magny-Cours; 7 on 8 cores of Intel Nehalem; 3 on Nvidia Tesla and 10 on Nvidia Fermi relative to one core of Intel Nehalem; and 60 on 128 processors of Cray XMT. We demonstrate good weak and strong scaling for graphs with up to a billion edges using up to 12, 800 threads. Given the breadth of this work, we focus on simplicity and portability of software rather than excessive fine-tuning for each platform. To the best of our knowledge, this is the first such large-scale study of the half-approximate weighted matching problem on shared-memory platforms. Driven by the critical enabling role of combinatorial algorithms such as matching in scientific computing and the emergence of informatics applications, there is a growing demand to support irregular computations on current and future computing platforms. In this context, we evaluate the capability of emerging multithreaded platforms to tolerate latency induced by irregular memory access patterns, and to support fine-grained parallelism via light-weight synchronization mechanisms. By contrasting the architectural features of these platforms against the Cray XMT, which is specifically designed to support irregular memory-intensive applications, we delineate the impact of these choices on performance.

Halappanavar, Mahantesh; Feo, John T.; Villa, Oreste; Tumeo, Antonino; Pothen, Alex

2012-11-30T23:59:59.000Z

438

Analytic Approximation of Discrete Field Samples with Weighted Sums and the Gridless Computation of Field Derivatives  

Science Conference Proceedings (OSTI)

Objective analysis by weighted sums of discrete observations is equivalent to the approximation of the distribution of an observed parameter by a function which is also analytic, provided that the weighting function is both analytic and positive ...

F. Caracena

1987-12-01T23:59:59.000Z

439

The Impact of Signal Processing on the Range-Weighting Function for Weather Radars  

Science Conference Proceedings (OSTI)

The range-weighting function (RWF) determines how individual scatterer contributions are weighted as a function of range to produce the meteorological data associated with a single resolution volume. The RWF is commonly defined in terms of the ...

Sebastin M. Torres; Christopher D. Curtis

2012-06-01T23:59:59.000Z

440

Computing and Mapping Thiessen Weighting Factors from Digitized District Boundaries and Climatological Station Latitudes and Longitudes  

Science Conference Proceedings (OSTI)

A set of procedures, including computer software, which derive weighting factors for reducing point weather data to an areal district basis, are described and demonstrated. Areal estimates obtained by applying such weighting factors can be used, ...

H. N. Hayhoe; G. D. V. Williams

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Apparatus and method of determining molecular weight of large molecules  

DOE Patents (OSTI)

A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.

Fuerstenau, Stephen (Montrose, CA); Benner, W. Henry (Danville, CA); Madden, Norman (Livermore, CA); Searles, William (Fremont, CA)

1998-01-01T23:59:59.000Z

442

Catalytic conversion of methanol to low molecular weight hydrocarbons. [Dissertation  

DOE Green Energy (OSTI)

The recent demands on the available energy have stimulated the search for alternatives to oil. Methanol, because of its abundance and the availability of technology to produce it from coal, is projected as an alternative source for producing low molecular weight olefins. Utilizing chabazite ion exchanged with ammonium and rare earth chlorides, methanol is converted to ethylene, propylene and propane with carbon yields of 70 to 90% at reaction temperatures of 633 to 723/sup 0/K and pressures from 1 to 18 atmospheres. X-ray diffraction studies, using Cu-K radiation, show no permanent structural changes after a long use. No permanent deactivation was observed even though the catalyst was overheated once, and have been deactivated and regenerated as many as 21 times. The ammonium exchange coupled with the water at high temperature suggest the formation of an ultrastable zeolite. Ethylene yields increase as the temperature increases from 633/sup 0/K to 723/sup 0/K.

Singh, B.B.

1979-12-01T23:59:59.000Z

443

Weight optimisation for iterative distributed model predictive control applied to power networks  

Science Conference Proceedings (OSTI)

This paper presents a weight tuning technique for iterative distributed Model Predictive Control (MPC). Particle Swarm Optimisation (PSO) is used to optimise both the weights associated with disturbance rejection and those associated with achieving consensus ... Keywords: Distributed model predictive control, Multi-agent, Particle swarm optimisation, Power networks, Smart grids, Weight tuning

Paul Mc Namara; Rudy R. Negenborn; Bart De Schutter; Gordon Lightbody

2013-01-01T23:59:59.000Z

444

Microsoft Word - EM SSAB Spring 2010 Mtg Min.063010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Double Tree Hotel 215 South Illinois Avenue * Oak Ridge, TN 37830 April 28-29, 2010 2 Environmental Management Site-Specific Advisory Board Chairs' Meeting Minutes, April 28-29, 2010 LIST OF ACRONYMS ARRA - American Recovery and Reinvestment Act CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act CFO - Chief Financial Officer CPR - Construction Project Review D&D - Decontamination & Decommissioning DAS - Deputy Assistant Secretary DDFO - Deputy Designated Federal Officer DFO - Designated Federal Officer DOE - Department of Energy DU - Depleted Uranium DWPF - Defense Waste Processing Facility ECA - Energy Communities Alliance EIS - Environmental Impact Statement EM - Office of Environmental Management

445

Microsoft Word - EM SSAB Fall 2010 Mtg Min.FINAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

La Fonda on the Plaza Hotel 100 East San Francisco Street * Santa Fe, NM 87501 September 15-16, 2010 Environmental Management Site-Specific Advisory Board Chairs' Meeting Minutes September 15-16, 2010 LIST OF ACRONYMS ARRA - American Recovery and Reinvestment Act CD-1 - Critical Decision One CERCLA - Comprehensive Environmental Response, Compensation, and Liability Act CFO - Chief Financial Officer CR - Continuing Resolution CPR - Construction Project Review D&D - Decontamination & Decommissioning DAS - Deputy Assistant Secretary DDFO - Deputy Designated Federal Officer DFO - Designated Federal Officer DNFSB - Defense Nuclear Facilities Safety Board DOE - Department of Energy DOI - Department of Interior DU - Depleted Uranium DWPF - Defense Waste Processing Facility

446

Nonconvergence of the plain Newton-min algorithm for linear ...  

E-Print Network (OSTI)

Apr 7, 2010 ... accounts on the use of interior point methods to solve linear ...... mineral precipitation-dissolution reactions by a semismooth Newton method.

447

Max-min separability: incremental approach and application to ...  

E-Print Network (OSTI)

?f(x) = coC, ?f(x) = coD. We denote by F the class of all semismooth, quasidifferentiable functions whose subdif- ferential and superdifferential are polytopes at...

448

Min-Max Theorems Related to Geometric Representationsof Graphs ...  

E-Print Network (OSTI)

Oct 27, 2010 ... A related concept is that of an energy function (see, e.g., ... A nice interpretation of this energy is given as follows. ..... Washington, DC, 1997. 6.

449

Min CSP on four elements: moving beyond submodularity  

Science Conference Proceedings (OSTI)

We report new results on the complexity of the valued constraint satisfaction problem (VCSP). Under the unique games conjecture, the approximability of finite-valued VCSP is fairly well-understood. However, there is yet no characterisation of VCSPs that ... Keywords: bisubmodularity, combinatorial optimisation, computational complexity, constraint satisfaction problems, submodularity

Peter Jonsson; Fredrik Kuivinen; Johan Thapper

2011-09-01T23:59:59.000Z

450

RTG_min_10-4-07_final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Ohio Ralph Hail, Norfolk Southern Lisa Janairo, CSG-MW Paul Johnson, ORNL Candice Jordan, ECA Marsha Keister, INL Mel Massaro, DOTFRA Doug Osborn, SNL Cort Richardson, CSG-NE...

451

A combinatorial auctions perspective on min-sum scheduling ...  

E-Print Network (OSTI)

Proof This is a consequence of the equivalence relations, whose proof is the essentially the same ..... paper, but believe of interest to the scheduling community.

452

SECTION J, APPENDIX Q - MIN STDS FOR CONTRACTORS' COI PLANS  

National Nuclear Security Administration (NNSA)

Officers and the Agency when evaluating whether or not a Contractor has a COI. B. Search and Identification of COI The COI Plan shall include a requirement describing when a...

453

Microsoft Word - UEC-CC_090413_min_TEH.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

(Imperial College, London) CNMS (non-members) - Tony Haynes, Viviane Schwartz, Sandy Lowe * User Meeting planning process and results (Hmelo) o Lessons learned: what...

454

Microsoft Word - UEC-CC_100213_min_TEH.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

(Imperial College, London) CNMS (non-members) - Tony Haynes, Viviane Schwartz, Sandy Lowe, Karren More * Welcome ShaRE observer (Hmelo) * BES Review o Preliminary feedback...

455

Microsoft Word - UEC-CC_010610_min.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

- Hai-Ping Cheng (University of Florida) CNMS (non-members) Tony Haynes; Laura Edwards; Sandy Lowe Following introductions, the floor was opened to discuss items on the agenda: -...

456

Light-Weight Radioisotope Heater Unit (LWRHU) sequential impact tests  

SciTech Connect

The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. A series of sequential impacts tests using simulant-fueled LWRHU capsules was recently conducted to determine a failure threshold. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Although the tests were conducted until the aeroshells were sufficiently distorted to be out of dimensional specification, the simulant-fueled capsules used in these tests were not severely deformed. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s. Postimpact examination revealed that the sequentially impacted capsules were slightly more deformed and were outside of dimensional specifications.

Reimus, M.A.H.; Rinehart, G.H.

1997-08-01T23:59:59.000Z

457

Light-weight radioisotope heater unit (LWRHU) impact tests  

SciTech Connect

The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s. {copyright} {ital 1998 American Institute of Physics.}

Reimus, M.A.; Rinehart, G.H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

1998-01-01T23:59:59.000Z

458

Light-weight radioisotope heater unit (LWRHU) impact tests  

SciTech Connect

The light-weight radioisotope heater unit (LWRHU) is a {sup 238}PuO{sub 2}-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

1998-01-15T23:59:59.000Z

459

Design of Light Weight Structure for Wind Turbine Tower by Using ...  

Science Conference Proceedings (OSTI)

This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nano-structured...

460

as adopted by the 97th National Conference on Weights and ...  

Science Conference Proceedings (OSTI)

Page 1. as adopted by the 97th National Conference on Weights and Measures 2012 2013 Page 2. Specifications, Tolerances, and Other Technical ...

2012-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ORIGINAL RESEARCH Strategies for and Barriers to Managing Weight When Eating at Restaurants  

E-Print Network (OSTI)

Suggested citation for this article: Timmerman GM, Earvolino-Ramirez M. Strategies for and barriers to managing weight when eating at restaurants. Prev Chronic

Gayle M. Timmerman; Cns Marie Earvolino-ramirez; Peer Reviewed

2010-01-01T23:59:59.000Z

462

AN ALGORITHM FOR THE GENERATION OF NUCLEAR SPIN SPECIES AND NUCLEAR SPIN STATISTICAL WEIGHTS  

E-Print Network (OSTI)

Chemistry AN ALGORITHM FOR THE GENERATION OF NUCLEAR SPINSPECIES AND NUCLEAR SPIN STATISTICAL WEIGHTS K.for the Generation of Nuclear Spin and Nuclear Spin

Balasubramanian, K.

2013-01-01T23:59:59.000Z

463

Dynamic filter weights neural network model integrated with differential evolution for day-ahead price forecasting in energy market  

Science Conference Proceedings (OSTI)

In this paper a new dynamic model for forecasting electricity prices from 1 to 24h in advance is proposed. The model is a dynamic filter weight Adaline using a sliding mode weight adaptation technique. The filter weights for this neuron constitute of ... Keywords: Differential evolution, Dynamic filter weights neuron, Energy market, Local linear wavelet neural network, Sliding mode control

S. Chakravarty; P. K. Dash

2011-09-01T23:59:59.000Z

464

The estimates of approximation by using a new type of weighted modulus of continuity  

Science Conference Proceedings (OSTI)

In this paper, we introduce a new type modulus of continuity for function f belonging to a particular weighted subspace of C[0,~) and show that it has some properties of ordinary modulus of continuity. We obtain some estimates of approximation of functions ... Keywords: Beurling classes, Modulus of continuity, Positive linear operators, Weighted spaces

A. D. Gadjiev; A. Aral

2007-07-01T23:59:59.000Z

465

Oligomer Molecular Weight Distribution 515 Applied Biochemistry and Biotechnology Vol. 105108, 2003  

E-Print Network (OSTI)

Oligomer Molecular Weight Distribution 515 Applied Biochemistry and Biotechnology Vol. 105 of Molecular Weight Distribution of Oligomers from Autocatalyzed Batch Hydrolysis of Xylan XIA LI,* ALVIN O or xylan can be carried out in a single step by reaction with steam or water, often termed autohydrolysis

California at Riverside, University of

466

DYNAMIC RESOURCE CONSTRAINED MULTI-PROJECT SCHEDULING PROBLEM WITH WEIGHTED EARLINESS/TARDINESS COSTS1  

E-Print Network (OSTI)

for the dynamic multi-project scheduling problem with weighted earliness/tardiness costs (DRCMPSPWET of an existing project portfolio and a due date has to be quoted for the new project while minimizing the costs1 DYNAMIC RESOURCE CONSTRAINED MULTI-PROJECT SCHEDULING PROBLEM WITH WEIGHTED EARLINESS

Yanikoglu, Berrin

467

USING WEIGHTED SUM METHOD FOR THE CHOICE OF THE NIGHT VISION GOGGLES BATTERY POWER SUPPLY  

E-Print Network (OSTI)

USING WEIGHTED SUM METHOD FOR THE CHOICE OF THE NIGHT VISION GOGGLES BATTERY POWER SUPPLY Daniela into account device working range, weight and price and also electrical battery power supply lifetime, temperature working range and its mechanics. The multicriteria optimization choice of the electrical battery

Borissova, Daniela

468

Towards an Efficient Network Selection Technique Based on Differentiated Weight of Access Interface  

Science Conference Proceedings (OSTI)

In this work, the authors have proposed a new technique for network selection decision. This technique combines two multi attribute decision making MADM methods. The analytic network process ANP method to find the differentiate weights of available networks ... Keywords: Analytic Network Process ANP, Differentiated Weight, Heterogeneous Multi-Access, IEEE 802.21, Multi Attribute Decision Making MADM, Network Selection

Mohamed Lahby; Leghris Cherkaoui; Abdellah Adib

2012-10-01T23:59:59.000Z

469

Weighted distance transforms generalized to modules and their computation on point lattices  

Science Conference Proceedings (OSTI)

This paper presents the generalization of weighted distances to modules and their computation through the chamfer algorithm on general point lattices. The first part is dedicated to formalization of definitions and properties (distance, metric, norm) ... Keywords: Chamfer algorithm, Distance transform, Non-standard grids, Weighted distance

Cline Fouard; Robin Strand; Gunilla Borgefors

2007-09-01T23:59:59.000Z

470

Time-Varying PLC Network Modeling with Wavelet MDFB and Weighted OFDM Precoders  

Science Conference Proceedings (OSTI)

The paper addresses a problem of designing a simple, efficient power line network simulator embedded with two types of multirate filter bank precoders, weighted orthogonal frequency division multiplexing (OFDM) and wavelet-based maximally decimated filter ... Keywords: Power line communications (PLC), Weighted OFDM, Wavelet-based MDFB, Time-varying block transmission, Interblock interference (IBI)

Tae-Eung Sung

2009-07-01T23:59:59.000Z

471

Using the method of weighted residuals to compute potentials of mean force  

Science Conference Proceedings (OSTI)

We propose a general framework for approximating the potential of mean force (PMF) along a reaction coordinate in conformational space. This framework, based on the method of weighted residuals, can be viewed as a generalization of thermodynamic integration ... Keywords: Free energy, Histogram methods, Method of weighted residuals, Potential of mean force, Thermodynamic integration

Eric C. Cyr; Stephen D. Bond

2007-07-01T23:59:59.000Z

472

Delay Stability Regions of the Max-Weight Policy under Heavy-Tailed Traffic  

E-Print Network (OSTI)

Delay Stability Regions of the Max-Weight Policy under Heavy-Tailed Traffic Mihalis G. Markakis operated under the Max- Weight scheduling policy, for the case where one of the queues is fed by heavy system exemplifies an intricate phenomenon whereby heavy-tailed traffic at one queue may or may

Tsitsiklis, John

473

A Weighted Point Model for the Thermal Neutron Multiplicity Assay of High-Mass Plutonium Samples  

Science Conference Proceedings (OSTI)

A weighted point model for thermal neutron multiplicity counting has been developed for the assay of impure plutonium metal samples. Weighting factors are introduced for the spontaneous fission and ({alpha},n) contributions to the doubles and triples rates to account for the variations in neutron multiplication in these samples. The weighting factors are obtained from Monte Carlo simulations using the MCNPX code, which supports the simulation of spontaneous fission sources and can tally the source and detected neutron multiplicity distributions. Systematic behavior of the weighting factors was studied as a function of sample mass and geometry. Simulations were performed to evaluate the potential accuracy of assays performed with weighted point model analysis. Comparisons with experimental data are presented. The possible use of quads rates is explored.

M.S. Krick; W.H. Geist; D.R. Mayo

2005-10-01T23:59:59.000Z

474

Oklahoma Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

475

Maine Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.8 99.8

476

New Jersey Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 98.0 97.8 97.7 97.9 92.7 97.0 98.1 97.2 97.2 95.4 96.1 95.6 2003 94.9 95.0 95.5 95.0 95.1 95.2 95.3 95.1 96.7 94.4 94.9 94.7 2004 94.5 95.4 95.0 95.4 95.8 95.2 95.2 94.4 95.0 94.2 94.4 94.7 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

477

Iowa Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

478

Alaska Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

479

Oregon Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

480

Kansas Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 2005 99.5 99.5 99.5 99.2 99.5 99.5 99.6 99.6 99.6 99.7 99.7 99.9 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2010 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: This page contains sample records for the topic "weight percent min" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Percent of Commercial Natural Gas Deliveries in South Carolina Represented  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 98.5 98.5 98.6 98.3 98.1 98.2 98.1 97.7 97.7 97.8 98.0 97.3 1990 98.6 98.4 98.3 98.1 92.2 97.6 97.6 97.5 97.9 97.3 98.0 98.6 1991 98.7 98.9 98.7 96.9 97.4 97.5 97.3 97.7 97.7 97.4 98.9 98.9 1992 99.1 99.1 98.9 98.6 98.5 95.8 95.5 95.8 97.0 99.7 100.0 100.0 1993 100.0 100.0 100.0 100.0 100.0 100.0 95.1 94.6 100.0 95.3 100.0 100.0 1994 100.0 100.0 100.0 99.7 97.8 98.3 97.0 95.7 95.2 95.6 96.2 99.9 1995 97.8 97.5 96.7 95.0 95.6 88.4 95.0 95.1 95.3 95.3 95.9 100.0 1996 100.0 100.0 100.0 100.0 97.5 96.9 100.0 97.3 97.3 96.4 97.4 100.0 1997 100.0 98.3 97.8 96.0 100.0 100.0 99.9 97.1 98.8 99.9 100.0 98.0

482

New York Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

483

Washington Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

484

Texas Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 99.9 100.0 100.0 99.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0

485

Georgia Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

486

Pennsylvania Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA)

Percentage of Total Natural Gas Residential Deliveries included in Prices ; Pennsylvania Natural Gas Prices ...

487

Percent of Industrial Natural Gas Deliveries in Minnesota ...  

U.S. Energy Information Administration (EIA)

Percentage of Total Natural Gas Industrial Deliveries included in Prices ; Minnesota Natural Gas Prices ...

488

Michigan Natural Gas Percentage Total Industrial Deliveries (Percent)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 3.91: 4.01: 3.81: 3.91: 2.86: 2.59: 2.96: 2000's: 2.91: 3.05: 3.15: 2.98: 2.91 ...

489

U.S. Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA)

Release Date: 7/31/2013: Next Release Date: 8/30/2013: Referring Pages: Percentage of Total Natural Gas Residential Deliveries included in Prices

490

Utah Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 100.0 1990's 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 1.0 100.0 2000's 100.0 100.0 100.0...

491

Percent of Industrial Natural Gas Deliveries in Utah Represented...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8.9 8.6 9.5 2000's 10.0 10.4 13.6 13.6 19.8 19.5 20.1 14.1 12.7 12.2 2010's 12.1 12.7 11.0...

492

Percent of Commercial Natural Gas Deliveries in Utah Represented...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100.0 100.0 100.0 100.0 83.3 81.8 81.9 83.2 82.5 82.9 2000's 83.9 84.4 83.7 84.4 84.4 86.8 86.8...

493

Minnesota Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

494

Michigan Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 97.9 97.7 97.9 97.7 95.5 94.0 95.6 94.1 91.2 91.7 92.6 92.9 2003 93.8 93.4 92.3 96.3 95.8 95.0 95.8 95.5 94.0 93.6 95.9 94.7 2004 95.1 95.6 95.3 95.7 90.9 95.6 95.7 95.6 95.1 95.0 95.3 95.7 2005 95.9 96.1 96.0 95.9 95.9 95.6 95.1 95.1 94.4 93.3 94.2 95.1 2006 94.6 94.4 94.6 95.4 94.6 95.0 94.2 93.8 92.6 92.1 93.4 93.6 2007 94.6 95.1 95.5 95.3 95.5 95.5 94.8 94.5 93.8 92.7 92.1 93.5 2008 93.6 93.5 94.1 95.5 94.2 95.6 95.1 94.3 94.2 91.9 93.1 94.0 2009 93.9 94.6 94.4 94.5 94.3 94.5 93.2 93.8 92.3 91.6 92.7 92.2 2010 93.6 93.5 93.8 80.9 93.6 93.1 93.1 92.7 91.5 90.4 91.6 92.1 2011 92.3 92.7 92.1 93.0 93.1 92.7 91.9 91.5 90.2 89.8 91.0 91.7

495

New Mexico Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

496

Percent of Industrial Natural Gas Deliveries in New Hampshire Represented  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 13.5 16.2 17.9 15.4 9.9 5.0 3.7 8.5 13.7 14.1 17.5 16.5 2002 16.4 11.2 14.6 9.0 8.3 9.0 5.2 10.1 7.7 29.4 32.3 17.4 2003 6.7 7.2 19.4 17.0 10.6 13.5 13.0 12.3 13.4 15.5 21.1 26.3 2004 30.3 9.1 10.7 10.4 7.1 5.5 3.9 4.3 5.6 8.7 9.7 17.0 2005 17.6 17.5 12.0 6.5 6.9 6.6 3.3 10.0 5.5 6.4 13.7 13.0 2006 16.3 24.3 18.2 18.2 17.7 12.9 4.8 9.1 8.0 12.8 8.8 15.6 2007 11.7 16.6 12.0 8.4 15.3 8.9 5.4 7.0 6.0 8.5 10.7 45.8 2008 23.0 22.9 22.0 15.0 16.4 16.2 14.6 12.3 11.2 13.6 16.1 20.0 2009 30.5 28.1 25.0 16.7 15.5 16.3 14.5 13.7 13.3 16.5 18.7 23.1 2010 18.0 16.4 15.4 12.2 10.3 8.8 8.6 10.9 8.0 10.7 13.6 14.1

497

District of Columbia Natural Gas % of Total Residential - Sales (Percent)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 76.0 76.2 75.3 73.4 81.1 82.2 72.9 80.3 74.6 72.2 72.3 71.0 2003 70.4 71.0 69.3 63.9 64.8 75.9 55.6 69.6 77.6 71.8 73.7 74.8 2004 76.1 74.9 74.1 72.9 71.1 70.5 74.3 74.9 74.5 72.5 77.7 78.4 2005 81.0 79.1 78.9 74.5 76.2 85.2 80.8 74.1 80.3 78.0 81.0 81.0 2006 78.2 77.9 77.1 70.3 69.8 67.8 70.1 76.8 73.8 78.1 78.2 78.7 2007 77.0 80.1 73.9 74.4 62.5 77.4 68.0 77.1 67.8 74.0 75.2 78.5 2008 78.0 78.1 78.2 67.8 69.9 70.3 72.2 71.4 73.2 68.0 79.2 78.9 2009 78.8 78.7 76.5 71.7 70.4 67.9 64.8 77.2 68.5 72.4 72.6 78.2 2010 77.6 78.6 75.3 64.5 61.1 68.0 66.9 66.1 72.7 69.1 77.7 77.3 2011 79.4 75.3 74.8 72.3 54.3 60.9 70.6 78.8 70.9 77.6 78.7 71.5

498

Colorado Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2003 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2004 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2005 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2006 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2007 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2008 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 2009 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

499

Connecticut Natural Gas % of Total Residential - Sales (Percent)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 99.3 99.3 99.2 99.3 99.1 99.2 99.0 99.0 86.9 99.5 99.1 99.2 2003 100.0 98.7 98.7 98.4 98.2 98.4 98.2 98.0 97.6 97.9 98.2 98.5 2004 98.7 98.7 98.7 98.5 97.8 98.7 98.0 98.8 98.7 97.8 98.8 98.9 2005 99.0 99.0 98.9 98.7 98.6 98.5 98.5 98.5 98.5 98.3 98.3 98.6 2006 98.7 98.6 98.7 98.4 98.3 98.4 98.4 98.5 98.3 97.9 98.2 98.3 2007 98.4 98.6 98.6 98.3 98.3 97.3 98.4 97.6 95.5 97.9 97.5 98.2 2008 98.2 98.0 98.1 97.9 97.3 95.8 97.8 97.4 97.4 96.8 97.2 97.8 2009 97.8 98.0 97.9 97.4 97.3 97.2 97.3 97.4 97.1 96.5 96.9 97.3 2010 97.8 97.7 97.6 97.0 96.9 97.3 97.1 97.1 96.8 95.9 96.7 97.0 2011 97.0 97.4 97.0 96.3 96.6 96.5 96.4 96.6 97.0 95.6 96.3 96.5

500

Percent of Commercial Natural Gas Deliveries in Massachusetts Represented  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 1990 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8 99.8 99.7 99.7 1991 99.8 99.8 99.9 99.9 99.9 99.8 99.7 99.6 99.6 99.8 99.9 99.9 1992 99.9 99.9 99.8 99.8 99.7 99.8 99.7 99.6 99.6 99.6 99.7 99.8 1993 98.9 98.7 98.5 97.7 96.5 97.7 96.8 89.2 97.5 96.7 96.9 97.8 1994 75.2 78.4 72.5 69.8 69.8 61.2 67.0 86.0 79.7 90.6 81.2 87.1 1995 87.9 89.4 92.0 88.3 88.0 82.7 74.6 77.3 77.5 81.0 81.6 79.5 1996 84.7 83.5 82.4 80.2 79.2 71.3 68.1 61.3 55.4 69.5 62.5 68.9 1997 68.0 69.0 72.9 74.1 69.9 48.5 46.0 41.3 43.8 48.7 62.9 68.6