National Library of Energy BETA

Sample records for weather prediction models

  1. The origins of computer weather prediction and climate modeling

    SciTech Connect (OSTI)

    Lynch, Peter [Meteorology and Climate Centre, School of Mathematical Sciences, University College Dublin, Belfield (Ireland)], E-mail: Peter.Lynch@ucd.ie

    2008-03-20

    Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.

  2. Road Weather Predictions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Road Weather Predictions Background The U.S. economy depends on the national highway system. According to Weather and Highways: Report of a Policy Forum, developed by the Atmospheric Policy Program of the American Meteorological Society, more than 200 million cars and trucks use the national highway system, and about 77% (by weight) of domestic freight shipments are by truck (compared with other modes of transportation). Adverse weather, including rain, snow, sleet, and fog, can easily reduce

  3. The quest to predict severe weather sooner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predicting severe weather The quest to predict severe weather sooner MPAS aims to be next-generation global weather model January 29, 2016 gridded earth MPAS's variable mesh enables smooth transitions from higher resolution (over North America in this example) to coarser resolution over the rest of the globe. (Credit: UCAR) "What's going on at the other side of the globe can influence the forecast for your region," said senior scientist William Skamarock. The quest to predict severe

  4. DREAM tool increases space weather predictions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DREAM tool increases space weather predictions DREAM tool increases space weather predictions Model addresses radiation hazards of the space environment on space systems. April 13, 2012 Scientists studying Earth's radiation belts have a new modeling tool called Dynamic Radiation Environment Assimilation Model (DREAM). Scientists studying Earth's radiation belts have a new modeling tool called Dynamic Radiation Environment Assimilation Model (DREAM). DREAM is a modeling tool that improves the

  5. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    SciTech Connect (OSTI)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  6. On-line Chemistry within WRF: Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model

    SciTech Connect (OSTI)

    Grell, Georg; Fast, Jerome D.; Gustafson, William I.; Peckham, Steven E.; McKeen, Stuart A.; Salzmann, Marc; Freitas, Saulo

    2010-01-01

    This is a conference proceeding that is now being put together as a book. This is chapter 2 of the book: "INTEGRATED SYSTEMS OF MESO-METEOROLOGICAL AND CHEMICAL TRANSPORT MODELS" published by Springer. The chapter title is "On-line Chemistry within WRF: Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model." The original conference was the COST-728/NetFAM workshop on Integrated systems of meso-meteorological and chemical transport models, Danish Meteorological Institute, Copenhagen, May 21-23, 2007.

  7. WEATHER PREDICTIONS AND SURFACE RADIATION ESTIMATES

    Office of Legacy Management (LM)

    ARLV - 3 51 - 4 / WEATHER PREDICTIONS AND SURFACE RADIATION ESTIMATES for the RULISON EVENT Final Report Albert H . S t o u t , Ray E . White, and V i r g i l E. Quinn Environmental Science Services Administration A i r Resources Laboratory - Las Vegas PROPERW OF U. S. GOVERNMENT Prepared Under Contract SF-54-351 f o r the Nevada Operations O f f i c e U . ' S . Atomic Energy Commission January 1970 LEGAL NOTSCCE ; L *U . . . . . - . T h i s r e p o r t w a s prepared a s an account o f

  8. Fixed points, stable manifolds, weather regimes, and their predictability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less

  9. Observations and simulations improve space weather models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations improve space weather models Observations and simulations improve space weather models Researchers used data from the Van Allen Probes to improve a three-dimensional model created by Los Alamos scientists called DREAM3D. June 25, 2014 NASA's Van Allen Probes sample the Earth's magnetosphere. NASA's Van Allen Probes sample the Earth's magnetosphere. The work demonstrated that DREAM3D accurately simulated the behavior of a complex and dynamic event in the radiation belt that was

  10. Observations and simulations improve space weather models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations improve space weather models Observations and simulations improve space weather models Researchers used data from the Van Allen Probes to improve a three-dimensional model created by Los Alamos scientists called DREAM3D. June 25, 2014 NASA's Van Allen Probes sample the Earth's magnetosphere. NASA's Van Allen Probes sample the Earth's magnetosphere. The work demonstrated that DREAM3D accurately simulated the behavior of a complex and dynamic event in the radiation belt that was

  11. Weather

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the variations in atmospheric conditions that produce weather. The Weather Machine, LANL's meteorological monitoring program, supports Laboratory operations and...

  12. Weather

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Weather We provide access to the latest meteorological observations, climatological information, and weather forecast products for the Los Alamos area. December 14, 2011 Snow vortex A snow vortex in Los Alamos. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Meteorology is the science of the atmosphere and the variations in atmospheric conditions that produce weather. Monitoring the weather Meteorology is the

  13. A Better Way to ID Extreme Weather Events in Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop ever-more sophisticated computer models to predict the effects of climate change, one of the things they'll look for are changes in the frequency of extreme weather...

  14. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect (OSTI)

    Chiswell, S.; Buckley, R.

    2009-01-15

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.

  15. Battery Life Predictive Model

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a model used to predict battery capacity fade and resistance growth for arbitrary cycling and temperature profiles. It allows the user to extrapolate from experimental data to predict actual life cycle.

  16. Weather Research and Forecasting Model with the Immersed Boundary Method

    Energy Science and Technology Software Center (OSTI)

    2012-05-01

    The Weather Research and Forecasting (WRF) Model with the immersed boundary method is an extension of the open-source WRF Model available for wwww.wrf-model.org. The new code modifies the gridding procedure and boundary conditions in the WRF model to improve WRF's ability to simutate the atmosphere in environments with steep terrain and additionally at high-resolutions.

  17. Long-range Weather Prediction and Prevention of Climate Catastrophes: A Status Report

    DOE R&D Accomplishments [OSTI]

    Caldeira, K.; Caravan, G.; Govindasamy, B.; Grossman, A.; Hyde, R.; Ishikawa, M.; Ledebuhr, A.; Leith, C.; Molenkamp, C.; Teller, E.; Wood, L.

    1999-08-18

    As the human population of Earth continues to expand and to demand an ever-higher quality-of-life, requirements for ever-greater knowledge--and then control--of the future of the state of the terrestrial biosphere grow apace. Convenience of living--and, indeed, reliability of life itself--become ever more highly ''tuned'' to the future physical condition of the biosphere being knowable and not markedly different than the present one. Two years ago, we reported at a quantitative albeit conceptual level on technical ways-and-means of forestalling large-scale changes in the present climate, employing practical means of modulating insolation and/or the Earth's mean albedo. Last year, we reported on early work aimed at developing means for creating detailed, high-fidelity, all-Earth weather forecasts of two weeks duration, exploiting recent and anticipated advances in extremely high-performance digital computing and in atmosphere-observing Earth satellites bearing high-technology instrumentation. This year, we report on recent progress in both of these areas of endeavor. Preventing the commencement of large-scale changes in the current climate presently appears to be a considerably more interesting prospect than initially realized, as modest insolation reductions are model-predicted to offset the anticipated impacts of ''global warming'' surprisingly precisely, in both space and time. Also, continued study has not revealed any fundamental difficulties in any of the means proposed for insolation modulation and, indeed, applicability of some of these techniques to other planets in the inner Solar system seems promising. Implementation of the high-fidelity, long-range weather-forecasting capability presently appears substantially easier with respect to required populations of Earth satellites and atmospheric transponders and data-processing systems, and more complicated with respect to transponder lifetimes in the actual atmosphere; overall, the enterprise seems more technically feasible than originally anticipated.

  18. Lidar-measured winds from space: A key component for weather and climate prediction

    SciTech Connect (OSTI)

    Baker, W.E.; Emmitt, G.D.; Robertson, F.

    1995-06-01

    The deployment of a space-based Doppler lidar would provide information that is fundamental to advancing the understanding and prediction of weather and climate. This paper reviews the concepts of wind measurement by Doppler lidar, highlights the results of some observing system simulation experiments with lidar winds, and discusses the important advances in earth system science anticipated with lidar winds. Observing system simulation experiments, conducted using two different general circulation models, have shown (1) that there is a significant improvement in the forecast accuracy over the Southern Hemisphere and tropical oceans resulting from the assimilation of simulated satellite wind data, and (2) that wind data are significantly more effective than temperature or moisture data in controlling analysis error. Because accurate wind observations are currently almost entirely unavailable for the vast majority of tropical cyclones worldwide, lidar winds have the potential to substantially improve tropical cyclone forecasts. Similarly, to improve water vapor flux divergence calculations, a direct measure of the ageostrophic wind is needed since the present level of uncertainty cannot be reduced with better temperature and moisture soundings alone. 99 refs., 10 figs., 3 tabs.

  19. Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements

    SciTech Connect (OSTI)

    Teller, E; Leith, C; Canavan, G; Wood, L

    2001-11-13

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These {approx}$10{sup 2} B annual savings dwarf the <$1 B costs of operating a rational, long-range weather prediction system of the type proposed.

  20. Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements

    DOE R&D Accomplishments [OSTI]

    Teller, E.; Leith, C.; Canavan, G.; Wood, L.

    2001-11-13

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These{approx}$10{sup 2} B annual savings dwarf the<$1 B costs of operating a rational, long-range weather prediction system of the type proposed.

  1. Weather Research and Forecasting Model with Vertical Nesting Capability

    Energy Science and Technology Software Center (OSTI)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improvesmore » WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.« less

  2. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  3. Model predicts space weather and protects satellite hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flux environment at geosynchronous orbit in response to rapid changes in geomagnetic and solar activity. October 11, 2015 Approximate location of geosynchronous orbit spacecraft -...

  4. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change

    SciTech Connect (OSTI)

    Auffhammer, Maximilian; Hsiang, Solomon M.; Schlenker, Wolfram; Sobel, Adam H.

    2013-06-28

    Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

  5. A Better Way to ID Extreme Weather Events in Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Way to ID Extreme Weather Events in Climate Models A Better Way to ID Extreme Weather Events in Climate Models Berkeley Lab scientists help automate the search for hurricanes and other storms in huge datasets December 7, 2011 Dan Krotz, dakrotz@lbl.gov, +1 510-486-4019 You'd think that spotting a category 5 hurricane would never be difficult. But when the hurricane is in a global climate model that spans several decades, it becomes a fleeting wisp among mountains of data. That's a

  6. Development of an Immersed Boundary Method to Resolve Complex Terrain in the Weather Research and Forecasting Model

    SciTech Connect (OSTI)

    Lunquist, K A; Chow, F K; Lundquist, J K; Mirocha, J D

    2007-09-04

    Flow and dispersion processes in urban areas are profoundly influenced by the presence of buildings which divert mean flow, affect surface heating and cooling, and alter the structure of turbulence in the lower atmosphere. Accurate prediction of velocity, temperature, and turbulent kinetic energy fields are necessary for determining the transport and dispersion of scalars. Correct predictions of scalar concentrations are vital in densely populated urban areas where they are used to aid in emergency response planning for accidental or intentional releases of hazardous substances. Traditionally, urban flow simulations have been performed by computational fluid dynamics (CFD) codes which can accommodate the geometric complexity inherent to urban landscapes. In these types of models the grid is aligned with the solid boundaries, and the boundary conditions are applied to the computational nodes coincident with the surface. If the CFD code uses a structured curvilinear mesh, then time-consuming manual manipulation is needed to ensure that the mesh conforms to the solid boundaries while minimizing skewness. If the CFD code uses an unstructured grid, then the solver cannot be optimized for the underlying data structure which takes an irregular form. Unstructured solvers are therefore often slower and more memory intensive than their structured counterparts. Additionally, urban-scale CFD models are often forced at lateral boundaries with idealized flow, neglecting dynamic forcing due to synoptic scale weather patterns. These CFD codes solve the incompressible Navier-Stokes equations and include limited options for representing atmospheric processes such as surface fluxes and moisture. Traditional CFD codes therefore posses several drawbacks, due to the expense of either creating the grid or solving the resulting algebraic system of equations, and due to the idealized boundary conditions and the lack of full atmospheric physics. Meso-scale atmospheric boundary layer simulations, on the other hand, are performed by numerical weather prediction (NWP) codes, which cannot handle the geometry of the urban landscape, but do provide a more complete representation of atmospheric physics. NWP codes typically use structured grids with terrain-following vertical coordinates, include a full suite of atmospheric physics parameterizations, and allow for dynamic synoptic scale lateral forcing through grid nesting. Terrain following grids are unsuitable for urban terrain, as steep terrain gradients cause extreme distortion of the computational cells. In this work, we introduce and develop an immersed boundary method (IBM) to allow the favorable properties of a numerical weather prediction code to be combined with the ability to handle complex terrain. IBM uses a non-conforming structured grid, and allows solid boundaries to pass through the computational cells. As the terrain passes through the mesh in an arbitrary manner, the main goal of the IBM is to apply the boundary condition on the interior of the domain as accurately as possible. With the implementation of the IBM, numerical weather prediction codes can be used to explicitly resolve urban terrain. Heterogeneous urban domains using the IBM can be nested into larger mesoscale domains using a terrain-following coordinate. The larger mesoscale domain provides lateral boundary conditions to the urban domain with the correct forcing, allowing seamless integration between mesoscale and urban scale models. Further discussion of the scope of this project is given by Lundquist et al. [2007]. The current paper describes the implementation of an IBM into the Weather Research and Forecasting (WRF) model, which is an open source numerical weather prediction code. The WRF model solves the non-hydrostatic compressible Navier-Stokes equations, and employs an isobaric terrain-following vertical coordinate. Many types of IB methods have been developed by researchers; a comprehensive review can be found in Mittal and Iaccarino [2005]. To the authors knowledge, this is the first IBM approach that is able to

  7. predictive-models | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predictive-models DOE/BC-88/1/SP. EOR Predictive Models: Handbook for Personal Computer Versions of Enhanced Oil Recovery Predictive Models. BPO Staff. February 1988. 76 pp. NTIS Order No. DE89001204. FORTRAN source code and executable programs for the five EOR Predictive Models shown below are available. The five recovery processes modeled are Steamflood, In-Situ Combustion, Polymer, Chemical Flooding, and CO2 Miscible Flooding. The models are available individually. Min Req.: IBM PC/XT, PS-2,

  8. Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective

    SciTech Connect (OSTI)

    Done, James; Holland, Greg; Bruyere, Cindy; Leung, Lai-Yung R.; Suzuki-Parker, Asuka

    2012-06-01

    Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias in the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are presented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices. Capsule: "Combining dynamical modeling of high-impact weather using traditional regional climate models with statistical techniques allows for comprehensive sampling of the full distribution, uncertainty estimation, direct assessment of impacts, and increased confidence in future changes."

  9. Towards Ultra-High Resolution Models of Climate and Weather

    SciTech Connect (OSTI)

    Wehner, Michael; Oliker, Leonid; Shalf, John

    2007-01-01

    We present a speculative extrapolation of the performance aspects of an atmospheric general circulation model to ultra-high resolution and describe alternative technological paths to realize integration of such a model in the relatively near future. Due to a superlinear scaling of the computational burden dictated by stability criterion, the solution of the equations of motion dominate the calculation at ultra-high resolutions. From this extrapolation, it is estimated that a credible kilometer scale atmospheric model would require at least a sustained ten petaflop computer to provide scientifically useful climate simulations. Our design study portends an alternate strategy for practical power-efficient implementations of petaflop scale systems. Embedded processor technology could be exploited to tailor a custom machine designed to ultra-high climate model specifications at relatively affordable cost and power considerations. The major conceptual changes required by a kilometer scale climate model are certain to be difficult to implement. Although the hardware, software, and algorithms are all equally critical in conducting ultra-high climate resolution studies, it is likely that the necessary petaflop computing technology will be available in advance of a credible kilometer scale climate model.

  10. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect (OSTI)

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  11. Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective

    SciTech Connect (OSTI)

    Done, James; Holland, Greg; Bruyere, Cindy; Leung, Lai-Yung R.; Suzuki-Parker, Asuka

    2013-10-19

    Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias in the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are resented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices.

  12. The use of imprecise processing to improve accuracy in weather and climate prediction

    SciTech Connect (OSTI)

    Dben, Peter D.; McNamara, Hugh; Palmer, T.N.

    2014-08-15

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations. This would allow higher resolution models to be run at the same computational cost.

  13. Validation of Global Weather Forecast and Climate Models Over the North

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slope of Alaska Validation of Global Weather Forecast and Climate Models Over the North Slope of Alaska Xie, Shaocheng Lawrence Livermore National Laboratory Klein, Stephen Lawrence Livermore National Laboratory Boyle, Jim Lawrence Livermore National Laboratory Fiorino, Michael DOE/Lawrence Livermore National Laboratory Hnilo, Justin DOE/Lawrence Livermore National Laboratory Phillips, Thomas PCMDI/LLNL Potter, Gerald Lawrence Livermore National Laboratory Beljaars, Anton ECMWF Category:

  14. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    SciTech Connect (OSTI)

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (HumanEarth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.

  15. Erratum: "Reduced model prediction of electron temperature profiles...

    Office of Scientific and Technical Information (OSTI)

    Erratum: "Reduced model prediction of electron temperature profiles in ... Title: Erratum: "Reduced model prediction of electron temperature profiles in ...

  16. Weather Conditions at LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Conditions at LBNL

  17. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  18. DOE Workshop; Pan-Gass Conference on the Representation of Atmospheric Processes in Weather and Climate Models

    SciTech Connect (OSTI)

    Morrison, PI Hugh

    2012-09-21

    This is the first meeting of the whole new GEWEX (Global Energy and Water Cycle Experiment) Atmospheric System Study (GASS) project that has been formed from the merger of the GEWEX Cloud System Study (GCSS) Project and the GEWEX Atmospheric Boundary Layer Studies (GABLS). As such, this meeting will play a major role in energizing GEWEX work in the area of atmospheric parameterizations of clouds, convection, stable boundary layers, and aerosol-cloud interactions for the numerical models used for weather and climate projections at both global and regional scales. The representation of these processes in models is crucial to GEWEX goals of improved prediction of the energy and water cycles at both weather and climate timescales. This proposal seeks funds to be used to cover incidental and travel expenses for U.S.-based graduate students and early career scientists (i.e., within 5 years of receiving their highest degree). We anticipate using DOE funding to support 5-10 people. We will advertise the availability of these funds by providing a box to check for interested participants on the online workshop registration form. We will also send a note to our participants' mailing lists reminding them that the funds are available and asking senior scientists to encourage their more junior colleagues to participate. All meeting participants are encouraged to submit abstracts for oral or poster presentations. The science organizing committee (see below) will base funding decisions on the relevance and quality of these abstracts, with preference given to under-represented populations (especially women and minorities) and to early career scientists being actively mentored at the meeting (e.g. students or postdocs attending the meeting with their advisor).

  19. Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    SciTech Connect (OSTI)

    Dontsova, K.; Steefel, C.I.; Desilets, S.; Thompson, A.; Chorover, J.

    2009-07-15

    A reactive transport geochemical modeling study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The modeling sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to model mineral weathering coupled to reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.

  20. Eulerian CFD Models to Predict Thermophoretic Deposition of Soot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eulerian CFD Models to Predict Thermophoretic Deposition of Soot Particles in EGR Coolers Eulerian CFD Models to Predict Thermophoretic Deposition of Soot Particles in EGR Coolers...

  1. Simplified Protein Models: Predicting Folding Pathways and Structure...

    Office of Scientific and Technical Information (OSTI)

    Simplified Protein Models: Predicting Folding Pathways and Structure Using Amino Acid Sequences Title: Simplified Protein Models: Predicting Folding Pathways and Structure Using ...

  2. Predictive Models for Target Response During Penetration (Technical...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models for Target Response During Penetration Citation Details In-Document Search Title: Predictive Models for Target Response During Penetration You are accessing a...

  3. Testing model for predicting spillway cavitation damage

    SciTech Connect (OSTI)

    Lee, W.; Hoopes, J.A.

    1995-12-31

    Using fuzzy mathematics a comprehensive model has been developed to predict the time, location and level (intensity) of spillway cavitation damage. Five damage levels and four factors affecting damage are used. Membership functions express the degree that each factor effects damage, and weights express the relative importance of each factor. The model has been calibrated and tested with operating data and experience from the Glen Canyon Dam left tunnel spillway, which had major cavitation damage in 1983. An error analysis for the Glen Canyon Dam left tunnel spillway gave the best ranges for model weights. Prediction of damage at other spillways (4 tunnels, 3 chutes) with functions and parameters as for the Glen Canyon Dam left tunnel spillway gave reasonable predictions of damage intensity and location and poor estimates of occurrence time in the tunnels. Chute predictions were in poor agreement with observations, indicating need for different parameter values. Finally, two membership functions with constant or time varying parameters are compared with observed results from the Glen Canyon Dam left tunnel spillway.

  4. Weatherization Program

    Broader source: Energy.gov [DOE]

    Residences participating in the Home Energy Rebate or New Home Rebate Program may not also participate in the Weatherization Program.

  5. predictive modeling | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    predictive modeling | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  6. LLNL-TR-411072 A Predictive Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    072 A Predictive Model of Fragmentation using Adaptive Mesh Refinement and a Hierarchical Material Model A. E. Koniges, N. D. Masters, A. C. Fisher, R. W. Anderson, D. C. Eder, D. Benson, T. B. Kaiser, B. T. Gunney, P. Wang, B. R. Maddox, J. F. Hansen, D. H. Kalantar, P. Dixit, H. Jarmakani, M. A. Meyers March 5, 2009 -2- Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore

  7. New model accurately predicts reformate composition

    SciTech Connect (OSTI)

    Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. )

    1994-01-31

    Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

  8. Progress towards a PETN Lifetime Prediction Model

    SciTech Connect (OSTI)

    Burnham, A K; Overturf III, G E; Gee, R; Lewis, P; Qiu, R; Phillips, D; Weeks, B; Pitchimani, R; Maiti, A; Zepeda-Ruiz, L; Hrousis, C

    2006-09-11

    Dinegar (1) showed that decreases in PETN surface area causes EBW detonator function times to increase. Thermal aging causes PETN to agglomerate, shrink, and densify indicating a ''sintering'' process. It has long been a concern that the formation of a gap between the PETN and the bridgewire may lead to EBW detonator failure. These concerns have led us to develop a model to predict the rate of coarsening that occurs with age for thermally driven PETN powder (50% TMD). To understand PETN contributions to detonator aging we need three things: (1) Curves describing function time dependence on specific surface area, density, and gap. (2) A measurement of the critical gap distance for no fire as a function of density and surface area for various wire configurations. (3) A model describing how specific surface area, density and gap change with time and temperature. We've had good success modeling high temperature surface area reduction and function time increase using a phenomenological deceleratory kinetic model based on a distribution of parallel nth-order reactions having evenly spaced activation energies where weighing factors of the reactions follows a Gaussian distribution about the reaction with the mean activation energy (Figure 1). Unfortunately, the mean activation energy derived from this approach is high (typically {approx}75 kcal/mol) so that negligible sintering is predicted for temperatures below 40 C. To make more reliable predictions, we've established a three-part effort to understand PETN mobility. First, we've measured the rates of step movement and pit nucleation as a function of temperature from 30 to 50 C for single crystals. Second, we've measured the evaporation rate from single crystals and powders from 105 to 135 C to obtain an activation energy for evaporation. Third, we've pursued mechanistic kinetic modeling of surface mobility, evaporation, and ripening.

  9. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    SciTech Connect (OSTI)

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.

    2013-10-01

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.

  10. An Anisotropic Hardening Model for Springback Prediction

    SciTech Connect (OSTI)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-05

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  11. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  12. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    SciTech Connect (OSTI)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed wind speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (? ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35 and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF models MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a ? gradient method whether using observed or modelled ? profiles.

  13. Predictive Capability Maturity Model for computational modeling and simulation.

    SciTech Connect (OSTI)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  14. Weatherization Roundup

    Broader source: Energy.gov [DOE]

    More than 750 thousand homes were weatherized by the Department’s Weatherization Assistance Program in the past three years. Secretary Chu spoke with governors and members of Congress around the country to celebrate this huge accomplishment -- which was finished ahead of schedule and is saving the average household $400 annually on their heating and cooling bills.

  15. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  16. Weather - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Weather Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Weather Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

  17. Stimulation Prediction Models | Open Energy Information

    Open Energy Info (EERE)

    Predictive Simulator for Enhanced Geothermal Systems California Science Applications International Corporation Recovery Act: Enhanced Geothermal Systems Component Research and...

  18. Weatherizing America

    Broader source: Energy.gov [DOE]

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working...

  19. Weatherizing America

    ScienceCinema (OSTI)

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony;

    2013-05-29

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  20. Weatherization Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    weatherization 600,000 homes - Income eligibility was raised from 150% to 200% of the poverty level - Increased WAP training dollars (from 10% to 20%) - Dollars per house increased ...

  1. ARM - Weather

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SitesWeather Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Weather Air Quality Meteorology This website features a course for environmental decision-makers, scientists, technical advisors, and educators. The course is introduces basic concepts of meteorology and air quality necessary to

  2. Application of global weather and climate model output to the design and operation of wind-energy systems

    SciTech Connect (OSTI)

    Curry, Judith

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  3. Predictive Modeling of Wide-bandgap Semiconductor Processing | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Predictive Modeling of Wide-bandgap Semiconductor Processing An Argonne team is harnessing the power of the Argonne Leadership Computing Facility and Advanced Photon Source to develop the models vital to the adoption of wide-bandgap semiconductor materials. PDF icon Nano Sheet_predictive modeling

  4. THE EFFECT OF UNCERTAINTY IN MODELING COEFFICIENTS USED TO PREDICT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UNCERTAINTY IN MODELING COEFFICIENTS USED TO PREDICT ENERGY PRODUCTION USING THE SANDIA ARRAY ... relating voltage and current to solar irradiance, for crystalline silicon modules. ...

  5. Predictive Models of Li-ion Battery Lifetime (Presentation) Smith...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models of Li-ion Battery Lifetime (Presentation) Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A. 25 ENERGY STORAGE; 33 ADVANCED PROPULSION...

  6. Comparison of Uncertainty of Two Precipitation Prediction Models...

    Office of Scientific and Technical Information (OSTI)

    Comparison of Uncertainty of Two Precipitation Prediction Models at Los Alamos National Lab Technical Area 54 Citation Details In-Document Search Title: Comparison of Uncertainty...

  7. Weather | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Princeton, New Jersey, weather forecast Click here for more extensive PPPL weather information....

  8. Project Profile: Predictive Physico-Chemical Modeling of Intrinsic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Mechanisms for Advanced Reflector Materials | Department of Energy Predictive Physico-Chemical Modeling of Intrinsic Degradation Mechanisms for Advanced Reflector Materials Project Profile: Predictive Physico-Chemical Modeling of Intrinsic Degradation Mechanisms for Advanced Reflector Materials NREL logo NREL, under the Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Program will be developing a physics-based computational

  9. Eulerian CFD Models to Predict Thermophoretic Deposition of Soot Particles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in EGR Coolers | Department of Energy Eulerian CFD Models to Predict Thermophoretic Deposition of Soot Particles in EGR Coolers Eulerian CFD Models to Predict Thermophoretic Deposition of Soot Particles in EGR Coolers This paper describes an Eulerian axisymmetric method in Fluent(R) to predict the overall heat transfer reduction of a surrogate tube due to thermophoretic deposition of submicron particles. PDF icon deer11_abarham.pdf More Documents & Publications Vehicle Technologies

  10. PNNL-Weather Research and Forecasting (WRF)-Chem Modeling in...

    Open Energy Info (EERE)

    San Francisco, CA, A41F-01. Fast JD, JC Doran, JC Barnard, S Springs ton, L Klein man, L Emmons, C Wiedinmyer. 2007. "Predictions of aerosols downwind of Mexico City using a...

  11. LHC diphoton Higgs signal predicted by little Higgs models

    SciTech Connect (OSTI)

    Wang Lei; Yang Jinmin

    2011-10-01

    Little Higgs theory naturally predicts a light Higgs boson whose most important discovery channel at the LHC is the diphoton signal pp{yields}h{yields}{gamma}{gamma}. In this work, we perform a comparative study for this signal in some typical little Higgs models, namely, the littlest Higgs model, two littlest Higgs models with T-parity (named LHT-I and LHT-II), and the simplest little Higgs models. We find that compared with the standard model prediction, the diphoton signal rate is always suppressed and the suppression extent can be quite different for different models. The suppression is mild (< or approx. 10%) in the littlest Higgs model but can be quite severe ({approx_equal}90%) in other three models. This means that discovering the light Higgs boson predicted by the little Higgs theory through the diphoton channel at the LHC will be more difficult than discovering the standard model Higgs boson.

  12. Comparison of Uncertainty of Two Precipitation Prediction Models at Los

    Office of Scientific and Technical Information (OSTI)

    Alamos National Lab Technical Area 54 (Technical Report) | SciTech Connect Comparison of Uncertainty of Two Precipitation Prediction Models at Los Alamos National Lab Technical Area 54 Citation Details In-Document Search Title: Comparison of Uncertainty of Two Precipitation Prediction Models at Los Alamos National Lab Technical Area 54 Meteorological inputs are an important part of subsurface flow and transport modeling. The choice of source for meteorological data used as inputs has

  13. A predictive ocean oil spill model

    SciTech Connect (OSTI)

    Sanderson, J.; Barnette, D.; Papodopoulos, P.; Schaudt, K.; Szabo, D.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Initially, the project focused on creating an ocean oil spill model and working with the major oil companies to compare their data with the Los Alamos global ocean model. As a result of this initial effort, Los Alamos worked closely with the Eddy Joint Industry Project (EJIP), a consortium oil and gas producing companies in the US. The central theme of the project was to use output produced from LANL`s global ocean model to look in detail at ocean currents in selected geographic areas of the world of interest to consortium members. Once ocean currents are well understood this information could be used to create oil spill models, improve offshore exploration and drilling equipment, and aid in the design of semi-permanent offshore production platforms.

  14. SimTable helps firefighters model and predict fire direction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SimTable models and predicts fire path SimTable helps firefighters model and predict fire direction In 2009, SimTable received $100,000 from the LANS Venture Acceleration Fund to improve the user interface and seed firefighting academies with customized set ups. April 3, 2012 Stephen Guerin (L) and Chip Garner (R) with SimTable Stephen Guerin (L), and Chip Garner (R), with SimTable, a Santa Fe company helping firefighters model and predict where a fire is most likely to spread, received support

  15. In silico modeling to predict drug-induced phospholipidosis

    SciTech Connect (OSTI)

    Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G. Sadrieh, Nakissa

    2013-06-01

    Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structureactivity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the construction and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 8081% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ? 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. The training set data in the models is derived from the FDA's phospholipidosis database. We find excellent predictivity values of the models based on external validation. The models can support drug screening and regulatory decision-making on DIPL.

  16. Predictive models of circulating fluidized bed combustors

    SciTech Connect (OSTI)

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  17. PV Module Intraconnect Thermomechanical Durability Damage Prediction Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Module Intraconnect Thermomechanical Durability Damage Prediction Model PV Module Intraconnect Thermomechanical Durability Damage Prediction Model Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps2_dow_gaston.pdf More Documents & Publications 2014 Propulsion Materials R&D Annual Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters Center for

  18. Predictive Models of Li-ion Battery Lifetime (Presentation) (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Predictive Models of Li-ion Battery Lifetime (Presentation) Citation Details In-Document Search Title: Predictive Models of Li-ion Battery Lifetime (Presentation) × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A

  19. Simplified Protein Models: Predicting Folding Pathways and Structure Using

    Office of Scientific and Technical Information (OSTI)

    Amino Acid Sequences (Journal Article) | DOE PAGES Simplified Protein Models: Predicting Folding Pathways and Structure Using Amino Acid Sequences Title: Simplified Protein Models: Predicting Folding Pathways and Structure Using Amino Acid Sequences Authors: Adhikari, Aashish N. ; Freed, Karl F. ; Sosnick, Tobin R. Publication Date: 2013-07-11 OSTI Identifier: 1103786 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume:

  20. Statistical surrogate models for prediction of high-consequence climate

    Office of Scientific and Technical Information (OSTI)

    change. (Technical Report) | SciTech Connect Technical Report: Statistical surrogate models for prediction of high-consequence climate change. Citation Details In-Document Search Title: Statistical surrogate models for prediction of high-consequence climate change. In safety engineering, performance metrics are defined using probabilistic risk assessments focused on the low-probability, high-consequence tail of the distribution of possible events, as opposed to best estimates based on

  1. Today's Forecast: Improved Wind Predictions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical

  2. The selection of turbulence models for prediction of room airflow

    SciTech Connect (OSTI)

    Nielsen, P.V.

    1998-10-01

    The airflow in buildings involves a combination of many different flow elements. It is, therefore, difficult to find an adequate, all-round turbulence model covering all aspects. Consequently, it is appropriate and economical to choose turbulence models according to the situation that is to be predicted. This paper discusses the use of different turbulence models and their advantages in given situations. As an example, it is shown that a simple zero-equation model can be used for the prediction of special situations as flow with a low level of turbulence. A zero-equation model with compensation for room dimensions and velocity level also is discussed. A {kappa}-{epsilon} model expanded by damping functions is used to improve the prediction of the flow in a room ventilated by displacement ventilation. The damping functions especially take into account the turbulence level and the vertical temperature gradient. Low Reynolds number models (LNR models) are used to improve the prediction of evaporation-controlled emissions from building material, which is shown by an example. Finally, large eddy simulation (LES) of room airflow is discussed and demonstrated.

  3. Predictive Models of Li-ion Battery Lifetime

    SciTech Connect (OSTI)

    Smith, Kandler; Wood, Eric; Santhanagopalan, Shriram; Kim, Gi-heon; Shi, Ying; Pesaran, Ahmad

    2015-06-15

    It remains an open question how best to predict real-world battery lifetime based on accelerated calendar and cycle aging data from the laboratory. Multiple degradation mechanisms due to (electro)chemical, thermal, and mechanical coupled phenomena influence Li-ion battery lifetime, each with different dependence on time, cycling and thermal environment. The standardization of life predictive models would benefit the industry by reducing test time and streamlining development of system controls.

  4. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program

    SciTech Connect (OSTI)

    Jacobson, Bonnie B.; Lundien, Barbara; Kaufman, Jeffrey; Kreczko, Adam; Ferrey, Steven; Morgan, Stephen

    1991-12-01

    The Weatherization Residential Assistance Partnership,'' or WRAP program, is a fuel-blind conservation program designed to assist Northeast Utilities' low-income customers to use energy safely and efficiently. Innovative with respect to its collaborative approach and its focus on utilizing and strengthening the existing low-income weatherization service delivery network, the WRAP program offers an interesting model to other utilities which traditionally have relied on for-profit energy service contractors and highly centralized program implementation structures. This report presents appendices with surveys, participant list, and computers program to examine and predict potential energy savings.

  5. Weatherization Training for South Carolina's Muggy Weather

    Broader source: Energy.gov [DOE]

    Why it makes sense for one technical college in Charleston, South Carolina is adding weatherization programs to their curriculum.

  6. Cathy Zoi on Weatherization

    Broader source: Energy.gov [DOE]

    The Weatherization Assistance Program is now weatherizing 25,000 homes each month. So far 10,000 jobs have been created under the Recovery Act.

  7. Cathy Zoi on Weatherization

    ScienceCinema (OSTI)

    Zoi, Cath

    2013-05-29

    Right now, the Weatherization Assistance Program is now weatherizing 25,000 homes each month. So far 10,000 jobs have been created under the Recovery Act.

  8. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (stochastic) model with the weather forecast model (deterministic) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  9. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect (OSTI)

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  10. Weatherize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize Weatherize Proper insulation is just one element of weatherization that can save you money and improve the comfort and efficiency of your home. | Photo courtesy of Dennis Schroeder, NREL. Proper insulation is just one element of weatherization that can save you money and improve the comfort and efficiency of your home. | Photo courtesy of Dennis Schroeder, NREL. Weatherizing your home helps you save money by saving energy, and it can also improve the comfort of your home. Conduct a

  11. Improving models to predict phenological responses to global change

    SciTech Connect (OSTI)

    Richardson, Andrew D.

    2015-11-25

    The term phenology describes both the seasonal rhythms of plants and animals, and the study of these rhythms. Plant phenological processes, including, for example, when leaves emerge in the spring and change color in the autumn, are highly responsive to variation in weather (e.g. a warm vs. cold spring) as well as longer-term changes in climate (e.g. warming trends and changes in the timing and amount of rainfall). We conducted a study to investigate the phenological response of northern peatland communities to global change. Field work was conducted at the SPRUCE experiment in northern Minnesota, where we installed 10 digital cameras. Imagery from the cameras is being used to track shifts in plant phenology driven by elevated carbon dioxide and elevated temperature in the different SPRUCE experimental treatments. Camera imagery and derived products (“greenness”) is being posted in near-real time on a publicly available web page (http://phenocam.sr.unh.edu/webcam/gallery/). The images will provide a permanent visual record of the progression of the experiment over the next 10 years. Integrated with other measurements collected as part of the SPRUCE program, this study is providing insight into the degree to which phenology may mediate future shifts in carbon uptake and storage by peatland ecosystems. In the future, these data will be used to develop improved models of vegetation phenology, which will be tested against ground observations collected by a local collaborator.

  12. Collaborative Research: Separating Forced and Unforced Decadal Predictability in Models and Observations

    SciTech Connect (OSTI)

    DelSole, Timothy

    2015-11-30

    Collaborative Research: Separating Forced and Unforced Decadal Predictability in Models and Observations

  13. NREL: Transportation Research - NREL's Battery Life Predictive Model Helps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Companies Take Charge NREL's Battery Life Predictive Model Helps Companies Take Charge October 26, 2015 A series of batteries hooked together next to a monitor. An example of a stationary, grid-connected battery is the NREL project from Erigo/EaglePicher Technologies, LLC Technologies. Inverters and nickel cadmium batteries inside of a utility scale 300 kW battery storage system will support Department of Defense micro-grids. Photo by Dennis Schroeder / NREL 32696 Companies that rely on

  14. Sandia's ice sheet modeling of Greenland, Antarctica helps predict

    National Nuclear Security Administration (NNSA)

    sea-level rise | National Nuclear Security Administration ice sheet modeling of Greenland, Antarctica helps predict sea-level rise | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios

  15. A predictive standard model for heavy electron systems

    SciTech Connect (OSTI)

    Yang, Yifeng; Curro, N J; Fisk, Z; Pines, D

    2010-01-01

    We propose a predictive standard model for heavy electron systems based on a detailed phenomenological two-fluid description of existing experimental data. It leads to a new phase diagram that replaces the Doniach picture, describes the emergent anomalous scaling behavior of the heavy electron (Kondo) liquid measured below the lattice coherence temperature, T*, seen by many different experimental probes, that marks the onset of collective hybridization, and enables one to obtain important information on quantum criticality and the superconducting/antiferromagnetic states at low temperatures. Because T* is {approx} J{sup 2} {rho}/2, the nearest neighbor RKKY interaction, a knowledge of the single-ion Kondo coupling, J, to the background conduction electron density of states, {rho}, makes it possible to predict Kondo liquid behavior, and to estimate its maximum superconducting transition temperature in both existing and newly discovered heavy electron families.

  16. Weatherization Assistance Program

    Broader source: Energy.gov [DOE]

    This fact sheet provides an overview of the U.S. Department of Energys Weatherization Assistance Program.

  17. Weatherization Assistance Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Assistance Program State Energy Advisory Board Meeting Washington, DC Robert C. Adams DOE Weatherization Assistance Program 1 | WAP Training & Technical Assistance Tools and Resources eere.energy.gov Weatherization Assistance Program Background * The WAP leads the nation in advancing technology, research and work practices related to making residential energy upgrades cost effective, safe and comprehensive * Over 7.3 million low-income dwelling units have been weatherized

  18. The Impact of Weatherization

    Broader source: Energy.gov [DOE]

    The Weatherization Assistance Program under the Recovery Act is making a serious impact in savings this summer.

  19. Weatherization Program Guidance

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Weatherization Assistance Program (WAP) is governed by various federal regulations designed to help manage and account for the resources provided by DOE. Each year, Congress passes a Weatherization Assistance Program Appropriation. Find active and archived weatherization program notices and memorandums in the table below, which establish the framework for administering WAP funds.

  20. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect (OSTI)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  1. Predictive modeling of reactive wetting and metal joining.

    SciTech Connect (OSTI)

    van Swol, Frank B.

    2013-09-01

    The performance, reproducibility and reliability of metal joints are complex functions of the detailed history of physical processes involved in their creation. Prediction and control of these processes constitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy and reactive wetting. Understanding this process requires coupling strong molecularscale chemistry at the interface with microscopic (diffusion) and macroscopic mass transport (flow) inside the liquid followed by subsequent cooling and solidification of the new metal mixture. The final joint displays compositional heterogeneity and its resulting microstructure largely determines the success or failure of the entire component. At present there exists no computational tool at Sandia that can predict the formation and success of a braze joint, as current capabilities lack the ability to capture surface/interface reactions and their effect on interface properties. This situation precludes us from implementing a proactive strategy to deal with joining problems. Here, we describe what is needed to arrive at a predictive modeling and simulation capability for multicomponent metals with complicated phase diagrams for melting and solidification, incorporating dissolutive and composition-dependent wetting.

  2. An approach to model validation and model-based prediction -- polyurethane foam case study.

    SciTech Connect (OSTI)

    Dowding, Kevin J.; Rutherford, Brian Milne

    2003-07-01

    Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical analyses and hypothesis tests as a part of the validation step to provide feedback to analysts and modelers. Decisions on how to proceed in making model-based predictions are made based on these analyses together with the application requirements. Updating modifying and understanding the boundaries associated with the model are also assisted through this feedback. (4) We include a ''model supplement term'' when model problems are indicated. This term provides a (bias) correction to the model so that it will better match the experimental results and more accurately account for uncertainty. Presumably, as the models continue to develop and are used for future applications, the causes for these apparent biases will be identified and the need for this supplementary modeling will diminish. (5) We use a response-modeling approach for our predictions that allows for general types of prediction and for assessment of prediction uncertainty. This approach is demonstrated through a case study supporting the assessment of a weapons response when subjected to a hydrocarbon fuel fire. The foam decomposition model provides an important element of the response of a weapon system in this abnormal thermal environment. Rigid foam is used to encapsulate critical components in the weapon system providing the needed mechanical support as well as thermal isolation. Because the foam begins to decompose at temperatures above 250 C, modeling the decomposition is critical to assessing a weapons response. In the validation analysis it is indicated that the model tends to ''exaggerate'' the effect of temperature changes when compared to the experimental results. The data, however, are too few and to restricted in terms of experimental design to make confident statements regarding modeling problems. For illustration, we assume these indications are correct and compensate for this apparent bias by constructing a model supplement term for use in the model-based predictions. Several hypothetical prediction problems are created and addressed. Hypothetical problems are used because no guidance was provided concern

  3. Predicting laser weld reliability with stochastic reduced-order models. Predicting laser weld reliability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Emery, John M.; Field, Richard V.; Foulk, James W.; Karlson, Kyle N.; Grigoriu, Mircea D.

    2015-05-26

    Laser welds are prevalent in complex engineering systems and they frequently govern failure. The weld process often results in partial penetration of the base metals, leaving sharp crack-like features with a high degree of variability in the geometry and material properties of the welded structure. Furthermore, accurate finite element predictions of the structural reliability of components containing laser welds requires the analysis of a large number of finite element meshes with very fine spatial resolution, where each mesh has different geometry and/or material properties in the welded region to address variability. We found that traditional modeling approaches could not bemore » efficiently employed. Consequently, a method is presented for constructing a surrogate model, based on stochastic reduced-order models, and is proposed to represent the laser welds within the component. Here, the uncertainty in weld microstructure and geometry is captured by calibrating plasticity parameters to experimental observations of necking as, because of the ductility of the welds, necking – and thus peak load – plays the pivotal role in structural failure. The proposed method is exercised for a simplified verification problem and compared with the traditional Monte Carlo simulation with rather remarkable results.« less

  4. Development of a fourth generation predictive capability maturity model.

    SciTech Connect (OSTI)

    Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy

    2013-09-01

    The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNL's mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

  5. Ocean-ice/oil-weathering computer program user's manual. Final report

    SciTech Connect (OSTI)

    Kirstein, B.E.; Redding, R.T.

    1987-10-01

    The ocean-ice/oil-weathering code is written in FORTRAN as a series of stand-alone subroutines that can easily be installed on most any computer. All of the trial-and-error routines, integration routines, and other special routines are written in the code so that nothing more than the normal system functions such as EXP are required. The code is user-interactive and requests input by prompting questions with suggested input. Therefore, the user can actually learn about the nature of crude oil and oil weathering by using this code. The ocean-ice oil-weathering model considers the following weathering processes: evaporation; dispersion (oil into water); moussee (water into oil); and spreading; These processes are used to predict the mass balance and composition of oil remaining in the slick as a function of time and environmental parameters.

  6. Land-ice modeling for sea-level prediction (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Land-ice modeling for sea-level prediction Citation Details In-Document Search Title: Land-ice modeling for sea-level prediction Authors: Lipscomb, William H 1 ...

  7. RESIDUA UPGRADING EFFICIENCY IMPROVEMENT MODELS: COKE FORMATION PREDICTABILITY MAPS

    SciTech Connect (OSTI)

    John F. Schabron; A. Troy Pauli; Joseph F. Rovani Jr.

    2002-05-01

    The dispersed particle solution model of petroleum residua structure was used to develop predictors for pyrolytic coke formation. Coking Indexes were developed in prior years that measure how near a pyrolysis system is to coke formation during the coke formation induction period. These have been demonstrated to be universally applicable for residua regardless of the source of the material. Coking onset is coincidental with the destruction of the ordered structure and the formation of a multiphase system. The amount of coke initially formed appears to be a function of the free solvent volume of the original residua. In the current work, three-dimensional coke make predictability maps were developed at 400 C, 450 C, and 500 C (752 F, 842 F, and 932 F). These relate residence time and free solvent volume to the amount of coke formed at a particular pyrolysis temperature. Activation energies for two apparent types of zero-order coke formation reactions were estimated. The results provide a new tool for ranking residua, gauging proximity to coke formation, and predicting initial coke make tendencies.

  8. Optimal Control of Distributed Energy Resources using Model Predictive Control

    SciTech Connect (OSTI)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen

    2012-07-22

    In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.

  9. Adaptive model predictive process control using neural networks

    DOE Patents [OSTI]

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  10. Adaptive model predictive process control using neural networks

    DOE Patents [OSTI]

    Buescher, Kevin L. (Los Alamos, NM); Baum, Christopher C. (Mazomanie, WI); Jones, Roger D. (Espanola, NM)

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  11. An Inupiat Weather Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The objective of this lesson is for students to correctly use the Iupiat language using weather related vocabulary, numbers, and days of the week. Students will...

  12. Weather-Corrected Performance Ratio

    SciTech Connect (OSTI)

    Dierauf, T.; Growitz, A.; Kurtz, S.; Cruz, J. L. B.; Riley, E.; Hansen, C.

    2013-04-01

    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.

  13. Home Weatherization Visit

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  14. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    SciTech Connect (OSTI)

    Jon Chorover, University of Arizona; Peggy O'????Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  15. The Weatherization Training program at Pennsylvania College

    Broader source: Energy.gov [DOE]

    A look into some of the remarkable work being done in the Weatherization Training program at Pennsylvania College. Penn College's program has served as the model for six other training centers in...

  16. The Weatherization Training program at Pennsylvania College

    ScienceCinema (OSTI)

    Meville, Jeff; Wilson, Jack; Manz, John; Gannett, Kirk; Smith, Franzennia;

    2013-05-29

    A look into some of the remarkable work being done in the Weatherization Training program at Pennsylvania College. Penn College's program has served as the model for six other training centers in Pennsylvania alone.

  17. New climate model predicts likelihood of Greenland ice melt,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of accumulated carbon emissions predicts the likelihood of crossing several dangerous climate change thresholds. November 20, 2015 Greenland ice loss. Greenland ice loss....

  18. Project Profile: Predictive Physico-Chemical Modeling of Intrinsic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL logo NREL, under the Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) Program will be developing a physics-based computational ...

  19. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling

    SciTech Connect (OSTI)

    Valerio, Luis G. . E-mail: luis.valerio@FDA.HHS.gov; Arvidson, Kirk B.; Chanderbhan, Ronald F.; Contrera, Joseph F.

    2007-07-01

    Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals, comprised primarily of pharmaceutical, industrial and some natural products developed under an FDA-MDL cooperative research and development agreement (CRADA). The predictive performance for this group of dietary natural products and the control group was 97% sensitivity and 80% concordance. Specificity was marginal at 53%. This study finds that the in silico QSAR analysis employing this software's rodent carcinogenicity database is capable of identifying the rodent carcinogenic potential of naturally occurring organic molecules found in the human diet with a high degree of sensitivity. It is the first study to demonstrate successful QSAR predictive modeling of naturally occurring carcinogens found in the human diet using an external validation test. Further test validation of this software and expansion of the training data set for dietary chemicals will help to support the future use of such QSAR methods for screening and prioritizing the risk of dietary chemicals when actual animal data are inadequate, equivocal, or absent.

  20. Cold Weather Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Cold Weather Hazards June 2010 NSA_cwh_Rev10.doc 1 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Cold Weather Hazards Winter Conditions at the North Slope of Alaska The North Slope of Alaska is north of the Arctic Circle at latitudes ranging from 69 to 72 degrees. Barrow, the largest town on the North Slope (pop. 4500), is the site of a National Weather Service Station, which has been active for several decades, so the

  1. Impact of heterogeneous chemistry on model predictions of ozone changes

    SciTech Connect (OSTI)

    Granier, C.; Brasseur, G. )

    1992-11-20

    A two-dimensional chemical/transport model of the middle atmosphere is used to assess the importance of chemical heterogeneous processes in the polar regions (on polar stratospheric clouds (PSCs)) and at other latitudes (on sulfate aerosols). When conversion on type I and type II PSCs of N[sub 2]O[sub 5] into HNO[sub 3] and of CIONO[sub 2] into reactive forms of chlorine is taken into account, enhanced CIO concentrations lead to the formation of a springtime ozone hole over the Antarctic continent; no such major reduction in the ozone column is found in the Arctic region. When conversion of nitrogen and chlorine compounds is assumed to occur on sulfate particles in the lower stratosphere, significant perturbations in the chemistry are also found. For background aerosol conditions, the concentration of nitric acid is enhanced and agrees with observed values, while that of nitrogen oxides is reduced and agrees less than if heterogeneous processes are ignored in the calculations. The concentration of the OH radical is significantly increased. Ozone number density appears to become larger between 16 and 30 km but smaller below 16 km, especially at high latitudes. The ozone column is only slightly modified, except at high latitudes where it is substantially reduced if the CIONO[sub 2] conversion into reactive chlorine is considered. After a large volcanic eruption these changes are further exacerbated. The ozone budget in the lower stratrosphere becomes less affected by nitrogen oxides but is largely controlled by the CIO[sub x] and HO[sub x] chemistries. A substantial decrease in the ozone column is predicted as a result of the Pinatubo volcanic eruption, mostly in winter at middle and high latitudes. 62 refs., 18 figs., 3 tabs.

  2. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  3. Sandia's ice sheet modeling of Greenland, Antarctica helps predict...

    National Nuclear Security Administration (NNSA)

    The Greenland and Antarctic ice sheets will make a dominant contribution to 21st century sea-level rise if current climate trends continue. However, predicting the expected loss of ...

  4. Home Weatherization Visit

    Broader source: Energy.gov [DOE]

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits...

  5. Weatherizing Wilkes-Barre

    ScienceCinema (OSTI)

    Calore, Joe

    2013-05-29

    Ride along with some weatherizers in Wilkes-Barre, PA, as they blower door test, manage z-doors, and dense pack their way to an energy efficient future one house at a time.

  6. Weatherizing Wilkes-Barre

    Broader source: Energy.gov [DOE]

    Ride along with some weatherizers in Wilkes-Barre, PA, as they blower door test, manage z-doors, and dense pack their way to an energy efficient future one house at a time.

  7. Weatherization Assistance Program (WAP)

    Broader source: Energy.gov [DOE]

    Through the Weatherization Assistance Program (WAP), the U.S. Department of Energy (DOE) issues grants to states, territories, and some Indian tribes to improve the energy efficiency of low-income...

  8. The Impact of IBM Cell Technology on the Programming Paradigm in the Context of Computer Systems for Climate and Weather Models

    SciTech Connect (OSTI)

    Zhou, Shujia; Duffy, Daniel; Clune, Thomas; Suarez, Max; Williams, Samuel; Halem, Milton

    2009-01-10

    The call for ever-increasing model resolutions and physical processes in climate and weather models demands a continual increase in computing power. The IBM Cell processor's order-of-magnitude peak performance increase over conventional processors makes it very attractive to fulfill this requirement. However, the Cell's characteristics, 256KB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. As a trial, we selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics components (half the total computational time), (2) has an extremely high computational intensity: the ratio of computational load to main memory transfers, and (3) exhibits embarrassingly parallel column computations. In this paper, we converted the baseline code (single-precision Fortran) to C and ported it to an IBM BladeCenter QS20. For performance, we manually SIMDize four independent columns and include several unrolling optimizations. Our results show that when compared with the baseline implementation running on one core of Intel's Xeon Woodcrest, Dempsey, and Itanium2, the Cell is approximately 8.8x, 11.6x, and 12.8x faster, respectively. Our preliminary analysis shows that the Cell can also accelerate the dynamics component (~;;25percent total computational time). We believe these dramatic performance improvements make the Cell processor very competitive as an accelerator.

  9. Final Technical Report: Increasing Prediction Accuracy.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Hansen, Clifford; Stein, Joshua

    2015-12-01

    PV performance models are used to quantify the value of PV plants in a given location. They combine the performance characteristics of the system, the measured or predicted irradiance and weather at a site, and the system configuration and design into a prediction of the amount of energy that will be produced by a PV system. These predictions must be as accurate as possible in order for finance charges to be minimized. Higher accuracy equals lower project risk. The Increasing Prediction Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV system performance models.

  10. Statistical surrogate models for prediction of high-consequence...

    Office of Scientific and Technical Information (OSTI)

    We therefore propose the use of specialized statistical surrogate models (SSMs) for the purpose of exploring the probability law of various climate variables of interest. A SSM is ...

  11. Comparison of Uncertainty of Two Precipitation Prediction Models...

    Office of Scientific and Technical Information (OSTI)

    Lab Technical Area 54 Meteorological inputs are an important part of subsurface flow and transport modeling. The choice of source for meteorological data used as inputs has...

  12. SimTable helps firefighters model and predict fire direction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for modeling lung cancer. In other news December, 1 2015 - Novel therapy for stomach cancer; grand opening of Manhattan Project National Historical Park; 2015 Northern New...

  13. Portland Diversifying Weatherization Workforce

    Broader source: Energy.gov [DOE]

    An agreement signed by a diverse group of stakeholders ensures that those in disadvantaged communities have access to some of the weatherization jobs stemming from the pilot phase of the Clean Energy Works Portland program, which has almost 500 homes receiving retrofits through the summer with the help of federal dollars.

  14. Vulnerability and adaptation to severe weather events in the American southwest

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boero, Riccardo; Bianchini, Laura; Pasqualini, Donatella

    2015-05-04

    Climate change can induce changes in the frequency of severe weather events representing a threat to socio-economic development. It is thus of uttermost importance to understand how the vulnerability to the weather of local communities is determined and how adaptation public policies can be effectively put in place. We focused our empirical analysis on the American Southwest. Results show that, consistently with the predictions of an investment model, economic characteristics signaling local economic growth in the near future decrease the level of vulnerability. We also show that federal governments transfers and grants neither work to support recovery from and adaptationmore » to weather events nor to distribute their costs over a broader tax base. Finally, we show that communities relying on municipal bonds to finance adaptation and recovery policies can benefit from local acknowledgment of the need for such policies and that they do not have to pay lenders a premium for the risk induced by weather events. In conclusion, our findings suggest that determinants of economic growth support lower vulnerability to the weather and increase options for financing adaptation and recovery policies, but also that only some communities are likely to benefit from those processes.« less

  15. Vulnerability and adaptation to severe weather events in the American southwest

    SciTech Connect (OSTI)

    Boero, Riccardo; Bianchini, Laura; Pasqualini, Donatella

    2015-05-04

    Climate change can induce changes in the frequency of severe weather events representing a threat to socio-economic development. It is thus of uttermost importance to understand how the vulnerability to the weather of local communities is determined and how adaptation public policies can be effectively put in place. We focused our empirical analysis on the American Southwest. Results show that, consistently with the predictions of an investment model, economic characteristics signaling local economic growth in the near future decrease the level of vulnerability. We also show that federal governments transfers and grants neither work to support recovery from and adaptation to weather events nor to distribute their costs over a broader tax base. Finally, we show that communities relying on municipal bonds to finance adaptation and recovery policies can benefit from local acknowledgment of the need for such policies and that they do not have to pay lenders a premium for the risk induced by weather events. In conclusion, our findings suggest that determinants of economic growth support lower vulnerability to the weather and increase options for financing adaptation and recovery policies, but also that only some communities are likely to benefit from those processes.

  16. WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE: SUBJECT: MULTIFAMILY WEATHERIZATION

    Energy Savers [EERE]

    6-XX EFFECTIVE DATE: SUBJECT: MULTIFAMILY WEATHERIZATION PURPOSE: To provide Grantees with consolidated guidance on previously issued Weatherization Program Notices (WPNs) on weatherizing multifamily buildings in the Weatherization Assistance Program (WAP). This supersedes WPN 10-7 and WPN 11-9 SCOPE: The provisions of this guidance apply to Grantees applying for financial assistance under the Department of Energy (DOE) WAP. LEGAL AUTHORITY: Title IV, Energy Conservation and Production Act, as

  17. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi; Tucker III, Charles L.; Costa, Franco

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk Simulation Moldflow Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predicted stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.

  18. Prediction of turbulent buoyant flow using an RNG {kappa}-{epsilon} model

    SciTech Connect (OSTI)

    Gan, G.

    1998-02-06

    Buoyant flows occur in various engineering practices such as heating, ventilation, and air-conditioning of buildings. This phenomenon is particularly important in rooms with displacement ventilation, where supply air velocities are generally very low (< 0.2 m/s) so that the predominant indoor airflow is largely due to thermal buoyancy created by internal heat sources such as occupants and equipment. This type of ventilation system has been shown to be an effective means to remove excess heat and achieve good indoor air quality. Here, numerical predictions were carried out for turbulent natural convection in two tall air cavities. The standard and RNG {kappa}-{epsilon} turbulence models were used for the predictions. The predicted results were compared with experimental data from the literature, and good agreement between prediction and measurement was obtained. Improved prediction was achieved using the RNG {kappa}-{epsilon} model in comparison with the standard {kappa}-{epsilon} model. The principal parameters for the improvement were investigated.

  19. Grandma's House (Weatherization) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grandma's House (Weatherization) Grandma's House (Weatherization) Addthis When you weatherize a home it needs to work as a system. Learn more here

  20. Modelling hepatitis C therapy—predicting effects of treatment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perelson, Alan S.; Guedj, Jeremie

    2015-06-30

    Mathematically modelling changes in HCV RNA levels measured in patients who receive antiviral therapy has yielded many insights into the pathogenesis and effects of treatment on the virus. By determining how rapidly HCV is cleared when viral replication is interrupted by a therapy, one can deduce how rapidly the virus is produced in patients before treatment. This knowledge, coupled with estimates of the HCV mutation rate, enables one to estimate the frequency with which drug resistant variants arise. Modelling HCV also permits the deduction of the effectiveness of an antiviral agent at blocking HCV replication from the magnitude of themore » initial viral decline. One can also estimate the lifespan of an HCV-infected cell from the slope of the subsequent viral decline and determine the duration of therapy needed to cure infection. The original understanding of HCV RNA decline under interferon-based therapies obtained by modelling needed to be revised in order to interpret the HCV RNA decline kinetics seen when using direct-acting antiviral agents (DAAs). In addition, there also exist unresolved issues involving understanding therapies with combinations of DAAs, such as the presence of detectable HCV RNA at the end of therapy in patients who nonetheless have a sustained virologic response.« less

  1. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program. Volume 3, Appendices D, E, F, and G: [Final Report

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The ``Weatherization Residential Assistance Partnership,`` or WRAP program, is a fuel-blind conservation program designed to assist Northeast Utilities` low-income customers to use energy safely and efficiently. Innovative with respect to its collaborative approach and its focus on utilizing and strengthening the existing low-income weatherization service delivery network, the WRAP program offers an interesting model to other utilities which traditionally have relied on for-profit energy service contractors and highly centralized program implementation structures. This report presents appendices with surveys, participant list, and computers program to examine and predict potential energy savings.

  2. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  3. Red Lake Weatherization Project

    Energy Savers [EERE]

    REVIEW RED LAKE WEATHERIZATION PROJECT BERT VAN WERT ENERGY ACTIVITIES COORDINATOR Project Overview To develop the capacity to conduct energy audits Implement energy efficiency measures into Tribal homes Develop a Tribally administered Energy Efficiency Program and business PROJECT LOCATION Our project is located at Red Lake Housing Authority Red Lake Band of Chippewa Indians Red Lake , MN Red Lake Band of Chippewas Area overview Reservation (Diminished Lands) and Surroundings Red Lake Band of

  4. Erratum: "Reduced model prediction of electron temperature profiles in

    Office of Scientific and Technical Information (OSTI)

    microtearing-dominated National Spherical Torus eXperiment plasmas" [Phys. Plasmas 21, 082510 (2014)] (Journal Article) | SciTech Connect Erratum: "Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas" [Phys. Plasmas 21, 082510 (2014)] Citation Details In-Document Search Title: Erratum: "Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus

  5. The Effect of the Contact Model on Predicting Impact-Vibration Response.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: The Effect of the Contact Model on Predicting Impact-Vibration Response. Citation Details In-Document Search Title: The Effect of the Contact Model on Predicting Impact-Vibration Response. Authors: Brake, Matthew Robert Publication Date: 2012-06-01 OSTI Identifier: 1064253 Report Number(s): SAND2012-5215C DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the ASME 2012

  6. Predictive modeling of synergistic effects in nanoscale ion track formation

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electronlattice coupling.

  7. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches

    SciTech Connect (OSTI)

    Singh, Kunwar P.; Gupta, Shikha; Rai, Premanjali

    2013-10-15

    Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and BrockDechertScheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models was performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and predictive abilities of the interspecies GRNN model to predict the carcinogenic potency of diverse chemicals. - Highlights: Global robust models constructed for carcinogenicity prediction of diverse chemicals. Tanimoto/BDS test revealed structural diversity of chemicals and nonlinearity in data. PNN/GRNN successfully predicted carcinogenicity/carcinogenic potency of chemicals. Developed interspecies PNN/GRNN models for carcinogenicity prediction. Proposed models can be used as tool to predict carcinogenicity of new chemicals.

  8. Advanced Models and Controls for Prediction and Extension of Battery Lifetime (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Pesaran, A.

    2014-02-01

    Predictive models of capacity and power fade must consider a multiplicity of degradation modes experienced by Li-ion batteries in the automotive environment. Lacking accurate models and tests, lifetime uncertainty must presently be absorbed by overdesign and excess warranty costs. To reduce these costs and extend life, degradation models are under development that predict lifetime more accurately and with less test data. The lifetime models provide engineering feedback for cell, pack and system designs and are being incorporated into real-time control strategies.

  9. Weatherization Innovation Pilot Program (WIPP): Technical Assistance Summary

    SciTech Connect (OSTI)

    Hollander, A.

    2014-09-01

    The U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Programs Office (WIPO) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of low-income residences without the utilization of additional taxpayer funding. Sixteen WIPP grantees were awarded a total of $30 million in Weatherization Assistance Program (WAP) funds in September 2010. These projects focused on: including nontraditional partners in weatherization service delivery; leveraging significant non-federal funding; and improving the effectiveness of low-income weatherization through the use of new materials, technologies, behavior-change models, and processes.

  10. Leveraging Resources for the Weatherization Innovation Pilot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Weatherization Innovation Pilot Program (WIPP) - Webinar Transcript Leveraging Resources for the Weatherization Innovation Pilot Program (WIPP) - Webinar Transcript This...

  11. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    SciTech Connect (OSTI)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; O???¢????????Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

  12. Connecticut Weatherization Project Improves Lives, Receives National

    Office of Environmental Management (EM)

    Recognition | Department of Energy Connecticut Weatherization Project Improves Lives, Receives National Recognition Connecticut Weatherization Project Improves Lives, Receives National Recognition May 6, 2014 - 12:24pm Addthis Donna Hawkins Technology Transfer Specialist, Weatherization Assistance Program Harris Walker Communications Specialist, Weatherization and Intergovernmental Program MORE WEATHERIZATION STORIES Improving Energy Efficiency and Creating Jobs through Weatherization

  13. National Weatherization Assistance Program Impact Evaluation: Weatherization Staff Survey

    SciTech Connect (OSTI)

    Carroll, David; Berger, Jacqueline; Miller, Carolyn; Johnson, Daya Bill

    2015-02-01

    This report presents results from a national survey of a representative sample of local weatherization staff -- auditors, crew chiefs, crew members.

  14. Prediction of Ice Crystal Number in Community Atmospheric Model (CAM3.0)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prediction of Ice Crystal Number in Community Atmospheric Model (CAM3.0) Liu, Xiaohong Pacific Northwest National Laboratory Ghan, Steven Pacific Northwest National Laboratory Wang, M University of Michigan Penner, Joyce University of Michigan Category: Modeling A prognostic equation of ice crystal number concentrations is implemented in the Community Atmospheric Model (CAM3.0) with the aim to study the aerosol effects on climate through changing the ice cloud properties. The microphysical

  15. ARM - Lesson Plans: Current Weather

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Weather Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Current Weather Objective The objective of this activity is to understand the difference between weather and climate and changes that take place in a given environment. Materials Each student or group of students

  16. Statistical model selection for better prediction and discovering science mechanisms that affect reliability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anderson-Cook, Christine M.; Morzinski, Jerome; Blecker, Kenneth D.

    2015-08-19

    Understanding the impact of production, environmental exposure and age characteristics on the reliability of a population is frequently based on underlying science and empirical assessment. When there is incomplete science to prescribe which inputs should be included in a model of reliability to predict future trends, statistical model/variable selection techniques can be leveraged on a stockpile or population of units to improve reliability predictions as well as suggest new mechanisms affecting reliability to explore. We describe a five-step process for exploring relationships between available summaries of age, usage and environmental exposure and reliability. The process involves first identifying potential candidatemore » inputs, then second organizing data for the analysis. Third, a variety of models with different combinations of the inputs are estimated, and fourth, flexible metrics are used to compare them. As a result, plots of the predicted relationships are examined to distill leading model contenders into a prioritized list for subject matter experts to understand and compare. The complexity of the model, quality of prediction and cost of future data collection are all factors to be considered by the subject matter experts when selecting a final model.« less

  17. Mathematical approaches for complexity/predictivity trade-offs in complex system models : LDRD final report.

    SciTech Connect (OSTI)

    Goldsby, Michael E.; Mayo, Jackson R.; Bhattacharyya, Arnab; Armstrong, Robert C.; Vanderveen, Keith

    2008-09-01

    The goal of this research was to examine foundational methods, both computational and theoretical, that can improve the veracity of entity-based complex system models and increase confidence in their predictions for emergent behavior. The strategy was to seek insight and guidance from simplified yet realistic models, such as cellular automata and Boolean networks, whose properties can be generalized to production entity-based simulations. We have explored the usefulness of renormalization-group methods for finding reduced models of such idealized complex systems. We have prototyped representative models that are both tractable and relevant to Sandia mission applications, and quantified the effect of computational renormalization on the predictive accuracy of these models, finding good predictivity from renormalized versions of cellular automata and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of certain Boolean networks, relevant for characterizing organic behavior, and obtained precise mathematical constraints on systems that are robust to failures. In combination, our results provide important guidance for more rigorous construction of entity-based models, which currently are often devised in an ad-hoc manner. Our results can also help in designing complex systems with the goal of predictable behavior, e.g., for cybersecurity.

  18. Statistical model selection for better prediction and discovering science mechanisms that affect reliability

    SciTech Connect (OSTI)

    Anderson-Cook, Christine M.; Morzinski, Jerome; Blecker, Kenneth D.

    2015-08-19

    Understanding the impact of production, environmental exposure and age characteristics on the reliability of a population is frequently based on underlying science and empirical assessment. When there is incomplete science to prescribe which inputs should be included in a model of reliability to predict future trends, statistical model/variable selection techniques can be leveraged on a stockpile or population of units to improve reliability predictions as well as suggest new mechanisms affecting reliability to explore. We describe a five-step process for exploring relationships between available summaries of age, usage and environmental exposure and reliability. The process involves first identifying potential candidate inputs, then second organizing data for the analysis. Third, a variety of models with different combinations of the inputs are estimated, and fourth, flexible metrics are used to compare them. As a result, plots of the predicted relationships are examined to distill leading model contenders into a prioritized list for subject matter experts to understand and compare. The complexity of the model, quality of prediction and cost of future data collection are all factors to be considered by the subject matter experts when selecting a final model.

  19. NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE

    Office of Scientific and Technical Information (OSTI)

    PHYSICS EXPERIMENTS (SPE2) (Technical Report) | SciTech Connect NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE PHYSICS EXPERIMENTS (SPE2) Citation Details In-Document Search Title: NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE SECOND SOURCE PHYSICS EXPERIMENTS (SPE2) Motion along joints and fractures in the rock has been proposed as one of the sources of near-source shear wave generation, and demonstrating the validity of this hypothesis is a focal

  20. Development of a land ice core for the Model for Prediction Across Scales

    Office of Scientific and Technical Information (OSTI)

    (MPAS) (Conference) | SciTech Connect of a land ice core for the Model for Prediction Across Scales (MPAS) Citation Details In-Document Search Title: Development of a land ice core for the Model for Prediction Across Scales (MPAS) No abstract prepared. Authors: Hoffman, Matthew J [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2012-06-25 OSTI Identifier: 1044843 Report Number(s): LA-UR-12-22469 TRN: US201214%%525 DOE Contract Number: AC52-06NA25396 Resource

  1. Development of a land ice core for the Model for Prediction Across Scales

    Office of Scientific and Technical Information (OSTI)

    (MPAS) (Conference) | SciTech Connect of a land ice core for the Model for Prediction Across Scales (MPAS) Citation Details In-Document Search Title: Development of a land ice core for the Model for Prediction Across Scales (MPAS) × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources

  2. Development of a land ice core for the Model for Prediction Across Scales

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MPAS) (Conference) | SciTech Connect a land ice core for the Model for Prediction Across Scales (MPAS) Citation Details In-Document Search Title: Development of a land ice core for the Model for Prediction Across Scales (MPAS) No abstract prepared. Authors: Hoffman, Matthew J [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2012-06-25 OSTI Identifier: 1044843 Report Number(s): LA-UR-12-22469 TRN: US201214%%525 DOE Contract Number: AC52-06NA25396 Resource Type:

  3. Mass-transport models to predict toxicity of inhaled gases in the upper respiratory tract

    SciTech Connect (OSTI)

    Hubal, E.A.C.; Fedkiw, P.S.; Kimbell, J.S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    Mass-transport (the movement of a chemical species) plays an important role in determining toxic responses of the upper respiratory tract (URT) to inhaled chemicals. Mathematical dosimetry models incorporate physical characteristics of mass transport and are used to predict quantitative uptake (absorption rate) and distribution of inhaled gases and vapors in the respiratory tract. Because knowledge of dose is an essential component of quantitative risk assessment, dosimetry modeling plays an important role in extrapolation of animal study results to humans. A survey of existing mathematical dosimetry models for the URT is presented, limitations of current models are discussed, and adaptations of existing models to produce a generally applicable model are suggested. Reviewed URT dosimetry models are categorized as early, lumped-parameter, and distributed-parameter models. Specific examples of other relevant modeling work are also presented. 35 refs., 11 figs., 1 tab.

  4. A Predictive Model of Fragmentation using Adaptive Mesh Refinement and a Hierarchical Material Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Koniges Lawrence Livermore National Laboratory Salishan Conference on High Speed Computing: Confidence in HPC Predictive Simulations April 23 - 26, 2007 Gleneden Beach, Oregon The Development of a New Predictive Simulation Code This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. UCRL-PRES-230114 AEK 2 Acknowledgments NIF-ALE-AMR Development Team: Robert Anderson, David

  5. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    SciTech Connect (OSTI)

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; Blanchard, Jeffrey L.

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonads ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organisms transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.

  6. Subtask 2.4 - Integration and Synthesis in Climate Change Predictive Modeling

    SciTech Connect (OSTI)

    Jaroslav Solc

    2009-06-01

    The Energy & Environmental Research Center (EERC) completed a brief evaluation of the existing status of predictive modeling to assess options for integration of our previous paleohydrologic reconstructions and their synthesis with current global climate scenarios. Results of our research indicate that short-term data series available from modern instrumental records are not sufficient to reconstruct past hydrologic events or predict future ones. On the contrary, reconstruction of paleoclimate phenomena provided credible information on past climate cycles and confirmed their integration in the context of regional climate history is possible. Similarly to ice cores and other paleo proxies, acquired data represent an objective, credible tool for model calibration and validation of currently observed trends. It remains a subject of future research whether further refinement of our results and synthesis with regional and global climate observations could contribute to improvement and credibility of climate predictions on a regional and global scale.

  7. Weatherization Pilot Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Projects Weatherization Pilot Projects The U.S. Department of Energy (DOE) Weatherization Assistance Program (WAP) supported two projects that allowed local weatherization agencies to experiment with including new and innovative materials and energy efficiency technologies provided to weatherization clients. Sustainable Energy Resources for Consumers Weatherization Innovation Pilot Program Sustainable Energy Resources for Consumers Under the Sustainable Energy Resources for Consumers

  8. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    SciTech Connect (OSTI)

    Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.

    2014-06-19

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading.

  9. Long-Fiber Thermoplastic Injection Molded Composites: from Process Modeling to Property Prediction

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Holbery, Jim D.; Johnson, Kenneth I.; Smith, Mark T.

    2005-09-01

    Recently, long-fiber filled thermoplastics have become a great interest to the automotive industry since these materials offer much better property performance (e.g. elastic moduli, strength, durability) than their short-fiber analogues, and they can be processed through injection molding with some specific tool design. However, in order that long-fiber thermoplastic injection molded composites can be used efficiently for automotive applications, there is a tremendous need to develop process and constitutive models as well as computational tools to predict the microstructure of the as-formed composite, and its resulting properties and macroscopic responses from processing to the final product. The microstructure and properties of such a composite are governed by i) flow-induced fiber orientation, ii) fiber breakage during injection molding, and iii) processing conditions (e,g. pressure, mold and melt temperatures, mold geometries, injection speed, etc.). This paper highlights our efforts to address these challenging issues. The work is an integrated part of a research program supported by the US Department of Energy, which includes The development of process models for long-fiber filled thermoplastics, The construction of an interface between process modeling and property prediction as well as the development of new constitutive models to perform linear and nonlinear structural analyses, Experimental characterization of model parameters and verification of the model predictions.

  10. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy

    SciTech Connect (OSTI)

    Prez-Andjar, Anglica [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Zhang, Rui; Newhauser, Wayne [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)

    2013-12-15

    Purpose: Stray neutron radiation is of concern after radiation therapy, especially in children, because of the high risk it might carry for secondary cancers. Several previous studies predicted the stray neutron exposure from proton therapy, mostly using Monte Carlo simulations. Promising attempts to develop analytical models have also been reported, but these were limited to only a few proton beam energies. The purpose of this study was to develop an analytical model to predict leakage neutron equivalent dose from passively scattered proton beams in the 100-250-MeV interval.Methods: To develop and validate the analytical model, the authors used values of equivalent dose per therapeutic absorbed dose (H/D) predicted with Monte Carlo simulations. The authors also characterized the behavior of the mean neutron radiation-weighting factor, w{sub R}, as a function of depth in a water phantom and distance from the beam central axis.Results: The simulated and analytical predictions agreed well. On average, the percentage difference between the analytical model and the Monte Carlo simulations was 10% for the energies and positions studied. The authors found that w{sub R} was highest at the shallowest depth and decreased with depth until around 10 cm, where it started to increase slowly with depth. This was consistent among all energies.Conclusion: Simple analytical methods are promising alternatives to complex and slow Monte Carlo simulations to predict H/D values. The authors' results also provide improved understanding of the behavior of w{sub R} which strongly depends on depth, but is nearly independent of lateral distance from the beam central axis.

  11. U.S. Department of Energy Weatherization Assistance Program Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Assistance Program Homes Weatherized By State through 06302010 (Calendar Year) U.S. Department of Energy Weatherization Assistance Program Homes Weatherized By ...

  12. Runtime System Library for Parallel Weather Modules

    Energy Science and Technology Software Center (OSTI)

    1997-07-22

    RSL is a Fortran-callable runtime library for use in implementing regular-grid weather forecast models, with nesting, on scalable distributed memory parallel computers. It provides high-level routines for finite-difference stencil communications and inter-domain exchange of data for nested forcing and feedback. RSL supports a unique point-wise domain-decomposition strategy to facilitate load-balancing.

  13. What is Weatherization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What is Weatherization What is Weatherization Weatherization as defined by the Weatherization Assistance Program (WAP) differs in many ways from what is commonly called "weatherizing your home." The latter involves low-cost improvements like adding weatherstripping to doors and windows to save energy. These measures made up the services WAP provided in its early years and are likely responsible for the program's name. Today, WAP's weatherization services consist of cost-effective

  14. WeatherMaker: Weather file conversion and evaluation

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1999-07-01

    WeatherMaker is a weather-data utility for use with the ENERGY-10 design-tool computer program. The three main features are: Convert--Weather files can be converted from one format to another. For example, a TMY2 format file can be converted to an ENERGY-10 binary file that can be used in a simulation. This binary file can then be converted to a text format that allows it to be read and/or manipulated in WordPad or Excel. Evaluate--ENERGY-10 weather files can be studied in great detail. There are 8 graphical displays of the data that provide insight into the data, and a summary tables that presents results calculated from the hourly data. Adjust--Hourly temperature data can be adjusted starting with hourly data from a nearby TMY2 site. Dry-bulb and wet-bulb temperatures are adjusted up or down as required to match given monthly statistics. This feature can be used to generate weather files for any of 3,958 sites in the US where such monthly statistics are tabulated. The paper shows a variety of results, explains the methods used, and discusses the rationale for making the adjustments. It is anticipated that WeatherMaker will be released by the time of the ASES Solar 99 conference.

  15. Weather Services International Corporation WSI | Open Energy...

    Open Energy Info (EERE)

    Weather Services International Corporation WSI Jump to: navigation, search Name: Weather Services International Corporation (WSI) Place: Andover, Massachusetts Zip: 1810 Product:...

  16. Monitoring Plan for Weatherization Assistance Program, State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monitoring Plan for Weatherization Assistance Program, State Energy Program and Energy Efficiency and Conservation Block Grants Monitoring Plan for Weatherization Assistance ...

  17. Incorporating Weather Data into Energy Savings Calculations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporating Weather Data into Energy Savings Calculations Incorporating Weather Data into Energy Savings Calculations Better Buildings Residential Network Peer Exchange Call...

  18. Predicting ecological roles in the rhizosphere using metabolome and transportome modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Larsen, Peter E.; Collart, Frank R.; Dai, Yang; Blanchard, Jeffrey L.

    2015-09-02

    The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. New algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad’s ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter ofmore » plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism’s transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.« less

  19. Winter Weather Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. Use of a human face as the modeled target. 3. Incorporation of modern heat transfer theory to model heat loss from the body and its surroundings on cold, windy days. 4. A...

  20. An Elastic-Plastic and Strength Prediction Model for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.

    2008-09-01

    This paper applies a recently developed model to predict the elastic-plastic stress/strain response and strength of injection-molded long-fiber thermoplastics (LFTs). The model combines a micro-macro constitutive modeling approach with experimental characterization and modeling of the composite microstructure to determine the composite stress/strain response and strength. Specifically, it accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length, orientation and volume fraction distributions in the composite formed by the injection-molding process. Injection-molded-long-glass-fiber/polypropylene (PP) specimens were prepared for mechanical characterization and testing. Fiber length, orientation, and volume fraction distributions were then measured at some selected locations for use in the computation. Fiber orientations in these specimens were also predicted using an anisotropic rotary diffusion model developed for LFTs. The stress-strain response of the as-formed composite was computed by an incremental procedure that uses the Eshelbys equivalent inclusion method, the Mori-Tanaka assumption and a fiber orientation averaging technique. The model has been validated against the experimental stress-strain results obtained for these long-glass-fiber/PP specimens.

  1. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    SciTech Connect (OSTI)

    Xavier, MA; Trimboli, MS

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.

  2. Aleutian Pribilof Islands Weatherization Project

    Office of Environmental Management (EM)

    Aleutian Pribilof islands Weatherization project Presented by: ken Selby, Community services director Annotated by: Moses Tcheripanoff, MEDIA COORIDNATOR "Birthplace of the winds" Project overview  Weatherization  Energy conservation education  Home energy & safety review on-site review Native Village of Atka, AK Native Village of Nikolski, AK Native Village of Sand Point, AK Focus Communities Unanagx (Aleut) Communities ^ Tribal & community descriptions Bering Sea

  3. Results from baseline tests of the SPRE I and comparison with code model predictions

    SciTech Connect (OSTI)

    Cairelli, J.E.; Geng, S.M.; Skupinski, R.C.

    1994-09-01

    The Space Power Research Engine (SPRE), a free-piston Stirling engine with linear alternator, is being tested at the NASA Lewis Research Center as part of the Civil Space Technology Initiative (CSTI) as a candidate for high capacity space power. This paper presents results of base-line engine tests at design and off-design operating conditions. The test results are compared with code model predictions.

  4. Wildfires Lead to More Warming than Climate Models Predicted | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Wildfires Lead to More Warming than Climate Models Predicted Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW

  5. Predictive Theory and Modeling| U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Predictive Theory and Modeling Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Peer Review Policies EFRCs FOA Applications from Universities and Other Research Institutions Construction Review EPSCoR DOE Office of Science Graduate Fellowship (DOE SCGF)

  6. A comparison of general circulation model predictions to sand drift and dune orientations

    SciTech Connect (OSTI)

    Blumberg, D.G.; Greeley, R.

    1996-12-01

    The growing concern over climate change and decertification stresses the importance of aeolian process prediction. In this paper the use of a general circulation model to predict current aeolian features is examined. A GCM developed at NASA/Goddard Space Flight Center was used in conjunction with White`s aeolian sand flux model to produce a global potential aeolian transport map. Surface wind shear stress predictions were used from the output of a GCM simulation that was performed as part of the Atmospheric Model Intercomparison Project on 1979 climate conditions. The spatial resolution of this study (as driven by the GCM) is 4{degrees} X 5{degrees}; instantaneous 6-hourly wind stress data were saved by the GCM and used in this report. A global map showing potential sand transport was compared to drift potential directions as inferred from Landsat images from the 1980s for several sand seas and a coastal dune field. Generally, results show a good correlation between the simulated sand drift direction and the drift direction inferred for dune forms. Discrepancies between the drift potential and the drift inferred from images were found in the North American deserts and the Arabian peninsula. An attempt to predict the type of dune that would be formed in specific regions was not successful. The model could probably be further improved by incorporating soil moisture, surface roughness, and vegetation information for a better assessment of sand threshold conditions. The correlation may permit use of a GCM to analyze {open_quotes}fossil{close_quotes} dunes or to forecast aeolian processes. 48 refs., 8 figs.

  7. Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data

    Office of Environmental Management (EM)

    LA-UR-11-01857 Approved for public release; distribution I unlimited. Title: Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell Intended Use: Deliverable to SB-TS: Safety Basis Technical Services Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the

  8. In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation

    SciTech Connect (OSTI)

    G. R. Odette; G. E. Lucas

    2005-11-15

    This final report on "In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation" (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: 1) A Transport and Fate Model for Helium and Helium Management; 2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; 3) Multiscale Modeling of Fracture consisting of: 3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), 3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, 3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, 3d) A Model for the KJc(T) of a High Strength NFA MA957, 3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, 3-f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; 4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and 5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES.

  9. Arizona Foundation Expands Weatherization Training Center

    Broader source: Energy.gov [DOE]

    Read about one weatherization training center that's looking forward to an onslaught of new trainees.

  10. Low-Income Weatherization: The Human Dimension

    Broader source: Energy.gov [DOE]

    This presentation focuses on how the human dimension saves energy within low-income weatherization programs.

  11. Weatherization and Intergovernmental Program Success Stories

    Broader source: Energy.gov [DOE]

    Weatherization and Intergovernmental Programs Office (WIPO) success stories, news clips, and press releases.

  12. Nevada Weatherizes Large-Scale Complex

    Broader source: Energy.gov [DOE]

    Increased energy efficiency is translating into increased productivity for one Nevada weatherization organization.

  13. Explore Careers in Weatherization | Department of Energy

    Office of Environmental Management (EM)

    Weatherization Explore Careers in Weatherization EERE's Weatherization and Intergovernmental Program provides grants, technical assistance, and information tools to the state energy offices of states, local governments, community action agencies, utility companies, tribal governments, and overseas U.S. territories. These programs aim to reduce market barriers to the adoption of energy efficiency and renewable energy technologies while also reducing petroleum consumption. EERE's Weatherization

  14. Weatherization Assistance Program National Evaluation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Weatherization Assistance Program National Evaluation Weatherization Assistance Program National Evaluation The Weatherization and Intergovernmental Programs Office authorized the Oak Ridge National Laboratory to implement the national evaluation of the Weatherization Assistance Program. This evaluation addressed energy and cost savings, non-energy benefits, program cost-effectiveness, and program operations for program year 2008, called the Retrospective Evaluation, and for program

  15. Q&A: The Weatherization Assistance Program

    Broader source: Energy.gov [DOE]

    Learn about the Energy Department's Weatherization Assistance Program and how you can apply for services.

  16. A Screening Model to Predict Microalgae Biomass Growth in Photobioreactors and Raceway Ponds

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Van Wagenen, Jonathan M.; Miller, Tyler W.; Chavis, Aaron R.; Hobbs, Watts B.; Crowe, Braden J.

    2013-06-01

    A microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in photobioreactors or outdoor ponds. Growth is modeled by first estimating the light attenuation by biomass according to Beer-Lamberts law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires only two physical and two species-specific biological input parameters, all of which are relatively easy to determine: incident light intensity, culture depth, as well as the biomass light absorption coefficient and the specific growth rate as a function of light intensity. Roux bottle culture experiments were performed with Nannochloropsis salina at constant temperature (23 C) at six different incident light intensities (5, 10, 25, 50, 100, 250, and 850 ?mol/m2? sec) to determine both the specific growth rate under non-shading conditions and the biomass light absorption coefficient as a function of light intensity. The model was successful in predicting the biomass growth rate in these Roux bottle cultures during the light-limited linear phase at different incident light intensities. Model predictions were moderately sensitive to minor variations in the values of input parameters. The model was also successful in predicting the growth performance of Chlorella sp. cultured in LED-lighted 800 L raceway ponds operated at constant temperature (30 C) and constant light intensity (1650 ?mol/m2? sec). Measurements of oxygen concentrations as a function of time demonstrated that following exposure to darkness, it takes at least 5 seconds for cells to initiate dark respiration. As a result, biomass loss due to dark respiration in the aphotic zone of a culture is unlikely to occur in highly mixed small-scale photobioreactors where cells move rapidly in and out of the light. By contrast, as supported also by the growth model, biomass loss due to dark respiration occurs in the dark zones of the relatively less well mixed pond cultures. In addition to screening novel microalgae strains for high biomass productivities, the model can also be used for optimizing the pond design and operation. Additional research is needed to validate the biomass growth model for other microalgae species and for the more realistic case of fluctuating temperatures and light intensities observed in outdoor pond cultures.

  17. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    SciTech Connect (OSTI)

    Soulami, Ayoub; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energys National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNLs efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  18. Ecological Impacts of the Cerro Grande Fire: Predicting Elk Movement and Distribution Patterns in Response to Vegetative Recovery through Simulation Modeling October 2005

    SciTech Connect (OSTI)

    S.P. Rupp

    2005-10-01

    In May 2000, the Cerro Grande Fire burned approximately 17,200 ha in north-central New Mexico as the result of an escaped prescribed burn initiated by Bandelier National Monument. The interaction of large-scale fires, vegetation, and elk is an important management issue, but few studies have addressed the ecological implications of vegetative succession and landscape heterogeneity on ungulate populations following large-scale disturbance events. Primary objectives of this research were to identify elk movement pathways on local and landscape scales, to determine environmental factors that influence elk movement, and to evaluate movement and distribution patterns in relation to spatial and temporal aspects of the Cerro Grande Fire. Data collection and assimilation reflect the collaborative efforts of National Park Service, U.S. Forest Service, and Department of Energy (Los Alamos National Laboratory) personnel. Geographic positioning system (GPS) collars were used to track 54 elk over a period of 3+ years and locational data were incorporated into a multi-layered geographic information system (GIS) for analysis. Preliminary tests of GPS collar accuracy indicated a strong effect of 2D fixes on position acquisition rates (PARs) depending on time of day and season of year. Slope, aspect, elevation, and land cover type affected dilution of precision (DOP) values for both 2D and 3D fixes, although significant relationships varied from positive to negative making it difficult to delineate the mechanism behind significant responses. Two-dimensional fixes accounted for 34% of all successfully acquired locations and may affect results in which those data were used. Overall position acquisition rate was 93.3% and mean DOP values were consistently in the range of 4.0 to 6.0 leading to the conclusion collar accuracy was acceptable for modeling purposes. SAVANNA, a spatially explicit, process-oriented ecosystem model, was used to simulate successional dynamics. Inputs to the SAVANNA included a land cover map, long-term weather data, soil maps, and a digital elevation model. Parameterization and calibration were conducted using field plots. Model predictions of herbaceous biomass production and weather were consistent with available data and spatial interpolations of snow were considered reasonable for this study. Dynamic outputs generated by SAVANNA were integrated with static variables, movement rules, and parameters developed for the individual-based model through the application of a habitat suitability index. Model validation indicated reasonable model fit when compared to an independent test set. The finished model was applied to 2 realistic management scenarios for the Jemez Mountains and management implications were discussed. Ongoing validation of the individual-based model presented in this dissertation provides an adaptive management tool that integrates interdisciplinary experience and scientific information, which allows users to make predictions about the impact of alternative management policies.

  19. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs

    SciTech Connect (OSTI)

    Watney, W.L.

    1994-12-01

    Reservoirs in the Lansing-Kansas City limestone result from complex interactions among paleotopography (deposition, concurrent structural deformation), sea level, and diagenesis. Analysis of reservoirs and surface and near-surface analogs has led to developing a {open_quotes}strandline grainstone model{close_quotes} in which relative sea-level stabilized during regressions, resulting in accumulation of multiple grainstone buildups along depositional strike. Resulting stratigraphy in these carbonate units are generally predictable correlating to inferred topographic elevation along the shelf. This model is a valuable predictive tool for (1) locating favorable reservoirs for exploration, and (2) anticipating internal properties of the reservoir for field development. Reservoirs in the Lansing-Kansas City limestones are developed in both oolitic and bioclastic grainstones, however, re-analysis of oomoldic reservoirs provides the greatest opportunity for developing bypassed oil. A new technique, the {open_quotes}Super{close_quotes} Pickett crossplot (formation resistivity vs. porosity) and its use in an integrated petrophysical characterization, has been developed to evaluate extractable oil remaining in these reservoirs. The manual method in combination with 3-D visualization and modeling can help to target production limiting heterogeneities in these complex reservoirs and moreover compute critical parameters for the field such as bulk volume water. Application of this technique indicates that from 6-9 million barrels of Lansing-Kansas City oil remain behind pipe in the Victory-Northeast Lemon Fields. Petroleum geologists are challenged to quantify inferred processes to aid in developing rationale geologically consistent models of sedimentation so that acceptable levels of prediction can be obtained.

  20. WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE:

    Energy Savers [EERE]

    WEATHERIZATION PROGRAM NOTICE 16-XX EFFECTIVE DATE: SUBJECT: WEATHERIZATION OF RENTAL UNITS - Applicable to single family and multifamily dwellings PURPOSE: To provide Grantees with updated guidance on weatherizing rental units in the Weatherization Assistance Program (WAP). DOE has answered specific questions from Grantees related to the weatherization of rental units, whether single family building or multifamily dwellings, over a number of years. However, the responses to these questions have

  1. Weatherization Success Stories | Department of Energy

    Energy Savers [EERE]

    Weatherization Success Stories Weatherization Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in providing weatherization services for existing residential and multifamily housing with low-income residents reduce energy bills for residents. Explore EERE's weatherization success stories below. January 6, 2016 The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the Energy Department.| Photo courtesy of Rocky

  2. Connecticut's Health Impact Study Rapidly Increasing Weatherization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efforts | Department of Energy Connecticut's Health Impact Study Rapidly Increasing Weatherization Efforts Connecticut's Health Impact Study Rapidly Increasing Weatherization Efforts June 18, 2014 - 10:49am Addthis Weatherization workers are trained in the house as a system approach. The Energy Department's Weatherization Assistance Program funded technical assistance as part of Connecticut's Health Impact Assessment project. | Photo courtesy of Weatherization Assistance Program Technical

  3. Response to Weatherization Questions | Department of Energy

    Energy Savers [EERE]

    Response to Weatherization Questions Response to Weatherization Questions August 30, 2010 - 4:53pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Last week as part of Vice President Biden's announcement of 200,000 homes weatherized under the Recovery act, we asked you to send us your questions and comments about the weatherization process. Today, we're following up with answers experts from the Department's Weatherization and Intergovernmental Program: 1) From

  4. Connecticut: Bridgeport Multifamily Weatherization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut: Bridgeport Multifamily Weatherization Connecticut: Bridgeport Multifamily Weatherization November 8, 2013 - 12:00am Addthis EERE's Weatherization Assistance Program weatherized a multifamily facility in Bridgeport, Connecticut, that provides safe housing for individuals, veterans, and the homeless received weatherization; the services performed have saved the facility nearly $7,000 in annual energy costs. Because the state had not yet received an approved multifamily audit, a local

  5. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    SciTech Connect (OSTI)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the model to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.

  6. Bulalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation

    SciTech Connect (OSTI)

    Strobel, Calvin J.

    1993-01-28

    The Bulalo geothermal field, located in Laguna province, Philippines, supplies 12% of the electricity on the island of Luzon. The first 110 MWe power plant was on line May 1979; current 330 MWe (gross) installed capacity was reached in 1984. Since then, the field has operated at an average plant factor of 76%. The National Power Corporation plans to add 40 MWe base load and 40 MWe standby in 1995. A numerical simulation model for the Bulalo field has been created that matches historic pressure changes, enthalpy and steam flash trends and cumulative steam production. Gravity modeling provided independent verification of mass balances and time rate of change of liquid desaturation in the rock matrix. Gravity modeling, in conjunction with reservoir simulation provides a means of predicting matrix dry out and the time to limiting conditions for sustainable levelized steam deliverability and power generation.

  7. A Predictive Model of Fragmentation using Adaptive Mesh Refinement and a Hierarchical Material Model

    SciTech Connect (OSTI)

    Koniges, A E; Masters, N D; Fisher, A C; Anderson, R W; Eder, D C; Benson, D; Kaiser, T B; Gunney, B T; Wang, P; Maddox, B R; Hansen, J F; Kalantar, D H; Dixit, P; Jarmakani, H; Meyers, M A

    2009-03-03

    Fragmentation is a fundamental material process that naturally spans spatial scales from microscopic to macroscopic. We developed a mathematical framework using an innovative combination of hierarchical material modeling (HMM) and adaptive mesh refinement (AMR) to connect the continuum to microstructural regimes. This framework has been implemented in a new multi-physics, multi-scale, 3D simulation code, NIF ALE-AMR. New multi-material volume fraction and interface reconstruction algorithms were developed for this new code, which is leading the world effort in hydrodynamic simulations that combine AMR with ALE (Arbitrary Lagrangian-Eulerian) techniques. The interface reconstruction algorithm is also used to produce fragments following material failure. In general, the material strength and failure models have history vector components that must be advected along with other properties of the mesh during remap stage of the ALE hydrodynamics. The fragmentation models are validated against an electromagnetically driven expanding ring experiment and dedicated laser-based fragmentation experiments conducted at the Jupiter Laser Facility. As part of the exit plan, the NIF ALE-AMR code was applied to a number of fragmentation problems of interest to the National Ignition Facility (NIF). One example shows the added benefit of multi-material ALE-AMR that relaxes the requirement that material boundaries must be along mesh boundaries.

  8. Attic or Roof? An Evaluation of Two Advanced Weatherization Packages

    SciTech Connect (OSTI)

    Neuhauser, Ken

    2012-06-01

    This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

  9. EAC Meeting Cancelled Due to Weather | Department of Energy

    Energy Savers [EERE]

    Cancelled Due to Weather EAC Meeting Cancelled Due to Weather March 5, 2013 - 3:06pm Addthis This week's Electricity Advisory Committee (EAC) meeting has been cancelled due to a strong winter storm which is predicted to impact the Washington DC area on Wednesday. Originally scheduled to be held March 6 and March 7 in Arlington, Virginia, the EAC meeting may possibly be rescheduled for a later date. If the meeting is rescheduled, details will be posted online and will be published in a new

  10. Controlling bimetallic nanostructures by the microemulsion method with subnanometer resolution using a prediction model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buceta, David; Tojo, Concha; Vukmirovic, Miomir B.; Deepak, F. Leonard; Lopez-Quintela, M. Arturo

    2015-06-02

    In this study, we present a theoretical model to predict the atomic structure of Au/Pt nanoparticles synthesized in microemulsions. Excellent concordance with the experimental results shows that the structure of the nanoparticles can be controlled at sub-nanometer resolution simply by changing the reactants concentration. The results of this study not only offer a better understanding of the complex mechanisms governing reactions in microemulsions, but open up a simple new way to synthesize bimetallic nanoparticles with ad-hoc controlled nanostructures.

  11. Threshold Values for Identification of Contamination Predicted by Reduced-Order Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Last, George V.; Murray, Christopher J.; Bott, Yi-Ju; Brown, Christopher F.

    2014-12-31

    The U.S. Department of Energy’s (DOE’s) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts on underground sources of drinking water (USDWs) if CO2 or brine leaks from deep CO2 storage reservoirs. Threshold values, below which there would be no predicted impacts, were determined for portions of two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agency’s Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

  12. Threshold Values for Identification of Contamination Predicted by Reduced-Order Models

    SciTech Connect (OSTI)

    Last, George V.; Murray, Christopher J.; Bott, Yi-Ju; Brown, Christopher F.

    2014-12-31

    The U.S. Department of Energys (DOEs) National Risk Assessment Partnership (NRAP) Project is developing reduced-order models to evaluate potential impacts on underground sources of drinking water (USDWs) if CO2 or brine leaks from deep CO2 storage reservoirs. Threshold values, below which there would be no predicted impacts, were determined for portions of two aquifer systems. These threshold values were calculated using an interwell approach for determining background groundwater concentrations that is an adaptation of methods described in the U.S. Environmental Protection Agencys Unified Guidance for Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities.

  13. Home Weatherization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Homes » Home Weatherization Home Weatherization A home energy audit is the first step to saving energy and money. Our Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting energy. Explore the <a href="/node/714616">full infographic</a> now. A home energy audit is the first step to saving energy and money. Our

  14. ARM - How Do We Predict Future Changes?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Do We Predict Future Changes? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans How Do We Predict Future Changes? As you might imagine, it is very difficult to predict changes and how expansive these changes might be. Imagine yourself as a TV weather person predicting the weather for

  15. NCAR Contribution to A U.S. National Multi-Model Ensemble (NMME) ISI Prediction System

    SciTech Connect (OSTI)

    Tribbia, Joseph

    2015-11-25

    NCAR brought the latest version of the Community Earth System Model (version 1, CESM1) into the mix of models in the NMME effort. This new version uses our newest atmospheric model CAM5 and produces a coupled climate and ENSO that are generally as good or better than those of the Community Climate System Model version 4 (CCSM4). Compared to CCSM4, the new coupled model has a superior climate response with respect to low clouds in both the subtropical stratus regimes and the Arctic. However, CESM1 has been run to date using a prognostic aerosol model that more than doubles its computational cost. We are currently evaluating a version of the new model using prescribed aerosols and expect it will be ready for integrations in summer 2012. Because of this NCAR has not been able to complete the hindcast integrations using the NCAR loosely-coupled ensemble Kalman filter assimilation method nor has it contributed to the current (Stage I) NMME operational utilization. The expectation is that this model will be included in the NMME in late 2012 or early 2013. The initialization method will utilize the Ensemble Kalman Filter Assimilation methods developed at NCAR using the Data Assimilation Research Testbed (DART) in conjunction with Jeff Anderson’s team in CISL. This methodology has been used in our decadal prediction contributions to CMIP5. During the course of this project, NCAR has setup and performed all the needed hindcast and forecast simulations and provide the requested fields to our collaborators. In addition, NCAR researchers have participated fully in research themes (i) and (ii). Specifically, i) we have begun to evaluate and optimize our system in hindcast mode, focusing on the optimal number of ensemble members, methodologies to recalibrate individual dynamical models, and accessing our forecasts across multiple time scales, i.e., beyond two weeks, and ii) we have begun investigation of the role of different ocean initial conditions in seasonal forecasts. The completion of the calibration hindcasts for Seasonal to Interannual (SI) predictions and the maintenance of the data archive associated with the NCAR portion of this effort has been the responsibility of the Project Scientist I (Alicia Karspeck) that was partially supported on this project.

  16. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    SciTech Connect (OSTI)

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would therefore be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a laser altimetry remote sensing method, obtained from the USDA Forest Service at Savannah River Site. The specific DEM resolutions were chosen because they are common grid cell sizes (10m, 30m, and 50m) used in mapping for management applications and in research. The finer resolutions (2m and 5m) were chosen for the purpose of determining how finer resolutions performed compared with coarser resolutions at predicting wetness and related soil attributes. The wetness indices were compared across DEMs and with each other in terms of quantile and distribution differences, then in terms of how well they each correlated with measured soil attributes. Spatial and non-spatial analyses were performed, and predictions using regression and geostatistics were examined for efficacy relative to each DEM resolution. Trends in the raw data and analysis results were also revealed.

  17. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    SciTech Connect (OSTI)

    Singh, Kunwar P. Gupta, Shikha

    2014-03-15

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structuretoxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the constructed (c) DTB and (d) DTF regression models to predict the T. pyriformis toxicity of diverse chemicals. - Highlights: Ensemble learning (EL) based models constructed for toxicity prediction of chemicals Predictive models used a few simple non-quantum mechanical molecular descriptors. EL-based DTB/DTF models successfully discriminated toxic and non-toxic chemicals. DTB/DTF regression models precisely predicted toxicity of chemicals in multi-species. Proposed EL based models can be used as tool to predict toxicity of new chemicals.

  18. Performance of corrosion inhibiting admixtures for structural concrete -- assessment methods and predictive modeling

    SciTech Connect (OSTI)

    Yunovich, M.; Thompson, N.G.

    1998-12-31

    During the past fifteen years corrosion inhibiting admixtures (CIAs) have become increasingly popular for protection of reinforced components of highway bridges and other structures from damage induced by chlorides. However, there remains considerable debate about the benefits of CIAs in concrete. A variety of testing methods to assess the performance of CIA have been reported in the literature, ranging from tests in simulated pore solutions to long-term exposures of concrete slabs. The paper reviews the published techniques and recommends the methods which would make up a comprehensive CIA effectiveness testing program. The results of this set of tests would provide the data which can be used to rank the presently commercially available CIA and future candidate formulations utilizing a proposed predictive model. The model is based on relatively short-term laboratory testing and considers several phases of a service life of a structure (corrosion initiation, corrosion propagation without damage, and damage to the structure).

  19. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    SciTech Connect (OSTI)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li Minghuan [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China)] [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Xu Ting; Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yuan Xianglin [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)] [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yu Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China)] [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy [University of Colorado School of Medicine, Aurora, Colorado (United States)] [University of Colorado School of Medicine, Aurora, Colorado (United States); Martel, Mary [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  20. Bayesian probabilistic model for life prediction and fault mode classification of solid state luminaires

    SciTech Connect (OSTI)

    Lall, Pradeep [Auburn Univ., Auburn, AL (United States); Wei, Junchao [Auburn Univ., Auburn, AL (United States); Sakalaukus, Peter [Auburn Univ., Auburn, AL (United States)

    2014-06-22

    A new method has been developed for assessment of the onset of degradation in solid state luminaires to classify failure mechanisms by using metrics beyond lumen degradation that are currently used for identification of failure. Luminous Flux output, Correlated Color Temperature Data on Philips LED Lamps has been gathered under 85C/85%RH till lamp failure. Failure modes of the test population of the lamps have been studied to understand the failure mechanisms in 85C/85%RH accelerated test. Results indicate that the dominant failure mechanism is the discoloration of the LED encapsulant inside the lamps which is the likely cause for the luminous flux degradation and the color shift. The acquired data has been used in conjunction with Bayesian Probabilistic Models to identify luminaires with onset of degradation much prior to failure through identification of decision boundaries between lamps with accrued damage and lamps beyond the failure threshold in the feature space. In addition luminaires with different failure modes have been classified separately from healthy pristine luminaires. The ?-? plots have been used to evaluate the robustness of the proposed methodology. Results show that the predicted degradation for the lamps tracks the true degradation observed during 85C/85%RH during accelerated life test fairly closely within the 20% confidence bounds. Correlation of model prediction with experimental results indicates that the presented methodology allows the early identification of the onset of failure much prior to development of complete failure distributions and can be used for assessing the damage state of SSLs in fairly large deployments. It is expected that, the new prediction technique will allow the development of failure distributions without testing till L70 life for the manifestation of failure.

  1. Comparison of limited measurements of the OTEC-1 plume with analytical-model predictions

    SciTech Connect (OSTI)

    Paddock, R.A.; Ditmars, J.D.

    1981-07-01

    Ocean Thermal Energy Conversion (OTEC) requires significant amounts of warm surface waters and cold deep waters for power production. Because these waters are returned to the ocean as effluents, their behavior may affect plant operation and impact the environment. The OTEC-1 facility tested 1-MWe heat exchangers aboard the vessel Ocean Energy Converter moored off the island of Hawaii. The warm and cold waters used by the OTEC-1 facility were combined prior to discharge from the vessel to create a mixed discharge condition. A limited field survey of the mixed discharge plume using fluorescent dye as a tracer was conducted on April 11, 1981, as part of the environmental studies at OTEC-1 coordinated by the Marine Sciences Group at Lawrence Berkeley Laboratory. Results of that survey were compared with analytical model predictions of plume behavior. Although the predictions were in general agreement with the results of the plume survey, inherent limitations in the field measurements precluded complete description of the plume or detailed evaluation of the models.

  2. US Department of Energy Weatherization Assistance Program Homes Weatherized by State

    Broader source: Energy.gov (indexed) [DOE]

    Energy Weatherization Assistance Program Homes Weatherized by State Total Homes Weatherized Homes Weatherized with ARRA Funds Total Homes Weatherized Homes Weatherized with ARRA Funds Total Homes Weatherized Homes Weatherized with ARRA Funds Alabama 244 103 472 374 1106 477 Alaska 72 0 99 0 708 0 Arizona 317 17 477 342 1470 359 Arkansas 453 172 453 453 1573 625 California 0 0 12 12 1980 12 Colorado 913 566 1413 803 4666 1369 Connecticut 232 0 253 23 968 23 DC 2 0 0 0 76 0 Delaware 83 0 519 519

  3. Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen

    SciTech Connect (OSTI)

    Kumaran, K.; Babu, V.

    2009-04-15

    In this numerical study, the influence of chemistry models on the predictions of supersonic combustion in a model combustor is investigated. To this end, 3D, compressible, turbulent, reacting flow calculations with a detailed chemistry model (with 37 reactions and 9 species) and the Spalart-Allmaras turbulence model have been carried out. These results are compared with earlier results obtained using single step chemistry. Hydrogen is used as the fuel and three fuel injection schemes, namely, strut, staged (i.e., strut and wall) and wall injection, are considered to evaluate the impact of the chemistry models on the flow field predictions. Predictions of the mass fractions of major species, minor species, dimensionless stagnation temperature, dimensionless static pressure rise and thrust percentage along the combustor length are presented and discussed. Overall performance metrics such as mixing efficiency and combustion efficiency are used to draw inferences on the nature (whether mixing- or kinetic-controlled) and the completeness of the combustion process. The predicted values of the dimensionless wall static pressure are compared with experimental data reported in the literature. The calculations show that multi step chemistry predicts higher and more wide spread heat release than what is predicted by single step chemistry. In addition, it is also shown that multi step chemistry predicts intricate details of the combustion process such as the ignition distance and induction distance. (author)

  4. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities*

    SciTech Connect (OSTI)

    Valerio, Luis G.; Cross, Kevin P.

    2012-05-01

    Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structureactivity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describe the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ? We characterize a new in silico model to predict mutagenicity of drug impurities. ? The model predicts Salmonella mutagenicity and will be useful for safety assessment. ? We examine toxicity fingerprints and toxicophores of this Ames assay model. ? We compare these attributes to those found in drug impurities known to FDA/CDER. ? We validate the model and find it has a desired predictive performance.

  5. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume III. Model predictions and results

    SciTech Connect (OSTI)

    Louis, J.F.; Tung, S.E.

    1980-10-01

    This document is the third of a seven volume series of our Phase II Final Report. This volume deals with parametric studies carried out using the FBC model. A comparison with available pilot plant data is included where such data are available. This volume in essence documents model performance; describing predictions on bubble growth, combustion characteristics, sulfur capture, heat transfer and related parameters. The model has approximately forty input variables which are at the disposal of the user. The user has the option to change a few or all of these input variables. In the parametric studies reported here, a large number of input variables whose variation is less critical to the predicted results, were maintained constant at the default values. On the other hand, those parameters whose selection is very important in design and operation of the FBC's were varied in suitable operating regions. The chief among such parameters are: bed temperature, coal feed size distribution (2 parameters), average bed-sorbent size, calcium to sulfur molar ratio, superficial velocity, excess air fraction, and bed weight (or bed height). The computations for obtaining the parametric relationships are based upon selection of a geometrical design for the combustor. Bed cross-section is 6' x 6', bed height is 4', and the freeboard height is 16'. The heat transfer tubes have 2'' OD, a pitch of 10'', and are located on an equilateral triangle pattern. The air distributor is a perforated plate with 0.1'' diameter holes on a rectangular grid with 0.75'' center-to-center spacing.

  6. Model Predictive Control of HVAC Systems: Implementation and Testing at the University of California, Merced

    SciTech Connect (OSTI)

    Haves, Phillip; Hencey, Brandon; Borrell, Francesco; Elliot, John; Ma, Yudong; Coffey, Brian; Bengea, Sorin; Wetter, Michael

    2010-06-29

    A Model Predictive Control algorithm was developed for the UC Merced campus chilled water plant. Model predictive control (MPC) is an advanced control technology that has proven successful in the chemical process industry and other industries. The main goal of the research was to demonstrate the practical and commercial viability of MPC for optimization of building energy systems. The control algorithms were developed and implemented in MATLAB, allowing for rapid development, performance, and robustness assessment. The UC Merced chilled water plant includes three water-cooled chillers and a two million gallon chilled water storage tank. The tank is charged during the night to minimize on-peak electricity consumption and take advantage of the lower ambient wet bulb temperature. The control algorithms determined the optimal chilled water plant operation including chilled water supply (CHWS) temperature set-point, condenser water supply (CWS) temperature set-point and the charging start and stop times to minimize a cost function that includes energy consumption and peak electrical demand over a 3-day prediction horizon. A detailed model of the chilled water plant and simplified models of the buildings served by the plant were developed using the equation-based modeling language Modelica. Steady state models of the chillers, cooling towers and pumps were developed, based on manufacturers performance data, and calibrated using measured data collected and archived by the control system. A detailed dynamic model of the chilled water storage tank was also developed and calibrated. Simple, semi-empirical models were developed to predict the temperature and flow rate of the chilled water returning to the plant from the buildings. These models were then combined and simplified for use in a model predictive control algorithm that determines the optimal chiller start and stop times and set-points for the condenser water temperature and the chilled water supply temperature. The report describes the development and testing of the algorithm and evaluates the resulting performance, concluding with a discussion of next steps in further research. The experimental results show a small improvement in COP over the baseline policy but it is difficult to draw any strong conclusions about the energy savings potential for MPC with this system only four days of suitable experimental data were obtained once correct operation of the MPC system had been achieved. These data show an improvement in COP of 3.1% {+-} 2.2% relative to a baseline established immediately prior to the period when the MPC was run in its final form. This baseline includes control policy improvements that the plant operators learned by observing the earlier implementations of MPC, including increasing the temperature of the water supplied to the chiller condensers from the cooling towers. The process of data collection and model development, necessary for any MPC project, resulted in the team uncovering various problems with the chilled water system. Although it is difficult to quantify the energy savings resulting from these problems being remedied, they were likely on the same order as the energy savings from the MPC itself. Although the types of problems uncovered and the level of energy savings may differ significantly from other projects, some of the benefits of detecting and diagnosing problems are expected from the use of MPC for any chilled water plant. The degree of chiller loading was found to be a key factor for efficiency. It is more efficient to operate the chillers at or near full load. In order to maximize the chiller load, one would maximize the temperature difference across chillers and the chilled water flow rate through the chillers. Thus, the CHWS set-point and the chilled water flow-rate can be used to limit the chiller loading to prevent chiller surging. Since the flow rate has an upper bound and the CHWS set point has a lower bound, the chiller loading is constrained and often determined by the chilled water return temperature (CHWR). The CHWR temperature

  7. Los Alamos Space Weather Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Non-U.S Citizens Mentors, Projects Lectures Papers, Reports Photos NSEC IGPPS Space Weather Summer School Los Alamos Space Weather Summer School June 6 - July 29, 2016...

  8. Funding Opportunity Announcement: Weatherization Innovation Pilot Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program Funding Opportunity Announcement DE-FOA-00000309 dealing with the Weatherization Innovation Pilot Program.

  9. New Jersey Training Workers to Weatherize Homes

    Broader source: Energy.gov [DOE]

    New Jersey is training an army of weatherization workers as the state surges ahead with plans to weatherize 13,000 homes, shrinking bills for low-income residents and creating hundreds of jobs.

  10. More Weatherized Homes for Minnesota Tribe

    Broader source: Energy.gov [DOE]

    Weatherization crews across Minnesota are busy replacing old furnaces, sealing air leaks, and weathering stripped doors for people who are at or below 200 percent of the federal poverty line, with priority given to households with elderly or disabled people.

  11. Weatherization Saves Families Energy and Money

    Broader source: Energy.gov [DOE]

    On October 30, communities throughout the nation will celebrate National Weatherization Day, which recognizes an industry of weatherization service providers, state and local agencies, and researchers dedicated to improving the energy efficiency of...

  12. Weather - Local Information - Radiation Effects Facility / Cyclotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Weather in College Station can vary from hot and humid in the summer to cool and dry in the winter. The average high for january is 60 degrees while the average low is 40...

  13. Global warming and climate change - predictive models for temperate and tropical regions

    SciTech Connect (OSTI)

    Malini, B.H.

    1997-12-31

    Based on the assumption of 4{degree}C increase of global temperature by the turn of 21st century due to the accumulation of greenhouse gases an attempt is made to study the possible variations in different climatic regimes. The predictive climatic water balance model for Hokkaido island of Japan (a temperate zone) indicates the possible occurrence of water deficit for two to three months, which is a unknown phenomenon in this region at present. Similarly, India which represents tropical region also will experience much drier climates with increased water deficit conditions. As a consequence, the thermal region of Hokkaido which at present is mostly Tundra and Micro thermal will change into a Meso thermal category. Similarly, the moisture regime which at present supports per humid (A2, A3 and A4) and Humid (B4) climates can support A1, B4, B3, B2 and B1 climates indicating a shift towards drier side of the climatic spectrum. Further, the predictive modes of both the regions have indicated increased evapotranspiration rates. Although there is not much of change in the overall thermal characteristics of the Indian region the moisture regime indicates a clear shift towards the aridity in the country.

  14. ORNL Weatherization Program Evaluation | Open Energy Information

    Open Energy Info (EERE)

    Weatherization Program Evaluation AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings Topics: Policiesdeployment programs Website:...

  15. Mississippi Agency Weatherizing Homes, Creating Jobs

    Broader source: Energy.gov [DOE]

    One Mississippi Community Action Agency has already doubled their output for weatherized homes from the previous year.

  16. Ohio Celebrates Recovery Act Weatherization Program Performance |

    Energy Savers [EERE]

    Department of Energy Ohio Celebrates Recovery Act Weatherization Program Performance Ohio Celebrates Recovery Act Weatherization Program Performance June 10, 2010 - 12:41pm Addthis Ohio Celebrates Recovery Act Weatherization Program Performance Joshua DeLung What are the key facts? More than 10,000 Ohio homes have been weatherized, making the state one of the national leaders in helping income-eligible families become more energy-efficient. Ohio has reached a milestone in the clean energy

  17. Weatherization Program Notice 12-1

    Broader source: Energy.gov (indexed) [DOE]

    WEATHERIZATION PROGRAM NOTICE 12-1 EFFECTIVE DATE: January 31, 2012 SUBJECT: PROGRAM YEAR 2012 WEATHERIZATION GRANT GUIDANCE PURPOSE: To issue grant guidance and management information for the Weatherization Assistance Program (Weatherization or WAP) for Program Year (PY) 2012. SCOPE: The provisions of this guidance apply to Grantees or other entities named in the Notification of Grant Award as the recipient(s) of financial assistance under the Department of Energy (DOE) WAP. LEGAL AUTHORITY:

  18. Weatherization and Intergovernmental Program Success Stories | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy About the Office » Weatherization and Intergovernmental Program Success Stories Weatherization and Intergovernmental Program Success Stories RSS U.S. Department of Energy (DOE) Weatherization and Intergovernmental Programs Office (WIP) success stories are listed below by program. Energy Efficiency and Conservation Block Grant Program State Energy Program Weatherization Assistance Program. You can also read all WIP success stories below. August 12, 2015 Paul Thomsen, Director of

  19. New Hampshire Weatherization Gets a Funding Boost

    Broader source: Energy.gov [DOE]

    Nonprofit weatherization program makes rapid changes to utilize Recovery Act funds and help residents lower energy costs.

  20. Development of a model for predicting transient hydrogen venting in 55-gallon drums

    SciTech Connect (OSTI)

    Apperson, Jason W; Clemmons, James S; Garcia, Michael D; Sur, John C; Zhang, Duan Z; Romero, Michael J

    2008-01-01

    Remote drum venting was performed on a population of unvented high activity drums (HAD) in the range of 63 to 435 plutonium equivalent Curies (PEC). These 55-gallon Transuranic (TRU) drums will eventually be shipped to the Waste Isolation Pilot Plant (WIPP). As a part of this process, the development of a calculational model was required to predict the transient hydrogen concentration response of the head space and polyethylene liner (if present) within the 55-gallon drum. The drum and liner were vented using a Remote Drum Venting System (RDVS) that provided a vent sampling path for measuring flammable hydrogen vapor concentrations and allow hydrogen to diffuse below lower flammability limit (LFL) concentrations. One key application of the model was to determine the transient behavior of hydrogen in the head space, within the liner, and the sensitivity to the number of holes made in the liner or number of filters. First-order differential mass transport equations were solved using Laplace transformations and numerically to verify the results. the Mathematica 6.0 computing tool was also used as a validation tool and for examining larger than two chamber systems. Results will be shown for a variety of configurations, including 85-gallon and 110-gallon overpack drums. The model was also validated against hydrogen vapor concentration assay measurements.

  1. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    SciTech Connect (OSTI)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.

    2013-01-07

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.

  2. Model Predictive Control-based Optimal Coordination of Distributed Energy Resources

    SciTech Connect (OSTI)

    Mayhorn, Ebony T.; Kalsi, Karanjit; Lian, Jianming; Elizondo, Marcelo A.

    2013-04-03

    Distributed energy resources, such as renewable energy resources (wind, solar), energy storage and demand response, can be used to complement conventional generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging, especially in isolated systems. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation performance. The goals of the optimization problem are to minimize fuel costs and maximize the utilization of wind while considering equipment life of generators and energy storage. Model predictive control (MPC) is used to solve a look-ahead dispatch optimization problem and the performance is compared to an open loop look-ahead dispatch problem. Simulation studies are performed to demonstrate the efficacy of the closed loop MPC in compensating for uncertainties and variability caused in the system.

  3. Models for prediction of temperature difference and ventilation effectiveness with displacement ventilation

    SciTech Connect (OSTI)

    Yuan, X.; Chen, Q.; Glicksman, L.R.

    1999-07-01

    Displacement ventilation may provide better indoor air quality than mixing ventilation. Proper design of displacement ventilation requires information concerning the air temperature difference between the head and foot level of a sedentary person and the ventilation effectiveness at the breathing level. This paper presents models to predict the air temperature difference and the ventilation effectiveness, based on a database of 56 cases with displacement ventilation. The database was generated by using a validated CFD program and covers four different types of US buildings: small offices, large offices with partitions, classrooms, and industrial workshops under different thermal and flow boundary conditions. Both the maximum cooling load that can be removed by displacement ventilation and the ventilation effectiveness are shown to depend on the heat source type and ventilation rate in a room.

  4. Model predictive control system and method for integrated gasification combined cycle power generation

    DOE Patents [OSTI]

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  5. Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1)

    SciTech Connect (OSTI)

    Watney, W.L.

    1992-01-01

    Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to link the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.

  6. Simplified predictive models for CO2 sequestration performance assessment

    SciTech Connect (OSTI)

    Mishra, Srikanta; Ganesh, Priya; Schuetter, Jared; He, Jincong; Jin, Zhaoyang; Durlofsky, Louis J.

    2015-09-30

    CO2 sequestration in deep saline formations is increasingly being considered as a viable strategy for the mitigation of greenhouse gas emissions from anthropogenic sources. In this context, detailed numerical simulation based models are routinely used to understand key processes and parameters affecting pressure propagation and buoyant plume migration following CO2 injection into the subsurface. As these models are data and computation intensive, the development of computationally-efficient alternatives to conventional numerical simulators has become an active area of research. Such simplified models can be valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic system assessment modeling tools, and assist regulators in quickly evaluating geological storage projects. We present three strategies for the development and validation of simplified modeling approaches for CO2 sequestration in deep saline formations: (1) simplified physics-based modeling, (2) statisticallearning based modeling, and (3) reduced-order method based modeling. In the first category, a set of full-physics compositional simulations is used to develop correlations for dimensionless injectivity as a function of the slope of the CO2 fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Furthermore, the dimensionless average pressure buildup after the onset of boundary effects can be correlated to dimensionless time, CO2 plume footprint, and storativity contrast between the reservoir and caprock. In the second category, statistical “proxy models” are developed using the simulation domain described previously with two approaches: (a) classical Box-Behnken experimental design with a quadratic response surface, and (b) maximin Latin Hypercube sampling (LHS) based design with a multidimensional kriging metamodel fit. For roughly the same number of simulations, the LHS-based metamodel yields a more robust predictive model, as verified by a k-fold cross-validation approach (with data split into training and test sets) as well by validation with an independent dataset. In the third category, a reduced-order modeling procedure is utilized that combines proper orthogonal decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization (TPWL) in order to represent system response at new control settings from a limited number of training runs. Significant savings in computational time are observed with reasonable accuracy from the PODTPWL reduced-order model for both vertical and horizontal well problems – which could be important in the context of history matching, uncertainty quantification and optimization problems. The simplified physics and statistical learning based models are also validated using an uncertainty analysis framework. Reference cumulative distribution functions of key model outcomes (i.e., plume radius and reservoir pressure buildup) generated using a 97-run full-physics simulation are successfully validated against the CDF from 10,000 sample probabilistic simulations using the simplified models. The main contribution of this research project is the development and validation of a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formations.

  7. WEATHERIZATION ANNUAL FILE WORKSHEET | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Form is designed to gather specific detail related to the expenditures of the Weatherization grant. PDF icon WEATHERIZATION ANNUAL FILE WORKSHEET More Documents & Publications DOE F 540.3 DOE F 540.5 WPN 12-1: Program Year 2012 Weatherization Grant Guidance

  8. Multifamily Weatherization Frequently Asked Questions

    Energy Savers [EERE]

    Multifamily Weatherization Frequently Asked Questions 1. How do Grantees define a multifamily building? It depends. There is not one all-encompassing definition for multifamily buildings and how they are addressed within WAP. There are nuances related to multifamily eligibility, multifamily auditing, and multifamily reporting that each carry their own definitions.  Eligibility: In order to be eligible for WAP funding, one of the following must be true: o At least 50% of the residential units

  9. Predictive Treatment Management: Incorporating a Predictive Tumor Response Model Into Robust Prospective Treatment Planning for Non-Small Cell Lung Cancer

    SciTech Connect (OSTI)

    Zhang, Pengpeng; Yorke, Ellen; Hu, Yu-Chi; Mageras, Gig; Rimner, Andreas; Deasy, Joseph O.

    2014-02-01

    Purpose: We hypothesized that a treatment planning technique that incorporates predicted lung tumor regression into optimization, predictive treatment planning (PTP), could allow dose escalation to the residual tumor while maintaining coverage of the initial target without increasing dose to surrounding organs at risk (OARs). Methods and Materials: We created a model to estimate the geometric presence of residual tumors after radiation therapy using planning computed tomography (CT) and weekly cone beam CT scans of 5 lung cancer patients. For planning purposes, we modeled the dynamic process of tumor shrinkage by morphing the original planning target volume (PTV{sub orig}) in 3 equispaced steps to the predicted residue (PTV{sub pred}). Patients were treated with a uniform prescription dose to PTV{sub orig}. By contrast, PTP optimization started with the same prescription dose to PTV{sub orig} but linearly increased the dose at each step, until reaching the highest dose achievable to PTV{sub pred} consistent with OAR limits. This method is compared with midcourse adaptive replanning. Results: Initial parenchymal gross tumor volume (GTV) ranged from 3.6 to 186.5 cm{sup 3}. On average, the primary GTV and PTV decreased by 39% and 27%, respectively, at the end of treatment. The PTP approach gave PTV{sub orig} at least the prescription dose, and it increased the mean dose of the true residual tumor by an average of 6.0 Gy above the adaptive approach. Conclusions: PTP, incorporating a tumor regression model from the start, represents a new approach to increase tumor dose without increasing toxicities, and reduce clinical workload compared with the adaptive approach, although model verification using per-patient midcourse imaging would be prudent.

  10. Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.

    2013-08-01

    Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

  11. Weatherization Innovation Pilot Program: Program Overview and Philadelphia Project Highlight (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    Case Study with WIPP program overview, information regarding eligibility, and successes from Pennsylvania's Commission on Economic Opportunity (CEO) that demonstrate innovative approaches that maximize the benefit of the program. The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) recently launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of homes of low-income families. Since 2010, WIPP has helped weatherization service providers as well as new and nontraditional partners leverage non-federal financial resources to supplement federal grants, saving taxpayer money. WIPP complements the Weatherization Assistance program (WAP), which operates nation-wide, in U.S. territories and in three Native American tribes. 16 grantees are implementing weatherization innovation projects using experimental approaches to find new and better ways to weatherize homes. They are using approaches such as: (1) Financial tools - by understanding a diverse range of financing mechanisms, grantees can maximize the impact of the federal grant dollars while providing high-quality work and benefits to eligible low-income clients; (2) Green and healthy homes - in addition to helping families reduce their energy costs, grantees can protect their health and safety. Two WIPP projects (Connecticut and Maryland) will augment standard weatherization services with a comprehensive green and healthy homes approach; (3) New technologies and techniques - following the model of continuous improvement in weatherization, WIPP grantees will continue to use new and better technologies and techniques to improve the quality of work; (4) Residential energy behavior change - Two grantees are rigorously testing home energy monitors (HEMs) that display energy used in kilowatt-hours, allowing residents to monitor and reduce their energy use, and another is examining best-practices for mobile home energy efficiency; (5) Workforce development and volunteers - with a goal of creating a self-sustaining weatherization model that does not require future federal investment, three grantees are adapting business models successful in other sectors of the home performance business to perform weatherization work. Youthbuild is training youth to perform home energy upgrades to eligible clients and Habitat for Humanity is developing a model for how to incorporate volunteer labor in home weatherization. These innovative approaches will improve key weatherization outcomes, such as: Increasing the total number of homes that are weatherized; Reducing the weatherization cost per home; Increasing the energy savings in each weatherized home; Increasing the number of weatherization jobs created and retained; and Reducing greenhouse gas emissions.

  12. Characterization of the Weatherization Assistance Program network. Weatherization Assistance Program

    SciTech Connect (OSTI)

    Mihlmester, P.E.; Koehler, W.C. Jr.; Beyer, M.A.; Brown, M.A.; Beschen, D.A. Jr.

    1992-02-01

    The Characterization of the Weatherization Assistance Program (WAP) Network was designed to describe the national network of State and local agencies that provide WAP services to qualifying low-income households. The objective of this study was to profile the current WAP network. To achieve the objective, two national surveys were conducted: one survey collected data from 49 State WAP agencies (including the coterminous 48 States and the District of Columbia), and the second survey collected data from 920 (or 81 percent) of the local WAP agencies.

  13. REVIEW OF MECHANISTIC UNDERSTANDING AND MODELING AND UNCERTAINTY ANALYSIS METHODS FOR PREDICTING CEMENTITIOUS BARRIER PERFORMANCE

    SciTech Connect (OSTI)

    Langton, C.; Kosson, D.

    2009-11-30

    Cementitious barriers for nuclear applications are one of the primary controls for preventing or limiting radionuclide release into the environment. At the present time, performance and risk assessments do not fully incorporate the effectiveness of engineered barriers because the processes that influence performance are coupled and complicated. Better understanding the behavior of cementitious barriers is necessary to evaluate and improve the design of materials and structures used for radioactive waste containment, life extension of current nuclear facilities, and design of future nuclear facilities, including those needed for nuclear fuel storage and processing, nuclear power production and waste management. The focus of the Cementitious Barriers Partnership (CBP) literature review is to document the current level of knowledge with respect to: (1) mechanisms and processes that directly influence the performance of cementitious materials (2) methodologies for modeling the performance of these mechanisms and processes and (3) approaches to addressing and quantifying uncertainties associated with performance predictions. This will serve as an important reference document for the professional community responsible for the design and performance assessment of cementitious materials in nuclear applications. This review also provides a multi-disciplinary foundation for identification, research, development and demonstration of improvements in conceptual understanding, measurements and performance modeling that would be lead to significant reductions in the uncertainties and improved confidence in the estimating the long-term performance of cementitious materials in nuclear applications. This report identifies: (1) technology gaps that may be filled by the CBP project and also (2) information and computational methods that are in currently being applied in related fields but have not yet been incorporated into performance assessments of cementitious barriers. The various chapters contain both a description of the mechanism or and a discussion of the current approaches to modeling the phenomena.

  14. 200,000 homes weatherized under the Recovery Act

    Broader source: Energy.gov [DOE]

    Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act.

  15. WPN 05-1: Program Year 2005 Weatherization Grant Guidance

    Broader source: Energy.gov [DOE]

    To issue grant guidance and management information for the low-income Weatherization Assistance Program (Weatherization) for Program Year 2005.

  16. U.S. Department of Energy Weatherization Assistance Program Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherized By State through 06/30/2010 (Calendar Year) | Department of Energy Weatherization Assistance Program Homes Weatherized By State through 06/30/2010 (Calendar Year) U.S. Department of Energy Weatherization Assistance Program Homes Weatherized By State through 06/30/2010 (Calendar Year) A chart detailling the number of homes that have been weatherized by state. PDF icon U.S. Department of Energy Weatherization Assistance Program Homes Weatherized By State through 06/30/2010

  17. WIPP Weatherization: Common Errors and Innovative Solutions Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIPP Weatherization: Common Errors and Innovative Solutions Presentation WIPP Weatherization: Common Errors and Innovative Solutions Presentation This presentation contains...

  18. Homes Weatherized by State March 2010 | Department of Energy

    Office of Environmental Management (EM)

    March 2010 Homes Weatherized by State March 2010 Weatherization Assistance Program Homes Weatherized By State through 03/31/2010 PDF icon Homes_Weatherized_by_State_Q1_2010.pdf More Documents & Publications TOTAL ARRA Homes Weatherized thru Q2 2010 8.19.10.xls U.S. Department of Energy Weatherization Assistance Program Homes Weatherized By State through 06/30/2010 (Calendar Year) ARRA Homes Weatherized by Grantee

  19. New Weatherization Training Center Opens in Utah | Department of Energy

    Office of Environmental Management (EM)

    Weatherization Training Center Opens in Utah New Weatherization Training Center Opens in Utah May 25, 2010 - 6:32pm Addthis The Utah weatherization assistance program built a new demonstration house to train weatherization workers. The Intermountain Weatherization Training Center is located in a warehouse in Clearfield, Utah. | Photo courtesy of Intermountain Weatherization Training Center The Utah weatherization assistance program built a new demonstration house to train weatherization workers.

  20. Q&A: Kristen Psaki of WeatherizeDC

    Office of Energy Efficiency and Renewable Energy (EERE)

    Roughly 20 percent of carbon emissions come from inefficient homes. The DC Project says it has found a way to mitigate emissions and create jobs, a winning combination. WeatherizeDC is the non-profits effort to use a community engagement model to help DC residents find green jobs and live a more energy efficient lifestyle.

  1. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect (OSTI)

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie

    2014-09-14

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (?45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 and an overall minimum RMSD of 1.9 from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ? 1.0 C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  2. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models

    SciTech Connect (OSTI)

    Yock, Adam D. Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.

    2014-05-15

    Purpose: The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Methods: Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. Results: In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: ?11.6%23.8%) and 14.6% (range: ?7.3%27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: ?6.8%40.3%) and 13.1% (range: ?1.5%52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: ?11.1%20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. Conclusions: A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.

  3. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    SciTech Connect (OSTI)

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

  4. Using calibrated engineering models to predict energy savings in large-scale geothermal heat pump projects

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.; Thornton, J.W.

    1998-10-01

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  5. Using Calibrated Engineering Models To Predict Energy Savings In Large-Scale Geothermal Heat Pump Projects

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick; Thornton, Jeff W.

    1998-01-01

    Energy savings performance contracting (ESPC) is now receiving greater attention as a means of implementing large-scale energy conservation projects in housing. Opportunities for such projects exist for military housing, federally subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers), to name a few. Accurate prior (to construction) estimates of the energy savings in these projects reduce risk, decrease financing costs, and help avoid post-construction disputes over performance contract baseline adjustments. This paper demonstrates an improved method of estimating energy savings before construction takes place. Using an engineering model calibrated to pre-construction energy-use data collected in the field, this method is able to predict actual energy savings to a high degree of accuracy. This is verified with post-construction energy-use data from a geothermal heat pump ESPC at Fort Polk, Louisiana. This method also allows determination of the relative impact of the various energy conservation measures installed in a comprehensive energy conservation project. As an example, the breakout of savings at Fort Polk for the geothermal heat pumps, desuperheaters, lighting retrofits, and low-flow hot water outlets is provided.

  6. Lattice and off-lattice side chain models of protein folding: Linear time structure prediction better than 86% of optimal

    SciTech Connect (OSTI)

    Hart, W.E.; Istrail, S. [Sandia National Labs., Albuquerque, NM (United States). Algorithms and Discrete Mathematics Dept.

    1996-08-09

    This paper considers the protein structure prediction problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven extremely useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. The authors consider two side chain models: a lattice model that generalizes the HP model (Dill 85) to explicitly represent side chains on the cubic lattice, and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. They describe algorithms for both of these models with mathematically guaranteed error bounds. In particular, the authors describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 865 of optimal in a face centered cubic lattice, and they demonstrate how this provides a 70% performance guarantee for the HP-TSSC model. This is the first algorithm in the literature for off-lattice protein structure prediction that has a rigorous performance guarantee. The analysis of the HP-TSSC model builds off of the work of Dancik and Hannenhalli who have developed a 16/30 approximation algorithm for the HP model on the hexagonal close packed lattice. Further, the analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Karplus et al. concerning the complexity of protein folding models that include side chains.

  7. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    SciTech Connect (OSTI)

    Cassano, John

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  8. Five case studies of multifamily weatherization programs

    SciTech Connect (OSTI)

    Kinney, L; Wilson, T.; Lewis, G.; MacDonald, M.

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  9. Weatherization Assistance Program Quality Work Plan Requirements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quality Work Plan Requirements Weatherization Assistance Program Quality Work Plan Requirements Four square graphic of a document, a conversation bubble, a checkbox and a certification seal. The U.S. Department of Energy's Weatherization Assistance Program (WAP) has introduced a comprehensive Quality Work Plan (QWP) that will establish a benchmark for quality home energy upgrades. This plan defines what is required when federal dollars are used to purchase weatherization

  10. Weather and the Transport of Hazardous Materials

    Office of Environmental Management (EM)

    FHWA R d W h M P FHWA R d W h M P FHWA Road Weather Management Program FHWA Road Weather Management Program " "Weather and the transport of Hazardous Materials" Ray Murphy Office of Technical Services Ray Murphy, Office of Technical Services U.S. DOT - Federal Highway Administration Breako t Session Using Technolog to Dispatch U.S. DOE National Transportation Stakeholder Forum Breakout Session: Using Technology to Dispatch and Monitor Shipments During Adverse Conditions

  11. Los Alamos Space Weather Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Program Details Local Information Apply Application Process Eligibility Criteria General Information for Applicants Information for Non-U.S Citizens Mentors, Projects Lectures Papers, Reports Photos NSEC » CSES » Space Weather Summer School Los Alamos Space Weather Summer School June 6 - July 29, 2016 Contacts Director Misa Cowee Email Administrative Assistant Mary Wubbena Email Request more information Email Los Alamos Space Weather Summer School 4:05 Applications for the 2016

  12. WEATHERIZATION PROGRAM NOTICE 09-1

    Broader source: Energy.gov (indexed) [DOE]

    (8-89) United States Government Department of Energy Memorandum DATE: November 23, 2015 WAP Memorandum 014 REPLY TO ATTN OF: AnnaMaria Garcia, Director Weatherization and Intergovernmental Program Office SUBJECT: Multifamily and Rental Draft WPN Request for Comment TO: Weatherization Assistance Program (WAP) Network This memo serves as an opportunity for WAP Grantees to review and provide comment on two draft Weatherization Program Notices (WPNs) developed by the Department of Energy (DOE). The

  13. Weatherization Assistance Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Weatherization Assistance Program The U.S. Department of Energy (DOE) Weatherization Assistance Program provides grants to states, territories, and some Indian tribes to improve the energy efficiency of the homes of low-income families. These governments, in turn, contract with local governments and nonprofit agencies to provide weatherization services to those in need using the latest technologies for home energy upgrades. Since the program began in 1976, DOE has helped improve the

  14. Weatherization and Intergovernmental Program Contacts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy You are here Home » About the Office » Weatherization and Intergovernmental Program Contacts Weatherization and Intergovernmental Program Contacts For information about how the Weatherization and Intergovernmental Programs Office is organized, see the organization chart. You can contact the office by email or via postal delivery at: U.S. Department of Energy Energy Efficiency and Renewable Energy 1000 Independence Ave, SW, Mail Stop EE-2K U.S. Department of Energy Washington, DC

  15. Combining Traditional Cyber Security Audit Data with Psychosocial Data: Towards Predictive Modeling for Insider Threat Mitigation

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Frincke, Deborah A.

    2010-09-01

    The purpose of this chapter is to motivate the combination of traditional cyber security audit data with psychosocial data, so as to move from an insider threat detection stance to one that enables prediction of potential insider presence. Two distinctive aspects of the approach are the objective of predicting or anticipating potential risks and the use of organizational data in addition to cyber data to support the analysis. The chapter describes the challenges of this endeavor and progress in defining a usable set of predictive indicators, developing a framework for integrating the analysis of organizational and cyber security data to yield predictions about possible insider exploits, and developing the knowledge base and reasoning capability of the system. We also outline the types of errors that one expects in a predictive system versus a detection system and discuss how those errors can affect the usefulness of the results.

  16. Chelan County PUD- Residential Weatherization Rebate Program

    Broader source: Energy.gov [DOE]

    Chelan County PUD offers cash rebates to residential customers who make energy efficient weatherization improvements to eligible homes. Eligible measures include efficient windows doors as well as...

  17. Extreme Weather Events and Climate Change

    Broader source: Energy.gov [DOE]

    The presentation will review known variability in extreme weather such as excessive heat, cold waves, floods, droughts, hurricanes, severe thunderstorms and tornadoes. Projections and uncertainties...

  18. Weatherization Assistance Available at Florida Pie Shop

    Broader source: Energy.gov [DOE]

    Pie in the Sky, a seemingly simple store that offers customers fresh-baked desserts, is providing a second treat: weatherization.

  19. Working With Weatherization Assistance Programs | Department...

    Energy Savers [EERE]

    Assistance Programs Working With Weatherization Assistance Programs Better Buildings Low Income Peer Exchange Call Featuring: Case study on integration of income-qualified...

  20. Weatherization Assistance Program (WAP) Closeout Frequently Asked...

    Energy Savers [EERE]

    asked questions in regards to the Weatherization Assistance Program (WAP) Closeout procedures. PDF icon wapcloseoutfaqs.pdf More Documents & Publications WPN 12-3: Closeout...

  1. Lane Electric Cooperative - Residential and Commercial Weatherization...

    Broader source: Energy.gov (indexed) [DOE]

    Washer: 75 Solar Water Heater: 500 Summary Lane Electric Cooperative offers energy efficient Weatherization Grant Programs to Lane Electric residential and commercial members: a...

  2. Weatherization and Intergovernmental Programs Office Events ...

    Broader source: Energy.gov (indexed) [DOE]

    The Weatherization and Intergovernmental Programs Office (WIP) hosts trainings and facilitates peer exchange for state, local, tribal, and K-12 school district leaders. Find...

  3. Maine Company Growing with Weatherization Work

    Broader source: Energy.gov [DOE]

    Maine's BIOSAFE Environmental Services expands into weatherization, assisting low-income families with their services and creating jobs as business grows.

  4. Update on Progress: Weatherization and Intergovernmental Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Weatherization Assistance Program 12 Advanced Batteries in Wisconsin: ZBB Energy 1.3 MM from State Energy Program Tripling flow battery manufacturing capacity 10 jobs retained, 80 ...

  5. Weatherization Assistance Program: Spurring Innovation, Increasing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has helped spur innovation in residential energy efficiency and a national network of weatherization professionals is helping expand long-term technical and policy resources that ...

  6. WEATHERIZATION PROGRAM NOTICE 09-1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Weatherization Assistance Program Grantees and Subgrantees dated January 27, 1984. DOE appreciates your attention to these notices and asks the network to provide ...

  7. Incorporating Weather Data into Energy Savings Calculations

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Incorporating Weather Data into Energy Savings Calculations, Call Slides and Discussion Summary, February 26, 2015.

  8. Connecticut's Health Impact Study Rapidly Increasing Weatherization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The projects will study the impact of asthma-related and fall-prevention measures on the process of delivering weatherization services. Recognizing the potential success of the ...

  9. Weatherization and Intergovernmental Program Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    820946 Weatherization and Intergovernmental Program Success Stories en SEP Success Story: Energy Department Supporting Nevada's Effort to Increase Electric Vehicle Infrastructure...

  10. Weatherization Assistance Program | Open Energy Information

    Open Energy Info (EERE)

    Program Place: Washington, DC Website: http: References: Weatherization Assistance Program1 Information About Partnership with NREL Partnership with NREL Yes Partnership...

  11. Idahos Weatherization Assistance Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for each unit prioritized to receive weatherization services. PY 14 Participant Demographics Elderly Disabled Children under 6 PY 14 Participant Resident Status Homeowner...

  12. Saratoga County Economic Opportunity Council, Inc. - Weatherization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Recovery Act was enacted to promote economic prosperity through job creation and ... RECOMMENDATION As part of its responsibilities for managing the Weatherization Program, we ...

  13. Training Program Graduates Weatherization-Ready Workers

    Broader source: Energy.gov [DOE]

    Graduates of Human Capital Development Corporation's (HCDC) First Choice Program aren't just trained in areas of construction, they also can tackle home weatherization services.

  14. Weatherization Innovation Pilot Program Fact Sheet - Philadelphia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philadelphia Success Story Weatherization Innovation Pilot Program Fact Sheet - Philadelphia Success Story Case Study with WIPP program overview, information regarding eligibility,...

  15. Weatherization and Energy Efficiency Success Stories

    Broader source: Energy.gov [DOE]

    Last Friday was National Weatherization Day, which brought attention to the cost-saving and environmental benefits of a number of energy efficiency methods.

  16. A sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory.

    SciTech Connect (OSTI)

    Johnson, J. D.; Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ); Storlie, Curtis B. (North Carolina State University, Raleigh, NC)

    2006-10-01

    Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and hence appeal, of evidence theory is that it allows a less restrictive specification of uncertainty than is possible within the axiomatic structure on which probability theory is based. Unfortunately, the propagation of an evidence theory representation for uncertainty through a model is more computationally demanding than the propagation of a probabilistic representation for uncertainty, with this difficulty constituting a serious obstacle to the use of evidence theory in the representation of uncertainty in predictions obtained from computationally intensive models. This presentation describes and illustrates a sampling-based computational strategy for the representation of epistemic uncertainty in model predictions with evidence theory. Preliminary trials indicate that the presented strategy can be used to propagate uncertainty representations based on evidence theory in analysis situations where naive sampling-based (i.e., unsophisticated Monte Carlo) procedures are impracticable due to computational cost.

  17. Weatherization Grows in the Green Mountain State (Vermont): Weatherization Assistance Close-Up Fact Sheet

    SciTech Connect (OSTI)

    D&R International

    2001-10-10

    Vermont demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  18. Weatherization Keeps Washington Green: Weatherization Assistance Close-Up Fact Sheet

    SciTech Connect (OSTI)

    D&R International

    2001-10-10

    Washington demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  19. Frosty Conditions Catalyze Weatherization Solutions: Maine Weatherization Assistance Close-Up Fact Sheet

    SciTech Connect (OSTI)

    D&R International

    2001-10-10

    Maine demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  20. U.S. Department of Energy Weatherization Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Weatherization Assistance Program Homes Weatherized By State through 03/31/2010 (Calendar Year) *State Total Number of Homes Weatherized 2009 Calendar Year Number of Homes Weatherized in 1st Quarter 2010 Total Number Homes Weatherized through March 2010 Total Number of Homes Weatherized through March 2010 (Calendar Year 2009 - March 2010) ***January 2010 February 2010 March 2010 **Breakdown of Homes Weatherized in 1st Quarter 2010 (Jan-Mar) [Recovery Act] 2009 Calendar Year [Recovery Act] 1st

  1. Where to Apply for Weatherization Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home » Weatherization Assistance Program » Where to Apply for Weatherization Assistance Where to Apply for Weatherization Assistance To apply for weatherization assistance you need to contact your state weatherization agency. The U.S. Department of Energy (DOE) does not provide weatherization services or services of any kind to individuals. DOE also does not process applications-this process is handled by each state. How to Determine if You Are Eligible for Weatherization

  2. Squeezing of particle distributions by expanding magnetic turbulence and space weather variability

    SciTech Connect (OSTI)

    Ruffolo, D.; Seripienlert, A.; Tooprakai, P.; Chuychai, P.; Matthaeus, W. H. E-mail: achara.ser@mahidol.ac.th E-mail: p.chuychai@sci.mfu.ac.th

    2013-12-10

    Among the space weather effects due to gradual solar storms, greatly enhanced high-energy ion fluxes contribute to radiation damage to satellites, spacecraft, and astronauts and dominate the hazards to air travelers, which motivates examination of the transport of high-energy solar ions to Earth's orbit. Ions of low kinetic energy (up to ?2 MeV nucleon{sup 1}) from impulsive solar events exhibit abrupt changes due to filamentation of the magnetic connection from the Sun, indicating that anisotropic, field-aligned magnetic flux tubelike structures persist to Earth's orbit. By employing a corresponding spherical two-component model of Alfvnic (slab) and two-dimensional magnetic fluctuations to trace simulated trajectories in the solar wind, we show that the distribution of high-energy (E ? 1 GeV) protons from gradual solar events is squeezed toward magnetic flux structures with a specific polarity because of the conical shape of the flux structures. Conical flux structures and the squeezing of energetic particle distributions should occur in any astrophysical wind or jet with expanding, magnetized, turbulent plasma. This transport phenomenon contributes to event-to-event variability in ground level enhancements of GeV-range ions from solar storms, presenting a fundamental uncertainty in space weather prediction.

  3. Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales

    SciTech Connect (OSTI)

    Clement, T Prabhakar; Barnett, Mark O; Zheng, Chunmiao; Jones, Norman L

    2010-05-05

    DE-FG02-06ER64213: Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales Investigators: T. Prabhakar Clement (PD/PI) and Mark O. Barnett (Auburn), Chunmiao Zheng (Univ. of Alabama), and Norman L. Jones (BYU). The objective of this project was to develop scalable modeling approaches for predicting the reactive transport of metal contaminants. We studied two contaminants, a radioactive cation [U(VI)] and a metal(loid) oxyanion system [As(III/V)], and investigated their interactions with two types of subsurface materials, iron and manganese oxyhydroxides. We also developed modeling methods for describing the experimental results. Overall, the project supported 25 researchers at three universities. Produced 15 journal articles, 3 book chapters, 6 PhD dissertations and 6 MS theses. Three key journal articles are: 1) Jeppu et al., A scalable surface complexation modeling framework for predicting arsenate adsorption on goethite-coated sands, Environ. Eng. Sci., 27(2): 147-158, 2010. 2) Loganathan et al., Scaling of adsorption reactions: U(VI) experiments and modeling, Applied Geochemistry, 24 (11), 2051-2060, 2009. 3) Phillippi, et al., Theoretical solid/solution ratio effects on adsorption and transport: uranium (VI) and carbonate, Soil Sci. Soci. of America, 71:329-335, 2007

  4. Model-Predictive Cascade Mitigation in Electric Power Systems With Storage and Renewables-Part I: Theory and Implementation

    SciTech Connect (OSTI)

    Almassalkhi, MR; Hiskens, IA

    2015-01-01

    A novel model predictive control (MPC) scheme is developed for mitigating the effects of severe line-overload disturbances in electrical power systems. A piece-wise linear convex approximation of line losses is employed to model the effect of transmission line power flow on conductor temperatures. Control is achieved through a receding-horizon model predictive control (MPC) strategy which alleviates line temperature overloads and thereby prevents the propagation of outages. The MPC strategy adjusts line flows by rescheduling generation, energy storage and controllable load, while taking into account ramp-rate limits and network limitations. In Part II of this paper, the MPC strategy is illustrated through simulation of the IEEE RTS-96 network, augmented to incorporate energy storage and renewable generation.

  5. Weatherization and Intergovernmental Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Activities Annual Performance Results and Targets FY 2008 Congressional Budget Microsoft Office document icon weatherization_and_intergovern_joule_results_fy08.doc More Documents & Publications EERE FY 2008-2012 Budget: Weatherization and Intergovernmental Program Industrial Technologies Funding Profile by Subprogram FY 2007 Annual Performance Report

  6. EnergyPlus Weather Data for use with EnergyPlus Simulation Software

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    EnergyPlus is simulation software from DOE's Office of Energy Efficiency and Renewable Energy (EE) that models heating, cooling, lighting, ventilating, and other energy flows as well as water in buildings. Because the environment surrounding any building is an important component of the energy choices that go into the building's design and the energy performance of that building thereafter, weather data from all parts of the world are made available through the EnergyPlus web site. The data are collected from more than 2100 locations — 1042 locations in the USA, 71 locations in Canada, and more than 1000 locations in 100 other countries throughout the world. The weather data are arranged by World Meteorological Organization region and Country. In addition to using the weather data via the utility installed automatically with EnergyPlus software, users may view and download EnergyPlus weather data directly using a weather data layer for Google Earth.

  7. EnergyPlus Weather Data for use with EnergyPlus Simulation Software

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    EnergyPlus is simulation software from DOE's Office of Energy Efficiency and Renewable Energy (EE) that models heating, cooling, lighting, ventilating, and other energy flows as well as water in buildings. Because the environment surrounding any building is an important component of the energy choices that go into the building's design and the energy performance of that building thereafter, weather data from all parts of the world are made available through the EnergyPlus web site. The data are collected from more than 2100 locations 1042 locations in the USA, 71 locations in Canada, and more than 1000 locations in 100 other countries throughout the world. The weather data are arranged by World Meteorological Organization region and Country. In addition to using the weather data via the utility installed automatically with EnergyPlus software, users may view and download EnergyPlus weather data directly using a weather data layer for Google Earth.

  8. Office of Weatherization and Intergovernmental Programs (OWIP) | Department

    Energy Savers [EERE]

    of Energy Office of Weatherization and Intergovernmental Programs (OWIP) Office of Weatherization and Intergovernmental Programs (OWIP) information about OWIP PDF icon Office of Weatherization and Intergovernmental Programs (OWIP) More Documents & Publications WPN 10-11: National Evaluation of the Weatherization Assistance Program Re: Office of Weatherization and Intergovernmental Programs (OWIP) ACHP Letter to Energy Secretary Steven Chu on February 5, 2010

  9. Elevated carbon dioxide is predicted to promote coexistence among competing species in a trait-based model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ali, Ashehad A.; Medlyn, Belinda E.; Aubier, Thomas G.; Crous, Kristine Y.; Reich, Peter B.

    2015-10-06

    Differential species responses to atmospheric CO2 concentration (Ca) could lead to quantitative changes in competition among species and community composition, with flow-on effects for ecosystem function. However, there has been little theoretical analysis of how elevated Ca (eCa) will affect plant competition, or how composition of plant communities might change. Such theoretical analysis is needed for developing testable hypotheses to frame experimental research. Here, we investigated theoretically how plant competition might change under eCa by implementing two alternative competition theories, resource use theory and resource capture theory, in a plant carbon and nitrogen cycling model. The model makes several novelmore » predictions for the impact of eCa on plant community composition. Using resource use theory, the model predicts that eCa is unlikely to change species dominance in competition, but is likely to increase coexistence among species. Using resource capture theory, the model predicts that eCa may increase community evenness. Collectively, both theories suggest that eCa will favor coexistence and hence that species diversity should increase with eCa. Our theoretical analysis leads to a novel hypothesis for the impact of eCa on plant community composition. In this study, the hypothesis has potential to help guide the design and interpretation of eCa experiments.« less

  10. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization Human Capacity Development

    SciTech Connect (OSTI)

    Wiita, Joanne

    2013-07-30

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  11. The North Carolina Field Test: Field performance of the preliminary version of an advanced weatherization audit for the Department of Energy`s Weatherization Assistance Program

    SciTech Connect (OSTI)

    Sharp, T.R.

    1994-06-01

    The field performance of weatherizations based on a newly-developed advanced technique for selecting residential energy conservation measures was tested alongside current Retro-Tech-based weatherizations in North Carolina. The new technique is computer-based and determines measures based on the needs of an individual house. In addition, it recommends only those measures that it determines will have a benefit-to-cost ratio greater than 1 for the house being evaluated. The new technique also considers the interaction of measures in computing the benefit-to-cost ratio of each measure. The two weatherization approaches were compared based on implementation ease, measures installed, labor and cost requirements, and both heating and cooling energy savings achieved. One-hundred and twenty houses with the following characteristics participated: the occupants were low-income, eligible for North Carolina`s current weatherization program, and responsible for their own fuel and electric bills. Houses were detached single-family dwellings, not mobile homes; were heated by kerosene, fuel oil, natural gas, or propane; and had one or two operating window air conditioners. Houses were divided equally into one control group and two weatherization groups. Weekly space heating and cooling energy use, and hourly indoor and outdoor temperatures were monitored between November 1989 and September 1990 (pre-period) and between December 1990 and August 1991 (post-period). House consumption models were used to normalize for annual weather differences and a 68{degrees}F indoor temperature. Control group savings were used to adjust the savings determined for the weatherization groups. The two weatherization approaches involved installing attic and floor insulations in near equivalent quantities, and installing storm windows and wall insulation in drastically different quantities. Substantial differences also were found in average air leakage reductions for the two weatherization groups.

  12. Transient PVT measurements and model predictions for vessel heat transfer. Part II.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

    2010-07-01

    Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

  13. Evaluating Single Column Models using an ensemble approach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Single Column Models using an ensemble approach Hume, Timothy Bureau of Meteorology Research Centre Jakob, Christian BMRC Category: Modeling Single Column Models are a valuable tool for evaluating and improving parameterizations for climate and Numerical Weather Prediction (NWP) models. Their drawback is that they can usually only be applied if sufficient data to derive their boundary conditions (the so-called model forcing) is available. We have developed an ensemble technique that

  14. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    SciTech Connect (OSTI)

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  15. Appendix K - GPRA06 Weatherization and Intergovernmental Program (WIP) Documentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - GPRA06 Weatherization and Intergovernmental Program (WIP) Documentation 1.0 State Energy Program Grants and State Energy Activities ...............................................3 1.1 State Energy Program Grants .......................................................................................3 2.0 Weatherization Assistance Grants ....................................................................................7 2.1 Weatherization Assistance

  16. Update on Progress: Weatherization and Intergovernmental Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update on Progress: Weatherization and Intergovernmental Program STEAB Meeting June 8, 2011 LeAnn M. Oliver Weatherization and Intergovernmental Program Weatherization Assistance Program 2 WIP Recovery Act Spending Cumulative Payments Target for June ($ million) Cumulative Payments to Date ($ million) Percent of 50% Spend Goal Reached WAP 3,371.7 2,915.8 86% SEP 1,753.7 1333.7 76% EECBG 1,468.4 1109.1 76% WIP Total 6,593.8 5,358.6 81% June 2011 - 50% Spend Goal Total Recovery Act Spending

  17. ALE3D Model Predictions and Materials Characterization for the Cookoff Response of PBXN-109

    SciTech Connect (OSTI)

    McClelland, M A; Maienschein, J L; Nichols, A L; Wardell, J F; Atwood, A I; Curran, P O

    2002-03-19

    ALE3D simulations are presented for the thermal explosion of PBXN-109 (RDX, AI, HTPB, DOA) in support of an effort by the U. S. Navy and Department of Energy (DOE) to validate computational models. The U.S. Navy is performing benchmark tests for the slow cookoff of PBXN-109 in a sealed tube. Candidate models are being tested using the ALE3D code, which can simulate the coupled thermal, mechanical, and chemical behavior during heating, ignition, and explosion. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. A void model is employed to represent the air in gaps. ALE3D model 'parameters are specified using measurements of thermal and mechanical properties including thermal expansion, heat capacity, shear modulus, and bulk modulus. A standard three-step chemical kinetics model is used during the thermal ramp, and a pressure-dependent burn front model is employed during the rapid expansion. Parameters for the three-step kinetics model are specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate of pristine and thermally damaged material are employed to determine parameters in the burn front model. Results are given for calculations in which heating, ignition, and explosion are modeled in a single simulation. We compare model results to measurements for the cookoff temperature and tube wall strain.

  18. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    SciTech Connect (OSTI)

    Zapol, Peter; Bourg, Ian; Criscenti, Louise Jacqueline; Steefel, Carl I.; Schultz, Peter Andrew

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  19. Validation of a Fast-Fluid-Dynamics Model for Predicting Distribution of Particles with Low Stokes Number

    SciTech Connect (OSTI)

    Zuo, Wangda; Chen, Qingyan

    2011-06-01

    To design a healthy indoor environment, it is important to study airborne particle distribution indoors. As an intermediate model between multizone models and computational fluid dynamics (CFD), a fast fluid dynamics (FFD) model can be used to provide temporal and spatial information of particle dispersion in real time. This study evaluated the accuracy of the FFD for predicting transportation of particles with low Stokes number in a duct and in a room with mixed convection. The evaluation was to compare the numerical results calculated by the FFD with the corresponding experimental data and the results obtained by the CFD. The comparison showed that the FFD could capture major pattern of particle dispersion, which is missed in models with well-mixed assumptions. Although the FFD was less accurate than the CFD partially due to its simplification in numeric schemes, it was 53 times faster than the CFD.

  20. EERE Success Story-How the Weatherization Assistance Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about weatherization, but now she is on the path towards making history: becoming the first female weatherization quality control inspectorauditor in the State of New Mexico. ...

  1. Memorandum of Understanding On Weather-Dependent and Oceanic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources...

  2. CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION...

    Office of Environmental Management (EM)

    CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM This...

  3. Appendix K - GPRA06 Weatherization and Intergovernmental Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendix K - GPRA06 Weatherization and Intergovernmental Program (WIP) Documentation Appendix K - GPRA06 Weatherization and Intergovernmental Program (WIP) Documentation State ...

  4. Presentation at the Weatherization Program Deep Dive Briefing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 U.S. Department of...

  5. How the Weatherization Assistance Program Changed Jasmine's Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How the Weatherization Assistance Program Changed Jasmine's Life How the Weatherization Assistance Program Changed Jasmine's Life February 19, 2015 - 4:45pm Addthis The Rocky...

  6. SERC Community-Based Social Marketing for Weatherization Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community-Based Social Marketing for Weatherization Programs Webinar SERC Community-Based Social Marketing for Weatherization Programs Webinar A presentation sponsored by the U.S. ...

  7. Unemployed Engineer Finds New Career in Weatherization | Department...

    Broader source: Energy.gov (indexed) [DOE]

    a long time." Addthis Related Articles Training Center Gets People Work, Teaches New Skills Massachusetts on Track with Weatherization Boost Weatherization Fueling Iowa Job...

  8. WPN 03-5: Weatherization Assistance Program National Recognition Awards

    Broader source: Energy.gov [DOE]

    To provide criteria and guidelines for the Weatherization Assistance Program's National Recognition Awards being presented at the 2003 National Weatherization Training Conference in Phoenix, Arizona.

  9. WPN 07-1: Program Year 2007 Weatherization Grant Guidance

    Broader source: Energy.gov [DOE]

    To issue grant guidance and management information for the Low-Income Weatherization Assistance Program (Weatherization) for Program Year (PY) 2007.

  10. Use of Standard Fluorescent UV Weathering Lamps to Perform UV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of Standard Fluorescent UV Weathering Lamps to Perform UV Conditioning Tests Prescribed in IEC Qualification Standards Use of Standard Fluorescent UV Weathering Lamps to...

  11. Update from DOEs Weatherization & Intergovernmental Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    weatherized more than ONE MILLION homes Job Creation: Weatherization created the ... * Stakeholder Engagement * EE Policy Recommendation for Alaska (Policy Report) * Public ...

  12. WPN 12-5: Updated Weatherization Assistance Program Monitoring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Updated Weatherization Assistance Program Monitoring Guidance WPN 12-5: Updated Weatherization Assistance Program Monitoring Guidance Effective: Dec. 1, 2011 To issue the ...

  13. Weatherization Innovation Pilot Program Fact Sheet July 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization Innovation Pilot Program Fact Sheet - Philadelphia Success Story WPN 11-08: Grant Guidance for Weatherization Innovation Pilot Program Grants WPN 15-3: 2015 Poverty ...

  14. WPN 11-4: Guidance Regarding Prioritizing Weatherization Work...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Guidance Regarding Prioritizing Weatherization Work Based on Housing Type WPN 11-4: Guidance Regarding Prioritizing Weatherization Work Based on Housing Type Effective: Dec. 22,...

  15. WPN 11-08: Grant Guidance for Weatherization Innovation Pilot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    08: Grant Guidance for Weatherization Innovation Pilot Program Grants WPN 11-08: Grant Guidance for Weatherization Innovation Pilot Program Grants Archived 093015, WIPP...

  16. Guidance on Utility Rate Estimations and Weather Normalization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Rate Estimations and Weather Normalization in an ESPC Guidance on Utility Rate Estimations and Weather Normalization in an ESPC Document explains how to use estimated...

  17. Development of a land ice core for the Model for Prediction Across...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Development of a land ice core for the Model ... Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: ...

  18. Idaho Falls Power- Residential Weatherization Loan Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Residential customers with permanently installed electric heat who receive service from the City of Idaho Falls, are eligible for 0% weatherization loans. City Energy Service will conduct an energy...

  19. New York: Weatherizing Westbeth Reduces Energy Consumption |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 517.8 Million in Weatherization Funding and Energy Efficiency Grants for New York One Sky Homes, San Jose, CA, Custom Builder, Grand Award Winner. | California prides itself on ...

  20. Kansas City Weatherization Efforts Exceed Goals | Department...

    Broader source: Energy.gov (indexed) [DOE]

    ... The program is available to those who earn less than 200 percent of the federal poverty level. Kansas City is well on its way to weatherize over 2,000 homes by March 2012. No ...

  1. Cowlitz County PUD- Residential Weatherization Plus Program

    Broader source: Energy.gov [DOE]

    Cowlitz County PUD offers an incentive to residential customers who weatherize their homes. Eligible residences can be either site-built or manufactured homes, but must have a permanently installed...

  2. ARM - Lesson Plans: Weather and Climate Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by 30 or 40. Preparation It is important to obtain the weather records and climate data set from the local meteorological service beforehand if the school does not have them...

  3. Prediction of Lumen Output and Chromaticity Shift in LEDs Using Kalman Filter and Extended Kalman Filter Based Models

    SciTech Connect (OSTI)

    Lall, Pradeep; Wei, Junchao; Davis, J Lynn

    2014-06-24

    Abstract Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources burn out at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to burn. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have been compared with the TM-21 model predictions and experimental data.

  4. Alaska Native Weatherization Training and Jobs Program

    Office of Environmental Management (EM)

    Tlingit-Haida Regional Housing Authority Alaska Native Weatherization Training & Jobs Program University of Alaska Southeast Marquam George Associate Professor Construction Technology marquam.george@uas.alaska.edu 907 796 6124 Juneau Southeast Alaska Weatherization Training Center Southeast Climate Data - HDD * Yakutat 9,485 * Angoon 8,450 * Haines 8,505 * Juneau (Airport) 9,105 * Ketchikan 7,084 * Sitka 8,011 * Tenakee Springs 8,180 Annual Water Equivalent Precipitation - 1971-2000 *

  5. WEATHERIZATION PROGRAM NOTICE 10-13A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEATHERIZATION PROGRAM NOTICE 10-13A EFFECTIVE DATE: SEPTEMBER 29, 2010 SUBJECT: ARRA REPORTING REQUIREMENTS: OMB QUARTERLY AND DOE MONTHLY REPORTING REQUIREMENTS UNDER THE AMERICAN RECOVERY AND REINVESTMENT ACT OF 2009 FOR THE WEATHERIZATION ASSISTANCE PROGRAM REFERENCES: (1) OMB Memorandum M-09-21 Implementing Guidance for the Reports on the Use of Funds Pursuant to the American Recovery and Reinvestment Act of 2009, June 22 nd , 2009. (2) OMB Memorandum M-10-08 Updated Guidance on the

  6. Weatherization Innovation Pilot Program (Fact Sheet), Weatherization And Intergovernmental Programs (WIP)

    Broader source: Energy.gov (indexed) [DOE]

    Overview and Philadelphia Project Highlight The Department of Energy (DOE) Offce of Energy Effciency and Renewable Energy (EERE) recently launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy effciency and health and safety of homes of low-income families. Since 2010, WIPP has helped weatherization service providers as well as new and nontraditional partners leverage non-federal fnancial

  7. Ductile Tearing of Thin Aluminum Plates Under Blast Loading. Predictions with Fully Coupled Models and Biaxial Material Response Characterization

    SciTech Connect (OSTI)

    Corona, Edmundo; Gullerud, Arne S.; Haulenbeek, Kimberly K.; Reu, Phillip L.

    2015-06-01

    The work presented in this report concerns the response and failure of thin 2024- T3 aluminum alloy circular plates to a blast load produced by the detonation of a nearby spherical charge. The plates were fully clamped around the circumference and the explosive charge was located centrally with respect to the plate. The principal objective was to conduct a numerical model validation study by comparing the results of predictions to experimental measurements of plate deformation and failure for charges with masses in the vicinity of the threshold between no tearing and tearing of the plates. Stereo digital image correlation data was acquired for all tests to measure the deflection and strains in the plates. The size of the virtual strain gage in the measurements, however, was relatively large, so the strain measurements have to be interpreted accordingly as lower bounds of the actual strains in the plate and of the severity of the strain gradients. A fully coupled interaction model between the blast and the deflection of the structure was considered. The results of the validation exercise indicated that the model predicted the deflection of the plates reasonably accurately as well as the distribution of strain on the plate. The estimation of the threshold charge based on a critical value of equivalent plastic strain measured in a bulge test, however, was not accurate. This in spite of efforts to determine the failure strain of the aluminum sheet under biaxial stress conditions. Further work is needed to be able to predict plate tearing with some degree of confidence. Given the current technology, at least one test under the actual blast conditions where the plate tears is needed to calibrate the value of equivalent plastic strain when failure occurs in the numerical model. Once that has been determined, the question of the explosive mass value at the threshold could be addressed with more confidence.

  8. Elevated carbon dioxide is predicted to promote coexistence among competing species in a trait-based model

    SciTech Connect (OSTI)

    Ali, Ashehad A.; Medlyn, Belinda E.; Aubier, Thomas G.; Crous, Kristine Y.; Reich, Peter B.

    2015-10-06

    Differential species responses to atmospheric CO2 concentration (Ca) could lead to quantitative changes in competition among species and community composition, with flow-on effects for ecosystem function. However, there has been little theoretical analysis of how elevated Ca (eCa) will affect plant competition, or how composition of plant communities might change. Such theoretical analysis is needed for developing testable hypotheses to frame experimental research. Here, we investigated theoretically how plant competition might change under eCa by implementing two alternative competition theories, resource use theory and resource capture theory, in a plant carbon and nitrogen cycling model. The model makes several novel predictions for the impact of eCa on plant community composition. Using resource use theory, the model predicts that eCa is unlikely to change species dominance in competition, but is likely to increase coexistence among species. Using resource capture theory, the model predicts that eCa may increase community evenness. Collectively, both theories suggest that eCa will favor coexistence and hence that species diversity should increase with eCa. Our theoretical analysis leads to a novel hypothesis for the impact of eCa on plant community composition. In this study, the hypothesis has potential to help guide the design and interpretation of eCa experiments.

  9. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  10. A grillage model for predicting wrinkles in annular graphene under circular shearing

    SciTech Connect (OSTI)

    Zhang, Z.; Duan, W. H.; Wang, C. M.

    2013-01-07

    This paper is concerned with a Timoshenko grillage model for modeling the wrinkling phenomenon in annular graphene under circular shearing applied at its inner edge. By calibrating the grillage model results against the molecular mechanics (MM) results, the grillage model comprising beams of elliptical cross-section orientated along the carbon-carbon bond has section dimensions of 0.06 nm for the major axis length and 0.036 nm for the minor axis length. Moreover, the beams are connected to one another at 0.00212 nm from the geometric centric. This eccentric connection of beams allows the proposed grillage model to cater for the cross-couplings among bonds that produce the out-of-plane wrinkling pattern. The out-of-plane to in-plane bending stiffnesses' ratio is 0.36, and the cross bending stiffness provided by the ellipse eccentricity is 0.025 times that of the in-plane bending stiffness. Besides furnishing identical wave numbers as well as amplitudes and wavelengths that are in good agreement with MM results, the grillage model can capture wrinkling patterns with a boundary layer, whereas plate and membrane models could not mimic the boundary layer.

  11. Model-Predictive Cascade Mitigation in Electric Power Systems With Storage and Renewables-Part II: Case-Study

    SciTech Connect (OSTI)

    Almassalkhi, MR; Hiskens, IA

    2015-01-01

    The novel cascade-mitigation scheme developed in Part I of this paper is implemented within a receding-horizon model predictive control (MPC) scheme with a linear controller model. This present paper illustrates the MPC strategy with a case-study that is based on the IEEE RTS-96 network, though with energy storage and renewable generation added. It is shown that the MPC strategy alleviates temperature overloads on transmission lines by rescheduling generation, energy storage, and other network elements, while taking into account ramp-rate limits and network limitations. Resilient performance is achieved despite the use of a simplified linear controller model. The MPC scheme is compared against a base-case that seeks to emulate human operator behavior.

  12. Water and Heat Balance Model for Predicting Drainage Below the Plant Root Zone

    Energy Science and Technology Software Center (OSTI)

    1989-11-01

    UNSAT-H Version 2.0 is a one-dimensional model that simulates the dynamic processes of infiltration, drainage, redistribution, surface evaporation, and the uptake of water from soil by plants. The model was developed for assessing the water dynamics of arid sites used or proposed for near-surface waste disposal. In particular, the model is used for simulating the water balance of cover systems over buried waste and for estimating the recharge rate (i.e., the drainage rate beneath themore » plant root zone when a sizable vadose zone is present). The mathematical base of the model are Richards'' equation for water flow, Ficks'' law for vapor diffusion, and Fouriers law for heat flow. The simulated profile can be homogeneous or layered. The boundary conditions can be controlled as either constant (potential or temperature) or flux conditions to reflect actual conditions at a given site.« less

  13. NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE...

    Office of Scientific and Technical Information (OSTI)

    nonlinear modeling with hydrodynamic codes (e.g., GEODYN, GEODYN-L), and the far-field seismic propagation with an elastic wave propagation code (e.g., WPP). the codes will be...

  14. Identifying at-risk employees: A behavioral model for predicting potential insider threats

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Kangas, Lars J.; Noonan, Christine F.; Dalton, Angela C.

    2010-09-01

    A psychosocial model was developed to assess an employees behavior associated with an increased risk of insider abuse. The model is based on case studies and research literature on factors/correlates associated with precursor behavioral manifestations of individuals committing insider crimes. In many of these crimes, managers and other coworkers observed that the offenders had exhibited signs of stress, disgruntlement, or other issues, but no alarms were raised. Barriers to using such psychosocial indicators include the inability to recognize the signs and the failure to record the behaviors so that they could be assessed by a person experienced in psychosocial evaluations. We have developed a model using a Bayesian belief network with the help of human resources staff, experienced in evaluating behaviors in staff. We conducted an experiment to assess its agreement with human resources and management professionals, with positive results. If implemented in an operational setting, the model would be part of a set of management tools for employee assessment that can raise an alarm about employees who pose higher insider threat risks. In separate work, we combine this psychosocial models assessment with computer workstation behavior to raise the efficacy of recognizing an insider crime in the making.

  15. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  16. Methods and apparatus for measurement of a dimensional characteristic and methods of predictive modeling related thereto

    DOE Patents [OSTI]

    Robertson, Eric P (Idaho Falls, ID); Christiansen, Richard L. (Littleton, CO)

    2007-05-29

    A method of optically determining a change in magnitude of at least one dimensional characteristic of a sample in response to a selected chamber environment. A magnitude of at least one dimension of the at least one sample may be optically determined subsequent to altering the at least one environmental condition within the chamber. A maximum change in dimension of the at least one sample may be predicted. A dimensional measurement apparatus for indicating a change in at least one dimension of at least one sample. The dimensional measurement apparatus may include a housing with a chamber configured for accommodating pressure changes and an optical perception device for measuring a dimension of at least one sample disposed in the chamber. Methods of simulating injection of a gas into a subterranean formation, injecting gas into a subterranean formation, and producing methane from a coal bed are also disclosed.

  17. Methods for measurement of a dimensional characteristic and methods of predictive modeling related thereto

    DOE Patents [OSTI]

    Robertson, Eric P (Idaho Falls, ID); Christiansen, Richard L. (Littleton, CO)

    2007-10-23

    A method of optically determining a change in magnitude of at least one dimensional characteristic of a sample in response to a selected chamber environment. A magnitude of at least one dimension of the at least one sample may be optically determined subsequent to altering the at least one environmental condition within the chamber. A maximum change in dimension of the at least one sample may be predicted. A dimensional measurement apparatus for indicating a change in at least one dimension of at least one sample. The dimensional measurement apparatus may include a housing with a chamber configured for accommodating pressure changes and an optical perception device for measuring a dimension of at least one sample disposed in the chamber. Methods of simulating injection of a gas into a subterranean formation, injecting gas into a subterranean formation, and producing methane from a coal bed are also disclosed.

  18. A new model for predicting the fouling deposit weight of coal

    SciTech Connect (OSTI)

    Yeakel, J.D. ); Finkelman, R.B. )

    1988-06-01

    One of the major problems associated with coal combustion is the buildup of sintered ash deposits in the convective passes of boilers. These deposits, referred to as fouling deposits, can drastically reduce heat transfer, cause erosion by channelizing gas flow, and contribute to the corrosion of exposed metal surfaces. Downtime for cleaning fouled commercial boilers can be a multi-million-dollar expense. Utility boilers generally are designed to burn coal that falls within a specific fouling behavior range. Therefore, to minimize the deleterious effects of boiler fouling and to maximize boiler efficiency, it is necessary to anticipate or assess the fouling characteristics of a coal prior to combustion. This paper introduces a new method for predicting fouling deposit weights by using commonly available coal quality data. The authors have developed a modified concept of the coal quality characteristics that influence fouling. This concept evolved from a review of the literature and from the statistical analysis of results from 44 combustion tests.

  19. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than {approximately}1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network.

  20. Simple Model Representations of Transport in a Complex Fracture and Their Effects on Long-Term Predictions

    SciTech Connect (OSTI)

    Doughty, Christine; Tsang, Chin-Fu; Doughty, Christine; Uchida, Masahiro

    2007-11-07

    A complex fracture model for fluid flow and tracer transport was previously developed that incorporates many of the important physical effects of a realistic fracture, including advection through a heterogeneous fracture plane, partitioning of flow into multiple subfractures in the third dimension, and diffusion and sorption into fracture-filling gouge, small altered rock matrix blocks within the fracture zone, and the unaltered semi-infinite rock matrix on both sides of the fracture zone (Tsang and Doughty, 2003). It is common, however, to represent the complex fracture by much simpler models consisting of a single fracture, with a uniform or heterogeneous transmissivity distribution over its plane and bounded on both sides by a homogeneous semi-infinite matrix. Simple-model properties are often inferred from the analysis of short-term (one to a few days) site characterization (SC) tracer-test data. The question addressed in this paper is: How reliable is the temporal upscaling of these simplified models? Are they adequate are for long-term calculations that cover thousands of years? In this study, a particle-tracking approach is used to calculate tracer-test breakthrough curves (BTCs) in a complex fracture model, incorporating all the features described above, for both a short-term SC tracer test and a 10,000-year calculation. The results are considered the 'real-world'. Next, two simple fracture models, one uniform and the other heterogeneous, are introduced. Properties for these simple models are taken either from laboratory data or found by calibration to the short-term SC tracer-test BTCs obtained with the complex fracture model. Then the simple models are used to simulate tracer transport at the long-term time scale. Results show that for the short-term SC tracer test, the BTCs calculated using simple models with laboratory-measured parameters differ significantly from the BTCs obtained with the complex fracture model. By adjusting model properties, the simple models can be calibrated to reproduce the peak arrival time and height of the complex-fracture-model BTCs, but the overall match remains quite poor. Using simple models with short-term SC-calibrated parameters for long-term calculations causes order-of-magnitude errors in tracer BTCs: peak arrival time is 10-100 times too late, and peak height is 50-300 times too small. On the other hand, using simple models with laboratory-measured properties of unfractured rock samples for 10,000-year calculations results in peak arrivals and heights up to a factor of 50 too early and large, respectively. The actual magnitudes of the errors made by using the simple models depend on the parameter values assumed for the complex fracture model, but in general, simple models are not expected to provide reliable long-term predictions. The paper concludes with some suggestions on how to improve long-term prediction calculations.

  1. Reduced order models for prediction of groundwater quality impacts from CO₂ and brine leakage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Liange; Carroll, Susan; Bianchi, Marco; Mansoor, Kayyum; Sun, Yunwei; Birkholzer, Jens

    2014-12-31

    A careful assessment of the risk associated with geologic CO₂ storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO₂ and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO₂ leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highlymore » efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO₂ and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO₂ storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO₂ storage projects.« less

  2. Reduced order models for prediction of groundwater quality impacts from CO? and brine leakage

    SciTech Connect (OSTI)

    Zheng, Liange; Carroll, Susan; Bianchi, Marco; Mansoor, Kayyum; Sun, Yunwei; Birkholzer, Jens

    2014-12-31

    A careful assessment of the risk associated with geologic CO? storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO? and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO? leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highly efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO? and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO? storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO? storage projects.

  3. The North Carolina Field Test: Field Performance of the Preliminary Version of an Advanced Weatherization Audit for the Department of Energy's Weatherization Assistance Program

    SciTech Connect (OSTI)

    Sharp, T.R.

    1994-01-01

    The field performance of weatherizations based on a newly-developed advanced technique for selecting residential energy conservation measures was tested alongside current Retro-Tech-based weatherizations in North Carolina. The new technique is computer-based and determines measures based on the needs of an individual house. In addition, it recommends only those measures that it determines will have a benefit-to-cost ratio greater than 1 for the house being evaluated. The new technique also considers the interaction of measures in computing the benefit-to-cost ratio of each measure. The two weatherization approaches were compared based on implementation ease, measures installed, labor and cost requirements, and both heating and cooling energy savings achieved. One-hundred and twenty houses with the following characteristics participated: the occupants were low-income, eligible for North Carolina's current weatherization program, and responsible for their own fuel and electric bills. Houses were detached single-family dwellings, not mobile homes; were heated by kerosene, fuel oil, natural gas, or propane; and had one or two operating window air conditioners. Houses were divided equally into one control group and two weatherization groups. Weekly space heating and cooling energy use, and hourly indoor and outdoor temperatures were monitored between November 1989 and September 1990 (pre-period) and between December 1990 and August 1991 (post-period). House consumption models were used to normalize for annual weather differences and a 68 F indoor temperature. Control group savings were used to adjust the savings determined for the weatherization groups. The two weatherization approaches involved installing attic and floor insulations in near equivalent quantities, and installing storm windows and wall insulation in drastically different quantities. Substantial differences also were found in average air leakage reductions for the two weatherization groups. Average, weather-normalized heating and cooling energy savings were 33 and 18%, respectively, for weatherizations where the new technique was used, and 23 and 3% for Retro-Tech-based weatherizations. Weatherizations using the new technique achieved 43% more heating energy savings and substantially more cooling energy savings; they cost around 10% less at two agencies and considerably more at the third; and they were nearly equivalent in labor requirements. The following major conclusions were drawn from the study: (1) The advanced audit significantly increased heating energy savings. (2) Heating energy savings of around 33% were achieved using the advanced audit with blower-door-directed air sealing. (3) The advanced audit appeared to increase cooling energy savings, although wide variances occurred. (4) As tested in North Carolina, the advanced audit overpredicted heating energy consumption and savings for houses with high heating loads. (5) The advanced audit did not increase weatherization costs and actually lowered costs for two of three weatherization agencies. (6) The advanced audit recommended some measures in near identical quantities to Retro-Tech-based weatherizations and others in dramatically different quantities. (7) Blower-door-directed air sealing more than doubled the air leakage reductions achieved from standard air sealing techniques. (8) Low-income houses in North Carolina had much higher average leakage rates than similar New York houses but were sealed as well or better.

  4. Result of recent weatherization retrofit projects

    SciTech Connect (OSTI)

    Dickinson, J.B.; Lipschutz, R.D.; O'Regan, B.; Wagner, B.S.

    1982-07-01

    Pacific Gas and Electric (PG and E) and the Bonneville Power Administration (BPA) have conducted studies in their respective service areas in order to evaluate the cost-effectiveness of certain conservation retrofits. Twenty houses in Walnut Creek, California, underwent an infiltration reduction program, similar to house doctoring. Ten of these houses also received additional contractor-installed measures. BPA retrofitted 18 houses at its Midway substation in central Washington. Retrofits made to the houses included: attic and crawlspace insulation, foundation sill caulking, storm windows and doors, increased attic ventilation, and infiltration reduction. Energy consumption and weather data were monitored before and after each set of retrofits in both projects. Leakage measurements were made by researchers from the Energy Efficient Buildings Program using blower door fan pressurization, thereby allowing calculation of heating season infiltration rates. An energy use model correlating energy consumption with outside temperature was developed in order to determine improvements to the thermal conductance of the building envelope as a result of the retrofits. Energy savings were calculated based on the results of the energy use model. As a check on these findings, the Computerized Instrumented Residential Audit (CIRA) load calculation program developed at Lawrence Berkeley Laboratory provided a theoretical estimate of the savings resulting from the retrofits. At Midway, storm windows and doors were found to save the most energy. Because the Midway houses were not very leaky at the beginning of the experiment, the infiltration reduction procedures were less effective than expected. In the Walnut Creek project, the infiltration reduction procedures did decrease the leakiness of the test houses, but the effect upon energy savings was not great.

  5. Weatherization Plus — Opportunities for the 21st Century

    Broader source: Energy.gov [DOE]

    Millennium Committee Strategy Report for the DOE Weatherization Assistance Program; 15 pp.; April 1999.

  6. Faces of the Recovery Act: National Weatherization Conference

    Broader source: Energy.gov [DOE]

    Personal stories from the 2009 National Weatherization Training Conference in Indianapolis, Indiana.

  7. Faces of the Recovery Act: National Weatherization Conference

    ScienceCinema (OSTI)

    None

    2010-09-01

    Personal stories from the 2009 National Weatherization Training Conference in Indianapolis, Indiana.

  8. Faces of the Recovery Act: National Weatherization Conference

    ScienceCinema (OSTI)

    Chu, Sammy; Campanella, Leslie; Sewell, Travis; Gill, Tony; Fransen, Richard; Leuty, Steve; Qualls, Xavier; Bergeron, T.J.; Stewet, Zachary

    2013-05-29

    Personal stories from the 2009 National Weatherization Training Conference in Indianapolis, Indiana.

  9. Leveraging Resources for the Weatherization Innovation Pilot Program (WIPP)

    Energy Savers [EERE]

    - Webinar Transcript | Department of Energy the Weatherization Innovation Pilot Program (WIPP) - Webinar Transcript Leveraging Resources for the Weatherization Innovation Pilot Program (WIPP) - Webinar Transcript This document contains the transcript for the Leveraging Resources for the Weatherization Innovation Pilot Program (WIPP) webinar held on February 12, 2013. PDF icon leveraging_resources_webinar_transcript.pdf More Documents & Publications Leveraging Resources for Weatherization

  10. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS)

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a true 3D hydro-thermal fracturing and proppant flow/transport simulator that is particularly suited for EGS reservoir creation. Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator.

  11. SIMPLIFIED PREDICTIVE MODELS FOR CO₂ SEQUESTRATION PERFORMANCE ASSESSMENT RESEARCH TOPICAL REPORT ON TASK #3 STATISTICAL LEARNING BASED MODELS

    SciTech Connect (OSTI)

    Mishra, Srikanta; Schuetter, Jared

    2014-11-01

    We compare two approaches for building a statistical proxy model (metamodel) for CO₂ geologic sequestration from the results of full-physics compositional simulations. The first approach involves a classical Box-Behnken or Augmented Pairs experimental design with a quadratic polynomial response surface. The second approach used a space-filling maxmin Latin Hypercube sampling or maximum entropy design with the choice of five different meta-modeling techniques: quadratic polynomial, kriging with constant and quadratic trend terms, multivariate adaptive regression spline (MARS) and additivity and variance stabilization (AVAS). Simulations results for CO₂ injection into a reservoir-caprock system with 9 design variables (and 97 samples) were used to generate the data for developing the proxy models. The fitted models were validated with using an independent data set and a cross-validation approach for three different performance metrics: total storage efficiency, CO₂ plume radius and average reservoir pressure. The Box-Behnken–quadratic polynomial metamodel performed the best, followed closely by the maximin LHS–kriging metamodel.

  12. Weatherization and Intergovernmental Program - Portal to New Jobs in Home Weatherization (Green Jobs)

    SciTech Connect (OSTI)

    2010-04-01

    Expanding training opportunities in the weatherization of buildings will accelerate learning and provide a direct path for many Americans to find jobs in the clean energy field. The National Weatherization Training Portal (NWTP), which is now in the final stages of testing, features multi-media, interactive, self-paced training modules.

  13. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    SciTech Connect (OSTI)

    Pigg, Scott; Cautley, Dan; Francisco, Paul; Hawkins, Beth A; Brennan, Terry M

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  14. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    SciTech Connect (OSTI)

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximate match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for CCUS have used the conventional rate law and therefore simulated the upper bound of mineral trapping. However, neglecting the regional flow after injection, as most previous RTM studies have done, artificially limits the extent of geochemical reactions as if it were in a batch system. By replenishing undersaturated groundwater from upstream, the Utsira Sand is reactive over a time scale of 10,000 years. The results from this project have been communicated via five peer-reviewed journal articles, four conference proceeding papers, and 19 invited and contributed presentations at conferences and seminars.

  15. Massachusetts on Track with Weatherization Boost | Department of Energy

    Energy Savers [EERE]

    Massachusetts on Track with Weatherization Boost Massachusetts on Track with Weatherization Boost January 12, 2010 - 3:07pm Addthis As the state of Massachusetts advances toward its goal of weatherizing approximately 17,000 homes over three years, thousands of residents across the Bay State have already felt the impact of its expanded program. Massachusetts has hired 35 energy auditors, roughly 140 weatherization workers and about 30 administrators to keep up with the surge in weatherization

  16. States Celebrate National Weatherization Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4, 2014 - 11:37am Addthis Sates across the nation celebrated Weatherization Day on October 30 with guided tours and Gubernatorial proclamations. In this photo, A team of weatherization technicians perform a site demonstration in Minnesota on Weatherization Day in 2012. | Photo courtesy of WAPTAC. Sates across the nation celebrated Weatherization Day on October 30 with guided tours and Gubernatorial proclamations. In this photo, A team of weatherization technicians perform a site demonstration in

  17. How to Apply for Weatherization Assistance | Department of Energy

    Office of Environmental Management (EM)

    to Apply for Weatherization Assistance How to Apply for Weatherization Assistance March 24, 2009 - 12:45pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory A few weeks ago, the U.S. Department of Energy announced that it was investing $8 billion into weatherization and state energy grants-$5 billion of which is going directly to the Weatherization Assistance Program. And why is that interesting? Well, the Weatherization Assistance Program provides low-income families

  18. EERE Success Story-Connecticut: Bridgeport Multifamily Weatherization |

    Office of Environmental Management (EM)

    Department of Energy Connecticut: Bridgeport Multifamily Weatherization EERE Success Story-Connecticut: Bridgeport Multifamily Weatherization November 8, 2013 - 12:00am Addthis EERE's Weatherization Assistance Program weatherized a multifamily facility in Bridgeport, Connecticut, that provides safe housing for individuals, veterans, and the homeless received weatherization; the services performed have saved the facility nearly $7,000 in annual energy costs. Because the state had not yet

  19. Comparison of high pressure transient PVT measurements and model predictions. Part I.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Evans, Gregory Herbert; Rice, Steven F.; Winters, William Stanley, Jr.

    2010-07-01

    A series of experiments consisting of vessel-to-vessel transfers of pressurized gas using Transient PVT methodology have been conducted to provide a data set for optimizing heat transfer correlations in high pressure flow systems. In rapid expansions such as these, the heat transfer conditions are neither adiabatic nor isothermal. Compressible flow tools exist, such as NETFLOW that can accurately calculate the pressure and other dynamical mechanical properties of such a system as a function of time. However to properly evaluate the mass that has transferred as a function of time these computational tools rely on heat transfer correlations that must be confirmed experimentally. In this work new data sets using helium gas are used to evaluate the accuracy of these correlations for receiver vessel sizes ranging from 0.090 L to 13 L and initial supply pressures ranging from 2 MPa to 40 MPa. The comparisons show that the correlations developed in the 1980s from sparse data sets perform well for the supply vessels but are not accurate for the receivers, particularly at early time during the transfers. This report focuses on the experiments used to obtain high quality data sets that can be used to validate computational models. Part II of this report discusses how these data were used to gain insight into the physics of gas transfer and to improve vessel heat transfer correlations. Network flow modeling and CFD modeling is also discussed.

  20. Improved atmosphere-ocean coupled modeling in the tropics for climate prediction

    SciTech Connect (OSTI)

    Zhang, Minghua

    2015-01-01

    We investigated the initial development of the double ITCZ in the Community Climate System Model (CCSM Version 3) in the central Pacific. Starting from a resting initial condition of the ocean in January, the model developed a warm bias of sea-surface temperature (SST) in the central Pacific from 5oS to 10oS in the first three months. We found this initial bias to be caused by excessive surface shortwave radiation that is also present in the standalone atmospheric model. The initial bias is further amplified by biases in both surface latent heat flux and horizontal heat transport in the upper ocean. These biases are caused by the responses of surface winds to SST bias and the thermocline structure to surface wind curls. We also showed that the warming biases in surface solar radiation and latent heat fluxes are seasonally offset by cooling biases from reduced solar radiation after the austral summer due to cloud responses and in the austral fall due to enhanced evaporation when the maximum SST is closest to the equator. The warming biases from the dynamic heat transport by ocean currents however stay throughout all seasons once they are developed, which are eventually balanced by enhanced energy exchange and penetration of solar radiation below the mixed layer. Our results also showed that the equatorial cold tongue develops after the warm biases in the south central Pacific, and the overestimation of surface shortwave radiation recurs in the austral summer in each year.

  1. Healthy Housing Opportunities During Weatherization Work

    SciTech Connect (OSTI)

    Wilson, J.; Tohn, E.

    2011-03-01

    In the summer and early fall of 2010, the National Center for Healthy Housing interviewed people from a selection of state and local agencies that perform weatherizations on low-income housing in order to gauge their approach to improving the health and safety of the homes. The interviews provided a strong cross section of what work agencies can do, and how they go about funding this work when funds from the Weatherization Assistance Program (WAP) do not cover the full extent of the repairs. The report also makes recommendations for WAP in how to assist agencies to streamline and maximize the health and safety repairs they are able to make in the course of a standard weatherization.

  2. Integration of space weather into space situational awareness

    SciTech Connect (OSTI)

    Reeves, Geoffrey D

    2010-11-09

    Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent com plexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbit-dependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which will allow operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather was the cause of anomalous operations, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This allows users to rapidly rule in or out environmental causes of anomalies. The same user interface can also allow users to drill down for more detailed quantitative information. DREAM can be run either from a distributed web-based user interface or as a stand-alone application for secure operations. In this paper we discuss the underlying structure of the DREAM model and demonstrate the user interface that we have developed . We also present some prototype data products and user interfaces for DREAM and discuss how space environment information can be seamlessly integrated into operational SSA systems.

  3. Towards a Fine-Resolution Global Coupled Climate System for Prediction on

    Office of Scientific and Technical Information (OSTI)

    Decadal/Centennial Scales (Technical Report) | SciTech Connect Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales Citation Details In-Document Search Title: Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to

  4. Predictive models of circulating fluidized bed combustors. 12th technical progress report

    SciTech Connect (OSTI)

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  5. 1990 Weatherization Assistance Program monitoring. Final report

    SciTech Connect (OSTI)

    Samuels, L.S.

    1992-06-19

    The fiscal year 1990 DOE weatherization programs were monitored in Indiana, Ohio, and Wisconsin. The focus of the monitoring was on a total of 18 subgrantees. Separate reports on the monitoring completed on each site was submitted as well as the final summary report for each state. The scope of monitoring consisted of a review of current contracts, budgets, program operating procedures, staffing, inventory control, financial and procurement procedures, review of client files and audit reports, inspection of completed dwelling units and assessment of monitoring, training, and technical assistance provided by the grantees. A random sampling of completed units were selected and visits were made to inspect these weatherized dwellings.

  6. Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste

    SciTech Connect (OSTI)

    Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

    2012-10-19

    The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy.

  7. Feasibility of High-Power Diode Laser Array Surrogate to Support Development of Predictive Laser Lethality Model

    SciTech Connect (OSTI)

    Lowdermilk, W H; Rubenchik, A M; Springer, H K

    2011-01-13

    Predictive modeling and simulation of high power laser-target interactions is sufficiently undeveloped that full-scale, field testing is required to assess lethality of military directed-energy (DE) systems. The cost and complexity of such testing programs severely limit the ability to vary and optimize parameters of the interaction. Thus development of advanced simulation tools, validated by experiments under well-controlled and diagnosed laboratory conditions that are able to provide detailed physics insight into the laser-target interaction and reduce requirements for full-scale testing will accelerate development of DE weapon systems. The ultimate goal is a comprehensive end-to-end simulation capability, from targeting and firing the laser system through laser-target interaction and dispersal of target debris; a 'Stockpile Science' - like capability for DE weapon systems. To support development of advanced modeling and simulation tools requires laboratory experiments to generate laser-target interaction data. Until now, to make relevant measurements required construction and operation of very high power and complex lasers, which are themselves costly and often unique devices, operating in dedicated facilities that don't permit experiments on targets containing energetic materials. High power diode laser arrays, pioneered by LLNL, provide a way to circumvent this limitation, as such arrays capable of delivering irradiances characteristic of De weapon requires are self-contained, compact, light weight and thus easily transportable to facilities, such as the High Explosives Applications Facility (HEAF) at Lawrence Livermore National Laboratory (LLNL) where testing with energetic materials can be performed. The purpose of this study was to establish the feasibility of using such arrays to support future development of advanced laser lethality and vulnerability simulation codes through providing data for materials characterization and laser-material interaction models and to validate the accuracy of code predictions. This project was a Feasibility Study under the LLNL Laboratory Directed Research and Development (LDRD) Program.

  8. An integrated model supporting histological and biometric responses as predictive biomarkers of fish health status

    SciTech Connect (OSTI)

    Torres Junior, Audalio Rebelo; Sousa, Dbora Batista Pinheiro; Neta, Raimunda Nonata Fortes Carvalho

    2014-10-06

    In this work, an experimental system of histological (branchial lesions) biomarkers and biometric data in catfish (Sciades herzbergii) was modeled. The fish were sampled along known pollution areas (S1) and from environmental protect areas (S2) in So Marcos' Bay, Brazil. Gills were fixed in 10% formalin and usual histological techniques were used in the first gill arch right. The lesions were observed by light microscopy. There were no histopathological changes in animals captured at reference site (S1). However, in the catfish collected in the potentially contaminated area (S2) was observed several branchial lesions, such as lifting of the lamellar epithelium, fusion of some secondary lamellae, hypertrophy of epithelial cells and lamellar aneurysm. The analysis using the biometric data showed significant differences, being highest in fish analyzed in the reference area. This approach revealed spatial differences related with biometric patterns and morphological modifications of catfish.

  9. Nuclear Shell Model Analyses and Predictions of Double-Beta Decay Observables

    SciTech Connect (OSTI)

    Horoi, Mihai [Department of Physics, Central Michigan University, Mount Pleasant, Michigan, 48859 (United States)

    2010-11-24

    Recent results from neutrino oscillation experiments have convincingly demonstrated that neutrinos have mass and they can mix. The neutrinoless double beta decay is the most sensitive process to determine the absolute scale of the neutrino masses, and the only one that can distinguish whether neutrino is a Dirac or a Majorana particle. A key ingredient for extracting the absolute neutrino masses from neutrinoless double beta decay experiments is a precise knowledge of the nuclear matrix elements (NME) for this process. Newly developed shell model approaches for computing the NME and half-lifes for the two-neutrino and neutrinoless double beta decay modes using modern effective interactions are presented. The implications of the new results on the experimental limits of the effective neutrino mass are discussed by comparing the decays of {sup 48}Ca and {sup 76}Ge.

  10. Reduced Order Modeling for Prediction and Control of Large-Scale Systems.

    SciTech Connect (OSTI)

    Kalashnikova, Irina; Arunajatesan, Srinivasan; Barone, Matthew Franklin; van Bloemen Waanders, Bart Gustaaf; Fike, Jeffrey A.

    2014-05-01

    This report describes work performed from June 2012 through May 2014 as a part of a Sandia Early Career Laboratory Directed Research and Development (LDRD) project led by the first author. The objective of the project is to investigate methods for building stable and efficient proper orthogonal decomposition (POD)/Galerkin reduced order models (ROMs): models derived from a sequence of high-fidelity simulations but having a much lower computational cost. Since they are, by construction, small and fast, ROMs can enable real-time simulations of complex systems for onthe- spot analysis, control and decision-making in the presence of uncertainty. Of particular interest to Sandia is the use of ROMs for the quantification of the compressible captive-carry environment, simulated for the design and qualification of nuclear weapons systems. It is an unfortunate reality that many ROM techniques are computationally intractable or lack an a priori stability guarantee for compressible flows. For this reason, this LDRD project focuses on the development of techniques for building provably stable projection-based ROMs. Model reduction approaches based on continuous as well as discrete projection are considered. In the first part of this report, an approach for building energy-stable Galerkin ROMs for linear hyperbolic or incompletely parabolic systems of partial differential equations (PDEs) using continuous projection is developed. The key idea is to apply a transformation induced by the Lyapunov function for the system, and to build the ROM in the transformed variables. It is shown that, for many PDE systems including the linearized compressible Euler and linearized compressible Navier-Stokes equations, the desired transformation is induced by a special inner product, termed the symmetry inner product. Attention is then turned to nonlinear conservation laws. A new transformation and corresponding energy-based inner product for the full nonlinear compressible Navier-Stokes equations is derived, and it is demonstrated that if a Galerkin ROM is constructed in this inner product, the ROM system energy will be bounded in a way that is consistent with the behavior of the exact solution to these PDEs, i.e., the ROM will be energy-stable. The viability of the linear as well as nonlinear continuous projection model reduction approaches developed as a part of this project is evaluated on several test cases, including the cavity configuration of interest in the targeted application area. In the second part of this report, some POD/Galerkin approaches for building stable ROMs using discrete projection are explored. It is shown that, for generic linear time-invariant (LTI) systems, a discrete counterpart of the continuous symmetry inner product is a weighted L2 inner product obtained by solving a Lyapunov equation. This inner product was first proposed by Rowley et al., and is termed herein the Lyapunov inner product. Comparisons between the symmetry inner product and the Lyapunov inner product are made, and the performance of ROMs constructed using these inner products is evaluated on several benchmark test cases. Also in the second part of this report, a new ROM stabilization approach, termed ROM stabilization via optimization-based eigenvalue reassignment, is developed for generic LTI systems. At the heart of this method is a constrained nonlinear least-squares optimization problem that is formulated and solved numerically to ensure accuracy of the stabilized ROM. Numerical studies reveal that the optimization problem is computationally inexpensive to solve, and that the new stabilization approach delivers ROMs that are stable as well as accurate. Summaries of lessons learned and perspectives for future work motivated by this LDRD project are provided at the end of each of the two main chapters.

  11. Bayesian Models for Life Prediction and Fault-Mode Classification in Solid State Lamps

    SciTech Connect (OSTI)

    Lall, Pradeep; Wei, Junchao; Sakalaukus, Peter

    2015-04-19

    A new method has been developed for assessment of the onset of degradation in solid state luminaires to classifY failure mechanisms by using metrics beyond lumen degradation that are currently used for identification of failure. Luminous Flux output, Correlated Color Temperature Data on Philips LED Lamps has been gathered under 85C/85%RH till lamp failure. The acquired data has been used in conjunction with Bayesian Probabilistic Models to identifY luminaires with onset of degradation much prior to failure through identification of decision boundaries between lamps with accrued damage and lamps beyond the failure threshold in the feature space. In addition luminaires with different failure modes have been classified separately from healthy pristine luminaires. It is expected that, the new test technique will allow the development of failure distributions without testing till L 70 life for the manifestation of failure.

  12. Predictive modeling of CO{sub 2} sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics

    SciTech Connect (OSTI)

    Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra; Lopano, Christina L. J.; Rimstidt, Donald; Brantley, Susan L.

    2013-03-01

    One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rock + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of the maximum CO{sub 2} sequestration, 34.5 kg CO{sub 2} per m{sup 3} of sandstone, is attained by 4000 years even though the system does not achieve chemical equilibrium until ~25,000 years. This maximum represents about 20% CO{sub 2} dissolved as CO{sub 2},aq, 50% dissolved as HCO{sub 3}{sup -}{sub ,aq}, and 30% precipitated as calcite. The extent of sequestration as HCO{sub 3}{sup -} at equilibrium can be calculated from equilibrium thermodynamics and is roughly equivalent to the amount of Na+ in the initial sandstone in a soluble mineral (here, oligoclase). Similarly, the extent of trapping in calcite is determined by the amount of Ca2+ in the initial oligoclase and smectite. Sensitivity analyses show that the rate of CO{sub 2} sequestration is sensitive to the mineral-water reaction kinetic constants between approximately 10 and 4000 years. The sensitivity of CO{sub 2} sequestration to the rate constants decreases in magnitude respectively from oligoclase to albite to smectite.

  13. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    SciTech Connect (OSTI)

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  14. Energy-efficient housing alternatives: a predictive model of factors affecting household perceptions

    SciTech Connect (OSTI)

    Schreckengost, R.L.

    1985-01-01

    The major purpose of this investigation was to assess the impact of household socio-economic factors, dwelling characteristics, energy conservation behavior, and energy attitudes on the perceptions of energy-efficient housing alternatives. Perceptions of passive solar, active solar, earth sheltered, and retrofitted housing were examined. Data used were from the Southern Regional Research Project, S-141, Housing for Low and Moderate Income Families. Responses from 1804 households living in seven southern states were analyzed. A conceptual model was proposed to test the hypothesized relationships which were examined by path analysis. Perceptions of energy efficient housing alternatives were found to be a function of selected household and dwelling characteristics, energy attitude, household economic factors, and household conservation behavior. Age and education of the respondent, family size, housing-income ratio, utility income ratio, energy attitude, and size of the dwelling unit were found to have direct and indirect effects on perceptions of energy-efficient housing alternatives. Energy conservation behavior made a significant direct impact with behavioral energy conservation changes having the most profound influence. Conservation behavior was influenced by selected household and dwelling characteristics, energy attitude, and household economic factors.

  15. Managing Model Data Introduced Uncertainties in Simulator Predictions for Generation IV Systems via Optimum Experimental Design

    SciTech Connect (OSTI)

    Turinsky, Paul J; Abdel-Khalik, Hany S; Stover, Tracy E

    2011-03-31

    An optimization technique has been developed to select optimized experimental design specifications to produce data specifically designed to be assimilated to optimize a given reactor concept. Data from the optimized experiment is assimilated to generate posteriori uncertainties on the reactor concepts core attributes from which the design responses are computed. The reactor concept is then optimized with the new data to realize cost savings by reducing margin. The optimization problem iterates until an optimal experiment is found to maximize the savings. A new generation of innovative nuclear reactor designs, in particular fast neutron spectrum recycle reactors, are being considered for the application of closing the nuclear fuel cycle in the future. Safe and economical design of these reactors will require uncertainty reduction in basic nuclear data which are input to the reactor design. These data uncertainty propagate to design responses which in turn require the reactor designer to incorporate additional safety margin into the design, which often increases the cost of the reactor. Therefore basic nuclear data needs to be improved and this is accomplished through experimentation. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment which will provide the data needed for uncertainty reduction such that a reactor design concept can meet its target accuracies or to allow savings to be realized by reducing the margin required due to uncertainty propagated from basic nuclear data. However, this optimization is coupled to the reactor design itself because with improved data the reactor concept can be re-optimized itself. It is thus desired to find the experiment that gives the best optimized reactor design. Methods are first established to model both the reactor concept and the experiment and to efficiently propagate the basic nuclear data uncertainty through these models to outputs. The representativity of the experiment to the design concept is quantitatively determined. A technique is then established to assimilate this data and produce posteriori uncertainties on key attributes and responses of the design concept. Several experiment perturbations based on engineering judgment are used to demonstrate these methods and also serve as an initial generation of the optimization problem. Finally, an optimization technique is developed which will simultaneously arrive at an optimized experiment to produce an optimized reactor design. Solution of this problem is made possible by the use of the simulated annealing algorithm for solution of optimization problems. The optimization examined in this work is based on maximizing the reactor cost savings associated with the modified design made possible by using the design margin gained through reduced basic nuclear data uncertainties. Cost values for experiment design specifications and reactor design specifications are established and used to compute a total savings by comparing the posteriori reactor cost to the a priori cost plus the cost of the experiment. The optimized solution arrives at a maximized cost savings.

  16. Illinois and Texas Towns See Weatherization Boost

    Broader source: Energy.gov [DOE]

    “It cropped about a hundred bucks off my bill in the cold, cold winter,” says Springfield resident Donald Dagget, a 78-year-old retired beauty salon owner who had his 1937, two-bedroom bungalow weatherized in October.

  17. Validation of the thermal transport model used for ITER startup scenario predictions with DIII-D experimental data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casper, T. A.; Meyer, W. H.; Jackson, G. L.; Luce, T. C.; Hyatt, A. W.; Humphreys, D. A.; Turco, F.

    2010-12-08

    We are exploring characteristics of ITER startup scenarios in similarity experiments conducted on the DIII-D Tokamak. In these experiments, we have validated scenarios for the ITER current ramp up to full current and developed methods to control the plasma parameters to achieve stability. Predictive simulations of ITER startup using 2D free-boundary equilibrium and 1D transport codes rely on accurate estimates of the electron and ion temperature profiles that determine the electrical conductivity and pressure profiles during the current rise. Here we present results of validation studies that apply the transport model used by the ITER team to DIII-D discharge evolutionmore » and comparisons with data from our similarity experiments.« less

  18. GIS-BASED PREDICTION OF HURRICANE FLOOD INUNDATION

    SciTech Connect (OSTI)

    JUDI, DAVID; KALYANAPU, ALFRED; MCPHERSON, TIMOTHY; BERSCHEID, ALAN

    2007-01-17

    A simulation environment is being developed for the prediction and analysis of the inundation consequences for infrastructure systems from extreme flood events. This decision support architecture includes a GIS-based environment for model input development, simulation integration tools for meteorological, hydrologic, and infrastructure system models and damage assessment tools for infrastructure systems. The GIS-based environment processes digital elevation models (30-m from the USGS), land use/cover (30-m NLCD), stream networks from the National Hydrography Dataset (NHD) and soils data from the NRCS (STATSGO) to create stream network, subbasins, and cross-section shapefiles for drainage basins selected for analysis. Rainfall predictions are made by a numerical weather model and ingested in gridded format into the simulation environment. Runoff hydrographs are estimated using Green-Ampt infiltration excess runoff prediction and a 1D diffusive wave overland flow routing approach. The hydrographs are fed into the stream network and integrated in a dynamic wave routing module using the EPA's Storm Water Management Model (SWMM) to predict flood depth. The flood depths are then transformed into inundation maps and exported for damage assessment. Hydrologic/hydraulic results are presented for Tropical Storm Allison.

  19. Weatherization and Workforce Guidelines for Home Energy Upgrades (Fact Sheet), Weatherization and Intergovernmental Programs (WIP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTERGOVERNMENTAL PROGRAMS Weatherization and Workforce Guidelines for Home Energy Upgrades Improved Quality, Better Training March 2011 The U.S. Department of Energy (DOE) Weatherization Assistance Program has developed Workforce Guidelines for Home Energy Upgrades to foster the growth of a high-quality home energy retroft industry and a skilled and cre- dentialed workforce. Public and private retroft programs nationwide may adopt the guidelines to increase the consistency and effectiveness of

  20. Weatherization Innovation Pilot Program (Fact Sheet), Weatherization And Intergovernmental Programs (WIP)

    Broader source: Energy.gov (indexed) [DOE]

    People Working Cooperatively The U.S. Department of Energy's (DOE) Offce of Energy Effciency and Renewable Energy (EERE) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy effciency and health and safety of low-income homes. WIPP has worked with new service provid- ers, as well as nontraditional partners, to leverage non-federal fnancial resources to supplement federal grants and save

  1. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    SciTech Connect (OSTI)

    Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ? Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ? Quantitative predictions in agreement with microarrays for Cyp1b1 induction ? Unexpected difference in expression between DBC and other treatments predicted ? Model predictions for combining PAH mixtures in agreement with microarrays ? Predictions highly dependent on aryl hydrocarbon receptor repressor expression.

  2. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms. | Photo...

  3. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms....

  4. WPN 11-01: Program Year 2011 Weatherization Grant Guidance |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-01: Program Year 2011 Weatherization Grant Guidance WPN 11-01: Program Year 2011 Weatherization Grant Guidance Archived 013112, Superseded by WPN 12-1 To issue grant guidance...

  5. Weatherization Program Notice 10-13A | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon wap_arra_reporting_requirements.pdf More Documents & Publications WPN 12-5: Updated Weatherization Assistance Program Monitoring Guidance WPN 12-1: Program Year 2012 Weatherization Grant Guidance WPN 15-1 Program Year 2015

  6. Understanding the Effect of Baseline Modeling Implementation Choices on Analysis of Demand Response Performance

    SciTech Connect (OSTI)

    University of California, Berkeley; Addy, Nathan; Kiliccote, Sila; Mathieu, Johanna; Callaway, Duncan S.

    2012-06-13

    Accurate evaluation of the performance of buildings participating in Demand Response (DR) programs is critical to the adoption and improvement of these programs. Typically, we calculate load sheds during DR events by comparing observed electric demand against counterfactual predictions made using statistical baseline models. Many baseline models exist and these models can produce different shed calculations. Moreover, modelers implementing the same baseline model can make different modeling implementation choices, which may affect shed estimates. In this work, using real data, we analyze the effect of different modeling implementation choices on shed predictions. We focused on five issues: weather data source, resolution of data, methods for determining when buildings are occupied, methods for aligning building data with temperature data, and methods for power outage filtering. Results indicate sensitivity to the weather data source and data filtration methods as well as an immediate potential for automation of methods to choose building occupied modes.

  7. Solar Ramping Distributions over Multiple Timescales and Weather Patterns (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Hummon, M.; Orwig, K.

    2011-10-01

    This presentation offers new data and statistical analysis of ramping, solar power, and weather patterns in operational systems.

  8. Weatherization Assistance Program: Spurring Innovation, Increasing Home Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    Weatherization services are cost-effective, energy efficiency emasures for existing residential and multifamily housing with income-eligible residents.

  9. WPN 14-1: Program Year 2014 Weatherization Grant Guidance

    Broader source: Energy.gov [DOE]

    To issue grant guidance and management information for the Weatherization Assistance Program (WAP) for Program Year (PY) 2014.

  10. Cook Inlet Tribal Council, Inc.- 2010 Weatherization Project

    Broader source: Energy.gov [DOE]

    Weatherization improvement services will be provided to native people by native people in the Cook Inlet region.

  11. Weatherization Innovation Pilot Program Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Pilot Program Projects Weatherization Innovation Pilot Program Projects Projects funded by the Weatherization Innovation Pilot Program $90 million under the American Recovery and Reinvestment Act to support the use of a wide range of energy efficiency and renewable energy technologies by 101 high-performing local weatherization providers across the country View WIPP Projects in a larger map. To report corrections, please email WeatherizationInnovation@ee.doe.gov. The City of Danville,

  12. Presentation at the Weatherization Program Deep Dive Briefing, November 4,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 | Department of Energy Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 Presentation at the Weatherization Program Deep Dive Briefing, November 4, 2009 U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program presentation at Weatherization Deep Dive meeting, November 4, 2009. PDF icon wap_deep_dive.pdf More Documents & Publications Designing Effective Incentives to Drive Residential

  13. HUD Multifamily Property Listings Eligible for Weatherization Assistance |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy HUD Multifamily Property Listings Eligible for Weatherization Assistance HUD Multifamily Property Listings Eligible for Weatherization Assistance February 23, 2016 - 4:29pm Addthis Housing and Urban Development (HUD) multifamily properties eligible for weatherization assistance. On January 25, 2010, the Department of Energy (DOE) implemented rule 71-CFR-3847 for its Weatherization Assistance Program (WAP). Under the rule, if a public housing, assisted multi-family or Low

  14. WPN 02-1: Program Year 2002 Weatherization Grant Guidance

    Broader source: Energy.gov [DOE]

    To issue grant guidance and management information for the low-income Weatherization Assistance Program for Program Year 2002.

  15. Tribal Energy System Vulnerabilities to Climate Change and Extreme Weather

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy System Vulnerabilities to Climate Change and Extreme Weather Tribal Energy System Vulnerabilities to Climate Change and Extreme Weather This U.S. Department of Energy Office of Indian Energy report assesses climate change and extreme weather vulnerabilities specific to tribal energy infrastructure and systems in the contiguous United States and Alaska. It includes information about the impacts from climate change and extreme weather events on both onsite and offsite

  16. WPN 00-1- Program Year 2000 Weatherization Grant Guidance

    Broader source: Energy.gov [DOE]

    To issue grant guidance and management information for the low-income Weatherization Assistance Program for Program Year 2000.

  17. EERE Success Story-How the Weatherization Assistance Program Changed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jasmine's Life | Department of Energy How the Weatherization Assistance Program Changed Jasmine's Life EERE Success Story-How the Weatherization Assistance Program Changed Jasmine's Life January 6, 2016 - 11:06am Addthis The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the Energy Department.| Photo courtesy of Rocky Mountain Youth Corps. The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the

  18. WPN 04-1: Program Year 2004 Weatherization Grant Guidance

    Broader source: Energy.gov [DOE]

    To issue grant guidance and management information for the low-income Weatherization Assistance Program for Program Year 2004.

  19. WPN 03-1: Program Year 2003 Weatherization Grant Guidance

    Broader source: Energy.gov [DOE]

    To issue grant guidance and management information for the low-income Weatherization Assistance Program for Program Year 2003.

  20. WPN 16-4: Weatherization Assistance Program Monitoring Guidance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6-4: Weatherization Assistance Program Monitoring Guidance WPN 16-4: Weatherization Assistance Program Monitoring Guidance Effective: Dec. 17, 2015 To issue updated monitoring policy and procedures for the Weatherization Assistance Program (WAP). PDF icon WPN 16-4: Weatherization Assistance Program Monitoring Guidance PDF icon Grantee PM Checklist PDF icon Subgrantee Checklist PDF icon Grantee Programmatic Management Changes PDF icon Subgrantee Checklist Changes More

  1. Getting It Right: Weatherization and Energy Efficiency Are Good Investments

    Energy Savers [EERE]

    | Department of Energy Getting It Right: Weatherization and Energy Efficiency Are Good Investments Getting It Right: Weatherization and Energy Efficiency Are Good Investments August 10, 2015 - 4:30pm Addthis Getting It Right: Weatherization and Energy Efficiency Are Good Investments Dr. Kathleen Hogan Dr. Kathleen Hogan Deputy Assistant Secretary for Energy Efficiency A working paper released in June by academics with the E2e Project wrongly suggested that the federal Weatherization

  2. Improving Energy Efficiency and Creating Jobs Through Weatherization |

    Energy Savers [EERE]

    Department of Energy Improving Energy Efficiency and Creating Jobs Through Weatherization Improving Energy Efficiency and Creating Jobs Through Weatherization December 9, 2013 - 9:37am Addthis Improving Energy Efficiency and Creating Jobs Through Weatherization David Danielson David Danielson Assistant Secretary for Energy Efficiency and Renewable Energy KEY FACTS Since 2009, more than 1.1 million homes throughout the country have been weatherized More than 15,000 additional workers were

  3. States Celebrate National Weatherization Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25, 2015 - 12:20pm Addthis West Plains, Missouri, Mayor Jack Pahlmann issued a proclamation recognizing National Weatherization Day on Oct. 30. Here, the Mayor (in sport coat and red shirt) presents his proclamation at a West Plains home undergoing weatherization. Weatherization funding for the home comes, in part, from the U.S. Department of Energy. West Plains, Missouri, Mayor Jack Pahlmann issued a proclamation recognizing National Weatherization Day on Oct. 30. Here, the Mayor (in sport coat

  4. First Steps Towards Tribal Weatherization: Human Capacity Development

    Office of Environmental Management (EM)

    Towards Tribal Weatherization: Human Capacity Development October 2011 October 2011 Cook Inlet Tribal Council's Weatherization Apprenticeship October 2011 March 2010 - March 2012 Cook Inlet Tribal Council Vision October 2011 "To minimize our impacts to the environment by reducing global warming through energy efficiencies in existing and new buildings and an improved transportation system for tribal members." CITC Weatherization Apprenticeship October 2011 Overview: Weatherization

  5. First Steps Towards Tribal Weatherization: Human Capacity Development

    Office of Environmental Management (EM)

    Steps Towards tribal weatherization: human capacity development October 2010 - Cook Inlet Tribal Council Weatherization Apprenticeship March 2010 February 2012 Cook Inlet Tribal Council Vision "To minimize our impacts to the environment by reducing global warming through energy efficiencies in existing and new buildings and an improved transportation system for tribal members." CITC Weatherization Apprenticeship Overview: Weatherization improvement services will be provided to Native

  6. HUD Data on Properties Eligible for Weatherization Assistance | Department

    Office of Environmental Management (EM)

    of Energy Data on Properties Eligible for Weatherization Assistance HUD Data on Properties Eligible for Weatherization Assistance U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization Assistance Program guidance to states, Indian tribes, and overseas U.S. territories regarding HUD data on properties eligible for weatherization ser PDF icon pih_mf_eligible_properties_hud_data_description.pdf More Documents & Publications WPN 11-9: Updated

  7. Homes Weatherized by State April 2010 | Department of Energy

    Office of Environmental Management (EM)

    April 2010 Homes Weatherized by State April 2010 PDF icon PA_Format_WAP April Production Numbers and Total ARRA and Non-ARRA production to date_6 23 10.xlsx More Documents & Publications Homes_Weatherized_by_State_for_November_1.18.10.pdf ARRA_Homes_Weatherized_by_State_for_February_4.14.11.pdf ARRA_Homes_Weatherized_by_State_for_January_4.14.11.pdf

  8. How the Weatherization Assistance Program Changed Jasmine's Life |

    Office of Environmental Management (EM)

    Department of Energy How the Weatherization Assistance Program Changed Jasmine's Life How the Weatherization Assistance Program Changed Jasmine's Life February 19, 2015 - 4:45pm Addthis The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the Energy Department.| Photo courtesy of Rocky Mountain Youth Corps The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the Energy Department.| Photo courtesy of

  9. How the Weatherization Assistance Program Changed Jasmine's Life |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy How the Weatherization Assistance Program Changed Jasmine's Life How the Weatherization Assistance Program Changed Jasmine's Life January 6, 2016 - 11:06am Addthis The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the Energy Department.| Photo courtesy of Rocky Mountain Youth Corps. The Rocky Mountain Youth Corps' Jasmine Ramero found a new career in weatherization with help from the Energy Department.| Photo courtesy of

  10. WPN 12-5: Updated Weatherization Assistance Program Monitoring Guidance |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Dec. 1, 2011 To issue the updated monitoring policy and procedures for the Weatherization Assistance Program (WAP) for both annual Appropriated awards and for the Recovery Act awards, which includes the Sustainable Energy Resources for Consumers (SERC) Awards. This updated Guidance excludes the Weatherization Innovative Pilot Program (WIPP) and Weatherization Training Centers (WTC). PDF icon WPN 12-5: Updated Weatherization Assistance Program Monitoring Guidance PDF icon

  11. Weatherization Assistance Program (WAP) Closeout Frequently Asked Questions

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy document provides a list of frequently asked questions in regards to the Weatherization Assistance Program (WAP) Closeout procedures. PDF icon wap_closeout_faqs.pdf More Documents & Publications WPN 12-3: Closeout Procedures for Recovery Act Grants Under the Weatherization Assistance Program CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM WPN 12-1: Program Year 2012 Weatherization Grant Guidance

  12. Weatherization Innovation Pilot Program Fact Sheet July 2011

    Broader source: Energy.gov (indexed) [DOE]

    Weatherization Innovation Pilot Program The Department of Energy (DOE) Offce of Energy Effciency and Renewable Energy (EERE) recently launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy effciency and health and safety in homes of low-income families. Since 2010, this program has helped weatherization service providers as well as new and nontraditional partners leverage non-federal

  13. Weatherization Assistance Program Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success Stories Weatherization Assistance Program Success Stories These success stories include EERE Blog entries for the U.S. Department of Energy (DOE) Weatherization Assistance Program. How to Save Energy, Money with Home Energy Upgrades Make your home more energy efficient. Weatherization Assistance Program: Spurring Innovation, Increasing Home Energy Efficiency The Weatherization Assistance Program has developed technical certifications, training programs, and new methods to advance the

  14. Department of Energy Joins States to Celebrate National Weatherization Day

    Office of Environmental Management (EM)

    | Department of Energy Joins States to Celebrate National Weatherization Day Department of Energy Joins States to Celebrate National Weatherization Day October 30, 2014 - 1:00pm Addthis Participants watch a weatherization demonstration in Vermont, including techniques for the proper installation of a blower door. | Photo Courtesy of Capstone Community Action in Vermont Participants watch a weatherization demonstration in Vermont, including techniques for the proper installation of a blower

  15. #AskEnergySaver: Weatherization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization #AskEnergySaver: Weatherization November 25, 2014 - 12:23pm Addthis This month our experts answered your #AskEnergySaver questions on weatherization. | Image courtesy of Sarah Gerrity, Energy Department. This month our experts answered your #AskEnergySaver questions on weatherization. | Image courtesy of Sarah Gerrity, Energy Department. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs Looking for more ways to save energy? Check out Energy Saver

  16. Weather and the Transport of Hazardous Materials | Department of Energy

    Office of Environmental Management (EM)

    Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials PDF icon Weather and the Transport of Hazardous Materials More Documents & Publications Section 180(c) Ad Hoc Working Group Transportation Plan Ad Hoc Working Group EIS-0352: Record of Decision

  17. 200,000 homes weatherized under the Recovery Act

    ScienceCinema (OSTI)

    Zoi, Cathy

    2013-05-29

    Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act. We're taking your questions and comments right now on weatherization. Join in the conversation! *Facebook -- http://www.facebook.com/energygov *Twitter -- http://www.twitter.com/energy

  18. Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System | NREL Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System In this video, NREL researchers Gary Jorgenson and Carl Bingham discuss the NREL-developed, ultra-accelerated weathering system and its ability to revolutionize the weathering industry

  19. Weatherization and Intergovernmental Programs Office | Department of Energy

    Energy Savers [EERE]

    Weatherization and Intergovernmental Programs Office 2016 Better Buildings Summit Registration Now Open 2016 Better Buildings Summit Registration Now Open Read more Florida Installs Battery Backup Solar Power at Schools Designated as Emergency Shelters Florida Installs Battery Backup Solar Power at Schools Designated as Emergency Shelters Read more Weatherization Assistance Program National Evaluation Results Weatherization Assistance Program National Evaluation Results Read more Eleven States

  20. Weatherization and Intergovernmental Programs Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherization and Intergovernmental Programs Office Weatherization Assistance Program National Evaluation Results Weatherization Assistance Program National Evaluation Results Read more Eleven States Selected for State Energy Program Competitive Funding Eleven States Selected for State Energy Program Competitive Funding Read more Energy Department Funding Helping Energy-Intensive Dairy Industry Energy Department Funding Helping Energy-Intensive Dairy Industry Read more Colorado Fuels Vehicles

  1. Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans

    SciTech Connect (OSTI)

    Atienzar, Franck A.; Novik, Eric I.; Gerets, Helga H.; Parekh, Amit; Delatour, Claude; Cardenas, Alvaro; MacDonald, James; Yarmush, Martin L.; Dhalluin, Stphane

    2014-02-15

    Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2 weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n = 40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n = 11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n = 14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies. - Highlights: Importance of species differences in drug development. Relevance of dog co-culture model for metabolism and toxicology studies. Hepatotoxicity: higher predictivity of dog co-culture vs HepG2 and human hepatocytes.

  2. WEATHERIZATION PROGRAM NOTICE 09-1C

    Energy Savers [EERE]

    WEATHERIZATION PROGRAM NOTICE 10-19 EFFECTIVE DATE: September 22, 2010 SUBJECT: GUIDANCE FOR GRANT AMENDMENTS FOR THE SUSTAINABLE ENERGY RESOURCES FOR CONSUMERS FUNDING PURPOSE: To issue guidance for the Grantees who need to complete grant amendments based on the receipt of funding to undertake Sustainable Energy Resources for Consumers (SERC) projects. SCOPE: The provisions of this guidance apply to States or other entities named as recipients of SERC Grants funding within the Department of

  3. DOE Tribal Multi-County Weatherization Program

    Office of Environmental Management (EM)

    Tribal Multi-County Weatherization Program October 2010 Brief Summary of Tribe The Scotts Valley Band of Pomo Indians is located in Northern California with tribal offices located in Lakeport, Lake County and the City of Richmond, Contra Costa in California. The current Tribal membership consist of 227 members. Scotts Valley is a landless Tribe and currently has 23 acres in fee simple status in Lake County. Project Overview The program promotes Tribal energy self- sufficiency, social &

  4. Weatherization Assistance Program - Background Data and Statistics

    SciTech Connect (OSTI)

    Eisenberg, Joel Fred

    2010-03-01

    This technical memorandum is intended to provide readers with information that may be useful in understanding the purposes, performance, and outcomes of the Department of Energy's (DOE's) Weatherization Assistance Program (Weatherization). Weatherization has been in operation for over thirty years and is the nation's largest single residential energy efficiency program. Its primary purpose, established by law, is 'to increase the energy efficiency of dwellings owned or occupied by low-income persons, reduce their total residential energy expenditures, and improve their health and safety, especially low-income persons who are particularly vulnerable such as the elderly, the handicapped, and children.' The American Reinvestment and Recovery Act PL111-5 (ARRA), passed and signed into law in February 2009, committed $5 Billion over two years to an expanded Weatherization Assistance Program. This has created substantial interest in the program, the population it serves, the energy and cost savings it produces, and its cost-effectiveness. This memorandum is intended to address the need for this kind of information. Statistically valid answers to many of the questions surrounding Weatherization and its performance require comprehensive evaluation of the program. DOE is undertaking precisely this kind of independent evaluation in order to ascertain program effectiveness and to improve its performance. Results of this evaluation effort will begin to emerge in late 2010 and 2011, but they require substantial time and effort. In the meantime, the data and statistics in this memorandum can provide reasonable and transparent estimates of key program characteristics. The memorandum is laid out in three sections. The first deals with some key characteristics describing low-income energy consumption and expenditures. The second section provides estimates of energy savings and energy bill reductions that the program can reasonably be presumed to be producing. The third section deals with estimates of program cost-effectiveness and societal impacts such as carbon reduction and reduced national energy consumption. Each of the sections is brief, containing statistics, explanatory graphics and tables as appropriate, and short explanations of the statistics in order to place them in context for the reader. The companion appendices at the back of the memorandum explain the methods and sources used in developing the statistics.

  5. Real-Time Weather Data Access Guide: Updated February 2006

    SciTech Connect (OSTI)

    Long, N.

    2006-03-01

    The format of the weather data received from the National Weather Service is extremely inconvenient for building engineers to read, especially for trending historical data; therefore, a weather parsing program was created by NREL building engineers to simplify the data. The weather-parsing program collects current weather conditions for over 4,000 sites around the world and allows access to the data via a web page designed by NREL building researchers. The database provides data for some locations from late 1998 through today. Users can request data to be sent to them via e-mail by using the interactive web page.

  6. Experimentally validated long-term energy production prediction model for solar dish/Stirling electric generating systems

    SciTech Connect (OSTI)

    Stine, W.B.

    1995-12-31

    Dish/Stirling solar electric systems are currently being tested for performance and longevity in order to bring them to the electric power generation market. Studies both in Germany and the United States indicate that a significant market exists for these systems if they perform in actual installations according to tested conditions, and if, when produced in large numbers their cost will drop to goals currently being projected. In the 1980`s, considerable experience was gained operating eight dish/Stirling systems of three different designs. One of these recorded the world`s record for converting solar energy into electricity of 29.4%. The approach to system performance prediction taken in this presentation results from lessons learned in testing these early systems, and those currently being tested. Recently the IEA through the SolarPACES working group, has embarked on a program to develop uniform guidelines for measuring and presenting performance data. These guidelines are to help potential buyers who want to evaluate a specific system relative to other dish/Stirling systems, or relative to other technologies such as photovoltaic, parabolic trough or central receiver systems. In this paper, a procedure is described that permits modeling of long-term energy production using only a few experimentally determined parameters. The benefit of using this technique is that relatively simple tests performed over a period of a few months can provide performance parameters that can be used in a computer model requiring only the input of insolation and ambient temperature data to determine long-term energy production information. A portion of this analytical procedure has been tested on the three 9-kW(e) systems in operation in Almeria, Spain. Further evaluation of these concepts is planned on a 7.5-kW(e) system currently undergoing testing at Cal Poly University in Pomona, California and later on the 25 kW(e) USJVP systems currently under development.

  7. Obama Administration Delivers More than $63 Million for Weatherization Programs in Indiana and New Mexico

    Broader source: Energy.gov [DOE]

    Recovery Act funding to expand weatherization assistance programs, create jobs and weatherize more than 22,400 homes

  8. Obama Administration Delivers More Than $66 Million for Weatherization Programs in Alaska, Colorado, Connecticut and Hawaii

    Broader source: Energy.gov [DOE]

    Recovery Act funding to expand weatherization assistance programs, create jobs and weatherize approximately 26,300 homes

  9. Development and Evaluation of RRTMG_SW, a Shortwave Radiative Transfer Model for GCM Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development and Evaluation of RRTMG_SW, a Shortwave Radiative Transfer Model for General Circulation Model Applications M. J. Iacono, J. S. Delamere, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Lexington, Massachusetts J.-J. Morcrette European Center for Medium-Range Weather Forecasts Reading, United Kingdom Y.-T. Hou National Centers for Environmental Prediction Camp Springs, Maryland Introduction The k-distribution shortwave radiation model developed for the

  10. Mathematical model for predicting the probability of acute mortality in a human population exposed to accidentally released airborne radionuclides. Final report for Phase I

    SciTech Connect (OSTI)

    Filipy, R.E.; Borst, F.J.; Cross, F.T.; Park, J.F.; Moss, O.R.; Roswell, R.L.; Stevens, D.L.

    1980-05-01

    A mathematical model was constructed for the purpose of predicting the fraction of human population which would die within 1 year of an accidental exposure to airborne radionuclides. The model is based on data from laboratory experiments with rats, dogs and baboons, and from human epidemiological data. Doses from external, whole-body irradiation and from inhaled, alpha- and beta-emitting radionuclides are calculated for several organs. The probabilities of death from radiation pneumonitis and from bone marrow irradiation are predicted from doses accumulated within 30 days of exposure to the radioactive aerosol. The model is compared with existing similar models under hypothetical exposure conditions. Suggestions for further experiments with inhaled radionuclides are included. 25 refs., 16 figs., 13 tabs.

  11. 2015 Los Alamos Space Weather Summer School Research Reports

    SciTech Connect (OSTI)

    Cowee, Misa; Chen, Yuxi; Desai, Ravindra; Hassan, Ehab; Kalmoni, Nadine; Lin, Dong; Depascuale, Sebastian; Hughes, Randall Scott; Zhou, Hong

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two-component electric field model, Ion and electron heating by whistler turbulence: parametric studies via particle-in-cell simulation, and The statistics of relativistic electron pitch angle distribution in the Earth’s radiation belt based on the Van Allen Probes measurements.

  12. Characterization of the Weatherization Assistance Program network

    SciTech Connect (OSTI)

    Mihlmester, P.E.; Koehler, W.C. Jr.; Beyer, M.A. . Applied Management Sciences Div.); Brown, M.A. ); Beschen, D.A. Jr. . Office of Weatherization Assistance Programs)

    1992-02-01

    The Characterization of the Weatherization Assistance Program (WAP) Network was designed to describe the national network of State and local agencies that provide WAP services to qualifying low-income households. The objective of this study was to profile the current WAP network. To achieve the objective, two national surveys were conducted: one survey collected data from 49 State WAP agencies (including the coterminous 48 States and the District of Columbia), and the second survey collected data from 920 (or 81 percent) of the local WAP agencies.

  13. Performance model assessment for multi-junction concentrating photovoltaic systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Riley, Daniel M.; McConnell, Robert.; Sahm, Aaron; Crawford, Clark; King, David L.; Cameron, Christopher P.; Foresi, James S.

    2010-03-01

    Four approaches to modeling multi-junction concentrating photovoltaic system performance are assessed by comparing modeled performance to measured performance. Measured weather, irradiance, and system performance data were collected on two systems over a one month period. Residual analysis is used to assess the models and to identify opportunities for model improvement. Large photovoltaic systems are typically developed as projects which supply electricity to a utility and are owned by independent power producers. Obtaining financing at favorable rates and attracting investors requires confidence in the projected energy yield from the plant. In this paper, various performance models for projecting annual energy yield from Concentrating Photovoltaic (CPV) systems are assessed by comparing measured system output to model predictions based on measured weather and irradiance data. The results are statistically analyzed to identify systematic error sources.

  14. Prediction of Thermal Conductivity for Irradiated SiC/SiC Composites by Informing Continuum Models with Molecular Dynamics Data

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Gao, Fei; Henager, Charles H.; Kurtz, Richard J.

    2014-05-01

    This article proposes a new method to estimate the thermal conductivity of SiC/SiC composites subjected to neutron irradiation. The modeling method bridges different scales from the atomic scale to the scale of a 2D SiC/SiC composite. First, it studies the irradiation-induced point defects in perfect crystalline SiC using molecular dynamics (MD) simulations to compute the defect thermal resistance as a function of vacancy concentration and irradiation dose. The concept of defect thermal resistance is explored explicitly in the MD data using vacancy concentrations and thermal conductivity decrements due to phonon scattering. Point defect-induced swelling for chemical vapor deposited (CVD) SiC as a function of irradiation dose is approximated by scaling the corresponding MD results for perfect crystal ?-SiC to experimental data for CVD-SiC at various temperatures. The computed thermal defect resistance, thermal conductivity as a function of grain size, and definition of defect thermal resistance are used to compute the thermal conductivities of CVD-SiC, isothermal chemical vapor infiltrated (ICVI) SiC and nearly-stoichiometric SiC fibers. The computed fiber and ICVI-SiC matrix thermal conductivities are then used as input for an Eshelby-Mori-Tanaka approach to compute the thermal conductivities of 2D SiC/SiC composites subjected to neutron irradiation within the same irradiation doses. Predicted thermal conductivities for an irradiated Tyranno-SA/ICVI-SiC composite are found to be comparable to available experimental data for a similar composite ICVI-processed with these fibers.

  15. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    SciTech Connect (OSTI)

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  16. WEATHERIZATION PROGRAM NOTICE 10-10: REPROGRAMMING TRAINING AND TECHNICAL

    Energy Savers [EERE]

    ASSISTANCE FUNDS TO PROGRAM OPERATIONS | Department of Energy 10-10: REPROGRAMMING TRAINING AND TECHNICAL ASSISTANCE FUNDS TO PROGRAM OPERATIONS WEATHERIZATION PROGRAM NOTICE 10-10: REPROGRAMMING TRAINING AND TECHNICAL ASSISTANCE FUNDS TO PROGRAM OPERATIONS Guidance to Weatherization Assistance Program Grantees when requesting to reprogram Training and Technical Assistance (T&TA) funds to the Program Operations line item. PDF icon weatherization_program_notice_10-10.pdf More Documents

  17. DOE Announces $29 Million in Recovery Act Awards for Weatherization

    Energy Savers [EERE]

    Training Centers | Department of Energy 9 Million in Recovery Act Awards for Weatherization Training Centers DOE Announces $29 Million in Recovery Act Awards for Weatherization Training Centers June 4, 2010 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy announced today that 34 projects in 27 states have been selected to receive $29 million under the American Recovery and Reinvestment Act to develop and expand weatherization training centers across the country. These projects

  18. Obama Administration Delivers More than $101 Million for Weatherization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs in Guam and Pennsylvania | Department of Energy 1 Million for Weatherization Programs in Guam and Pennsylvania Obama Administration Delivers More than $101 Million for Weatherization Programs in Guam and Pennsylvania August 25, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced that the Department of Energy is providing more than $101 million in funding from the American Recovery and Reinvestment Act to expand weatherization

  19. Obama Administration Delivers More than $288 Million for Weatherization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs in Seven States | Department of Energy 288 Million for Weatherization Programs in Seven States Obama Administration Delivers More than $288 Million for Weatherization Programs in Seven States July 6, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced that the Department of Energy is providing more than $288 million in Recovery Act funding to expand weatherization assistance programs in Arkansas, Iowa, Kentucky, Massachusetts,

  20. Obama Administration Delivers More than $304 Million for Weatherization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs in Georgia, Illinois and New York | Department of Energy 04 Million for Weatherization Programs in Georgia, Illinois and New York Obama Administration Delivers More than $304 Million for Weatherization Programs in Georgia, Illinois and New York June 26, 2009 - 12:00am Addthis WASHINGTON, DC -- U.S. Department of Energy Secretary Steven Chu today announced that the Department of Energy is providing more than $304 million in Recovery Act funding to expand weatherization assistance

  1. Obama Administration Delivers More than $453 Million for Weatherization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs in 15 States | Department of Energy 53 Million for Weatherization Programs in 15 States Obama Administration Delivers More than $453 Million for Weatherization Programs in 15 States June 18, 2009 - 12:00am Addthis COLUMBUS, OHIO - U.S. Department of Energy Secretary Steven Chu today announced that the Department of Energy is providing more than $453 million in Recovery Act funding to expand weatherization assistance programs in 15 additional states. These funds, along with

  2. Monitoring Plan for Weatherization Assistance Program, State Energy Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Energy Efficiency and Conservation Block Grants | Department of Energy Monitoring Plan for Weatherization Assistance Program, State Energy Program and Energy Efficiency and Conservation Block Grants Monitoring Plan for Weatherization Assistance Program, State Energy Program and Energy Efficiency and Conservation Block Grants Appendix of Compliance Checklists PDF icon appendix_compliance_checklists_102210.pdf More Documents & Publications WPN 16-4: Weatherization Assistance Program

  3. Clark County Develops On-the-Job Weatherization Training Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Clark County Develops On-the-Job Weatherization Training Program Clark County Develops On-the-Job Weatherization Training Program June 9, 2010 - 11:02am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? Southwest Washington Workforce Development Council and the State Board of Community and Technical Colleges received over $200,000 under the American Recovery and Reinvestment Act to fund the weatherization training at Clark

  4. SPECIAL REPORT Selected Recipients of Maryland Weatherization Assistance Program Funds

    Energy Savers [EERE]

    Selected Recipients of Maryland Weatherization Assistance Program Funds DOE/IG-0942 July 2015 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 July 30, 2015 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Report: "Selected Recipients of Maryland Weatherization Assistance Program Funds" BACKGROUND The Department of Energy's Weatherization Assistance

  5. Test Procedure for UV Weathering Resistance of Backsheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Test Procedure for UV Weathering Resistance of Backsheet Test Procedure for UV Weathering Resistance of Backsheet Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_toray_hirota.pdf More Documents & Publications QA TG5 UV, temperature and humidity Weathering Performance of PV Backsheets A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions

  6. Obama-Biden Administration Announces Nearly $30 Million in Weatherization

    Energy Savers [EERE]

    Funding and Energy Efficiency Grants for Hawaii | Department of Energy 30 Million in Weatherization Funding and Energy Efficiency Grants for Hawaii Obama-Biden Administration Announces Nearly $30 Million in Weatherization Funding and Energy Efficiency Grants for Hawaii March 12, 2009 - 12:00am Addthis Washington DC -- Vice President Joe Biden and Energy Secretary Chu today announced Hawaii will receive $29,971,461 in weatherization and energy efficiency funding - including $4,041,461 for the

  7. Weathering Performance of PV Backsheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weathering Performance of PV Backsheets Weathering Performance of PV Backsheets Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_arkema_lefebvre.pdf More Documents & Publications Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl PPE Sheet-Back Sheet Test Procedure for UV Weathering

  8. Administration Announces Nearly $8 Billion in Weatherization Funding and

    Energy Savers [EERE]

    Energy Efficiency Grants | Department of Energy Administration Announces Nearly $8 Billion in Weatherization Funding and Energy Efficiency Grants Administration Announces Nearly $8 Billion in Weatherization Funding and Energy Efficiency Grants March 12, 2009 - 12:00am Addthis Washington DC -- Vice President Joe Biden and Energy Secretary Chu today detailed an investment of nearly $8 billion in state and local weatherization and energy efficiency efforts as part of the President's American

  9. Improving Energy Efficiency and Creating Jobs Through Weatherization |

    Energy Savers [EERE]

    Department of Energy Improving Energy Efficiency and Creating Jobs Through Weatherization Improving Energy Efficiency and Creating Jobs Through Weatherization December 9, 2013 - 12:00am Addthis Since 2009, when the Energy Department seized a major opportunity to invest $5 billion through our Weatherization Assistance Program (WAP) to stimulate job growth and help families affected by the economic recession, we have improved the energy efficiency, comfort and health of more than 1.1 million

  10. Weatherization Assistance Program Allocation Formula | Department of Energy

    Energy Savers [EERE]

    Allocation Formula Weatherization Assistance Program Allocation Formula The U.S. Department of Energy (DOE) Weatherization Assistance Program uses an allocation formula to calculate the weatherization grants to the states based on the amount of funding Congress appropriates to the program in a given year. Background The Allocation Formula Example Background In 1992, DOE commissioned a study through the National Association of State Community Services Programs (NASCSP) to address the concerns of

  11. CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION

    Energy Savers [EERE]

    ASSISTANCE PROGRAM | Department of Energy CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM CLOSEOUT PROCEDURES FOR RECOVERY ACT GRANTS UNDER THE WEATHERIZATION ASSISTANCE PROGRAM This document contains information on closeout procedures for Recovery Act Grants under the Weatherization Assistance Program (WAP). PDF icon wap_closeout_guidance.pdf More Documents & Publications WPN 12-3: Closeout Procedures for Recovery Act Grants Under the

  12. About the Weatherization and Intergovernmental Programs Office | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy About the Weatherization and Intergovernmental Programs Office About the Weatherization and Intergovernmental Programs Office The Weatherization and Intergovernmental Programs Office (WIP) collaborates with state and local governments, tribes, and K-12 school district leaders to help advance clean energy. Learn more below about who we are and what we do. What We Do For decades, WIP has laid the foundation that helps state and local clean energy programs succeed. Our State Energy

  13. Energy Department Celebrates National Weatherization Day | Department of

    Office of Environmental Management (EM)

    Energy Celebrates National Weatherization Day Energy Department Celebrates National Weatherization Day October 30, 2015 - 2:30pm Addthis A Home Energy Professionals Certifications Energy Auditor performs a Blower Door Test in Colorado. A Home Energy Professionals Certifications Energy Auditor performs a Blower Door Test in Colorado. Dr. Kathleen Hogan Dr. Kathleen Hogan Deputy Assistant Secretary for Energy Efficiency What are the key facts? October 30 is National Weatherization Day, a day

  14. New York: Weatherizing Westbeth Reduces Energy Consumption | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and Community Renewal (HCR) initiated a weatherization project on a Westbeth Artists Housing complex-home to almost 400 low- and middle-income artists from a variety of artistic disciplines-in New York City's West Village. The Westbeth complex is on the National Register of Historic Places and was designated a New York

  15. Celebrating the Completion of 1 Million Weatherized American Homes |

    Office of Environmental Management (EM)

    Department of Energy Celebrating the Completion of 1 Million Weatherized American Homes Celebrating the Completion of 1 Million Weatherized American Homes Addthis 1 of 6 David Poindexter with Veterans Green Jobs, puts moisture barrier and insulation into the crawl space of this Lakewood, Colorado, home. This home is part of the Energy Department's Weatherization Assistance Program that supports energy efficiency upgrades to low-income homes in Denver. In addition, the Department's

  16. Community-Based Social Marketing for Weatherization Programs | Department

    Office of Environmental Management (EM)

    of Energy Community-Based Social Marketing for Weatherization Programs Community-Based Social Marketing for Weatherization Programs Watch a recording of National Renewable Energy Laboratory (NREL) Senior Project Manager Amy Hollander's Jan. 11, 2011, presentation about how to create a weatherization program that fosters sustainable behaviors in a community for saving energy. It's one in a series of Webinars to support state and local projects funded by Sustainable Energy Resources for

  17. WEATHERIZATION OF RENTAL UNITS FREQUENTLY ASKED QUESTIONS Administration

    Broader source: Energy.gov (indexed) [DOE]

    WEATHERIZATION OF RENTAL UNITS FREQUENTLY ASKED QUESTIONS Administration 1. What are the rental weatherization planning requirements for the Grantee? These requirements are detailed in the Annual Application Instructions, Section V, Master File, V.1.2. Approach to Determining Building Eligibility. Before weatherization of rental units, Grantees are required by DOE regulation (10 CFR 440.22(b)(3)) to establish, at a minimum, procedures for dwellings which consist of a rental unit or rental units,

  18. Weatherization and Intergovernmental Programs Office Events | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Weatherization and Intergovernmental Programs Office Events Weatherization and Intergovernmental Programs Office Events The Weatherization and Intergovernmental Programs Office (WIP) hosts trainings and facilitates peer exchange for state, local, tribal, and K-12 school district leaders. Find upcoming events from WIP and other stakeholders in the calendar below and visit our Webinar Archive to access past trainings. January 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 27 28 29

  19. Memorandum of Understanding On Weather-Dependent and Oceanic Renewable

    Office of Environmental Management (EM)

    Energy Resources | Department of Energy On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources Memorandum of Understanding On Weather-Dependent and Oceanic Renewable Energy Resources between the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy and the U.S. Department of Commerce, National Oceanic and Atmospheric Administration. PDF icon MOU_DOE_Commerce.pdf More Documents

  20. Raising the Bar within the Weatherization and Home Performance Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Raising the Bar within the Weatherization and Home Performance Industry Raising the Bar within the Weatherization and Home Performance Industry Addthis Description The Weatherization Assistance Program (WAP) was created in 1976 to assist low-income families who lacked resources to invest in energy efficiency. This video not only shines a light of the existing success of the WAP, but it also takes a look at its recent evolution through the Guidelines for Home Energy

  1. EERE Success Story-New York: Weatherizing Westbeth Reduces Energy

    Office of Environmental Management (EM)

    Consumption | Department of Energy New York: Weatherizing Westbeth Reduces Energy Consumption EERE Success Story-New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and Community Renewal (HCR) initiated a weatherization project on a Westbeth Artists Housing complex-home to almost 400 low- and middle-income artists from a variety of artistic disciplines-in New York City's West Village. The Westbeth complex is on the National

  2. Obama Administration Delivers More Than $66 Million for Weatherization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The Department of Social Services administers the Weatherization Program, assisting low-income persons in minimizing energy-related costs and fuel usage in their residences. Every ...

  3. Effective Energy Behavior Change for Low-Income Weatherization Clients

    Broader source: Energy.gov [DOE]

    This document contains the transcript for the Effective Energy Behavior Change for Low-Income Weatherization Clients webinar presented on May 31, 2012.

  4. EERE FY 2008-2012 Budget: Weatherization and Intergovernmental Program

    Broader source: Energy.gov [DOE]

    Proposed five-year plan for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Weatherization and Intergovernmental Program.

  5. Appendix K- GPRA06 Weatherization and Intergovernmental Program (WIP) Documentation

    Broader source: Energy.gov [DOE]

    State Energy Program Grants & Energy Activities; Weatherization Assistance Grants; Gateway Deployment; Intergovernmental Activities; Market Factor in Technology Impact Projections; I&I Energy Savings Results

  6. #tipsEnergy: Weatherizing Your Home for Fall

    Broader source: Energy.gov [DOE]

    With the start of colder weather, we are sharing fall energy-saving tips that will help you save money and stay comfortable.

  7. MHK ISDB/Instruments/Automatic Weather Station AWS 2700 | Open...

    Open Energy Info (EERE)

    Weather Station AWS 2700 < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  8. Weatherization Saves Families Energy and Money | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis William Stewart, with Veterans Green Jobs, blows cellulose insulation in the ... Weatherization Day Tammara Thayer thanks Steve Lemaire (left) and Zump Urycki for ...

  9. WPN 98-3- Revised Weatherization Assistance Program Application Package

    Broader source: Energy.gov [DOE]

    To issue the revised application package and reporting requirements for the low-income Weatherization Assistance Program for use by the states.

  10. Roel Neggers European Centre for Medium-range Weather Forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transition from shallow to deep convection using a dual mass flux boundary layer scheme Roel Neggers European Centre for Medium-range Weather Forecasts Introduction " " % % &...

  11. Subscribe to Weatherization and Intergovernmental Program Office Newsletters

    Broader source: Energy.gov [DOE]

    Get email subscriptions to the Weatherization and Intergovernmental Program Office Newsletters, Guidelines for Home Energy Professionals Project Updates and State and Local Technical Assistance Program Alerts.

  12. DOE Announces $29 Million in Recovery Act Awards for Weatherization...

    Office of Environmental Management (EM)

    These projects will provide green job training for local workers in energy efficiency retrofitting and weatherization services. With this training, skilled workers can help expand ...

  13. Seattle HomeWise: Weatherization | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Program Type Grant Program Rebate Amount Varies Summary The City of Seattle offers free weatherization services to residents who meet income qualifications. Services are...

  14. Weatherization Innovation Pilot Program Fact Sheet - Ohio Success...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio Success Story Weatherization Innovation Pilot Program Fact Sheet - Ohio Success Story Case Study with WIPP program overview, documenting the success of the People Working...

  15. In Alaska, Weatherization Training Goes Home ...(sort of) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Most of the work in southeast Alaska is seasonal, in fishing, tourism or timber; the area is also suffering from the economic downturn. Weatherization can supplement seasonal ...

  16. A neural network model for predicting the silicon content of the hot metal at No. 2 blast furnace of SSAB Luleaa

    SciTech Connect (OSTI)

    Zuo Guangqing; Ma Jitang; Bo, B.

    1996-12-31

    To predict the silicon content of hot metal at No. 2 blast furnace, SSAB, Luleaa Works, a three-layer Back-Propagation network model has been established. The network consists of twenty-eight inputs, six middle nodes and one output and uses a generalized delta rule for training. Different network structures and different training strategies have been tested. A well-functioning network with dynamic updating has been designed. The off-line test and the on-line application results showed that more than 80% of the predictions can match the actual silicon content in hot metal in a normal operation, if the allowable prediction error was set to {+-}0.05% Si, while the actual fluctuation of the silicon content was larger than {+-}0.10% Si.

  17. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    SciTech Connect (OSTI)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  18. VALIDATION AND RESULTS OF A PSEUDO-MULTI-ZONE COMBUSTION TRAJECTORY PREDICTION MODEL FOR CAPTURING SOOT AND NOX FORMATION ON A MEDIUM DUTY DIESEL ENGINE

    SciTech Connect (OSTI)

    Bittle, Joshua A.; Gao, Zhiming; Jacobs, Timothy J.

    2013-01-01

    A pseudo-multi-zone phenomenological model has been created with the ultimate goal of supporting efforts to enable broader commercialization of low temperature combustion modes in diesel engines. The benefits of low temperature combustion are the simultaneous reduction in soot and nitric oxide emissions and increased engine efficiency if combustion is properly controlled. Determining what qualifies as low temperature combustion for any given engine can be difficult without expensive emissions analysis equipment. This determination can be made off-line using computer models or through factory calibration procedures. This process could potentially be simplified if a real-time prediction model could be implemented to run for any engine platform this is the motivation for this study. The major benefit of this model is the ability for it to predict the combustion trajectory, i.e. local temperature and equivalence ratio in the burning zones. The model successfully captures all the expected trends based on the experimental data and even highlights an opportunity for simply using the average reaction temperature and equivalence ratio as an indicator of emissions levels alone - without solving formation sub-models. This general type of modeling effort is not new, but a major effort was made to minimize the calculation duration to enable implementation as an input to real-time next-cycle engine controller Instead of simply using the predicted engine out soot and NOx levels, control decisions could be made based on the trajectory. This has the potential to save large amounts of calibration time because with minor tuning (the model has only one automatically determined constant) it is hoped that the control algorithm would be generally applicable.

  19. WPN 10-1: Program Year 2010 Weatherization Grant Guidance | Department of

    Energy Savers [EERE]

    Energy : Program Year 2010 Weatherization Grant Guidance WPN 10-1: Program Year 2010 Weatherization Grant Guidance Archived 12/28/10, Superseded by WPN 11-1 To issue grant guidance and management information for the Low-Income Weatherization Assistance Program (Weatherization) for Program Year (PY) 2010. PDF icon WPN 10-1: Program Year 2010 Weatherization Grant Guidance More Documents & Publications WPN 12-1: Program Year 2012 Weatherization Grant Guidance WPN 16-4: Weatherization

  20. Weatherization Works - Summary of Findings from the Retrospective Evaluation of the U.S. Department of Energy's Weatherization Assistance Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    38 Weatherization Works - Summary of Findings from the Retrospective Evaluation of the U.S. Department of Energy's Weatherization Assistance Program Bruce Tonn David Carroll Scott Pigg Michael Blasnik Greg Dalhoff Jacqueline Berger Erin Rose Beth Hawkins Joel Eisenberg Ferit Ucar Ingo Bensch Claire Cowan September 2014 xiii EXECUTIVE SUMMARY In April 2009, the U.S. Department of Energy (DOE) tasked Oak Ridge National Laboratory with conducting an evaluation of DOE's low-income Weatherization