Powered by Deep Web Technologies
Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Forecasting wave height probabilities with numerical weather prediction models  

E-Print Network [OSTI]

Forecasting wave height probabilities with numerical weather prediction models Mark S. Roulstona; Numerical weather prediction 1. Introduction Wave forecasting is now an integral part of operational weather methods for generating such forecasts from numerical model output from the European Centre for Medium

Stevenson, Paul

2

Weather Research and Forecasting Model 2.2 Documentation  

E-Print Network [OSTI]

................................................................................................. 20 3.1.2 Integrate's Flow of ControlWeather Research and Forecasting Model 2.2 Documentation: A Step-by-step guide of a Model Run .......................................................................................................................... 19 3.1 The Integrate Subroutine

Sadjadi, S. Masoud

3

Evaluating the ability of a numerical weather prediction model to forecast tracer concentrations during ETEX 2  

E-Print Network [OSTI]

Evaluating the ability of a numerical weather prediction model to forecast tracer concentrations an operational numerical weather prediction model to forecast air quality are also investigated. These potential a numerical weather prediction (NWP) model independently of the CTM. The NWP output is typically archived

Dacre, Helen

4

HOW ACCURATE ARE WEATHER MODELS IN ASSISTING AVALANCHE FORECASTERS? M. Schirmer, B. Jamieson  

E-Print Network [OSTI]

and decision makers strongly rely on Numerical Weather Prediction (NWP) models, for example on the forecasted on forecasted precipitation. KEYWORDS: Numerical weather prediction models, validation, precipitation 1. INTRODUCTION Numerical Weather Prediction (NWP) models are widely used by avalanche practitioners. Their de

Jamieson, Bruce

5

Operational forecasting based on a modified Weather Research and Forecasting model  

SciTech Connect (OSTI)

Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

Lundquist, J; Glascoe, L; Obrecht, J

2010-03-18T23:59:59.000Z

6

Regional-seasonal weather forecasting  

SciTech Connect (OSTI)

In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

1980-08-01T23:59:59.000Z

7

Prediction versus Projection: How weather forecasting and  

E-Print Network [OSTI]

Prediction versus Projection: How weather forecasting and climate models differ. Aaron B. Wilson Context: Global http://data.giss.nasa.gov/ #12;Numerical Weather Prediction Collect Observations alters associated weather patterns. Models used to predict weather depend on the current observed state

Howat, Ian M.

8

Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications  

E-Print Network [OSTI]

Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications DEV NIYOGI Department of Agronomy, and Department form 13 May 2008) ABSTRACT Current land surface schemes used for mesoscale weather forecast models use

Niyogi, Dev

9

Amending Numerical Weather Prediction forecasts using GPS  

E-Print Network [OSTI]

to validate the amounts of humidity in Numerical Weather Prediction (NWP) model forecasts. This paper presents. Satellite images and Numerical Weather Prediction (NWP) models are used together with the synoptic surface. In this paper, a case is presented for which the operational Numerical Weather Prediction Model (NWP) HIRLAM

Stoffelen, Ad

10

A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting  

E-Print Network [OSTI]

MultiscaleNumericalWeatherPredictionModel. Progressassimilatingnumericalweatherpredictionmodelforsolarcustomizable numericalweatherpredictionmodelthatis

Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

2013-01-01T23:59:59.000Z

11

Every cloud has a silver lining: Weather forecasting models could predict brain tumor  

E-Print Network [OSTI]

, and combine them with incoming data streams from weather stations and satellites. Now, an innovative new study methodology used to assimilate data for weather forecasting could be used to predict the spread of brain. Synthetic magnetic resonance images of a hypothetical tumor were used for this purpose. Data assimilation

Kuang, Yang

12

Segmenting Time Series for Weather Forecasting  

E-Print Network [OSTI]

) models is summarised as weather forecast texts. In the domain of gas turbines, sensor data from an operational gas turbine is summarised for the maintenance engineers. More details on SUMTIME have been to develop a generic model for summarisation of time series data. Initially, we have applied standard

Sripada, Yaji

13

Model error in weather forecasting D. Orrell 1,2 , L. Smith 1,3 , J. Barkmeijer 4 , and T. Palmer 4  

E-Print Network [OSTI]

numerical weather prediction mod­ els. A simple law is derived to relate model error to likely shadowingModel error in weather forecasting D. Orrell 1,2 , L. Smith 1,3 , J. Barkmeijer 4 , and T. Palmer 4 in the model, and inac­ curate initial conditions (Bjerknes, 1911). Because weather models are thought

Smith, Leonard A

14

11.1 DEVELOPMENT OF AN IMMERSED BOUNDARY METHOD TO RESOLVE COMPLEX TERRAIN IN THE WEATHER RESEARCH AND FORECASTING MODEL  

E-Print Network [OSTI]

11.1 DEVELOPMENT OF AN IMMERSED BOUNDARY METHOD TO RESOLVE COMPLEX TERRAIN IN THE WEATHER RESEARCH AND FORECASTING MODEL Katherine A. Lundquist1 , Fotini K. Chow 2 , Julie K. Lundquist 3 , and Jeffery D. Mirocha 3 in urban areas are profoundly influenced by the presence of build- ings which divert mean flow, affect

Chow, Fotini Katopodes

15

Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging  

E-Print Network [OSTI]

is to issue deterministic forecasts based on numerical weather prediction models. Uncertainty canProbabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging J. Mc discretization than is seen in other weather quantities. The prevailing paradigm in weather forecasting

Washington at Seattle, University of

16

Predicting Solar Generation from Weather Forecasts Using Machine Learning  

E-Print Network [OSTI]

of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewables existing forecast-based models. I. INTRODUCTION A key goal of smart grid efforts is to substantially-based prediction models built using seven distinct weather forecast metrics are 27% more accurate for our site than

Shenoy, Prashant

17

Dynamic Algorithm for Space Weather Forecasting System  

E-Print Network [OSTI]

for the designation as UNDERGRADUATE RESEARCH SCHOLAR April 2010 Major: Nuclear Engineering DYNAMIC ALGORITHM FOR SPACE WEATHER FORECASTING SYSTEM A Junior Scholars Thesis by LUKE DUNCAN FISCHER Submitted to the Office of Undergraduate... 2010 Major: Nuclear Engineering iii ABSTRACT Dynamic Algorithm for Space Weather Forecasting System. (April 2010) Luke Duncan Fischer Department of Nuclear Engineering Texas A&M University Research Advisor: Dr. Stephen Guetersloh...

Fischer, Luke D.

2011-08-08T23:59:59.000Z

18

Introduction An important goal in operational weather forecasting  

E-Print Network [OSTI]

sensitive areas. To answer these questions simulation experiments with state-of-the-art numerical weather prediction (NWP) models have proved great value to test future meteorological observing systems a priori102 Introduction An important goal in operational weather forecasting is to reduce the number

Haak, Hein

19

Distributed quantitative precipitation forecasts combining information from radar and numerical weather prediction model outputs  

E-Print Network [OSTI]

Applications of distributed Quantitative Precipitation Forecasts (QPF) range from flood forecasting to transportation. Obtaining QPF is acknowledged to be one of the most challenging areas in hydrology and meteorology. ...

Ganguly, Auroop Ratan

2002-01-01T23:59:59.000Z

20

A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting  

E-Print Network [OSTI]

iscriticalforcoastalCaliforniasolarforecasting. affectingsolarirradianceinsouthernCalifornia. solar photovoltaicgeneration(thesouthernCalifornia

Mathiesen, Patrick; Collier, Craig; Kleissl, Jan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Los Alamos dynamic radiation environment assimilation model (DREAM) for space weather specification and forecasting  

SciTech Connect (OSTI)

The Dynamic Radiation Environment Assimilation Model (DREAM) was developed at Los Alamos National Laboratory to assess, quantify, and predict the hazards from the natural space environment and the anthropogenic environment produced by high altitude nuclear explosions (HANE). DREAM was initially developed as a basic research activity to understand and predict the dynamics of the Earth's Van Allen radiation belts. It uses Kalman filter techniques to assimilate data from space environment instruments with a physics-based model of the radiation belts. DREAM can assimilate data from a variety of types of instruments and data with various levels of resolution and fidelity by assigning appropriate uncertainties to the observations. Data from any spacecraft orbit can be assimilated but DREAM was designed to function with as few as two spacecraft inputs: one from geosynchronous orbit and one from GPS orbit. With those inputs, DREAM can be used to predict the environment at any satellite in any orbit whether space environment data are available in those orbits or not. Even with very limited data input and relatively simple physics models, DREAM specifies the space environment in the radiation belts to a high level of accuracy. DREAM has been extensively tested and evaluated as we transition from research to operations. We report here on one set of test results in which we predict the environment in a highly-elliptical polar orbit. We also discuss long-duration reanalysis for spacecraft design, using DREAM for real-time operations, and prospects for 1-week forecasts of the radiation belt environment.

Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

22

Weather Forecast Data an Important Input into Building Management Systems  

E-Print Network [OSTI]

it can generate as much or more energy that it needs ? Building activities need N kWhrs per day (solar panels, heating, etc) ? Harvested from solar panels & passive solar. Amount depends on weather ? NWP models forecast DSWRF @ surface (MJ/m2... contract work Saturday Would you plan work for Saturday? Not much detail for Saturday and Sunday With more info could be easier to decide go, no go From deterministic to probabilistic ? Forecast presented as a single scenario ? One scenario presented...

Poulin, L.

2013-01-01T23:59:59.000Z

23

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY  

E-Print Network [OSTI]

MOUNTAIN WEATHER PREDICTION: PHENOMENOLOGICAL CHALLENGES AND FORECAST METHODOLOGY Michael P. Meyers of the American Meteorological Society Mountain Weather and Forecasting Monograph Draft from Friday, May 21, 2010 of weather analysis and forecasting in complex terrain with special emphasis placed on the role of humans

Steenburgh, Jim

24

Weather-based forecasts of California crop yields  

SciTech Connect (OSTI)

Crop yield forecasts provide useful information to a range of users. Yields for several crops in California are currently forecast based on field surveys and farmer interviews, while for many crops official forecasts do not exist. As broad-scale crop yields are largely dependent on weather, measurements from existing meteorological stations have the potential to provide a reliable, timely, and cost-effective means to anticipate crop yields. We developed weather-based models of state-wide yields for 12 major California crops (wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios), and tested their accuracy using cross-validation over the 1980-2003 period. Many crops were forecast with high accuracy, as judged by the percent of yield variation explained by the forecast, the number of yields with correctly predicted direction of yield change, or the number of yields with correctly predicted extreme yields. The most successfully modeled crop was almonds, with 81% of yield variance captured by the forecast. Predictions for most crops relied on weather measurements well before harvest time, allowing for lead times that were longer than existing procedures in many cases.

Lobell, D B; Cahill, K N; Field, C B

2005-09-26T23:59:59.000Z

25

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

Multiscale numerical weather prediction model. Progress inassimilating numerical weather prediction model for solarwith numerical weather prediction models. In: Solar Energy

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

26

Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting  

E-Print Network [OSTI]

This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

Goto, Susumu

2007-01-01T23:59:59.000Z

27

The Quality of a 48-Hours Wind Power Forecast Using the German and Danish Weather Prediction Model  

E-Print Network [OSTI]

numerical weather prediction models operated by the weather services are refined by taking into account stock exchange. The typical predic- tion time horizon which is needed for these purposes is 3 to 48 are applied taking into account the effects from lo- cal roughness, thermal stratification of the atmosphere

Heinemann, Detlev

28

Weather forecast-based optimization of integrated energy systems.  

SciTech Connect (OSTI)

In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

2009-03-01T23:59:59.000Z

29

SUMTIME-MOUSAM: Configurable Marine Weather Forecast Generator Somayajulu G. Sripada and Ehud Reiter  

E-Print Network [OSTI]

Weathernews (UK) Ltd. Aberdeen iand@wni.com Abstract Numerical weather prediction (NWP) models produce time is done using guidance from Numerical Weather Prediction (NWP) models; time series data from the NWPSUMTIME-MOUSAM: Configurable Marine Weather Forecast Generator Somayajulu G. Sripada and Ehud

Reiter, Ehud

30

MLWFA: A Multilingual Weather Forecast Text Generation Tianfang YAO Dongmo ZHANG Qian WANG  

E-Print Network [OSTI]

MLWFA: A Multilingual Weather Forecast Text Generation System1 Tianfang YAO Dongmo ZHANG Qian WANG generation; Weather forecast generation system Abstract In this demonstration, we present a system for multilingual text generation in the weather forecast domain. Multilingual Weather Forecast Assistant (MLWFA

Wu, Dekai

31

Improved forecasts of extreme weather events by future space borne Doppler wind lidar  

E-Print Network [OSTI]

sensitive areas. To answer these questions simulation experiments with state-of-the-art numerical weather prediction (NWP) models have proved great value to test future meteorological observing systems a prioriImproved forecasts of extreme weather events by future space borne Doppler wind lidar Gert

Marseille, Gert-Jan

32

EVALUATION OF NUMERICAL WEATHER PREDICTION IN MODELING CLOUD-RADIATION INTERACTIONS OVER THE SOUTHERN GREAT PLAINS  

E-Print Network [OSTI]

EVALUATION OF NUMERICAL WEATHER PREDICTION IN MODELING CLOUD- RADIATION INTERACTIONS OVER.bnl.gov ABSTRACT Numerical weather prediction (NWP) is the basis for present-day weather forecasts, and NWP for Medium-Range Weather Forecasts, the US North American Model, and the US Global Forecast System. Attempts

Johnson, Peter D.

33

Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill  

SciTech Connect (OSTI)

We investigated the contribution of medium range weather forecasts with lead times up to 14 days to seasonal hydrologic prediction skill over the Conterminous United States (CONUS). Three different Ensemble Streamflow Prediction (ESP)-based experiments were performed for the period 1980-2003 using the Variable Infiltration Capacity (VIC) hydrology model to generate forecasts of monthly runoff and soil moisture (SM) at lead-1 (first month of the forecast period) to lead-3. The first experiment (ESP) used a resampling from the retrospective period 1980-2003 and represented full climatological uncertainty for the entire forecast period. In the second and third experiments, the first 14 days of each ESP ensemble member were replaced by either observations (perfect 14-day forecast) or by a deterministic 14-day weather forecast. We used Spearman rank correlations of forecasts and observations as the forecast skill score. We estimated the potential and actual improvement in baseline skill as the difference between the skill of experiments 2 and 3 relative to ESP, respectively. We found that useful runoff and SM forecast skill at lead-1 to -3 months can be obtained by exploiting medium range weather forecast skill in conjunction with the skill derived by the knowledge of initial hydrologic conditions. Potential improvement in baseline skill by using medium range weather forecasts, for runoff (SM) forecasts generally varies from 0 to 0.8 (0 to 0.5) as measured by differences in correlations, with actual improvement generally from 0 to 0.8 of the potential improvement. With some exceptions, most of the improvement in runoff is for lead-1 forecasts, although some improvement in SM was achieved at lead-2.

Shukla, Shraddhanand; Voisin, Nathalie; Lettenmaier, D. P.

2012-08-15T23:59:59.000Z

34

ASSESSING THE QUALITY AND ECONOMIC VALUE OF WEATHER AND CLIMATE FORECASTS  

E-Print Network [OSTI]

INFORMATION SYSTEM Forecast -- Conditional probability distribution for event Z = z indicates forecast tornado #12;(1.2) FRAMEWORK Joint Distribution of Observations & Forecasts Observed Weather = Forecast probability p (e.g., induced by Z) Reliability Diagram Observed weather: = 1 (Adverse weather occurs) = 0

Katz, Richard

35

Exploiting weather forecast data for cloud detection  

E-Print Network [OSTI]

Accurate, fast detection of clouds in satellite imagery has many applications, for example Numerical Weather Prediction (NWP) and climate studies of both the atmosphere and of the Earths surface temperature. Most ...

Mackie, Shona

2009-01-01T23:59:59.000Z

36

Exploiting weather forecasts for sizing photovoltaic energy bids  

E-Print Network [OSTI]

1 Exploiting weather forecasts for sizing photovoltaic energy bids Antonio Giannitrapani, Simone for a photovoltaic (PV) power producer taking part into a competitive electricity market characterized by financial set from an Italian PV plant. Index Terms--Energy market, bidding strategy, photovoltaic power

Giannitrapani, Antonello

37

Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,  

E-Print Network [OSTI]

Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

Shenoy, Prashant

38

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems  

E-Print Network [OSTI]

Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

Shenoy, Prashant

39

Claudio Schepke: Online Parallel Mesh Refinement for Climatological Applications Weather forecasts for long periods of time have emerged as increasingly important.  

E-Print Network [OSTI]

Claudio Schepke: Online Parallel Mesh Refinement for Climatological Applications Weather forecasts, this presentation discusses how to explore parallelism at different levels for climatological models, like OLAM

Wichmann, Felix

40

Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States  

E-Print Network [OSTI]

fornumericalweatherpredictionandclimatemodels. Abstract: Numericalweatherprediction(NWP)modelsareModeloutputstatistics(MOS),NumericalWeatherPrediction(

Mathiesen, Patrick; Kleissl, Jan

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Probabilistic Forecasts of Wind Speed: Ensemble Model Output Statistics  

E-Print Network [OSTI]

. Over the past two decades, ensembles of numerical weather prediction (NWP) models have been developed and phrases: Continuous ranked probability score; Density forecast; Ensem- ble system; Numerical weather prediction; Heteroskedastic censored regression; Tobit model; Wind energy. 1 #12;1 Introduction Accurate

Washington at Seattle, University of

42

Reprinted from: Proceedings, International Workshop on Observations/Forecasting of Meso-scale Severe Weather and  

E-Print Network [OSTI]

-scale Severe Weather and Technology of Reduction of Relevant Disasters (Tokyo, Japan), 22-26 February 1993, 181 technology and powerful workstation approaches in the forecasting workplace. Training and education leading to the weather events should form the basis for any scientific approaches to forecasting those

Doswell III, Charles A.

43

Products and Service of Center for Weather Forecast and Climate Studies  

E-Print Network [OSTI]

LOG O Products and Service of Center for Weather Forecast and Climate Studies Simone Sievert da products Supercomputer Facilities DSA/CPTEC-INPE Monitoring products based on remote sensing Training products Numerical Forecast Products Weather discussion Colleting data platform #12;Atmospheric Chemistry

44

Analysis of moisture variability in the European Centre for Medium-Range Weather Forecasts 15-year  

E-Print Network [OSTI]

Analysis of moisture variability in the European Centre for Medium-Range Weather Forecasts 15-year Centre for Medium-Range Weather Forecasts 15-year reanalysis (ERA-15) moisture over the tropical oceans. Introduction [2] Because water vapor is the most significant green- house gas and it exhibits a strong

Allan, Richard P.

45

Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging  

E-Print Network [OSTI]

distribution; Numerical weather prediction; Skewed distribution; Truncated data; Wind energy. 1. INTRODUCTION- native. Purely statistical methods have been applied to short-range forecasts for wind speed only a fewProbabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc

Raftery, Adrian

46

Bias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction  

E-Print Network [OSTI]

from numerical weather prediction models, which is based on a state-of-the-art circular-processing techniques for forecasts from numerical weather prediction models tend to become ineffective or inapplicableBias Correction and Bayesian Model Averaging for Ensemble Forecasts of Surface Wind Direction Le

Washington at Seattle, University of

47

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Ed.. Editor: Jan

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

48

Exploiting Weather Forecast Information in the Operation of ...  

E-Print Network [OSTI]

Mar 4, 2009 ... We argue that anticipating the weather conditions can lead to more ... The necessary uncertainty information is extracted from the weather...

Victor M Zavala

2009-03-04T23:59:59.000Z

49

Comparison of Model Forecast Skill of Sea-Level Pressure Along the East and West Coasts of the United States  

E-Print Network [OSTI]

1 Comparison of Model Forecast Skill of Sea-Level Pressure Along the East and West Coasts, University of Washington, Seattle, Washington Submitted to: Weather and Forecasting May 2008 Revised recent advances in numerical weather prediction, major errors in short-range forecasts still occur

Mass, Clifford F.

50

A Hierarchical Bayesian Model for Improving Short-Term Forecasting of Hospital Demand by Including Meteorological  

E-Print Network [OSTI]

A Hierarchical Bayesian Model for Improving Short-Term Forecasting of Hospital Demand by Including Sarran4 Abstract The effect of weather on health has been widely researched, and the ability to forecast, better predictions of hospital demand that are more sensitive to fluctuations in weather can allow

Sahu, Sujit K

51

Lessons from Deploying NLG Technology for Marine Weather Forecast Text Generation  

E-Print Network [OSTI]

weather under the guidance of weather data generated by Numerical Weather Prediction (NWP) models Numerical Weather Prediction (NWP) data. It has been used for the past year by Weathernews (UK) Ltd weather prediction information fulfilling the needs of the end user. This task requires them to use NWP

Sripada, Yaji

52

A Comparison of Parallel Programming Paradigms and Data Distributions for a Limited Area Numerical Weather Forecast Routine  

E-Print Network [OSTI]

. Published in proceedings of the 9 th ACM International Conference on Supercomputing, July 1995, Barcelona for producing routine weather forecasts at several European meteorological institutes. Results are shown

van Engelen, Robert A.

53

Aggregate vehicle travel forecasting model  

SciTech Connect (OSTI)

This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

1995-05-01T23:59:59.000Z

54

Optimization Online - Economic Impacts of Advanced Weather ...  

E-Print Network [OSTI]

Mar 5, 2010 ... Economic Impacts of Advanced Weather Forecasting on Energy System ... that state-of-the-art numerical weather prediction (NWP) models can...

Victor M. Zavala

2010-03-05T23:59:59.000Z

55

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

J.B. , 2004: Probabilistic wind power forecasts using localforecast intervals for wind power output using NWP-predictedsources such as wind and solar power. Integration of this

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

56

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

United States California Solar Initiative Coastally Trappedparticipants in the California Solar Initiative (CSI)on location. In California, solar irradiance forecasts near

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

57

ENSEMBLE RE-FORECASTING : IMPROVING MEDIUM-RANGE FORECAST SKILL  

E-Print Network [OSTI]

5.5 ENSEMBLE RE-FORECASTING : IMPROVING MEDIUM-RANGE FORECAST SKILL USING RETROSPECTIVE FORECASTS, Colorado 1. INTRODUCTION Improving weather forecasts is a primary goal of the U.S. National Oceanic predictions has been to improve the accuracy of the numerical forecast models. Much effort has been expended

Hamill, Tom

58

Mountain Weather Research and Forecasting Chapter 12: Bridging the Gap between Operations and Research to  

E-Print Network [OSTI]

and Research to Improve Weather Prediction in Mountainous Regions W. James Steenburgh Department of Atmospheric tools, and numerical models, and inhibits researchers from fully evaluating weaknesses in current integrated collaboration to address critical challenges for weather prediction in mountainous regions

Steenburgh, Jim

59

Using Bayesian Model Averaging to Calibrate Forecast Ensembles ADRIAN E. RAFTERY, TILMANN GNEITING, FADOUA BALABDAOUI, AND MICHAEL POLAKOWSKI  

E-Print Network [OSTI]

Using Bayesian Model Averaging to Calibrate Forecast Ensembles ADRIAN E. RAFTERY, TILMANN GNEITING for probabilistic weather forecasting often exhibit a spread-error correlation, but they tend to be underdispersive centered on the individual bias-corrected forecasts, where the weights are equal to posterior probabilities

Raftery, Adrian

60

Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 115 (0000) Controlling model error of underdamped forecast models in  

E-Print Network [OSTI]

-dependent predictability, ensemble methods have become popular for producing numerical weather forecasts (Molteni weather prediction or climate dynamics. In such simulations numerical codes tend to produce large errors of the forecast model and a numerical model error due to the choice of the numerical method used to simulate those

Gottwald, Georg A.

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

CCPP-ARM Parameterization Testbed Model Forecast Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

Klein, Stephen

62

Current status of ForecastCurrent status of Forecast 2005 EPACT is in the model  

E-Print Network [OSTI]

1 1 Current status of ForecastCurrent status of Forecast 2005 EPACT is in the model 2007 Federal prices are being inputted into the model 2 Sales forecast Select yearsSales forecast Select years --Draft 0.53% Irrigation 2.76% Annual Growth Rates Preliminary Electricity ForecastAnnual Growth Rates

63

New Concepts in Wind Power Forecasting Models  

E-Print Network [OSTI]

New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind for more accurate short term wind power forecasting models has led to solid and impressive development

Kemner, Ken

64

ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS  

SciTech Connect (OSTI)

During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.

Chiswell, S.; Buckley, R.

2009-01-15T23:59:59.000Z

65

Warm weather's a comin'! Performance Dependence on Closure  

E-Print Network [OSTI]

contributed also by Aaron Rosenberg!! #12;Wind Forecasting using Numerical Weather Prediction (NWP) Mesoscale weather models often predict the height of the LLJ too high and the magnitude too low Overwhelming 18-hr.forecasts initialized at 18Z Weather Research and Forecast (WRF) Model #12;Dissipation

McCalley, James D.

66

Improving week two forecasts with multi-model re-forecast ensembles  

E-Print Network [OSTI]

Improving week two forecasts with multi-model re-forecast ensembles Jeffrey S. Whitaker and Xue Wei NOAA-CIRES Climate Diagnostics Center, Boulder, CO Fr´ed´eric Vitart Seasonal Forecasting Group, ECMWF dataset of ensemble 're-forecasts' from a single model can significantly improve the skill

Whitaker, Jeffrey S.

67

The origins of computer weather prediction and climate modeling  

SciTech Connect (OSTI)

Numerical simulation of an ever-increasing range of geophysical phenomena is adding enormously to our understanding of complex processes in the Earth system. The consequences for mankind of ongoing climate change will be far-reaching. Earth System Models are capable of replicating climate regimes of past millennia and are the best means we have of predicting the future of our climate. The basic ideas of numerical forecasting and climate modeling were developed about a century ago, long before the first electronic computer was constructed. There were several major practical obstacles to be overcome before numerical prediction could be put into practice. A fuller understanding of atmospheric dynamics allowed the development of simplified systems of equations; regular radiosonde observations of the free atmosphere and, later, satellite data, provided the initial conditions; stable finite difference schemes were developed; and powerful electronic computers provided a practical means of carrying out the prodigious calculations required to predict the changes in the weather. Progress in weather forecasting and in climate modeling over the past 50 years has been dramatic. In this presentation, we will trace the history of computer forecasting through the ENIAC integrations to the present day. The useful range of deterministic prediction is increasing by about one day each decade, and our understanding of climate change is growing rapidly as Earth System Models of ever-increasing sophistication are developed.

Lynch, Peter [Meteorology and Climate Centre, School of Mathematical Sciences, University College Dublin, Belfield (Ireland)], E-mail: Peter.Lynch@ucd.ie

2008-03-20T23:59:59.000Z

68

Nonparametric models for electricity load forecasting  

E-Print Network [OSTI]

Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

Genève, Université de

69

The Dynamics of Deterministic Chaos in Numerical Weather Prediction Models  

E-Print Network [OSTI]

Atmospheric weather systems are coherent structures consisting of discrete cloud cells forming patterns of rows/streets, mesoscale clusters and spiral bands which maintain their identity for the duration of their appreciable life times in the turbulent shear flow of the planetary Atmospheric Boundary Layer. The existence of coherent structures (seemingly systematic motion) in turbulent flows has been well established during the last 20 years of research in turbulence. Numerical weather prediction models based on the inherently non-linear Navier-Stokes equations do not give realistic forecasts because of the following inherent limitations: (1) the non-linear governing equations for atmospheric flows do not have exact analytic solutions and being sensitive to initial conditions give chaotic solutions characteristic of deterministic chaos (2) the governing equations do not incorporate the dynamical interactions and co-existence of the complete spectrum of turbulent fluctuations which form an integral part of the large coherent weather systems (3) limitations of available computer capacity necessitates severe truncation of the governing equations, thereby generating errors of approximations (4) the computer precision related roundoff errors magnify the earlier mentioned uncertainties exponentially with time and the model predictions become unrealistic. The accurate modelling of weather phenomena therefore requires alternative concepts and computational techniques. In this paper a universal theory of deterministic chaos applicable to the formation of coherent weather structures in the ABL is presented.

A. Mary Selvam

2003-10-07T23:59:59.000Z

70

Point-trained models in a grid environment: Transforming a potato late blight risk forecast for use with the National Digital Forecast Database  

E-Print Network [OSTI]

Point-trained models in a grid environment: Transforming a potato late blight risk forecast for use have come to expect. Potato late blight risk models were some of the earliest weather-based models. This analysis compares two types of potato late blight risk models that were originally trained on location

Douches, David S.

71

Nambe Pueblo Water Budget and Forecasting model.  

SciTech Connect (OSTI)

This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

Brainard, James Robert

2009-10-01T23:59:59.000Z

72

AMPS, a real-time mesoscale modeling system, has provided a decade of service for scientific and logistical needs and has helped advance polar numerical weather prediction  

E-Print Network [OSTI]

and logistical needs and has helped advance polar numerical weather prediction as well as understanding support for the USAP. The concern at the time was the numerical weather prediction (NWP) guidance-time implementation of the Weather Research and Forecasting model (WRF; Skamarock et al. 2008) to support the U

Howat, Ian M.

73

Does increasing model stratospheric resolution improve extended range forecast skill?  

E-Print Network [OSTI]

Does increasing model stratospheric resolution improve extended range forecast skill? Greg Roff,1 forecast skill at high Southern latitudes is explored. Ensemble forecasts are made for two model configurations that differ only in vertical resolution above 100 hPa. An ensemble of twelve 30day forecasts

74

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series  

E-Print Network [OSTI]

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural demand time series based only on data for six years to forecast the demand for the seventh year. Both networks, Neural networks, Modeling, Forecasting, Energy demand, Time series forecasting, Power system

Abdel-Aal, Radwan E.

75

Modeling of Uncertainty in Wind Energy Forecast  

E-Print Network [OSTI]

regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

76

Forecasting Turbulent Modes with Nonparametric Diffusion Models  

E-Print Network [OSTI]

This paper presents a nonparametric diffusion modeling approach for forecasting partially observed noisy turbulent modes. The proposed forecast model uses a basis of smooth functions (constructed with the diffusion maps algorithm) to represent probability densities, so that the forecast model becomes a linear map in this basis. We estimate this linear map by exploiting a previously established rigorous connection between the discrete time shift map and the semi-group solution associated to the backward Kolmogorov equation. In order to smooth the noisy data, we apply diffusion maps to a delay embedding of the noisy data, which also helps to account for the interactions between the observed and unobserved modes. We show that this delay embedding biases the geometry of the data in a way which extracts the most predictable component of the dynamics. The resulting model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and in the observation noise limit. We will show numerical examples on a wide-range of well-studied turbulent modes, including the Fourier modes of the energy conserving Truncated Burgers-Hopf (TBH) model, the Lorenz-96 model in weakly chaotic to fully turbulent regimes, and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. In these examples, forecasting skills of the nonparametric diffusion model are compared to a wide-range of stochastic parametric modeling approaches, which account for the nonlinear interactions between the observed and unobserved modes with white and colored noises.

Tyrus Berry; John Harlim

2015-01-27T23:59:59.000Z

77

Weather  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and the variations in atmospheric conditions that produce weather. The Weather Machine, LANL's meteorological monitoring program, supports Laboratory operations and...

78

Gridded Operational Consensus Forecasts of 2-m Temperature over Australia CHERMELLE ENGEL  

E-Print Network [OSTI]

-resolution grid. Local and in- ternational numerical weather prediction model inputs are found to have coarse by numerical weather prediction (NWP) model forecasts. As NWP models improve, public weather forecasting University of Melbourne, Melbourne, Victoria, Australia ELIZABETH E. EBERT Centre for Australia Weather

Ebert, Beth

79

COSPAR/ILWS roadmap on space weather research and forecasting: community input COSPAR and the International Living With a Star (ILWS) steering committee have commissioned a strategic  

E-Print Network [OSTI]

COSPAR/ILWS roadmap on space weather research and forecasting: community input commissioned a strategic planning activity (or roadmap) focusing on the ability access as supplemental information to the roadmap report. In order

Schrijver, Karel

80

Forecast Combinations of Computational Intelligence and Linear Models for the  

E-Print Network [OSTI]

Forecast Combinations of Computational Intelligence and Linear Models for the NN5 Time Series Forecasting competition Robert R. Andrawis Dept Computer Engineering Cairo University, Giza, Egypt robertrezk@eg.ibm.com November 6, 2010 Abstract In this work we introduce a forecasting model with which we participated

Atiya, Amir

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION  

E-Print Network [OSTI]

1 A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving. The very first results show an improvement brought by this approach. 1. INTRODUCTION Solar radiation

Boyer, Edmond

82

Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States  

E-Print Network [OSTI]

andvalidation. SolarEnergy. 73:5,307? Perez,R. ,irradianceforecastsforsolarenergyapplicationsbasedonforecastdatabase. SolarEnergy. 81:6,809?812.

Mathiesen, Patrick; Kleissl, Jan

2011-01-01T23:59:59.000Z

83

Streamflow Forecasting Based on Statistical Applications and Measurements Made with Rain Gage and Weather Radar  

E-Print Network [OSTI]

Techniques for streamflow forecasting are developed and tested for the Little Washita River in Oklahoma. The basic input for streamflow forecasts is rainfall. the rainfall amounts may be obtained from several sources; however, this study...

Hudlow, M.D.

84

SolarAnywhere forecast (Perez & Hoff) This chapter describes, and presents an evaluation of, the forecast models imbedded in the  

E-Print Network [OSTI]

SolarAnywhere forecast (Perez & Hoff) ABSTRACT This chapter describes, and presents an evaluation of, the forecast models imbedded in the SolarAnywhere platform. The models include satellite derived cloud motion based forecasts for the short to medium horizon (1 5 hours) and forecasts derived from NOAA

Perez, Richard R.

85

Using Bayesian Model Averaging to Calibrate Forecast Ensembles 1  

E-Print Network [OSTI]

Using Bayesian Model Averaging to Calibrate Forecast Ensembles 1 Adrian E. Raftery, Fadoua forecasting often exhibit a spread-skill relationship, but they tend to be underdispersive. This paper of PDFs centered around the individual (possibly bias-corrected) forecasts, where the weights are equal

Washington at Seattle, University of

86

Interactive Weather Simulation and Visualization on a Display Wall  

E-Print Network [OSTI]

.hoai.ha,john.markus.bjorndalen,otto.anshus}@uit.no, {tormsh,daniels}@cs.uit.no Abstract. Numerical Weather Prediction models (NWP) used for op- erational Weather Model, WRF, Tiled Display Walls, Live Data Sets, On-Demand Computation. 1 Introduction Numerical Weather Prediction models for use in weather forecasting centers are often computed for a fixed static

Ha, Phuong H.

87

Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction  

E-Print Network [OSTI]

. Current weather radar detection and prediction sys- tems primarily rely on numerical models. We proposeOpen problem: Dynamic Relational Models for Improved Hazardous Weather Prediction Amy McGovern1, #12;Dynamic Relational Models for Improved Hazardous Weather Prediction Radar velocity Radar

McGovern, Amy

88

The temporal cascade structure of reanalyses and Global Circulation models  

E-Print Network [OSTI]

and stochastic forecasting. 1. Introduction "Weather prediction by Numerical Process" (Richardson, 1922 equations. While these equations are deterministic, numerical weather prediction has been increasingly of the deterministic models. Interestingly, Richardson is not only the father of numerical weather forecasting, he

Lovejoy, Shaun

89

Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States  

E-Print Network [OSTI]

Downwardsurfacesolarradiation datareleasedat12UTCforecastshortwaveradiationwithdataobtainedfromtheradiation: Astatisticalapproachusingsatellitedata.

Mathiesen, Patrick; Kleissl, Jan

2011-01-01T23:59:59.000Z

90

Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model  

E-Print Network [OSTI]

capital requirements and research and development programs in the alum inum industry. : CONCLUSIONS Forecasting the use of conservation techndlo gies with a market penetration model provides la more accountable method of projecting aggrega...

Lang, K.

1982-01-01T23:59:59.000Z

91

Data Assimilation for Idealised Mathematical Models of Numerical Weather Prediction  

E-Print Network [OSTI]

Data Assimilation for Idealised Mathematical Models of Numerical Weather Prediction Supervisors). Background: Numerical Weather Prediction (NWP) has seen significant gains in accuracy in recent years due is directed at achieving real-world impact in numerical weather prediction by addressing fundamental issues

Wirosoetisno, Djoko

92

Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States  

E-Print Network [OSTI]

andvalidation. SolarEnergy. 73:5,307? Perez,R. ,irradianceforecastsforsolarenergyapplicationsbasedonusingsatellitedata. SolarEnergy67:1?3,139?150.

Mathiesen, Patrick; Kleissl, Jan

2011-01-01T23:59:59.000Z

93

Error growth in poor ECMWF forecasts over the contiguous United States  

E-Print Network [OSTI]

Successive improvements to the European Center for Medium-range Weather Forecasting model have resulted in improved forecast performance over the Contiguous United States (CONUS). While the overall performance of the model in this region was found...

Modlin, Norman Ray

1993-01-01T23:59:59.000Z

94

Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment  

SciTech Connect (OSTI)

By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007 Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.

Xie, S; Boyle, J; Klein, S; Liu, X; Ghan, S

2007-06-01T23:59:59.000Z

95

Inverse Modelling to Forecast Enclosure Fire Dynamics  

E-Print Network [OSTI]

. This thesis proposes and studies a method to use measurements of the real event in order to steer and accelerate fire simulations. This technology aims at providing forecasts of the fire development with a positive lead time, i.e. the forecast of future events...

Jahn, Wolfram

96

Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)  

SciTech Connect (OSTI)

Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

2014-06-01T23:59:59.000Z

97

Weather  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18,theWeather Weather We

98

FEBRUARY 1999 119O ' C O N N O R E T A L . Forecast Verification for Eta Model Winds Using Lake Erie  

E-Print Network [OSTI]

weather prediction step-coordinate Eta Model are able to forecast winds for the Great Lakes region, using Administration (NOAA) Coastal Ocean Program, the output of NCEP numerical atmospheric prediction models is being used as the forcing for numerical ocean prediction models for several U.S. coastal regions

99

Network Bandwidth Utilization Forecast Model on High Bandwidth Network  

SciTech Connect (OSTI)

With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

Yoo, Wucherl; Sim, Alex

2014-07-07T23:59:59.000Z

100

Improving baseline forecasts in a 500-industry dynamic CGE model of the USA.  

E-Print Network [OSTI]

??MONASH-style CGE models have been used to generate baseline forecasts illustrating how an economy is likely to evolve through time. One application of such forecasts (more)

Mavromatis, Peter George

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluation of the Weather Research and Forecasting Model on  

E-Print Network [OSTI]

America, South America, portions of Africa, southern Asia, Europe (specifically near the Baltic sea direct ramifications for renewable wind energy production (e.g. Sisterson and Frenzen8: Implications for Wind Energy Brandon Storm*, Wind Science and Engineering Research Center, Texas Tech

Basu, Sukanta

102

State-of-the art of freight forecast modeling: lessons learned and the road ahead  

E-Print Network [OSTI]

of-the art of freight forecast modeling: lessons learned andof goods as well as to forecast the expected future truckused for the short-term forecasts of freight volumes on

Chow, Joseph Y.; Yang, Choon Heon; Regan, Amelia C.

2010-01-01T23:59:59.000Z

103

USING BOX-JENKINS MODELS TO FORECAST FISHERY DYNAMICS: IDENTIFICATION, ESTIMATION, AND CHECKING  

E-Print Network [OSTI]

~ is illustrated by developing a model that makes monthly forecasts of skipjack tuna, Katsuwonus pelamis, catches

104

A model for short term electric load forecasting  

E-Print Network [OSTI]

A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

Tigue, John Robert

1975-01-01T23:59:59.000Z

105

Thunderstorm lightning and radar characteristics: insights on electrification and severe weather forecasting  

E-Print Network [OSTI]

thunderstorm?s dynamics and electrification processes operate. The advent of the WSR- 88D nationwide (U. S.) radar system, the National Lightning Detection Network (NLDN), and 3-dimensional lightning mapping systems (here the Lightning Detection... that are related to storm intensity and can assist in predicting severe weather. 2. Data and methodology The radar data used in this study were from the Dallas-Fort Worth WSR-88D (KFWS), obtained from the National Climatic Data Center...

Steiger, Scott Michael

2007-04-25T23:59:59.000Z

106

Short-Termed Integrated Forecasting System: 1993 Model documentation report  

SciTech Connect (OSTI)

The purpose of this report is to define the Short-Term Integrated Forecasting System (STIFS) and describe its basic properties. The Energy Information Administration (EIA) of the US Energy Department (DOE) developed the STIFS model to generate short-term (up to 8 quarters), monthly forecasts of US supplies, demands, imports exports, stocks, and prices of various forms of energy. The models that constitute STIFS generate forecasts for a wide range of possible scenarios, including the following ones done routinely on a quarterly basis: A base (mid) world oil price and medium economic growth. A low world oil price and high economic growth. A high world oil price and low economic growth. This report is written for persons who want to know how short-term energy markets forecasts are produced by EIA. The report is intended as a reference document for model analysts, users, and the public.

Not Available

1993-05-01T23:59:59.000Z

107

THE PITTSBURGH REMI MODEL: LONG-TERM REMI MODEL FORECAST FOR  

E-Print Network [OSTI]

1 THE PITTSBURGH REMI MODEL: LONG-TERM REMI MODEL FORECAST FOR ALLEGHENY COUNTY AND THE PITTSBURGH made. REMI LONG-TERM FORECAST AND BEA PROJECTIONS This report includes UCSUR's 1998 economic and population projections for the Pittsburgh Region. The purpose of UCSUR's long-term regional forecasts

Sibille, Etienne

108

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

109

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect (OSTI)

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

110

24 More Years of Numerical Weather Prediction: A Model Performance Model  

E-Print Network [OSTI]

24 More Years of Numerical Weather Prediction: A Model Performance Model Gerard Cats May 26, 2008 Abstract For two formulations of currently usual numerical weather prediction models the evolution in such a model is much 1 #12;24 More Years of Numerical Weather Prediction Gerard Cats higher than in a sis

Stoffelen, Ad

111

Modeling and Forecasting Electric Daily Peak Loads  

E-Print Network [OSTI]

-Aal Department of Computer Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia Address for corresponding author: Dr. R. E. Abdel-Aal P. O. Box 1759 KFUPM Dhahran 31261 Saudi Arabia e, These techniques have limited accuracy because they ignore important weather effects, are time consuming, require

Abdel-Aal, Radwan E.

112

Solving the problem of inadequate scoring rules for assessing probabilistic football forecast models  

E-Print Network [OSTI]

Solving the problem of inadequate scoring rules for assessing probabilistic football forecast forecasting models, and the relative simplicity of the outcome of such forecasts (they require only three their forecast accuracy. Moreover, the various scoring rules used for validation in previous studies

Fenton, Norman

113

Forecast calls for better models | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: Since theNational SupplementalFor theForecast

114

Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA  

SciTech Connect (OSTI)

In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing quasi-deterministic components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

2014-10-27T23:59:59.000Z

115

A FORECAST MODEL OF AGRICULTURAL AND LIVESTOCK PRODUCTS PRICE  

E-Print Network [OSTI]

A FORECAST MODEL OF AGRICULTURAL AND LIVESTOCK PRODUCTS PRICE Wensheng Zhang1,* , Hongfu Chen1 and excessive fluctuation of agricultural and livestock products price is not only harmful to residents' living, but also affects CPI (Consumer Price Index) values, and even leads to social crisis, which influences

Boyer, Edmond

116

Use of Weather and Occupancy Forecasts for Optimal Building Climate Control  

E-Print Network [OSTI]

·Electric lighting ·Heating: radiators ·Cooling: slow ceiling ­ mechanical chiller ­ free cooling with wet of buildings; reducing peak electricity demand. Expected Results: ·Methods ·Software/tools ·Benefit Version 15. Jan. 2009 4 OptiControl ­ Research Partners · ETH Systems Ecology Group Modeling

Fischlin, Andreas

117

Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation  

E-Print Network [OSTI]

We propose in this paper an original technique to predict global radiation using a hybrid ARMA/ANN model and data issued from a numerical weather prediction model (ALADIN). We particularly look at the Multi-Layer Perceptron. After optimizing our architecture with ALADIN and endogenous data previously made stationary and using an innovative pre-input layer selection method, we combined it to an ARMA model from a rule based on the analysis of hourly data series. This model has been used to forecast the hourly global radiation for five places in Mediterranean area. Our technique outperforms classical models for all the places. The nRMSE for our hybrid model ANN/ARMA is 14.9% compared to 26.2% for the na\\"ive persistence predictor. Note that in the stand alone ANN case the nRMSE is 18.4%. Finally, in order to discuss the reliability of the forecaster outputs, a complementary study concerning the confidence interval of each prediction is proposed

Voyant, Cyril; Paoli, Christophe; Nivet, Marie Laure

2012-01-01T23:59:59.000Z

118

Development of Short-term Demand Forecasting Model Application in Analysis of Resource Adequacy  

E-Print Network [OSTI]

Development of Short-term Demand Forecasting Model And its Application in Analysis of Resource will present the methodology, testing and results from short-term forecasting model developed by Northwest and applied the short-term forecasting model to Resource Adequacy analysis. These steps are presented below. 1

119

Review of Wind Energy Forecasting Methods for Modeling Ramping Events  

SciTech Connect (OSTI)

Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

2011-03-28T23:59:59.000Z

120

Solar forecasting review  

E-Print Network [OSTI]

of all Numerical Weather Prediction (NWP models). First aof all Numerical Weather Prediction (NWP models). First apersistence models, numerical weather predictions as well as

Inman, Richard Headen

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

RESERVOIR RELEASE FORECAST MODEL FOR FLOOD OPERATION OF THE FOLSOM PROJECT INCLUDING PRE-RELEASES  

E-Print Network [OSTI]

1 RESERVOIR RELEASE FORECAST MODEL FOR FLOOD OPERATION OF THE FOLSOM PROJECT INCLUDING PRE-line Planning Mode, the Reservoir Release Forecast Model (RRFM) is being used to test alternatives operating River Forecast Center. The RRFM will make possible the risk-based operation of the Folsom Project

Bowles, David S.

122

Temporal Changes in Wind as Objects for Evaluating Mesoscale Numerical Weather Prediction  

E-Print Network [OSTI]

a method of evaluating numerical weather prediction models by comparing the characteristics of temporal for biases in features forecast by the model. 1. Introduction Verification of numerical weather predictionTemporal Changes in Wind as Objects for Evaluating Mesoscale Numerical Weather Prediction DARAN L

Knievel, Jason Clark

123

Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations  

SciTech Connect (OSTI)

Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

2009-02-14T23:59:59.000Z

124

ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS  

SciTech Connect (OSTI)

Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

Chiswell, S

2009-01-11T23:59:59.000Z

125

Solar activity forecast with a dynamo model  

E-Print Network [OSTI]

Although systematic measurements of the solar polar magnetic field exist only from mid 1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high, we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. To model actual solar cycles with a dynamo model having such high diffusivity, we have to feed the observational data of the poloidal field at the minimum into the theoretical model. We develop a method of doing this in a systematic way. Our model predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of solar activity is also calculated with our model and compared with observational data.

Jie Jiang; Piyali Chatterjee; Arnab Rai Choudhuri

2007-07-16T23:59:59.000Z

126

A first large-scale flood inundation forecasting model  

SciTech Connect (OSTI)

At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode revealed that it is crucial to account for basin-wide hydrological response time when assessing lead time performances notwithstanding structural limitations in the hydrological model and possibly large inaccuracies in precipitation data.

Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

2013-11-04T23:59:59.000Z

127

Crude oil prices and petroleum inventories : remedies for a broken oil price forecasting model.  

E-Print Network [OSTI]

??The empirical relationship between crude oil prices and petroleum inventories has been exploited in a number of short-term oil price forecasting models. Some of the (more)

Grimstad, Dan

2007-01-01T23:59:59.000Z

128

Volatility Forecasts in Financial Time Series with HMM-GARCH Models  

E-Print Network [OSTI]

Volatility Forecasts in Financial Time Series with HMM-GARCH Models Xiong-Fei Zhuang and Lai {xfzhuang,lwchan}@cse.cuhk.edu.hk Abstract. Nowadays many researchers use GARCH models to generate of the two parameters G1 and A1[1], in GARCH models is usually too high. Since volatility forecasts in GARCH

Chen, Yiling

129

P2.3 DEVELOPMENT OF A COMPREHENSIVE SEVERE WEATHER FORECAST VERIFICATION SYSTEM AT THE STORM PREDICTION CENTER  

E-Print Network [OSTI]

: Andrew R. Dean, CIMMS, Univ. of Oklahoma, National Weather Center, Suite 2300, Norman, OK 73072-7268; e PREDICTION CENTER Andrew R. Dean*1,2 , Russell S. Schneider 2 , and Joseph T. Schaefer 2 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK 2 NOAA/NWS Storm

130

Machine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation Forecasts  

E-Print Network [OSTI]

Machine Learning Enhancement of Storm-Scale Ensemble Probabilistic Quantitative Precipitation uncertainty. Machine learning methods can produce calibrated probabilistic forecasts from the raw ensemble and machine learning are working to address these challenges. Numerical weather prediction (NWP) models

Xue, Ming

131

AIR QUALITY ENSEMBLE FORECAST COUPLING ARPEGE AND CHIMERE OVER WESTERN EUROPE  

E-Print Network [OSTI]

AIR QUALITY ENSEMBLE FORECAST COUPLING ARPEGE AND CHIMERE OVER WESTERN EUROPE Carvalho of the results encountered on numerical weather prediction ensemble runs has encouraged the air quality modellers' community to test the same methodology to foresee air pollutants concentrations

Menut, Laurent

132

Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption  

E-Print Network [OSTI]

Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption Tunisian electricity consumption (the residential sector represents 68% of this class of consumers). Nevertheless, with the Tunisian electricity consumption context, models elaborating which take account weather

Boyer, Edmond

133

A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty  

SciTech Connect (OSTI)

This paper presents four algorithms to generate random forecast error time series. The performance of four algorithms is compared. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets used in power grid operation to study the net load balancing need in variable generation integration studies. The four algorithms are truncated-normal distribution models, state-space based Markov models, seasonal autoregressive moving average (ARMA) models, and a stochastic-optimization based approach. The comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics (i.e., mean, standard deviation, autocorrelation, and cross-correlation). The results show that all methods generate satisfactory results. One method may preserve one or two required statistical characteristics better the other methods, but may not preserve other statistical characteristics as well compared with the other methods. Because the wind and load forecast error generators are used in wind integration studies to produce wind and load forecasts time series for stochastic planning processes, it is sometimes critical to use multiple methods to generate the error time series to obtain a statistically robust result. Therefore, this paper discusses and compares the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.

Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.

2013-07-25T23:59:59.000Z

134

Econometric model and futures markets commodity price forecasting  

E-Print Network [OSTI]

Versus CCll1rnercial Econometric M:ldels." Uni- versity ofWorking Paper No. 72 ECONOMETRIC ! 'econometric forecasts with the futures

Just, Richard E.; Rausser, Gordon C.

1979-01-01T23:59:59.000Z

135

Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation  

E-Print Network [OSTI]

Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation Cyril a hybrid ARMA/ANN model and data issued from a numerical weather prediction model (ALADIN). We particularly@gmail.com #12;Abstract. We propose in this paper an original technique to predict global radiation using

Paris-Sud XI, Université de

136

PostScript file created: April 17, 2005 Comparison of short-term and long-term earthquake forecast models  

E-Print Network [OSTI]

forecast models for southern California Agn`es Helmstetter1,3 , Yan Y. Kagan2 and David D. Jackson2 1, Columbia University, New York Abstract We consider the problem of forecasting earthquakes on two different time scales: years, and days. We evaluate some published forecast models on these time scales

Paris-Sud XI, Université de

137

Weather Regime Prediction Using Statistical Learning  

E-Print Network [OSTI]

most advanced numerical weather prediction models still havefor numerical weather prediction models. Acknowledgements It

A. Deloncle; R. Berk; F. D'Andrea; M. Ghil

2011-01-01T23:59:59.000Z

138

Copula Based Stochastic Weather Generator as an Application for Crop Growth Models and Crop Insurance  

E-Print Network [OSTI]

INTRODUCTION .............................................................................. 1 CHAPTER II THE MODELING OF WEATHER VARIABLES WITH COPULA APPROACH..................................................................... 3 Introduction... 1 CHAPTER I INTRODUCTION Stochastic Weather Generators (SWG) are numerical models that try to reproduce the statistical properties from observed historical climate series. Climatological variables are complex systems, characterized by high...

Juarez Torres, Miriam 77-

2012-08-31T23:59:59.000Z

139

Forecasting Volatility in Stock Market Using GARCH Models  

E-Print Network [OSTI]

Forecasting volatility has held the attention of academics and practitioners all over the world. The objective for this master's thesis is to predict the volatility in stock market by using generalized autoregressive conditional heteroscedasticity(GARCH...

Yang, Xiaorong

2008-01-01T23:59:59.000Z

140

Hydrometeorological aspects of the Real-Time Ultrafinescale Forecast Support during the Special Observing Period of MAP Hydrology and Earth System Sciences, 7(6), 877889 (2003) EGU  

E-Print Network [OSTI]

-Italian border region were predicted correctly by data from the numerical weather models linked application of numerical weather prediction data to forecast flows over a very large, multinational domain points, covering the whole of theAlpine region. These high resolution numerical weather prediction data

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Probabilistic Performance Forecasting for Unconventional Reservoirs With Stretched-Exponential Model  

E-Print Network [OSTI]

a reserves-evaluation workflow that couples the traditional decline-curve analysis with a probabilistic forecasting frame. The stretched-exponential production decline model (SEPD) underpins the production behavior. Our recovery appraisal workflow...

Can, Bunyamin

2011-08-08T23:59:59.000Z

142

Efficient market model: within-sample fit versus out-of-sample forecasts  

E-Print Network [OSTI]

has been the center of considerable attention in the applied econometric literature. The criterion Predictive Least Squares (PLS) based on actual postsample forecasting performance is proposed to identify a time series model. The criterion is applied...

Cheng, Chi

1993-01-01T23:59:59.000Z

143

Weather Radar and Hydrology 1 Influence of rainfall spatial variability on hydrological modelling: a  

E-Print Network [OSTI]

Weather Radar and Hydrology 1 Influence of rainfall spatial variability on hydrological modelling variability as well as characteristics and hydrological behavior of catchments, we have proceeded simulator and a distributed hydrological model (with four production functions and a distributed transfer

Paris-Sud XI, Université de

144

USING LEARNING MACHINES TO CREATE SOLAR RADIATION MAPS FROM NUMERICAL WEATHER PREDICTION MODELS,  

E-Print Network [OSTI]

USING LEARNING MACHINES TO CREATE SOLAR RADIATION MAPS FROM NUMERICAL WEATHER PREDICTION MODELS to develop a methodology to generate solar radiation maps using information from different sources. First with conclusions and next works in the last section. Keywords: Solar Radiation maps, Numerical Weather Predictions

Paris-Sud XI, Université de

145

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network [OSTI]

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

146

Forecasting the monthly volume of orders for southern pine lumber - an econometric model  

E-Print Network [OSTI]

the orders estimates should be minimal, and the benefits of forecasting should exceed the costs. Included in this matter of convenience is the mathematical simplicity of the computations and their evaluation. With these essential characteristics in mind... FORECASTING THE MONTHLY VOLUME OF ORDERS FOR SOUTHERN PINE LUMBER - AH ECONOMETRIC MODEL A Thesis by BEN DOUGLAS JACKSON Submitted to the Graduate College of Texas ASM University in Partial fulfillment of the requirement for the degree...

Jackson, Ben Douglas

1973-01-01T23:59:59.000Z

147

Development of a real-time quantitative hydrologic forecasting model  

E-Print Network [OSTI]

TIME ) Ftgure 2. porno(lal f loni daaaga reduction aada possible hy a gives ruspanav ties (acr rrata forecast Ivad (Iacl. The do(ted ll?es In tha figure gives wt essnple uhlclt ahoun that as tha fnrecast land tlaa Incrva. as frua 4 to l4 hours...

Bell, John Frank

1986-01-01T23:59:59.000Z

148

GET your forecast at the click of a button.  

E-Print Network [OSTI]

GET your forecast at the click of a button. EXPLORE your local weather in detail. PLAN your days favourite locations; · Pan and zoom to any area in Australia; · Combine the latest weather and forecast current temperatures across Australia. MetEyeTM computer screen image displaying the weather forecast

Greenslade, Diana

149

Load Forecast For use in Resource Adequacy  

E-Print Network [OSTI]

-term Electricity Demand Forecasting System 1) Obtain Daily Regional Temperatures 6) Estimate Daily WeatherLoad Forecast 2019 For use in Resource Adequacy Massoud Jourabchi #12;In today's presentation d l­ Load forecast methodology ­ Drivers of the forecast f i­ Treatment of conservation

150

Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling  

E-Print Network [OSTI]

in the numerical weather prediction (NWP) and climate models through parameterisation. For parameterisation, data. The effect of lakes should be parameterised in numerical weather prediction (NWP) and climate modellingEstimation of the mean depth of boreal lakes for use in numerical weather prediction and climate

Paris-Sud XI, Université de

151

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations the Northern Study Area.  

SciTech Connect (OSTI)

This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times. A comprehensive analysis of wind energy forecast errors for the various model-based power forecasts was presented for a suite of wind energy ramp definitions. The results compiled over the year-long study period showed that the power forecasts based on the research models (ESRL_RAP, HRRR) more accurately predict wind energy ramp events than the current operational forecast models, both at the system aggregate level and at the local wind plant level. At the system level, the ESRL_RAP-based forecasts most accurately predict both the total number of ramp events and the occurrence of the events themselves, but the HRRR-based forecasts more accurately predict the ramp rate. At the individual site level, the HRRR-based forecasts most accurately predicted the actual ramp occurrence, the total number of ramps and the ramp rates (40-60% improvement in ramp rates over the coarser resolution forecast

Finley, Cathy [WindLogics

2014-04-30T23:59:59.000Z

152

Using Weather Data and Climate Model Output in Economic Analyses of Climate Change  

SciTech Connect (OSTI)

Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

Auffhammer, Maximilian [University of California at Berkeley; Hsiang, Solomon M. [Princeton University; Schlenker, Wolfram [Columbia University; Sobel, Adam H. [Columbia University

2013-06-28T23:59:59.000Z

153

Continuous Model Updating and Forecasting for a Naturally Fractured Reservoir  

E-Print Network [OSTI]

result in suboptimal decisions and huge disappointments (see Sec. 1.2.2) Reservoir simulation literature indicates that an acceptable level of matching historical reservoir performance is required to establish reliable forecasts. However, this does... and field production. Such capabilities enable continuous and automatic fine-tuning of production controls to optimize project economics and/or some well or reservoir performance stated objective. Remotely activated sub-surface valves on ?smart wells...

Almohammadi, Hisham

2013-07-26T23:59:59.000Z

154

P9.137 The SPC Storm-Scale Ensemble of Opportunity: Overview and Results from the 2012 Hazardous Weather Testbed Spring Forecasting Experiment  

E-Print Network [OSTI]

P9.137 The SPC Storm-Scale Ensemble of Opportunity: Overview and Results from the 2012 Hazardous) available to forecasters at the Storm Prediction Center (SPC) has been increasing over the past few years to examine and scrutinize the data in creating a forecast has not changed. Thus, the concept of the SPC Storm

155

Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies  

SciTech Connect (OSTI)

To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation. We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.

Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.; Diao, Ruisheng; Lu, Ning

2014-04-14T23:59:59.000Z

156

Evaluation of Advanced Wind Power Forecasting Models Results of the Anemos Project  

E-Print Network [OSTI]

1 Evaluation of Advanced Wind Power Forecasting Models ­ Results of the Anemos Project I. Martí1.kariniotakis@ensmp.fr Abstract An outstanding question posed today by end-users like power system operators, wind power producers or traders is what performance can be expected by state-of-the-art wind power prediction models. This paper

Paris-Sud XI, Université de

157

Global and multi-scale features of solar wind-magnetosphere coupling: From modeling to forecasting  

E-Print Network [OSTI]

and substorms; 2784 Magnetospheric Physics: Solar wind/magnetosphere interactions; 3210 Mathematical Geophysics in the solar wind-magnetosphere interaction, de- veloping first principles models that encompass allGlobal and multi-scale features of solar wind-magnetosphere coupling: From modeling to forecasting

Sitnov, Mikhail I.

158

Addressing model bias and uncertainty in three dimensional groundwater transport forecasts for a physical aquifer experiment  

E-Print Network [OSTI]

Addressing model bias and uncertainty in three dimensional groundwater transport forecasts, and D. M. Rizzo (2008), Addressing model bias and uncertainty in three dimensional groundwater transport. Introduction [2] Eigbe et al. [1998] provide an excellent review of groundwater applications of the linear

Vermont, University of

159

Sunshine-Factor Model with Treshold GARCH for Predicting Temperature of Weather Contracts  

E-Print Network [OSTI]

Sunshine-Factor Model with Treshold GARCH for Predicting Temperature of Weather Contracts Hlne of the shocks on the volatility by estimating a structural model with a periodic threshold GARCH. We show model, Markov chain, threshold GARCH, Monte- Carlo simulations, pricing, Value-at-Risk. JEL

Paris-Sud XI, Universit de

160

Validation of Global Weather Forecast and Climate Models Over the North  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II FieldVacancy-InducedCloud Properties Derived from

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PNNL-Weather Research and Forecasting (WRF)-Chem Modeling in Mexico | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County is aOrmesa IOvonicPECO)Energy Information

162

Probabilistic Forecasting of (Severe) Thunderstorms in the Netherlands Using Model Output Statistics  

E-Print Network [OSTI]

Probabilistic Forecasting of (Severe) Thunderstorms in the Netherlands Using Model Output Statistics MAURICE J. SCHMEITS, KEES J. KOK, AND DAAN H. P. VOGELEZANG Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands (Manuscript received 29 April 2004, in final form 7 September 2004

Schmeits, Maurice

163

Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs  

E-Print Network [OSTI]

, is widely used in industry to forecast shale gas wells. Left unconstrained, the model often overestimates reserves by a great deal. A minimum decline rate is imposed to prevent overestimation of reserves but with less than ten years of production history...

Statton, James Cody

2012-07-16T23:59:59.000Z

164

Time series modeling and large scale global solar radiation forecasting from geostationary satellites data  

E-Print Network [OSTI]

1 Time series modeling and large scale global solar radiation forecasting from geostationary global solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar radiation for the next hour. The results presented in this paper relate to a particular territory

Paris-Sud XI, Université de

165

Seasonal Maize Forecasting for South Africa and Zimbabwe Derived from an Agroclimatological Model  

E-Print Network [OSTI]

Seasonal Maize Forecasting for South Africa and Zimbabwe Derived from an Agroclimatological Model, with a hindcast correlation over 16 seasons of 0.92 for South Africa and 0.62 for Zimbabwe. Over 17 seasons and actual maize water-stress in South Africa, and a correlation of 0.79 for the same relationship

Martin, Randall

166

EXPLICIT SIMULATION OF ICE PARTICLE HABITS IN A NUMERICAL WEATHER PREDICTION MODEL  

E-Print Network [OSTI]

EXPLICIT SIMULATION OF ICE PARTICLE HABITS IN A NUMERICAL WEATHER PREDICTION MODEL by Tempei This study develops a scheme for explicit simulation of ice particle habits in Cloud Resolving Models (CRMs is called Spectral Ice Habit Prediction System (SHIPS), which represents a continuous-property approach

Wisconsin at Madison, University of

167

Forecast Correlation Coefficient Matrix of Stock Returns in Portfolio Analysis  

E-Print Network [OSTI]

Unadjusted Forecasts . . . . . . . . . . . . . . . .Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . .Unadjusted Forecasts . . . . . . . . . . . . . . . . . . .

Zhao, Feng

2013-01-01T23:59:59.000Z

168

Real-Time Track Prediction of Tropical Cyclones over the North Indian Ocean Using the ARW Model  

E-Print Network [OSTI]

Real-Time Track Prediction of Tropical Cyclones over the North Indian Ocean Using the ARW Model of Technology Bhubaneswar, Odisha, India A. ROUTRAY National Centre for Medium Range Weather Forecasting, Noida The performance of the Advanced Research version of the Weather Research and Forecasting (ARW) model in real

169

Why Models Don%3CU%2B2019%3Et Forecast.  

SciTech Connect (OSTI)

The title of this paper, Why Models Don't Forecast, has a deceptively simple answer: models don't forecast because people forecast. Yet this statement has significant implications for computational social modeling and simulation in national security decision making. Specifically, it points to the need for robust approaches to the problem of how people and organizations develop, deploy, and use computational modeling and simulation technologies. In the next twenty or so pages, I argue that the challenge of evaluating computational social modeling and simulation technologies extends far beyond verification and validation, and should include the relationship between a simulation technology and the people and organizations using it. This challenge of evaluation is not just one of usability and usefulness for technologies, but extends to the assessment of how new modeling and simulation technologies shape human and organizational judgment. The robust and systematic evaluation of organizational decision making processes, and the role of computational modeling and simulation technologies therein, is a critical problem for the organizations who promote, fund, develop, and seek to use computational social science tools, methods, and techniques in high-consequence decision making.

McNamara, Laura A.

2010-08-01T23:59:59.000Z

170

MODELLING SURFACE HOAR FORMATION AND EVOLUTION ON MOUNTAIN SLOPES Simon Horton1  

E-Print Network [OSTI]

. Weather station data and forecasted data from the GEM15 numerical weather prediction model were used evaluates surface hoar size predictions made with empirical weather based models and discusses how buried and south facing slopes in the Columbia Mountains. Two models were developed to predict crystal size, one

Jamieson, Bruce

171

Air pollution forecasting by coupled atmosphere-fire model WRF and SFIRE with WRF-Chem  

E-Print Network [OSTI]

Atmospheric pollution regulations have emerged as a dominant obstacle to prescribed burns. Thus, forecasting the pollution caused by wildland fires has acquired high importance. WRF and SFIRE model wildland fire spread in a two-way interaction with the atmosphere. The surface heat flux from the fire causes strong updrafts, which in turn change the winds and affect the fire spread. Fire emissions, estimated from the burning organic matter, are inserted in every time step into WRF-Chem tracers at the lowest atmospheric layer. The buoyancy caused by the fire then naturally simulates plume dynamics, and the chemical transport in WRF-Chem provides a forecast of the pollution spread. We discuss the choice of wood burning models and compatible chemical transport models in WRF-Chem, and demonstrate the results on case studies.

Kochanski, Adam K; Mandel, Jan; Clements, Craig B

2013-01-01T23:59:59.000Z

172

Introduction. Stochastic physics and climate modelling  

E-Print Network [OSTI]

become a backbone of numerical weather prediction and is used not only by weather forecasters but also. Stochastic physics schemes within weather and climate models have the potential to represent the dynamical history, the present era, whereby predictions are made from numerical solutions of the underlying dynamic

Williams, Paul

173

Developing a TeraGrid Based Land Surface Hydrology and Weather Modeling Interface  

E-Print Network [OSTI]

Developing a TeraGrid Based Land Surface Hydrology and Weather Modeling Interface Hsin-I Chang1 iclimate@purdue.edu -------------------- -------------------- 1 INTRODUCTION Real world hydrologic cyberinfrastructure (CI) has been articulated in many workshops and meetings of the environmental and hydrologic

Jiang, Wen

174

Parametric inference and forecasting for continuously invertible volatility models  

E-Print Network [OSTI]

recover known results on univariate and multivariate GARCH type models where the estima- tor coincides estimation, strong consistency, asymptotic normality, asymmetric GARCH, exponential GARCH, stochastic (1986), the General Au- toregressive Conditional Heteroskedasticity (GARCH) type models have been

Paris-Sud XI, Universit de

175

A model for improving ocean wind forecasts using satellite  

E-Print Network [OSTI]

Using the dynamical model from previous talk we now want to assimilate the satellite measurements Using the dynamical model from previous talk we now want to assimilate the satellite measurements now want to assimilate the satellite measurements into this model. We will discuss the measurement

Malmberg, Anders

176

Forecast Technical Document Forecast Types  

E-Print Network [OSTI]

Forecast Technical Document Forecast Types A document describing how different forecast types are implemented in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Forecast Types Background Different `types' of forecast are possible for a specified area

177

APPLICATION OF PROBABILISTIC FORECASTS: DECISION MAKING WITH FORECAST UNCERTAINTY  

E-Print Network [OSTI]

1 APPLICATION OF PROBABILISTIC FORECASTS: DECISION MAKING WITH FORECAST UNCERTAINTY Rick Katz.isse.ucar.edu/HP_rick/dmuu.pdf #12;2 QUOTES ON USE OF PROBABILITY FORECASTS · Lao Tzu (Chinese Philosopher) "He who knows does and Value of Probability Forecasts (4) Cost-Loss Decision-Making Model (5) Simulation Example (6) Economic

Katz, Richard

178

Regional forecasting with global atmospheric models; Final report  

SciTech Connect (OSTI)

The purpose of the project was to conduct model simulations for past and future climate change with respect to the proposed Yucca Mtn. repository. The authors report on three main topics, one of which is boundary conditions for paleo-hindcast studies. These conditions are necessary for the conduction of three to four model simulations. The boundary conditions have been prepared for future runs. The second topic is (a) comparing the atmospheric general circulation model (GCM) with observations and other GCMs; and (b) development of a better precipitation data base for the Yucca Mtn. region for comparisons with models. These tasks have been completed. The third topic is preliminary assessments of future climate change. Energy balance model (EBM) simulations suggest that the greenhouse effect will likely dominate climate change at Yucca Mtn. for the next 10,000 years. The EBM study should improve rational choice of GCM CO{sub 2} scenarios for future climate change.

Crowley, T.J.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

1994-05-01T23:59:59.000Z

179

Forecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices  

E-Print Network [OSTI]

This paper presents a model based on multilayer feedforward neural network to forecast crude oil spot price direction in the short-term, up to three days ahead. A great deal of attention was paid on finding the optimal ANN model structure. In addition, several methods of data pre-processing were tested. Our approach is to create a benchmark based on lagged value of pre-processed spot price, then add pre-processed futures prices for 1, 2, 3,and four months to maturity, one by one and also altogether. The results on the benchmark suggest that a dynamic model of 13 lags is the optimal to forecast spot price direction for the short-term. Further, the forecast accuracy of the direction of the market was 78%, 66%, and 53% for one, two, and three days in future conclusively. For all the experiments, that include futures data as an input, the results show that on the short-term, futures prices do hold new information on the spot price direction. The results obtained will generate comprehensive understanding of the cr...

Kulkarni, Siddhivinayak

2009-01-01T23:59:59.000Z

180

Implementation of a Corporate Energy Accounting and Forecasting Model  

E-Print Network [OSTI]

The development and implementation of a Frito-Lay computer based energy consumption reporting and modeling program is discussed. The system has been designed to relate actual plant energy consumption to a standard consumption which incorporates...

Kympton, H. W.; Bowman, B. M.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Increasing NOAA's computational capacity to improve global forecast modeling  

E-Print Network [OSTI]

Systems Division Stephen J. Lord Director, NWS NCEP Environmental Modeling Center 19 July 2010 (303) 4973060 tom.hamill@noaa.gov #12; 2 Executive Summary The accuracy of many

Hamill, Tom

182

The Complexity of Forecast Testing Lance Fortnow # Rakesh V. Vohra +  

E-Print Network [OSTI]

The Complexity of Forecast Testing Lance Fortnow # Rakesh V. Vohra + Abstract Consider a weather forecaster predicting a probability of rain for the next day. We consider tests that given a finite sequence of forecast predictions and outcomes will either pass or fail the forecaster. Sandroni shows that any test

Fortnow, Lance

183

Coupling the High Complexity Land Surface Model ACASA to the Mesoscale Model WRF  

E-Print Network [OSTI]

In this study, the Weather Research and Forecasting Model (WRF) is coupled with the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA), a high complexity land surface model. Although WRF is a state-of-the-art regional ...

Xu, L.

184

Online short-term solar power forecasting  

SciTech Connect (OSTI)

This paper describes a new approach to online forecasting of power production from PV systems. The method is suited to online forecasting in many applications and in this paper it is used to predict hourly values of solar power for horizons of up to 36 h. The data used is 15-min observations of solar power from 21 PV systems located on rooftops in a small village in Denmark. The suggested method is a two-stage method where first a statistical normalization of the solar power is obtained using a clear sky model. The clear sky model is found using statistical smoothing techniques. Then forecasts of the normalized solar power are calculated using adaptive linear time series models. Both autoregressive (AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes numerical weather predictions (NWPs) as input. The results indicate that for forecasts up to 2 h ahead the most important input is the available observations of solar power, while for longer horizons NWPs are the most important input. A root mean square error improvement of around 35% is achieved by the ARX model compared to a proposed reference model. (author)

Bacher, Peder; Madsen, Henrik [Informatics and Mathematical Modelling, Richard Pedersens Plads, Technical University of Denmark, Building 321, DK-2800 Lyngby (Denmark); Nielsen, Henrik Aalborg [ENFOR A/S, Lyngsoe Alle 3, DK-2970 Hoersholm (Denmark)

2009-10-15T23:59:59.000Z

185

Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)  

Reports and Publications (EIA)

The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

1998-01-01T23:59:59.000Z

186

Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models  

SciTech Connect (OSTI)

Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

Vrugt, Jasper A [Los Alamos National Laboratory; Wohling, Thomas [NON LANL

2008-01-01T23:59:59.000Z

187

Modeling High-Impact Weather and Climate: Lessons From a Tropical Cyclone Perspective  

SciTech Connect (OSTI)

Although the societal impact of a weather event increases with the rarity of the event, our current ability to assess extreme events and their impacts is limited by not only rarity but also by current model fidelity and a lack of understanding of the underlying physical processes. This challenge is driving fresh approaches to assess high-impact weather and climate. Recent lessons learned in modeling high-impact weather and climate are presented using the case of tropical cyclones as an illustrative example. Through examples using the Nested Regional Climate Model to dynamically downscale large-scale climate data the need to treat bias in the driving data is illustrated. Domain size, location, and resolution are also shown to be critical and should be guided by the need to: include relevant regional climate physical processes; resolve key impact parameters; and to accurately simulate the response to changes in external forcing. The notion of sufficient model resolution is introduced together with the added value in combining dynamical and statistical assessments to fill out the parent distribution of high-impact parameters. Finally, through the example of a tropical cyclone damage index, direct impact assessments are resented as powerful tools that distill complex datasets into concise statements on likely impact, and as highly effective communication devices.

Done, James; Holland, Greg; Bruyere, Cindy; Leung, Lai-Yung R.; Suzuki-Parker, Asuka

2013-10-19T23:59:59.000Z

188

Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River Basin  

SciTech Connect (OSTI)

A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatial scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.

Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.; Buizza, Roberto; Schaake, John

2011-08-15T23:59:59.000Z

189

Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)  

SciTech Connect (OSTI)

The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

Ross, M.H. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics); Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. (Argonne National Lab., IL (United States))

1993-05-01T23:59:59.000Z

190

Forecasting 65+ travel : an integration of cohort analysis and travel demand modeling  

E-Print Network [OSTI]

Over the next 30 years, the Boomers will double the 65+ population in the United States and comprise a new generation of older Americans. This study forecasts the aging Boomers' travel. Previous efforts to forecast 65+ ...

Bush, Sarah, 1973-

2003-01-01T23:59:59.000Z

191

E-Print Network 3.0 - area prediction models Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: area prediction models Page: << < 1 2 3 4 5 > >> 1 The Quality of a 48-Hours Wind Power Forecast Using the German and Danish Weather Prediction Model Summary: The Quality...

192

A comparison of water vapor quantities from model short-range forecasts and ARM observations  

SciTech Connect (OSTI)

Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the 'Merged-sounding' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

Hnilo, J J

2006-03-17T23:59:59.000Z

193

AN APPLICATION OF URBANSIM TO THE AUSTIN, TEXAS REGION: INTEGRATED-MODEL FORECASTS FOR THE YEAR 2030  

E-Print Network [OSTI]

AN APPLICATION OF URBANSIM TO THE AUSTIN, TEXAS REGION: INTEGRATED-MODEL FORECASTS FOR THE YEAR, as well as energy consumption and greenhouse gas emissions. This work describes the modeling of year-2030 policies significantly impact the region's future land use patterns, traffic conditions, greenhouse gas

Kockelman, Kara M.

194

A Non Parametric Model for the Forecasting of the Venezuelan Oil Prices  

E-Print Network [OSTI]

A neural net model for forecasting the prices of Venezuelan crude oil is proposed. The inputs of the neural net are selected by reference to a dynamic system model of oil prices by Mashayekhi (1995, 2001) and its performance is evaluated using two criteria: the Excess Profitability test by Anatoliev and Gerko (2005) and the characteristics of the equity curve generated by a trading strategy based on the neural net predictions. ----- Se introduce aqui un modelo no parametrico para pronosticar los precios del petroleo Venezolano cuyos insumos son seleccionados en base a un sistema dinamico que explica los precios en terminos de dichos insumos. Se describe el proceso de recoleccion y pre-procesamiento de datos y la corrida de la red y se evaluan sus pronosticos a traves de un test estadistico de predictibilidad y de las caracteristicas del Equity Curve inducido por la estrategia de compraventa bursatil generada por dichos pronosticos.

Costanzo, Sabatino; Dehne, Wafaa; Prato, Hender

2007-01-01T23:59:59.000Z

195

Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part I: Two-Meter Temperatures  

E-Print Network [OSTI]

Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part I: Two-Meter Temperatures RENATE HAGEDORN European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom THOMAS for Medium-Range Weather Forecasts (ECMWF) produced a reforecast dataset for a 2005 version of their ensemble

Hamill, Tom

196

TRAVEL DEMAND AND RELIABLE FORECASTS  

E-Print Network [OSTI]

TRAVEL DEMAND AND RELIABLE FORECASTS FOR TRANSIT MARK FILIPI, AICP PTP 23rd Annual Transportation transportation projects § Develop and maintain Regional Travel Demand Model § Develop forecast socio in cooperative review during all phases of travel demand forecasting 4 #12;Cooperative Review Should Include

Minnesota, University of

197

Continuous reservoir simulation model updating and forecasting using a markov chain monte carlo method  

E-Print Network [OSTI]

forecasts of well and reservoir performance, accessible at any time. It can be used to optimize long-term reservoir performance at field scale....

Liu, Chang

2009-05-15T23:59:59.000Z

198

Accuracy of near real time updates in wind power forecasting  

E-Print Network [OSTI]

· advantage: no NWP data necessary ­ very actual shortest term forecasts possible · wind power inputAccuracy of near real time updates in wind power forecasting with regard to different weather October 2007 #12;EMS/ECAM 2007 ­ Nadja Saleck Outline · Study site · Wind power forecasting - method

Heinemann, Detlev

199

Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models  

E-Print Network [OSTI]

Forecasting the conditional volatility of oil spot and futures prices with structural breaks of oil spot and futures prices using three GARCH-type models, i.e., linear GARCH, GARCH with structural that oil price fluctuations influence economic activity and financial sector (e.g., Jones and Kaul, 1996

Paris-Sud XI, Université de

200

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand................................................................................................................................. 1 Demand Forecast Methodology.................................................................................................. 3 New Demand Forecasting Model for the Sixth Plan

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development, implementation, and skill assessment of the NOAA/NOS Great Lakes Operational Forecast System  

E-Print Network [OSTI]

Development, implementation, and skill assessment of the NOAA/NOS Great Lakes Operational Forecast Lakes Operational Forecast System (GLOFS) uses near-real-time atmospheric observa- tions and numerical weather prediction forecast guidance to produce three-dimensional forecasts of water temperature

202

Resource Adequacy Load Forecast A Report to the Resource Adequacy Advisory Committee  

E-Print Network [OSTI]

one hour peak demand and monthly energy assuming normal weather. The Council forecast includes loadsResource Adequacy Load Forecast A Report to the Resource Adequacy Advisory Committee Tomás of the assessment is the load forecast. The Council staff has recently developed a load forecast to be used

203

Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil  

E-Print Network [OSTI]

Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil Pollution Tracking Heriot) Key Words Oil Spill, HF Radar, Trajectory Forecasting, Hydrodynamic Modelling, Oil Chemistry Overview In an oil spill emergency, an operational system must forecast ocean and weather conditions in addition

Henderson, Gideon

204

Development and testing of improved statistical wind power forecasting methods.  

SciTech Connect (OSTI)

Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

2011-12-06T23:59:59.000Z

205

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network [OSTI]

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tlus is

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

206

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network [OSTI]

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tlus is

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

207

Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs.  

E-Print Network [OSTI]

??Production forecasting in shale (ultra-low permeability) gas reservoirs is of great interest due to the advent of multi-stage fracturing and horizontal drilling. The well renowned (more)

Statton, James Cody

2012-01-01T23:59:59.000Z

208

A supply forecasting model for Zimbabwe's corn sector: a time series and structural analysis  

E-Print Network [OSTI]

The Zimbabwean government utilizes the corn supply forecasts to establish producer prices for the following growing season, estimate corn storage and handling costs, project corn import needs and associated costs, and to assess the Grain Marketing...

Makaudze, Ephias

1993-01-01T23:59:59.000Z

209

Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)  

SciTech Connect (OSTI)

Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.

Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.

2013-10-01T23:59:59.000Z

210

5, 183218, 2008 A rainfall forecast  

E-Print Network [OSTI]

HESSD 5, 183­218, 2008 A rainfall forecast model using Artificial Neural Network N. Q. Hung et al An artificial neural network model for rainfall forecasting in Bangkok, Thailand N. Q. Hung, M. S. Babel, S Geosciences Union. 183 #12;HESSD 5, 183­218, 2008 A rainfall forecast model using Artificial Neural Network N

Paris-Sud XI, Université de

211

Load forecast and treatment of conservation  

E-Print Network [OSTI]

conservation is implicitly incorporated in the short-term demand forecast? #12;3 Incorporating conservationLoad forecast and treatment of conservation July 28th 2010 Resource Adequacy Technical Committee in the short-term model Our short-term model is an econometric model which can not explicitly forecast

212

An Aggregate Air Traffic Forecasting Model subject to Stochastic Christabelle S. Bosson  

E-Print Network [OSTI]

at Dallas Fort-Worth International airport under weather and reduced airport capacity. Almost 60, 000, Boston, MA AIAA 2013-5032 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc

Sun, Dengfeng

213

Commercial Weatherization  

Broader source: Energy.gov [DOE]

Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

214

A Better Way to ID Extreme Weather Events in Climate Models  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to do just that. "We're using state-of-the-art methods in data mining and high performance computing to locate and quantify extreme weather phenomena in the very large datasets...

215

Weatherization Roundup  

Broader source: Energy.gov [DOE]

More than 750 thousand homes were weatherized by the Departments Weatherization Assistance Program in the past three years. Secretary Chu spoke with governors and members of Congress around the country to celebrate this huge accomplishment -- which was finished ahead of schedule and is saving the average household $400 annually on their heating and cooling bills.

216

Solar Forecasting  

Broader source: Energy.gov [DOE]

On December 7, 2012,DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S....

217

Wavelet-Based Nonlinear Multiscale Decomposition Model for Electricity Load Forecasting  

E-Print Network [OSTI]

electrical power systems. Furthermore, power systems need to operate at even higher efficiency lead to extra power being generated and therefore may result in excessive investment in electric plant that is not fully utilized. On the other hand, a forecast that is too low may lead to some revenue loss from sales

Murtagh, Fionn

218

Modeling, History Matching, Forecasting and Analysis of Shale Reservoirs Performance Using Artificial Intelligence  

E-Print Network [OSTI]

matching, forecasting and analyzing oil and gas production in shale reservoirs. In this new approach and analysis of oil and gas production from shale formations. Examples of three case studies in Lower Huron and New Albany shale formations (gas producing) and Bakken Shale (oil producing) is presented

Mohaghegh, Shahab

219

Mesoscale predictability and background error convariance estimation through ensemble forecasting  

E-Print Network [OSTI]

Over the past decade, ensemble forecasting has emerged as a powerful tool for numerical weather prediction. Not only does it produce the best estimate of the state of the atmosphere, it also could quantify the uncertainties associated with the best...

Ham, Joy L

2002-01-01T23:59:59.000Z

220

Forecast Technical Document Restocking in the Forecast  

E-Print Network [OSTI]

Forecast Technical Document Restocking in the Forecast A document describing how restocking of felled areas is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley in the forecast Background During the period of a production forecast it is assumed that, as forest sub

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Soil moisture in complex terrain: quantifying effects on atmospheric boundary layer flow and providing improved surface boundary conditions for mesoscale models  

E-Print Network [OSTI]

compressible numerical weather prediction model incompressible numerical weather prediction model withcompressible numerical weather prediction model in

Daniels, Megan Hanako

2010-01-01T23:59:59.000Z

222

Weatherizing America  

Broader source: Energy.gov [DOE]

As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working...

223

Weatherizing America  

ScienceCinema (OSTI)

As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony;

2013-05-29T23:59:59.000Z

224

Value of Wind Power Forecasting  

SciTech Connect (OSTI)

This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

2011-04-01T23:59:59.000Z

225

Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave radiometer data are systematically compared to models to quantify and  

E-Print Network [OSTI]

Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave a systematic evaluation of clouds in forecast models. Clouds and their associated microphysical processes for end users of weather forecasts, who may be interested not only in cloud cover, but in other variables

Hogan, Robin

226

Ensemble Forecast of Analyses With Uncertainty Estimation  

E-Print Network [OSTI]

Ensemble Forecast of Analyses With Uncertainty Estimation Vivien Mallet1,2, Gilles Stoltz3 2012 Mallet, Stoltz, Zhuk, Nakonechniy Ensemble Forecast of Analyses November 2012 1 / 14 hal-00947755,version1-21Feb2014 #12;Objective To produce the best forecast of a model state using a data assimilation

Boyer, Edmond

227

Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part II: Precipitation  

E-Print Network [OSTI]

Probabilistic Forecast Calibration Using ECMWF and GFS Ensemble Reforecasts. Part II: Precipitation for Medium-Range Weather Forecasts, Reading, United Kingdom JEFFREY S. WHITAKER NOAA/Earth System Research As a companion to Part I, which discussed the calibration of probabilistic 2-m temperature forecasts using large

Hamill, Tom

228

NCEP Products Available to Distribute to CONDUIT High-Resolution Window Forecast System (HIRESW) Full  

E-Print Network [OSTI]

NCEP Products Available to Distribute to CONDUIT Phase 1 High-Resolution Window Forecast System Ocean Forecast System (RTOFS) Full Description Product Location The RTOFS for the North Atlantic resolution nest Hurricane Weather Research and Forecast (HWRF) system Full Description Product Location (hwrf

229

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS FORECAST IMPROVEMENTS  

E-Print Network [OSTI]

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS BRISBANE FORECAST IMPROVEMENTS The Bureau of Meteorology is progressively upgrading its forecast system to provide more detailed forecasts across Australia and Sunshine Coast. FURTHER INFORMATION : www.bom.gov.au/NexGenFWS © Commonwealth of Australia, 2013 Links

Greenslade, Diana

230

EXPANDING THE MODIFIED GAUSSIAN MODEL TO INCLUDE THE SPACE WEATHERING EFFECTS: ESTIMATION OF THE WEATHERING DEGREES OF PULSE-LASER TREATED OLIVINE SAMPLES. Y.  

E-Print Network [OSTI]

OF THE WEATHERING DEGREES OF PULSE-LASER TREATED OLIVINE SAMPLES. Y. Ueda1, 2 , T. Hiroi2 , C. M. Pieters2 and M creating the npFe0 by treating olivine (Fo91) pow- der samples with pulse laser at 1064 nm in wavelength of their olivine samples treated with laser energies of 0, 15, and 30 mJ. The refractive index spectra of Fe

Hiroi, Takahiro

231

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST Energy Demand 2008-2018 forecast supports the analysis and recommendations of the 2007 Integrated Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly

232

The Uncoordinated Giant: Why U.S. Weather Research and Prediction  

E-Print Network [OSTI]

1 The Uncoordinated Giant: Why U.S. Weather Research and Prediction Are Not Achieving.S. meteorological community has made significant strides in weather diagnosis and prediction, progress has been such problems in a number of areas, ranging from numerical weather prediction to forecast dissemination

Mass, Clifford F.

233

Fixed points, stable manifolds, weather regimes, and their predictability  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the models fixed points in phase space. The model dynamics is characterized by the coexistence of multiple weather regimes. To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, bred vectors and singular vectors. These results are then verified in the framework of ensemble forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.

Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael [Univ. of California, Los Angeles, CA (United Staes). Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics

2009-10-27T23:59:59.000Z

234

Forecasted Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" |beamtheFor yourForForecasted

235

Test application of a semi-objective approach to wind forecasting for wind energy applications  

SciTech Connect (OSTI)

The test application of the semi-objective (S-O) wind forecasting technique at three locations is described. The forecasting sites are described as well as site-specific forecasting procedures. Verification of the S-O wind forecasts is presented, and the observed verification results are interpreted. Comparisons are made between S-O wind forecasting accuracy and that of two previous forecasting efforts that used subjective wind forecasts and model output statistics. (LEW)

Wegley, H.L.; Formica, W.J.

1983-07-01T23:59:59.000Z

236

Solar forecasting review  

E-Print Network [OSTI]

and forecasting of solar radiation data: a review,forecasting of solar- radiation data, Solar Energy, vol.sequences of global solar radiation data for isolated sites:

Inman, Richard Headen

2012-01-01T23:59:59.000Z

237

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS DISTRICT FORECASTS  

E-Print Network [OSTI]

> BUREAU HOME > AUSTRALIA > QUEENSLAND > FORECASTS DISTRICT FORECASTS IMPROVEMENTS FOR QUEENSLAND across Australia From October 2013, new and improved district forecasts will be introduced in Queensland Protection times FURTHER INFORMATION : www.bom.gov.au/NexGenFWS © Commonwealth of Australia, 2013 PTO> Wind

Greenslade, Diana

238

A Comparison of Precipitation Forecast Skill between Small Convection-Allowing and Large Convection-Parameterizing Ensembles  

E-Print Network [OSTI]

A Comparison of Precipitation Forecast Skill between Small Convection- Allowing and Large Submitted to Weather and Forecasting in October 2008, Accepted in January 2009 * Corresponding author precipitation forecasts from a 5-member, 4-km grid-spacing (ENS4) and a 15-member, 20-km grid-spacing (ENS20

Droegemeier, Kelvin K.

239

Residential Weatherization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. EnergyEnergy53 2.370Weatherization

240

Satellite Application Facility for Numerical Weather Prediction  

E-Print Network [OSTI]

into Numerical Weather Prediction (NWP) models. However, the impact of such observations often critNWP SAF Satellite Application Facility for Numerical Weather Prediction Document NWPSAF-KN-VS-002 Stoffelen KNMI #12;NWP SAF Satellite Application Facility for Numerical Weather Prediction Report

Stoffelen, Ad

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE Workshop; Pan-Gass Conference on the Representation of Atmospheric Processes in Weather and Climate Models  

SciTech Connect (OSTI)

This is the first meeting of the whole new GEWEX (Global Energy and Water Cycle Experiment) Atmospheric System Study (GASS) project that has been formed from the merger of the GEWEX Cloud System Study (GCSS) Project and the GEWEX Atmospheric Boundary Layer Studies (GABLS). As such, this meeting will play a major role in energizing GEWEX work in the area of atmospheric parameterizations of clouds, convection, stable boundary layers, and aerosol-cloud interactions for the numerical models used for weather and climate projections at both global and regional scales. The representation of these processes in models is crucial to GEWEX goals of improved prediction of the energy and water cycles at both weather and climate timescales. This proposal seeks funds to be used to cover incidental and travel expenses for U.S.-based graduate students and early career scientists (i.e., within 5 years of receiving their highest degree). We anticipate using DOE funding to support 5-10 people. We will advertise the availability of these funds by providing a box to check for interested participants on the online workshop registration form. We will also send a note to our participants' mailing lists reminding them that the funds are available and asking senior scientists to encourage their more junior colleagues to participate. All meeting participants are encouraged to submit abstracts for oral or poster presentations. The science organizing committee (see below) will base funding decisions on the relevance and quality of these abstracts, with preference given to under-represented populations (especially women and minorities) and to early career scientists being actively mentored at the meeting (e.g. students or postdocs attending the meeting with their advisor).

Morrison, PI Hugh

2012-09-21T23:59:59.000Z

242

Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint  

SciTech Connect (OSTI)

Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

243

FORECASTING SOLAR RADIATION PRELIMINARY EVALUATION OF AN APPROACH  

E-Print Network [OSTI]

FORECASTING SOLAR RADIATION -- PRELIMINARY EVALUATION OF AN APPROACH BASED UPON THE NATIONAL, and undertake a preliminary evaluation of, a simple solar radiation forecast model using sky cover predictions forecasts is 0.05o in latitude and longitude. Solar Radiation model: The model presented in this paper

Perez, Richard R.

244

Reducing the demand forecast error due to the bullwhip effect in the computer processor industry  

E-Print Network [OSTI]

Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

Smith, Emily (Emily C.)

2010-01-01T23:59:59.000Z

245

Agricultural commodity price forecasting accuracy: futures markets versus commercial econometric models  

E-Print Network [OSTI]

versus commercial econometric models Gordon C. RausserMARKETS VERSUS COM4ERCIAL ECONOMETRIC IDDELS by Gordon C.Futures Markets, snd Econometric Models Deeember, 19'7'6,

Rausser, Gordon C.; Just, Richard E.

1979-01-01T23:59:59.000Z

246

Orphan drugs : future viability of current forecasting models, in light of impending changes to influential market factors  

E-Print Network [OSTI]

Interviews were conducted to establish a baseline for how orphan drug forecasting is currently undertaken by financial market and industry analysts with the intention of understanding the variables typically accounted for ...

Gottlieb, Joshua

2011-01-01T23:59:59.000Z

247

Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of  

E-Print Network [OSTI]

of soil hydraulic models Thomas Wo¨hling1 and Jasper A. Vrugt2 Received 12 May 2008; revised 8 September

Vrugt, Jasper A.

248

Weatherization Training for South Carolina's Muggy Weather  

Broader source: Energy.gov [DOE]

Why it makes sense for one technical college in Charleston, South Carolina is adding weatherization programs to their curriculum.

249

Using Wikipedia to forecast diseases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Wikipedia to forecast diseases Using Wikipedia to forecast diseases Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of...

250

Cathy Zoi on Weatherization  

ScienceCinema (OSTI)

Right now, the Weatherization Assistance Program is now weatherizing 25,000 homes each month. So far 10,000 jobs have been created under the Recovery Act.

Zoi, Cath

2013-05-29T23:59:59.000Z

251

Cathy Zoi on Weatherization  

SciTech Connect (OSTI)

Right now, the Weatherization Assistance Program is now weatherizing 25,000 homes each month. So far 10,000 jobs have been created under the Recovery Act.

Zoi, Cath

2010-01-01T23:59:59.000Z

252

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network [OSTI]

Update on Petroleum, Natural Gas, Heating Oil and Gasoline.of the Market for Natural Gas Futures. Energy Journal 16 (Modeling Forum. 2003. Natural Gas, Fuel Diversity and North

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

253

A warranty forecasting model based on piecewise statistical distributions and stochastic simulation  

E-Print Network [OSTI]

industry and has a specific application to automotive electronics. The warranty prediction model is based is demonstrated using a case study of automotive electronics warranty returns. The approach developed b CALCE Electronic Products and Systems Center, Department of Mechanical Engineering, University

Sandborn, Peter

254

AFFILIATIONS: HULTQUIST--NOAA/National Weather Service, Marquette, Michigan; DUTTER--NOAA/National Weather Service,  

E-Print Network [OSTI]

with modern numerical weather prediction models to provide detailed hindcasts of conditions throughoutAFFILIATIONS: HULTQUIST--NOAA/National Weather Service, Marquette, Michigan; DUTTER--NOAA/National Weather Service, Cleveland, Ohio; SCHWAB--NOAA/Great Lakes Environmental Research Laboratory, Ann Arbor

255

WeatherSeptember2009,Vol.64,No.9 Can dispersion model predictions  

E-Print Network [OSTI]

into the atmosphere, with each particle representing a fixed mass of pollutant. Particles are transported due Office, Exeter 2 University of Reading Introduction In the case of a major pollution incident, terrorist attack, or a radioactive event such as the Chernobyl disaster in 1986, dispersion models are used

Dacre, Helen

256

Paper accepted for presentation at 2003 IEEE Bologna PowerTech Conference, June 23-26, Bologna, Italy Wind Power Forecasting using Fuzzy Neural Networks  

E-Print Network [OSTI]

, Italy Wind Power Forecasting using Fuzzy Neural Networks Enhanced with On-line Prediction Risk) as input, to predict the power production of wind park8 48 hours ahead. The prediction system integrates of the numerical weather predictions. Index Term-Wind power, short-term forecasting, numerical weather predictions

Paris-Sud XI, Universit de

257

Time series modeling and large scale global solar radiation forecasting from geostationary satellites data  

E-Print Network [OSTI]

When a territory is poorly instrumented, geostationary satellites data can be useful to predict global solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar radiation for the next hour. The results presented in this paper relate to a particular territory, the Corsica Island, but as data used are available for the entire surface of the globe, our method can be easily exploited to another place. Indeed 2-D hourly time series are extracted from the HelioClim-3 surface solar irradiation database treated by the Heliosat-2 model. Each point of the map have been used as training data and inputs of artificial neural networks (ANN) and as inputs for two persistence models (scaled or not). Comparisons between these models and clear sky estimations were proceeded to evaluate the performances. We found a normalized root mean square error (nRMSE) close to 16.5% for the two best predictors (scaled persistence and ANN) equivalent to 35-45% related to ground measurements. F...

Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie Laure

2014-01-01T23:59:59.000Z

258

DREAM tool increases space weather predictions  

E-Print Network [OSTI]

- 1 - DREAM tool increases space weather predictions April 13, 2012 Predicting space weather improved by new DREAM modeling tool Earth's radiation belts can now be studied with a new modeling tool DREAM comes into play. Radiation belt structure and dynamics revealed DREAM is a modeling tool

259

Comparison of Wind Power and Load Forecasting Error Distributions: Preprint  

SciTech Connect (OSTI)

The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

2012-07-01T23:59:59.000Z

260

Hourly Temperature Forecasting Using Abductive Networks R. E. Abdel-Aal  

E-Print Network [OSTI]

, Saudi Arabia Abstract: Hourly temperature forecasts are important for electrical load forecasting temperatures, Artificial intelligence. Dr. R. E. Abdel-Aal, P. O. Box 1759, KFUPM, Dhahran 31261 Saudi Arabia e appropriate actions such as spraying protective fungicides (Francis, 2000; Kim et al., 2002). Road weather

Abdel-Aal, Radwan E.

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC, EVALUATION OF NUMERICAL WEATHER PREDICTION  

E-Print Network [OSTI]

© American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, EVALUATION;© American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, irradiance forecasts over OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US Richard Perez ASRC, Albany, NY, Perez

Perez, Richard R.

262

Compatibility of Stand Basal Area Predictions Based on Forecast Combination  

E-Print Network [OSTI]

Compatibility of Stand Basal Area Predictions Based on Forecast Combination Xiongqing Zhang Carr.) in Beijing, forecast combination was used to adjust predicted stand basal areas from these three types of models. The forecast combination method combines information and disperses errors from

Cao, Quang V.

263

WP1: Targeted and informative forecast system design  

E-Print Network [OSTI]

WP1: Targeted and informative forecast system design Emma Suckling, Leonard A. Smith and David Stainforth EQUIP Meeting ­ August 2011 Edinburgh #12;Targeted and informative forecast system design Develop models to support decision making (1.4) #12;Targeted and informative forecast system design KEY QUESTIONS

Stevenson, Paul

264

AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.  

E-Print Network [OSTI]

AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

Povinelli, Richard J.

265

Forecast Technical Document Volume Increment  

E-Print Network [OSTI]

Forecast Technical Document Volume Increment Forecasts A document describing how volume increment is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Volume increment forecasts Background A volume increment forecast is a fundamental output of the forecast

266

Multi-horizon solar radiation forecasting for Mediterranean locations using time series models  

E-Print Network [OSTI]

Considering the grid manager's point of view, needs in terms of prediction of intermittent energy like the photovoltaic resource can be distinguished according to the considered horizon: following days (d+1, d+2 and d+3), next day by hourly step (h+24), next hour (h+1) and next few minutes (m+5 e.g.). Through this work, we have identified methodologies using time series models for the prediction horizon of global radiation and photovoltaic power. What we present here is a comparison of different predictors developed and tested to propose a hierarchy. For horizons d+1 and h+1, without advanced ad hoc time series pre-processing (stationarity) we find it is not easy to differentiate between autoregressive moving average (ARMA) and multilayer perceptron (MLP). However we observed that using exogenous variables improves significantly the results for MLP . We have shown that the MLP were more adapted for horizons h+24 and m+5. In summary, our results are complementary and improve the existing prediction techniques ...

Voyant, Cyril; Muselli, Marc; Nivet, Marie Laure

2013-01-01T23:59:59.000Z

267

Forecasting wind speed financial return  

E-Print Network [OSTI]

The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

D'Amico, Guglielmo; Prattico, Flavio

2013-01-01T23:59:59.000Z

268

Tropical and subtropical cloud transitions in weather and climate prediction models: the GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)  

SciTech Connect (OSTI)

A model evaluation approach is proposed where weather and climate prediction models are analyzed along a Pacific Ocean cross-section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade-winds, to the deep convection regions of the ITCZ: the GCSS/WGNE Pacific Cross-section Intercomparison (GPCI). The main goal of GPCI is to evaluate, and help understand and improve the representation of tropical and sub-tropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross-section from the sub-tropics to the tropics for the season JJA of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the ECMWF Re-Analysis (ERA40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical crosssections of cloud properties (in particular), vertical velocity and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA40 in the stratocumulus regions (as compared to ISCCP) is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade-wind Lagrangian trajectory. Histograms of cloud cover along the cross-section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models.

Teixeira, J.; Cardoso, S.; Bonazzola, M.; Cole, Jason N.; DelGenio, Anthony D.; DeMott, C.; Franklin, A.; Hannay, Cecile; Jakob, Christian; Jiao, Y.; Karlsson, J.; Kitagawa, H.; Koehler, M.; Kuwano-Yoshida, A.; LeDrian, C.; Lock, Adrian; Miller, M.; Marquet, P.; Martins, J.; Mechoso, C. R.; Meijgaard, E. V.; Meinke, I.; Miranda, P.; Mironov, D.; Neggers, Roel; Pan, H. L.; Randall, David A.; Rasch, Philip J.; Rockel, B.; Rossow, William B.; Ritter, B.; Siebesma, A. P.; Soares, P.; Turk, F. J.; Vaillancourt, P.; Von Engeln, A.; Zhao, M.

2011-11-01T23:59:59.000Z

269

On-line Chemistry within WRF: Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model  

SciTech Connect (OSTI)

This is a conference proceeding that is now being put together as a book. This is chapter 2 of the book: "INTEGRATED SYSTEMS OF MESO-METEOROLOGICAL AND CHEMICAL TRANSPORT MODELS" published by Springer. The chapter title is "On-line Chemistry within WRF: Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model." The original conference was the COST-728/NetFAM workshop on Integrated systems of meso-meteorological and chemical transport models, Danish Meteorological Institute, Copenhagen, May 21-23, 2007.

Grell, Georg; Fast, Jerome D.; Gustafson, William I.; Peckham, Steven E.; McKeen, Stuart A.; Salzmann, Marc; Freitas, Saulo

2010-01-01T23:59:59.000Z

270

Essays in International Macroeconomics and Forecasting  

E-Print Network [OSTI]

This dissertation contains three essays in international macroeconomics and financial time series forecasting. In the first essay, I show, numerically, that a two-country New-Keynesian Sticky Prices model, driven by monetary and productivity shocks...

Bejarano Rojas, Jesus Antonio

2012-10-19T23:59:59.000Z

271

Ozone ensemble forecast with machine learning Vivien Mallet,1,2  

E-Print Network [OSTI]

Ozone ensemble forecast with machine learning algorithms Vivien Mallet,1,2 Gilles Stoltz,3 forecasts. The latter rely on a multimodel ensemble built for ozone forecasting with the modeling system Europe in order to forecast ozone daily peaks and ozone hourly concentrations. On the basis of past

Paris-Sud XI, Université de

272

Intelligent weather agent for aircraft severe weather avoidance  

E-Print Network [OSTI]

avoidance capability has increased. In this thesis, an intelligent weather agent is developed for general aviation aircraft. Using a radar image from an onboard weather radar, the intelligent weather agent determines the safest path around severe weather...

Bokadia, Sangeeta

2002-01-01T23:59:59.000Z

273

WEATHER HAZARDS Basic Climatology  

E-Print Network [OSTI]

Prediction Center (SPC) Watch Atmospheric conditions are right for hazardous weather ­ hazardous weather is likely to occur Issued by SPC Warning Hazardous weather is either imminent or occurring Issued by local NWS office #12;Outlooks--SPC Storm Prediction Center (SPC) Outlook=Convective Outlook Day 1 Day 2

274

Multigrid methods for improving the variational data assimilation in numerical weather prediction  

E-Print Network [OSTI]

conditions are needed to solve numerical weather prediction models: initial condition and boundary conditionMultigrid methods for improving the variational data assimilation in numerical weather prediction: numerical weather prediction, variational data assimilation, minimization procedure, multigrid methods, cell

Kwak, Do Young

275

GPU Acceleration of Numerical Weather John Michalakes  

E-Print Network [OSTI]

GPU Acceleration of Numerical Weather Prediction John Michalakes National Center for Atmospheric parallelism will prove ineffective for many scenarios. We present an alternative method of scaling model Exponentially increasing processor power has fueled fifty years of continuous improvement in weather and climate

Colorado at Boulder, University of

276

Solar forecasting review  

E-Print Network [OSTI]

2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

Inman, Richard Headen

2012-01-01T23:59:59.000Z

277

Today's Forecast: Improved Wind Predictions | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind...

278

The wind power probability density forecast problem can be formulated as: forecast the wind power pdf at time step t for each look-ahead time step t+k of a given time-horizon  

E-Print Network [OSTI]

The wind power probability density forecast problem can be formulated as: forecast the wind power ahead) knowing a set of explanatory variables (e.g. numerical weather predictions (NWPs), wind power measured values). Translating this sentence to an equation, we have: where pt+k is the wind power

Kemner, Ken

279

TESLA: Taylor Expanded Solar Analog Forecasting Bengu Ozge Akyurek, Alper Sinan Akyurek, Jan Kleissl and Tajana Simunic Rosing  

E-Print Network [OSTI]

TESLA: Taylor Expanded Solar Analog Forecasting Bengu Ozge Akyurek, Alper Sinan Akyurek, Jan- ergy resources within the Smart Grid, solar forecasting has become an important problem for hour]. It is difficult to obtain an accurate result from the weather and solar predictions. Accurate fore- casting

Simunic, Tajana

280

Technology Forecasting Scenario Development  

E-Print Network [OSTI]

Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Rainfall-River Forecasting  

E-Print Network [OSTI]

;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

US Army Corps of Engineers

282

Data Assimilation in Weather Forecasting: A Case Study in PDE ...  

E-Print Network [OSTI]

of atmospheric data, increased computational power, and the continued im- provement of ... If the state of the atmosphere (temperatures, pressures, humidities, wind ..... In terms of stability, the SAND approach has two potential advantages.

283

Weather-based yield forecasts developed for 12 California crops  

E-Print Network [OSTI]

Climate Change Center at the Scripps Institution of Oceanography (M. Tyree, staff scientist, personal communication).

Lobell, David; Cahill, Kimberly Nicholas; Field, Christopher

2006-01-01T23:59:59.000Z

284

Roel Neggers European Centre for Medium-range Weather Forecasts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergy Innovation Portal

285

CSU ATS703 Fall 2012 Numerical Weather Prediction  

E-Print Network [OSTI]

CSU ATS703 Fall 2012 Numerical Weather Prediction ATS703 is based on the course notes and papers method. A crucial element of accurate weather prediction is initialization, which is briefly discussed in Chapter 11. In the next decade, numerical weather prediction will expe- rience a revolution in model

286

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network [OSTI]

Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

Roop, J. M.; Dahowski, R. T

287

Critical Fire Weather Patterns  

E-Print Network [OSTI]

.1 Sundowner Winds FAT -- 1.1 Southeastern U.S. Fire Weather LIT -- 1.1 East Winds MFR -- 1.1 East Winds OLM

Clements, Craig

288

Forecasting Distributions with Experts Advice  

E-Print Network [OSTI]

) is the probability forecast based on an arbitrary vector wE in the unit simplex, experts forecasts ?E , and model {p?} . Remark 2 In most cases, we can choose c = 1/?, implying in the result below that c? = 1. Example 3 The prediction function is a mixture... 0 = 1, and #IT (k) = tk+1 ? tk. Define ek ? E. Theorem 12 Under Conditions 1 and 7, R1,...,t (pW ) ? c? K? k=0 Rt(k),...,t(k+1)?1 ( p?(e(k)) ) + c ln (#E) ?c K? k=1 ln ut(k) (ek, ek?1)? c K? k=0 t(k+1)?2? s=t(k) ln (us+1 (ek, ek)) . 9 Remark 13...

Sancetta, Alessio

2006-03-14T23:59:59.000Z

289

The Weatherization Training program at Pennsylvania College  

SciTech Connect (OSTI)

A look into some of the remarkable work being done in the Weatherization Training program at Pennsylvania College. Penn College's program has served as the model for six other training centers in Pennsylvania alone.

Meville, Jeff; Wilson, Jack; Manz, John; Gannett, Kirk; Smith, Franzennia

2010-01-01T23:59:59.000Z

290

The Weatherization Training program at Pennsylvania College  

ScienceCinema (OSTI)

A look into some of the remarkable work being done in the Weatherization Training program at Pennsylvania College. Penn College's program has served as the model for six other training centers in Pennsylvania alone.

Meville, Jeff; Wilson, Jack; Manz, John; Gannett, Kirk; Smith, Franzennia;

2013-05-29T23:59:59.000Z

291

The addition of a US Rare Earth Element (REE) supply-demand model improves the characterization and scope of the United States Department of Energy's effort to forecast US REE Supply and Demand  

E-Print Network [OSTI]

This paper presents the development of a new US Rare Earth Element (REE) Supply-Demand Model for the explicit forecast of US REE supply and demand in the 2010 to 2025 time period. In the 2010 Department of Energy (DOE) ...

Mancco, Richard

2012-01-01T23:59:59.000Z

292

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network [OSTI]

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

293

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center  

E-Print Network [OSTI]

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

Washington at Seattle, University of

294

Cathy Zoi on Weatherization | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Weatherization Cathy Zoi on Weatherization Addthis Description The Weatherization Assistance Program is now weatherizing 25,000 homes each month. So far 10,000 jobs have been...

295

Paintball Summer Weather  

E-Print Network [OSTI]

Highlights · Paintball · Summer Weather · Birthdays · Manners TheELIWeekly Paintball! Come out France Iraq Japan Korea Kuwait Libya Netherlands Niger Peru Qatar Saudi Arabia Spain Taiwan Thailand Turkey United States Venezuela Summer Weather Safety We've come to realize in the past that not all

Pilyugin, Sergei S.

296

Home Weatherization Visit  

ScienceCinema (OSTI)

Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

Chu, Steven

2013-05-29T23:59:59.000Z

297

Probabilistic manpower forecasting  

E-Print Network [OSTI]

PROBABILISTIC MANPOWER FORECASTING A Thesis JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas ASSAM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1966 Major Subject...: Computer Science and Statistics PROBABILISTIC MANPOWER FORECASTING A Thesis By JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas A@M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May...

Koonce, James Fitzhugh

1966-01-01T23:59:59.000Z

298

Multivariate Forecast Evaluation And Rationality Testing  

E-Print Network [OSTI]

10621088. MULTIVARIATE FORECASTS Chaudhuri, P. (1996): OnKingdom. MULTIVARIATE FORECASTS Kirchgssner, G. , and U. K.2005): Estimation and Testing of Forecast Rationality under

Komunjer, Ivana; OWYANG, MICHAEL

2007-01-01T23:59:59.000Z

299

Autoregressive Time Series Forecasting of Computational Demand  

E-Print Network [OSTI]

We study the predictive power of autoregressive moving average models when forecasting demand in two shared computational networks, PlanetLab and Tycoon. Demand in these networks is very volatile, and predictive techniques to plan usage in advance can improve the performance obtained drastically. Our key finding is that a random walk predictor performs best for one-step-ahead forecasts, whereas ARIMA(1,1,0) and adaptive exponential smoothing models perform better for two and three-step-ahead forecasts. A Monte Carlo bootstrap test is proposed to evaluate the continuous prediction performance of different models with arbitrary confidence and statistical significance levels. Although the prediction results differ between the Tycoon and PlanetLab networks, we observe very similar overall statistical properties, such as volatility dynamics.

Sandholm, Thomas

2007-01-01T23:59:59.000Z

300

An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1  

E-Print Network [OSTI]

into the numerical weather prediction model COSMO, BorealCurrent numerical weather prediction (NWP) models, regionalof lakes in numerical weather prediction and climate models:

Subin, Z.M.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

and appropriately dispatch load-following power plants. Whenrequirements. Overall, load-following capacity requirementsto determine scheduling for load-following power plants and

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

302

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

fluctuations in renewable energy production (such as when aof renewable resources into the energy production portfolioof renewable energy are implemented, energy production is

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

303

Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting  

E-Print Network [OSTI]

Piwko, 2010: Western wind and solar integration study. NRELsources such as wind and solar power. Integration of this

Mathiesen, Patrick James

2013-01-01T23:59:59.000Z

304

BUILDING A STOCHASTIC TERMINAL AIRSPACE CAPACITY FORECAST FROM CONVECTIVE WEATHER FORECASTS  

E-Print Network [OSTI]

open from the east into Boston Logan Airport at 5PM, or if flights should incur delay on the ground International Airport (ATL) termi- nal a that there is a 30% chance of rain in Boston today, for instance, does not help to determine if there will be a route

Gummadi, Ramakrishna

305

Extended Abstract, 20th Conf. Weather Analysis and Forecasting/ 16th Conf. Numerical Weather Prediction  

E-Print Network [OSTI]

. In the study, water and ice phase microphysical variables are first derived from the polariza- tion for an adjoint that should include detailed physics parameterizations and the high computational cost, 4DVAR,mxue@ou.edu. et al (2000) being one exception. In the latter, the ice mi- crophysics scheme used

Xue, Ming

306

Do quantitative decadal forecasts from GCMs provide  

E-Print Network [OSTI]

' · Empirical models quantify our ability to predict without knowing the laws of physics · Climatology skill' model? 2. Dynamic climatology (DC) is a more appropriate benchmark for near- term (initialised) climate forecasts · A conditional climatology, initialised at launch and built from the historical archive

Stevenson, Paul

307

Plan for the Joint Ensemble Forecast System (JEFS)  

E-Print Network [OSTI]

(in coordination) Maj F. Anthony Eckel, PhD Chief, Air and Space Models Branch HQ Air Force Weather................................................................................................................................. 11 Products..................................................................................................................................... 13 Phase I Products

Mass, Clifford F.

308

Introducing the Canadian Crop Yield Forecaster Aston Chipanshi1  

E-Print Network [OSTI]

for crop yield forecasting and risk analysis. Using the Census Agriculture Region (CAR) as the unit Climate Decision Support and Adaptation, Agriculture and Agri-Food Canada, 1011, Innovation Blvd, Saskatoon, SK S7V 1B7, Canada The Canadian Crop Yield Forecaster (CCYF) is a statistical modelling tool

Miami, University of

309

Weatherizing Wilkes-Barre  

Broader source: Energy.gov [DOE]

Ride along with some weatherizers in Wilkes-Barre, PA, as they blower door test, manage z-doors, and dense pack their way to an energy efficient future one house at a time.

310

Weatherizing Wilkes-Barre  

ScienceCinema (OSTI)

Ride along with some weatherizers in Wilkes-Barre, PA, as they blower door test, manage z-doors, and dense pack their way to an energy efficient future one house at a time.

Calore, Joe

2013-05-29T23:59:59.000Z

311

Weatherizing Wilkes-Barre  

SciTech Connect (OSTI)

Ride along with some weatherizers in Wilkes-Barre, PA, as they blower door test, manage z-doors, and dense pack their way to an energy efficient future one house at a time.

Calore, Joe

2010-01-01T23:59:59.000Z

312

Verification of hourly forecasts of wind turbine power output  

SciTech Connect (OSTI)

A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

Wegley, H.L.

1984-08-01T23:59:59.000Z

313

Towards Ultra-High Resolution Models of Climate and Weather To appear in the International Journal of High Performance Computing Applications, 2008.  

E-Print Network [OSTI]

affordable cost and power considerations. The major conceptual changes required by a kilometer scale climate climate change and weather prediction is one of the most important challenges facing computa- tional fidelity in both short term weather prediction and long term climate change estimates will be better met

Oliker, Leonid

314

Calibrating DOE-2 to weather and non-weather-dependent loads for a commercial building  

E-Print Network [OSTI]

6. 1. 1 Predicted Chilled Water and Hot Water Consumption. . . . . . . . , . . . 102 6. 1. 2 Whole-building Electricity Consumption . . . 6. 2 Base Model Results Using Austin, TX TMY Weather Data. . . . 104 106 vnt CHAPTl'R VII WHOLE...

Bronson, John Douglas

2012-06-07T23:59:59.000Z

315

Subhourly wind forecasting techniques for wind turbine operations  

SciTech Connect (OSTI)

Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

1984-08-01T23:59:59.000Z

316

Unified Surface Analysis Manual Weather Prediction Center  

E-Print Network [OSTI]

-bone in stage IV. The stages in the respective cyclone evolutions are separated by approximately 6 24 h's) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over below shows a typical evolution according to both models of cyclone development. Conceptual models

317

The Impact of IBM Cell Technology on the Programming Paradigm in the Context of Computer Systems for Climate and Weather Models  

SciTech Connect (OSTI)

The call for ever-increasing model resolutions and physical processes in climate and weather models demands a continual increase in computing power. The IBM Cell processor's order-of-magnitude peak performance increase over conventional processors makes it very attractive to fulfill this requirement. However, the Cell's characteristics, 256KB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. As a trial, we selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics components (half the total computational time), (2) has an extremely high computational intensity: the ratio of computational load to main memory transfers, and (3) exhibits embarrassingly parallel column computations. In this paper, we converted the baseline code (single-precision Fortran) to C and ported it to an IBM BladeCenter QS20. For performance, we manually SIMDize four independent columns and include several unrolling optimizations. Our results show that when compared with the baseline implementation running on one core of Intel's Xeon Woodcrest, Dempsey, and Itanium2, the Cell is approximately 8.8x, 11.6x, and 12.8x faster, respectively. Our preliminary analysis shows that the Cell can also accelerate the dynamics component (~;;25percent total computational time). We believe these dramatic performance improvements make the Cell processor very competitive as an accelerator.

Zhou, Shujia; Duffy, Daniel; Clune, Thomas; Suarez, Max; Williams, Samuel; Halem, Milton

2009-01-10T23:59:59.000Z

318

Biennial Assessment of the Fifth Power Plan Interim Report on Electric Price Forecasts  

E-Print Network [OSTI]

Biennial Assessment of the Fifth Power Plan Interim Report on Electric Price Forecasts Electricity prices in the Council's Power Plan are forecast using the AURORATM Electricity Market Model of the entire and 2006 actual electric prices have been more volatile than the Aurora forecast. This is expected because

319

COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 3 AUGUST 16, 2012  

E-Print Network [OSTI]

there is significant uncertainty in its future intensity, the current forecast is for a slowly strengthening TC which, 3) forecast output from global models, 4) the current and projected state of the Madden with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all

Gray, William

320

2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA  

E-Print Network [OSTI]

2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA J models 1 INTRODUCTION Solar radiation and PV production forecasts are becoming increasingly important/) three teams of experts are benchmarking their solar radiation forecast against ground truth data

Perez, Richard R.

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

3, 21452173, 2006 Probabilistic forecast  

E-Print Network [OSTI]

HESSD 3, 2145­2173, 2006 Probabilistic forecast verification F. Laio and S. Tamea Title Page for probabilistic forecasts of continuous hydrological variables F. Laio and S. Tamea DITIC ­ Department­2173, 2006 Probabilistic forecast verification F. Laio and S. Tamea Title Page Abstract Introduction

Paris-Sud XI, Université de

322

4, 189212, 2007 Forecast and  

E-Print Network [OSTI]

OSD 4, 189­212, 2007 Forecast and analysis assessment through skill scores M. Tonani et al. Title Science Forecast and analysis assessment through skill scores M. Tonani 1 , N. Pinardi 2 , C. Fratianni 1 Forecast and analysis assessment through skill scores M. Tonani et al. Title Page Abstract Introduction

Paris-Sud XI, Université de

323

Forecast Technical Document Technical Glossary  

E-Print Network [OSTI]

Forecast Technical Document Technical Glossary A document defining some of the terms used in the 2011 Production Forecast technical documentation. Tom Jenkins Robert Matthews Ewan Mackie Lesley in the Forecast documentation. In some cases, the terms and the descriptions are "industry standard", in others

324

Forecast Technical Document Tree Species  

E-Print Network [OSTI]

Forecast Technical Document Tree Species A document listing the tree species included in the 2011 Production Forecast Tom Jenkins Justin Gilbert Ewan Mackie Robert Matthews #12;PF2011 ­ List of tree species The following is the list of species used within the Forecast System. Species are ordered alphabetically

325

Consensus Coal Production Forecast for  

E-Print Network [OSTI]

in the consensus forecast produced in 2006, primarily from the decreased demand as a result of the current nationalConsensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks

Mohaghegh, Shahab

326

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

327

Demand Forecasting of New Products  

E-Print Network [OSTI]

Demand Forecasting of New Products Using Attribute Analysis Marina Kang A thesis submitted Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock upon currently employed new-SKU demand forecasting methods which involve the processing of large

Sun, Yu

328

Improving Inventory Control Using Forecasting  

E-Print Network [OSTI]

EMGT 835 FIELD PROJECT: Improving Inventory Control Using Forecasting By Juan Mario Balandran jmbg@hotmail.com Master of Science The University of Kansas Fall Semester, 2005 An EMGT Field Project report submitted...............................................................................................................................................10 Current Inventory Forecast Process ...........................................................................................10 Development of Alternative Forecast Process...

Balandran, Juan

2005-12-16T23:59:59.000Z

329

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

330

Fuel Price Forecasts INTRODUCTION  

E-Print Network [OSTI]

Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price because oil, coal, and natural gas are potential fuels for electricity generation. Natural gas

331

Solar forecasting review  

E-Print Network [OSTI]

Quantifying PV power output variability, Solar Energy, vol.each solar sen at node i, P(t) the total power output of theSolar Forecasting Historically, traditional power generation technologies such as fossil and nu- clear power which were designed to run in stable output

Inman, Richard Headen

2012-01-01T23:59:59.000Z

332

Issues in midterm analysis and forecasting, 1996  

SciTech Connect (OSTI)

This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

NONE

1996-08-01T23:59:59.000Z

333

Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model  

SciTech Connect (OSTI)

We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is delayed and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

2014-07-25T23:59:59.000Z

334

Upper Air Wind Measurements by Weather Radar Iwan Holleman, Henk Benschop, and Jitze van der Meulen  

E-Print Network [OSTI]

or assimilated into numerical weather prediction (NWP) models. Un- der the assumption of a linear wind field background statistics of the weather radar wind profiles against the Hirlam NWP model are at least as good of the VVP wind profiles against the Hirlam NWP model demonstrate the high quality of weather radar wind

Stoffelen, Ad

335

Issues in midterm analysis and forecasting 1998  

SciTech Connect (OSTI)

Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

NONE

1998-07-01T23:59:59.000Z

336

Improvements of the shock arrival times at the Earth model STOA  

E-Print Network [OSTI]

Prediction of the shocks' arrival times (SATs) at the Earth is very important for space weather forecast. There is a well-known SAT model, STOA, which is widely used in the space weather forecast. However, the shock transit time from STOA model usually has a relative large error compared to the real measurements. In addition, STOA tends to yield too much `yes' prediction, which causes a large number of false alarms. Therefore, in this work, we work on the modification of STOA model. First, we give a new method to calculate the shock transit time by modifying the way to use the solar wind speed in STOA model. Second, we develop new criteria for deciding whether the shock will arrive at the Earth with the help of the sunspot numbers and the angle distances of the flare events. It is shown that our work can improve the SATs prediction significantly, especially the prediction of flare events without shocks arriving at the Earth.

Liu, H -L

2015-01-01T23:59:59.000Z

337

Proceedings: US Hydrographic Conference 2013, New Orleans, LA, 25-28 March 2013 Oceanographic Weather Maps: Using Oceanographic Models to Improve Seabed  

E-Print Network [OSTI]

: · Designing survey layout and prescribing line spacing and/or orientation. · Determining when to conduct the operation based on traffic, weather, and other environmental factors. · Selecting calibration sites

New Hampshire, University of

338

Weatherization Works!: Weatherization Assistance Program Close-Up Fact Sheet  

SciTech Connect (OSTI)

The United States demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

339

Application of Ensemble Sensitivity Analysis to Observation Targeting for Short-term Wind Speed Forecasting  

SciTech Connect (OSTI)

The operators of electrical grids, sometimes referred to as Balancing Authorities (BA), typically make critical decisions on how to most reliably and economically balance electrical load and generation in time frames ranging from a few minutes to six hours ahead. At higher levels of wind power generation, there is an increasing need to improve the accuracy of 0- to 6-hour ahead wind power forecasts. Forecasts on this time scale have typically been strongly dependent on short-term trends indicated by the time series of power production and meteorological data from a wind farm. Additional input information is often available from the output of Numerical Weather Prediction (NWP) models and occasionally from off-site meteorological towers in the region surrounding the wind generation facility. A widely proposed approach to improve short-term forecasts is the deployment of off-site meteorological towers at locations upstream from the wind generation facility in order to sense approaching wind perturbations. While conceptually appealing, it turns out that, in practice, it is often very difficult to derive significant benefit in forecast performance from this approach. The difficulty is rooted in the fact that the type, scale, and amplitude of the processes controlling wind variability at a site change from day to day if not from hour to hour. Thus, a location that provides some useful forecast information for one time may not be a useful predictor a few hours later. Indeed, some processes that cause significant changes in wind power production operate predominantly in the vertical direction and thus cannot be monitored by employing a network of sensors at off-site locations. Hence, it is very challenging to determine the type of sensors and deployment locations to get the most benefit for a specific short-term forecast application. Two tools recently developed in the meteorological research community have the potential to help determine the locations and parameters to measure in order to get the maximum positive impact on forecast performance for a particular site and short-term look-ahead period. Both tools rely on the use of NWP models to assess the sensitivity of a forecast for a particular location to measurements made at a prior time (i.e. the look-ahead period) at points surrounding the target location. The fundamental hypothesis is that points and variables with high sensitivity are good candidates for measurements since information at those points are likely to have the most impact on the forecast for the desired parameter, location and look-ahead period. One approach is called the adjoint method (Errico and Vukicevic, 1992; Errico, 1997) and the other newer approach is known as Ensemble Sensitivity Analysis (ESA; Ancell and Hakim 2007; Torn and Hakim 2008). Both approaches have been tested on large-scale atmospheric prediction problems (e.g. forecasting pressure or precipitation over a relatively large region 24 hours ahead) but neither has been applied to mesoscale space-time scales of winds or any other variables near the surface of the earth. A number of factors suggest that ESA is better suited for short-term wind forecasting applications. One of the most significant advantages of this approach is that it is not necessary to linearize the mathematical representation of the processes in the underlying atmospheric model as required by the adjoint approach. Such a linearization may be especially problematic for the application of short-term forecasting of boundary layer winds in complex terrain since non-linear shifts in the structure of boundary layer due to atmospheric stability changes are a critical part of the wind power production forecast problem. The specific objective of work described in this paper is to test the ESA as a tool to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the wind generation area of California's Tehachapi Pass during the warm (high generation) season. The paper is organized

Zack, J; Natenberg, E; Young, S; Manobianco, J; Kamath, C

2010-02-21T23:59:59.000Z

340

Portland Diversifying Weatherization Workforce  

Broader source: Energy.gov [DOE]

An agreement signed by a diverse group of stakeholders ensures that those in disadvantaged communities have access to some of the weatherization jobs stemming from the pilot phase of the Clean Energy Works Portland program, which has almost 500 homes receiving retrofits through the summer with the help of federal dollars.

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

2007 National Hurricane Center Forecast Verification Report James L. Franklin  

E-Print Network [OSTI]

storms 17 4. Genesis Forecasts 17 5. Summary and Concluding Remarks 18 a. Atlantic Summary 18 statistical models, provided the best intensity guidance at each time period. The 2007 season marked the first

342

An econometric analysis and forecasting of Seoul office market  

E-Print Network [OSTI]

This study examines and forecasts the Seoul office market, which is going to face a big supply in the next few years. After reviewing several previous studies on the Dynamic model and the Seoul Office market, this thesis ...

Kim, Kyungmin

2011-01-01T23:59:59.000Z

343

Forecasting oilfield economic performance  

SciTech Connect (OSTI)

This paper presents a general method for forecasting oilfield economic performance that integrates cost data with operational, reservoir, and financial information. Practices are developed for determining economic limits for an oil field and its components. The economic limits of marginal wells and the role of underground competition receive special attention. Also examined is the influence of oil prices on operating costs. Examples illustrate application of these concepts. Categorization of costs for historical tracking and projections is recommended.

Bradley, M.E. (Univ. of Chicago, IL (United States)); Wood, A.R.O. (BP Exploration, Anchorage, AK (United States))

1994-11-01T23:59:59.000Z

344

The Annals of Applied Statistics 2008, Vol. 2, No. 4, 11701193  

E-Print Network [OSTI]

. Operationally, short-range forecasts of precipitation are based on numerical weather prediction (NWP) models of agricultural, hydrological, ecological and other applications. Forecasts from numerical weather prediction forecast, Gamma distribu- tion, latent Gaussian process, numerical weather prediction, power truncated

Raftery, Adrian

345

accelerated weathering: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Winter Weather Safety www.weather.gov SnowIce Blizzards Flooding Cold Temperatures 12;Building a Weather 5 Weather Theory Weather Reports, Forcasts and...

346

Useful Weather Links Nolan Doesken  

E-Print Network [OSTI]

Useful Weather Links Nolan Doesken Odie Bliss Colorado Climate Center Presented at Professional://www.weather.gov/nwr/ #12;City of Fort Collins Alert Network ­ Rainfall and Streamflow http

347

Weatherization Innovation Pilot Program (WIPP): Technical Assistance Summary  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Programs Office (WIPO) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of low-income residences without the utilization of additional taxpayer funding. Sixteen WIPP grantees were awarded a total of $30 million in Weatherization Assistance Program (WAP) funds in September 2010. These projects focused on: including nontraditional partners in weatherization service delivery; leveraging significant non-federal funding; and improving the effectiveness of low-income weatherization through the use of new materials, technologies, behavior-change models, and processes.

Hollander, A.

2014-09-01T23:59:59.000Z

348

A Statistical Solar Flare Forecast Method  

E-Print Network [OSTI]

A Bayesian approach to solar flare prediction has been developed, which uses only the event statistics of flares already observed. The method is simple, objective, and makes few ad hoc assumptions. It is argued that this approach should be used to provide a baseline prediction for certain space weather purposes, upon which other methods, incorporating additional information, can improve. A practical implementation of the method for whole-Sun prediction of Geostationary Observational Environment Satellite (GOES) events is described in detail, and is demonstrated for 4 November 2003, the day of the largest recorded GOES flare. A test of the method is described based on the historical record of GOES events (1975-2003), and a detailed comparison is made with US National Oceanic and Atmospheric Administration (NOAA) predictions for 1987-2003. Although the NOAA forecasts incorporate a variety of other information, the present method out-performs the NOAA method in predicting mean numbers of event days, for both M-X and X events. Skill scores and other measures show that the present method is slightly less accurate at predicting M-X events than the NOAA method, but substantially more accurate at predicting X events, which are important contributors to space weather.

M. S. Wheatland

2005-05-14T23:59:59.000Z

349

Forecast Technical Document Growing Stock Volume  

E-Print Network [OSTI]

Forecast Technical Document Growing Stock Volume Forecasts A document describing how growing stock (`standing') volume is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Growing stock volume forecasts Background A forecast of standing volume (or

350

VALIDATION OF RAIN RATE RETRIEVALS FROM SEVIRI USING WEATHER RADAR OBSERVATIONS  

E-Print Network [OSTI]

and for improving parameterization cloud processes in numerical weather prediction (NWP) models or assimilation in these models. Although operational networks of Weather Radars are expanding over Europe and the United StatesVALIDATION OF RAIN RATE RETRIEVALS FROM SEVIRI USING WEATHER RADAR OBSERVATIONS R. A. Roebeling

Stoffelen, Ad

351

Developing hourly weather data for locations having only daily weather data  

SciTech Connect (OSTI)

A methodology was developed to modify an hourly TMY weather tape to be representative of a location for which only average daily weather parameters were avilable. Typical hourly and daily variations in solar flux, and other parameters, were needed to properly exercise a computer model to predict the transient performance of a solar controlled greenhouse being designed for Riyadh, Saudi Arabia. The starting point was a TMY tape for Yuma, Arizona, since the design temperatures for summer and winter are nearly identical for Yuma and Riyadh. After comparing six of the most important weather variables, the hourly values on the Yuma tape were individually adjusted to give the same overall daily average conditions as existed in the long-term Riyadh data. Finally, a statistical analysis was used to confirm quantitatively that the daily variations between the long term average values for Riyadh and the modified TMY weather tape for Yuma matched satisfactorily.

Talbert, S.G.; Herold, K.E.; Jakob, F.E.; Lundstrom, D.K.

1983-06-01T23:59:59.000Z

352

Solar Wind Forecasting with Coronal Holes  

E-Print Network [OSTI]

An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

S. Robbins; C. J. Henney; J. W. Harvey

2007-01-09T23:59:59.000Z

353

NOAA Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps  

E-Print Network [OSTI]

Forecast System Southwest Florida Forecast Region Maps 0 20 4010 Miles #12;Bay-S Pinellas Bay-UPR Bay Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12;Bay Harmful Algal Bloom Operational Forecast System Southwest Florida Forecast Region Maps 0 5 102.5 Miles #12

354

Price forecasting for notebook computers.  

E-Print Network [OSTI]

??This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a (more)

Rutherford, Derek Paul

2012-01-01T23:59:59.000Z

355

UWIG Forecasting Workshop -- Albany (Presentation)  

SciTech Connect (OSTI)

This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

Lew, D.

2011-04-01T23:59:59.000Z

356

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL

357

Earthquake Forecast via Neutrino Tomography  

E-Print Network [OSTI]

We discuss the possibility of forecasting earthquakes by means of (anti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations in the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival probability of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone, and find that the variation may reach as much as 3% for $\\bar \

Bin Wang; Ya-Zheng Chen; Xue-Qian Li

2011-03-29T23:59:59.000Z

358

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization...  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and Intergovernmental Program (WIP) Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and...

359

Weatherization Assistance Program: Spurring Innovation, Increasing...  

Energy Savers [EERE]

Weatherization Assistance Program: Spurring Innovation, Increasing Home Energy Efficiency Weatherization Assistance Program: Spurring Innovation, Increasing Home Energy Efficiency...

360

Connecticut's Health Impact Study Rapidly Increasing Weatherization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Weatherization Assistance Program Technical Assistance Center Donna Hawkins Technology Transfer Specialist, Weatherization Assistance Program Floris Weston Project Officer,...

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Leveraging Resources for the Weatherization Innovation Pilot...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Weatherization Innovation Pilot Program (WIPP) - Webinar Transcript Leveraging Resources for the Weatherization Innovation Pilot Program (WIPP) - Webinar Transcript This...

362

Leveraging Resources for Weatherization Innovation Pilot Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Weatherization Innovation Pilot Projects (WIPP) Presentation Leveraging Resources for Weatherization Innovation Pilot Projects (WIPP) Presentation As a WIPP agency, reporting...

363

Subscribe to Weatherization and Intergovernmental Program Office...  

Broader source: Energy.gov (indexed) [DOE]

Subscribe to Weatherization and Intergovernmental Program Office Newsletters Subscribe to Weatherization and Intergovernmental Program Office Newsletters You can subscribe to...

364

Weatherization Assistance Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| DepartmentVolvoWaterWeatherization Assistance Program

365

Improving Electric Load Forecasts Using Network Committees  

E-Print Network [OSTI]

, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia Address for corresponding author: Dr. R. E. Abdel-Aal P. O. Box 1759 KFUPM Dhahran 31261 Saudi Arabia e-mail: radwan load and weather data at power utilities has encouraged the use of data-based machine learning modeling

Abdel-Aal, Radwan E.

366

Conservation The Northwest ForecastThe Northwest Forecast  

E-Print Network [OSTI]

& Resources Creating Mr. Toad's Wild Ride for the PNW's Energy Efficiency InCreating Mr. Toad's Wild RideNorthwest Power and Conservation Council The Northwest ForecastThe Northwest Forecast Energy EfficiencyEnergy Efficiency Dominates ResourceDominates Resource DevelopmentDevelopment Tom EckmanTom Eckman

367

NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS  

E-Print Network [OSTI]

· NATIONAL AND GLOBAL FORECASTS · WEST VIRGINIA PROFILES AND FORECASTS · ENERGY · HEALTHCARE Research West Virginia University College of Business and Economics P.O. Box 6527, Morgantown, WV 26506 EXPERT OPINION PROVIDED BY Keith Burdette Cabinet Secretary West Virginia Department of Commerce

Mohaghegh, Shahab

368

CORPORATE GOVERNANCE AND MANAGEMENT EARNINGS FORECAST  

E-Print Network [OSTI]

1 CORPORATE GOVERNANCE AND MANAGEMENT EARNINGS FORECAST QUALITY: EVIDENCE FROM FRENCH IPOS Anis attributes, ownership retained, auditor quality, and underwriter reputation and management earnings forecast quality measured by management earnings forecast accuracy and bias. Using 117 French IPOs, we find

Paris-Sud XI, Université de

369

STAFF FORECAST OF 2007 PEAK STAFFREPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION STAFF FORECAST OF 2007 PEAK DEMAND STAFFREPORT June 2006 CEC-400....................................................................... .................11 Tables Table 1: Revised versus September 2005 Peak Demand Forecast ......................... 2.............................................................................................. 10 #12;Introduction and Background This document describes staff's updated 2007 peak demand forecasts

370

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product estimates. Margaret Sheridan provided the residential forecast. Mitch Tian prepared the peak demand

371

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

372

2009 CAPS Spring Forecast Program Plan  

E-Print Network [OSTI]

package. · Two 18 UTC update forecasts on demand basis, with the same domain and configuration, running2009 CAPS Spring Forecast Experiment Program Plan April 20, 2009 #12;2 Table of Content 1. Overview .......................................................................................................4 3. Forecast System Configuration

Droegemeier, Kelvin K.

373

Grid-scale Fluctuations and Forecast Error in Wind Power  

E-Print Network [OSTI]

The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

Bel, G; Toots, M; Bandi, M M

2015-01-01T23:59:59.000Z

374

Grid-scale Fluctuations and Forecast Error in Wind Power  

E-Print Network [OSTI]

The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi

2015-03-29T23:59:59.000Z

375

timber quality Modelling and forecasting  

E-Print Network [OSTI]

facilities match the more traditional requirements of timber production. As this policy evolves will also incorporate carbon and energy budgeting modules to assist in the cost­benefit analysis of forest aimed at the optimisation of sustainable management, the provision of renewable resources

376

Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price Forecast  

E-Print Network [OSTI]

Forecast Introduction.................................................................................................................................... 6 Demand................................................................... 16 The Base Case Forecast

377

Electricity price forecasting in a grid environment.  

E-Print Network [OSTI]

??Accurate electricity price forecasting is critical to market participants in wholesale electricity markets. Market participants rely on price forecasts to decide their bidding strategies, allocate (more)

Li, Guang, 1974-

2007-01-01T23:59:59.000Z

378

Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty  

E-Print Network [OSTI]

Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast structures Stochastic trajectory Stochastic FTLE field Ensemble forecasting Uncertainty analysis a b s t r of the forecast FTLE fields is analyzed using ensemble forecasting. Unavoidable errors of the forecast velocity

Ross, Shane

379

Weather Photos - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18,theWeather

380

Weather Photos - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18,theWeather

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Weather Photos - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18,theWeather

382

Weather Photos - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 WaterFebruary 18,theWeather

383

Bishop Paiute Weatherization Training Program  

SciTech Connect (OSTI)

The DOE Weatherization Training Grant assisted Native American trainees in developing weatherization competencies, creating employment opportunities for Bishop Paiute tribal members in a growing field. The trainees completed all the necessary training and certification requirements and delivered high-quality weatherization services on the Bishop Paiute Reservation. Six tribal members received all three certifications for weatherization; four of the trainees are currently employed. The public benefit includes (1) development of marketable skills by low-income Native individuals, (2) employment for low-income Native individuals in a growing industry, and (3) economic development opportunities that were previously not available to these individuals or the Tribe.

Carlos Hernandez

2010-01-28T23:59:59.000Z

384

Weatherization Apprenticeship Program  

SciTech Connect (OSTI)

Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

Watson, Eric J

2012-12-18T23:59:59.000Z

385

PROBLEMS OF FORECAST1 Dmitry KUCHARAVY  

E-Print Network [OSTI]

1 PROBLEMS OF FORECAST1 Dmitry KUCHARAVY dmitry.kucharavy@insa-strasbourg.fr Roland DE GUIO roland for the purpose of Innovative Design. First, a brief analysis of problems for existing forecasting methods of the forecast errors. Second, using a contradiction analysis, a set of problems related to technology forecast

Paris-Sud XI, Université de

386

Using reforecasts for probabilistic forecast calibration  

E-Print Network [OSTI]

1 Using reforecasts for probabilistic forecast calibration Tom Hamill NOAA Earth System Research that is currently operational. #12;3 Why compute reforecasts? · For many forecast problems, such as long-lead forecasts or high-precipitation events, a few past forecasts may be insufficient for calibrating

Hamill, Tom

387

Forecast Combination With Outlier Protection Gang Chenga,  

E-Print Network [OSTI]

Forecast Combination With Outlier Protection Gang Chenga, , Yuhong Yanga,1 a313 Ford Hall, 224 Church St SE, Minneapolis, MN 55455 Abstract Numerous forecast combination schemes with distinct on combining forecasts with minimizing the occurrence of forecast outliers in mind. An unnoticed phenomenon

Yuhong, Yang

388

Forecast Technical Document Felling and Removals  

E-Print Network [OSTI]

Forecast Technical Document Felling and Removals Forecasts A document describing how volume fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Felling and removals forecasts Background A fellings and removals

389

Assessing Forecast Accuracy Measures Department of Economics  

E-Print Network [OSTI]

Assessing Forecast Accuracy Measures Zhuo Chen Department of Economics Heady Hall 260 Iowa State forecast accuracy measures. In the theoretical direction, for comparing two forecasters, only when the errors are stochastically ordered, the ranking of the forecasts is basically independent of the form

390

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

391

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

392

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work Sheridan provided the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid

393

Can earnings forecasts be improved by taking into account the forecast bias?  

E-Print Network [OSTI]

Can earnings forecasts be improved by taking into account the forecast bias? François DOSSOU allow the calculation of earnings adjusted forecasts, for horizons from 1 to 24 months. We explain variables. From the forecast evaluation statistics viewpoints, the adjusted forecasts make it possible quasi

Paris-Sud XI, Université de

394

Revised Economic andRevised Economic and Demand ForecastsDemand Forecasts  

E-Print Network [OSTI]

Revised Economic andRevised Economic and Demand ForecastsDemand Forecasts April 14, 2009 Massoud,000 MW #12;6 Demand Forecasts Price Effect (prior to conservation) - 5,000 10,000 15,000 20,000 25,000 30 Jourabchi #12;2 Changes since the Last Draft ForecastChanges since the Last Draft Forecast Improved

395

artificial weathering environment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nation Winter Weather Hazards Winter Weather Safety www.weather.gov SnowIce Blizzards Flooding Cold Temperatures 12;Building a Weather 37 4....

396

Price forecasting for notebook computers  

E-Print Network [OSTI]

This paper proposes a four-step approach that uses statistical regression to forecast notebook computer prices. Notebook computer price is related to constituent features over a series of time periods, and the rates of change in the influence...

Rutherford, Derek Paul

2012-06-07T23:59:59.000Z

397

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN with primary contributions in the area of decision support for reservoir planning and management Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project

398

Arnold Schwarzenegger INTEGRATED FORECAST AND  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha

399

CALIFORNIA ENERGY COMMISSION0 Annual Update to the Forecasted  

E-Print Network [OSTI]

Values in TWh forthe Year2022 Formula Mid Demand Forecast Renewable Net High Demand Forecast Renewable Net Low Demand Forecast Renewable Net #12;CALIFORNIA ENERGY COMMISSION5 Demand Forecast · Retail Sales Forecast from California Energy Demand 2012 2022(CED 2011), Adopted Forecast* ­ Form 1.1c · Demand Forecast

400

1434 VOLUME 132M O N T H L Y W E A T H E R R E V I E W Ensemble Reforecasting: Improving Medium-Range Forecast Skill Using  

E-Print Network [OSTI]

-Range Forecast Skill Using Retrospective Forecasts THOMAS M. HAMILL University of Colorado and NOAA­CIRES Climate statistics (MOS) approach to improving 6­10-day and week 2 probabilistic forecasts of surface temperature of the NCEP medium-range forecast model with physics operational during 1998. An NCEP­NCAR reanalysis initial

Hamill, Tom

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An adaptive neural network approach to one-week ahead load forecasting  

SciTech Connect (OSTI)

A new neural network approach is applied to one-week ahead load forecasting. This approach uses a linear adaptive neuron or adaptive linear combiner called Adaline.'' An energy spectrum is used to analyze the periodic components in a load sequence. The load sequence mainly consists of three components: base load component, and low and high frequency load components. Each load component has a unique frequency range. Load decomposition is made for the load sequence using digital filters with different passband frequencies. After load decomposition, each load component can be forecasted by an Adaline. Each Adaline has an input sequence, an output sequence, and a desired response-signal sequence. It also has a set of adjustable parameters called the weight vector. In load forecasting, the weight vector is designed to make the output sequence, the forecasted load, follow the actual load sequence; it also has a minimized Least Mean Square error. This approach is useful in forecasting unit scheduling commitments. Mean absolute percentage errors of less than 3.4 percent are derived from five months of utility data, thus demonstrating the high degree of accuracy that can be obtained without dependence on weather forecasts.

Peng, T.M. (Pacific Gas and Electric Co., San Francisco, CA (United States)); Hubele, N.F.; Karady, G.G. (Arizona State Univ., Tempe, AZ (United States))

1993-08-01T23:59:59.000Z

402

A technique for using historical analogues to forecast the central pressure of tropical cyclones in the western North Pacific Ocean and south China Sea  

E-Print Network [OSTI]

been ound to be comparable to or better than conventional methods of forecasting ce"!tral pressures of. tropical cyclones. The analogue technique a'so has been compared to maximum-wind forecasts issued by the Fleet Weather Cen!!al/. Taint Typhoon... issued by the official warning ager. cy. iv ACKNOWLEDGMENTS My sincezest appreciation is extended to CDR J. D. Jarrell, USN, for his suggestions during the early stages of this research, and to Dr. Phanindzamohan Das for his patient guidance...

Wagoner, Richard Allen

1973-01-01T23:59:59.000Z

403

USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15  

SciTech Connect (OSTI)

This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

KETUSKY, EDWARD

2005-10-31T23:59:59.000Z

404

Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint  

SciTech Connect (OSTI)

Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

2012-09-01T23:59:59.000Z

405

Wind Forecast Improvement Project Southern Study Area Final Report...  

Office of Environmental Management (EM)

Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern...

406

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007 INTEGRATED Table of Contents General Instructions for Demand Forecast Submittals.............................................................................. 4 Protocols for Submitted Demand Forecasts

407

Applying Bayesian Forecasting to Predict New Customers' Heating Oil Demand.  

E-Print Network [OSTI]

??This thesis presents a new forecasting technique that estimates energy demand by applying a Bayesian approach to forecasting. We introduce our Bayesian Heating Oil Forecaster (more)

Sakauchi, Tsuginosuke

2011-01-01T23:59:59.000Z

408

Tacoma Power- Residential Weatherization Rebate Program  

Broader source: Energy.gov [DOE]

Tacoma Power helps residential customers increase the energy efficiency of homes through the utility's residential weatherization program. Weatherization upgrades to windows are eligible for an...

409

Administration Announces Nearly $8 Billion in Weatherization...  

Office of Environmental Management (EM)

Administration Announces Nearly 8 Billion in Weatherization Funding and Energy Efficiency Grants Administration Announces Nearly 8 Billion in Weatherization Funding and Energy...

410

Monitoring Plan for Weatherization Assistance Program, State...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Monitoring Plan for Weatherization Assistance Program, State Energy Program and Energy Efficiency and Conservation Block Grants Monitoring Plan for Weatherization Assistance...

411

ATS 680 A6: Applied Numerical Weather Prediction MW, 1:00-1:50 PM, ACRC Room 212B  

E-Print Network [OSTI]

experiments using a state-of-the-art numerical weather prediction model · Discuss the strengths and weaknesses, Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University PressATS 680 A6: Applied Numerical Weather Prediction Fall 2013 MW, 1:00-1:50 PM, ACRC Room 212B Course

412

Weather Radar and Hydrology (Proceedings of a symposium held in Exeter, UK, April 2011) (IAHS Publ. 3XX, 2011).  

E-Print Network [OSTI]

refractivity changes in Numerical Weather Prediction models could help improve the representation of near new data source for assimilation into Numerical Weather Prediction models, particularly with respect Weather Prediction J. C. NICOL1 , K. BARTHOLEMEW1 , T. DARLINGTON2 , A. J. ILLINGWORTH1 , & M. KITCHEN2 1

Reading, University of

413

Development and Deployment of an Advanced Wind Forecasting Technique  

E-Print Network [OSTI]

findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power and applications of power market simulation models around the world. Argonne's software tools are used extensively

Kemner, Ken

414

WeatherMaker: Weather file conversion and evaluation  

SciTech Connect (OSTI)

WeatherMaker is a weather-data utility for use with the ENERGY-10 design-tool computer program. The three main features are: Convert--Weather files can be converted from one format to another. For example, a TMY2 format file can be converted to an ENERGY-10 binary file that can be used in a simulation. This binary file can then be converted to a text format that allows it to be read and/or manipulated in WordPad or Excel. Evaluate--ENERGY-10 weather files can be studied in great detail. There are 8 graphical displays of the data that provide insight into the data, and a summary tables that presents results calculated from the hourly data. Adjust--Hourly temperature data can be adjusted starting with hourly data from a nearby TMY2 site. Dry-bulb and wet-bulb temperatures are adjusted up or down as required to match given monthly statistics. This feature can be used to generate weather files for any of 3,958 sites in the US where such monthly statistics are tabulated. The paper shows a variety of results, explains the methods used, and discusses the rationale for making the adjustments. It is anticipated that WeatherMaker will be released by the time of the ASES Solar 99 conference.

Balcomb, J.D.

1999-07-01T23:59:59.000Z

415

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -  

E-Print Network [OSTI]

EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state models from all over Europe are able to work on this platform. Keywords: wind energy, wind power

Boyer, Edmond

416

Forecasting the Hourly Ontario Energy Price by Multivariate Adaptive Regression Splines  

E-Print Network [OSTI]

1 Forecasting the Hourly Ontario Energy Price by Multivariate Adaptive Regression Splines H. In this paper, the MARS technique is applied to forecast the hourly Ontario energy price (HOEP). The MARS models values of the latest pre- dispatch price and demand information, made available by the Ontario

Cañizares, Claudio A.

417

WA-RD 470.1 June 1999 Demand Forecasting for Rural Transit  

E-Print Network [OSTI]

WA-RD 470.1 June 1999 Demand Forecasting for Rural Transit This summary describes the key findings of a WSDOT project that is documented more fully in the technical report titled "Demand Forecasting for Rural to Washington for predicting demand for rural public transportation. Three Washington-based models were

418

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching  

E-Print Network [OSTI]

Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at a wind energy site and fits a conditional predictive model for each regime. Geographically dispersed was applied to 2-hour-ahead forecasts of hourly average wind speed near the Stateline wind energy center

Genton, Marc G.

419

Oldest and Largest The Weather  

E-Print Network [OSTI]

MIT's Oldest and Largest Newspaper The Weather Today: Clear skies, 45°F (70C) Tonight: Clear, cool Eilts, former U.S. Ambassador to Saudi Arabia and Egypt and Professor Emeritus of Inter- national

420

The Incremental Benefits of the Nearest Neighbor Forecast of U.S. Energy Commodity Prices  

E-Print Network [OSTI]

This thesis compares the simple Autoregressive (AR) model against the k- Nearest Neighbor (k-NN) model to make a point forecast of five energy commodity prices. Those commodities are natural gas, heating oil, gasoline, ethanol, and crude oil...

Kudoyan, Olga

2012-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Low-Income Weatherization: The Human Dimension  

Broader source: Energy.gov [DOE]

This presentation focuses on how the human dimension saves energy within low-income weatherization programs.

422

Management forecast credibility and underreaction to news  

E-Print Network [OSTI]

In this paper, we first document evidence of underreaction to management forecast news. We then hypothesize that the credibility of the forecast influences the magnitude of this underreaction. Relying on evidence that more ...

Ng, Jeffrey

423

Management Forecast Quality and Capital Investment Decisions  

E-Print Network [OSTI]

Corporate investment decisions require managers to forecast expected future cash flows from potential investments. Although these forecasts are a critical component of successful investing, they are not directly observable ...

Goodman, Theodore H.

424

FORECASTING THE ROLE OF RENEWABLES IN HAWAII  

E-Print Network [OSTI]

FORECASTING THE ROLE OF RENEWABLES IN HAWAII Jayant SathayeFORECASTING THE ROLF OF RENEWABLES IN HAWAII J Sa and Henrythe Conservation Role of Renewables November 18, 1980 Page 2

Sathaye, Jayant

2013-01-01T23:59:59.000Z

425

(1) Ensemble forecast calibration & (2) using reforecasts  

E-Print Network [OSTI]

1 (1) Ensemble forecast calibration & (2) using reforecasts Tom Hamill NOAA Earth System Research · Calibration: ; the statistical adjustment of the (ensemble) forecast ­ Rationale 1: Infer large-sample probabilities from small ensemble. ­ Rationale 2: Remove bias, increase forecast reliability while preserving

Hamill, Tom

426

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial floor space

427

FINAL STAFF FORECAST OF 2008 PEAK DEMAND  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION FINAL STAFF FORECAST OF 2008 PEAK DEMAND STAFFREPORT June 2007 CEC-200 of the information in this paper. #12;Abstract This document describes staff's final forecast of 2008 peak demand demand forecasts for the respective territories of the state's three investor-owned utilities (IOUs

428

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy for demand response program impacts and contributed to the residential forecast. Mitch Tian prepared

429

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

430

Consensus Coal Production And Price Forecast For  

E-Print Network [OSTI]

Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

Mohaghegh, Shahab

431

Vermessung & Geoinformation 2/2011, P. 149 153, 4 Figs. 149 Modeling troposphere delays is a major source of error in the analysis of observations from space geodetic  

E-Print Network [OSTI]

using data of the European Centre for Medium-range Weather Forecasts (ECMWF) which is based Hilfe von Wetterdaten des Eu- ropean Centre for Medium-Range Weather Forecasts (ECMWF) zu berechnen The troposphere is a composition of dry gas- es and water vapor, which imposes a time de- lay of propagating

Schuh, Harald

432

Metr 6803: Numerical Weather Prediction Syllabus: Spring 2013 M / W 10:00-11:15, NWC 5930  

E-Print Network [OSTI]

Metr 6803: Numerical Weather Prediction Syllabus: Spring 2013 M / W ­ 10:00-11:15, NWC 5930 weather analysis (NWA) and numerical weather prediction (NWP)? - why are they important? - how "good of numerics of GFS, RUC/RAP, CAPS, MM5, WRF models 11. Atmospheric Predictability - basic concepts

Droegemeier, Kelvin K.

433

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 Gorin Principal Authors Lynn Marshall Project Manager Kae C. Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting

434

Load Forecasting of Supermarket Refrigeration  

E-Print Network [OSTI]

energy system. Observed refrigeration load and local ambient temperature from a Danish su- permarket renewable energy, is increasing, therefore a flexible energy system is needed. In the present ThesisLoad Forecasting of Supermarket Refrigeration Lisa Buth Rasmussen Kongens Lyngby 2013 M.Sc.-2013

435

Integrating agricultural pest biocontrol into forecasts of energy biomass production  

E-Print Network [OSTI]

Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T), University of Lome, 114 Rue Agbalepedogan, BP: 20679, Lome, Togo e Center for Agricultural & Energy Policy model of potential biomass supply that incorporates the effect of biological control on crop choice

Gratton, Claudio

436

What constrains spread growth in forecasts ini2alized from  

E-Print Network [OSTI]

1 What constrains spread growth in forecasts ini2alized from ensemble Kalman filters? Tom from manner in which ini2al condi2ons are generated, some due to the model (e.g., stochas2c physics as error; part of spread growth from manner in which ini2al condi2ons are generated, some due

Hamill, Tom

437

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks  

E-Print Network [OSTI]

Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

Cerpa, Alberto E.

438

The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations the Southern Study Area  

SciTech Connect (OSTI)

This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP)--Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 3 hours.

Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

2014-04-30T23:59:59.000Z

439

SIMULATION-BASED WEATHER NORMALIZATION APPROACH TO STUDY THE IMPACT OF WEATHER ON ENERGY USE OF BUILDINGS IN THE U.S.  

SciTech Connect (OSTI)

Weather normalization is a crucial task in several applications related to building energy conservation such as retrofit measurements and energy rating. This paper documents preliminary results found from an effort to determine a set of weather adjustment coefficients that can be used to smooth out impacts of weather on energy use of buildings in 1020 weather location sites available in the U.S. The U.S. Department of Energy (DOE) commercial reference building models are adopted as hypothetical models with standard operations to deliver consistency in modeling. The correlation between building envelop design, HVAC system design and properties for different building types and the change in heating and cooling energy consumption caused by variations in weather is examined.

Makhmalbaf, Atefe; Srivastava, Viraj; Wang, Na

2013-08-05T23:59:59.000Z

440

The calculation of climatically relevant singular vectors in the presence of weather  

E-Print Network [OSTI]

and Kleeman, 1996). As in numerical weather prediction, singular vectors have proven useful for predictability to the analysis of coupled general cir- culation models where the fastest growing modes are connected with weather to a relatively complete coupled general circulation model which has been shown to have skill in the prediction

Tang, Youmin

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2008 Weatherization and Intergovernmental Program (WIP) Market Report  

SciTech Connect (OSTI)

The Weatherization and Intergovernmental Program (WIP) integrates local needs and interests in order to promote markets for energy efficiency (EE) and renewable energy (RE). Its activities are integrative across disparate technologies and market boundaries. In order to analyze the historical performance and forward-looking potential of this broad program, this report assesses market developments and outlooks at the following aggregated levels: states, cities and communities, Indian tribes, and low-income residential efficiency. The analytical goals of the report are to: identify market drivers for EE and RE, paying attention to subsidies, taxes, targets and mandates, environmental policy, energy security, and economic development; assess efficacy of existing policies; discuss challenges and barriers; evaluate high-impact measures for overcoming challenges and barriers; and forecast future market trends.

Doris, E.; Taylor, R.

2009-07-01T23:59:59.000Z

442

California climate change, hydrologic response, and flood forecasting  

SciTech Connect (OSTI)

There is strong evidence that the lower atmosphere has been warming at an unprecedented rate during the last 50 years, and it is expected to further increase at least for the next 100 years. Warmer air mass implies a higher capacity to hold water vapor and an increased likelihood of an acceleration of the global water cycle. This acceleration is not validated and considerable new research has gone into understanding aspects of the water cycle (e.g. Miller et al. 2003). Several significant findings on the hydrologic response to climate change can be reported. It is well understood that the observed and expected warming is related to sea level rise. In a recent seminar at Lawrence Berkeley National Laboratory, James Hansen (Director of the Institute for Space Studies, National Aeronautics and Space Administration) stressed that a 1.25 Wm{sup -2} increase in radiative forcing will lead to an increase in the near surface air temperature by 1 C. This small increase in temperature from 2000 levels is enough to cause very significant impacts to coasts. Maury Roos (Chief Hydrologist, California Department of Water Resources) has shown that a 0.3 m rise in sea level shifts the San Francisco Bay 100-year storm surge flood event to a 10-year event. Related coastal protection costs for California based on sea level rise are shown. In addition to rising sea level, snowmelt-related streamflow represents a particular problem in California. Model studies have indicated that there will be approximately a 50% decrease in snow pack by 2100. This potential deficit must be fully recognized and plans need to be put in place well in advance. In addition, the warmer atmosphere can hold more water vapor and result in more intense warm winter-time precipitation events that result in flooding. During anticipated high flow, reservoirs need to release water to maintain their structural integrity. California is at risk of water shortages, floods, and related ecosystem stresses. More research needs to be done to further improve our ability to forecast weather events at longer time scales. Seasonal predictions have been statistical and only recently have studies begun to use ensemble simulations and historical observations to constrain such predictions. Understanding the mechanisms of large-scale atmospheric dynamics and its local impacts remain topics of intensive research. The ability to predict extreme events and provide policy makers with this information, along with climate change and hydrologic response information, will help to guide planning to form a more resilient infrastructure in the future.

Miller, Norman L.

2003-11-11T23:59:59.000Z

443

Residential Appliance Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

LBL-34046 UC-350 Residential Appliance Data, Assumptions and Methodology for End-Use Forecasting-use forecasting of appliance energy use in the U.S. residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which

444

Weather Data Gamification  

E-Print Network [OSTI]

to planning policies and strategies to counter the impact of climate change, and identifies a need for climate awareness in the public. This thesis explores using gamification to motivate people to learn about long term trends in climate data. As a model...

Gargate, Rohit

2013-07-25T23:59:59.000Z

445

Homes Weatherized by State March 2010 | Department of Energy  

Energy Savers [EERE]

March 2010 Homes Weatherized by State March 2010 Weatherization Assistance Program Homes Weatherized By State through 03312010 HomesWeatherizedbyStateQ12010.pdf More...

446

U.S. Department of Energy Weatherization Assistance Program Homes...  

Broader source: Energy.gov (indexed) [DOE]

S. Department of Energy Weatherization Assistance Program Homes Weatherized By State through 06302010 (Calendar Year) U.S. Department of Energy Weatherization Assistance Program...

447

Freeway Short-Term Traffic Flow Forecasting by Considering Traffic Volatility Dynamics and Missing Data Situations  

E-Print Network [OSTI]

, assuming constant variance when perform forecasting. This method does not consider the volatility nature of traffic flow data. This paper demonstrated that the variance part of traffic flow data is not constant, and dependency exists. A volatility model...

Zhang, Yanru

2012-10-19T23:59:59.000Z

448

Application of Fast Marching Methods for Rapid Reservoir Forecast and Uncertainty Quantification  

E-Print Network [OSTI]

Rapid economic evaluations of investment alternatives in the oil and gas industry are typically contingent on fast and credible evaluations of reservoir models to make future forecasts. It is often important to also quantify inherent risks...

Olalotiti-Lawal, Feyisayo

2013-05-17T23:59:59.000Z

449

NCAR WRF-based data assimilation and forecasting systems for wind energy applications power  

E-Print Network [OSTI]

NCAR WRF-based data assimilation and forecasting systems for wind energy applications power Yuewei of these modeling technologies w.r.t. wind energy applications. Then I'll discuss wind farm

Kim, Guebuem

450

Forecasting the Standard & Poor's 500 stock index futures price: interest rates, dividend yields, and cointegration  

E-Print Network [OSTI]

forward price series is constructed using interest rate and dividend yield data. Out-of-sample forecasts from error correction models are compared to those from vector autoregressions (VAR) fit to levels and VARs fit to first differences. This comparison...

Fritsch, Roger Erwin

1997-01-01T23:59:59.000Z

451

Forecast Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHome Kyoung's pictureFlintFlowerForecast

452

Weather-Corrected Performance Ratio  

SciTech Connect (OSTI)

Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.

Dierauf, T.; Growitz, A.; Kurtz, S.; Cruz, J. L. B.; Riley, E.; Hansen, C.

2013-04-01T23:59:59.000Z

453

Weatherization Innovation Pilot Program: Program Overview and Philadelphia Project Highlight (Fact Sheet)  

SciTech Connect (OSTI)

Case Study with WIPP program overview, information regarding eligibility, and successes from Pennsylvania's Commission on Economic Opportunity (CEO) that demonstrate innovative approaches that maximize the benefit of the program. The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) recently launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of homes of low-income families. Since 2010, WIPP has helped weatherization service providers as well as new and nontraditional partners leverage non-federal financial resources to supplement federal grants, saving taxpayer money. WIPP complements the Weatherization Assistance program (WAP), which operates nation-wide, in U.S. territories and in three Native American tribes. 16 grantees are implementing weatherization innovation projects using experimental approaches to find new and better ways to weatherize homes. They are using approaches such as: (1) Financial tools - by understanding a diverse range of financing mechanisms, grantees can maximize the impact of the federal grant dollars while providing high-quality work and benefits to eligible low-income clients; (2) Green and healthy homes - in addition to helping families reduce their energy costs, grantees can protect their health and safety. Two WIPP projects (Connecticut and Maryland) will augment standard weatherization services with a comprehensive green and healthy homes approach; (3) New technologies and techniques - following the model of continuous improvement in weatherization, WIPP grantees will continue to use new and better technologies and techniques to improve the quality of work; (4) Residential energy behavior change - Two grantees are rigorously testing home energy monitors (HEMs) that display energy used in kilowatt-hours, allowing residents to monitor and reduce their energy use, and another is examining best-practices for mobile home energy efficiency; (5) Workforce development and volunteers - with a goal of creating a self-sustaining weatherization model that does not require future federal investment, three grantees are adapting business models successful in other sectors of the home performance business to perform weatherization work. Youthbuild is training youth to perform home energy upgrades to eligible clients and Habitat for Humanity is developing a model for how to incorporate volunteer labor in home weatherization. These innovative approaches will improve key weatherization outcomes, such as: Increasing the total number of homes that are weatherized; Reducing the weatherization cost per home; Increasing the energy savings in each weatherized home; Increasing the number of weatherization jobs created and retained; and Reducing greenhouse gas emissions.

Not Available

2012-01-01T23:59:59.000Z

454

Weathering the cold of `94. A review of the January 1994 energy supply disruptions in the Eastern United States  

SciTech Connect (OSTI)

This report examines the causes of and responses to the very low temperatures over a wide region of the Eastern US causing unprecedented sustained demand for energy during the week of January 16--22, 1994. The topics of the report include the vagaries of the weather, the North American power supply structure, a chronology of major events of January, natural gas industry operations during peak demand periods, and recommendations for fuel supply, load forecasting, and energy emergency response exercises.

NONE

1995-05-01T23:59:59.000Z

455

Chameleon foreCAST  

E-Print Network [OSTI]

Dark energy models, such as the chameleon, where the acceleration of the expansion of the universe results from the dynamics of a scalar field coupled to matter, suffer from the potential existence of a fifth force. Three known mechanisms have been proposed to restore General Relativity in the solar system and the laboratory, which are the symmetron/Damour-Polyakov effect, the Vainshtein property and the chameleon screening. Here, we propose to probe the existence of chameleons in the laboratory, considering their particle physics consequences. We envisage the resonant and non-resonant production of chameleons in the sun and their back-conversion into X-ray photons in a solar helioscope pipe such as the one used by CAST. A detection of these X-rays would indicate the existence of chameleons. We focus on a template model for the solar magnetic field: a constant magnetic field in a narrow shell surrounding the tachocline. The X-ray photons in a helioscope pipe obtained from back-conversion of the chameleons created inside the sun have a spectrum which is peaked in the sub-keV region, just below the actual sensitivity range of the present axion helioscopes. Nevertheless they are detectable by present day magnetic helioscopes like CAST and Sumico, which were built originally for solar axions. We also propose a chameleon-through-a-wall experiment whereby X-ray photons from a synchroton radiation source could be converted into chameleons inside a dipole magnet, then pass a wall which is opaque to X-rays before being back-converted into X-ray photons in a second magnet downstream. We show that this could provide a direct signature for the existence of chameleon particles.

Philippe Brax; Axel Lindner; Konstantin Zioutas

2012-01-24T23:59:59.000Z

456

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

SciTech Connect (OSTI)

This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-02-09T23:59:59.000Z

457

Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint  

SciTech Connect (OSTI)

As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

2013-11-01T23:59:59.000Z

458

Joint models for concept-to-text generation  

E-Print Network [OSTI]

Much of the data found on the world wide web is in numeric, tabular, or other nontextual format (e.g., weather forecast tables, stock market charts, live sensor feeds), and thus inaccessible to non-experts or laypersons. ...

Konstas, Ioannis

2014-06-27T23:59:59.000Z

459

Explaining the road accident risk: weather effects Ruth Bergel-Hayat1*  

E-Print Network [OSTI]

1 Explaining the road accident risk: weather effects Ruth Bergel-Hayat1* , Mohammed Debbarh1 conditions and road accident risk at an aggregate level and on a monthly basis, in order to improve road accidents. Time series analysis models with explanatory variables that measure the weather quantitatively

Paris-Sud XI, Université de

460

Simulations of Arctic Mixed-Phase Clouds in Forecasts with CAM3 and AM2 for M-PACE  

SciTech Connect (OSTI)

Simulations of mixed-phase clouds in short-range forecasts with the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed under the DOE CCPP-ARM Parameterization Testbed (CAPT), which initializes the climate models with analysis data produced from numerical weather prediction (NWP) centers. It is shown that CAM3 significantly underestimates the observed boundary layer mixed-phase clouds and cannot realistically simulate the variations with temperature and cloud height of liquid water fraction in the total cloud condensate based an oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer clouds while its clouds contain much less cloud condensate than CAM3 and the observations. Both models underestimate the observed cloud top and base for the boundary layer clouds. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used. The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes in CAM3. It is shown that the Bergeron-Findeisen process, i.e., the ice crystal growth by vapor deposition at the expense of coexisting liquid water, is important for the models to correctly simulate the characteristics of the observed microphysical properties in mixed-phase clouds. Sensitivity tests show that these results are not sensitive to the analysis data used for model initializations. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. Ice crystal number density has large impact on the model simulated mixed-phase clouds and their microphysical properties and needs to be accurately represented in climate models.

Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven J.

2008-02-29T23:59:59.000Z

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Single-Pass Flow-Through Test Elucidation of Weathering Behavior and Evaluation of Contaminant Release Models for Hanford Tank Residual Radioactive Waste  

SciTech Connect (OSTI)

Contaminant release models are required to evaluate and predict long-term environmental impacts of even residual amounts of high-level radioactive waste after cleanup and closure of radioactively contaminated sites such as the DOEs Hanford Site. More realistic and representative models have been developed for release of uranium, technetium, and chromium from Hanford Site tanks C-202, C-203, and C-103 residual wastes using data collected with a single-pass flow-through test (SPFT) method. These revised models indicate that contaminant release concentrations from these residual wastes will be considerably lower than previous estimates based on batch experiments. For uranium, a thermodynamic solubility model provides an effective description of uranium release, which can account for differences in pore fluid chemistry contacting the waste that could occur through time and as a result of different closure scenarios. Under certain circumstances in the SPFT experiments various calcium rich precipitates (calcium phosphates and calcite) form on the surfaces of the waste particles, inhibiting dissolution of the underlying uranium phases in the waste. This behavior was not observed in previous batch experiments. For both technetium and chromium, empirical release models were developed. In the case of technetium, release from all three wastes was modeled using an equilibrium Kd model. For chromium release, a constant concentration model was applied for all three wastes.

Cantrell, Kirk J.; Carroll, Kenneth C.; Buck, Edgar C.; Neiner, Doinita; Geiszler, Keith N.

2013-01-01T23:59:59.000Z

462

Geothermal wells: a forecast of drilling activity  

SciTech Connect (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

463

Online Forecast Combination for Dependent Heterogeneous Data  

E-Print Network [OSTI]

the single individual forecasts. Several studies have shown that combining forecasts can be a useful hedge against structural breaks, and forecast combinations are often more stable than single forecasts (e.g. Hendry and Clements, 2004, Stock and Watson, 2004... in expectations. Hence, we have the following. Corollary 4 Suppose maxt?T kl (Yt, hwt,Xti)kr ? A taking expectation on the left hand side, adding 2A ? T and setting ? = 0 in mT (?), i.e. TX t=1 E [lt (wt)? lt (ut...

Sancetta, Alessio

464

Funding Opportunity Announcement for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

465

Upcoming Funding Opportunity for Wind Forecasting Improvement...  

Office of Environmental Management (EM)

to improved forecasts, system operators and industry professionals can ensure that wind turbines will operate at their maximum potential. Data collected during this field...

466

Solid low-level waste forecasting guide  

SciTech Connect (OSTI)

Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford`s experience within the last six years. Hanford`s forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford`s annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford`s forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data.

Templeton, K.J.; Dirks, L.L.

1995-03-01T23:59:59.000Z

467

The Value of Wind Power Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power Forecasting Preprint Debra Lew and Michael Milligan National Renewable Energy Laboratory Gary Jordan and Richard Piwko GE Energy Presented at the 91 st American...

468

A Cosmology Forecast Toolkit -- CosmoLib  

E-Print Network [OSTI]

The package CosmoLib is a combination of a cosmological Boltzmann code and a simulation toolkit to forecast the constraints on cosmological parameters from future observations. In this paper we describe the released linear-order part of the package. We discuss the stability and performance of the Boltzmann code. This is written in Newtonian gauge and including dark energy perturbations. In CosmoLib the integrator that computes the CMB angular power spectrum is optimized for a $\\ell$-by-$\\ell$ brute-force integration, which is useful for studying inflationary models predicting sharp features in the primordial power spectrum of metric fluctuations. The numerical code and its documentation are available at http://www.cita.utoronto.ca/~zqhuang/CosmoLib.

Zhiqi Huang

2012-06-11T23:59:59.000Z

469

Incorporating Forecast Uncertainty in Utility Control Center  

SciTech Connect (OSTI)

Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

2014-07-09T23:59:59.000Z

470

200,000 homes weatherized under the Recovery Act  

Broader source: Energy.gov [DOE]

Today Vice President Biden announced that the Weatherization Assistance Program has weatherized 200,000 homes under the Recovery Act.

471

Wind Power Forecasting andWind Power Forecasting and Electricity Market Operations  

E-Print Network [OSTI]

Wind Power Forecasting andWind Power Forecasting and Electricity Market Operations Audun Botterud://www.dis.anl.gov/projects/windpowerforecasting.html IAWind 2010 Ames, IA, April 6, 2010 #12;Outline Background Using wind power forecasts in market operations ­ Current status in U.S. markets ­ Handling uncertainties in system operations ­ Wind power

Kemner, Ken

472

U-M Construction Forecast December 15, 2011 U-M Construction Forecast  

E-Print Network [OSTI]

U-M Construction Forecast December 15, 2011 U-M Construction Forecast Spring Fall 2012 As of December 15, 2011 Prepared by AEC Preliminary & Advisory #12;U-M Construction Forecast December 15, 2011 Overview Campus by campus Snapshot in time Not all projects Construction coordination efforts

Kamat, Vineet R.

473

NOAA GREAT LAKES COASTAL FORECASTING SYSTEM Forecasts (up to 5 days in the future)  

E-Print Network [OSTI]

conditions for up to 5 days in the future. These forecasts are run twice daily, and you can step through are generated every 6 hours and you can step backward in hourly increments to view conditions over the previousNOAA GREAT LAKES COASTAL FORECASTING SYSTEM Forecasts (up to 5 days in the future) and Nowcasts

474

Depositional sequences and integrated recovery efficiency forecast models for San Andres and Clearfork Units in the Central Basin Platform and the Northern Shelf, west Texas  

E-Print Network [OSTI]

models of primary, initial waterflood and infill drilling are developed for the San Andres and Clearfork reservoirs in Central Basin Platform and the Northern Shelf, west Texas. The geological parameters and well spacing are considered major factors...

Shao, Hongbin

1994-01-01T23:59:59.000Z

475

A New Method for History Matching and Forecasting Shale Gas/Oil Reservoir Production Performance with Dual and Triple Porosity Models  

E-Print Network [OSTI]

Different methods have been proposed for history matching production of shale gas/oil wells which are drilled horizontally and usually hydraulically fractured with multiple stages. These methods are simulation, analytical models, and empirical...

Samandarli, Orkhan

2012-10-19T23:59:59.000Z

476

A COMPARATIVE ANALYSIS OF THE INFLUENCE OF WEATHER ON THE  

E-Print Network [OSTI]

conditions (Bouten et al. 2003). This model will be used by experts as a decision support tool to reduceA COMPARATIVE ANALYSIS OF THE INFLUENCE OF WEATHER ON THE FLIGHT ALTITUDES OF BIRDS Meteorological/Bash/stats.html). The International Civil Aviation Organization (ICAO) has long acknowledged the risk of bird hazards to civil

Loon, E. Emiel van

477

Tropical and Subtropical Cloud Transitions in Weather and Climate Prediction Models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)  

E-Print Network [OSTI]

, Paris, France e Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada f, Melbourne, Victoria, Australia i Monash University, Melbourne, Victoria, Australia j Department of Earth for the season June­July­August

Randall, David A.

478

Ensemble bayesian model averaging using markov chain Monte Carlo sampling  

SciTech Connect (OSTI)

Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

Vrugt, Jasper A [Los Alamos National Laboratory; Diks, Cees G H [NON LANL; Clark, Martyn P [NON LANL

2008-01-01T23:59:59.000Z

479

Paper presented at EWEC 2008, Brussels, Belgium (31 March-03 April) Uncertainty Estimation of Wind Power Forecasts  

E-Print Network [OSTI]

-Antipolis, France Abstract--Short-term wind power forecasting tools providing "single-valued" (spot) predictions associated to the future wind power produc- tion for performing more efficiently functions such as reserves and modelling architec- tures for probabilistic wind power forecasting. Then, a comparison is carried out

Paris-Sud XI, Université de

480

Ensemble forecasting with machine learning algorithms for ozone, nitrogen dioxide and PM10 on the Prev'Air  

E-Print Network [OSTI]

Ensemble forecasting with machine learning algorithms for ozone, nitrogen dioxide and PM10'Air operational platform. This platform aims at forecasting maps, on a daily basis, for ozone, nitrogen dioxide models, ozone, nitrogen dioxide, particulate matter, threshold exceedance 1. Introduction1 Operational

Mallet, Vivien

Note: This page contains sample records for the topic "weather forecast model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ONLINE TOOL FOR VISUALIZING SURFACE HOAR LAYERS Simon Horton*, Michael Schirmer, Erik Kulyk, and Bruce Jamieson  

E-Print Network [OSTI]

is presented. KEYWORDS: surface hoar, avalanche forecasting, numerical weather prediction 1. INTRODUCTION Computer modelling has vastly improved the quality of weather forecasts over the past dec- ades. Numerical weather prediction models have become an essential weather forecasting tool with improved spatial

Jamieson, Bruce

482

Optimal combined wind power forecasts using exogeneous variables  

E-Print Network [OSTI]

Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

483

Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation  

E-Print Network [OSTI]

Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation Vivien Mallet1. [1] Sequential aggregation is an ensemble forecasting approach that weights each ensemble member based on past observations and past forecasts. This approach has several limitations: The weights

Mallet, Vivien

484

Coordinating production quantities and demand forecasts through penalty schemes  

E-Print Network [OSTI]

Coordinating production quantities and demand forecasts through penalty schemes MURUVVET CELIKBAS1 departments which enable organizations to match demand forecasts with production quantities. This research problem where demand is uncertain and the marketing de- partment provides a forecast to manufacturing

Swaminathan, Jayashankar M.

485

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy-2 Demand Forecast Disaggregation......................................................1-4 Statewide

486

HIERARCHY OF PRODUCTION DECISIONS Forecasts of future demand  

E-Print Network [OSTI]

HIERARCHY OF PRODUCTION DECISIONS Forecasts of future demand Aggregate plan Master production Planning and Forecast Bias · Forecast error seldom is normally distributed · There are few finite planning

Brock, David

487

Forecasting Market Demand for New Telecommunications Services: An Introduction  

E-Print Network [OSTI]

Forecasting Market Demand for New Telecommunications Services: An Introduction Peter Mc in demand forecasting for new communication services. Acknowledgments: The writing of this paper commenced employers or consultancy clients. KEYWORDS: Demand Forecasting, New Product Marketing, Telecommunica- tions

Parsons, Simon

488

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network [OSTI]

has developed longterm forecasts of transportation energy demand as well as projected ranges of transportation fuel and crude oil import requirements. The transportation energy demand forecasts makeCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY

489

NREL: Transmission Grid Integration - Forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecasting NREL researchers use solar and

490

Regional Climate Model Projections for the State of Washington  

SciTech Connect (OSTI)

Global climate models do not have sufficient spatial resolution to represent the atmospheric and land surface processes that determine the unique regional heterogeneity of the climate of the State of Washington. If future large-scale weather patterns interact differently with the local terrain and coastlines than current weather patterns, local changes in temperature and precipitation could be quite different from the coarse-scale changes projected by global models. Regional climate models explicitly simulate the interactions between the large-scale weather patterns simulated by a global model and the local terrain. We have performed two 100-year climate simulations using the Weather and Research Forecasting (WRF) model developed at the National Center for Atmospheric Research (NCAR). One simulation is forced by the NCAR Community Climate System Model version 3 (CCSM3) and the second is forced by a simulation of the Max Plank Institute, Hamburg, global model (ECHAM5). The mesoscale simulations produce regional changes in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land-water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. To illustrate this effect, we analyze the changes from the current climate (1970-1999) to the mid 21st century (2030-2059). Changes in seasonal-mean temperature, precipitation, and snowpack are presented. Several climatological indices of extreme daily weather are also presented: precipitation intensity, fraction of precipitation occurring in extreme daily events, heat wave frequency, growing season length, and frequency of warm nights. Despite somewhat different changes in seasonal precipitation and temperature from the two regional simulations, consistent results for changes in snowpack and extreme precipitation are found in both simulations.

Salathe, E.; Leung, Lai-Yung R.; Qian, Yun; Zhang, Yongxin

2010-05-05T23:59:59.000Z

491

Use of wind power forecasting in operational decisions.  

SciTech Connect (OSTI)

The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

2011-11-29T23:59:59.000Z

492

The Wind Forecast Improvement Project (WFIP): A Public/Private...  

Energy Savers [EERE]

The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

493

Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo  

E-Print Network [OSTI]

Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University have been presented more than twenty years ago (Jensenius, 1981), when daily solar radiation forecasts

Heinemann, Detlev

494

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network [OSTI]

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near-surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

495

QUIKSCAT MEASUREMENTS AND ECMWF WIND FORECASTS  

E-Print Network [OSTI]

. (2004) this forecast error was encountered when assimilating satellite measurements of zonal wind speeds between satellite measurements and meteorological forecasts of near­surface ocean winds. This type of covariance enters in assimilation techniques such as Kalman filtering. In all, six residual fields

Malmberg, Anders

496

UHERO FORECAST PROJECT DECEMBER 5, 2014  

E-Print Network [OSTI]

deficits. After solid 3% growth this year, real GDP growth will recede a bit for the next two years. New household spending. Real GDP will firm above 3% in 2015. · The pace of growth in China has continuedUHERO FORECAST PROJECT DECEMBER 5, 2014 Asia-Pacific Forecast: Press Version: Embargoed Until 2

497

-Assessment of current water conditions -Precipitation Forecast  

E-Print Network [OSTI]

#12;-Assessment of current water conditions - Precipitation Forecast - Recommendations for Drought of the mountains, so early demand for irrigation water should be minimal as we officially move into spring. Western, it is forecast to bring wet snow to the eastern slope of the Rockies, with less accumulations west of the divide

498

A NEW APPROACH FOR EVALUATING ECONOMIC FORECASTS  

E-Print Network [OSTI]

APPROACH FOR EVALUATING ECONOMIC FORECASTS Tara M. Sinclair , H.O. Stekler, and Warren Carnow Department of Economics The George Washington University Monroe Hall #340 2115 G Street NW Washington, DC 20052 JEL Codes, Mahalanobis Distance Abstract This paper presents a new approach to evaluating multiple economic forecasts

Vertes, Akos

499

2013 Midyear Economic Forecast Sponsorship Opportunity  

E-Print Network [OSTI]

2013 Midyear Economic Forecast Sponsorship Opportunity Thursday, April 18, 2013, ­ Hyatt Regency Irvine 11:30 a.m. ­ 1:30 p.m. Dr. Anil Puri presents his annual Midyear Economic Forecast addressing and Economics at California State University, Fullerton, the largest accredited business school in California

de Lijser, Peter

500

U.S. Department of Energy Workshop Report: Solar Resources and Forecasting  

SciTech Connect (OSTI)

This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

Stoffel, T.

2012-06-01T23:59:59.000Z