Powered by Deep Web Technologies
Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29: Storage and Disposition of Weapons-Usable Fissile 29: Storage and Disposition of Weapons-Usable Fissile Materials EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials Summary The EIS will evaluate the reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. Public Comment Opportunities None available at this time. Documents Available For Download September 5, 2007 EIS-0229: Supplement Analysis (September 2007) Storage of Surplus Plutonium Materials at the Savannah River Site November 14, 2003 EIS-0229: Record of Decision (November 2003) Storage and Disposition of Weapons-Usable Fissile Materials November 7, 2003 EIS-0229-SA-03: Supplement Analysis Fabrication of Mixed Oxide Fuel Lead Assemblies in Europe

2

Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives  

SciTech Connect

This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

NONE

1997-01-01T23:59:59.000Z

3

Storage and Disposition of Weapons-Usable Fissile Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

86 86 Federal Register / Vol. 63, No. 156 / Thursday, August 13, 1998 / Notices 1 SRS has been identified by DOE as the preferred site for the immobilization disposition facility. responsibilities are to (1) evaluate the standards of accreditation applied to applicant foreign medical schools; and (2) determine the comparability of those standards to standards for accreditation applied to United States medical schools. For Further Information Contact: Bonnie LeBold, Executive Director, National Committee on Foreign Medical Education and Accreditation, 7th and D Streets, S.W., Room 3082, ROB #3, Washington, D.C. 20202-7563. Telephone: (202) 260-3636. Beginning September 28, 1998, you may call to obtain the identity of the countries whose standards are to be evaluated during this

4

Opportunities exist for the diversion of weapons-usable material at the front end of the fuel cycle, during which  

E-Print Network (OSTI)

Opportunities exist for the diversion of weapons-usable material at the front end of the fuel cycle of proliferation: The more places in which this work is done, the harder it is to monitor. Weapons have been, North Korea, Pakistan, and South Africa. (South Africa abandoned its nuclear weapons in 1991. Libya

Laughlin, Robert B.

5

Fissile material disposition program final immobilization form assessment and recommendation  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations.

Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H. [Westinghouse Savannah River Co., Aiken, SC (United States)

1997-10-03T23:59:59.000Z

6

Fissile material detector  

DOE Patents (OSTI)

A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

2002-01-01T23:59:59.000Z

7

Record of decision for the Storage and Disposition of Weapons- Usable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14 14 Federal Register / Vol. 62, No. 13 / Tuesday, January 21, 1997 / Notices Responses: 18,620 Burden Hours: 64,310. Abstract: The LESCP is being conducted in response to the legislative requirement in P.L. 103-382, Section 1501 to assess the implementation of Title I and related education reforms. The information will be used to examine changes-over a 3-year period-that are occurring in schools and classrooms. Teachers and teacher aides will complete a mail survey, and district Title I administrators, principals, school-based staff, and parents will be interviewed during on- site field work. [FR Doc. 97-1307 Filed 1-17-97; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Record of decision for the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic

8

Fissile Material Disposition Program: Deep borehole disposal Facility PEIS date input report for immobilized disposal. Immobilized disposal of plutonium in coated ceramic pellets in grout with canisters. Version 3.0  

SciTech Connect

Following President Clinton`s Non-Proliferation Initiative, launched in September, 1993, an Interagency Working Group (IWG) was established to conduct a comprehensive review of the options for the disposition of weapons-usable fissile materials from nuclear weapons dismantlement activities in the United States and the former Soviet Union. The IWG review process will consider technical, nonproliferation, environmental budgetary, and economic considerations in the disposal of plutonium. The IWG is co-chaired by the White House Office of Science and Technology Policy and the National Security Council. The Department of Energy (DOE) is directly responsible for the management, storage, and disposition of all weapons-usable fissile material. The Department of Energy has been directed to prepare a comprehensive review of long-term options for Surplus Fissile Material (SFM) disposition, taking into account technical, nonproliferation, environmental, budgetary, and economic considerations.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15T23:59:59.000Z

9

Fissile Materials Disposition | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Fissile Materials Disposition | National Nuclear Security Administration Fissile Materials Disposition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Fissile Materials Disposition Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition Fissile Materials Disposition Since the end of the Cold War, significant quantities of plutonium and

10

A treaty to ban nuclear smuggling: The next step in nuclear material control?  

SciTech Connect

Since the demise of the Soviet Union, reports have continued to surface that weapons-usable nuclear material has been smuggled out of former Soviet territory into the hands of proliferant states. So far, few examples of nuclear smuggling have involved serious quantities of weapons-usable material, and much purported smuggling has involved attempted fraud rather than an effort to transfer fissile material. In no instance has an actual transfer to a potential proliferant state been verified.

Carnahan, B.M. [Science Applications International Corp., McLean, VA (United States); Smith, J.R.

1994-10-01T23:59:59.000Z

11

Status of nuclear weapons material disposition in Russia  

SciTech Connect

The security of nuclear weapons and fissile material in Russia, the disposition of weapons-usable fissile material in Russia, the Clinton administration`s policies and programs for assisting Russia in improving its security over nuclear weapons and fissile material, and the disposal of Russian weapons-usable fissile materials are discussed in this paper. There are {approximately}30,000 nuclear warheads in the former Soviet Union, {approximately}1000 t of weapon-usable high-enriched uranium (HEU), {approximately} 160 t of separated plutonium in weapons or available for weapons, and {approximately}30 t of separated civil plutonium stored in Russia. Most, if not all, of these inventories are stored under inadequate conditions of physical security and of material control and accounting.

Cochran, T.B.

1994-12-31T23:59:59.000Z

12

United States, International Partners Remove Last Remaining Weapons-Usable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States, International Partners Remove Last Remaining States, International Partners Remove Last Remaining Weapons-Usable Highly Enriched Uranium from Hungary, Set Nuclear Security Milestone United States, International Partners Remove Last Remaining Weapons-Usable Highly Enriched Uranium from Hungary, Set Nuclear Security Milestone November 4, 2013 - 2:09pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy today announced under a multi-year international effort coordinated between Hungary, the United States, the Russian Federation, and the International Atomic Energy Agency (IAEA), the successful removal of all remaining highly enriched uranium (HEU) from Hungary. This makes Hungary the twelfth country to completely eliminate HEU from its borders since President Obama's 2009 announcement

13

Shipping container for fissile material  

DOE Patents (OSTI)

The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

Crowder, H.E.

1984-12-17T23:59:59.000Z

14

Counterproliferation of nuclear raw materials. Study project  

SciTech Connect

In light of the ongoing INF and START I agreements and the pending ratification of the START II agreement, the quantities of nuclear-weapon-usable `fissile` materials from the former USSR will expand drastically. Some newly rich rogue oil states and terrorist groups with anti-U.S. sentiments may attempt to procure fissile materials in order to manufacture nuclear weapons. This project will explore the scope of the fissile material proliferation problem, describe a number of recent cases where fissile material was illegally diverted, and discuss the U.S. policies, methods and means available to halt or reduce the spread of weapons-usable nuclear material. Finally, it provides recommendations for improvements in the U.S. program and for areas meriting further study.

Sanders, R.L.

1996-02-26T23:59:59.000Z

15

Tagging and fissile material verification concepts for nuclear warhead dismantlement  

SciTech Connect

Arms control treaties that reduce the number of deployable nuclear-warhead delivery systems might also lead to provisions for the verified dismantlement of nuclear weapons. Based on public information and very simple conceptual models of nuclear warheads, one can visualize a set of procedural and technological requirements to account for warheads removed from deployed sites and ultimately dismantled. To accomplish the accounting function, verification-quality tags and/or seals might be needed in order that the warheads taken out of storage can be tracked to the dismantlement site. These tags/seals would represent an overlay on the existing chain of custody. The verified dismantlement of the warheads poses special problems in confirming their identity and in avoiding the loss of sensitive information. A central factor is the publicly recognized need for some minimum quantity of fissile material to constitute a nuclear warhead. A measurement system that could make such a determination without giving away unnecessary information would be desired. Some approaches based on existing fissile assay methods are discussed. 1 ref., 2 figs.

DeVolpi, A.

1990-01-01T23:59:59.000Z

16

Supplement Analysis for the Storage of Surplus Plutonium Materials at the Savannah River Site (DOE/EIS-0229-SA-4)(09/05/07)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-SA-4 9-SA-4 SUPPLEMENT ANALYSIS STORAGE OF SURPLUS PLUTONIUM MATERIALS AT THE SAVANNAH RIVER SITE INTRODUCTION AND PURPOSE In April 2002, DOE decided to immediately consolidate long-term storage at the Savannah River Site (SRS) of surplus, non-pit weapons-usable plutonium then stored at the Rocky Flats Environmental Technology Site (RFETS) (DOE, 2002a). That 2002 decision did not affect an earlier DOE decision made in the January 21, 1997, Record of Decision (ROD, DOE, 1997) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement (Storage and Disposition PEIS, DOE, 1996) to continue storage of non-pit surplus plutonium at Hanford, the Idaho National Laboratory (INL), and the Los Alamos

17

A system for the detection of concealed nuclear weapons and fissile material aboard cargo cotainerships  

E-Print Network (OSTI)

A new approach to the detection of concealed nuclear weapons and fissile material aboard cargo containerships is proposed. The ship-based approach removes the constraints of current thinking by addressing the threat of ...

Gallagher, Shawn P., S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

18

Update to the Fissile Materials Disposition program SST/SGT transportation estimation  

SciTech Connect

This report is an update to ``Fissile Materials Disposition Program SST/SGT Transportation Estimation,'' SAND98-8244, June 1998. The Department of Energy Office of Fissile Materials Disposition requested this update as a basis for providing the public with an updated estimation of the number of transportation loads, load miles, and costs associated with the preferred alternative in the Surplus Plutonium Disposition Final Environmental Impact Statement (EIS).

John Didlake

1999-11-15T23:59:59.000Z

19

An active system for the detection of special fissile material in small watercraft  

E-Print Network (OSTI)

technique. The MCNP Monte Carlo transport code was used to simulate the use of a pulsed neutron generator to induce fission in the fissile material and then estimate the detector response. The detector modeled was based on elastic scattering-induced recoil...

Johansen, Norman Alfan, III

2006-10-30T23:59:59.000Z

20

Progress toward mutual reciprocal inspections of fissile materials from dismantled nuclear weapons  

SciTech Connect

In March 1994, the United States and the Russian Federation announced their intention to conduct mutual reciprocal inspections (MRI) to confirm inventories of fissile materials from dismantled nuclear weapons. Subsequent interactions between the two countries have established the basis for an MRI regime, covering instrumentation, candidate sites for MRI, and protection of information deemed sensitive by the countries. This paper discusses progress made toward MRI, stressing measurement technologies and observables, as well as prospects for MRI implementation. An analysis is presented of observables that might be exploited to provide assurance that the material being measured could have come from a dismantled weapon rather than other sources. Instrumentation to exploit these observables will also be discussed, as will joint US/Russian efforts to demonstrate such instrumentation. Progress toward a so-called ``program of cooperation`` between the two countries in protecting each other`s sensitive information will be reviewed. All of these steps are essential components of an eventual comprehensive regime for controlling fissile materials from weapons.

Johnson, M.W. [Los Alamos National Lab., NM (United States); Gosnell, T.B. [Lawrence Livermore National Lab., CA (United States)

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reactor and Material Supply | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor and Reactor and Material Supply Reactor and Material Supply Y-12 has processed highly enriched uranium for more than 60 years in support of the nation's defense. The end of the Cold War and ensuing strategic arms control treaties have resulted in an excess of HEU materials. In 1994, approximately 174 metric tons of weapons-usable HEU was declared surplus to defense needs. The HEU disposition program was established to make the surplus HEU unsuitable for use in weapons by blending it down to low-enriched uranium and to recover the economic value of the materials to the extent practical. In 2005, the Secretary of Energy announced that an additional 200 metric tons of HEU would be removed from further use as fissile material in U.S. nuclear weapons. Approximately 20 metric tons of this material will

22

EIS-0229: Record of Decision (January 1997) | Department of Energy  

Energy Savers (EERE)

January 1997) EIS-0229: Record of Decision (January 1997) Storage and Disposition of Weapons-Usable Fissile Materials The Department of Energy (DOE) has decided to implement a...

23

EIS-0229: Record of Decision (November 2003) | Department of...  

Office of Environmental Management (EM)

November 2003) EIS-0229: Record of Decision (November 2003) Storage and Disposition of Weapons-Usable Fissile Materials The Department of Energy (DOE) has decided to implement a...

24

DOE Amends Record of Decision for Plutonium Consolidation  

Energy.gov (U.S. Department of Energy (DOE))

DOE amended the Record of Decision (ROD) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement. Specifically, DOE decided to take the...

25

THE EFFECT OF INCREASING TEMPERATURE ON K-EFF FOR FISSILE MATERIAL OUTSIDE REACTORS  

SciTech Connect

Nuclear Criticality Safety Evaluations typically employ room temperature cross sections, material densities, and dimensions. Processes that have been and are in development for conversion of legacy wastes in tanks, e.g., Waste Treatment Project (WTP) at the Hanford Remediation Site and Defense Waste Processing Facility (DWPF) at the Savannah River Site, utilize melters that operate at elevated temperatures, 1500 to 1900 C. The applicability of room temperature data to processes such as these has been questioned. Also questioned was the applicability of room temperature data for the analyses across the Savannah River Site (SRS) where the temperature may be elevated, such as in a postulated fire. This analysis was performed to examine the effect of temperature over the relatively small range encountered in normal and abnormal operations at SRS that does not include DWPF melters. This analysis documented herein is limited to fast systems of fissile metal and oxide cylinders on concrete at temperatures no greater than 640 C, the melting point of plutonium. Because thermal expansion data for various types of structural materials was not readily available, structural materials were not included in the analysis.

Kessler, S.

2009-06-09T23:59:59.000Z

26

Nondestructive assay (NDA) of fissile material solutions in tanks at Rocky Flats Environmental Technology Site  

SciTech Connect

Nondestructive assay of holdup in solution tanks at Rocky Flats has been performed to address criticality safety concerns since 1974. Destructive analysis techniques were used for quantification of the fissile material content of the tanks. With termination of operations in 1989, including sparging and sampling of tanks, a need arose for nondestructive assay of solutions in tanks to confirm previous inventory values. Gamma ray measurement methodologies were investigated and several techniques, including Poor Man`s Densitometry were implemented. These techniques have been applied to several different types of tanks including: annular, raschig ring filled, and pencil tanks. For the annular tanks ``Poor Man`s Densitometry`` is used, with the densities of the measured solutions normalized to the value of one ``accepted`` concentration tank. Measurement uncertainties for this technique has been better than was anticipated. Measurements are also performed at several levels to attempt to detect variations in density. For the current tank draining program, solution in tanks is assayed by the NDA gamma-ray technique before draining. Measurement results were obtained for plutonium, uranium, and mixtures of U/Pu solutions for concentrations ranging from less than 0.5 g/l to 150 g/l. Tanks with expected concentrations were used to establish a relationship between concentration and count rate. ``Bootstrapping`` calibration techniques were used in some cases to obtain quantitative results.

Fleissner, J.G.; Lamb, F.W.; Maul, M.R.

1995-07-01T23:59:59.000Z

27

Open literature review of threats including sabotage and theft of fissile material transport in Japan.  

SciTech Connect

This report is a review of open literature concerning threats including sabotage and theft related to fissile material transport in Japan. It is intended to aid Japanese officials in the development of a design basis threat. This threat includes the external threats of the terrorist, criminal, and extremist, and the insider threats of the disgruntled employee, the employee forced into cooperation via coercion, the psychotic employee, and the criminal employee. Examination of the external terrorist threat considers Japanese demographics, known terrorist groups in Japan, and the international relations of Japan. Demographically, Japan has a relatively homogenous population, both ethnically and religiously. Japan is a relatively peaceful nation, but its history illustrates that it is not immune to terrorism. It has a history of domestic terrorism and the open literature points to the Red Army, Aum Shinrikyo, Chukaku-Ha, and Seikijuku. Japan supports the United States in its war on terrorism and in Iraq, which may make Japan a target for both international and domestic terrorists. Crime appears to remain low in Japan; however sources note that the foreign crime rate is increasing as the number of foreign nationals in the country increases. Antinuclear groups' recent foci have been nuclear reprocessing technology, transportation of MOX fuel, and possible related nuclear proliferation issues. The insider threat is first defined by the threat of the disgruntled employee. This threat can be determined by studying the history of Japan's employment system, where Keiretsu have provided company stability and lifetime employment. Recent economic difficulties and an increase of corporate crime, due to sole reliability on the honor code, have begun to erode employee loyalty.

Cochran, John Russell; Furaus, James Phillip; Marincel, Michelle K.

2005-06-01T23:59:59.000Z

28

Direct conversion of surplus fissile materials, spent nuclear fuel, and other materials to high-level-waste glass  

SciTech Connect

With the end of the cold war the United States, Russia, and other countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. The United States Academy of Sciences (NAS) has recommended that these surplus fissile materials (SFMs) be processed so they are no more accessible than plutonium in spent nuclear fuel (SNF). This spent fuel standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. The NAS recommended investigation of three sets of options for disposition of SFMs while meeting the spent fuel standard: (1) incorporate SFMs with highly radioactive materials and dispose of as waste, (2) partly burn the SFMs in reactors with conversion of the SFMs to SNF for disposal, and (3) dispose of the SFMs in deep boreholes. The US Government is investigating these options for SFM disposition. A new method for the disposition of SFMs is described herein: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptinium, americium, and {sup 233}U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal.

Forsberg, C.W.; Elam, K.R.

1995-01-31T23:59:59.000Z

29

Plutonium-bearing materials feed report for the DOE Fissile Materials Disposition Program alternatives  

SciTech Connect

This report has identified all plutonium currently excess to DOE Defense Programs under current planning assumptions. A number of material categories win clearly fan within the scope of the MD (Materials Disposition) program, but the fate of the other categories are unknown at the present time. MD planning requires that estimates be made of those materials likely to be considered for disposition actions so that bounding cases for the PEIS (Programmatic Environmental Impact Statement) can be determined and so that processing which may be required can be identified in considering the various alternatives. A systematic analysis of the various alternatives in reachmg the preferred alternative requires an understanding of the possible range of values which may be taken by the various categories of feed materials. One table identifies the current total inventories excess to Defense Program planning needs and represents the bounding total of Pu which may become part of the MD disposition effort for all materials, except site return weapons. The other categories, principally irradiated fuel, rich scrap, and lean scrap, are discussed. Another table summarizes the ranges and expected quantities of Pu which could become the responsibility of the MD program. These values are to be used for assessing the impact of the various alternatives and for scaling operations to assess PEIS impact. Determination of the actual materials to be included in the disposition program will be done later.

Brough, W.G. [Lawrence Livermore National Lab., CA (United States); Boerigter, S.T. [Los Alamos National Lab., NM (United States)

1995-04-06T23:59:59.000Z

30

Fissile material measurements using the differential die-away self interrogation technique  

SciTech Connect

Currently, there is substantial research effort focused on quantifying plutonium (Pu) mass in spent fuel using non-destructive assay (NDA) techniques. Of the several techniques being investigated for this purpose, Differential Die-Away Self-Interrogation (DDSI) is a recently proposed, neutron-based NDA technique capable of quantifying the total fissile content in an assembly. Unlike the conventional Differential Die-Away (DDA) technique, DOSI does not require an external neutron source for sample interrogation, but rather, uses the spontaneous fission neutrons originating from {sup 244}Cm within the spent fuel for self-interrogation. The essence of the technique lies in the time separation between the detection of spontaneous fission neutrons from {sup 244}Cm and the detection of induced fission neutrons at a later time. The DDSI detector design imposes this time separation by optimizing the die-away times ({tau}) of the detector and sample interrogation regions to obtain an early and late neutron distribution respectively. The ratio of the count rates in the late gate to the early gate for singles, doubles, and triples is directly proportional to the fissile content present in the sample, which has already been demonstrated for simplified fuel cases using the Monte Carlo N-Particle eXtended (MCNPX) code. The current work applies the DDSI concept to more complex samples, specifically spent Pressurized Water Reactor (PWR) assemblies with varying isotopics resulting from a range of initial enrichment, bumup, and cooling time. We assess the feasibility of using the late gate to early gate ratio as a reliable indicator of overall fissile mass for a range of assemblies by defining a {sup 239}Pu effective mass which indicates the mass of {sup 239}Pu that would yield the same DDSI signal as the combined mass of major fissile isotopes present in the sample. This work is important for assessing the individual capability of the DDSI instrument in quantifying fissile mass in an assembly in order to use this information for a possible integration with another NDA instrument for direct Pu mass determination.

Schear, Melissa A [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Evans, Louise G [Los Alamos National Laboratory; Lee, S Y [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

31

Productivity Techniques and Quality Aspects in the Criticality Safety Evaluation of Y-12 Type-B Fissile Material Packages  

SciTech Connect

The inventory of certified Type-B fissile material packages consists of ten performance-based packages for offsite transportation purposes, serving transportation programs at the Y-12 National Security Complex. The containment vessels range from 5 to 19 in. in diameter and from 17 to 58 in. in height. The drum assembly external to the containment vessel ranges from 18 to 34 in. in diameter and from 26 to 71 in. in height. The weight of the packaging (drum assembly and containment vessel) ranges from 239 to 1550 lb. The older DT-nn series of Cellotex-based packages are being phased-out and replaced by a new generation of Kaolite-based ('Y-12 patented insulation') packages capable of withstanding the dynamic crush test 10 CFR 71.73(c)(2). Three replacement packages are in various stages of development; two are in use. The U.S. Department of Transportation (DOT) 6M specification package, which does not conform to the U.S. Nuclear Regulatory Commission requirements for Type-B packages, is no longer authorized for service on public roads. The ES-3100 shipping package is an example of a Kaolite-based Type-B fissile material package developed as a replacement package for the DOT 6M. With expanded utility, the ES-3100 is designed and licensed for transporting highly enriched uranium and plutonium materials on public roads. The ES-3100 provides added capability for air transport of up to 7-kg quantities of uranium material. This paper presents the productivity techniques and quality aspects in the criticality safety evaluation of Y-12 packages using the ES-3100 as an example.

DeClue, J. F.

2011-06-28T23:59:59.000Z

32

FATE OF FISSILE MATERIAL BOUND TO MONOSODIUM TITANATE DURING COOPER CATALYZED PEROXIDE OXIDATION OF TANK 48H WASTE  

SciTech Connect

At the Savannah River Site (SRS), Tank 48H currently holds approximately 240,000 gallons of slurry which contains potassium and cesium tetraphenylborate (TPB). A copper catalyzed peroxide oxidation (CCPO) reaction is currently being examined as a method for destroying the TPB present in Tank 48H. Part of the development of that process includes an examination of the fate of the Tank 48H fissile material which is adsorbed onto monosodium titanate (MST) particles. This report details results from experiments designed to examine the potential degradation of MST during CCPO processing and the subsequent fate of the adsorbed fissile material. Experiments were conducted to simulate the CCPO process on MST solids loaded with sorbates in a simplified Tank 48H simulant. Loaded MST solids were placed into the Tank 48H simplified simulant without TPB, and the experiments were then carried through acid addition (pH adjustment to 11), peroxide addition, holding at temperature (50 C) for one week, and finally NaOH addition to bring the free hydroxide concentration to a target concentration of 1 M. Testing was conducted without TPB to show the maximum possible impact on MST since the competing oxidation of TPB with peroxide was absent. In addition, the Cu catalyst was also omitted, which will maximize the interaction of H{sub 2}O{sub 2} with the MST; however, the results may be non-conservative assuming the Cu-peroxide active intermediate is more reactive than the peroxide radical itself. The study found that both U and Pu desorb from the MST when the peroxide addition begins, although to different extents. Virtually all of the U goes into solution at the beginning of the peroxide addition, whereas Pu reaches a maximum of {approx}34% leached during the peroxide addition. Ti from the MST was also found to come into solution during the peroxide addition. Therefore, Ti is present with the fissile in solution. After the peroxide addition is complete, the Pu and Ti are found to precipitate from solution, while the U remains in solution throughout the remaining processes, including pH adjustment to 1 M free hydroxide. The Ti is likely forming a peroxotitanate material, which can then resorb the leached Pu from solution, but has a low affinity for U. Since Pu was not detected in the SEMEDS studies, it cannot be conclusively determined in what form the Pu returns to the solids; however, the Pu likely resorbed onto the peroxotitanate material. Based on the results of this experiment, Savannah River National Laboratory (SRNL) recommends the following experiments to further examine the fate of fissile material in CCPO processing of Tank 48H: (1) Repeat with full simulant matrix (organic and Cu catalyst present along with simulated radioactive sludge); and (2) Repeat of the above test after selection of final conditions (i.e., pH, temperature) if they differ from conditions tested.

Taylor-Pashow, K.

2012-08-09T23:59:59.000Z

33

Analysis and section of processes for the disposition of excess fissile material from nuclear weapon dismantlement in the United States  

SciTech Connect

The end of the cold war and the acceleration of nuclear disarmament efforts by the United States (US) and Russia are generating large quantities of surplus fissile nuclear materials that are no longer needed for military purposes. The safe and secure disposition of this surplus material to prevent theft or reuse in weapons has become a high priority for the US Department of Energy (USDOE). Many options exist for storage and disposition (use or disposal) of these surplus materials. The criteria, which have been developed from the basis for a preliminary ``screening`` of options, to eliminate from further consideration those options that do not meet minimal requirements. Factors, or attributes, contained in the screening and selection criteria include: (1) resistance to theft and diversion by unauthorized parties, (2) resistance to retrieval, extraction, and reuse by the host nation, (3) technical viability, (4) environmental, safety, and health impacts, (5) cost effectiveness, (6) timeliness, (7) fostering of progress and cooperation with Russia and others, (8) public and institutional acceptance, and (9) additional benefits. The evaluation of environmental impacts, in accordance with the US National Environmental Policy Ac (NEPA) process, is an integral part of the overall evaluation process. Because of the variety of physical and chemical forms of the nuclear material inventory, and because of the large number of possible disposition technologies and final forms, several hundred possible pathways to disposition have been defined and have undergone a systematic selection process. Also, because nuclear material disposition will have far ranging impacts, extensive public, in the form of public and stakeholder, input was integral to the selection process.

Myers, B.R.; Armantrout, G.A. [Lawrence Livermore National Lab., CA (United States); Erickson, R. [Los Alamos National Lab., NM (United States)

1995-02-01T23:59:59.000Z

34

Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0  

SciTech Connect

The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15T23:59:59.000Z

35

Reactivity of high plutonium-containing glasses for the immobilization of surplus fissile materials  

SciTech Connect

Experiments have been performed on glasses doped with 2 and 7 wt % plutonium to evaluate factors that may be important in the performance of these high-Pu-loaded glasses for repository storage. The high Pu loadings result from the need to dispose of excess Pu from weapons dismantling. The glasses were reacted in water vapor to simulate aging that may occur under unsaturated storage conditions prior to contact with liquid water. They were also reacted with liquid water under standard static leach test conditions. The results were compared with similar tests of a reference glass (202 glass) containing only 0.01 wt % Pu. In vapor hydration testing to date, at 2 wt % loading, the Pu was incorporated into the glass without phase separation, and reaction in water vapor proceeded at a rate comparable with that of the 202 glass. At wt % loading, a Pu phase separated and was not uniformly incorporated into the glass. The vapor reaction of this glass proceeded at a more rapid rate. This phase separation was manifested in the static leach tests, where colloidal phases of Pu-rich material remained suspended in solution, thereby increasing the absolute Pu release when compared to the 202 glass.

Bates, J.K.; Hoh, J.C.; Emery, J.W.; Buck, E.C.; Fortner, J.A.; Wolf, S.F.; Johnson, T.R.

1995-06-01T23:59:59.000Z

36

EIS-0229: Amended Record of Decision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decision Decision EIS-0229: Amended Record of Decision Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement The U.S. Department of Energy (DOE) is amending the Record of Decision (ROD) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement (DOE/EIS-0229, 1996; Storage and Disposition PEIS). Specifically, DOE has decided to take the actions necessary to transfer approximately 2,511 additional 3013-compliant packages 1 containing surplus non-pit weapons-usable plutonium metals and oxides to the Savannah River Site (SRS), near Aiken, South Carolina. DOE/EIS-0229, Amended Record of Decision for the Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact

37

Los Alamos National Laboratory summary plan to fabricate mixed oxide lead assemblies for the fissile material disposition program  

SciTech Connect

This report summarizes an approach for using existing Los Alamos National Laboratory (Laboratory) mixed oxide (MOX) fuel-fabrication and plutonium processing capabilities to expedite and assure progress in the MOX/Reactor Plutonium Disposition Program. Lead Assembly MOX fabrication is required to provide prototypic fuel for testing in support of fuel qualification and licensing requirements. It is also required to provide a bridge for the full utilization of the European fabrication experience. In part, this bridge helps establish, for the first time since the early 1980s, a US experience base for meeting the safety, licensing, safeguards, security, and materials control and accountability requirements of the Department of Energy and Nuclear Regulatory Commission. In addition, a link is needed between the current research and development program and the production of disposition mission fuel. This link would also help provide a knowledge base for US regulators. Early MOX fabrication and irradiation testing in commercial nuclear reactors would provide a positive demonstration to Russia (and to potential vendors, designers, fabricators, and utilities) that the US has serious intent to proceed with plutonium disposition. This report summarizes an approach to fabricating lead assembly MOX fuel using the existing MOX fuel-fabrication infrastructure at the Laboratory.

Buksa, J.J.; Eaton, S.L.; Trellue, H.R.; Chidester, K.; Bowidowicz, M.; Morley, R.A.; Barr, M.

1997-12-01T23:59:59.000Z

38

HEU to LEU Conversion and Blending Facility: UNH blending alternative to produce LEU UNH for commercial use  

SciTech Connect

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form that is more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed. This document provides data to be used in the environmental impact analysis for the UNH blending HEU disposition option. Process requirements, resource needs, employment needs, waste/emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

NONE

1995-09-01T23:59:59.000Z

39

APPLICATION OF NONSPHERICAL FISSILE CONFIGURATION IN WASTE CONTAINERS AT SRS  

SciTech Connect

Transuranic (TRU) solid waste that has been generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site (SRS) has been stored in more than 30,000 55-gallon drums and carbon steel boxes since 1953. Nearly two thirds of those containers have been processed and shipped to the Waste Isolation Pilot Plant. Among the containers assayed so far, the results indicate several drums with fissile inventories significantly higher (600-1000 fissile grams equivalent (FGE) {sup 239}Pu) than their original assigned values. While part of this discrepancy can be attributed to the past limited assay capabilities, human errors are believed to be the primary contributor. This paper summarizes the application of nonspherical fissile material configuration in waste containers, resulting in less restrictive mass and spacing limits, increased storage capacity, and several administrative controls for handling and storage of waste containers being modified without compromising safety.

Eghbali, D; Michelle Abney, M

2007-01-03T23:59:59.000Z

40

Disposition of uranium-233  

SciTech Connect

The US is developing a strategy for the disposition of surplus weapons-usable uranium-233 ({sup 233}U). The strategy (1) identifies the requirements for the disposition of surplus {sup 233}U; (2) identifies potential disposition options, including key issues to be resolved with each option; and (3) defines a road map that identifies future key decisions and actions. The disposition of weapons-usable fissile materials is part of a US international arms-control program for reduction of the number of nuclear weapons and the quantities of nuclear-weapons-usable materials worldwide. The disposition options ultimately lead to waste forms requiring some type of geological disposal. Major options are described herein.

Tousley, D.R. [Dept. of Energy, Washington, DC (United States). Office of Fissile Materials Disposition; Forsberg, C.W.; Krichinsky, A.M. [Oak Ridge National Lab., TN (United States)

1997-10-16T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fissile solution dynamics: Student research  

SciTech Connect

There are two research projects in criticality safety at the University of Arizona: one in dynamic simulation of hypothetical criticality accidents in fissile solutions, and one in criticality benchmarks using transport theory. We have used the data from nuclear excursions in KEWB, CRAC, and SILENE to help in building models for solution excursions. An equation of state for liquids containing gas bubbles has been developed and coupled to point-reactor dynamics in an attempt to predict fission rate, yield, pressure, and kinetic energy. It appears that radiolytic gas is unimportant until after the first peak, but that it does strongly affect the shape of the subsequent power decrease and also the dynamic pressure.

Hetrick, D.L.

1994-09-01T23:59:59.000Z

42

FMDP reactor alternative summary report. Volume 1 - existing LWR alternative  

SciTech Connect

Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] are becoming surplus to national defense needs in both the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES&H) consequences if surplus fissile materials are not properly managed. This document summarizes the results of analysis concerned with existing light water reactor plutonium disposition alternatives.

Greene, S.R.; Bevard, B.B. [and others

1996-10-07T23:59:59.000Z

43

HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal  

SciTech Connect

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

NONE

1995-09-01T23:59:59.000Z

44

HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use  

SciTech Connect

US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

NONE

1995-09-01T23:59:59.000Z

45

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 17530 of 28,560 results. 21 - 17530 of 28,560 results. Page EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials The EIS will evaluate the reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. http://energy.gov/nepa/eis-0229-storage-and-disposition-weapons-usable-fissile-materials Download Letter of Direction to Contractor The Department of Energy has issued a revised Disposal Authorization Statement (DAS) for the Savannah River Site Saltstone Disposal Facility (SDF), and authorizes the required start-up testing... http://energy.gov/em/downloads/letter-direction-contractor Download Terms and Conditions for EM Clean Up to the Office of Science This document outlines the terms and conditions for managing and funding

46

Fissile sample worths in the Uranium/Iron Benchmark  

SciTech Connect

One of the long-standing problems from LMFBR critical experiments is the central worth discrepancy, the consistent overprediction of the reactivity associated with introducing a small material sample near the center of an assembly. Reactivity (sample worth) experiments in ZPR-9, assembly 34, the Uranium/Iron Benchmark (U/Fe), were aimed at investigating this discrepancy. U/Fe had a large, single-region core whose neutronics was governed almost entirely by /sup 235/U and iron. The essentially one-dimensional plate unit cell had one 1.6 mm-wide column of 93% enriched uranium (U(93)) near the center, imbedded in about 50 mm of iron and stainless steel. The neutron spectrum was roughly comparable to that of an LMFBR, but the adjoint spectrum was much flatter than an LMFBR's. The worths of four different fissile materials were measured and the worth of U(93) was measured using several different experimental techniques.

Schaefer, R.W.; Bucher, R.G.

1983-01-01T23:59:59.000Z

47

Fusion-Fission Hybrid for Fissile Fuel Production without Processing  

SciTech Connect

Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in the critical reactors. This combination consumes about 20% of the thorium initially loaded in the hybrid reactor ({approx}200 GWd/tHM), partially during hybrid operation, but mostly during operation in the critical reactor. The plant support ratio is low compared to the one attainable using continuous fuel chemical reprocessing, which can yield a plant support ratio of about 20, but the resulting fuel cycle offers better proliferation resistance as fissile material is never separated from the other fuel components.

Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

2012-01-02T23:59:59.000Z

48

TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW  

SciTech Connect

This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

Eberl, K.; Blanton, P.

2013-10-11T23:59:59.000Z

49

Proliferation risks of magnetic fusion energy: clandestine production, covert production and breakout  

Science Journals Connector (OSTI)

Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material in a declared facility and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper, we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

A. Glaser; R.J. Goldston

2012-01-01T23:59:59.000Z

50

Plutonium Consolidation Amended ROD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6450-01-P] 6450-01-P] DEPARTMENT OF ENERGY Amended Record of Decision: Storage of Surplus Plutonium Materials at the Savannah River Site AGENCY: Department of Energy ACTION: Amended Record of Decision SUMMARY: The U.S. Department of Energy (DOE) is amending the Record of Decision (ROD) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement (DOE/EIS-0229, 1996; Storage and Disposition PEIS). Specifically, DOE has decided to take the actions necessary to transfer approximately 2,511 additional 3013-compliant packages 1 containing surplus non-pit weapons-usable plutonium metals and oxides to the Savannah River Site (SRS), near Aiken, South Carolina. Approximately 2,300 containers will be transferred from the Hanford Site (Hanford) near

51

Supplement Analysis Plutonium Consolidation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-SA-4 9-SA-4 SUPPLEMENT ANALYSIS STORAGE OF SURPLUS PLUTONIUM MATERIALS AT THE SAVANNAH RIVER SITE INTRODUCTION AND PURPOSE In April 2002, DOE decided to immediately consolidate long-term storage at the Savannah River Site (SRS) of surplus, non-pit weapons-usable plutonium then stored at the Rocky Flats Environmental Technology Site (RFETS) (DOE, 2002a). That 2002 decision did not affect an earlier DOE decision made in the January 21, 1997, Record of Decision (ROD, DOE, 1997) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement (Storage and Disposition PEIS, DOE, 1996) to continue storage of non-pit surplus plutonium at Hanford, the Idaho National Laboratory (INL), and the Los Alamos

52

Criticality safety of an annular tank for fissile solution  

SciTech Connect

Experiments performed to determine the criticality safety of annular tanks for storing fissile solutions are described. Six annular tanks were built in four nesting sizes to obtain experimental criticality data which could be used to validate computer codes employed in the design of such a safe storage system for an industrial plant. Each tank had an annular solution region thickness of 38 mm. The height of this region was 2.13 m, held 0.3 m off the floor by a stainless steel skirting. Walls were 6.4 mm-thick type 304L stainless steel. The uranyl nitrate solution contained 357 g U/l and had a density of 1.5 kg/m/sup 3/. The uranium was enriched to 93.2% /sup 235/U with other isotopes: 5.4% /sup 238/U, 1.0% /sup 234/U, and 0.4% /sup 236/U. The solution contained 0.5 molar nitric acid and a total impurity content of less than 1500 ppM. Important neutron absorbers, boron and cadmium, averaged 10 ppM and 30 ppM, respectively. Boron-loaded concrete and boron-loaded plaster were selected for the neutron moderator/absorber interior to the annular tank. Three configurations of tanks and reflector were taken to criticality and are reported. The critical uranium solution height in all tanks containing solution as a function of boron content in earthen interior material, tank array configuration, and other variables. (LCL)

Rothe, R.E.

1981-01-01T23:59:59.000Z

53

Development for fissile assay in recycled fuel using lead slowing down spectrometer  

SciTech Connect

A future nuclear energy system is under development to turn spent fuels produced by PWRs into fuels for a SFR (Sodium Fast Reactor) through the pyrochemical process. The knowledge of the isotopic fissile content of the new fuel is very important for fuel safety. A lead slowing down spectrometer (LSDS) is under development to analyze the fissile material content (Pu{sup 239}, Pu{sup 241} and U{sup 235}) of the fuel. The LSDS requires a neutron source, the neutrons will be slowed down through their passage in a lead medium and will finally enter the fuel and will induce fission reactions that will be analysed and the isotopic content of the fuel will be then determined. The issue is that the spent fuel emits intense gamma rays and neutrons by spontaneous fission. The threshold fission detector screens the prompt fast fission neutrons and as a result the LSDS is not influenced by the high level radiation background. The energy resolution of LSDS is good in the range 0.1 eV to 1 keV. It is also the range in which the fission reaction is the most discriminating for the considered fissile isotopes. An electron accelerator has been chosen to produce neutrons with an adequate target through (e{sup -},?)(?,n) reactions.

Lee, Yong Deok; Je Park, C.; Kim, Ho-Dong; Song, Kee Chan [Korea Atomic Energy Research Institute - KAERI, 1045 Daedeok-daero, Daejeon, Korea, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

54

Characterization of fissile material using low energy neutron interrogation  

E-Print Network (OSTI)

The glaring need to develop methods for detecting and interdicting illicit nuclear trafficking has resulted in the exploration of various methods for active neutron interrogation, specifically for the presence of special ...

Padilla, Eduardo A

2007-01-01T23:59:59.000Z

55

Design of Nanosensors for Fissile Materials in Nuclear Waste Water  

Science Journals Connector (OSTI)

Uranium and plutonium ions and their complexes play an important role in nuclear fuel reprocessing, and their trace characterization is important in nuclear forensics. In this work, we perform ab initio density functional theory calculations of U and Pu ...

Narendra Kumar; Jorge M. Seminario

2013-10-16T23:59:59.000Z

56

Remote detection of fissile material : Cherenkov counters for gamma detection  

E-Print Network (OSTI)

The need for large-size detectors for long-range active interrogation (Al) detection has generated interest in water-based detector technologies. AI is done using external radiation sources to induce fission and to detect, ...

Erickson, Anna S

2011-01-01T23:59:59.000Z

57

Environmental Impact Statements (EIS) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 EIS-0158-S2: Final Supplemental Environmental Impact Statement Program Environmental Impact Report for the Sale of the Naval Petroleum Reserve No. 1 at Elk Hills, California September 1, 1997 EIS-0026-S2: Final Supplemental Environmental Impact Statement Carlsbad Area Office, Waste Isolation Pilot Plant Disposal Phase July 1, 1997 EIS-0213: Final Environmental Impact Statement Nez Perce Tribal Hatchery Program June 6, 1997 EIS-0200: Final Programmatic Environmental Impact Statement Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste December 1, 1996 EIS-0229: Final Programmatic Environmental Impact Statement Storage and Disposition of Weapons-Usable Fissile Materials December 1, 1996 EIS-0198: Programmatic Environmental Impact Statement

58

U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option  

SciTech Connect

A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

1998-10-01T23:59:59.000Z

59

DEVELOPMENT OF THE HS99 AIR TRANSPORT TYPE A FISSILE PACKAGE  

SciTech Connect

An air-transport Type A Fissile radioactive shipping package for the transport of special form uranium sources has been developed by the Savannah River National Laboratory (SRNL) for the Department of Homeland Security. The Package model number is HS99 for Homeland Security Model 99. This paper presents the major design features of the HS99 and highlights engineered materials necessary for meeting the design requirements for this light-weight Type AF packaging. A discussion is provided demonstrating how the HS99 complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper summarizes the results of structural testing to specified in 10 CFR 71 for Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and proposed future missions for this packaging are also addressed.

Blanton, P.; Eberl, K.

2012-07-10T23:59:59.000Z

60

MOX Lead Assembly Fabrication at the Savannah River Site  

SciTech Connect

The U. S. Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) under the National Environmental Policy Act (NEPA) on the disposition of the nations weapon-usable surplus plutonium.This EIS is tiered from the Storage and Disposition of Weapons-Usable Fissile Material Programmatic Environmental Impact Statement issued in December 1996,and the associated Record of Decision issued on January, 1997. The EIS will examine reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. The three types of facilities are: a pit disassembly and conversion facility, a facility to immobilize surplus plutonium in a glass or ceramic form for disposition, and a facility to fabricate plutonium oxide into mixed oxide (MOX) fuel.As an integral part of the surplus plutonium program, Oak Ridge National Laboratory (ORNL) was tasked by the DOE Office of Fissile Material Disposition(MD) as the technical lead to organize and evaluate existing facilities in the DOE complex which may meet MD`s need for a domestic MOX fuel fabrication demonstration facility. The Lead Assembly (LA) facility is to produce 1 MT of usable test fuel per year for three years. The Savannah River Site (SRS) as the only operating plutonium processing site in the DOE complex, proposes two options to carry out the fabrication of MOX fuel lead test assemblies: an all Category I facility option and a combined Category I and non-Category I facilities option.

Geddes, R.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Spiker, D.L.; Poon, A.P.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Testing of Liquid Scintillator Materials for Gamma and Neutron Detection  

SciTech Connect

The key fact about fissile material is that a sufficient quantity of the material can produce chains of fissions, including some very long chains. A chain of fissions will give rise to a detected burst of neutrons with longer chains generally producing larger bursts. These bursts produce distinctive time correlations in a detector near the multiplying material. These correlations are measurable and can be analyzed to infer attributes of the fissile material including fissile material mass, assembly neutron multiplication, characteristic fast fission chain evolution time scale, also known as the {alpha} time scale, thermalization time scale. The correlation signal is very robust with respect to background and to neutron absorbing material.

Verbeke, J M; Nakae, L; Kerr, P; Dietrich, D; Dougan, A

2009-06-19T23:59:59.000Z

62

An analysis of tritium and fissile fuel exchange in fusion-fission systems  

E-Print Network (OSTI)

production reactors, respectively. R denotes the reaction rate, which is the fusion rate for the hybrid fusion reactor and the fissile consumption rate for both types of fission reactors. C expresses the number of atoms produced per reaction and "a... production reactors, respectively. R denotes the reaction rate, which is the fusion rate for the hybrid fusion reactor and the fissile consumption rate for both types of fission reactors. C expresses the number of atoms produced per reaction and "a...

Rice, Brent Lee

2012-06-07T23:59:59.000Z

63

Integrated development and testing plan for the plutonium immobilization project  

SciTech Connect

This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D&T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D&T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D&T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the plutonium-containing ceramic forms within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2006 and be completed within 10 years.

Kan, T.

1998-07-01T23:59:59.000Z

64

FMDP reactor alternative summary report: Volume 4, Evolutionary LWR alternative  

SciTech Connect

Significant quantities of weapons-usable fissile materials [primarily plutonium and highly enriched uranium (HEU)] have become surplus to national defense needs both in the United States and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety, and health (ES&H) consequences if surplus fissile materials are not properly managed. The purpose of this report is to provide schedule, cost, and technical information that will be used to support the Record of Process (ROD). Following the screening process, DOE/MD via its national laboratories initiated a more detailed analysis activity to further evaluate each of the ten plutonium disposition alternatives that survived the screening process. Three ``Alternative Teams,`` chartered by DOE and comprised of technical experts from across the DOE national laboratory complex, conducted these analyses. One team was chartered for each of the major disposition classes (borehole, immobilization, and reactors). During the last year and a half, the Fissile Materials Disposition Program (FMDP) Reactor Alternative Team (RxAT) has conducted extensive analyses of the cost, schedule, technical maturity, S&S, and other characteristics of reactor-based plutonium disposition. The results of the RxAT`s analyses of the existing LWR, CANDU, and partially complete LWR alternatives are documented in Volumes 1-3 of this report. This document (Volume 4) summarizes the results of these analyses for the ELWR-based plutonium disposition option.

NONE

1996-09-01T23:59:59.000Z

65

Evaluation Of Glass Density To Support The Estimation Of Fissile Mass Loadings From Iron Concentrations In SB8 Glasses  

SciTech Connect

The Department of Energy – Savannah River (DOE-SR) has provided direction to Savannah River Remediation (SRR) to maintain fissile concentration in glass below 897 g/m{sup 3}. In support of that guidance, the Savannah River National Laboratory (SRNL) provided a technical basis and a supporting Microsoft® Excel® spreadsheet for the evaluation of fissile loading in Sludge Batch 5 (SB5), Sludge Batch 6 (SB6), Sludge Batch 7a (SB7a), and Sludge Batch 7b (SB7b) glass based on the iron (Fe) concentration in glass as determined by the measurements from the Slurry Mix Evaporator (SME) acceptability analysis. SRR has since requested that the necessary density information be provided to allow SRR to update the Excel® spreadsheet so that it may be used to maintain fissile concentration in glass below 897 g/m{sup 3} during the processing of Sludge Batch 8 (SB8). One of the primary inputs into the fissile loading spreadsheet includes an upper bound for the density of SB8-based glasses. Thus, these bounding density values are to be used to assess the fissile concentration in this glass system. It should be noted that no changes are needed to the underlying structure of the Excel-based spreadsheet to support fissile assessments for SB8. However, SRR should update the other key inputs to the spreadsheet that are based on fissile and Fe concentrations reported from the SB8 Waste Acceptance Product Specification (WAPS) sample.

Edwards, T. B.; Peeler, D. K.; Kot, W. K.; Gan, H.; Pegg, I. L.

2013-04-30T23:59:59.000Z

66

B771 FS 2004.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

O O C K Y F L A T S C L O S U R E P R O J E C T "THE MOST DANGEROUS BUILDING IN AMERICA" READY FOR DEMOLITION K e y M i l e s t o n e s * 1953: Operations began in May * 1957: Large fire spread plutoni- um contamination throughout much of the building * 1993: Started stabilizing bottled plutonium solutions * 1994: Began draining plutonium solutions from tanks * 1997: High-priority plutonium solutions drained from all tanks * 1997: All weapons-usable special nuclear materials removed * 1998: Began draining and removing plutonium process pip- ing * 1999: High security area eliminated following removal of all attractive quantities of SNM "holdup" * 2001: Last plutonium liquids removed and treated * 2002: Last glovebox removed * 2003: Facility no longer contains quantities of fissile material that

67

International Nuclear Security  

SciTech Connect

This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

Doyle, James E. [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

68

EIS-0229: Supplement Analysis (September 2007) | Department of...  

Office of Environmental Management (EM)

2007) Storage of Surplus Plutonium Materials at the Savannah River Site The Department of Energy (DOE) proposes to consolidate storage at the SRS of surplus, non-pit weapons-usable...

69

Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor  

E-Print Network (OSTI)

The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

V. V. Sinev

2009-02-22T23:59:59.000Z

70

Differential die-away technique for determination of the fissile contents in spent fuel assembly  

SciTech Connect

Monte Carlo simulations were performed for the differential die-away (DDA) technique to quantify its capability to measure the fissile contents in spent fuel assemblies of 64 different cases in terms of initial enrichment, burnup, and cooling time. The DDA count rate varies according to the contents of fissile isotopes such as {sup 235}U, {sup 239}Pu, and {sup 241}Pu contained in the spent fuel assembly. The effective {sup 239}Pu concept was introduced to quantify the total fissile mass of spent fuel by weighting the relative signal contributions of {sup 235}U and {sup 241}Pu compared to that of {sup 239}Pu. The Monte Carlo simulation results show that the count rate of the DDA instrument for a spent fuel assembly of 4% initial enrichment, 45 GWD/MTU burnup, and 5 year cooling time is {approx} 9.8 x 10{sup 4} counts per second (c/s) with the 100-Hz repeated interrogation pattern of 0 to 10 {micro}s interrogation, 0.2 ms to 1 ms counting time, and 1 x 10{sup 9} n/s neutron source. The {sup 244}Cm neutron background count rate for this counting time scheme is {approx} 1 x 10{sup 4} c/s, and thus the signal to background ratio is {approx}10.

Lee, Tachoon [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, Nartyn T [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

71

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 - 8710 of 26,764 results. 01 - 8710 of 26,764 results. Download EIS-0229: Amended Record of Decision Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic Environmental Impact Statement http://energy.gov/nepa/downloads/eis-0229-amended-record-decision Download CX-005731: Categorical Exclusion Determination Seadrift Wind Turbine CX(s) Applied: B5.1 Date: 04/21/2011 Location(s): Calhoun County, Texas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-005731-categorical-exclusion-determination Page Guidance Cybersecurity http://energy.gov/cio/office-chief-information-officer/services/guidance Page Annual Reports Note: Some of the following documents are in PDF and will require Adobe Reader for viewing. http://energy.gov/management/office-management/operational-management/freedom-information-act/documents/annual-reports

72

Washington | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 27, 1998 August 27, 1998 EA-1260: Finding of No Significant Impact Transfer of 1100 Area, Southern Rail Connection and Rolling Stock, Hanford Site, Richland, Washington August 27, 1998 EA-1260: Final Environmental Assessment and Finding of No Significant Impact Transfer of 1100 Area, Southern Rail Connection and Rolling Stock, Hanford Site, Richland, Washington August 13, 1998 EIS-0229: Notice of Availability of the Amended Record of Decision Storage and Disposition of Weapons-Usable Fissile Materials August 1, 1998 EIS-0245-SA-01: Supplement Analysis Management of Spent Nuclear Fuel from the K Basins at the Hanford Site, Richland, Washington May 1, 1998 EIS-0189: Supplement Analysis Tank Waste Remediation System July 28, 1997 EA-1203: Final Environmental Assessment Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site,

73

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 8280 of 9,640 results. 71 - 8280 of 9,640 results. Download Audit Report: OAS-FS-13-04 Department of Energy's Fiscal Year 2012 Consolidated Financial Statement http://energy.gov/ig/downloads/audit-report-oas-fs-13-04 Download Desk Reference on DOE-Flex This document provides supplemental guidance on DOE's telework program (July 2011) http://energy.gov/hc/downloads/desk-reference-doe-flex Download DOE Amends Record of Decision for Plutonium Consolidation DOE amended the Record of Decision (ROD) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement. Specifically, DOE decided to take the... http://energy.gov/em/downloads/doe-amends-record-decision-plutonium-consolidation Download TBA-0027- In the Matter of Clint Olson This Decision considers an Appeal of an Initial Agency Decision (IAD)

74

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 23540 of 31,917 results. 31 - 23540 of 31,917 results. Download EIS-0229: Notice of Availability of the Amended Record of Decision Storage and Disposition of Weapons-Usable Fissile Materials http://energy.gov/nepa/downloads/eis-0229-notice-availability-amended-record-decision Download http://energy.gov/management/downloads-1 Page EA-1959: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington Bonneville Power Administration and USDA Forest Service, Okanogan-Wenatchee National Forest, are jointly preparing an EA to assess the potential environmental impacts of funding a proposal by the Confederated Tribes and Bands of the Yakama Nation to construct and operate a coho salmon acclimation pond at Eightmile Ranch, which is owned and operated by the Forest Service. BPA's Mid-Columbia Coho Restoration Program EIS

75

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 26130 of 26,764 results. 21 - 26130 of 26,764 results. Download PSH-12-0100- In the Matter of Personnel Security Hearing On November 15, 2012, an OHA Hearing Officer issued a decision in which he concluded the DOE should not restore an individual's access authorization. A Local Security Office (LSO) raised certain... http://energy.gov/oha/downloads/psh-12-0100-matter-personnel-security-hearing Download DOE Amends Record of Decision for Plutonium Consolidation DOE amended the Record of Decision (ROD) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement. Specifically, DOE decided to take the... http://energy.gov/em/downloads/doe-amends-record-decision-plutonium-consolidation Download Program Update: 1st Quarter 2011 The Program Update newsletter is produced every quarter and highlights

76

Commissioning Measurements and Experience Obtained from the Installation of a Fissile Mass Flow monitor in the URAL Electrochemical Integrated Plant (UEIP) in Novouralsk  

SciTech Connect

The Blend Down Monitoring System (BDMS) equipment sent earlier to the Ural Electrochemical Integrated Plant (UEIP) at Novouralsk, Russia, was installed and implemented successfully on February 2, 1999. The BDMS installation supports the highly enriched uranium (HEU) Transparency Implementation Program for material subject to monitoring under the HEU purchase agreement between the United States of America (USA) and the Russian Federation (RF). The BDMS consists of the Oak Ridge National Laboratory (ORNL) Fissile (uranium-235) Mass Flow Monitor (FMFM) and the Los Alamos National Laboratory (LANL) Enrichment Monitor (EM). Two BDMS?s for monitoring the Main and Reserve HEU blending process lines were installed at UEIP. Independent operation of the FMFM Main and FMFM Reserve was successfully demonstrated for monitoring the fissile mass flow as well as the traceability of HEU to the product low enriched uranium. The FMFM systems failed when both systems were activated during the calibration phase due to a synchronization problem between the systems. This operational failure was caused by the presence of strong electromagnetic interference (EMI) in the blend point. The source-modulator shutter motion of the two FMFM systems was not being properly synchronized because of EMI producing a spurious signal on the synchronization cable connecting the two FMFM cabinets. The signature of this failure was successfully reproduced at ORNL after the visit. This unexpected problem was eliminated by a hardware modification and software improvements during a recent visit (June 9-11, 1999) to UEIP, and both systems are now operating as expected.

March-Leuba, J.; Mastal, E.; Powell, D.; Sumner, J.; Uckan, T.; Vines, V.

1999-07-25T23:59:59.000Z

77

Measurements on an inventory of mixed fissile materials in shipping containers  

SciTech Connect

An inventory contained a large number of previously unmeasured items, many with both uranium and plutonium. We have assembled a suite of instruments and measured the items in a variety of ways. This report first considers the measurements and deduced results in detail before summarizing the important differences with the declarations of the inventory`s database. The appendices referred to in this report are part of a classified version only and are not attached to this unclassified version. The classified report is by the same authors as this report, has the same title (which is unclassified), and is classified as {open_quotes}SRD.{close_quotes}

Rinard, P.M.; Krick, M.S.; Kelley, T.A. [and others

1997-09-01T23:59:59.000Z

78

Fissile Flow and Enrichment Monitor for GCEP Advanced Safeguards Application  

SciTech Connect

This paper presents experimental data that demonstrate a concept for a {sup 235}U flow and enrichment monitor (FEMO) based on passive measurements of process equipment in gaseous centrifuge enrichment plants (GCEPs). The primary goal of the FEMO is to prevent, without using pipe penetrations or active interrogation with external sources, the production and diversion of undeclared nuclear material. This FEMO concept utilizes: (1) calibrated measurements of {sup 235}U density in cascade headers, and (2) measurements of pump inlet pressure and volumetric flow rate, which are correlated to the electrical power consumed by the GCEP pumps that transport UF{sub 6} from the cascade to the condensation cylinders. The {sup 235}U density is measured by counting 186 keV emissions using a NaI gamma detector located upstream of the pump. The pump inlet pressure and volumetric flow rate are determined using a correlation that is a function of the measured pump operational parameters (e.g., electric power consumption and rotational frequency) and the pumping configuration. The concept has been demonstrated in a low-pressure flow loop at Oak Ridge National Laboratory.

March-Leuba, Jose A [ORNL] [ORNL; Uckan, Taner [ORNL] [ORNL

2010-01-01T23:59:59.000Z

79

Influence of the Density Law on Various Fissile Single Unit and Array Storage Methods  

SciTech Connect

The advancement of computational technology has resulted in the wide-spread availability of powerful radiation transport Monte Carlo codes. Prevailing practices today rely heavily on Monte Carlo codes to provide the basis for assessing the reactivity of various fissile systems for nuclear criticality safety (NCS). In 1958, Weinberg and Wigner expressed their concerns on a 'deplorable trend in reactor design - the tendency to substitute a code for a theory'. Unfortunately, their concerns have largely become a reality in many modern NCS practices. lacking the time or information to understand the underlying neutron physics of the fissile system under consideration is indeed a deplorable trend. The purpose of this paper is to demonstrate that many features of criticality hand calculation methods are indeed based upon the fundamentals of the density law and that many correlations of important physics parameters can be more easily understood from such a perspective. Historically, the density law was recognized by many pioneers in the field, including during the Manhattan Project. However, it was by and large an 'oral tradition' in that bits and pieces of great physical insights of the pioneers were scattered in many earlier publications. This paper attempts to bring together some of the 'jewels' of the pioneers which might have been lost or forgotten.

Huang, S T

2011-03-02T23:59:59.000Z

80

Ultraslow Wave Nuclear Burning of Uranium-Plutonium Fissile Medium on Epithermal Neutrons  

E-Print Network (OSTI)

For a fissile medium, originally consisting of uranium-238, the investigation of fulfillment of the wave burning criterion in a wide range of neutron energies is conducted for the first time, and a possibility of wave nuclear burning not only in the region of fast neutrons, but also for cold, epithermal and resonance ones is discovered for the first time. For the first time the results of the investigation of the Feoktistov criterion fulfillment for a fissile medium, originally consisting of uranium-238 dioxide with enrichments 4.38%, 2.00%, 1.00%, 0.71% and 0.50% with respect to uranium-235, in the region of neutron energies 0.015-10.0eV are presented. These results indicate a possibility of ultraslow wave neutron-nuclear burning mode realization in the uranium-plutonium media, originally (before the wave initiation by external neutron source) having enrichments with respect to uranium-235, corresponding to the subcritical state, in the regions of cold, thermal, epithermal and resonance neutrons. In order to validate the conclusions, based on the slow wave neutron-nuclear burning criterion fulfillment depending on the neutron energy, the numerical modeling of ultraslow wave neutron-nuclear burning of a natural uranium in the epithermal region of neutron energies (0.1-7.0eV) was conducted for the first time. The presented simulated results indicate the realization of the ultraslow wave neutron-nuclear burning of the natural uranium for the epithermal neutrons.

V. D. Rusov; V. A. Tarasov; M. V. Eingorn; S. A. Chernezhenko; A. A. Kakaev; V. M. Vashchenko; M. E. Beglaryan

2014-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

82

THERMAL TESTING OF PROTOTYPE GENERAL PURPOSE FISSILE PACKAGES USING A FURNACE  

SciTech Connect

The 9977/9978 General Purpose Fissile Package (GPFP) was designed by SRNL to replace the DOT 6M Specification Package and ship Plutonium and Uranium metals and oxides. Urethane foam was used for the overpack to ensure the package would withstand the 10CFR71.73(c)(2) crush test, which is a severe test for drum-type packages. In addition, it was necessary to confirm that the urethane foam configuration provided adequate thermal protection for the containment vessel during the subsequent 10CFR71.73(c)(4) thermal test. Development tests were performed on early prototype test specimens of different diameter overpacks and a range of urethane foam densities. The thermal test was performed using an industrial furnace. Test results were used to optimize the selection of package diameter and foam density, and provided the basis for design enhancements incorporated into the final package design.

Smith, A; Lawrence Gelder, L; Paul Blanton, P

2007-02-16T23:59:59.000Z

83

Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response  

DOE Patents (OSTI)

Apparatus and method for the direct, nondestructive evaluation of the .sup.235 U nuclide content of samples containing UF.sub.6, UF.sub.4, or UO.sub.2 utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1.sigma.) for cylinders containing UF.sub.6 with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF.sub.6 takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures.

Menlove, Howard O. (Los Alamos, NM); Stewart, James E. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

84

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

85

THERMAL TESTING OF 9977 GENERAL PURPOSE FISSILE PACKAGE USING A POOL FIRE  

SciTech Connect

The 9977/9978 General Purpose Fissile Package (GPFP), has been designed as a cost-effective, user-friendly replacement for the DOT 6M Specification Package for transporting Plutonium and Uranium metals and oxides. To ensure the capability of the 9977 GPFP to withstand the regulatory crush test, urethane foam was chosen for the impact absorbing overpack. As part of the package development it was necessary to confirm that the urethane foam overpack would provide the required protection for the containment vessel during the thermal test portion of the Hypothetical Accident Conditions Sequential Tests. Development tests of early prototypes were performed, using a furnace. Based on the results of the development tests, detailed design enhancements were incorporated into the final design. Examples of the definitive 9977 design configuration were subjected to an all-engulfing pool fire test, as part of the HAC Sequential Tests, to support the application for certification. Testing has confirmed the package's ability to withstand the HAC thermal tests.

Smith, A; Cecil May, C; Lawrence Gelder, L; Glenn Abramczyk, G

2007-02-15T23:59:59.000Z

86

Monte Carlo Modeling of Photon Interrogation Methods for Characterization of Special Nuclear Material  

SciTech Connect

This work illustrates a methodology based on photon interrogation and coincidence counting for determining the characteristics of fissile material. The feasibility of the proposed methods was demonstrated using a Monte Carlo code system to simulate the full statistics of the neutron and photon field generated by the photon interrogation of fissile and non-fissile materials. Time correlation functions between detectors were simulated for photon beam-on and photon beam-off operation. In the latter case, the correlation signal is obtained via delayed neutrons from photofission, which induce further fission chains in the nuclear material. An analysis methodology was demonstrated based on features selected from the simulated correlation functions and on the use of artificial neural networks. We show that the methodology can reliably differentiate between highly enriched uranium and plutonium. Furthermore, the mass of the material can be determined with a relative error of about 12%. Keywords: MCNP, MCNP-PoliMi, Artificial neural network, Correlation measurement, Photofission

Pozzi, Sara A [ORNL; Downar, Thomas J [ORNL; Padovani, Enrico [Nuclear Engineering Department Politecnico di Milano, Milan, Italy; Clarke, Shaun D [ORNL

2006-01-01T23:59:59.000Z

87

Global nuclear material flow/control model  

SciTech Connect

This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies.

Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

1997-10-01T23:59:59.000Z

88

Detecting fission from special nuclear material sources  

DOE Patents (OSTI)

A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

Rowland, Mark S. (Alamo, CA); Snyderman, Neal J. (Berkeley, CA)

2012-06-05T23:59:59.000Z

89

Use of Imaging for Nuclear Material Control and Accountability  

SciTech Connect

The recent addition of imaging to the Nuclear Materials and Identification System (NMIS) using a small portable DT neutron generator with an embedded alpha detector to time and directionally tag neutrons from the DT reaction is discussed. The generator weighs {approx}35 lbs including power supplies (5 x 10{sup 7} n/sec) and operates on 50 watts power. Thus, the source can be easily moved to a variety of locations within an operational facility with minimum impact on operations or can be used at a fixed location for example to monitor receipts. Imaging NMIS (INMIS) not only characterizes the detailed shape of a containerized object by transmission tomography but determines the presence of fissile material by measuring the emitted radiation from induced fission. Previous work has shown that this type of imaging has a variety of applications other than nuclear material control and accountability (NMC&A). These include nonproliferation applications such as verification of configuration of nuclear weapons/components shipped or received, warhead authentication behind an information barrier, and traceability of weapons components both fissile and non fissile in dismantlement and counter terrorism. This paper concentrates on the use for NMC&A. Some of the NMC&A applications discussed are: verifying inventory and receipts, making more accurate holdup measurements especially where thicknesses of materials affect gamma ray spectrometry , determining the shape of unknown configurations of fissile materials where the material type may be known but not the form, determining the oxidation of fissile metal in storage cans, fingerprinting the content of storage containers going into a storage facility, and determining unknown configurations for criticality safety.

Mullens, James Allen [ORNL] [ORNL; Hausladen, Paul [ORNL] [ORNL; Bingham, Philip R [ORNL] [ORNL; Archer, Daniel E [ORNL] [ORNL; Grogan, Brandon R [ORNL] [ORNL; Mihalczo, John T [ORNL] [ORNL

2007-01-01T23:59:59.000Z

90

Porcelain enamel neutron absorbing material  

DOE Patents (OSTI)

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compounds of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved.

Iverson, Daniel C. (Aiken, SC)

1990-01-01T23:59:59.000Z

91

Porcelain enamel neutron absorbing material  

DOE Patents (OSTI)

A porcelain enamel composition as a neutron absorbing material can be prepared of a major proportion by weight of a cadmium compound and a minor proportion of compound of boron, lithium and silicon. These compounds in the form of a porcelain enamel coating or layer on several alloys has been found to be particularly effective in enhancing the nuclear safety of equipment for use in the processing and storage of fissile material. The composition of the porcelain enamel coating can be tailored to match the coefficient of thermal expansion of the equipment to be coated and excellent coating adhesion can be achieved. 2 figs.

Iverson, D.C.

1987-11-20T23:59:59.000Z

92

APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE AND CHLORIDE FROM LEGACY FISSILE MATERIALS  

SciTech Connect

Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO{sub 2}). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl{sub 2}), calcium fluoride (CaF{sub 2}), and plutonium fluoride (PuF{sub 3}) were of particular concern. To enable the use of the same operating conditions for the distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl{sub 2}, CaF{sub 2} and PuF{sub 3} below 1000 C using VSD technology.

Pierce, R.; Peters, T.

2011-11-01T23:59:59.000Z

93

Improved Method of Fission Track Sample Preparation for Detecting Particles Containing Fissile Materials in Safeguards Environmental Samples  

Science Journals Connector (OSTI)

We have developed an effective method for fission track (FT) sample preparation to perform particle analysis of the safeguards environmental samples by the FT-thermal ionization mass spectrometry (TIMS) method. In this method, a FT detector and the layer containing particles are separated. The main feature of the developed FT sample is that the detection of a particle from the corresponding FT can be performed correctly and in a simple manner by fixing each one end of the detector and the particle layer and by using an etching tool. It is expected that this method will enhance the effectiveness of particle analysis.

Chi-Gyu Lee; Kazunari Iguchi; Fumitaka Esaka; Masaaki Magara; Satoshi Sakurai; Kazuo Watanabe; Shigekazu Usuda

2006-01-01T23:59:59.000Z

94

Monte Carlo simulations of a differential die-away instrument for determination of fissile content in spent fuel assemblies  

SciTech Connect

The differential die-away (DDA) technique has been simulated by using the MCNPX code to quantify its capability to measure the fissile content in spent fuel assemblies, For 64 different spent fuel cases of various initial enrichment, burnup and cooling time, the count rate and signal to background ratios of the DDA system were obtained, where neutron backgrounds are mainly coming from the {sup 244}Cm of the spent fuel. To quantify the total fissile mass of spent fuel, a concept of the effective {sup 239}Pu mass was introduced by weighting the relative contribution to the signal of {sup 235}U and {sup 241}Pu compared to {sup 239}Pu and the calibration curves of DDA count rate vs. {sup 239}Pu{sub eff} were obtained by using the MCNPX code. With a deuterium-tritium (DT) neutron generator of 10{sup 9} n/s strength, signal to background ratios of sufficient magnitude are acquired for a DDA system with the spent fuel assembly in water.

Lee, Taehoon [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

95

Gamma/neutron time-correlation for special nuclear material characterization %3CU%2B2013%3E active stimulation of highly enriched uranium.  

SciTech Connect

A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highly Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.

Marleau, Peter; Nowack, Aaron B.; Clarke, Shaun D. [University of Michigan; Monterial, Mateusz [University of Michigan; Paff, Marc [University of Michigan; Pozzi, Sara A. [University of Michigan

2013-09-01T23:59:59.000Z

96

Test and evaluation of computerized nuclear material accounting methods. Final report  

SciTech Connect

In accordance with the definition of a Material Balance Area (MBA) as a well-defined geographical area involving an Integral operation, the building housing the BFS-1 and BFS-1 critical facilities is considered to consist of one MBA. The BFS materials are in the form of small disks clad in stainless steel and each disk with nuclear material has its own serial number. Fissile material disks in the BFS MBA can be located at three key monitoring points: BFS-1 facility, BFS-2 facility and main storage of BFS fissile materials (storage 1). When used in the BFS-1 or BFS-2 critical facilities, the fissile material disks are loaded in tubes (fuel rods) forming critical assembly cores. The following specific features of the BFS MBA should be taken into account for the purpose of computerized accounting of nuclear material: (1) very large number of nuclear material items (about 70,000 fissile material items); and (2) periodically very intensive shuffling of nuclear material items. Requirements for the computerized system are determined by basic objectives of nuclear material accounting: (1) providing accurate information on the identity and location of all items in the BFS material balance area; (2) providing accurate information on location and identity of tamper-indicating devices; (3) tracking nuclear material inventories; (4) issuing periodic reports; (5) assisting with the detection of material gains or losses; (6) providing a history of nuclear material transactions; (7) preventing unauthorized access to the system and data falsification. In August 1995, the prototype computerized accounting system was installed on the BFS facility for trial operation. Information on two nuclear material types was entered into the data base: weapon-grade plutonium metal and 36% enriched uranium dioxide. The total number of the weapon-grade plutonium disks is 12,690 and the total number of the uranium dioxide disks is 1,700.

NONE

1995-12-31T23:59:59.000Z

97

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Specific Activity Specific Activity Low Specific Activity (LSA) material means Class 7 (radioactive) material with limited specific activity which satisfies the descriptions and limits set forth below. Shielding materials surrounding the LSA material may not be considered in determining the estimated average specific activity of the package contents. LSA material must be in one of three groups: LSA-I (i) Ores containing only naturally occurring radionuclides (e.g., uranium, thorium) and uranium or thorium concentrates of such ores; or (ii) Solid unirradiated natural uranium or depleted uranium or natural thorium or their solid or liquid compounds or mixtures; or (iii) Class 7 (radioactive) material, other than fissile material, for which the A2 value is unlimited; or

98

Synthesis of neutron-rich transuranic nuclei in fissile spallation targets  

E-Print Network (OSTI)

A possibility of synthesizing neutron-reach super-heavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to Bk-249 can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector will turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

Mishustin, Igor; Pshenichnov, Igor; Greiner, Walter

2014-01-01T23:59:59.000Z

99

Preparation of actinide boride materials via solid-state metathesis reactions and actinide dicarbollide precursors  

Science Journals Connector (OSTI)

Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage long-term storage and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses. 1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200?°C–1000?°C) using molecular and polymeric actinide borane and carborane complexes.

Anthony J. Lupinetti; Julie Fife; Eduardo Garcia; Kent D. Abney

2000-01-01T23:59:59.000Z

100

Responsible stewardship of nuclear materials  

SciTech Connect

The ability to tap the massive energy potential of nuclear fission was first developed as a weapon to end a terrible world war. Nuclear fission is also a virtually inexhaustible energy resource, and is the only energy supply in certain areas in Russia, Kazakhstan and elsewhere. The potential link between civilian and military applications has been and continues to be a source of concern. With the end of the Cold War, this issue has taken a dramatic turn. The U.S. and Russia have agreed to reduce their nuclear weapons stockpiles by as much as two-thirds. This will make some 100 tonnes of separated plutonium and 500 tonnes of highly enriched uranium available, in a form that is obviously directly usable for weapons. The total world inventory of plutonium is now around 1000 tonnes and is increasing at 60-70 tonnes per year. There is even more highly enriched uranium. Fortunately the correct answer to what to do with excess weapons material is also the most attractive. It should be used and reused as fuel for fast reactors. Material in use (particularly nuclear material) is very easy to monitor and control, and is quite unattractive for diversion. Active management of fissile materials not only makes a major contribution to economic stability and well-being, but also simplifies accountability, inspection and other safeguards processes; provides a revenue stream to pay for the necessary safeguards; and, most importantly, limits the prospective world inventory of plutonium to only that which is used and useful.

Hannum, W.H.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Characterization Methodology for Decommissioning Low and Intermediate Level Fissile Nuclide Contaminated Buried Soils and Process Piping Using Photon Counting  

E-Print Network (OSTI)

of Standards and Technology NORM Technologically Enhanced Naturally Occurring Radioactive Material NPS Nominal Pipe Size NRC Nuclear Regulatory Commission ORNL Oak Ridge National Laboratory vii PDF Probability Distribution Function PVC Polyvinyl...

Pritchard, Megan L

2014-05-03T23:59:59.000Z

102

Fernald vacuum transfer system for uranium materials repackaging  

SciTech Connect

The Fernald Environmental Management Project (FEMP) is the site of a former Department of Energy (DOE) uranium processing plant. When production was halted, many materials were left in an intermediate state. Some of this product material included enriched uranium compounds that had to be repackaged for shipment of off-site storage. This paper provides an overview, technical description, and status of a new application of existing technology, a vacuum transfer system, to repackage the uranium bearing compounds for shipment. The vacuum transfer system provides a method of transferring compounds from their current storage configuration into packages that meet the Department of Transportation (DOT) shipping requirements for fissile materials. This is a necessary activity, supporting removal of nuclear materials prior to site decontamination and decommissioning, key to the Fernald site's closure process.

Kaushiva, Shirley; Weekley, Clint; Molecke, Martin; Polansky, Gary

2002-02-24T23:59:59.000Z

103

NNSA Highly Enriched Uranium Removal Featured on The Rachel Maddow Show |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highly Enriched Uranium Removal Featured on The Rachel Maddow Highly Enriched Uranium Removal Featured on The Rachel Maddow Show NNSA Highly Enriched Uranium Removal Featured on The Rachel Maddow Show March 22, 2012 - 11:37am Addthis NNSA Administrator Thomas D’Agostino appeared live last night to break the news with Rachel Maddow that all remaining weapons-usable material has been successfully removed from Mexico. | Photo courtesy of the NNSA. NNSA Administrator Thomas D'Agostino appeared live last night to break the news with Rachel Maddow that all remaining weapons-usable material has been successfully removed from Mexico. | Photo courtesy of the NNSA. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What's the difference between HEU and LEU? Highly enriched uranium (HEU) has a greater than 20 percent

104

Plutonium Immobilization Project System Design Description for Can Loading System  

SciTech Connect

The purpose of this System Design Description (SDD) is to specify the system and component functions and requirements for the Can Loading System and provide a complete description of the system (design features, boundaries, and interfaces), principles of operation (including upsets and recovery), and the system maintenance approach. The Plutonium Immobilization Project (PIP) will immobilize up to 13 metric tons (MT) of U.S. surplus weapons usable plutonium materials.

Kriikku, E.

2001-02-15T23:59:59.000Z

105

Radcalc: An Analytical Tool for Shippers of Radioactive Material and Waste  

SciTech Connect

The U.S. Department of Energy (DOE) ships radioactive materials in support of its research and development, environmental restoration, and national defense activities. The Radcalc software program assists personnel working on behalf of DOE in packaging and transportation determinations (e.g., isotopic decay, decay heat, regulatory classification, and gas generation) for shipment of radioactive materials and waste. Radcalc performs: - The U.S. Department of Transportation determinations and classifications (i.e., activity concentration for exempt material Type A or B, effective A1/A2, limited quantity, low specific activity, highway route controlled quantity, fissile quantity, fissile excepted, reportable quantity, list of isotopes required on shipping papers) - DOE calculations (i.e., transuranic waste, Pu-239 equivalent curies, fissile-gram equivalents) - The U.S. Nuclear Regulatory Commission packaging category (i.e., Category I, II, or III) - Dose-equivalent curie calculations - Radioactive decay calculations using a novel decay methodology and a decay data library of 1,867 isotopes typical of the range of materials encountered in DOE laboratory environments - Hydrogen and helium gas calculations - Pressure calculations. Radcalc is a validated and cost-effective tool to provide consistency, accuracy, reproducibility, timeliness, quality, compliance, and appropriate documentation to shippers of radioactive materials and waste at DOE facilities nationwide. Hundreds of shippers and engineers throughout the DOE Complex routinely use this software to automate various determinations and to validate compliance with the regulations. The effective use of software by DOE sites contributes toward minimizing risk involved in radioactive waste shipments and assuring the safety of workers and the public. (authors)

Kapoor, A.K. [U.S. Department of Energy, Office of Transportation, Washington, DC (United States); Stuhl, L.A. [EnergySolutions Federal Services, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

106

Disposition options for {sup 233}U  

SciTech Connect

The United States is implementing a program to dispose of excess nuclear-weapons-usable materials--including {sup 233}U. A series of studies have identified multiple {sup 233}U disposition options, and these options are described herein. Most of the options involve adding depleted uranium containing {sup 238}U to the {sup 233}U. Converting the {sup 233}U into a mixture of <12 wt % {sup 233}U in {sup 238}U converts the weapons-usable {sup 233}U into nonweapons-usable {sup 233}U. For {sup 233}U that is considered waste, further isotopic dilution to <0.66 wt % {sup 233}U in {sup 238}U minimizes potential long-term repository criticality concerns and in many cases minimizes final waste volumes.

Forsberg, C.W.; Icenhour, A.S.; Krichinsky, A.M.

1998-04-27T23:59:59.000Z

107

Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies  

SciTech Connect

The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G. [Oak Ridge National Lab., TN (United States); Carrell, R.D. [Technical Resources International, Inc., Richland, WA (United States); Jaeger, C.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, M.L.; Strasser, A.A. [Delta-21 Resources, Inc., Oak Ridge, TN (United States)

1998-03-01T23:59:59.000Z

108

Atoms for peace and the nonproliferation treaty: unintended consequences  

SciTech Connect

In April 2009, President Obama revived nonproliferation and arms control efforts with a speech calling for the worldwide abolition of nuclear weapons. His speech correctly acknowledged the threat of nuclear terrorism and the vulnerabilities of the related unsecure nuclear materials. Unfortunately, the president did not mention and has not mentioned in any speech the threat posed by at-risk radiological materials. Nonproliferation efforts have a well documented history of focus on special nuclear materials (fissionable weapons usable materials or SNM), and other key materials (chemical and biological) and technologies for a Weapon of Mass Destruction (WMD). Such intense focus on WMD related materials/technologies is essential for international safety and security and merit continued attention and funding. However, the perception that radioactive sealed sources (sources) are of less concern than WMD is unfortunate. These perceptions are based solely on the potentially enormous and tragic consequences associated with their deliberate or accidental misuse and proliferation concerns. However, there is a documented history of overemphasis on the nuclear threat at the expense of ignoring the far more likely and also devastating chemical and biological threats. The radiological threat should not be minimized or excluded from policy discussions and decisions on these far ranging scopes of threat to the international community. Sources have a long history of use; and a wider distribution worldwide than fissile materials. Pair this with their broad ranges in isotopes/activities along with scant national and international attention and mechanisms for their safe and secure management and it is not difficult to envision a deadly threat. Arguments that minimize or divert attention away from sources may have the effect of distracting necessary policy attention on preventing/mitigating a radiological dispersal event. The terrorist attacks on 9/11 should be a clear reminder of the inherent danger of diminishing or dismissing lower-level threats in exchange for enhanced focus on high priority special nuclear materials with the basis for this emphasis being solely on the magnitude of the consequences of a single event. Mitigating all possible or likely terrorist attacks is impossible; however, weaponized sources, in the form of a radiological dispersal device, have been a declared target material of Al-Qaida. Eisenhower's Atoms for Peace initiative promoted the spread of the paradoxical beneficial yet destructive properties of the atom. Typically, the focus of nonproliferation efforts focuses on the fissile materials associated with Weapons of Mass Destruction, with less emphasis on radioactive materials that could be used for a Weapon of Mass Disruption. Most nonproliferation policy discussion involves securing or preventing the diversion of weapons grade fissile materials (uranium (U) with concentration of over 90% of the isotope {sup 235}U (HEU) and plutonium with more than 90% of the isotope {sup 239}Pu), with scant attention given to the threat posed by a prolific quantity of sources spread worldwide. Further acerbating the problem of inattention, it appears that the momentum of the continued evolution in the beneficial applications of sources will only increase in the near future. Several expert studies have demonstrated on the potentially devastating economic, psychological and public health impacts of terrorist use of a radiological dispersal or radiation emitting device (ROD/RED) in a metropolis. The development of such a weapon, from the acquisition of the radioactive material to the technical knowledge needed to fashion it into an ROD, is many orders of magnitude easier than diverting enough fissile material for and fabrication/acquisition of a nuclear weapon. Unlike nuclear weapons, worldwide, there are many well documented accounts of accidental and purposeful diversions of radioactive materials from regulatory control. As of the end of 2008, the International Atomic Energy Agency's (IAEA) Illicit Trafficking Database had logge

Streeper, Charles Blamires [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

109

Materialism and materiality  

Science Journals Connector (OSTI)

Accountants and auditors in recent financial scandals have been pictured as materialistic, simply calculating consequences and ignoring duties. This paper potentially explains this apparently materialistic behaviour in what has historically been a truthtelling profession. Materiality, which drives audit priorities, has been institutionalised in accounting and auditing standards. But a materiality focus inherently implies that all amounts that are not 'materially' misstated are equally true. This leads to habitual immaterial misstatements and promotes the view that auditors do not care about truth at all. Auditors' lack of commitment to truth undermines their claim to be professionals in the classic sense.

Michael K. Shaub

2005-01-01T23:59:59.000Z

110

Shipment of Small Quantities of Unspecified Radioactive Material in Chalfant Packagings  

SciTech Connect

In the post 6M era, radioactive materials package users are faced with the disciplined operations associated with use of Certified Type B packagings. Many DOE, commercial and academic programs have a requirement to ship and/or store small masses of poorly characterized or unspecified radioactive material. For quantities which are small enough to be fissile exempt and have low radiation levels, the materials could be transported in a package which provides the required containment level. Because their Chalfant type containment vessels meet the highest standard of containment (helium leak-tight), the 9975, 9977, and 9978 are capable of transporting any of these contents. The issues associated with certification of a high-integrity, general purpose package for shipping small quantities of unspecified radioactive material are discussed and certification of the packages for this mission is recommended.

Smith, Allen; Abramczyk, Glenn; Nathan, Steven; Bellamy, Steve

2009-06-12T23:59:59.000Z

111

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

112

Reference Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

113

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

114

CF NEUTRON TIME OF FLIGHT TRANSMISSION FOR MATERIAL IDENTIFICATION FOR WEAPONS TRAINERS  

SciTech Connect

The neutron transmission, elastic scattering, and non elastic reactions can be used to distinguish various isotopes. Neutron transmission as a function of energy can be used in some cases to identify materials in unknown objects. A time tagged californium source that provides a fission spectrum of neutrons is a useful source for neutron time-of-flight (TOF) transmission measurements. Many nuclear weapons trainer units for a particular weapons system (no fissile, but of same weight and center of gravity) in shipping containers were returned to the National Nuclear Security Administration Y-12 National Security Complex in the mid 1990s. Nuclear Materials Identification System (NMIS) measurements with a time tagged californium neutron source were used to verify that these trainers did not contain fissile material. In these blind tests, the time distributions of neutrons through the containers were measured as a function of position to locate the approximate center of the trainer in the container. Measurements were also performed with an empty container. TOF template matching measurements were then performed at this location for a large number of units. In these measurements, the californium source was located on one end of the container and a proton recoil scintillator was located on the other end. The variations in the TOF transmission for times corresponding to 1 to 5 MeV were significantly larger than statistical. Further examination of the time distribution or the energy dependence revealed that these variations corresponded to the variations in the neutron cross section of aluminum averaged over the energy resolution of the californium TOF measurement with a flight path of about 90 cm. Measurements using different thicknesses of aluminum were also performed with the source and detector separated the same distance as for the trainer measurements. These comparison measurements confirmed that the material in the trainers was aluminum, and the total thickness of aluminum through the trainers was determined. This is an example of how californium transmission TOF measurements can be used to identify materials.

Mihalczo, John T [ORNL] [ORNL; Valentine, Timothy E [ORNL] [ORNL; Blakeman, Edward D [ORNL] [ORNL; Pare, Victor [ORNL] [ORNL

2011-01-01T23:59:59.000Z

115

Materializing energy  

Science Journals Connector (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

116

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

117

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

118

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

119

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

120

Alternative technical summary report for immobilized disposition in deep boreholes: Immobilized disposal of plutonium in coated ceramic pellets in grout without canisters, Version 4.0. Fissile materials disposition program  

SciTech Connect

This paper summarizes and compares the immobilized and direct borehole disposition alternatives previously presented in the alternative technical summary. The important design concepts, facility features and operational procedures are first briefly described. This is followed by a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative technical summary report for direct disposition in deep boreholes: Direct disposal of plutonium metal/plutonium dioxide in compound canisters, Version 4.0. Fissile Materials Disposition Program  

SciTech Connect

This report summarizes and compares the Immobilized and Direct Beep Borehole Disposition Alternatives. The important design concepts, facility features and operational procedures are briefly described, and a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23T23:59:59.000Z

122

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

123

Critical Materials:  

Office of Environmental Management (EM)

lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

124

Materials - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

125

Complex Materials  

SciTech Connect

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-04-17T23:59:59.000Z

126

Complex Materials  

ScienceCinema (OSTI)

Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

Cooper, Valentino

2014-05-23T23:59:59.000Z

127

Materializing Energy  

E-Print Network (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of materializing energy. Three critical themes are presented: the intangibility of energy, the undifferentiatedness of energy, and the availability of energy. Each theme is developed through combination of critical investigation and design exploration, including the development and deployment of several novel design artifacts: Energy Mementos and The Local Energy Lamp. A framework for interacting with energy-as-materiality is proposed involving collecting, keeping, sharing, and activating energy. A number of additional concepts are also introduced, such as energy attachment, energy engagement, energy attunement, local energy and energy meta-data. Our work contributes both a broader, more integrative design perspective on energy and materiality as well as a diversity of more specific concepts and artifacts that may be of service to designers and researchers of interactive systems concerned with sustainability and energy. Author Keywords Sustainability, energy, materiality, design, design theory

James Pierce; Eric Paulos

128

An adaptive simulation model for analysis of nuclear material shipping operations  

SciTech Connect

Los Alamos has developed an advanced simulation environment designed specifically for nuclear materials operations. This process-level simulation package, the Process Modeling System (ProMoS), is based on high-fidelity material balance criteria and contains intrinsic mechanisms for waste and recycle flows, contaminant estimation and tracking, and material-constrained operations. Recent development efforts have focused on coupling complex personnel interactions, personnel exposure calculations, and stochastic process-personnel performance criteria to the material-balance simulation. This combination of capabilities allows for more realistic simulation of nuclear material handling operations where complex personnel interactions are required. They have used ProMoS to assess fissile material shipping performance characteristics at the Los Alamos National Laboratory plutonium facility (TA-55). Nuclear material shipping operations are ubiquitous in the DOE complex and require the largest suite of varied personnel interacting in a well-timed manner to accomplish the task. They have developed a baseline simulation of the present operations and have estimated the operational impacts and requirement of the pit production mission at TA-55 as a result of the SSM-PEIS. Potential bottlenecks have been explored and mechanisms for increasing operational efficiency are identified.

Boerigter, S.T.; Sena, D.J.; Fasel, J.H.

1998-12-31T23:59:59.000Z

129

FY05 LDRD Final Report Sensor Fusion for Regional Monitoring of Nuclear Materials with Ubiquitous Detection  

SciTech Connect

The detection of the unconventional delivery of a nuclear weapon or the illicit transport of fissile materials is one of the most crucial, and difficult, challenges facing us today in national security. A wide array of radiation detectors are now being deployed domestically and internationally to address this problem. This initial deployment will be followed by radiation detection systems, composed of intelligent, networked devices intended to supplement the choke-point perimeter systems with more comprehensive broad-area, or regional coverage. Cataloging and fusing the data from these new detection systems will clearly be one of the most significant challenges in radiation-based security systems. We present here our results from our first 6 months of effort on this project. We anticipate the work will continue as part of the Predictive Knowledge System Strategic Initiative.

Labov, S E; Craig, W W

2006-02-15T23:59:59.000Z

130

THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE  

SciTech Connect

The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

Gupta, N.; Abramczyk, G.

2012-03-26T23:59:59.000Z

131

Materials Handbook  

Science Journals Connector (OSTI)

... THE sub title of this handbook gives the clue to the mode of treatment of the subject matter, and so ... seventeen to 'alkalis'; in fact, a better title for the book would be "Handbook of Engineering Materials". British trade names are conspicuously few, but no doubt a ...

E. H. TRIPP

1942-08-15T23:59:59.000Z

132

LIFE Materials: Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward Volume 3  

SciTech Connect

The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical, and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report (Volume 8 - Molten-salt Fuels) is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermo-chemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenges are not insurmountable, and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

Turchi, P A; Kaufman, L; Fluss, M

2008-12-19T23:59:59.000Z

133

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from...

134

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

135

The Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios  

SciTech Connect

This paper is an extension to earlier studies1,2 that examined the attractiveness of materials mixtures containing special nuclear materials (SNM) and alternate nuclear materials (ANM) associated with the PUREX, UREX, COEX, THOREX, and PYROX reprocessing schemes. This study extends the figure of merit (FOM) for evaluating attractiveness to cover a broad range of proliferant state and sub-national group capabilities. The primary conclusion of this study is that all fissile material needs to be rigorously safeguarded to detect diversion by a state and provided the highest levels of physical protection to prevent theft by sub-national groups; no “silver bullet” has been found that will permit the relaxation of current international safeguards or national physical security protection levels. This series of studies has been performed at the request of the United States Department of Energy (DOE) and is based on the calculation of "attractiveness levels" that are expressed in terms consistent with, but normally reserved for nuclear materials in DOE nuclear facilities.3 The expanded methodology and updated findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security are discussed.

Bathke, C. G.; Wallace, R. K.; Ireland, J. R.; Johnson, M. W.; Hase, Kevin R.; Jarvinen, G. D.; Ebbinghaus, B. B.; Sleaford, Brad W.; Bradley, Keith S.; Collins, Brian A.; Smith, Brian W.; Prichard, Andrew W.

2010-09-01T23:59:59.000Z

136

Materials Under Extremes | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Home | Science & Discovery | Advanced Materials | Research Areas | Materials Under Extremes SHARE Materials Under Extremes Materials that can withstand extreme conditions such...

137

Photovoltaic Materials  

SciTech Connect

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

138

A New Neutron Detection Technique: Fissile Resistors  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Technique

M. Roche; J. Morin; R. Musart; B. Pierre

139

Nuclear reactor fissile isotopes antineutrino spectra  

E-Print Network (OSTI)

Positron spectrum from inverse beta decay reaction on proton was measured in 1988-1990 as a result of neutrino exploration experiment. The measured spectrum has the largest statistics and lowest energy threshold between other neutrino experiments made that time at nuclear reactors. On base of the positron spectrum the standard antineutrino spectrum for typical reactor fuel composition was restored. In presented analysis the partial spectra forming this standard spectrum were extracted using specific method. They could be used for neutrino experiments data analysis made at any fuel composition of reactor core.

V. Sinev

2012-07-30T23:59:59.000Z

140

Critical Materials Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426  

SciTech Connect

The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)

Hayes, Timothy [Los Alamos National Laboratory, Carlsbad Operations Group (United States); Nelson, Roger [Department Of Energy, Carlsbad Operations Office (United States)

2012-07-01T23:59:59.000Z

142

Critical Materials Institute  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

Alex King

2013-06-05T23:59:59.000Z

143

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

144

US/Russian program in materials protection, control and accounting at the RRC Kurchatov Institute: 1997--1998  

SciTech Connect

Six US Department of Energy Laboratories are carrying out a program of cooperation with the Russian Research Center Kurchatov Institute to improve nuclear material protection, control and accounting (MPC and A) at Kurchatov. In 1997--1998 the primary thrust of this program has been directed to Building 106, which houses a number of test reactors and critical facilities. Substantial improvements in physical protection, upgrades in the physical inventory taking procedures, installation of equipment for the computerized materials accounting system, and installation of nuclear material portal monitors and neutron-based measurement equipment are being carried out at this facility. Software for the computerized accounting system, named KI-MACS, has been developed at Kurchatov and the system has been fully integrated with the bar code printing and reading equipment, electronic scales, and nondestructive assay equipment provided under this program. Additional 1997--1998 activities at Kurchatov include continuation of a tamper indicating device program, vulnerability assessments of several facilities, hosting of a Russian-American Workshop on Fissile Material Control and Accountability at Critical Facilities, and the development of accounting procedures for transfers of nuclear materials between material balance areas.

Sukhoruchkin, V.; Rumyantsev, A.; Shmelev, V. [RRC Kurchatov Inst., Moscow (Russian Federation)] [and others

1998-12-31T23:59:59.000Z

145

DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY  

SciTech Connect

In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

Blanton, P.; Eberl, K.

2008-09-14T23:59:59.000Z

146

Multi Material Paradigm  

Energy Savers (EERE)

Multi Material Paradigm Glenn S. Daehn Department of Materials Science and Engineering, The Ohio State University Advanced Composites (FRP) Steel Spaceframe Multi Material Concept...

147

Nuclear Reactor Materials and Fuels  

Science Journals Connector (OSTI)

Nuclear reactor materials and fuels can be classified into six categories: Nuclear fuel materials Nuclear clad materials Nuclear coolant materials Nuclear poison materials Nuclear moderator materials

Dr. James S. Tulenko

2012-01-01T23:59:59.000Z

148

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Testing Doug Ammerman, (505) 845-8158 Type B packages that transport radioactive materials must survive a sequence of full-scale (actual physical size) impact, puncture, fire, and immersion tests designed to replicate transportation accident conditions. The Hypothetical Accident Conditions (six tests as defined in 10 CFR Part 71.73) tests 1 through 4 (Drop, Crush, Puncture and Fire) are sequential, test 5 (Immersion) is performed on either a previously tested or untested package. Free Drop Test Crush Test Puncture Test Thermal Test Immersion Test [drop] Click to view picture [crush] Click to view picture [puncture] Click to view picture [thermal] Click to view picture [immersion] Click to view picture Dropping a package from 30 feet onto an unyielding target. (the unyielding target forces all of the deformation to be in the package, none in the target). The speed on impact is 44 feet per second or 30 miles per hour. Dropping a 1100 pound steel plate from 30 feet onto a package. This test is only required for packages weighing less than 1100 pounds. The speed on impact is 44 feet per second or 30 miles per hour. Dropping a package from 40 inches onto a welded, 6 inch diameter, steel spike. The speed on impact is 14.6 feet per second or 10 miles per hour. Placing a package 40 inches above a pool of burning fuel for 30 minutes at 800 degrees Celsius (1475 degrees Fahrenheit). Placing a package under 50 feet of water for 8 hours. Fissile material packages are also immersed under 3 feet of water for 8 hours sequentially after tests 1 through 4

149

Method for forming materials  

DOE Patents (OSTI)

A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

Tolle, Charles R. (Idaho Falls, ID); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Miller, Karen S. (Idaho Falls, ID)

2009-10-06T23:59:59.000Z

150

NEWTON's Material Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

151

Educational Material Science Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

152

Nuclear Fuels  

Science Journals Connector (OSTI)

The core of a nuclear reactor is composed of a controlled critical configuration of a fissile material, which in strict a sense is the fuel. This fissile material is contained in a matrix, normally a ceramic c...

Rudy J. M. Konings; Thierry Wiss…

2011-01-01T23:59:59.000Z

153

Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Directionally Solidified Materials Using high-temperature optical floating zone furnace to produce monocrystalline molybdenum alloy micro-pillars Home | Science & Discovery | Advanced Materials Advanced Materials | Advanced Materials SHARE ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of advanced materials for energy generation, storage, and use. We have core strengths in three main areas: materials synthesis, characterization, and theory. In other words, we discover and make new materials, we study their structure,

154

MATERIALS TRANSFER AGREEMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

155

Material Point Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Point Methods and Multiphysics for Fracture and Multiphase Problems Joseph Teran, UCLA and Alice Koniges, LBL Contact: jteran@math.ucla.edu Material point methods (MPM)...

156

Materials | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary...

157

Energy Materials & Processes | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

158

EMSL - Energy Materials & Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination...

159

Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward  

SciTech Connect

The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermochemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenge are not insurmountable and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

Turchi, P E; Kaufman, L; Fluss, M J

2008-11-10T23:59:59.000Z

160

Chapter 6: Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Materials : Materials Material Selection Sustainable Building Materials System Integration Issues | Chapter 6 Material Selection Materials The use of durable, attractive, and environmentally responsible building materials is a key element of any high-performance building effort. The use of natural and healthy materials contributes to the well-being of the occupants and to a feeling of connection with the bounty of the natural world. Many construction materials have significant environ- mental impacts from pollutant releases, habitat destruc- tion, and depletion of natural resources. This can occur during extraction and acquisition of raw materials, pro- "Then I say the Earth belongs to duction and manufacturing processes, and transporta- tion. In addition, some construction materials can harm

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NEWTON's Material Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Videos Material Science Videos Do you have a great material science video? Please click our Ideas page. Featured Videos: University of Maryland - Material Science University of Maryland - Material Science The Department of Materials Science and Engineering offers a set of videos about various topics in material science to help students understand what material science is. Learn about plasma, polymers, liquid crystals and much more. LearnersTV.com - Material Science LearnersTV.com - Material Science LearnersTV.com offers a series of educational material science lectures that are available to the public for free. Learn about topics like polymers, non-crystalline solids, crystal geometry, phase diagrams, phase transformations and more. NanoWerk - Nanotechnology Videos NanoWerk - Nanotechnology Videos

162

Energetic Materials Center Energetic Materials Center  

NLE Websites -- All DOE Office Websites (Extended Search)

experimental characterization of energetic material properties and reactions; and high-speed diagnostic instruments for measuring the chemical and physical processes that occur...

163

Microsoft Word - 2010 NNSS CEF Tour and Mtg. _August 24-25,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Currently, limited operations involving fissile material are authorized to perform subcritical measurements and associated activities pending startup authorization for performing...

164

Coated ceramic breeder materials  

DOE Patents (OSTI)

A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

Tam, Shiu-Wing (Downers Grove, IL); Johnson, Carl E. (Elk Grove, IL)

1987-01-01T23:59:59.000Z

165

Dental Materials BIOMATERIALS  

E-Print Network (OSTI)

focus is on the development of two standard methods: one for a material's resistance to microleakage will quantify a significant portion of a material's ability to resist secondary caries. The methodsDental Materials BIOMATERIALS Our goal is to provide reference materials and clinically relevant

166

Hydrogen Compatibility of Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

167

Computational Chemical Materials Engineering  

E-Print Network (OSTI)

: Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

168

Puncture detecting barrier materials  

DOE Patents (OSTI)

A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

1998-03-31T23:59:59.000Z

169

Joining of dissimilar materials  

DOE Patents (OSTI)

A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

2012-10-16T23:59:59.000Z

170

Sensors & Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

171

Comprehensive Nuclear Materials  

SciTech Connect

This book encompasses a rich seam of current information on the vast and multidisciplinary field of nuclear materials employed in fission and prototype fusion systems. Discussion includes both historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds leading scientists and engineers. Synthesizes pertinent current science to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

Konings, Dr. Rudy J. M. [European Commission Joint Research Centre; Allen, Todd R. [University of Wisconsin, Madison; Stoller, Roger E [ORNL; Yamanaka, Prof. Shinsuke [Osaka University

2012-01-01T23:59:59.000Z

172

United States Government Department of Energy Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-89) 8-89) EFG (07-90) United States Government Department of Energy Memorandum DATE: March 26, 2004 REPLY TO IG-30 (A03RL15) Audit Report No.: OAS-L-04-12 ATTN OF: SUBJECT: Audit of Consolidation of Hanford's Surplus Plutonium-Bearing Material TO: Assistant Secretary for Environmental Management INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Office of Environmental Management (EM) and National Nuclear Security Administration (NNSA) are responsible for stabilization, repackaging and safeguarding of about 13 metric tons of surplus weapons-usable plutonium or plutonium-bearing material (surplus plutonium). The Defense Nuclear Safety Board (DNFSB) agreed to the stabilization and repackaging as long as there would be a continued surveillance of the material.

173

ARM - Public Information Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

govPublicationsPublic Information Materials govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library Videos Publication Resources Submit a Publication Publishing Procedures ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Public Information Materials The ARM Climate Research Facility develops public information materials to communicate the purpose and objectives of the program to general audiences. These materials are designed to increase awareness of ARM Climate Research Facility goals and to document its scientific results to a lay audience. Public information materials include fact sheets, brochures, CDs, videos, press releases, and information packets. Approved materials are made

174

Materials/Condensed Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

175

Nanostructured composite reinforced material  

DOE Patents (OSTI)

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31T23:59:59.000Z

176

Earth-Abundant Materials  

Energy.gov (U.S. Department of Energy (DOE))

DOE funds research into Earth-abundant materials for thin-film solar applications in response to the issue of materials scarcity surrounding other photovoltaic (PV) technologies. Below are a list...

177

Geopolymer Sealing Materials  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

178

Applications of Ceramic Materials  

Science Journals Connector (OSTI)

The use of ceramic materials in science and industry is becoming increasingly widespread. As discussed in Chap. 4, ceramic materials have important advantages over metals and polymers in electronic devices at ...

Murat Bengisu

2001-01-01T23:59:59.000Z

179

Nanocomposites as thermoelectric materials  

E-Print Network (OSTI)

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

180

Materials Science & Engineering  

E-Print Network (OSTI)

and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

182

Instructions and Materials  

Energy.gov (U.S. Department of Energy (DOE))

The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

183

Why engineer porous materials?  

Science Journals Connector (OSTI)

...thermal conductivity materials (Maex et al. 2003...Hrubesh et al. 1993); materials remarkably similar to...reduce the oxygen at the cathode and oxidize the fuel...electrochemically active, have large surface...volume fraction of porous materials about 0.3 (Brandon...

2006-01-01T23:59:59.000Z

184

Critical Materials Workshop  

Energy.gov (U.S. Department of Energy (DOE))

AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical materials, and the foundational aspects of Energy Innovation Hubs. Additionally, the workshop solicited input from the critical materials community on R&D gaps that could be addressed by DOE.

185

Hydrogen Compatibility of Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Compatibility of Materials Compatibility of Materials August 13, 2013 DOE EERE Fuel Cell Technologies Office Webinar Chris San Marchi Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 SAND2013-6278P 2 Webinar Objectives * Provide context for hydrogen embrittlement and hydrogen compatibility of materials - Distinguish embrittlement, compatibility and suitability - Examples of hydrogen embrittlement * Historical perspective - Previous work on hydrogen compatibility - Motivation of "Materials Guide" * Identify the landscape of materials compatibility documents

186

NEWTON's Material Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Archive: Materials Science Archive: Loading Most Recent Materials Science Questions: Hydrogen Compounds and Heat Conduction Weaving Carbon Nanotubes Metal as Electrical Conductor, Not Thermal Steel Changes with Age PETE, Ultraviolet Light, Benefits Strength of Yarn by Spinning Each Substance Unique Density Alloy versus Constituent Density Knowing When Material is Melted Crystalline Metal Versus Metallic Glass and Conduction Super Glue, Surgery, and Skin Silica Gel Teflon Non-Stick Property Salt Crystal Formation Lubricating Rubber Bands and Elasticity Materials for Venus Probe Crystalline Solids and Lowest Energy Sodium Polycarbonate and Salt Water Early Adhesives Surface Energy and Temperature Separating Polypropylene, Polyester, and Nylon Factors Effecting Polymer Flexibility

187

Tailored Porous Materials  

SciTech Connect

Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

1999-11-09T23:59:59.000Z

188

Materials Science Division - Argonne National Laboratories, Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

189

SMERDON ET AL.: AUXILIARY MATERIAL Auxiliary Material  

E-Print Network (OSTI)

run [Ammann et al., 2007; hereinafter CCSM] and the GKSS ECHO-g ERIK2 run [González-Rouco et al., 2006; hereinafter ECHO-g]. The annual means of the modeled temperature fields are interpolated to 5° latitude;SMERDON ET AL.: AUXILIARY MATERIAL 2 ECHO-g simulations, respectively. The above conventions

Smerdon, Jason E.

190

Montani, Kohn, Smith and Schultz (2006), Supplemental Material Supplemental Material  

E-Print Network (OSTI)

Montani, Kohn, Smith and Schultz (2006), Supplemental Material 1 Supplemental Material A. Entropy, Kohn, Smith and Schultz (2006), Supplemental Material 2 occupied, it is ambiguous whether

Smith, Matthew A.

191

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

192

Portsmoulh/Paducah Project Office  

NLE Websites -- All DOE Office Websites (Extended Search)

material DMSA U.S. Department of Energy Material Storage Area Fiss fissile ID identification LLW low-level waste PACM presumed asbestos-containing material PCB ...

193

Nonconforming Material Process  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 11 Nonconforming Material / Product Process 11_0304 Page 1 of 6 EOTA - Business Process Document Title: Nonconforming Material / Product Process Document Number: P-011 Rev. 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-015 Nonconformance Report, REG-003 Record Register, ISDP-002 Training Production Process P-011 Nonconforming Material / Product Process 11_0304 Page 2 of 6 Revision History: Rev. Description of Change A Initial Release 08_0416 Added verbiage CAR/PAR/IO to Step 2 P-011 Nonconforming Material / Product Process 11_0304 Page 3 of 6 I. Purpose To establish the process for nonconforming material to be identified, segregated and dispositioned to prevent its unintended

194

MST: Organizations: Organic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Adhesive Bonding Adhesive Bonding Composites Encapsulation Materials Characterization Mechanical Testing Molding, Thermoforming, & Compounding Organizations Organic Materials Composite-to-metal adhesive bond Experimental/analytical study of composit-to-metal adhesive bond. The Organic Materials department in the Advanced Manufacturing and Processing Laboratory provides innovative prototype fabrication, full service small lot production, materials technology, processing expertise, and a broad range of organic material characterization and mechanical testing techniques. We encapsulate, we join and bond, we foam, we analyze and image, we build composite structures. We strive to make you, our customers, successful! We partner with you to find the right combination of materials, processing, and fixturing that will result in the highest value

195

Material Disposal Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

196

Absolute nuclear material assay  

DOE Patents (OSTI)

A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

2012-05-15T23:59:59.000Z

197

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network (OSTI)

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

198

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network (OSTI)

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

199

NETL: Advanced Research - Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Materials > Chrome Oxide Refractory High Performance Materials > Chrome Oxide Refractory Advanced Research High Performance Materials Chrome Oxide Refractory One notable NETL success is the development of a chrome oxide refractory material capable of working in slagging gasifier conditions. In this project, researchers first determined that one of the major failure mechanisms for chrome oxide refractories exposed to the intense heat and corrosive environment was spalling, or the chipping or flaking of refractory material from an exposed face. They used this information to formulate a high-chrome oxide refractory composition that resists spalling, resulting in a refractory with a longer service life in the gasifier. Inside an ultrasupercritical (USC) pulverized coal power plant, materials are exposed to temperatures up to 760°C and pressures up to 5,000 psi. Operating a USC system can improve power plant efficiency up to 47% and reduce emissions. However, finding boiler and turbine materials that can hold up under extreme conditions requires new high-temperature metal alloys and ceramic coatings, as well as computational modeling research to optimize the processing of these materials. Advanced Research Materials Development program successes in this area include the following:

200

Fission, Fusion Materials Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

is shown in illustration. Materials are the immediate priority of both the fission and fusion communities. Extending the lifetime of the current fleet of light water reactors...

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermoelectric materials having porosity  

DOE Patents (OSTI)

A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

2014-08-05T23:59:59.000Z

202

Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

today New high-tech materials are the key to breakthroughs in biology, the environment, nuclear energy, transportation and national security. Argonne continues to make...

203

UESC Workshop Materials  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the UESC Workshop Materials and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

204

Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

the interface of electrodes and electrolytes and using supercomputers to predict how battery systems will perform. We develop "soft" materials, including polymers and...

205

Radiation Safety Training Materials  

Energy.gov (U.S. Department of Energy (DOE))

The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

206

Webinar: Materials Genome Initative  

Energy.gov (U.S. Department of Energy (DOE))

Audio recording and text version of the Fuel Cell Technologies Office webinar titled "Materials Genome Initiative," originally presented on December 2, 2014.

207

EMSL - battery materials  

NLE Websites -- All DOE Office Websites (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

208

Management of Nuclear Materials  

Directives, Delegations, and Requirements

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

2009-08-17T23:59:59.000Z

209

Timelines | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

of interest to rare earths and critical materials, organized by those specific to rare earth elements, general chemistry and uses. Timelines of rare earth discovery: Discovery and...

210

Radioactive Material Transportation Practices  

Directives, Delegations, and Requirements

Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

2002-09-23T23:59:59.000Z

211

Novel Anode Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with a variety of loadings, morphologies, and thicknesses. - Develop synchrotron tomography tools to better understand how the active materials interact with their surroundings...

212

Recent Advances in Computational Materials Science and Multiscale Materials Modeling  

E-Print Network (OSTI)

Recent Advances in Computational Materials Science and Multiscale Materials Modeling Guest Editors Advances in Computational Materials Science and Multiscale Materials Modeling. These symposia provide. Professor Karel Matous Aerospace and Mechanical Engineering Department University of Notre Dame Email

Matous, Karel

213

Critical Materials Strategy Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

214

Critical Materials Strategy Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

215

MATERIAL TRACKING USING LANMAS  

SciTech Connect

LANMAS is a transaction-based nuclear material accountability software product developed to replace outdated and legacy accountability systems throughout the DOE. The core underlying purpose of LANMAS is to track nuclear materials inventory and report transactions (movement, mixing, splitting, decay, etc.) to the Nuclear Materials Management and Safeguards System (NMMSS). While LANMAS performs those functions well, there are many additional functions provided by the software product. As a material is received onto a site or created at a site, its entire lifecycle can be tracked in LANMAS complete to its termination of safeguards. There are separate functions to track material movements between and within material balance areas (MBAs). The level of detail for movements within a MBA is configurable by each site and can be as high as a site designation or as detailed as building/room/rack/row/position. Functionality exists to track the processing of materials, either as individual items or by modeling a bulk process as an individual item to track inputs and outputs from the process. In cases where sites have specialized needs, the system is designed to be flexible so that site specific functionality can be integrated into the product. This paper will demonstrate how the software can be used to input material into an account and track it to its termination of safeguards.

Armstrong, F.

2010-06-07T23:59:59.000Z

216

Nanocrystalline Heterojunction Materials  

DOE Patents (OSTI)

Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

2004-02-03T23:59:59.000Z

217

Cybersecurity Awareness Materials  

Energy.gov (U.S. Department of Energy (DOE))

The OCIO develops and distributes a variety of awareness material to be used during cyber awareness campaigns or as needed to address an emerging cyber threat or hot topic. These materials are available to other DOE organizations or public and private institutions to enhance or supplement site-specific awareness programs.

218

Materials Science & Engineering  

E-Print Network (OSTI)

technologies used to develop energy sources, protect the environment, preserve the national infrastructure, electronic materials, composites, biomaterials, nuclear materials and nanomaterials. The common thread and Engineering program. Effective 2014-2015 1 Updated May 2014 #12;Additionally, here are some helpful

Simons, Jack

219

Carbon Materials Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Breakout Group Process Materials Breakout Group Process * Day 2, Thursday - Review results of Day 1 and modify if needed - Identify critical R&D needs - Outline R&D plan with key milestones - Report results to plenary Carbon Materials Breakout Group * Key Results - Target: get the science right to engineer carbon materials for hydrogen storage * Integrate theory, experiment, engineering * Understand mechanisms, effects, and interactions ranging from physisorption to chemisorption - Theory * Provide "directional" guidance for experiments (and vice- versa) * Provide baseline theory to elucidate parameters affecting the number and type of binding sites and the heat of their interaction with H2 (∆H ) for a broad range of (highly) modified carbon materials

220

Materials of Gasification  

SciTech Connect

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

222

Nuclear Energy Research Advisory Subcommittee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Minutes for the to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting September 30 to October 1, 2002 MEMORANDUM To: Chairman, Nuclear Energy Research Advisory Committee (NERAC) From: Thomas B. Cochran, Member of NERAC Date: October 16, 2002 Subject: "A Technology Roadmap on Generation IV Nuclear Energy Systems," a report of the NERAC Subcommittee on Generation IV Technology Planning Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon- usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by

223

Appendix B to the Minutes for the Nuclear Energy Research Advisory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix B to the Minutes for the Nuclear Energy Research Advisory Appendix B to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting Appendix B to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon-usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by terrorists to develop and deliver a crude nuclear explosive device, or by a hostile proliferant state to develop more sophisticated nuclear weapons. This is not the time for the United States to be launching an international research effort to develop

224

Microsoft Word - Document7  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of U.S. Secretary of Energy Spencer Abraham and Minister of the Russian Federation for Atomic Energy Aleksandr Rumyantsev on Cooperation to Transfer Russian-origin High-Enriched Uranium Research Reactor Fuel to the Russian Federation The U.S. Department of Energy and MinAtom of Russia recognize the great significance of cooperation in the issue of transferring high enriched uranium (HEU) research reactor fuel of Russian origin to the Russian Federation as a mutual contribution to the reduction of global stockpiles of weapons-usable nuclear materials and, therefore, to reducing the threat of international terrorism and preventing the proliferation of weapons of mass destruction. Such cooperation, which is being implemented with the active involvement of the

225

Licensing issues associated with the use of mixed-oxide fuel in US commercial nuclear reactors  

SciTech Connect

On January 14, 1997, the Department of Energy, as part of its Record of Decision on the storage and disposition of surplus nuclear weapons materials, committed to pursue the use of excess weapons-usable plutonium in the fabrication of mixed-oxide (MOX) fuel for consumption in existing commercial nuclear power plants. Domestic use of MOX fuel has been deferred since the late 1970s, principally due to nuclear proliferation concerns. This report documents a review of past and present literature (i.e., correspondence, reports, etc.) on the domestic use of MOX fuel and provides discussion on the technical and regulatory issues that must be addressed by DOE (and the utility/consortia selected by DOE to effect the MOX fuel consumption strategy) in obtaining approval from the Nuclear Regulatory Commission to use MOX fuel in one or a group of existing commercial nuclear power plants.

Williams, D.L. Jr.

1997-04-01T23:59:59.000Z

226

Critical Materials Hub  

Energy.gov (U.S. Department of Energy (DOE))

Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

227

Electrically conductive composite material  

DOE Patents (OSTI)

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1989-05-23T23:59:59.000Z

228

Material control evaluation  

SciTech Connect

Changes in the Department of Energy`s (DOE) scope of work have stimulated several laboratories and commercial companies to develop and apply technology to enhance nuclear material control. Accountability, inventory, radiation exposure, and insider protection concerns increase as many DOE facilities require increased storage. This paper summarizes a study of the existing material control technologies. The goal of the study is to identify, characterize, and quantify the trade-offs associated with using these technologies to provide real-time information on stored nuclear material that in turn supports decreasing the frequency of inventories conducted by site personnel.

Waddoups, I.G.; Anspach, D.A. [Sandia National Labs., Albuquerque, NM (US); Abbott, J.A. [EG& G Kirtland Operations, Albuquerque, NM (US)

1993-07-01T23:59:59.000Z

229

RADIOACTIVE MATERIALS SENSORS  

SciTech Connect

Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

Mayo, Robert M.; Stephens, Daniel L.

2009-09-15T23:59:59.000Z

230

Public Scoping Meeting Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Scoping Meeting Materials Public Scoping Meeting Materials Public Scoping Meeting Materials Fact sheets, presentations, and other information from the Conversion EIS Public Scoping Meetings. The following materials were made available during the DUF6 Conversion EIS public scoping meetings held near Portsmouth, Ohio, Oak Ridge, Tennessee, and Paducah, Kentucky, November - December, 2001. Notice of Intent PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details Presentation PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program 5.97 MB details DUF6 Fact Sheets PDF Icon Overview of Depleted Uranium Hexafluoride Management Program 174 KB details PDF Icon NEPA Activities for the Depleted Uranium Hexafluoride Management Program

231

Work with Biological Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

232

Management of Nuclear Materials  

Directives, Delegations, and Requirements

To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

1994-05-26T23:59:59.000Z

233

Toward Lighter, Stiffer Materials  

Science Journals Connector (OSTI)

...as additive manufacturing and three-dimensional (3D) printing offer the opportunity to tailor properties to location-specific...fabrication routes for cellular materials are exemplified by 3D printing, but considerable progress must still be made to enhance...

Tobias A. Schaedler; Alan J. Jacobsen; Wiliam B. Carter

2013-09-13T23:59:59.000Z

234

NEW MAGNETIC MATERIALS  

Science Journals Connector (OSTI)

New, sophisticated magnetic materials can be found as essential components in computers, sensors, and actuators, and in a variety of telecommunications devices ranging from telephones to satellites. Some of th...

STANOJA STOIMENOV

2006-01-01T23:59:59.000Z

235

Next Generation Materials:  

Office of Environmental Management (EM)

of 2 to 1 for additive manufacturing by 2020; Composite materials Fiber processing costs reduce by one-half by 2026; 6x improvement in tooling cycles for composite matrix...

236

Materials Science & Engineering  

E-Print Network (OSTI)

. Aucierllo has edited 19 books, published about 450 articles, holds 14 patents, and has organized, chaired and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry

237

Management of Nuclear Materials  

Directives, Delegations, and Requirements

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 410.2. Admin Chg 1 dated 4-10-2014, cancels DOE O 410.2.

2009-08-17T23:59:59.000Z

238

Materials of Construction  

Science Journals Connector (OSTI)

Conversion of coal into clean energy in any process either through direct combustion or conversion to gaseous and liquid fuels involves application of materials at high or reasonably high temperature in aggres...

W. A. Ellingson; K. Natesan; T. Vojnovich

1984-01-01T23:59:59.000Z

239

Electrically conductive material  

DOE Patents (OSTI)

An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

1993-01-01T23:59:59.000Z

240

Electrically conductive material  

DOE Patents (OSTI)

An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

1993-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Reversible hydrogen storage materials  

DOE Patents (OSTI)

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

242

Nuclear Material Packaging Manual  

Directives, Delegations, and Requirements

The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

2008-03-07T23:59:59.000Z

243

Materials of Construction  

Science Journals Connector (OSTI)

Ferrous materials are affected by residual chlorine in saline water feed of desalination plants. In stagnant C1 test solution a semilogarithmically increased corrosion rate was observed with increasing dissolv...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

244

The Materials Project:  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing | June 2014 Energy & Environmental Technologies Berkeley Lab Materials d ata f rom: E agar T., King M. Technology R eview 1 995 What are the properties of known...

245

Hydrogen Compatible Materials Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Summary of the Hydrogen Compatible Materials Workshop held November, 3, 2010, at Sandia National Laboratories in Livermore, California. Summary includes the workshop agenda, an overview of the morning presentations, a discussion of the afternoon meeting, and a list of participants.

246

Bespoke Materials Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Bespoke Materials Surfaces Bespoke Materials Surfaces Background The Department of Energy (DOE) has established performance and efficiency goals for power generation systems which will improve the ability of the U.S. energy sector to produce electricity efficiently with less impact to the environment. Power systems showing the most promise for reaching these goals require corrosion resistance alloys able to perform at very high pressures and temperatures. Increasing both the

247

Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications  

SciTech Connect

This research will develop an optimized, cost-effective method for producing high-purity tungsten-rhenium alloyed fuel clad forms that are crucial for the development of a very high-temperature nuclear reactor. The study will provide critical insight into the fundamental behavior (processing-microstructure- property correlations) of W-Re alloys made using this new fabrication process comprising high-energy ball milling (HEBM) and spark plasma sintering (SPS). A broader goal is to re-establish the U.S. lead in the research field of refractory alloys, such as W-Re systems, with potential applications in very high-temperature nuclear reactors. An essential long-term goal for nuclear power is to develop the capability of operating nuclear reactors at temperatures in excess of 1,000K. This capability has applications in space exploration and some special terrestrial uses where high temperatures are needed in certain chemical or reforming processes. Refractory alloys have been identified as being capable of withstanding temperatures in excess of 1,000K and are considered critical for the development of ultra hightemperature reactors. Tungsten alloys are known to possess extraordinary properties, such as excellent high-temperature capability, including the ability to resist leakage of fissile materials when used as a fuel clad. However, there are difficulties with the development of refractory alloys: 1) lack of basic experimental data on thermodynamics and mechanical and physical properties, and 2) challenges associated with processing these alloys.

Indrajit Charit; Darryl Butt; Megan Frary; Mark Carroll

2012-11-05T23:59:59.000Z

248

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents (OSTI)

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

1993-01-01T23:59:59.000Z

249

Microwave impregnation of porous materials with thermal energy storage materials  

DOE Patents (OSTI)

A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

Benson, D.K.; Burrows, R.W.

1993-04-13T23:59:59.000Z

250

Midwestern Radioactive Materials Transportation Committee Agenda...  

Office of Environmental Management (EM)

Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

251

ATS materials support  

SciTech Connect

The technology based portion of the Advanced Turbine System Program (ATS) contains several subelements which address generic technology issues for land-base gas turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National laboratory (ORNL) for the Department of Energy. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. The materials manufacturing subelement was developed with input from gas turbine manufacturers, material suppliers, government laboratories and universities. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single-crystal airfoil manufacturing technologies, materials characterization and technology information exchange. Westinghouse Power Generation and Pratt and Whitney each have material programs to develop dependable TBCs that enable increased turbine inlet temperatures while maintaining airfoil substrate temperatures at levels to meet the ATS life goals. Howmet and PCC Airfoils each have projects to extend the capability of single-crystal complex-cored airfoil technology to larger sizes so that higher turbine inlet temperatures can be attained in land-based turbines in a cost-effective manner. Materials characterization tasks are ongoing on TBCs in support of the industrial projects. In addition, a project on long-term testing of ceramics and ceramic-matrix composites for gas turbines is being conducted in support of programs at Solar Turbines, Allison Engines, and Westinghouse Power Generation.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K.; Holcomb, R.S. [Oak Ridge National Lab., TN (United States); Rawlins, M.H. [Dept. of Energy, Oak Ridge, TN (United States)

1996-12-31T23:59:59.000Z

252

Geothermal materials development  

SciTech Connect

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

Kukacka, L.E.

1991-02-01T23:59:59.000Z

253

Oxygen ion conducting materials  

DOE Patents (OSTI)

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

254

Ion Beam Materials Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

255

Materials for geothermal production  

SciTech Connect

Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

Kukacka, L.E.

1992-01-01T23:59:59.000Z

256

Optical limiting materials  

DOE Patents (OSTI)

Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

McBranch, Duncan W. (Santa Fe, NM); Mattes, Benjamin R. (Santa Fe, NM); Koskelo, Aaron C. (Los Alamos, NM); Heeger, Alan J. (Santa Barbara, CA); Robinson, Jeanne M. (Los Alamos, NM); Smilowitz, Laura B. (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM); Cha, Myoungsik (Goleta, CA); Sariciftci, N. Serdar (Santa Barbara, CA); Hummelen, Jan C. (Groningen, NL)

1998-01-01T23:59:59.000Z

257

8 - Ceramic materials  

Science Journals Connector (OSTI)

Ceramic materials, manufactured from fired clay, have been used in construction since at least 4000 BC in Egypt, and represent the earliest manufactured building materials. Whilst the strict definition of ceramics includes glass, stone and cement, this chapter deals only with the traditional ceramics based on clays. The variety of traditional ceramic products used within the building industry arises from the wide range of natural and blended clays used for their production. The roof of the spectacular Sydney Opera House (Fig. 8.1) is surfaced with white ceramic tiles which reflect the changing light associated with the time of day.

Arthur Lyons

2006-01-01T23:59:59.000Z

258

Container for radioactive materials  

DOE Patents (OSTI)

A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

Fields, S.R.

1984-05-30T23:59:59.000Z

259

Short courses in Composite Materials  

E-Print Network (OSTI)

Short courses in Composite Materials Overview The ability to tailor the material properties used. Combining the adaptability of composites with clear weight savings, whilst tailoring materials properties Airbus and Glyndr University, the Advanced Composites Training and Development Centre educates current

Davies, John N.

260

Thermal expansion of SOFC materials  

Science Journals Connector (OSTI)

A short overview is given for the thermal expansion of solid oxide fuel cell materials. The thermomechanical compatibility of state-of-the-art materials is compared with alternative, new materials. With these ...

F. Tietz

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CRAD, Packaging and Transfer of Hazardous Materials and Materials of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transfer of Hazardous Materials and Materials Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials

262

NMR imaging of materials  

SciTech Connect

Interest in the area of NMR imaging has been driven by the widespread success of medical imaging. John M. Listerud of the Pendergrass Diagnostic Research Laboratories, Steven W. Sinton of Lockheed, and Gary P. Drobny of the University of Washington describe the principal image reconstruction methods, factors limiting spatial resolution, and applications of imaging to the study of materials.

Listerud, J.M.; Sinton, S.W.; Drobny, G.P.

1989-01-01T23:59:59.000Z

263

Supplemental Material Supplemental methods  

E-Print Network (OSTI)

Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2009 #12;Computing counter and % ID/g calculated as (counts/weight tissue)/ total counts injected. Mass Spectrometry. To extract ACPPs to obtain electrospray (ESI) mass spectra, a solution of 9M guanidinium chloride (Gu

Tsien, Roger Y.

264

Materials Safety Data Sheets  

E-Print Network (OSTI)

Materials Safety Data Sheets (MSDS) MSDS contain chemical hazard information about substances compounds and solvents. MSDS data can be accessed from the following URLs http://www.ehs.umass.edu/ http://www.chem.umass.edu/Safety the "Important Safety Sites for the University" link to reach a variety of safety related information, including

Schweik, Charles M.

265

Sustainable Materials Course Outline  

E-Print Network (OSTI)

, embodied energy; environmental footprint, waste recycling and pollution minimization, life cycle assessment Science and Engineering (Building E8) Phone: 9385 5025 j.q.zhang@unsw.edu.au Consultation hours: by appointment To be advised School of Materials Science and Engineering (Building E8) Consultation hours

New South Wales, University of

266

Why engineer porous materials?  

Science Journals Connector (OSTI)

...Porous carbon of high thermal conductivity is used...absorption, fuel cells and battery materials is a number...photoluminescence, thermal conductivity, low k...self-lubricating bearings and battery electrodes. The range...vibration suppression and thermal management. The porous...

2006-01-01T23:59:59.000Z

267

Old Electrochromic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromic Materials Electrochromic Materials DOE also supports the development of electrochromic coatings through several mechanisms. Three companies are engaged in development of commercial prototypes through the Electrochromics Initiative and an SBIR small business grant. LBNL and another DOE laboratory, the National Renewable Energy Laboratory (NREL) perform a variety of measurements to evaluate the energy performance and durability of these prototypes . Other research activities are intended to assist the efforts of the industry in general. At LBNL, research focuses on rapid development and analysis of electrode materials. Among recent accomplishments was the production of a stoichiometric form of Li0.5Ni0.5O by laser deposition and sputtering with excellent electrochromic properties. Dr. Stuart Cogan of EIC Laboratories tested the films and declared them to have "the highest coloration efficiency of any known anodic electrochromic material." EIC will test the films in their own devices in the near future. We also work on several binary electrodes produced by cosputtering from two targets simultaneously. For example, enhanced forms of tungsten oxide produced in this way have wide application because of the prevalence of tungsten oxide in today's devices. In addition to testing durability, NREL also investigates the degradation mechanisms which lead to failure in the hope of being able to correlate accelerated testing to real time failure as well as to diagnose and correct device problems.

268

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

269

Electric Motors and Critical Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV, materials, and motor designers is missing * Achieving high volume July 24, 2012 Electric Motors and Critical Materials Breakout Session 2 - Discussion of Breakthroughs and...

270

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project On May 22,...

271

NREL: Energy Sciences - Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Materials Science Learn about our...

272

News Releases | Critical Materials Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Releases CMI hosts EU, Japan to discuss global critical materials strategy, September 10, 2014 Five Critical Materials Institute researchers named Most Influential Scientific Minds...

273

From Smart Materials to Cognitive Materials Requirements and Challenges  

E-Print Network (OSTI)

From Smart Materials to Cognitive Materials ­ Requirements and Challenges Lutz Frommberger (lutz construction, production engineer- ing, or wearable computing. Smart and sensorial materials provide a variety this application than the material itself that can be considered being "smart". In this contribution, we proceed

Bremen, Universität

274

Laser Detection Of Material Thickness  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection Of Material Thickness Detection Of Material Thickness Laser Detection Of Material Thickness There is provided a method for measuring material thickness. Available for thumbnail of Feynman Center (505) 665-9090 Email Laser Detection Of Material Thickness There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of

275

Cool Roof Colored Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

276

NEWTON: Determining Material Degradation  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining Material Degradation Determining Material Degradation Name: Hamish Status: student Grade: 6-8 Location: CA Country: USA Date: Summer 2013 Question: I am working on a science project about photo-degradation of plastic film. My question is how much degraded a plastic film should be to say that it was 100% photo-degraded? The plastic film I am photo-degrading is turning into dust when I touch it, what level of degradation is that? Replies: Hi Hamish, Thanks for the question. You will need to define what you mean by photo-degraded. 100% photo-degraded could be that the film becomes translucent and lets through only blurry images. Or it could mean that the film turns to dust when you touch it. As long as you clearly state in your science project what you mean by 100% photo-degraded, you will be doing a good job.

277

Cathode material for lithium batteries  

DOE Patents (OSTI)

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

278

Webinar: Hydrogen Compatibility of Materials  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the webinar titled, Hydrogen Compatibility of Materials, originally presented on August 13, 2013.

279

George Smith, Department of Materials,  

E-Print Network (OSTI)

George Smith, Department of Materials, Oxford University, Parks Road, Oxford OX1 3PH UK Email: george.smith@materials.ox.ac.uk URL: www.materials.ox.ac.uk The aims of the Department of Materials experienced one of the most successful years in its 46-year history, says head of department George Smith. Top

Paxton, Anthony T.

280

Materials Science and Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Science and Engineering Materials Science and Engineering 1 Fe---Cr A lloys f or A dvanced N uclear E nergy A pplica9ons Ron S caMaterials Science and Engineering 2 Thermodynamic S tabiliza9on o f G rain S ize The concept is that non---equilibrium solutes introduced by mechanical alloying can segregate to grain b oundaries, p roducing

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Materials - Recycling - Shredder Residue  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovering Materials from Shredder Residue Recovering Materials from Shredder Residue Obsolete automobiles, home appliances and other metal-containing scrap are shredded for the recovery of metals. More than 50% of the material shredded is automobiles. In the United States, shredders generate about 5 million tons of shredder residue every year. Similar amounts are produced in Europe and in the Pacific Rim. Because recycling shredder waste has not been profitable, most of it ends up in landfills; smaller amounts are incinerated. Argonne researchers have developed and tested a process to recover polymers and metals from shredder residue. A 2-ton/hr pilot plant, consisting of a mechanical separation facility and a six-stage wet density/froth flotation plant, was built at Argonne. In the mechanical part of the plant, the shredder waste was separated into five primary components: a polymer fraction (about 45% by weight), a residual metals concentrate (about 10% by weight), a polyurethane foam portion (about 5% by weight), an organic-rich fraction (about 25% by weight) and a metal oxides fraction (about 15% by weight). The polymer fraction was then separated further in the wet density/froth flotation system to recover individual plastic types or compatible families of polymers.

282

Enhancing Railroad Hazardous Materials Transportation Safety...  

Office of Environmental Management (EM)

Enhancing Railroad Hazardous Materials Transportation Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials...

283

Synthesis of refractory materials  

DOE Patents (OSTI)

Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogren. For this purpose, a metal azide is employed, preferably NaN.sub.3. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

Holt, Joseph B. (San Jose, CA)

1984-01-01T23:59:59.000Z

284

Synthesis of refractory materials  

DOE Patents (OSTI)

Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

Holt, J.B.

1983-08-16T23:59:59.000Z

285

Combinatorial synthesis of novel materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

2001-01-01T23:59:59.000Z

286

Combinatorial synthesis of novel materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-02-12T23:59:59.000Z

287

Combinatorial synthesis of novel materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

1999-12-21T23:59:59.000Z

288

Combinatorial sythesis of organometallic materials  

DOE Patents (OSTI)

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

2002-07-16T23:59:59.000Z

289

A Supplement Analysis on Plutonium Consolidation at Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE))

DOE’s April 2002 decision to consolidate surplus, non-pit weapons-usable plutonium at Savannah River Site did not affect a 1997 DOE decision to continue storage of non-pit surplus plutonium at...

290

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

291

Material efficiency in a multi-material world  

Science Journals Connector (OSTI)

...complex policies and political forces. The overall goal here is...share many of the same driving forces-the materials we use and...materials. Recalling that the fundamental goal of material efficiency...cycle data system (ILCD) handbook-general guide for life cycle...

2013-01-01T23:59:59.000Z

292

DPC materials and corrosion environments  

SciTech Connect

This review focuses on the performance of basket materials that could be exposed to ground water over thousands of years, and prospective disposal overpack materials that could possibly be used to protect dual-purpose canisters (DPCs) in disposal environments.

Ilgen, Anastasia G.; Bryan, Charles R.; Stephanie Teich-McGoldrick; Ernest Hardin

2014-10-01T23:59:59.000Z

293

Scientists seek nonlinear optical materials  

Science Journals Connector (OSTI)

Nonlinear optical materials seem about to do for light what semiconductors already have done for electricity. ... Successful development of these materials could mean big payoffs in telecommunications, data processing, nuclear fusion, and applications of lasers in commerce and industry generally. ...

1982-10-04T23:59:59.000Z

294

Carbon nanotubes in new materials  

Science Journals Connector (OSTI)

Studies of materials consisting of carbon nanotubes or containing them have been analyzed and generalized. Classification of these materials is proposed, their general features and main types are considered, and individual examples are presented. The bibliography includes 372 references.

Eduard G Rakov

2013-01-01T23:59:59.000Z

295

MATERIAL BALANCE REPORT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 (08-98) Previous editions are obsolete. MANDATORY DATA COLLECTION AUTHORIZED BY 10 CFR 30, 40, 50, 70, 75, 150. Public Laws 83-703, 93-438, 95-91. U.S. DEPARTMENT OF ENERGY AND U.S. NUCLEAR REGULATORY COMMISSION MATERIAL BALANCE REPORT 18 U.S.C. SECTION 1001; ACT OF JUNE 25, 1948; 62 STAT. 749; MAKES IT A CRIMINAL OFFENSE TO MAKE A WILLFULLY FALSE STATEMENT OR REPRESENTATION TO ANY DEPARTMENT OR AGENCY OF THE UNITED STATES AS TO ANY MATTER WITHIN ITS JURISDICTION. Printed with soy ink on recycled paper OMB Control No. 1910-1800 OMB Burden Disclosure Statement on Reverse SECTION A 7. DOE/NRC 740M ATTACHED 8. BEGINNING INVENTORY - DOE OWNED 9. BEGINNING INVENTORY - NOT DOE OWNED RECEIPTS 11. PROCUREMENT FROM DOE FROM: 13. PROCUREMENT - FOR THE ACCOUNT OF DOE 14. DOD RETURNS - USE A 15. DOD RETURNS - USE B

296

Materials - Coatings & Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Coatings and Lubricants: Coatings and Lubricants: Super-Hard and Ultra-Low-Friction Films for Friction and Wear Control Ali Erdemir researches nanolubricants. Ali Erdemir researches nanolubricants. The many rolling, rotating and sliding mechanical assemblies in advanced transportation vehicles present friction and wear challenges for automotive engineers. These systems operate under severe conditions-high loads, speeds and temperatures-that currently available materials and lubricants do not tolerate well. Improving the surface friction and wear characteristics of the mechanical system components is an opportunity for engineers, and the use of super-hard, slippery surface films offers promise. Argonne scientists have developed a number of smooth, wear-resistant, low-friction nanocomposite nitride and diamond-like carbon films that have

297

Corrosion resistant ceramic materials  

DOE Patents (OSTI)

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1995-01-01T23:59:59.000Z

298

Corrosion resistant ceramic materials  

DOE Patents (OSTI)

Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

Kaun, Thomas D. (320 Willow St., New Lenox, IL 60451)

1996-01-01T23:59:59.000Z

299

Geochemical and Cosmochemical Materials  

Science Journals Connector (OSTI)

Asphaug (C2) provided a perspective for seven accompanying papers describing results from the Hayabusa (Falcon) spacecraft that flew by, and may have briefly landed on the 500-m S-type asteroid, 25143 Itokawa, to sample and, hopefully return surface materials to Earth. ... As part of a six-paper series describing the Spirit and Opportunity exploration rovers' results from the Gusev crater and Meridiani Planum landing places, respectively, Yen et al. (C6) described and compared the soil chemistry at mineralogy on opposite sites of Mars. ... As one of a six-paper report on the Deep Impact collision with Comet 9P/Tempel 1, Mumma et al. (C7) used high-dispersion IR (2.8?5.0 ?m) spectroscopy to quantify H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4 in the comet before and after impact. ...

Michael E. Lipschutz; Stephen F. Wolf; F. Bartow Culp; Adam J. R. Kent

2007-05-04T23:59:59.000Z

300

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

20, 2013, in CINT, Facilities, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research & Capabilities, Transmission Grid Integration The nation's...

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2013, in Capabilities, Customers & Partners, Energy, Energy Efficiency, Materials Science, News, News & Events, Office of Science, Partnership, Research & Capabilities,...

302

materials | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Manuscript Presentation Desulfurization of Coal Timothy R. Armstrong, Oak Ridge National Laboratory Presentation Materials for Advanced Heat Exchange...

303

Webinar: Hydrogen Storage Materials Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

304

Reactor Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benefits Crosscutting Technology Development Reactor Materials Advanced Sensors and Instrumentation Proliferation and Terrorism Risk Assessment Advanced Methods for Manufacturing...

305

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid Integration, Infrastructure Security, Materials Science, News, News & Events,...

306

Management of Transuranic Contaminated Material  

Directives, Delegations, and Requirements

To establish guidelines for the generation, treatment, packaging, storage, transportation, and disposal of transuranic (TRU) contaminated material.

1982-09-30T23:59:59.000Z

307

Materials-Based Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

There are presently three generic mechanisms known for storing hydrogen in materials: absorption, adsorption, and chemical reaction.

308

Fission meter and neutron detection using poisson distribution comparison  

DOE Patents (OSTI)

A neutron detector system and method for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. Comparison of the observed neutron count distribution with a Poisson distribution is performed to distinguish fissile material from non-fissile material.

Rowland, Mark S; Snyderman, Neal J

2014-11-18T23:59:59.000Z

309

Transporting & Shipping Hazardous Materials at LBNL: Radioactive Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials Radioactive Materials Refer to transportation guidelines in the applicable Radioactive Work Authorization (RWA). Contact the Radiation Protection Group (x7652) if transportation assistance is needed or if radioactive materials need to be shipped. Refer to RPG's Zone sheet to identifying the RCT or HP for your building: https://ehswprod.lbl.gov/rpg/who_to_call.shtml Need radioactive material shipped from LBNL? Please complete the request for shipment form online, print, sign, and forward to your building assigned RPG support person: RPG Transportation - Request for Shipment Form: http://www.lbl.gov/ehs/rpg/assets/docs/Transportation4.pdf Receiving radioactive material at LBNL? If receiving radioactive material at LBNL; radioactive material should be sent to the following address:

310

MEASUREMENT, MATERIALS & SUSTAINABLE ENVIRONMENT CENTER  

E-Print Network (OSTI)

M2SEC MEASUREMENT, MATERIALS & SUSTAINABLE ENVIRONMENT CENTER #12;#12;M2SEC | The University 66045 MEASUREMENT, MATERIALS & SUSTAINABLE ENVIRONMENT CENTER The Measurement, Materials Sustainable initiative themes of KU's strategic plan, Bold Aspirations: · Sustaining The Planet, Powering The World

311

Department of Advanced Materials Science  

E-Print Network (OSTI)

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

312

Mercury-Related Materials Studies  

E-Print Network (OSTI)

. Pawel, "Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for MercuryMercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 ­ updated Feb 3, 2010 #12;ORNL Material Reports Reviewed · IDS-NF requested ORNL research any past SNS

McDonald, Kirk

313

Superconductivity and Magnetism: Materials Properties  

E-Print Network (OSTI)

#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 and Magnetism: Materials Properties and Developments Extended abstracts of the 24th Risø International Symposium LABORATORY ROSKILDE, DENMARK #12;Risø International Symposium on Superconductivity and Magnetism: Material

314

Nanostructured materials for hydrogen storage  

DOE Patents (OSTI)

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

315

Argonne CNM: Materials Synthesis Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis Facilities Materials Synthesis Facilities Capabilities biosynthesis View larger image. Biosynthesis Methods Peptide and DNA synthesis (E. Rozhkova, Nanobio Interfaces Group) Nanobio hybrid synthesis (T. Rajh, Nanobio Interfaces Group) Hierarchal assembly View larger image. Hierarchical Assembly Bottom-up polymeric and bio-templating as well as lithographically directed self-assembly (S. Darling, Electronic & Magnetic Materials & Devices Group; E. Rozhkova, Nanobio Interfaces Group) Molecular beam epitaxy View high-resolution image. Molecular Beam Epitaxy Complex oxide nanoferroelectric and nanoferromagnetic materials and devices created using a DCA R450D Custom MBE instrument (A. Bhattacharya, Electronic & Magnetic Materials & Devices Group) Nanoparticle synthesis

316

Mathematical modelings of smart materials and structures  

E-Print Network (OSTI)

Mathematical modelings of smart materials and structures Christian Licht , Thibaut Weller mathematical models of smart materials and smart structures. Smart materials are materials which present perturbations methods, asymptotic analysis, plates and rods models. 1 Introduction Smart materials present

Paris-Sud XI, Université de

317

Argonne TDC: Material Transfer Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Transfer Agreements Material Transfer Agreements Materials produced by researchers at Argonne National Laboratory are often of interest to the private sector. Depending on the circumstances under which the material was developed, such material may be transferred to industry for a number of reasons (e.g., testing, feasibility studies, etc.). This transfer is usually temporary and can initiate a more formal working arrangement. At this time, TDC, in conjunction with Argonne's Legal Department, provides such agreements on an as-needed basis. If you would like to acquire material produced by Argonne researchers during the course of a federally funded research project, please contact TDC or fill out a Material Transfer Agreement request form. Printed or electronically downloaded copies may become obsolete. Before using such a copy for work direction, employees must verify that it is current by comparing its revision number with that of the online version. Obsolete forms will be rejected.

318

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

319

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

320

Material Standards for EHS for Engineered Nanoscale Materials Material Standards for  

E-Print Network (OSTI)

#12;#12;Material Standards for EHS for Engineered Nanoscale Materials Material Standards of Standards and Technology, Gaithersburg, MD Workshop Co-Chairs and Principle Report Editors Dianne L. Poster, John A. Small, Michael T. Postek National Institute of Standards and Technology Sponsored by U

Magee, Joseph W.

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear materials management storage study  

SciTech Connect

The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

Becker, G.W. Jr.

1994-02-01T23:59:59.000Z

322

Review of SAR for Packaging Report  

Energy.gov (U.S. Department of Energy (DOE))

This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material.

323

Argonne TTRDC - Experts - Materials Experts  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Technologies Battery Technologies Combustion Analysis Engines & Emissions Fuel Cell Technologies Systems Assessment Technology Analysis Tribology Vehicle Recycling Vehicle Systems Materials Experts Click on a name to see a full résumé. Deformation Joining Cinta Lorenzo-Martin, Postdoctoral Appointee phone: 630/252-8577, fax: 630/525-5568, e-mail: lorenzo-martin@anl.gov PhD, Material Science, University of Seville, Spain Joining of different materials at high temperature Research on reduction of friction and wear to minimize energy losses Scuffing, wear and friction studies of ceramics 21+ publications and presentations Dileep Singh, Materials Scientist phone: 630/252-5009, fax: 630/252-2785, e-mail: dsingh@anl.gov PhD, Material Science, University of Utah Structure-mechanical property relationships in advanced energy materials

324

Sandia National Laboratories: materials science  

NLE Websites -- All DOE Office Websites (Extended Search)

of microsystems-enabled PV (MEPV) technology and ... Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

325

Vibrational Damping of Composite Materials  

E-Print Network (OSTI)

on the Damping of Composite Laminates”, SPIE Proceedings onpublication to Journal of Composite Materials Biggerstaff,submitted for publication to Composites, Part A Biggerstaff,

Biggerstaff, Janet M.

2006-01-01T23:59:59.000Z

326

materials | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Director, U.S. DOE-NETL Session I - Functional Materials Moderators: Timothy R. Armstrong, Oak Ridge National Laboratory Bulk Carbon Dioxide Removal By Adsorption: Current...

327

Advanced Materials Research Highlights | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials | Research Highlights Research Highlights 1-10 of 93 Results Prev 12345 Next Single Supported Atoms Participate in Catalytic Processes December 04, 2014 -...

328

Hydraulic Fracturing in Particulate Materials.  

E-Print Network (OSTI)

??For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has… (more)

Chang, Hong

2004-01-01T23:59:59.000Z

329

Sandia National Laboratories: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

at the ASME 12th Fuel Cell Science, Engineering and Technology Conference in Boston, Massachusetts. One pathway for delivering H2 ... Combining 'Tinkertoy' Materials with...

330

Center for Nanophase Materials Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

the functionality of nanoscale materials and interacting assemblies * Research on optoelectronic, ferroelectric, ionic and electronic transport, and catalytic phenomena at the...

331

Nanostructured Electrode Materials for Supercapacitors  

E-Print Network (OSTI)

and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical of polymethine dyes electronic spectra is crucial for successful design of the new molecules with optimized

Wu, Shin-Tson

332

Materials Compatibility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publications Mechanical Properties of Structural Steels in Hydrogen Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture Report on Assessment of...

333

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

334

Center for Energy Efficient Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Plastic Solar Solid State Lighting High-Efficiency Solar Cells Thermoelectrics Undergraduate Internship Program Overview The Center for Energy Efficient Materials (CEEM) is an...

335

Glass as a structural material.  

E-Print Network (OSTI)

??Glass can be beautiful and strong, so why is it not used more often as a structural material? Most often the reasoning is because people… (more)

White, Rachel Lynn

2007-01-01T23:59:59.000Z

336

NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS  

E-Print Network (OSTI)

NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS PRESENT FOR MATERIALS AND NANOSCIENCE & CENTER FOR NANOHYBRID FUNCTIONAL MATERIALS PRESENT Graphene Colloquium

Farritor, Shane

337

SC e-journals, Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface Engineering - OAJ Archives of Materials Science and Engineering - OAJ Carbohydrate Polymers Carbon Catalysis Science & Technology Cellulose Cement and Concrete Research Ceramic Engineering and Science Proceedings Ceramics International Chalcogenide Letters - OAJ Chemical and Petroleum Engineering

338

Advanced Materials by Design: Programable Transient Electronics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials by Design: Programable Transient Electronics Transient materials is an emerging area of materials design with the key attribute being the ability to physically...

339

Disordered Materials Hold Promise for Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

340

Method of Synthesis of Proton Conducting Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Method of Synthesis of Proton Conducting Materials Method of Synthesis of Proton Conducting Materials A method of producing a proton conducting material. Available for thumbnail of...

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cybersecurity Awareness Materials | Department of Energy  

Energy Savers (EERE)

Cybersecurity Awareness Materials Cybersecurity Awareness Materials The OCIO develops and distributes a variety of awareness material to be used during cyber awareness campaigns or...

342

The Materials Science of Titanium Dioxide Memristors  

E-Print Network (OSTI)

unipolar resistance switching,” Advanced Materials, vol. 20,A variety of resistance switching materials could be used3 for resistance-change memory,” Advanced Materials, vol.

Pickett, Matthew

2010-01-01T23:59:59.000Z

343

On the fracture toughness of advanced materials  

E-Print Network (OSTI)

occurs when the materials resistance to fracture ceases toall classes of materials, the fracture resistance does notthese biological materials derive their fracture resistance

Launey, Maximilien E.

2009-01-01T23:59:59.000Z

344

Material Safety Data Sheets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Material Safety Data Sheets Material Safety Data Sheets Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a...

345

Cybersecurity Awareness Marketing/Promotional Material | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MarketingPromotional Material Cybersecurity Awareness MarketingPromotional Material The OCIO has developed a variety of marketing and promotional material to be used during cyber...

346

Hydrogen Compatible Materials Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Compatible Materials Workshop Hydrogen Compatible Materials Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories hosted the Hydrogen Compatible Materials...

347

Scientists produce transparent, light-harvesting material  

NLE Websites -- All DOE Office Websites (Extended Search)

Transparent, light-harvesting material Scientists produce transparent, light-harvesting material The material could be used in development of transparent solar panels. November 3,...

348

Computational materials: Embedding Computation into the Everyday  

E-Print Network (OSTI)

building forces, smart materials are dynamic in that theymaterial With a smart material, we should be clearly1] Addington, M. 2001 Smart Materials and Technologies. In A

Thomsen, Mette Ramsgard; Karmon, Ayelet

2009-01-01T23:59:59.000Z

349

Materials Sciences and Engineering Program | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

350

Mercury-Related Materials Studies  

E-Print Network (OSTI)

Mercury-Related Materials Studies Van Graves IDS NF Ph M tiIDS-NF Phone Meeting Jan 26, 2010 #12 Evaluation of Cavitation Resistance of Type 316LN Stainless Steel in Mercury Using a Vibratory Horn," J. Nucl Pump Impeller Materials for Mercury Service at the Spallation Neutron Source," Oak Ridge National

McDonald, Kirk

351

Materials science aspects of coal  

Science Journals Connector (OSTI)

Natural organic materials are arrangements of linear aliphatic units and ring-like aromatic units arranged in a polymeric pattern. We show that fossilized organic materials such as coals and oil shale retain this polymeric character. We also show the polymeric nature of jet and amber fossilized organic matter used for centuries for ornamentation.

Charles Wert; Manfred Weller

2001-01-01T23:59:59.000Z

352

The material footprint of nations  

Science Journals Connector (OSTI)

...other solid energy materials/carriers A.4.1.1: Brown coal (lignite) A.4.1.2: Hard coal A.4.1.3: Oil shale and tar sands* A.4.1.4: Peat A.4.2: Liquid and gaseous energy materials/carriers A.4.2.1: Crude...

Thomas O. Wiedmann; Heinz Schandl; Manfred Lenzen; Daniel Moran; Sangwon Suh; James West; Keiichiro Kanemoto

2013-01-01T23:59:59.000Z

353

Materials science Nanotubes get hard  

E-Print Network (OSTI)

Materials science Nanotubes get hard under pressure Proc. Natl Acad. Sci. USA doi:10.1073/pnas.0405877101 (2004) When Zhongwu Wang et al. squeezed carbon nanotubes in a diamond anvil cell, they made nanotubes into diamond itself: the carbon material formed under compression at room temperature seems

Downs, Robert T.

354

Material selection for electrooptic deflectors  

SciTech Connect

The selection of a material for a practical device is generally guided by a number of criteria, including cost, size, difficulty of fabrication, durability, driver requirements, and system constraints. A quantitative analysis can usually be made for comparison, or a figure of merit can be computed. In the case of materials for electrooptical (EO) devices the choice is often made based on the availability of materials meeting some minimum system requirement. For fast EO deflectors, where a large number of resolvable spots is required, the choice of materials is quite limited. A model of just such a device is proposed; it is based on the resolution of 400 spots and reasonable boundary conditions. The model predicts that to be successful, an EO material must be chosen that has a linear EO coefficient (r/sub 33/) of at least 336 pm/V. A survey was conducted of the EO materials which are generally available. Based on the model and the survey, Czochralski crystal growth of strontium barium niobate (SBN:60) is recommended. Although SBN:60 does not have the largest EO coefficient, it may be the easiest to grow in the required size and optical quality, thus satisfying the availability criterion. It should be borne in mind that many materials may be grown by this technique and there are many new and potential applications for EO materials. 92 refs., 18 figs., 14 tabs.

Not Available

1988-09-01T23:59:59.000Z

355

Field of Expertise Materials Science  

E-Print Network (OSTI)

structure-property relationships through the characterisation of diverse materials to process optimisation and international research partners in order to keep Austrian high-technology industry, scientific production semiconductors Paper and physical chemistry principles of paper strength Metallic materials for energy applica

356

Nuclear Material Control and Accountability  

Directives, Delegations, and Requirements

This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

2011-06-27T23:59:59.000Z

357

Radioactive Material Transportation Practices Manual  

Directives, Delegations, and Requirements

This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Cancels DOE M 460.2-1.

2008-06-04T23:59:59.000Z

358

Materials Science Graduate Student Handbook  

E-Print Network (OSTI)

Materials Science Program Graduate Student Handbook Fall 2010 #12;1 http://www.engr.wisc.ede/interd/msp/handbook year are eligible to run for office. This handbook was written by materials science graduate students Assistance (page 5): How does research funding work? Course Registration (page 7): What classes should I

Evans, Paul G.

359

Materials Highlights | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials SHARE Materials Highlights 1-7 of 7 Results Neutron scattering characterizes dynamics in polymer family December 01, 2012 - Understanding the interplay between structure and dynamics is the key to obtaining tailor-made materials. In the last few years, a large effort has been devoted to characterizing and relating the structure and dynamic properties in families of polymers with alkyl side groups. Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells December 01, 2012 - Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in

360

Success Stories: Materials Discovery - Symyx  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Discovery Materials Discovery Until Lawrence Berkeley National Laboratory scientist Peter Schultz thought of a better way, materials discovery was a costly, slow, and laborious process. In the early 1990s Dr. Schultz and colleagues invented a super efficient materials research process that combined minaturizing with parallel processing. In 1994 the start-up company Symyx Technologies, Inc. licensed the invention and began developing research tools that can create and screen new materials hundreds to thousands of times faster than traditional methods at a fraction of the cost. Combinatorial techniques had been successfully applied in the pharmaceutical industry to discover new drugs when Schultz and co-workers in the Molecular Design Institute of Berkeley Lab proposed that the same

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

362

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Materials Insulation Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

363

Solar Thermal Reactor Materials Characterization  

SciTech Connect

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

364

Radioactive waste material melter apparatus  

DOE Patents (OSTI)

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

365

Scalable Routes to Efficient Thermoelectric Materials  

E-Print Network (OSTI)

of GeSbSe phase-change materials," Nature Materials, vol. 6,processing of the phase-change material KSb5S8," Chemistryhas demonstrated the phase change material KSbS by a similar

Feser, Joseph Patrick

2010-01-01T23:59:59.000Z

366

Downloads & Patient Materials - HPMC Occupational Health Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Health Education & Wellness Downloads & Patient Materials Ergonomics Fitness & Exercise Men's Health Nutrition Women's Health Health & Productivity Health Calculators &...

367

CHARACTERIZATION OF SIALON-TYPE MATERIALS  

E-Print Network (OSTI)

testing of ceramic materials. crucihle Thermal Shock Tests.and thermal shock. Among the various ceramic materials being

Spencer, P.N.

2010-01-01T23:59:59.000Z

368

Materials Synthesis from Atoms to Systems | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Porous Materials Thin Film Deposition Single Crystal Growth Texture Control Additive Manufacturing Nanomaterials Synthesis Designer Organic Molecules Related Research Materials...

369

Department of Transportation Pipeline and Hazardous Materials...  

Office of Environmental Management (EM)

Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration...

370

Materials Characterization Capabilities at the High Temperature...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites Materials Characterization Capabilities at the High...

371

ITP Industrial Materials: Development and Commercialization of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

372

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combinatorial Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial...

373

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

374

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

375

High-Temperature Thermoelectric Materials Characterization for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Program's subprograms in Lightweight Materials, Propulsion Materials, Energy Storage, and Thermoelectric Conversion at the Oak Ridge National Laboratory. * This...

376

Integrated Computational Materials Engineering (ICME) for Mg...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Engineering (ICME) for Mg: International Pilot Project Integrated Computational Materials Engineering (ICME) for Mg: International Pilot Project Magnesium Projects...

377

Screen Electrode Materials & Cell Chemistries and Streamlining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode...

378

Chemistry and Materials Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights NERSC Citations HPC Requirements Reviews Home Science at NERSC Chemistry & Materials Science Chemistry & Materials Science Simulation plays an indispensable...

379

NREL: Photovoltaics Research - Materials Applications and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics Research Printable Version Materials Applications & Performance Staff The materials applications & performance staff members at the National Renewable Energy...

380

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation...

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Transformed materials : a material research center in Milan, Italy  

E-Print Network (OSTI)

[Transformed Materials] is an exploration into today's design methodologies of architecture production. The emergence of architectural form is questioned in relation to the temporal state of design intent and the physical ...

Skerry, Nathaniel S. (Nathaniel Standish), 1971-

2002-01-01T23:59:59.000Z

382

Critical Materials Institute List of Projects | Critical Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Lithium Extraction 1.1.3 Herbst, Scott INL Enhanced Separation of Adjacent Rare Earth Elements 1.2.1 Mishra, Brajendra CSM Conversion to Metal, Alloys, and Materials 1.2.2...

383

Storage depot for radioactive material  

DOE Patents (OSTI)

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

384

Materials Challenges in Nuclear Energy  

SciTech Connect

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL] [ORNL; Was, Gary [University of Michigan] [University of Michigan

2013-01-01T23:59:59.000Z

385

RADIATION EFFECTS IN MATERIAL MICROSTRUCTURE.  

SciTech Connect

Next generation nuclear power systems, high-power particle accelerators and space technology will inevitably rely on higher performance materials that will be able to function in the extreme environments of high irradiation, high temperatures, corrosion and stress. The ability of any material to maintain its functionality under exposure to harsh conditions is directly linked to the material structure at the nano- and micro-scales. Understanding of the underlying processes is key to the success of such undertakings. This paper presents experimental results of the effects of radiation exposure on several unique alloys, composites and crystals through induced changes in the physio-mechanical macroscopic properties.

SIMOS,N.

2007-05-30T23:59:59.000Z

386

LANL: Ion Beam Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Materials Laboratory (IBML) is a Los Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to materi- als research through the use of ion beams. Current major research areas include surface characterization through ion beam analysis techniques, surface modification and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion accelerator and a 200 kV ion implanter together with several beam lines. Attached to each beam line is a series of experimental stations that support various research programs. The operation of IBML and its interactions with users are organized around core facilities and experimental stations. The IBML provides and operates the core facilities as well as supports

387

Digital materials for digital fabrication  

E-Print Network (OSTI)

This thesis introduces digital materials by analogy with digital computation and digital communications. Traditional fabrication techniques include pick-and-place, roll-to-roll, molding, patterning and more. Current research ...

Popescu, George A

2007-01-01T23:59:59.000Z

388

Nuclear Material Control and Accountability  

Directives, Delegations, and Requirements

The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Cancels: DOE M 474.1-1B DOE M 474.1-2A

2005-08-26T23:59:59.000Z

389

Nuclear Material Control and Accountability  

Directives, Delegations, and Requirements

The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Chg 1, dated 8-14-06. Canceled by DOE O 474.2.

2005-08-26T23:59:59.000Z

390

Advances in Solar Optical Materials  

Science Journals Connector (OSTI)

This review contains several categories of optical materials that are used in the conversion or modification of solar energy for heating, cooling and lighting purposes in buildings and other structures. The ty...

Carl M. Lampert

1989-01-01T23:59:59.000Z

391

Naturally Occurring Radioactive Materials (NORM)  

SciTech Connect

This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards they present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).

Gray, P. [ed.

1997-02-01T23:59:59.000Z

392

Thermoelectric Materials for Automotive Applications  

Energy.gov (U.S. Department of Energy (DOE))

Discusses the background information on what makes a good thermoelectric material, then the findings of three recent ORNL field report studies focused at PbSe, Bi2Se3, CrSi2, respectively

393

Herty Advanced Materials Development Center  

Energy.gov (U.S. Department of Energy (DOE))

Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

394

Strategic raw material inventory optimization  

E-Print Network (OSTI)

The production of aerospace grade titanium alloys is concentrated in a relatively small number of producers. The market for these materials has always been cyclical in nature. During periods of high demand, metal producers ...

Vacha, Robin L. (Robin Lee)

2007-01-01T23:59:59.000Z

395

Heat and Sound Insulation Materials  

Science Journals Connector (OSTI)

Of the three heat transfer processes: heat conduction, convection and radiation, convectional heat transfer is reduced by fiber and foam insulation materials1, 2). Air circulation is prevented by compartmentalizi...

Dr. Andre Knop; Dr. Louis A. Pilato

1985-01-01T23:59:59.000Z

396

Polymers, Fractals, and Ceramic Materials  

Science Journals Connector (OSTI)

...application primarily as optical coatings and aerogels. Aerogels (1...4) Gelation //Polymer x Coating_rn Film Monomer Aggregation...Sintering.......... Aerogel Monolith Fig. 1. Ceramic...desired for index-matched coatings, then base-catalyzed materials...

DALE W. SCHAEFER

1989-02-24T23:59:59.000Z

397

Commercializationof Dredged-Material Decontamination  

E-Print Network (OSTI)

~ationalm~at~t~,upton,N ~ W bench-scale validationprocess of innovative/emerging technologies will York and disposal m@eeruftbpast experienceon of contaminatedsedimentsin dredged material, aswell as the remediation

Brookhaven National Laboratory

398

Hydrogen Storage Materials Database Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

399

Structural materials for fusion reactors  

Science Journals Connector (OSTI)

Fusion Reactors will require specially engineered structural materials, which ... on safety considerations. The fundamental differences between fusion and other nuclear reactors arise due to the 14MeV neutronics ...

P. M. Raole; S. P. Deshpande

2009-04-01T23:59:59.000Z

400

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear Material Control and Accountability  

Directives, Delegations, and Requirements

This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1.

2011-06-27T23:59:59.000Z

402

Momentive Performance Materials Distillation Intercharger  

E-Print Network (OSTI)

Presenter: Nicki (Collins) Boucher Project Team: T. Baisley, C. Beers, R. Cameron, K. Holman, T. Kotkoskie, K. Norris Momentive Performance Materials Inc. Waterford, NY May 23, 2013 Industrial Energy Technology Conference ACC Responsible... Care? Energy Efficiency Program Momentive Performance Materials Distillation Interchanger ESL-IE-13-05-20 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 Copyright 2013 Momentive Performance...

Boucher, N.; Baisley, T.; Beers, C.; Cameron, R.; Holman, K.; Kotkoskie, T.; Norris, K.

2013-01-01T23:59:59.000Z

403

Material Corrion/Degradation Database  

SciTech Connect

The corrosion of a variety of structural metals and materials is presented. Data on specific material--and for well-studied agents--has been abstracted from the corrosion literature. In addition, limited data on one superacid (so-called ''Magic Acid,'' a mixture of 100% fluorosulfonic acid, HSO{sub 3}F, with 25% (w/w) of antimony pentafluoride (SbF{sub 5}) added) is tabulated.

Kinkead, S.A.

1999-07-08T23:59:59.000Z

404

Nondestructive ultrasonic testing of materials  

DOE Patents (OSTI)

Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.

Hildebrand, Bernard P. (Richland, WA)

1994-01-01T23:59:59.000Z

405

Material control and accountability alternatives  

SciTech Connect

Department of Energy and Nuclear Regulatory Commission regulations governing material control and accountability in nuclear facilities have become more restrictive in the past decade, especially in areas that address the insider threat. As the insider threat receives greater credibility, regulations have been strengthened to increase the probability of detecting insider activity and to prevent removal of a significant quantity of Special Nuclear Material (SNM) from areas under control of the protective force.

NONE

1991-08-12T23:59:59.000Z

406

Nondestructive ultrasonic testing of materials  

DOE Patents (OSTI)

Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.

Hildebrand, B.P.

1994-08-02T23:59:59.000Z

407

2014 Annual Merit Review Results Report - Materials Technologies...  

Energy Savers (EERE)

Materials Technologies: Propulsion Materials 2014 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies...

408

High Performance Abrasion-Resistant Materials: Lessons from Nature  

E-Print Network (OSTI)

Basics of abrasion resistance materials The progressive lossachieve abrasion resistance, materials need to posses highresistance materials

Wang, Qianqian

2012-01-01T23:59:59.000Z

409

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

an object vibrates, it creates sound, vibrations can 0:19 be detected. Besides just listening to it, we can detect it with various sensors. We 0:25 can tell what's inside a...

410

Radioactive material package seal tests  

SciTech Connect

General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

1990-01-01T23:59:59.000Z

411

Nuclear Material Control and Accountability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1194-2011 JUNE 2011 ──────────────── CHANGE NOTICE NO.2 DECEMBER 2012 ──────────────── CHANGE NOTICE NO.3 OCTOBER 2013 DOE STANDARD NUCLEAR MATERIALS CONTROL AND ACCOUNTABILITY U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ATTACHMENT 1 Change Notice No. 3 DOE -STD-1194-2011 October 2013 Nuclear Materials Control and Accountability Table of Changes Page/Section Change Page 57/Section 6.4.4.1. Change from, - Accounting records and source documents shall include item identification, material type, form, quantity, location, gross

412

NETL: Onsite Research: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Metallography Metallography NETL has a state-of-the art metallographic facility staffed with world renowned experts with experience on a wide range of alloys and materials with the tools to get the job done. Our metallography staff works with their customers to reveal the microstructure contained within the specimens using sophisticated polishing, staining, and microscopic techniques to develop new techniques and improve upon old ones. An understanding of the microstructure is a useful tool in a wide range of situations from developing processing techniques on new material to evaluating the performance of new and existing materials after exposure to aggressive conditions. The information our staff obtains is an invaluable part of a research program. For example:

413

Applied Materials | Open Energy Information  

Open Energy Info (EERE)

Materials Materials Jump to: navigation, search Name Applied Materials Address 3050 Bowers Avenue Place Santa Clara, California Zip 95054 Sector Solar Stock Symbol AMAT Website http://www.appliedmaterials.co Coordinates 37.3775749°, -121.9794416° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.3775749,"lon":-121.9794416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

The Critical Materials Research Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

NOVEMBER 2012 NOVEMBER 2012 The Critical Materials Research Alliance About the Critical Materials Research Alliance The recent surge of interest in critical materials, including rare earth elements (REEs), stems from supply shortages and escalating prices of some REEs. In 2010, the United States' sole REE supplier was China-previously responsible for 97% of global REE production-but the Chinese government curtailed their export. Because REEs and other critical elements are used in renewable energy resources, energy storage, energy efficiency technologies, and national defense, a shortage in their supply impedes development of energy technologies and hinders U.S. defense industries. To address the challenges faced in revitalizing the rare earth industry, the National Energy Technology

415

CHSP: Material Safety Data Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

HYGIENE HYGIENE AND SAFETY PLAN CHSP SITE MAP WHO TO CALL MATERIAL SAFETY DATA SHEETS ROLES AND RESPONSIBILITIES arrow image CHEMICAL PROCUREMENT, TRANSPORTATION AND INVENTORY arrow image CHEMICAL HAZARD: DEFINITION arrow image CHEMICAL HAZARD ASSESSMENTS arrow image HAZARD CONTROLS arrow image TRAINING AND HAZARD INFORMATION arrow image EXPOSURE MONITORING & MEDICAL CONSULTATION arrow image APPENDICES arrow image FAQs QUESTIONS Search the CHSP: > Go spacer image EH&S Home PUB 3000 LBNL Home LBNL A-Z Index LBNL Search LBNL Phone Book Privacy & Security Notice spacer spacer image spacer image Material Safety Data Sheets and Chemical Information Resources A Material Safety Data Sheet (MSDS) is a manufacturer/importer's informational document of a hazardous chemical that describes its physical and chemical properties, hazards, and recommended precautions for handling, storage and disposal. How to Read an MSDS

416

Studying Materials Under Extreme Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying Materials Under Extreme Pressure Studying Materials Under Extreme Pressure Coupling undulator radiation from Advanced Photon Source (APS) beamlines 3-ID and 13-ID to nuclear resonant inelastic scattering techniques, researchers have determined the phonon density of states for iron under pressures up to 153 gigapascals, equivalent to those found at the Earth's core. Image of the Earth's core. Although indirect measurements and theory have, since the early 1950s, produced an informed picture of the structure and composition of the materials that make up the core of the Earth, direct proof and the answers to some intriguing questions remain unanswered. Previously, ultrahigh-pressure experiments using nuclear resonant inelastic scattering have been difficult to carry out due the tiny samples required.

417

MaterialsChemistryA Materials for energy and sustainability  

E-Print Network (OSTI)

Pages 5939�6248 #12;High efficiency perovskite solar cells: from complex nanostructure to planar, the power conversion efficiency (PCE) of perovskite-based dye-sensitized solar cells (DSSCs) has rapidly the prognosis for future progress in exploiting perovskite materials for high efficiency solar cells. 1

Lin, Zhiqun

418

Non-Archival Material The following materials are not required  

E-Print Network (OSTI)

and business or relating to facets of a career in photon science, particle and astroparticle science, and high materials Brochures, pamphlets, maps, directories, and posters Architectural drawings and plans and accomplishments of the Laboratory; Supports education, research, scholarship, and administration by making

Wechsler, Risa H.

419

New Materials for Hydrogen Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

OAK OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY New Materials for Hydrogen Pipelines New Materials for Hydrogen Pipelines Barton Smith, Barbara Frame, Cliff Eberle, Larry Anovitz, James Blencoe and Tim Armstrong Oak Ridge National Laboratory Jimmy Mays University of Tennessee, Knoxville Hydrogen Pipeline Working Group Meeting August 30-31, 2005 Augusta, Georgia 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview Overview - - Barriers and Technical Targets Barriers and Technical Targets * Barriers to Hydrogen Delivery - Existing steel pipelines are subject to hydrogen embrittlement and are inadequate for widespread H 2 distribution. - Current joining technology (welding) for steel pipelines is major cost factor and can exacerbate hydrogen embrittlement issues.

420

Growth at Chemistry of Materials  

Science Journals Connector (OSTI)

Publication Date (Web): October 14, 2014 ... Thomson-Reuters, the corporation that runs Web of Science, has published a series of reports under the heading of Science Watch; one area covered is materials science. ... (1) They also note that the world share of papers indexed by Web of Science in materials has grown from just under 3% to 5% from 1981 to 2011, and yet the total number of papers handled during this time has more than doubled to 1.1 million per annum. ...

Jillian M. Buriak

2014-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Positron annihilation rates in materials  

Science Journals Connector (OSTI)

The study of positron annihilation rate is one subject of a relatively new method of material structure analysis â?? positron annihilation spectroscopy. Polyethylene Terephthalate (PET) films have been studied by positron annihilation rate measurement. The correlation between annihilation rates and the PET film thickness was established. Similar studies were carried out for aluminium foils and water. The results give information on the probability of positron annihilation per unit of time and per unit of material thickness that is described by an explicit function of the energy transfer model.

Tran Dai Nghiep; Khuong Thanh Tuan; Ngo Danh Du

2007-01-01T23:59:59.000Z

422

Scintillator materials containing lanthanum fluorides  

DOE Patents (OSTI)

An improved radiation detector containing a crystalline mixture of LaF.sub.3 and CeF.sub.3 as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF.sub.3 and the remainder CeF.sub.3 have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography.

Moses, William W. (Berkeley, CA)

1991-01-01T23:59:59.000Z

423

Scintillator materials containing lanthanum fluorides  

DOE Patents (OSTI)

An improved radiation detector containing a crystalline mixture of LaF[sub 3] and CeF[sub 3] as the scintillator element is disclosed. Scintillators made with from 25% to 99.5% LaF[sub 3] and the remainder CeF[sub 3] have been found to provide a balance of good stopping power, high light yield and short decay constant that is equal to or superior to other known scintillator materials, and which may be processed from natural starting materials containing both rare earth elements. The radiation detectors disclosed are favorably suited for use in general purpose detection and in positron emission tomography. 2 figures.

Moses, W.W.

1991-05-14T23:59:59.000Z

424

The erosion resistance of infrared transparent materials  

Science Journals Connector (OSTI)

...research-article The erosion resistance of infrared transparent materials E.J. Coad C.S...discussed. erosion resistance|infrared materials|liquid impact...Keywords: erosion resistance; infrared materials; liquid impact...

1998-01-01T23:59:59.000Z

425

Systems and methods for treating material  

DOE Patents (OSTI)

Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF.sub.3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF.sub.3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF.sub.3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portion from the material. The materials exposed to the NF.sub.3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.

Scheele, Randall D; McNamara, Bruce K

2014-10-21T23:59:59.000Z

426

Materials for Advanced Energy Technologies  

Science Journals Connector (OSTI)

...sources such as sunlight or wind become more at-tractive with...are: magnetic confinement, laser fusion, and electron beam fusion...working tem-perature of the turbine blade 10 C per year, but for...High-Tem-perature Materials in Gas Turbines (Elsevier, Am-sterdam...

Richard S. Claassen

1976-02-20T23:59:59.000Z

427

Department of Advanced Materials Science  

E-Print Network (OSTI)

device, Bioconjugate matsuura@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials Nuclear magnetic resonance, Quantum spin systems, Low temperature physics, Strongly correlated electron Effect takatama@spring8.or.jpe-mail 0791-58-2942T E L Synchrotron Radiation, X-ray Free Electron Laser

Katsumoto, Shingo

428

Soft Magnetic Materials in Telecommunications  

Science Journals Connector (OSTI)

... , the subject being "Soft Magnetic Materials whose Properties are of Use or Significance in Telecommunications". The meetings were attended by about seventy people from Great Britain and the Continent ... for a few papers which dealt with aspects of the matter not generally considered by telecommunications engineers, the authors concentrated on the following main lines : theoretical consequences of domain ...

1952-05-31T23:59:59.000Z

429

Life cycles of granular materials  

Science Journals Connector (OSTI)

...resisted by the slow rate at which pore water can...foundations which sit on or pass through the fill onto...from the mechanics and physics of particle interactions...behaviour can be linked to rates of pore fluid diffusion...and descriptions of the physics of the granular material...

1998-01-01T23:59:59.000Z

430

Neutron scattering of transuranium materials  

SciTech Connect

A number of neutron experiments on transuranium materials are reviewed. Purpose of these experiments, which range from studies of crystal fields in the oxides to excitations in PuSb, is to increase our understanding of the 5f electron behavior across the first half of the actinide series. Comparisons are made with the more familiar uranium analogues.

Lander, G.H.

1986-01-01T23:59:59.000Z

431

Materials Department Annual Report 1991  

E-Print Network (OSTI)

Composites 35 4.2 Solid Oxide Fuel Cells (SOFC) in Denmark 38 4.3 Ceramic Processing 40 4.4 Powder Metallurgy of Polymer Matrix Composites 18 2.6 Irradiation Defects - Fusion Materials 20 2.7 Solid Electrolytes - New

432

Plasma Processing of Advanced Materials  

SciTech Connect

Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

2005-02-28T23:59:59.000Z

433

Materialization of Universal Turing Machines  

E-Print Network (OSTI)

Materialization of Universal Turing Machines Rainer Glaschick supporting Heinz-Nixdorf MuseumsForum Paderborn, Germany #12;Contents Alan Turing's relation to Germany Turing Machines Hasenjaeger on secret communications 1947: Göttingen -- inquiry on state of computing machines #12;Turing and Münster

434

Polyanionic Cathode-Active Materials  

Science Journals Connector (OSTI)

In the 1980s, the layered rock salt types LiCoO2 1 and LiNiO2 2 and spinel-type LiMn2O4 3 were successively proposed as 4-V class cathode-active materials by Goodenough's group...

Shigeto Okada; Jun-ichi Yamaki

2009-01-01T23:59:59.000Z

435

Stability of Molten Core Materials  

SciTech Connect

The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

Layne Pincock; Wendell Hintze

2013-01-01T23:59:59.000Z

436

Hot Leg Piping Materials Issues  

SciTech Connect

With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

V. Munne

2006-07-19T23:59:59.000Z

437

Metal recovery from porous materials  

DOE Patents (OSTI)

The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Sturcken, E.F.

1991-01-01T23:59:59.000Z

438

New developments in loudspeaker materials  

Science Journals Connector (OSTI)

Perhaps the drive behind a number of important new materials developments for speakers was the compact disc. The CD brought wide dynamic range with extended bass response into the home and car and ‘‘digital?ready speakers’’ have become more than just a marketing pitch. How are speaker engineers increasing excursion thermal power handling and maintaining performance characteristics at higher sound levels while improving reliability? Specific solutions such as carbon fiber and Kevlar woven and nonwoven composite cones new cone forming technologies injection molded adhesiveless suspension surrounds thermally conductiveadhesives thermally (but nonelectrically) conductive voice coil formers high?temperature voice coil wire insulation and adhesives a new magnetic geometry for high?excursion linear travel ferrofluids for woofers high?heat emmisivity plating techniques and other fabriction and materials solutions will be briefly discussed. Advances in materials extend to enclosure materials and a brief survey of developments in this related field will be mentioned. Additionally test and measurement procedures to objectively quantify these enhancements will be touched upon.

Michael A. Klasco

1995-01-01T23:59:59.000Z

439

REPORT NO. 5 background material  

E-Print Network (OSTI)

of atmospheric testing of nuclear weapons in 1961 and 1962 the question arose as to the possible need for protec from such events as: (1) an industrial accident, possibly involving a nuclear reactor or a nuclear fuel processing plant, and (2) release of radioactive materials from the detonation of nuclear weapons or other

440

Sandia National Laboratories: Advanced Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Laboratory Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy...

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: energy storage materials  

NLE Websites -- All DOE Office Websites (Extended Search)

materials Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

442

Materials Selection Considerations for Thermal Process Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

443

Instructional Materials | Photosynthetic Antenna Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Instructional Materials Instructional Materials Solar Energy Learn about the quality of electromagnetic radiation produced by the sun and investigate on how this energy is captured...

444

Laser Crystallization of Phase Change Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoffrey Campbell is the Principal Investigator for Laser Crystallization of Phase Change Material LLNL BES Programs Highlight Laser Crystallization of Phase Change Material False...

445

Sandia National Laboratories: Materials Science and Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

itiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Materials...

446

Composite materials with integrated embedded sensing networks  

E-Print Network (OSTI)

Interlaminar Response of Composite Materials , ed. N. J.in fibre-reinforced composite structures with embedded fibreDutton, and D. Kelly. 2004. Composite Materials for Aircraft

Schaaf, Kristin Leigh

2008-01-01T23:59:59.000Z

447

Materials Discovery Design, Synthesis & Processing | The Ames...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Discovery Design, Synthesis & Processing Vision: AMES will be the premier U.S. laboratory lusing an "atoms to applications" approach to discover and design new materials....

448

High-Temperature Thermoelectric Materials Characterization for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Laboratory (HTML) User Program Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Materials for Li-ion...

449

Recommendation 215: Recommendation on Remaining Legacy Materials...  

Office of Environmental Management (EM)

5: Recommendation on Remaining Legacy Materials on the Oak Ridge Reservation Recommendation 215: Recommendation on Remaining Legacy Materials on the Oak Ridge Reservation The board...

450

Sandia National Laboratories: Combining 'Tinkertoy' Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

451

Bayer MaterialScience | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Bayer MaterialScience Place: Leverkusen, Germany Website: http:www.bayermaterialscienc References: Bayer Material Science1...

452

FY 2008 Progress Report for Lightweighting Materials-  

Energy.gov (U.S. Department of Energy (DOE))

Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes.

453

Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability...  

Energy Savers (EERE)

Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability Status Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability Status September 30, 2014 - 12:00pm...

454

Transportation of Nuclear Materials | Department of Energy  

Energy Savers (EERE)

Transportation of Nuclear Materials Transportation of Nuclear Materials GC-52 provides legal advice to DOE on legal and regulatory requirements and standards for transportation of...

455

Materials and Transportation Services | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials and Transportation Services General Information: Materials and Transportation Services provides Ames Laboratory employees with a wide array of services and support...

456

Sandia National Laboratories: materials science and engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

science and engineering Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

457

FY 2009 Progress Report for Lightweighting Materials  

Energy.gov (U.S. Department of Energy (DOE))

The FY 2009 Progress Report for Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies, to significantly reduce automotive vehicle...

458

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites...

459

Nanotube Composite Anode Materials | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanotube Composite Anode Materials Technology available for licensng: A composite material suitable for use in an anode for a lithium-ion battery Reduces manufacturing costs....

460

Free Material Optimization with Fundamental Eigenfrequency ...  

E-Print Network (OSTI)

The goal of this paper is to formulate and solve free material optimization ... Free material optimization (FMO) is a branch of structural optimization that gains in-.

2008-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

phenomena in strongly correlated electronic materials, including Mott insulators and high-temperature superconductors. The fundamental understanding of these materials can...

462

Combinatorial Approach for Hydrogen Storage Materials (presentation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combinatorial Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of...

463

Hydrogen Storage Materials Workshop Proceedings Workshop, October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Workshop Proceedings Workshop, October 16th, 2002 Hydrogen Storage Materials Workshop Proceedings Workshop, October 16th, 2002 A workshop on compressed and liquefied...

464

Magnesium Research in the Automotive Lightweighting Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Automotive Lightweighting Materials Program Magnesium Research in the Automotive Lightweighting Materials Program Presentation from the U.S. DOE Office of Vehicle...

465

Life Cycle Modeling of Propulsion Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

propulsion materials manufacturing technologies with an emphasis on aluminum, magnesium, titanium, and ceramics * Advanced propulsion materials' potential in heavy-duty...

466

Advances in understanding solar energy collection materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

467

Adaptive Materials Inc | Open Energy Information  

Open Energy Info (EERE)

Michigan Zip: MI 48108 Product: Adaptive Materials Inc (AMI) is a developer of portable fuel cell technology. References: Adaptive Materials Inc1 This article is a stub. You...

468

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

469

High Temperature Materials Laboratory (HTML) - PSD Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions....

470

Materials Technologies: Goals, Strategies, and Top Accomplishments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (VTP) materialstechgoals.pdf More Documents & Publications Overview of Aluminum Overview of LightweightingMaterials: Past, Present and FutureMaterials Vehicle...

471

Thermoelectric Materials By Design: Mechanical Reliability (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials By Design: Mechanical Reliability (Agreement 14957) Thermoelectric Materials By Design: Mechanical Reliability (Agreement 14957) Presentation from the U.S. DOE Office of...

472

ACHP - Section 106 Regulations Flowchart Explanatory Material...  

Open Energy Info (EERE)

Explanatory Material Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: ACHP - Section 106 Regulations Flowchart Explanatory Material Abstract This...

473

WINDExchange: Wind Energy Curricula and Teaching Materials  

Wind Powering America (EERE)

Wind Energy Curricula and Teaching Materials This is a list of wind energy curricula and teaching materials for elementary, middle school, and high school students, in alphabetical...

474

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical...

475

Chemistry and Material Sciences Codes at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 L ast edited: 2014-06-02 08:59:45...

476

material consolidation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives.Material Protection, Control, and Accounting (MPC&A) Upgrades:...

477

EM Waste and Materials Disposition & Transportation | Department...  

Office of Environmental Management (EM)

EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

478

Advanced Materials and Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

479

NREL: Photovoltaics Research - Materials Applications and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

about the scientists specializing in each area of PV research: National Center for Photovoltaics research staff Materials Applications and Performance research staff Materials...

480

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation 2009 DOE Hydrogen...

Note: This page contains sample records for the topic "weapons-usable fissile materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Clean Cities: Clean Cities Reference Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Materials to Reference Materials to someone by E-mail Share Clean Cities: Clean Cities Reference Materials on Facebook Tweet about Clean Cities: Clean Cities Reference Materials on Twitter Bookmark Clean Cities: Clean Cities Reference Materials on Google Bookmark Clean Cities: Clean Cities Reference Materials on Delicious Rank Clean Cities: Clean Cities Reference Materials on Digg Find More places to share Clean Cities: Clean Cities Reference Materials on AddThis.com... Coordinator Basics Clean Cities Program Structure Reference Materials Technical Support Fundraising Redesignation Outreach Education & Webinars Meetings Reporting Contacts Clean Cities Reference Materials Use these reference materials-including quick-reference documents, publications, websites, and the Clean Cities Coalition Wiki-to develop

482

Armor systems including coated core materials  

DOE Patents (OSTI)

An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

2013-10-08T23:59:59.000Z

483

Armor systems including coated core materials  

DOE Patents (OSTI)

An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

Chu, Henry S. (Idaho Falls, ID); Lillo, Thomas M. (Idaho Falls, ID); McHugh, Kevin M. (Idaho Falls, ID)

2012-07-31T23:59:59.000Z

484

Multi-Detector Analysis System for Spent Nuclear Fuel Characterization  

SciTech Connect

The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was from a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.

Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald; Drigert, Mark William; Jewell, James Keith; Egger, Ann Elizabeth; Cordes, Gail Adele

1999-09-01T23:59:59.000Z

485

Implementation of the MPC and A Operations Monitoring (MOM) System at IRT-T FSRE Nuclear Power Institute (NPI)  

SciTech Connect

The Material Protection, Control and Accounting (MPC&A) Program has been working since 1994 with nuclear sites in Russia to upgrade the physical protection (PP) and material control and accounting (MC&A) functions at facilities containing weapons usable nuclear material. In early 2001, the MPC&A program initiated the MPC&A Operations Monitoring (MOM) Project to monitor facilities where MPC&A upgrades have been installed to provide increased confidence that personnel are present and vigilant, provide confidence that security procedures are being properly performed and provide additional assurance that nuclear materials have not been stolen. The MOM project began as a pilot project at the Moscow State Engineering Physics Institute (MEPhI) and a MOM system was successfully installed in October 2001. Following the success of the MEPhI pilot project, the MPC&A Program expanded the installation of MOM systems to several other Russian facilities, including the Nuclear Physics Institute (NPI) in Tomsk. The MOM system was made operational at NPI in October 2004. This paper is focused on the experience gained from operation of this system and the objectives of the MOM system. The paper also describes how the MOM system is used at NPI and, in particular, how the data is analyzed. Finally, potential expansion of the MOM system at NPI is described.

Sitdikov,I.; Zenkov, A.; Tsibulnikov, Y.; Duncan, C.; Brownell, L.; Pratt, W.T.; Carbonaro, J.; White, R.M.; Coffing, J.A.

2008-07-13T23:59:59.000Z

486

Nuclear Materials Control and Accountability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JUNE 2011 JUNE 2011 ──────────────── CHANGE NOTICE NO.1 AUGUST 2011 DOE STANDARD NUCLEAR MATERIALS CONTROL AND ACCOUNTABILITY U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ATTACHMENT 1 Change Notice No. 1 DOE -STD-1194-2011 August 2011 Nuclear Materials Control and Accountability Table of Changes Page/Section Change Title Page Formatting and font size adjusted. Page 2/Section 4.h. Reference to document was updated from DOE M 470.4-1 Chg 2, Safeguards and Security Program Planning and Management, dated 10-2-10 to DOE O 470.4B, Safeguards and Security Program, dated 7-21-11. Page 2/Section 4.i. Reference to document was updated from DOE M

487

Materials - Recycling - Polymer Matrix Composites  

NLE Websites -- All DOE Office Websites (Extended Search)

Recycling of Polymer Matrix Composites Recycling of Polymer Matrix Composites Polymer matrix composites Carbon fibers recovered from a epoxy-based polymer matrix composite. Carbon fiber reinforced polymer matrix composites (PMCs) are materials with superior strength-to-weight ratios. Finding increased applications in the aerospace industry, PMCs are now being evaluated for possible use in automobile construction. The materialÂ’s high cost, however, along with concerns about whether the PMCs will be recyclable when the vehicles reach the end of their useful lives, are barriers to its widespread use. With funding provided by the U.S. Department of EnergyÂ’s Vehicle Technologies Program (formerly called the Office of Advanced Transportation Technologies), Argonne is developing an efficient and cost-effective

488

Serious Materials | Open Energy Information  

Open Energy Info (EERE)

Serious Materials Serious Materials Address 1250 Elko Drive Place Sunnyvale, California Zip 94089 Sector Carbon Product Reduce carbon emissions from drywall production Website http://www.seriousmaterials.co Coordinates 37.405803°, -121.987802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.405803,"lon":-121.987802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

News Releases | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Awards News & Awards News Releases Honors & Awards News Features Advanced Materials Home | Science & Discovery | Advanced Materials | News & Awards | News Releases News Releases 1-7 of 7 Results ORNL devises recipe to fine-tune diameter of silica rods December 16, 2013 - OAK RIDGE, Tenn., Dec. 16, 2013 - By controlling the temperature of silica rods as they grow, researchers at the Department of Energy's Oak Ridge National Laboratory could be setting the stage for advances in anti-reflective solar cells, computer monitors, TV screens, eye glasses and more. ORNL's Bruce Pint elected 2014 NACE fellow December 13, 2013 - OAK RIDGE, Tenn., Dec. 13, 2013 - Bruce Pint, a research staff member at the Department of Energy's Oak Ridge National Laboratory, has been elected a 2014 National Association of Corrosion

490

Special nuclear material simulation device  

DOE Patents (OSTI)

An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

2014-08-12T23:59:59.000Z

491

Hydrocarbon sensors and materials therefor  

DOE Patents (OSTI)

An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

492

CONTAINER MATERIALS, FABRICATION AND ROBUSTNESS  

SciTech Connect

The multi-barrier 3013 container used to package plutonium-bearing materials is robust and thereby highly resistant to identified degradation modes that might cause failure. The only viable degradation mechanisms identified by a panel of technical experts were pressurization within and corrosion of the containers. Evaluations of the container materials and the fabrication processes and resulting residual stresses suggest that the multi-layered containers will mitigate the potential for degradation of the outer container and prevent the release of the container contents to the environment. Additionally, the ongoing surveillance programs and laboratory studies should detect any incipient degradation of containers in the 3013 storage inventory before an outer container is compromised.

Dunn, K.; Louthan, M.; Rawls, G.; Sindelar, R.; Zapp, P.; Mcclard, J.

2009-11-10T23:59:59.000Z

493

Nuclear Materials Control and Accountability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2011 June 2011 DOE STANDARD Nuclear Materials Control and Accountability U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1194-2011 i This page is intentionally left blank. DOE-STD-1194-2011 ii TABLE OF CONTENTS FOREWORD ..................................................................................................................................................................................... iii 1 . S C O P E ........................................................................................................................................................................................... 1 2

494

Activation of porous MOF materials  

DOE Patents (OSTI)

A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritcal fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

Hupp, Joseph T; Farha, Omar K

2014-04-01T23:59:59.000Z

495

Activation of porous MOF materials  

DOE Patents (OSTI)

A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

Hupp, Joseph T; Farha, Omar K

2013-04-23T23:59:59.000Z

496

Evaluating dredged material placement alternatives  

E-Print Network (OSTI)

storage areas over Live Oak Ridge provides the best solution for Region 2. 24 Table 4. 4. Summary of Redfish Bay assessment. Region I Engineering ~Ratio Societal ~Ratio Environmental ~Ratin Economic Feasibility ~Ra tin ~Ra tin Create habitat... components: (I) a dredged material placement assessment that considers various engineering, societal, environmental, and economic aspects of dredging; (2) a feasibility rating assessment that quantitatively transforms the qualitative analysis; and (3...

Wooters, Kelly Lynne

2012-06-07T23:59:59.000Z

497

Dense, finely, grained composite materials  

DOE Patents (OSTI)

Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

1990-01-01T23:59:59.000Z

498

Materials Sciences Division 1990 annual report  

SciTech Connect

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

499

Materials Sciences Division 1990 annual report  

SciTech Connect

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

500

MATERIALS EDUCATION FOR THE CENTURY WORKFORCE  

E-Print Network (OSTI)

MATERIALS EDUCATION FOR THE 21ST CENTURY WORKFORCE The 18th Biennial Conference on National of Maryland Vice President, Federation of Materials Societies 8:30AM Introduction to Materials Mini-Camp for High School Students and Teachers (camp will continue throughout the day) Chuck Hayes, ASM Materials

Rubloff, Gary W.