Powered by Deep Web Technologies
Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Strategies for denaturing the weapons-grade plutonium stockpile  

SciTech Connect

In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

Buckner, M.R.; Parks, P.B.

1992-10-01T23:59:59.000Z

2

Disposition of weapons-grade plutonium in Westinghouse reactors  

E-Print Network (OSTI)

We have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. We have designed three transition cycles from an all LEU core to a partial MOX core. We found that four...

Alsaed, Abdelhalim Ali

2012-06-07T23:59:59.000Z

3

Trace Fission Product Ratios for Nuclear Forensics Attribution of Weapons-Grade Plutonium from Fast Breeder Reactor Blankets  

E-Print Network (OSTI)

A nuclear terrorist attack is one of the most serious threats to the national security of the United States, and in the wake of an attack, attribution of responsibility will be of the utmost importance. Plutonium, a by-product in spent nuclear...

Osborn, Jeremy

2014-08-13T23:59:59.000Z

4

Radiochemical determination of 237Np in soil samples contaminated with weapon grade plutonium  

Science Journals Connector (OSTI)

The Palomares terrestrial ecosystem (Spain) constitutes a natural laboratory to study transuranics. This scenario is partially contaminated with weapon-grade plutonium since the burnout and fragmentation...237Np ...

M. P. Antón; A. Espinosa; A. Aragón

2006-12-01T23:59:59.000Z

5

Radiochemical determination of 237NP in soil samples contaminated with weapon grade plutonium  

Science Journals Connector (OSTI)

The Palomares terrestrial ecosystem (Spain) constitutes a natural laboratory to study transuranics. This scenario is partially contaminated with weapon-grade plutonium since the burnout and fragmentation...237Np ...

M. P. Antón; A. Espinosa; A. Aragón

2006-01-01T23:59:59.000Z

6

U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaffirm Commitment to Disposing of Weapon-Grade Reaffirm Commitment to Disposing of Weapon-Grade Plutonium U.S. and Russia Reaffirm Commitment to Disposing of Weapon-Grade Plutonium July 13, 2006 - 3:05pm Addthis WASHINGTON, DC - U.S. Energy Secretary Samuel W. Bodman and Sergey Kiriyenko, the director of Russia's Federal Atomic Energy Agency, have signed a joint statement reaffirming their commitment to dispose of 34 metric tons of excess weapon-grade plutonium by irradiation in nuclear reactors. "This statement is a clear sign of our mutual commitment to keeping dangerous nuclear material out of the hands of terrorists. We look forward to working together with the Russians to ensure that this important nonproliferation project moves forward in both Russia and the United States," Secretary Bodman said.

7

Neutronics and safety characteristics of a 100% MOX fueled PWR using weapons grade plutonium  

SciTech Connect

Preliminary neutronics and safety studies, pertaining to the feasibility of using 100% weapons grade mixed-oxide (MOX) fuel in an advanced PWR Westinghouse design are presented in this paper. The preliminary results include information on boron concentration, power distribution, reactivity coefficients and xenon and control rode worth for the initial and the equilibrium cycle. Important safety issues related to rod ejection and steam line break accidents and shutdown margin requirements are also discussed. No significant change from the commercial design is needed to denature weapons-grade plutonium under the current safety and licensing criteria.

Biswas, D.; Rathbun, R.; Lee, Si Young [Westinghouse Savannah River Co., Aiken, SC (United States); Rosenthal, P. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

1993-12-31T23:59:59.000Z

8

Commercial utilization of weapon grade plutonium as TRISO fuel in conventional CANDU reactors  

Science Journals Connector (OSTI)

Large quantities of weapon grade (WG) plutonium have been accumulated in the nuclear warheads. Plutonium and heavy water moderator can give a good combination with respect to neutron economy. TRISO type fuel can withstand very high fuel burn up levels. The paper investigates the prospects of utilization of TRISO fuel made of WG-plutonium in CANDU reactors. Three different fuel compositions have been investigated: (1): 90% ThC + 10% PuC, (2): 70% ThC + 30% PuC and (3): 50% ThC + 50% PuC. The temporal variation of the criticality k? and the burn-up values of the reactor have been calculated by full power operation up to 17 years. Calculated startup criticalities for these fuel modes are k?,0 = 1.6403, 1.7228 and 1.7662, respectively. Attainable burn up values and reactor operation times without new fuel charge will be 94 700, 265 000 and 425 000 MW.D/MT and along with continuous operation periods of ?3.5, 10 and 17 years, respectively, for the corresponding modes. These high burn ups would reduce fuel fabrication costs and nuclear waste mass for final disposal per unit energy drastically.

Sümer ?ahin; Hac? Mehmet ?ahin; Adem Ac?r

2012-01-01T23:59:59.000Z

9

Utilization of Cs{sup 137} to generate a radiation barrier for weapons grade plutonium immobilized in borosilicate glass canisters. Revision 1  

SciTech Connect

One of the ways recommended by a recent National Academy of Sciences study to dispose of excess weapons-grade plutonium is to encapsulate the plutonium in a glass in combination with high-level radioactive wastes (HLW) to generate an intense radiation dose rate field. The objective is to render the plutonium as difficult to access as the plutonium contained in existing US commercial spent light-water reactor (LWR) fuel until it can be disposed of in a permanent geological repository. A radiation dose rate from a sealed canister of 1,000 rem/h (10 Sv/h) at 1 meter for at least 30 years after fabrication was assumed in this paper to be a radiation dose comparable to spent LWR fuel. This can be achieved by encapsulating the plutonium in a borosilicate glass with an adequate amount of a single fission product in the HLWS, namely radioactive Cs{sup 137}. One hundred thousand curies of Cs{sup 137} will generate a dose rate of 1,000 rem/h (10 Sv/h) at 1 meter for at least 30 years when imbedded into canisters of the size proposed for the Savannah River Site`s vitrified high-level wastes. The United States has a current inventory of 54 MCi of CS{sup 137} that has been separated from defense HLWs and is in sealed capsules. This single curie inventory is sufficient to spike 50 metric tons of excess weapons-grade plutonium if plutonium can be loaded at 5.5 wt% in glass, or 540 canisters. Additional CS{sup 137} inventories exist in the United States` HLWs from past reprocessing operations, should additional curies be required. Using only one fission product, CS{sup 137}, rather than the multiple chemical elements and compounds in HLWs to generate a high radiation dose rate from a glass canister greatly simplifies the processing engineering retirement for encapsulating plutonium in a borosilicate glass.

Jardine, L.J.; Armantrout, G.A.; Collins, L.F.

1995-01-01T23:59:59.000Z

10

Scope for denaturizing weapons-grade plutonium in a subcritical heavy-water blanket of candu type  

Science Journals Connector (OSTI)

The following features occur in denaturing weapons plutonium by irradiating a mixture of plutonium and neptunium as oxides in a neutron flux: 1) ...

G. V. Kiselev; L. A. Myrtsymova

1996-12-01T23:59:59.000Z

11

Plutonium Disposition Program | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

accumulating newly separated weapon-grade plutonium. RUSSIAN PLUTONIUM DISPOSITION Russia plans to dispose of its 34 metric tons of weapon-grade plutonium by fabricating it...

12

DOE plutonium disposition study: Analysis of existing ABB-CE Light Water Reactors for the disposition of weapons-grade plutonium. Final report  

SciTech Connect

Core reactivity and basic fuel management calculations were conducted on the selected reactors (with emphasis on the System 80 units as being the most desirable choice). Methods used were identical to those reported in the Evolutionary Reactor Report. From these calculations, the basic mission capability was assessed. The selected reactors were studied for modification, such as the addition of control rod nozzles to increase rod worth, and internals and control system modifications that might also be needed. Other system modifications studied included the use of enriched boric acid as soluble poison, and examination of the fuel pool capacities. The basic geometry and mechanical characteristics, materials and fabrication techniques of the fuel assemblies for the selected existing reactors are the same as for System 80+. There will be some differences in plutonium loading, according to the ability of the reactors to load MOX fuel. These differences are not expected to affect licensability or EPA requirements. Therefore, the fuel technology and fuel qualification sections provided in the Evolutionary Reactor Report apply to the existing reactors. An additional factor, in that the existing reactor availability presupposes the use of that reactor for the irradiation of Lead Test Assemblies, is discussed. The reactor operating and facility licenses for the operating plants were reviewed. Licensing strategies for each selected reactor were identified. The spent fuel pool for the selected reactors (Palo Verde) was reviewed for capacity and upgrade requirements. Reactor waste streams were identified and assessed in comparison to uranium fuel operations. Cost assessments and schedules for converting to plutonium disposition were estimated for some of the major modification items. Economic factors (incremental costs associated with using weapons plutonium) were listed and where possible under the scope of work, estimates were made.

Not Available

1994-06-01T23:59:59.000Z

13

Hot Cell Examination of Weapons-Grade MOX Fuel  

SciTech Connect

The U.S. Department of Energy has decided to dispose of a portion of the nation s surplus weapons-grade plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. Four lead assemblies were manufactured with weapons-grade MOX and irradiated to a maximum fuel rod burnup of 47.3 MWd/kg. As part of the fuel qualification process, five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This is the first hot cell examination of weapons-grade MOX fuel. The rods have been examined nondestructively with the ADEPT apparatus and are currently being destructively examined. Examinations completed to date include length measurements, visual examination, gamma scanning, profilometry, eddy-current testing, gas measurement and analysis, and optical metallography. Representative results of these examinations are reviewed and found to be consistent with predictions and with prior experience with reactor-grade MOX fuel. The results will be used to support licensing of weapons-grade MOX for batch use in commercial power reactors.

Morris, Robert Noel [ORNL; Bevard, Bruce Balkcom [ORNL; McCoy, Kevin [Areva NP

2010-01-01T23:59:59.000Z

14

Plutonium radiation surrogate  

DOE Patents (OSTI)

A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

Frank, Michael I. (Dublin, CA)

2010-02-02T23:59:59.000Z

15

Reduction of Weapon Grade Plutonium Inventories in a Thorium Burner  

Science Journals Connector (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Sümer Sahin; Haci Mehmet Sahin; Adem Acir

16

Analysis of Surplus Weapons-Grade Plutonium Disposition Options...  

National Nuclear Security Administration (NNSA)

Related News DOENNSA Participates in Large-Scale CTBT On-Site Inspection Exercise in Jordan Charles E. Messick receives the Administrator's Gold Award NNSA highlights 'swords to...

17

Canada and the United States Cooperate to Shut Down One of the Last Weapons-Grade Plutonium Production Reactors in Russia  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON, D.C. -- Canadian Foreign Affairs Minister Pierre Pettigrew and United States Secretary of Energy Samuel Bodman today announced the signing of a memorandum of understanding (MOU) to...

18

Nuclear disarmament, disposal of military plutonium and international security problems  

SciTech Connect

One of the major issues of the current debate deals with the question: what does real nuclear disarmament actually involve? It becomes more and more obvious for many experts that it can no longer be limited to the reduction or elimination of delivery vehicles alone, but must necessarily cove the warheads and the fissile materials recovered from them, which should totally or partially be committed to peaceful use and placed under appropriate international safeguards, thus precluding their re-use for as weapons. There are various options as to how to solve the problems of disposal of fissile materials released from weapons. The optimal choice can only be made on the basis of a thorough study. This study should treat the disposal of weapon-grade plutonium and weapon-grade uranium as separate problems. The possible options for plutonium disposition currently discussed are as follows: (a) Storage in a form or under conditions not suitable for use in the production of new types of nuclear weapons. This option seems to be most natural and inevitable at the first phase, subject to determination of storage period, volume, and technology. Besides, the requirements of the international nuclear weapons nonproliferation regime could be met easily. Safe, secure, and controlled temporary storage may provide an appropriate solution of disposal of weapon-grade plutonium in the near future. (b) Energy utilization (conversion) of weapon-grade plutonium. The most efficient option of utilization of plutonium appears to be for nuclear power generation. This option does not exclude storage, but considers it as a temporary phase, which can, however, be a prolonged one: its length is determined by the political decisions made and possibilities existing to transfer plutonium for processing.

Slipchenko, V.S.; Rybatchenkov, V. [Ministry of Foreign Affairs of the Russian Federation, Moscow (Russian Federation). Arms Control and Disarmament Dept.

1995-12-31T23:59:59.000Z

19

Manhattan Project: F Reactor Plutonium Production Complex  

Office of Scientific and Technical Information (OSTI)

F REACTOR PLUTONIUM PRODUCTION COMPLEX F REACTOR PLUTONIUM PRODUCTION COMPLEX Hanford Engineer Works, 1945 Resources > Photo Gallery Plutonium production area, Hanford, ca. 1945 The F Reactor plutonium production complex at Hanford. The "boxy" building between the two water towers on the right is the plutonium production reactor; the long building in the center of the photograph is the water treatment plant. The photograph was reproduced from Henry DeWolf Smyth, Atomic Energy for Military Purposes: The Official Report on the Development of the Atomic Bomb under the Auspices of the United States Government, 1940-1945 (Princeton, NJ: Princeton University Press, 1945). The Smyth Report was commissioned by Leslie Groves and originally issued by the Manhattan Engineer District. Princeton University Press reprinted it in book form as a "public service" with "reproduction in whole or in part authorized and permitted."

20

Japan modifies plans for plutonium in wake of protests over shipments  

Science Journals Connector (OSTI)

... Tokyo. Growing international concern over Japan's plans to ship large amounts of weapons-grade plutonium from Europe has encouraged the ... to ship large amounts of weapons-grade plutonium from Europe has encouraged the head of Japan's most powerful organization for research and development of nuclear power to suggest a new ...

David Swinbanks

1992-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Plutonium Disposition Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plutonium Disposition Program Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The U.S.-Russia Plutonium Management and Disposition Agreement (PMDA), which entered into force on July 13, 2011, commits each country to dispose of at least 34 metric tons (MT) of weapon-grade plutonium withdrawn from their respective nuclear weapon programs. The U.S. remains firmly committed to its PMDA obligation to dispose of excess weapons plutonium. U.S. Plutonium Disposition The current U.S. plan to dispose of 34 MT of weapon-grade plutonium is to fabricate it into Mixed Oxide (MOX) fuel and irradiate it in existing light water reactors. This approach requires construction of new facilities

22

President Truman Increases Production of Uranium and Plutonium | National  

National Nuclear Security Administration (NNSA)

Increases Production of Uranium and Plutonium | National Increases Production of Uranium and Plutonium | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Truman Increases Production of Uranium and Plutonium President Truman Increases Production of Uranium and Plutonium October 09, 1950

23

PLUTONIUM-238 PRODUCTION TARGET DESIGN STUDIES  

SciTech Connect

A new supply chain is planned for plutonium-238 using existing reactors at the Oak Ridge National Laboratory (ORNL) and Idaho National Laboratory (INL) and existing chemical recovery facilities at ORNL. Validation and testing activities for new irradiation target designs have been conducted in three phases over a 2 year period to provide data for scale-up to production. Target design, qualification, target fabrication, and irradiation of fully-loaded targets have been accomplished. Data from post-irradiation examination (PIE) supports safety analysis and irradiation of future target designs.

Hurt, Christopher J [ORNL; Wham, Robert M [ORNL; Hobbs, Randall W [ORNL; Owens, R Steven [ORNL; Chandler, David [ORNL; Freels, James D [ORNL; Maldonado, G Ivan [ORNL

2014-01-01T23:59:59.000Z

24

Imaging the ionization track of alpha recoils for the directional detection of weapons grade plutonium  

E-Print Network (OSTI)

Since the dawn of the nuclear weapons era, political, military, and scientific leaders around the world have been working to contain the proliferation of Special Nuclear Material and explosively fissile material. This paper ...

Koch, William Lawrence

2013-01-01T23:59:59.000Z

25

Production and Characterization of Monodisperse Plutonium, Uranium, and Mixed Uranium?Plutonium Particles for Nuclear Safeguard Applications  

Science Journals Connector (OSTI)

Production and Characterization of Monodisperse Plutonium, Uranium, and Mixed Uranium?Plutonium Particles for Nuclear Safeguard Applications ... In order to prevent nuclear proliferation, the isotopic analysis of uranium and plutonium microparticles has strengthened the means in international safeguards for detecting undeclared nuclear activities. ...

Y. Ranebo; N. Niagolova; N. Erdmann; M. Eriksson; G. Tamborini; M. Betti

2010-04-23T23:59:59.000Z

26

Hanford, WA Selected as Plutonium Production Facility | National Nuclear  

National Nuclear Security Administration (NNSA)

Hanford, WA Selected as Plutonium Production Facility | National Nuclear Hanford, WA Selected as Plutonium Production Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Hanford, WA Selected as Plutonium Production Facility Hanford, WA Selected as Plutonium Production Facility January 16, 1943 Hanford, WA

27

Plutonium 239 Equivalency Calculations  

SciTech Connect

This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

Wen, J

2011-05-31T23:59:59.000Z

28

Assessment of Plutonium-238 (Pu-238) Production Alternatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plutonium-238 Plutonium-238 Production Alternatives Briefing for Nuclear Energy Advisory Committee April 21, 2008 Dennis Miotla Deputy Assistant Secretary for Nuclear Power Deployment Miotla - April 2008 NEAC Mtg - DM183874 (2) Statement of Work Desired end state: - Reliable, sustainable, affordable supply of Pu-238 suitable for NASA applications Assumptions: - NASA obtains funding for planned missions - Russia is out of material to sell to US - DOE maintains balance of radioisotope power source infrastructure during period of depleted supply Independently evaluate the Pu-238 heat source requirements for NASA's mission projections and assess Pu-238 production assumptions, strategy and alternatives for meeting those requirements Miotla - April 2008 NEAC Mtg - DM183874 (3)

29

Preserving Plutonium-244 as a National Asset  

SciTech Connect

Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium. Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is separated, it would occupy a small volume and would be inexpensive to store while an enrichment capability is developed. Very small quantities could be enriched in existing mass separators to support critical needs.

Patton, Bradley D [ORNL; Alexander, Charles W [ORNL; Benker, Dennis [ORNL; Collins, Emory D [ORNL; Romano, Catherine E [ORNL; Wham, Robert M [ORNL

2011-01-01T23:59:59.000Z

30

Niowave Develops Production Route for Medical Radioisotopes with...  

Office of Science (SC) Website

lack of a domestic supply and current use of techniques requiring weapons grade uranium led Congress to pass the American Medical Isotope Production Act in 2013. The Act...

31

Production-scale plutonium-neptunium separation and residue recovery at Rocky Flats Plant  

SciTech Connect

An anion exchange process to recover plutonium from plutonium - 0.5% neptunium residues has been investigated on a production scale. The plutonium was effectively recovered and separated from neptunium using Rohm and Haas Amberlite IRA-938 (20 to 50 mesh) macroreticular anion exchange resin. During this process, 58.3 kg of plutonium containing less than 100 g Np/g Pu has been recovered.

Martella, L.L.; Guyer, R.H.; Leak, W.C.; Thomas, R.L. (eds.)

1987-05-26T23:59:59.000Z

32

President Truman Increases Production of Uranium and Plutonium...  

National Nuclear Security Administration (NNSA)

Uranium and Plutonium Washington, DC President Truman approves a 1.4 billion expansion of Atomic Energy Commission facilities to produce uranium and plutonium for nuclear weapons...

33

Computational Nuclear Forensics Analysis of Weapons-grade Plutonium Separated from Fuel Irradiated in a Thermal Reactor  

E-Print Network (OSTI)

have been irradiated to the desired burnup in the Oak Ridge National Laboratory- High Flux Isotope Reactor (ORNL-HFIR), and then separated using the PUREX process to experimentally determine the intrinsic signature of the fuel. The experimental data...

Coles, Taylor Marie

2014-04-27T23:59:59.000Z

34

Activities of Pu and Am Isotopes and Isotopic Ratios in a Soil Contaminated by Weapons-Grade Plutonium  

Science Journals Connector (OSTI)

The Radiation Division of the Surveillance Directorate for the U.S. Air Force Institute for Environment, Safety and Occupational Health Risk Analysis collected soil samples at the BOMARC site in June, 2000. ... with a mean value of 0.19, which is close to the value reported from the BOMARC WGP contaminated soil (6) and the Rocky Flats WGP contaminated soil (27). ...

M. H. Lee; S. B. Clark

2005-06-28T23:59:59.000Z

35

Vitrification of excess plutonium  

SciTech Connect

As a result of nuclear disarmament activities, many thousands of nuclear weapons are being retired in the US and Russia, producing a surplus of about 50 MT of weapons grade plutonium (Pu) in each country. In addition, the Department of Energy (DOE) has more than 20 MT of Pu scrap, residue, etc., and Russia is also believed to have at least as much of this type of material. The entire surplus Pu inventories in the US and Russia present a clear and immediate danger to national and international security. It is important that a solution be found to secure and manage this material effectively and that such an effort be implemented as quickly as possible. One option under consideration is vitrification of Pu into a relatively safe, durable, accountable, proliferation-resistant form. As a result of decades of experience within the DOE community involving vitrification of a variety of hazardous and radioactive wastes, this existing technology can now be expanded to include immobilization of large amounts of Pu. This technology can then be implemented rapidly using the many existing resources currently available. A strategy to vitrify many different types of Pu will be discussed. In this strategy, the arsenal of vitrification tools, procedures and techniques already developed throughout the waste management community can be used in a staged Pu vitrification effort. This approach uses the flexible vitrification technology already available and can even be made portable so that it may be brought to the source and ultimately, used to produce a common, borosilicate glass form for the vitrified Pu. The final composition of this product can be made similar to nationally and internationally accepted HLW glasses.

Wicks, G.G.; Mckibben, J.M.; Plodinec, M.J.

1994-12-31T23:59:59.000Z

36

Shielding and criticality characterization of ALR8(SI) plutonium storage containers  

E-Print Network (OSTI)

, "Map of the Nuclides.'' All of the energy lines from the isotopes in weapons-grade plutonium were used for the photon source description. Dose rates due to the photons emitted by the hypothetical pit were calculated at various positions external...

Terekhin, Yevgeniy Vasilyevich

2012-06-07T23:59:59.000Z

37

Plutonium Disposition Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Media Room > Fact Sheets > Plutonium Disposition Program Home > Media Room > Fact Sheets > Plutonium Disposition Program Fact Sheet Plutonium Disposition Program Jun 26, 2013 SUPPORTING NUCLEAR NONPROLIFERATION Weapon-grade plutonium and highly enriched uranium (HEU) are the critical ingredients for making a nuclear weapon. With the end of the Cold War, hundreds of tons of these materials were determined to be surplus to U.S. and Russian defense needs. Denying access to plutonium and HEU is the best way to prevent nuclear proliferation to rogue states and terrorist organizations. The most certain method to prevent these materials from falling into the wrong hands is to dispose of them. During the April 2010 Nuclear Security Summit, Secretary of State Hillary Rodham Clinton and Russian Foreign Minister Sergey Lavrov signed a protocol

38

Canada and the United States Cooperate to Shut Down One of the...  

Energy Savers (EERE)

Cooperate to Shut Down One of the Last Weapons-Grade Plutonium Production Reactors in Russia Canada and the United States Cooperate to Shut Down One of the Last Weapons-Grade...

39

Evaluation of weapons-grade mixed oxide fuel performance in U.S. Light Water Reactors using COMETHE 4D release 23 computer code  

E-Print Network (OSTI)

The COMETHE 4D Release 23 computer code was used to evaluate the thermal, chemical and mechanical performance of weapons-grade MOX fuel irradiated under U.S. light water reactor typical conditions. Comparisons were made to and UO? fuels exhibited...

Bellanger, Philippe

2012-06-07T23:59:59.000Z

40

Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels  

E-Print Network (OSTI)

This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

Hayes, A C; Nieto, Michael Martin; WIlson, W B

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels  

E-Print Network (OSTI)

This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

A. C. Hayes; H. R. Trellue; Michael Martin Nieto; W. B. WIlson

2011-10-03T23:59:59.000Z

42

Enclosure 1 -CCP-AK-INL-004, Table 5-2 (1 page) Table 5-2. Isotopic Compositions of Rocky Flats Plutonium and Uranium  

E-Print Network (OSTI)

Flats Plutonium and Uranium Weapons-Grade Plutonium Enriched Uranium Depleted Uranium Plutonium-238 0.01 ­ 0.05% Uranium-234 0.1 ­ 1.02% Uranium-234 0.0006% Plutonium-239 92.8 ­ 94.4% Uranium-235 90 ­ 94% Uranium-235 0.2 ­ 0.3% Plutonium-240 4.85 ­ 6.5% Uranium-236 0.4 ­ 0.5% Uranium-238 99.7 ­ 99.8% Plutonium

43

MA Doping Analysis on Breeding Capability and Protected Plutonium Production of Large FBR  

SciTech Connect

Spent fuel from LWR can be seen as long-live waste if it is not recycled or as a 'new fuel' resource if it is recycled into the reactors. Uranium and plutonium have been used for 'new fuel' resources from LWR spent fuel as MOX fuel type which is loaded into thermal reactor or fast reactor types. Other actinides from the spent fuel such as neptunium, americium and curium as minor actinide (MA) are considered to be loaded into the reactors for specific purposes, recently. Those purposes such as for increasing protected plutonium production and breeding capability for protected plutonium as well as in the same time those amount of MA can be reduced to a small quantity as a burner or transmutation purpose. Some investigations and scientific approaches are performed in order to increase a material ''barrier'' in plutonium isotope composition by increasing the even mass number of plutonium isotope such as Pu-238, Pu-240 and Pu-242 as plutonium protected composition. Higher material barrier which related to intrinsic properties of plutonium isotopes with even mass number (Pu-238, Pu-240 and Pu-242), are recognized because of their intense decay heat (DH) and high spontaneous fission neutron (SFN) rates. Those even number mass of plutonium isotope contribute to some criteria of plutonium characterization which will be adopted for present study such as IAEA, Pellaud and Kessler criteria (IAEA, 1972; Pellaud, 2002; and Kessler, 2007). The present paper intends to evaluate the breeding capability as a fuel sustainability index of the reactors and to analyze the composition of protected plutonium production of large power reactor based on the FaCT FBR as reference (Ohki, et al., 2008). Three dimensional FBR core configuration has been adopted which is based on the core optimization calculation of SRAC-CITATION code as reactor core analysis and JENDL-3.3 is adopted for nuclear data library. Some MA doping materials are loaded into the blanket regions which can be considered as breeding region for protected plutonium production. Breeding capability of the reactor can be increased effectively by increasing MA doping rate while criticality condition of the reactor is reduced by doping MA. Adopting MA cycle is also effective to increase the isotopic Pu-238 production in plutonium vector composition for denaturing purpose of plutonium.

Permana, Sidik; Suzuki, Mitsutoshi; Kuno, Yusuke [Japan Atomic Energy Agency, Nuclear Non-proliferation Science and Technology Center, 2-4 Shirane Shirakata, Tokai-mura, Ibaraki, 319-1195 (Japan)

2010-06-22T23:59:59.000Z

44

Mastering the art of plutonium pit production to ensure national...  

NLE Websites -- All DOE Office Websites (Extended Search)

- and final - plutonium pit for replacement in existing W88 warheads. The W88 is a thermonuclear weapon designed by LANL in the late 1980s for the U.S. Navy and deployed on...

45

EIS-0299: Proposed Production of Plutonium-238 (Pu-238) for Use in Advanced Radioisotope Power Systems (RPS) for Space Missions  

Energy.gov (U.S. Department of Energy (DOE))

This EIS is for the proposed production of plutonium-238 (Pu-238) using one or more DOE research reactors and facilities.

46

Excess plutonium disposition using ALWR technology  

SciTech Connect

The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance.

Phillips, A. (ed.); Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

1993-02-01T23:59:59.000Z

47

Reactor-Based Plutonium Disposition: Opportunities, Options, and Issues  

SciTech Connect

The end of the Cold War has created a legacy of surplus fissile materials (plutonium and highly enriched uranium) in the United States (U.S.) and the former Soviet Union. These materials pose a danger to national and international security. During the past few years, the U.S. and Russia have engaged in an ongoing dialog concerning the safe storage and disposition of surplus fissile material stockpiles. In January 1997, the Department of Energy (DOE) announced the U. S. would pursue a dual track approach to rendering approximately 50 metric tons of plutonium inaccessible for use in nuclear weapons. One track involves immobilizing the plutonium by combining it with high-level radioactive waste in glass or ceramic ''logs''. The other method, referred to as reactor-based disposition, converts plutonium into mixed oxide (MOX) fuel for nuclear reactors. The U.S. and Russia are moving ahead rapidly to develop and demonstrate the technology required to implement the MOX option in their respective countries. U.S. MOX fuel research and development activities were started in the 1950s, with irradiation of MOX fuel rods in commercial light water reactors (LWR) from the 1960s--1980s. In all, a few thousand MOX fuel rods were successfully irradiated. Though much of this work was performed with weapons-grade or ''near'' weapons-grade plutonium--and favorable fuel performance was observed--the applicability of this data for licensing and use of weapons-grade MOX fuel manufactured with modern fuel fabrication processes is somewhat limited. The U.S. and Russia are currently engaged in an intensive research, development, and demonstration program to support implementation of the MOX option in our two countries. This paper focuses on work performed in the U.S. and provides a brief summary of joint U.S./Russian work currently underway.

Greene, S.R.

1999-07-17T23:59:59.000Z

48

Fuel qualification issues and strategies for reactor-based surplus plutonium disposition  

SciTech Connect

The Department of Energy (DOE) has proposed irradiation of mixed-oxide (MOX) fuel in existing commercial reactors as a disposition method for surplus plutonium from the weapons program. The burning of MOX fuel in reactors is supported by an extensive technology base; however, the infrastructure required to implement reactor-based plutonium disposition does not exist domestically. This report identifies and examines the actions required to qualify and license weapons-grade (WG) plutonium-based MOX fuels for use in domestic commercial light-water reactors (LWRs).

Cowell, B.S.; Copeland, G.L.; Moses, D.L.

1997-08-01T23:59:59.000Z

49

DOE plutonium disposition study: Pu consumption in ALWRs. Volume 2, Final report  

SciTech Connect

The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document Volume 2, provides a discussion of: Plutonium Fuel Cycle; Technology Needs; Regulatory Considerations; Cost and Schedule Estimates; and Deployment Strategy.

Not Available

1993-05-15T23:59:59.000Z

50

GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE FRIT B COMPOSITION FOR PLUTONIUM DISPOSITION  

SciTech Connect

The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. A reference glass composition (Lanthanide Borosilicate (LaBS) Frit B) was developed during the Plutonium Immobilization Program (PIP) to immobilize plutonium. A limited amount of performance testing was performed on this baseline composition before efforts to further pursue Pu disposition via a glass waste form ceased. Therefore, the objectives of this present task were to fabricate plutonium loaded LaBS Frit B glass and perform additional testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the Yucca Mountain Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL) and for additional performance testing at Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory (PNNL). The glass was characterized using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. A series of PCTs were conducted at SRNL with varying exposed surface area and test durations. The leachates from these tests were analyzed to determine the dissolved concentrations of key elements. Acid stripping of leach vessels was performed to determine the concentration of the glass constituents that may have sorbed on the vessels during leach testing. Additionally, the leachate solutions were ultrafiltered to quantify colloid formation. The leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to identify the formation of alteration phases on the glass surface. Characterization of the glass prior to testing revealed that some undissolved plutonium oxide was present in the glass. The undissolved particles had a disk-like morphology and likely formed via coarsening of particles in areas compositionally enriched in plutonium. Similar disk-like PuO{sub 2} phases were observed in previous LaBS glass testing at PNNL. In that work, researchers concluded that plutonium formed with this morphology as a result of the leaching process. It was more likely that the presence of the plutonium oxide crystals in the PNNL testing was a result of glass fabrication. A series of PCTs were conducted at 90 C in ASTM Type 1 water. The PCT-Method A (PCT-A) was conducted to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT-A test has a strict protocol and is designed to specifically be used to evaluate whether the chemical durability and elemental release characteristics of a nuclear waste glass have been consistently controlled during production and, thus, meet the repository acceptance requirements. The PCT-A results on the Pu containing LaBS Frit B glass showed that the glass was very durable with a normalized elemental release value for boron of approximately 0.02 g/L. This boron release value was better than two orders of magnitude better from a boron release standpoint than the current Environmental Assessment (EA) glass used for repository acceptance. The boron release value for EA glass is 16.7 g/L.

Marra, J

2006-01-19T23:59:59.000Z

51

U.S. and Russia Sign Plan for Russian Plutonium Disposition | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sign Plan for Russian Plutonium Disposition Sign Plan for Russian Plutonium Disposition U.S. and Russia Sign Plan for Russian Plutonium Disposition November 19, 2007 - 4:31pm Addthis Will Eliminate Enough Russian Plutonium for Thousands of Nuclear Weapons WASHINGTON, DC -U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency Director Sergey Kiriyenko have signed a joint statement outlining a plan to dispose of 34 metric tons of surplus plutonium from Russia's weapons program. Under the new plan, the United States will cooperate with Russia to convert Russian weapon-grade plutonium into mixed oxide fuel (MOX) and irradiate the MOX fuel in the BN-600 fast reactor, currently operating at the Beloyarsk nuclear power plant, and in the BN-800 fast reactor, currently under construction at the same site. The United States and Russia also

52

Multi-component self-consistent nuclear energy system: protected plutonium production (P3)  

Science Journals Connector (OSTI)

The research activity on Protected Plutonium Production (P3) has been performed in the framework of MC-SCNES that simultaneously achieves four requirements â?? energy production, fuel production, burning of radioactive wastes and safety by the combination of fission, spallation and fusion neutron sources. The increase of a fraction of 238Pu provides an essential protective measure to plutonium against the proliferation due to its high decay heat and spontaneous fission neutrons. It is discussed that 238Pu production by the transmutation of MA in both critical and sub-critical operation modes. The demonstration of P3 mechanisms in the reactor will provide a big possibility of new reactor markets in the world.

Masaki Saito

2005-01-01T23:59:59.000Z

53

Production and Characterization of Plutonium Dioxide Particles as a Quality Control Material for Safeguards Purposes  

Science Journals Connector (OSTI)

Production and Characterization of Plutonium Dioxide Particles as a Quality Control Material for Safeguards Purposes ... Although U particles are of major interest in swipe samples from enrichment facilities, Pu particles are of high interest for safeguarding reactors with hot cells, reprocessing, and research and development facilities. ... The environmental sampling for safeguard (ESS) system is presented, that was useful to monitor trace radioactive pollution in the environment and to detect nuclear activities. ...

Taeko Shinonaga; David Donohue; Helmut Aigner; Stefan Bürger; Dilani Klose; Teemu Kärkelä; Riitta Zilliacus; Ari Auvinen; Olivier Marie; Fabien Pointurier

2012-02-28T23:59:59.000Z

54

GLASS FABRICATION AND PRODUCT CONSISTENCY TESTING OF LANTHANIDE BOROSILICATE GLASS FOR PLUTONIUM DISPOSITION  

SciTech Connect

The Department of Energy Office of Environmental Management (DOE/EM) plans to conduct the Plutonium Disposition Project at the Savannah River Site (SRS) in Aiken, SC, to disposition excess weapons-usable plutonium. A plutonium glass waste form is a leading candidate for immobilization of the plutonium for subsequent disposition in a geologic repository. The objectives of this present task were to fabricate plutonium-loaded lanthanide borosilicate (LaBS) Frit B glass and perform testing to provide near-term data that will increase confidence that LaBS glass product is suitable for disposal in the proposed Federal Repository. Specifically, testing was conducted in an effort to provide data to Yucca Mountain Project (YMP) personnel for use in performance assessment calculations. Plutonium containing LaBS glass with the Frit B composition with a 9.5 wt% PuO{sub 2} loading was prepared for testing. Glass was prepared to support glass durability testing via the ASTM Product Consistency Testing (PCT) at Savannah River National Laboratory (SRNL). The glass was characterized with X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) prior to performance testing. This characterization revealed some crystalline PuO{sub 2} inclusions with disk-like morphology present in the as fabricated, quench-cooled glass. A series of PCTs was conducted at SRNL with varying exposed surface area and test durations. Filtered leachates from these tests were analyzed to determine the dissolved concentrations of key elements. The leachate solutions were also ultrafiltered to quantify colloid formation. Leached solids from select PCTs were examined in an attempt to evaluate the Pu and neutron absorber release behavior from the glass and to investigate formation of alteration phases on the glass surface. A series of PCTs was conducted at 90 C in ASTM Type 1 water to compare the Pu LaBS Frit B glass durability to current requirements for High Level Waste (HLW) glass in a geologic repository. The PCT (7-day static test with powdered glass) results on the Pu-containing LaBS Frit B glass at SA/V of {approx} 2000 m{sup -1} showed that the glass was very durable with an average normalized elemental release value for boron of 0.013 g/m{sup 2}. This boron release value is {approx} 640X lower than normalized boron release from current Environmental Assessment (EA) glass used for repository acceptance. The PCT-B (7, 14, 28 and 56-day, static test with powdered glass) normalized elemental releases were similar to the normalized elemental release values from PCT-A testing, indicating that the LaBS Frit B glass is very durable as measured by the PCT. Normalized plutonium releases were essentially the same within the analytical uncertainty of the ICP-MS methods used to quantify plutonium in the 0.45 {micro}m-filtered leachates and ultra-filtered leachates, indicating that colloidal plutonium species do not form under the PCT conditions used in this study.

Crawford, C; James Marra, J; Ned Bibler, N

2007-02-12T23:59:59.000Z

55

Synthesis, characterization, and ion exchange properties of a sodium nonatitanate, Na4Ti9O20.xH2O  

E-Print Network (OSTI)

During the Cold War, the Hanford Weapons Site in Richland, Washington, produced weapons grade plutonium which first needed to be separated from the other products using the PUREX process (plutonium and uranium extraction). As a by product...

Graziano, Gina Marie

1998-01-01T23:59:59.000Z

56

Plutonium gamma-ray measurements for mutual reciprocal inspections of dismantled nuclear weapons  

SciTech Connect

The O`Leary-Mikhailov agreement of March 1994 stated that the U.S. and the Russian Federation would engage in mutual reciprocal inspections (MRI) of fissile materials removed from dismantled nuclear weapons. It was decided to begin with the plutonium (Pu) removed from dismantled weapons and held in storage containers. Later discussions between U.S. and Russian technical experts led to the conclusion that, to achieve the O`Leary-Mikhailov objectives, Pu MRI would need to determine that the material in the containers has properties consistent with a nuclear-weapon component. Such a property is a {sup 240}Pu/{sup 239}Pu ratio consistent with weapons-grade material. One of the candidate inspection techniques under consideration for Pu MRI is to use a narrow region (630-670 keV) of the plutonium gamma-ray spectrum, taken with a high-purity germanium detector, to determine that it is weapons-grade plutonium as well as to estimate the minimum mass necessary to produce the observed gamma-ray intensity. We developed software (the Pu600 code) for instrument control and analysis especially for this purpose. In November 1994, U.S. and Russian scientists met at the Lawrence Livermore National Laboratory for joint experiments to evaluate candidate Pu MRI inspection techniques. In one of these experiments, gamma-ray intensities were measured from three unclassified weapons-grade plutonium source standards and one reactor-grade standard (21% {sup 240}pu). Using our software, we determined the {sup 240}Pu/{sup 239}Pu ratio of these standards to accuracies within {+-}10%, which is adequate for Pu MRI. The minimum mass estimates varied, as expected, directly with the exposed surface area of the standards.

Koenig, Z.M.; Carlson, J.B.; Clark, D.; Gosnell, T.B.

1995-07-01T23:59:59.000Z

57

Experimental Measurements of Short-Lived Fission Products from Uranium, Neptunium, Plutonium and Americium  

SciTech Connect

Fission yields are especially well characterized for long-lived fission products. Modeling techniques incorporate numerous assumptions and can be used to deduce information about the distribution of short-lived fission products. This work is an attempt to gather experimental (model-independent) data on the short-lived fission products. Fissile isotopes of uranium, neptunium, plutonium and americium were irradiated under pulse conditions at the Washington State University 1 MW TRIGA reactor to achieve ~108 fissions. The samples were placed on a HPGe (high purity germanium) detector to begin counting in less than 3 minutes post irradiation. The samples were counted for various time intervals ranging from 5 minutes to 1 hour. The data was then analyzed to determine which radionuclides could be quantified and compared to the published fission yield data.

Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.

2009-11-01T23:59:59.000Z

58

Characterizing Surplus US Plutonium for Disposition - 13199  

SciTech Connect

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States)] [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)] [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

2013-07-01T23:59:59.000Z

59

Characterizing surplus US plutonium for disposition  

SciTech Connect

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

Allender, Jeffrey S.; Moore, Edwin N.

2013-02-26T23:59:59.000Z

60

U.S. weapons-usable plutonium disposition policy: Implementation of the MOX fuel option  

SciTech Connect

A comprehensive case study was conducted on the policy problem of disposing of US weapons-grade plutonium, which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option was examined in the context of national and international nonproliferation policy, and in contrast to US plutonium policy. The study reveals numerous difficulties in achieving effective implementation of the mixed-oxide fuel option including unresolved licensing and regulatory issues, technological uncertainties, public opposition, potentially conflicting federal policies, and the need for international assurances of reciprocal plutonium disposition activities. It is believed that these difficulties can be resolved in time so that the implementation of the mixed-oxide fuel option can eventually be effective in accomplishing its policy objective.

Woods, A.L. [ed.] [Amarillo National Resource Center for Plutonium, TX (United States); Gonzalez, V.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Political Science

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOE Patents (OSTI)

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01T23:59:59.000Z

62

SRS vitrification studies in support of the U.S. program for disposition of excess plutonium  

SciTech Connect

Many thousands of nuclear weapons are being retired in the U.S. and Russian as a result of nuclear disarmament activities. These efforts are expected to produce a surplus of about 50 MT of weapons grade plutonium (Pu) in each country. In addition to this inventory, the U.S. Department of Energy (DOE) has more than 20 MT of Pu scrap, residue, etc., and Russian is also believed to have at least as much of this type of material. The entire surplus Pu inventories in the U.S. and Russian present a clear and immediate danger to national and international security. It is important that a solution be found to secure and manage this material effectively and that such an effort be implemented as quickly as possible. One option under consideration is vitrification of Pu into a safe, durable, accountable and proliferation-resistant form. As a result of decades to experience within the DOE community involving vitrification of a variety of hazardous and radioactive wastes, this existing technology can now be expanded to include mobilization of large amounts of Pu. This technology can then be implemented rapidly using the many existing resources currently available. An overall strategy to vitrify many different types of Pu will be already developed throughout the waste management community can be used in a staged Pu vitrification effort. This approach uses the flexible vitrification technology already available and can even be made portable so that it may be brought to the source and ultimately, used to produce a consistent and common borosilicate glass composition for the vitrified Pu. The final composition of this product can be made similar to nationally and internationally accepted HLW glasses.

Wicks, G.G.; McKibben, J.M.; Plodinec, M.J.; Ramsey, W.G.

1995-09-01T23:59:59.000Z

63

Hanford Site Workers Meet Challenging Performance Goal at Plutonium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford site's Plutonium Finishing Plant are surpassing goals for removing hazardous tanks once used in the plutonium production process. EM's Richland Operations Office and...

64

Plutonium Vulnerability Management Plan  

SciTech Connect

This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

NONE

1995-03-01T23:59:59.000Z

65

Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation  

E-Print Network (OSTI)

, and processing capabilities was performed using open source information and compared to independent reports. Nuclear energy and plutonium production (reactor- and weapons-grade) was simulated using declared capacity factors and modern simulation tools. The three...

Woddi, Taraknath Venkat Krishna

2009-05-15T23:59:59.000Z

66

Plutonium: Requiem or reprieve  

SciTech Connect

Many scientific discoveries have had profound effects on humanity and its future. However, the discovery of fissionable characteristics of a man-made element, plutonium, discovered in 1941 by Glenn Seaborg and associates, has probably had the greatest impact on world affairs. Although about 20 new elements have been synthesized since 1940, element 94 unarguably had the most dramatic impact when it was introduced to the world as the core of the nuclear bomb dropped on Nagasaki. Ever since, large quantities of this element have been produced, and it has had a major role in maintaining peace during the past 50 years. in addition, the rapid spread of nuclear power technology worldwide contributed to major growth in the production of plutonium as a by-product. This article discusses the following issues related to plutonium: plutonium from Nuclear Power Generation; environmental safety and health issues; health effects; safeguards issues; extended storage; disposal options.

Pillay, K.K.S. [Los Alamos National Laboratory, Berkeley, CA (United States)

1996-01-01T23:59:59.000Z

67

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

68

SHIELDING AND DETECTOR RESPONSE CALCULATIONS PERTAINING TO CATEGORY 1 QUANTITIES OF PLUTONIUM AND HAND-HELD PLASTIC SCINTILLATORS  

SciTech Connect

Nuclear facilities sometimes use hand-held plastic scintillator detectors to detect attempts to divert special nuclear material in situations where portal monitors are impractical. MCNP calculations have been performed to determine the neutron and gamma radiation field arising from a Category I quantity of weapons-grade plutonium in various shielding configurations. The shields considered were composed of combinations of lead and high-density polyethylene such that the mass of the plutonium plus shield was 22.7 kilograms. Monte-Carlo techniques were also used to determine the detector response to each of the shielding configurations. The detector response calculations were verified using field measurements of high-, medium-, and low- energy gamma-ray sources as well as a Cf-252 neutron source.

Couture, A.

2013-06-07T23:59:59.000Z

69

Screening study for evaluation of the potential for system 80+ to consume excess plutonium - Volume 2. Final report  

SciTech Connect

As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID, is proceeding with a more detailed evaluation of the design`s capability for plutonium disposition.

Not Available

1994-04-30T23:59:59.000Z

70

Plutonium aging  

SciTech Connect

The author describes the plutonium aging program at the Los Alamos National Laboratory. The aging of plutonium components in the US nuclear weapons stockpile has become a concern due to several events: the end of the cold war, the cessation of full scale underground nuclear testing as a result of the Comprehensive Test Ban Treaty (CTBT) and the closure of the Rocky Flats Plant--the site where the plutonium components were manufactured. As a result, service lifetimes for nuclear weapons have been lengthened. Dr. Olivas will present a brief primer on the metallurgy of plutonium, and will then describe the technical approach to ascertaining the long-term changes that may be attributable to self-radiation damage. Facilities and experimental techniques which are in use to study aging will be described. Some preliminary results will also be presented.

Olivas, J.D.

1999-03-01T23:59:59.000Z

71

'Civil' nuclear programme – serving the dual objectives of retaining the state's hegemony on citizens' basic energy needs and assuring supply of weapon grade ingredients: a case study on India  

Science Journals Connector (OSTI)

Political leaders of ambitious emerging economies of India and China, where the state has not yet reached the maturity stage, prefer nuclear power to other alternative energy sources, as it serves the dual purpose of retaining the state's hegemony on citizens' basic energy needs and assures supply of weapon grade ingredients. In contrast to North America and most of Western Europe, where growth of nuclear power has levelled out for many years, the 'greatest growth in nuclear generation' in the near future is expected in China, Japan, South Korea and India. It would be naive to believe that the political establishments are not aware of the negative consequences of nuclear power. The question may then arise as to why have the emerging economies of India, China, Brazil, etc., aligned themselves with the nuclear establishment without fully exploiting other alternative energy sources? Taking India as a case, this paper analyses secondary data and findings of various previous studies to explore an answer to this question.

Dipankar Dey

2010-01-01T23:59:59.000Z

72

Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection  

SciTech Connect

The Plutonium Immobilization Project (PIP) is a program funded by the U.S. Department of Energy to develop technology to disposition excess weapons grade plutonium. This program introduces the ''Can-in-Canister'' (CIC) technology that immobilizes the plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding it with high-level waste glass to provide a deterrent to recovery. Since there are significant radiation, contamination and security concerns, the project team is developing unique technologies to remotely perform plutonium immobilization tasks. This paper covers the design, development and testing of the magazines (cylinders containing cans of ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a join ted arm robot that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102 mm) diameter canister throat.

Hamilton, L.

2001-01-05T23:59:59.000Z

73

Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection  

SciTech Connect

The Plutonium Immobilization Project (PIP) is a program funded by the U.S. Department of Energy to develop technology to disposition excess weapons grade plutonium. This program introduces the ''Can-in-Canister'' (CIC) technology that immobilizes the plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding it with high-level waste glass to provide a deterrent to recovery. Since there are significant radiation, contamination and security concerns, the project team is developing unique technologies to remotely perform plutonium immobilization tasks. This paper covers the design, development and testing of the magazines (cylinders containing cans of ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a jointed arm robot that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102 mm) diameter canister throat.

Hamilton, L.

2001-01-10T23:59:59.000Z

74

THE PLUTONIUM STORY  

E-Print Network (OSTI)

THE PLUTONIUM STORY Glenn T. Seaborg Lawrence Berkeley48. THE PLUTONIUM STORY Glenn T. Seaborg Lawrence Berkeley

Seaborg, G.T.

2010-01-01T23:59:59.000Z

75

Safeguards on Plutonium  

Science Journals Connector (OSTI)

... reactors throughout the world. They promise cheap power and such other important benefits as the desalination of seawater. Although the economic forecasts have generally been over-optimistic, commercial organizations are ... kind of plutonium; or any number of other technical factors may have changed the basic economics of power production.

LEONARD BEATON

1966-12-31T23:59:59.000Z

76

Reference computations of public dose and cancer risk from airborne releases of plutonium. Nuclear safety technical report  

SciTech Connect

This report presents results of computations of doses and the associated health risks of postulated accidental atmospheric releases from the Rocky Flats Plant (RFP) of one gram of weapons-grade plutonium in a form that is respirable. These computations are intended to be reference computations that can be used to evaluate a variety of accident scenarios by scaling the dose and health risk results presented here according to the amount of plutonium postulated to be released, instead of repeating the computations for each scenario. The MACCS2 code has been used as the basis of these computations. The basis and capabilities of MACCS2 are summarized, the parameters used in the evaluations are discussed, and results are presented for the doses and health risks to the public, both the Maximum Offsite Individual (a maximally exposed individual at or beyond the plant boundaries) and the population within 50 miles of RFP. A number of different weather scenarios are evaluated, including constant weather conditions and observed weather for 1990, 1991, and 1992. The isotopic mix of weapons-grade plutonium will change as it ages, the {sup 241}Pu decaying into {sup 241}Am. The {sup 241}Am reaches a peak concentration after about 72 years. The doses to the bone surface, liver, and whole body will increase slightly but the dose to the lungs will decrease slightly. The overall cancer risk will show almost no change over this period. This change in cancer risk is much smaller than the year-to-year variations in cancer risk due to weather. Finally, x/Q values are also presented for other applications, such as for hazardous chemical releases. These include the x/Q values for the MOI, for a collocated worker at 100 meters downwind of an accident site, and the x/Q value integrated over the population out to 50 miles.

Peterson, V.L.

1993-12-23T23:59:59.000Z

77

Environmental Impact Statement for the Proposed Production of Plutonium - 238 for Use in Advanced Radioisotope Power Systems for Future Space Missions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

98 98 Federal Register / Vol. 63, No. 192 / Monday, October 5, 1998 / Notices DEPARTMENT OF ENERGY Environmental Impact Statement for the Proposed Production of Plutonium- 238 for Use in Advanced Radioisotope Power Systems for Future Space Missions AGENCY: Department of Energy (DOE). ACTION: Notice of Intent. SUMMARY: Pursuant to the National Environmental Policy Act (NEPA), DOE announces its intent to prepare an environmental impact statement (EIS) for the proposed production of plutonium-238 (Pu-238) using one or more DOE research reactors and facilities. The Pu-238 would be used in advanced radioisotope power systems for potential future space missions. Without a long-term supply of Pu-238, DOE would not be able to provide the radioisotope power systems that may be required for these potential future space

78

X-Ray Absorption Spectroscopy of Plutonium Particles at the Rocky Flats US Nuclear Weapons Production Site  

Science Journals Connector (OSTI)

The Rocky Flats Environmental Technology Site (RFETS) was a...2. This information coupled with ultrafiltration studies was used to make the case for particle transport mechanisms as the basis of plutonium and ame...

Steven D. Conradson; David L. Clark; Christophe den Auwer…

2011-01-01T23:59:59.000Z

79

Polyethylene-reflected plutonium metal sphere : subcritical neutron and gamma measurements.  

SciTech Connect

Numerous benchmark measurements have been performed to enable developers of neutron transport models and codes to evaluate the accuracy of their calculations. In particular, for criticality safety applications, the International Criticality Safety Benchmark Experiment Program (ICSBEP) annually publishes a handbook of critical and subcritical benchmarks. Relatively fewer benchmark measurements have been performed to validate photon transport models and codes, and unlike the ICSBEP, there is no program dedicated to the evaluation and publication of photon benchmarks. Even fewer coupled neutron-photon benchmarks have been performed. This report documents a coupled neutron-photon benchmark for plutonium metal reflected by polyethylene. A 4.5-kg sphere of ?-phase, weapons-grade plutonium metal was measured in six reflected configurations: (1) Bare; (2) Reflected by 0.5 inch of high density polyethylene (HDPE); (3) Reflected by 1.0 inch of HDPE; (4) Reflected by 1.5 inches of HDPE; (5) Reflected by 3.0 inches of HDPE; and (6) Reflected by 6.0 inches of HDPE. Neutron and photon emissions from the plutonium sphere were measured using three instruments: (1) A gross neutron counter; (2) A neutron multiplicity counter; and (3) A high-resolution gamma spectrometer. This report documents the experimental conditions and results in detail sufficient to permit developers of radiation transport models and codes to construct models of the experiments and to compare their calculations to the measurements. All of the data acquired during this series of experiments are available upon request.

Mattingly, John K.

2009-11-01T23:59:59.000Z

80

ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

82

THE PLUTONIUM STORY  

E-Print Network (OSTI)

bulk of the uranium, as uranyl nitrate hexahydrate, from thelarge- amounts of uranyl nitrate from plutonium. Methods hadPlutonium. A sample of uranyl nitrate weighing 1.2 kilograms

Seaborg, G.T.

2010-01-01T23:59:59.000Z

83

Selection of Russian Plutonium Beryllium Sources for Inclusion in the Nuclear Mateirals Information Program Archive  

SciTech Connect

Throughout the 1960s and 1970s, the former Soviet Union produced and exported Plutonium-Beryllium (PuBe) neutron sources to various Eastern European countries. The Russian sources consist of an intermetallic compound of plutonium and beryllium encapsulated in an inner welded, sealed capsule and consisting of a body and one or more covers. The amount of plutonium in the sources ranges from 0.002 g up to 15 g. A portion of the sources was originally exported to East Germany. A portion of these sources were acquired by Los Alamos National Laboratory (LANL) in the late 1990s for destruction in the Offsite Source Recovery Program. When the OSRP was canceled, the remaining 88 PuBe neutron sources were packaged and stored in a 55-gal drum at T A-55. This storage configuration is no longer acceptable for PuBe sources, and the sources must either be repackaged or disposed of. Repackaging would place the sources into Hagan container, and depending on the dose rates, some sources may be packaged individually increasing the footprint and cost of storage. In addition, each source will be subject to leak-checking every six months. Leaks have already been detected in some of the sources, and due to the age of these sources, it is likely that additional leaks may be detected over time, which will increase the overall complexity of handling and storage. Therefore, it was decided that the sources would be disposed of at the Waste Isolation Pilot Plant (WIPP) due to the cost and labor associated with continued storage at TA-55. However, the plutonium in the sources is of Russian origin and needs to be preserved for research purposes. Therefore, it is important that a representative sample of the sources retained and archived for future studies. This report describes the criteria used to obtain a representative sample of the sources. Nine Russian PuBe neutron sources have been selected out of a collection of 77 sources for inclusion in the NMIP archive. Selection criteria were developed so that the largest sources that are representative of the collection are included. One representative source was chosen for every 20 sources in the collection, and effort was made to preserve sources unique to the collection. In total, four representative sources and five unique sources were selected for the archive. The archive samples contain 40 grams of plutonium with an isotopic composition similar to that of weapon grade material and three grams of plutonium with an isotopic composition similar to that of reactor grade plutonium.

Narlesky, Joshua E [Los Alamos National Laboratory; Padilla, Dennis D [Los Alamos National Laboratory; Watts, Joe [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

84

Gallium interactions with Zircaloy  

E-Print Network (OSTI)

of weapons-grade plutonium (WGPu) in the United States is the conversion of weapons-grade plutonium into mixed-oxide (MOX) reactor fuel. MOX fuel fabricated in this way must be compatible with currently used nuclear fuel components. Since US WGPu contains... that gallium may have on zircaloy cladding during reactor operation. As a result of the reprocessing of spent fuel used in European nuclear programs, many studies have been conducted on the production and behavior of MOX fuel in traditional reactors [5...

West, Michael Keith

2012-06-07T23:59:59.000Z

85

Plutonium Finishing Plant safety evaluation report  

SciTech Connect

The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

Not Available

1995-01-01T23:59:59.000Z

86

Hanford Site Workers Meet Challenging Performance Goal at Plutonium Finishing Plant  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. – Safely and methodically, piece by piece, workers at the Hanford site’s Plutonium Finishing Plant are surpassing goals for removing hazardous tanks once used in the plutonium production process.

87

A Note on the Reaction of Hydrogen and Plutonium  

SciTech Connect

Plutonium hydride has many practical and experimental purposes. The reaction of plutonium and hydrogen has interesting characteristics, which will be explored in the following analysis. Plutonium is a radioactive actinide metal that emits alpha particles. When plutonium metal is exposed to air, the plutonium oxides and hydrides, and the volume increases. PuH{sub 2} and Pu{sub 2}O{sub 3} are the products. Hydrogen is a catalyst for plutonium's corrosion in air. The reaction can take place at room temperature because it is fairly insensitive to temperature. Plutonium hydride, or PuH{sub 2}, is black and metallic. After PuH{sub 2} is formed, it quickly flakes off and burns. The reaction of hydrogen and plutonium is described as pyrophoric because the product will spontaneously ignite when oxygen is present. This tendency must be considered in the storage of metal plutonium. The reaction is characterized as reversible and nonstoichiometric. The reaction goes as such: Pu + H{sub 2} {yields} PuH{sub 2}. When PuH{sub 2} is formed, the hydrogen/plutonium ratio is between 2 and 2.75 (approximately). As more hydrogen is added to the system, the ratio increases. When the ratio exceeds 2.75, PuH{sub 3} begins to form along with PuH{sub 2}. Once the ratio surpasses 2.9, only PuH{sub 3} remains. The volume of the plutonium sample increases because of the added hydrogen and the change in crystal structure which the sample undergoes. As more hydrogen is added to a system of metal plutonium, the crystal structure evolves. Plutonium has a crystal structure classified as monoclinic. A monoclinic crystal structure appears to be a rectangular prism. When plutonium reacts with hydrogen, the product PuH{sub 2}, becomes a fluorite structure. It can also be described as a face centered cubic structure. PuH{sub 3} forms a hexagonal crystal structure. As plutonium evolves from metal plutonium to plutonium hydride to plutonium trihydride, the crystal structure evolves from monoclinic to fluorite to hexagonal. This change in crystal structure as a result of adding hydrogen is a shared characteristic with other actinide elements. Americium is isostructural with plutonium because they both form cubic dihyrides and hexagonal trihydrides. Reacting hydrogen with plutonium has the practical application of separating plutonium from other materials that don't react as well with hydrogen. When plutonium is placed in a chamber where there is very little oxygen, it can react with hydrogen without igniting. The hydrogen plutonium reaction can then be reversed, thus regaining the separated plutonium. Another application of this reaction is that it can be used to predict how plutonium reacts with other substances. Deuterium and tritium are two isotopes of hydrogen that are of interest. They are known to react likewise to hydrogen because they have similar properties. The reaction of plutonium and isotopes of hydrogen can prove to be very informative.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-15T23:59:59.000Z

88

THE PLUTONIUM STORY  

E-Print Network (OSTI)

vast processing plants at Hanford, Washington, in Decemberconsideration for use at Hanford. The various parts of thewere tested c u the Hanford concentration:, of plutonium in

Seaborg, G.T.

2010-01-01T23:59:59.000Z

89

REEVALUATION OF WATERBORNE RELEASES OF RADIOACTIVE MATERIALS FROM THE MAYAK PRODUCTION ASSOCIATION INTO THE TECHA RIVER IN 1949-1951  

SciTech Connect

The Mayak Production Association was the first site for the production of weapon-grade plutonium in Russia. Early operations led to the waterborne release of large amounts of radioactive materials into the small Techa River. Residents living downstream used river water for drinking and other purposes. The releases and subsequent flooding resulted in the deposition of sediments along the shoreline and on floodplain soil. Primary routes of exposure were external dose from the deposited sediments and the ingestion of 90Sr and other radionuclides. Study of the Techa River Cohort has revealed an increased incidence of leukemia and solid cancers. These epidemiologic studies are supported by extensive dose-reconstruction activities that have led to the creation of various versions of a Techa River Dosimetry System (TRDS). The correctness of the TRDS has been challenged by the allegation that releases of short-lived radionuclides were much larger than those used in the TRDS. Although the dosimetry system depends more upon the measurements of 90Sr in humans and additional measurements of radionuclides and of exposure rates in the environment, a major activity has been undertaken to define more precisely the time-dependent rates of release and radionuclide composition of the releases. The major releases occurred during 1950-1951. In addition to routine releases major accidental releases occurred. The re-evaluated amount of total release is 114 PBq, about half of which was from accidents that occurred in late 1951. The composition of the radionuclides released has also been re-evaluated; this composition changed with time.

Degteva, M. O.; Shagina, N. B.; Vorobiova, M. I.; Anspaugh, L. R.; Napier, Bruce A.

2012-01-01T23:59:59.000Z

90

The sorption of thorium, protacintium and plutonium onto silica particles in the presence of a colloidal third phase  

E-Print Network (OSTI)

, such as former nuclear weapons production facilities, remain as repositories for no longer needed actinide stockpiles or waste by-products such as plutonium. All three of these actinides: thorium, protactinium, and plutonium are known to be particle...

Roberts, Kimberly Ann

2009-05-15T23:59:59.000Z

91

Plutonium's Future Brightens  

Science Journals Connector (OSTI)

NUCLEAR POWER reactors fueled with plutonium may be on the way. The big step: a just-completed fuel fabrication plant at the Atomic Energy Commission's Argonne National Laboratory. Aim of the $4 million plant is to find out how plutonium-239 fuel elements ...

1959-05-25T23:59:59.000Z

92

Uranium-plutonium-neptunium fuel cycle to produce isotopically denatured plutonium  

SciTech Connect

In view of the considerable amount of /sup 237/ Np produced as a by-product in nuclear power reactors, possible utilization of this nuclide in the nuclear fuel cycle has been studied. In particular, the performance of a gas-cooled fast breeder reactor as a neptunium burner was assessed. A strategy was developed and mass flows were computed for a denatured plutonium LWR strategy using uranium, plutonium and neptunium recycling. 10 refs.

Wydler, P.; Heer, W.; Stiller, P.; Wenger, H.U.

1980-06-01T23:59:59.000Z

93

LITERATURE REVIEW ON THE SORPTION OF PLUTONIUM, URANIUM, NEPTUNIUM, AMERICIUM AND TECHNETIUM TO CORROSION PRODUCTS ON WASTE TANK LINERS  

SciTech Connect

The Savannah River Site (SRS) has conducted performance assessment (PA) calculations to determine the risk associated with closing liquid waste tanks. The PA estimates the risk associated with a number of scenarios, making various assumptions. Throughout all of these scenarios, it is assumed that the carbon-steel tank liners holding the liquid waste do not sorb the radionuclides. Tank liners have been shown to form corrosion products, such as Fe-oxyhydroxides (Wiersma and Subramanian 2002). Many corrosion products, including Fe-oxyhydroxides, at the high pH values of tank effluent, take on a very strong negative charge. Given that many radionuclides may have net positive charges, either as free ions or complexed species, it is expected that many radionuclides will sorb to corrosion products associated with tank liners. The objective of this report was to conduct a literature review to investigate whether Pu, U, Np, Am and Tc would sorb to corrosion products on tank liners after they were filled with reducing grout (cementitious material containing slag to promote reducing conditions). The approach was to evaluate radionuclides sorption literature with iron oxyhydroxide phases, such as hematite ({alpha}-Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), goethite ({alpha}-FeOOH) and ferrihydrite (Fe{sub 2}O{sub 3} {center_dot} 0.5H{sub 2}O). The primary interest was the sorption behavior under tank closure conditions where the tanks will be filled with reducing cementitious materials. Because there were no laboratory studies conducted using site specific experimental conditions, (e.g., high pH and HLW tank aqueous and solid phase chemical conditions), it was necessary to extend the literature review to lower pH studies and noncementitious conditions. Consequently, this report relied on existing lower pH trends, existing geochemical modeling, and experimental spectroscopic evidence conducted at lower pH levels. The scope did not include evaluating the appropriateness of K{sub d} values for the Fe-oxyhydroxides, but instead to evaluate whether it is a conservative assumption to exclude this sorption process of radionuclides onto tank liner corrosion products in the PA model. This may identify another source for PA conservatism since the modeling did not consider any sorption by the tank liner.

Li, D.; Kaplan, D.

2012-02-29T23:59:59.000Z

94

Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors  

SciTech Connect

This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

Hikaru Hiruta; Gilles Youinou

2013-09-01T23:59:59.000Z

95

E-Print Network 3.0 - americium 238 Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

americium-241 daughter... Flats Plutonium and Uranium Weapons-Grade Plutonium Enriched Uranium Depleted Uranium Plutonium-238 0... % Uranium-235 0.2 - 0.3% Plutonium-240 4.85 -...

96

System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2  

SciTech Connect

The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors.

Ellis, R.J.

2000-11-01T23:59:59.000Z

97

Supplement Analysis Plutonium Consolidation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-SA-4 9-SA-4 SUPPLEMENT ANALYSIS STORAGE OF SURPLUS PLUTONIUM MATERIALS AT THE SAVANNAH RIVER SITE INTRODUCTION AND PURPOSE In April 2002, DOE decided to immediately consolidate long-term storage at the Savannah River Site (SRS) of surplus, non-pit weapons-usable plutonium then stored at the Rocky Flats Environmental Technology Site (RFETS) (DOE, 2002a). That 2002 decision did not affect an earlier DOE decision made in the January 21, 1997, Record of Decision (ROD, DOE, 1997) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement (Storage and Disposition PEIS, DOE, 1996) to continue storage of non-pit surplus plutonium at Hanford, the Idaho National Laboratory (INL), and the Los Alamos

98

Plutonium in Lake Ontario  

Science Journals Connector (OSTI)

The presence of West Valley-delivered radionuclides in the western basin of Lake Ontario is demonstrated through an analysis of plutoniums and associated radionuclides in a 210Pb-dated sediment core. It is observed that the radionuclide profiles are consistent with the 1970 West Valley peak discharge and not the 1963 fallout peak activity. The drainage basin soils are estimated to annually release only about 0.006% of their fallout 239,240Pu inventory to the receiving waters. Taken together, on a lakewide basis, both releases have made very little contribution to the overall levels of plutoniums in the open waters though surges in West Valley emissions were obviously a significant contributor to western Lake Ontario waters. It appears nuclear reactor operations contribute very little plutonium to the open waters. Their influence on the nearshore zone must await the availability of relevant release and monitoring data.

S.R. Joshi

1995-01-01T23:59:59.000Z

99

Demolition Begins on Hanford's Historic Plutonium Vaults - Plutonium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolition Begins on Hanford's Historic Plutonium Vaults - Demolition Begins on Hanford's Historic Plutonium Vaults - Plutonium Finishing Plant on track to meet regulatory milestone Demolition Begins on Hanford's Historic Plutonium Vaults - Plutonium Finishing Plant on track to meet regulatory milestone November 18, 2011 - 12:00pm Addthis Media Contacts Geoff Tyree Department of Energy Geoffrey.Tyree@rl.doe.gov 509-376-4171 Dee Millikin CH2M HILL Plateau Remediation Company Dee_Millikin@rl.gov 509-376-1297 RICHLAND, WASH. - The U.S. Department of Energy (DOE) and contractor CH2M HILL Plateau Remediation Company (CH2M HILL) began demolishing a vault complex that once held stores of plutonium for the U.S. nuclear weapons program at the Hanford Site in southeast Washington State. The vault complex is part of Hanford's Plutonium Finishing Plant, which

100

Plutonium recovery from spent reactor fuel by uranium displacement  

DOE Patents (OSTI)

A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, J.P.

1992-03-17T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electrochemically Modulated Separation for Plutonium Safeguards  

SciTech Connect

Accurate and timely analysis of plutonium in spent nuclear fuel is critical in nuclear safeguards for detection of both protracted and rapid plutonium diversions. Gamma spectroscopy is a viable method for accurate and timely measurements of plutonium provided that the plutonium is well separated from the interfering fission and activation products present in spent nuclear fuel. Electrochemically modulated separation (EMS) is a method that has been used successfully to isolate picogram amounts of Pu from nitric acid matrices. With EMS, Pu adsorption may be turned "on" and "off" depending on the applied voltage, allowing for collection and stripping of Pu without the addition of chemical reagents. In this work, we have scaled up the EMS process to isolate microgram quantities of Pu from matrices encountered in spent nuclear fuel during reprocessing. Several challenges have been addressed including surface area limitations, radiolysis effects, electrochemical cell performance stability, and chemical interferences. After these challenges were resolved, 6 µg Pu was deposited in the electrochemical cell with approximately an 800-fold reduction of fission and activation product levels from a spent nuclear fuel sample. Modeling showed that these levels of Pu collection and interference reduction may not be sufficient for Pu detection by gamma spectroscopy. The main remaining challenges are to achieve a more complete Pu isolation and to deposit larger quantities of Pu for successful gamma analysis of Pu. If gamma analyses of Pu are successful, EMS will allow for accurate and timely on-site analysis for enhanced Pu safeguards.

Pratt, Sandra H.; Breshears, Andrew T.; Arrigo, Leah M.; Schwantes, Jon M.; Duckworth, Douglas C.

2013-12-31T23:59:59.000Z

102

Manhattan Project: Seaborg and Plutonium Chemistry, Met Lab, 1942-1944  

Office of Scientific and Technical Information (OSTI)

Glenn T. Seaborg looks through a microscope at the world's first sample of pure plutonium, Met Lab, August 20, 1942. SEABORG AND PLUTONIUM CHEMISTRY Glenn T. Seaborg looks through a microscope at the world's first sample of pure plutonium, Met Lab, August 20, 1942. SEABORG AND PLUTONIUM CHEMISTRY (Met Lab, 1942-1944) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 While the Met Lab labored to make headway on pile (reactor) design, Glenn T. Seaborg (right) and his coworkers were trying to learn enough about transuranium chemistry to ensure that plutonium could be chemically separated from the uranium that would be irradiated in a production pile. Using lanthanum fluoride as a carrier, Seaborg isolated a weighable sample of plutonium in August 1942. At the same time, Isadore Perlman and William J. Knox explored the peroxide method of separation; John E. Willard studied various materials to determine which best adsorbed (gathered on its surface) plutonium; Theodore T. Magel and Daniel K. Koshland, Jr., researched solvent-extraction processes; and Harrison S. Brown and Orville F. Hill performed experiments into volatility reactions. Basic research on plutonium's chemistry continued as did work on radiation and fission products.

103

Process modeling of plutonium conversion and MOX fabrication for plutonium disposition  

SciTech Connect

Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3--7%, a burnup of 20,000--40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2--6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively.

Schwartz, K.L. [Univ. of Texas, Austin, TX (United States). Dept. of Nuclear Engineering

1998-10-01T23:59:59.000Z

104

Audit Report: IG-0522 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federation entered into an agreement stipulating that each country would irreversibly transform 34 metric tons of weapons-grade plutonium into forms that cannot be used for weapons...

105

Newsletters | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Weapons-grade Plutonium NNSA Conference Highlights Work Critical to Stewardship Science NNSA Rolls Out Mobile Radiation Detection System for INTERPOL Members NNSA Monitors...

106

Nordisk kernesikkerhedsforskning Norrnar kjarnryggisrannsknir  

E-Print Network (OSTI)

such as reprocessed enriched uranium and weapons grade plutonium provided different challenges and there were. Latvian Environment, Geology and Meteorology Centre, Latvia. jberzins at la

107

Plutonium Consolidation Amended ROD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6450-01-P] 6450-01-P] DEPARTMENT OF ENERGY Amended Record of Decision: Storage of Surplus Plutonium Materials at the Savannah River Site AGENCY: Department of Energy ACTION: Amended Record of Decision SUMMARY: The U.S. Department of Energy (DOE) is amending the Record of Decision (ROD) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement (DOE/EIS-0229, 1996; Storage and Disposition PEIS). Specifically, DOE has decided to take the actions necessary to transfer approximately 2,511 additional 3013-compliant packages 1 containing surplus non-pit weapons-usable plutonium metals and oxides to the Savannah River Site (SRS), near Aiken, South Carolina. Approximately 2,300 containers will be transferred from the Hanford Site (Hanford) near

108

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

109

Crystalline ceramics: Waste forms for the disposal of weapons plutonium  

SciTech Connect

At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-05-01T23:59:59.000Z

110

Independent Activity Report, Hanford Plutonium Finishing Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Finishing Plant - May 2012 Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 May 2012 Criticality Safety Information Meeting for the Hanford...

111

TECHNIQUES FOR MONITORING PLUTONIUM IN THE ENVIRONMENT  

E-Print Network (OSTI)

Detection for Plutonium and Americium Wound Counting," Rockyin vivo Measurement of Americium and Plutonium," Rocky Flatsof its decay daughter, americium 241, are also given since

Nero Jr., A.V.

2011-01-01T23:59:59.000Z

112

Conceptual Design for the Pilot-Scale Plutonium Oxide Processing Unit in the Radiochemical Processing Laboratory  

SciTech Connect

This report describes a conceptual design for a pilot-scale capability to produce plutonium oxide for use as exercise and reference materials, and for use in identifying and validating nuclear forensics signatures associated with plutonium production. This capability is referred to as the Pilot-scale Plutonium oxide Processing Unit (P3U), and it will be located in the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory. The key unit operations are described, including plutonium dioxide (PuO2) dissolution, purification of the Pu by ion exchange, precipitation, and conversion to oxide by calcination.

Lumetta, Gregg J.; Meier, David E.; Tingey, Joel M.; Casella, Amanda J.; Delegard, Calvin H.; Edwards, Matthew K.; Jones, Susan A.; Rapko, Brian M.

2014-08-05T23:59:59.000Z

113

LANL | Physics | Dynamic Plutonium Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic plutonium experiments Dynamic plutonium experiments Since the end of nuclear testing the nation has had to rely on sophisticated computer models to ensure the safety and reliability of the nuclear weapons stockpile. This program is known as science-based stockpile stewardship. Despite possessing the world's fastest computers and most advanced modeling capability, the behavior of materials under dynamic loads that occur in a nuclear weapon are difficult to accurately model. The Dynamic Plutonium experimental program carries out experiments at the Nevada National Security Site on plutonium driven by high explosives. These experiments are needed to measure and understand the behavior of plutonium under extreme conditions. Physics Division has unique capabilities in high-speed x-ray imaging and velocimetry (measuring the

114

Interim Storage of Plutonium in Existing Facilities  

SciTech Connect

'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the reactor building. The storage life is projected to be ten years to allow the preparation of APSF. DOE has stipulated that there be no credible release during storage, since there are no design features in place to mitigate a release of plutonium (i.e. HEPA filters, facility containment boundaries, etc.). This mandate has presented most of the significant challenges to the safety analysis team. The shipping packages are designed to withstand certain accidents and conditions, but in order to take credit for these the storage environment must be strictly controlled. Damages to the packages from exposure to fire, dropping, crushing and other impact accidents have been analyzed, and appropriate preventative design features have been incorporated. Other efforts include the extension of the shipping life (roughly two years) to a suitable storage life of ten years. These issues include the effects of internal pressure increases, seal degradation and the presence of impurities. A process known as the Container Qualification Program has been conducted to address these issues. The KAMS project will be ready to receive the first shipment from Rocky Flats in January 2000. No credible design basis scenarios resulting in the release of plutonium exist. This work has been useful in the effort to provide a safer disposition of plutonium, but also the lessons learned and techniques established by the team will help with the analysis of future facility modifications.'

Woodsmall, T.D.

1999-05-10T23:59:59.000Z

115

Pyrochemical processing of plutonium. Technology review report  

SciTech Connect

Non-aqueous processes are now in routine use for direct conversion of plutonium oxide to metal, molten salt extraction of americium, and purification of impure metals by electrorefining. These processes are carried out at elevated temperatures in either refractory metal crucibles or magnesium-oxide ceramics in batch-mode operation. Direct oxide reduction is performed in units up to 700 gram PuO/sub 2/ batch size with molten calcium metal as the reductant and calcium chloride as the reaction flux. Americium metal is removed from plutonium metal by salt extraction with molten magnesium chloride. Electrorefining is used to isolate impurities from molten plutonium by molten salt ion transport in a controlled potential oxidation-reduction cell. Such cells can purify five or more kilograms of impure metal per 5-day electrorefining cycle. The product metal obtained is typically > 99.9% pure, starting from impure feeds. Metal scrap and crucible skulls are recovered by hydriding of the metallic residues and recovered either as impure metal or oxide feeds.

Coops, M.S.; Knighton, J.B.; Mullins, L.J.

1982-09-08T23:59:59.000Z

116

Implications of Plutonium isotopic separation on closed fuel cycles and repository design  

SciTech Connect

Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation. This would have large impacts on LWR closed fuel cycles and waste management. If Pu-240 is removed before recycling plutonium as mixed oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, Americium, and Curium. Pu-240 is a fertile material and thus can be replaced by U-238. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Eliminating fertile Pu-240 and Pu-242 reduces the plutonium content in MOX fuel and simplifies fabrication. Reducing production of Pu-241 reduces production of Am-241 - the primary heat generator in spent nuclear fuels after several decades. Reducing heat generating Am-241 would reduce repository cost and waste toxicity. Avoiding Am- 241 avoids its decay product Np-237, a nuclide that partly controls long-term oxidizing repository performance. Most of these benefits also apply to LWR plutonium recycled into fast reactors. There are benefits for plutonium isotopic separation in fast reactor fuel cycles (particularly removal of Pu-242) but the benefits are less. (author)

Forsberg, C. [Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 20129 (United States)

2013-07-01T23:59:59.000Z

117

Feasibility and options for purchasing nuclear weapons, highly enriched uranium (HEU) and plutonium from the former Soviet Union (FSU)  

SciTech Connect

In response to a recent tasking from the National Security Council, this report seeks to analyze the possible options open to the US for purchasing, from the former Soviet Union (FSU) substantial quantities of plutonium and highly enriched uranium recovered from the accelerated weapons retirements and dismantlements that will soon be taking place. The purpose of this paper is to identify and assess the implications of some of the options that now appear to be open to the United States, it being recognized that several issues might have to be addressed in further detail if the US Government, on its own, or acting with others seeks to negotiate any such purchases on an early basis. As an outgrowth of the dissolution of the Soviet Union three of the C.I.S. republics now possessing nuclear weapons, namely the Ukraine, Belarus, and Kazakhstan, have stated that it is their goal, without undue delay, to become non-nuclear weapon states as defined in the Non-Proliferation Treaty. Of overriding US concern is the proliferation of nuclear weapons in the Third World, and the significant opportunity that the availability of such a large quantity of surplus weapons grade material might present in this regard, especially to a cash-starved FSU Republic. Additionally, the US, in its endeavor to drawdown its own arsenal, needs to assure itself that these materials are not being reconfigured into more modern weapons within the CIS in a manner which would be inconsistent with the stated intentions and publicized activities. The direct purchase of these valuable materials by the US government or by interested US private enterprises could alleviate these security concerns in a straightforward and very expeditious manner, while at the same time pumping vitally needed hard currency into the struggling CIS economy. Such a purchase would seem to be entirely consistent with the Congressional mandate indicated by the Soviet Nuclear Threat Reduction Act of 1991.

NONE

1994-12-31T23:59:59.000Z

118

MICROBIAL TRANSFORMATIONS OF PLUTONIUM AND IMPLICATIONS FOR ITS MOBILITY.  

SciTech Connect

The current state of knowledge of the effect of plutonium on microorganisms and microbial activity is reviewed, and also the microbial processes affecting its mobilization and immobilization. The dissolution of plutonium is predominantly due to their production of extracellular metabolic products, organic acids, such as citric acid, and sequestering agents, such as siderophores. Plutonium may be immobilized by the indirect actions of microorganisms resulting in changes in Eh and its reduction from a higher to lower oxidation state, with the precipitation of Pu, its bioaccumulation by biomass, and bioprecipitation reactions. In addition, the abundance of microorganisms in Pu-contaminated soils, wastes, natural analog sites, and backfill materials that will be used for isolating the waste and role of microbes as biocolloids in the transport of Pu is discussed.

FRANCIS, A.J.

2000-09-30T23:59:59.000Z

119

Manhattan Project: The Plutonium Path to the Bomb, 1942-1944  

Office of Scientific and Technical Information (OSTI)

Painting of CP-1 going critical THE PLUTONIUM PATH TO THE BOMB Painting of CP-1 going critical THE PLUTONIUM PATH TO THE BOMB (1942-1944) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 Plutonium, produced in a uranium-fueled reactor (pile), was the second path taken toward achieving an atomic bomb. Design work on a full-scale plutonium production reactor began at the Met Lab in June 1942. Scientists at the Met Lab had the technical expertise to design a production pile, but construction and management on an industrial scale required an outside contractor. General Groves convinced the DuPont Corporation to become the primary contractor for plutonium production. With input from the Met Lab and DuPont, Groves selected a site at Hanford, Washington, on the Columbia River, to build the full-scale production reactors.

120

TA-55: LANL Plutonium-Processing Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

TA-55: LANL Plutonium-Processing Facilities TA-55: LANL Plutonium-Processing Facilities TA-55: LANL Plutonium-Processing Facilities TA-55 supports a wide range of national security programs that involve stockpile stewardship, plutonium processing, nuclear materials stabilization, materials disposition, nuclear forensics, nuclear counter-terrorism, and nuclear energy. ...the only fully operational, full capability plutonium facility in the nation. National Security At the Los Alamos National Laboratory (LANL), virtually all plutonium operations occur within the Plutonium Facility at Technical Area 55 (TA-55). TA-55 is the nation's most modern plutonium science and manufacturing facility, and it is the only fully operational, full capability plutonium facility in the nation. Thus, TA-55 supports a wide

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Security and Safeguards Aspects of Plutonium Facilities in BNFL, UK  

Science Journals Connector (OSTI)

The processing and storage of plutonium at BNFL’s Sellafield site started in the early 1950’s and included civil plutonium from 1964 onwards. BNFL’s proactive policy on plutonium management demands that plutonium...

Dr R. Howsley

1995-01-01T23:59:59.000Z

122

Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment  

SciTech Connect

Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitation process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec ay of plutonium-241) in the dissolved precipitate, a value consistent with the recovery of europium, the americium surrogate.In a subsequent experiment, the plutonium solubility following an oxalate precipitation to simulate the preparation of a slurry feed for a batch melter was 21 mg/mL at 35 degrees C. The increase in solubility compared to the value measured during the pretreatment experiment was attributed to the increased nitrate concentration and ensuing increase in plutonium complexation. The solubility of the plutonium following a precipitant wash with 0.1M oxalic acid was unchanged. The recovery of plutonium from the precipitate slurry was greater than 97 percent allowing an estimation that approximately 92 percent of the plutonium in Tank 17.1 will report to the glass. The behavior of the lanthanides and soluble metal impurities was consistent with the behavior seen during the pretreatment experiment. A trace level material balance showed that 99.9 percent of the americium w as recovered from the precipitate slurry. The overall recovery of americium from the pretreatment and feed preparation processes was greater than 97 percent, which was consistent with the measured recovery of the europium surrogate.

Rudisill, T.S.

1999-08-11T23:59:59.000Z

123

Recovery of Plutonium from Refractory Residues Using a Sodium Peroxide Pretreatment Process  

SciTech Connect

The recycle of plutonium from refractory residues is a necessary activity for the nuclear weapon production complex. Traditionally, high-fired plutonium oxide (PuO2) was leached from the residue matrix using a nitric acid/fluoride dissolving flowsheet. The recovery operations were time consuming and often required multiple contacts with fresh dissolving solution to reduce the plutonium concentration to levels where residual solids could be discarded. Due to these drawbacks, the development of an efficient process for the recovery of plutonium from refractory materials is desirable. To address this need, a pretreatment process was developed. The development program utilized a series of small-scale experiments to optimize processing conditions for the fusion process and demonstrate the plutonium recovery efficiency using ceramic materials developed as potential long-term storage forms for PuO2 and an incinerator ash from the Rocky Flats Environmental Technology Site (Rocky Flats) as te st materials.

Rudisill, T.S.

2003-10-23T23:59:59.000Z

124

Plutonium focus area  

SciTech Connect

To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

NONE

1996-08-01T23:59:59.000Z

125

History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site  

SciTech Connect

The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

Gerber, M.S., Fluor Daniel Hanford

1997-02-18T23:59:59.000Z

126

NASA pulls plug on plutonium power source  

Science Journals Connector (OSTI)

... Generators (MMRTGs) but use four times less plutonium-238, a scarce resource. An MMRTG containing 4.8 kilograms of plutonium is currently powering the Curiosity rover on Mars. ...

Eugenie Samuel Reich

2013-11-18T23:59:59.000Z

127

TA-55: LANL Plutonium-Processing Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

materials stabilization, materials disposition, nuclear forensics, nuclear counter-terrorism, and nuclear energy. ...the only fully operational, full capability plutonium...

128

Rebaselining seismic risks for resumption of Building 707 plutonium operations at the Rocky Flats Plant  

SciTech Connect

Natural phenomena risks have been assessed for plutonium handling facilities at the Rocky Flats Plant, based on numerous studies performed for the Department of Energy Natural Phenomena Hazards Project. The risk assessment was originally utilized in the facilities Final Safety Analysis Reports and in subsequent risk management decisions. Plutonium production operations were curtailed in 1989 in order for a new operating contractor to implement safety improvements. Since natural phenomena events dominated risks to the public, a re-assessment of these events were undertaken for resumption of plutonium operations.

Elia, F. Jr. [Stone and Webster Engineering Corp., Boston, MA (United States); Foppe, T.; Stahlnecker, E. [EG and G Rocky Flats, Inc., Golden, CO (United States)

1993-08-01T23:59:59.000Z

129

Co-Design: Fabrication of Unalloyed Plutonium  

SciTech Connect

The successful induction casting of plutonium is a challenge which requires technical expertise in areas including physical metallurgy, surface and corrosion chemistry, materials science, electromagnetic engineering and a host of other technologies all which must be applied in concert. Here at LANL, we are employing a combined experimental and computational approach to design molds and develop process parameters needed to produce desired temperature profiles and improved castings. Computer simulations are performed using the commercial code FLOW-3D and the LANL ASC computer code TRUCHAS to reproduce the entire casting process starting with electromagnetic or radiative heating of the mold and metal and continuing through pouring with coupled fluid flow, heat transfer and non-isothermal solidification. This approach greatly reduces the time required to develop a new casting designs and also increases our understanding of the casting process, leading to a more homogeneous, consistent product and better process control. We will discuss recent casting development results in support of unalloyed plutonium rods for mechanical testing.

Korzekwa, Deniece R. [Los Alamos National Laboratory; Knapp, Cameron M. [Los Alamos National Laboratory; Korzekwa, David A. [Los Alamos National Laboratory; Gibbs, John W [Northwestern University

2012-07-25T23:59:59.000Z

130

PASSIVE NMIS MEASUREMENTS TO ESTIMATE SHAPE OF PLUTONIUM ASSEMBLIES (SLIDE PRESENTATION)  

SciTech Connect

The purpose of this work is to estimate shape of plutonium assemblies using new signatures acquired by passive NMIS measurements (no external source). Applications include identification of containerized regular shapes of plutonium, identification by shape without template, verification of shape for template initialization, and potential utility for estimating shape of holdup in plutonium processing facilities. To illustrate the technique and test its feasibility, laboratory measurements have been performed with californium spontaneous fission sources as a surrogate for plutonium. Advantages of the technique include the following: passive (requires no external source for plutonium measurements), stationary (no scanning of the assembly is required), penetrative (shape is estimated from neutron emissions), obscurable (spatial resolution can be deliberately degraded by changing detector size and/or timing resolution), inexpensive (majority of NMIS components are commercial products), portable (detection system is transported to the item, not vice versa). It is concluded that passive NMIS measurements can infer the mass of plutonium assemblies: NMIS correlations scale directly with spontaneous fission rate (Pu-240); NMIS correlations scale with fissile mass (Pu-239) and multiplication. New third-order correlations can estimate the shape of fission sources (Pu-240 & Pu-239) from passive measurements. Surrogate measurements of californium spontaneous fission sources have demonstrated the feasibility of this concept. Measurements of various shapes of plutonium are necessary to continue the development of this technique.

MARCH-LEUBA, J.A.; MATTINGLY, J.K.; MIHALCZO, J.T.; PEREZ, R.B.; VALENTINE, T.E.

1998-11-25T23:59:59.000Z

131

Plutonium distribution: Summary of public and governmental support issues  

SciTech Connect

Obtaining strong public and governmental support for the plutonium disposition program and for the projects comprising the selected disposition options will be essential to the success of the program in meeting non-proliferation goals established as national policy. This paper summarizes issues related to public and governmental support for plutonium disposition. Recommendations are offered which rest on two fundamental assumptions: (1) public and political support derive from public trust and confidence, and (2) despite widespread support for U.S. non-proliferation goals, establishing and operating facilities to carry out the program will entail controversy. Documentation for the Administration`s policy on non-proliferation as it relates to plutonium disposition is cited and summarized as background for ongoing planning efforts by the Department of Energy (DOE). Consensus is a reasonable goal for efforts to secure public and governmental support for the plutonium disposition program and its elements; unanimity is very unlikely. The program will be aided by the popular recognition of the importance of the nation`s non-proliferation goals, the potential for an energy dividend if an energy production option is selected ({open_quotes}Swords to Plowshares{close_quotes} metaphor), the possibility of influencing disposition decisions in other countries, and the clear need to do something with the excess material ({open_quotes}the no action alternative{close_quotes} will not suffice).

Pasternak, A.

1995-03-31T23:59:59.000Z

132

What is Plutonium? - Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

a critical step toward solving the nation's nuclear waste disposal problem a critical step toward solving the nation's nuclear waste disposal problem What Is Plutonium? Plu-to-ni-um n. Symbol Pu (plÇÇ-tÇ'n‘-bm) A radioactive, silvery, metallic transuranic element, produced artificially by neutron bombardment of uranium, having 15 isotopes with masses ranging from 232 to 246 and half- lives from 20 minutes to 76 million years. It is a radiological poison, specifically absorbed by bone marrow, and is used, especially the highly fissionable isotope Pu239, as a reactor fuel and in nuclear weapons. The American Heritage Dictionary, Second College Edition The U.S. Department of Energy's Carlsbad Field Office is responsible for the management, transportation, and permanent disposal of large amounts of the transuranic wastes left over from both World War II and the

133

EA-0841: Import of Russian Plutonium-238  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of a proposal to purchase plutonium-238 from the Russian Federation (Russia) for use in the Nation's space program.

134

High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors  

SciTech Connect

The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

Bowman, C.D.; Venneri, F.

1993-11-01T23:59:59.000Z

135

Workers Create Demolition Zone at Hanford Site's Plutonium Finishing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Create Demolition Zone at Hanford Site's Plutonium Finishing Plant Workers Create Demolition Zone at Hanford Site's Plutonium Finishing Plant August 28, 2014 - 12:00pm Addthis The...

136

Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrolysis of Plutonium Ions in Aqueous Solution using Car-Parrinello Molecular Dynamics Free Energy Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution using...

137

Massive Hanford Test Reactor Removed - Plutonium Recycle Test...  

Office of Environmental Management (EM)

Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed...

138

Molecular Interactions of Plutonium(VI) with SyntheticManganese...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium(VI) with Synthetic Manganese-Substituted Goethite. Abstract: Plutonium(VI) sorption on the surface of well-characterized synthetic manganese-substituted goethite...

139

Perspective on plutonium  

SciTech Connect

An overview is given of the man-made element Pu: Its production, physical and chemical properties, fallout levels in the environment, detection in body, dosimetry and bioassay data, concerns over safety and control. Conclusion: Pu has an incredible potential as an energy source that does not adversely affect air quality; however concerns over toxic effects (bone cancers) and proper handling of wastes have kept many countries from fully embracing nuclear energy. For Pu toxicity, the policy has always been one of overestimation. Safe, secure methods have been developed for controlling Pu; as a result, the question of whether or not a nation uses nuclear energy is more likely to be decided by politics.

Sun, Lin-Shen Casper

1993-07-01T23:59:59.000Z

140

PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX  

SciTech Connect

Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

Kyser, E.; King, W.; O'Rourke, P.

2012-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Interaction of Plutonium with Bacteria in the Repository Environment  

SciTech Connect

Microorganisms in the nuclear waste repository environment may interact with plutonium through (1) sorption, (2) intracellular accumulation, and (3) transformation speciation. These interactions may retard or enhance the mobility of Pu by precipitation reactions, biocolloid formation, or production of more soluble species. Current and planned radioactive waste repository environments, such as deep subsurface halite and granite formations, are considered extreme relative to life processes in the near-surface terrestrial environment. There is a paucity of information on the biotransformation of radionuclides by microorganisms present in such extreme environments. In order to gain a better understanding of the interaction of plutonium with microorganisms present in the waste repository sites we investigated a pure culture (Halomonas sp.) and a mixed culture of bacteria (Haloarcula sinaiiensis, Marinobacter hydrocarbonoclasticus, Altermonas sp., and a {gamma}-proteobacterium) isolated from the Waste Isolation Pilot Plant (WIPP) site and an Acetobacterium sp. from alkaline groundwater at the Grimsel Test Site in Switzerland.

Gillow, J. B.; Francis, A. J.; Lucero, D. A.; Papenguth, H. W.

2000-07-01T23:59:59.000Z

142

Investigation of the behavior of plutonium(V) in alkaline media  

SciTech Connect

The stability of the plutonium(V) oxidation state in alkaline media was studied with respect to the neighboring Pu(IV) and Pu(VI) oxidation states. Tests were conducted in 1 M or higher NaOH solutions in the presence and absence of other components of Hanford Site high-level tank waste. Spectrophotometric techniques were found to be effective in studying the behavior of plutonium(V) in alkaline solution at plutonium concentrations above 10{sup -3} M. To this end, plutonium(V) and plutonium(VI) in NaOH were prepared and their spectra characterized. In alkaline solutions with NaOH concentration below 8 M, plutonium(V) was found to be unstable to disproportionation occurring according to the reaction 2 Pu(V)(aq) {yields} Pu(VI)(aq) + Pu(IV)(s). The disproportionation of Pu(V) is complicated by at least two simultaneous processes: (1) the sorption of a significant fraction of the Pu(V) onto the forming Pu(IV) hydrous oxide precipitate, and (2) partial reduction of Pu(VI) by water {alpha}-radiolysis products.

Budantseva, N.A.; Tananaev, I.G.; Fedoseev, A.M.; Bessonov, A.A. [Russian Academy of Sciences, Moscow (Russian Federation). Institute of Physical Chemistry] [and others

1997-09-01T23:59:59.000Z

143

Siegfried S. Hecker, Plutonium, and Nonproliferation  

Office of Scientific and Technical Information (OSTI)

Siegfried S. Hecker, Plutonium Siegfried S. Hecker, Plutonium and Nuclear Nonproliferation Resources with Additional Information · Awards Siegfried S. Hecker Photo Credit: Courtesy of Los Alamos National Laboratory LeRoy Sanchez On September 17, 2009, U.S. Energy Secretary Steven Chu named Siegfried S. Hecker as a winner of the Enrico Fermi Award 'in recognition for his contributions to plutonium metallurgy, his broad scientific leadership and for his energetic and continuing efforts to reduce the danger of nuclear weapons around the globe. Dr. Hecker is credited with resolving a long-standing controversy involving the stability of certain structures (or phases) in plutonium alloys near equilibrium that arose from significant discrepancies between U.S. and former USSR research on plutonium metallurgy.'1

144

Assessment of plutonium in the Savannah River Site environment. Revision 1  

SciTech Connect

Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

1992-12-31T23:59:59.000Z

145

REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN  

SciTech Connect

U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

Dunn, Kerry A. [Savannah River National Laboratory; Bellamy, J. Steve [Savannah River National Laboratory; Chandler, Greg T. [Savannah River National Laboratory; Iyer, Natraj C. [U.S. Department of Energy, National Nuclear Security Administration, Office of; Koenig, Rich E.; Leduc, D. [Savannah River National Laboratory; Hackney, B. [Savannah River National Laboratory; Leduc, Dan R. [Savannah River National Laboratory

2013-08-18T23:59:59.000Z

146

EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

147

Excess Plutonium: Weapons Legacy or National Asset?  

SciTech Connect

The Nuclear Materials Stewardship Initiative was established in January, 2000, to accelerate the work of achieving integration and cutting long-term costs associated with the management of nuclear materials. As part of that initiative, the Department of Energy (DOE), Office of Environmental Management (EM), has established Nuclear Material Management Groups for the management of excess nuclear materials. As one of these groups, the Plutonium Material Management Group (PMMG) has been chartered to serve as DOE's complex wide resource and point of contact for technical coordination and program planning support in the safe and efficient disposition of the nations excess Plutonium 239. This paper will explain the mission, goals, and objectives of the PMMG. In addition, the paper will provide a broad overview of the status of the plutonium inventories throughout the DOE complex. The DOE currently manages approximately 99.5 MT of plutonium isotopes. Details of the various categories of plutonium, from material designated for national security needs through material that has been declared excess, will be explained. For the plutonium that has been declared excess, the various pathways to disposition (including reuse, recycling, sale, transfer, treatment, consumption, and disposal) will be discussed. At this time 52.5 MT of plutonium has been declared excess and the method of disposition for that material is the subject of study and evaluation within DOE. The role of the PMMG in those evaluations will be outlined.

Klipa, G.; Boeke, S.; Hottel, R.

2002-02-27T23:59:59.000Z

148

Plutonium Recycle Test Reactor 309 B-Roll | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plutonium Recycle Test Reactor 309 B-Roll Plutonium Recycle Test Reactor 309 B-Roll Addthis Description Plutonium Recycle Test Reactor 309 B-Roll...

149

Plutonium less mysterious with nuclear magnetic resonance  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium less mysterious with nuclear magnetic resonance Plutonium less mysterious with nuclear magnetic resonance Plutonium less mysterious with nuclear magnetic resonance For more than 50 years, chemists and physicists have been searching for the plutonium-239 magnetic resonance signal. May 21, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

150

Plutonium Processing Plant Deactivated | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Processing Plant Deactivated | National Nuclear Security Processing Plant Deactivated | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Plutonium Processing Plant Deactivated Plutonium Processing Plant Deactivated June 20, 1997 Hanford, WA Plutonium Processing Plant Deactivated The Plutonium Uranium Extraction Facility (PUREX), the largest of the

151

Plutonium Processing Plant Deactivated | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Processing Plant Deactivated | National Nuclear Security Processing Plant Deactivated | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Plutonium Processing Plant Deactivated Plutonium Processing Plant Deactivated June 20, 1997 Hanford, WA Plutonium Processing Plant Deactivated The Plutonium Uranium Extraction Facility (PUREX), the largest of the

152

Sweden Plutonium Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Sweden Plutonium Removal | National Nuclear Security Administration Sweden Plutonium Removal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > content > Four-Year Plan > Sweden Plutonium Removal Sweden Plutonium Removal Location Sweden United States 62° 24' 4.4136" N, 15° 22' 51.096" E See map: Google Maps Printer-friendly version Printer-friendly version

153

TECHNIQUES FOR MONITORING PLUTONIUM IN THE ENVIRONMENT  

E-Print Network (OSTI)

150 day decay time, except for LMFBR, which assumes 30 days.> N") Plutonium from an LMFBR C'J II I I N") CD C".J c:'-l

Nero Jr., A.V.

2011-01-01T23:59:59.000Z

154

Draft Surplus Plutonium Disposition Supplemental Environmental...  

National Nuclear Security Administration (NNSA)

In addition, concerns about criticality would limit the loading in the waste storage tanks and would not support vitrification of 13.1 metric tons (14.4) tons of plutonium....

155

Draft Surplus Plutonium Disposition Supplemental Environmental...  

National Nuclear Security Administration (NNSA)

In addition, concerns about criticality would limit the loading in the waste storage tanks and would not support vitrification of 13.1 metric tons (14.4 tons) of plutonium....

156

Waste minimization at a plutonium processing facility  

SciTech Connect

As part of Los Alamos National Laboratory`s (LANL) mission to reduce the nuclear danger throughout the world, the plutonium processing facility at LANL maintains expertise and skills in nuclear weapons technologies as well as leadership in all peaceful applications of plutonium technologies, including fuel fabrication for terrestrial and space reactors and heat sources and thermoelectric generators for space missions. Another near-term challenge resulted from two safety assessments performed by the Defense Nuclear Facilities Safety Board and the U.S. Department of Energy during the past two years. These assessments have necessitated the processing and stabilization of plutonium contained in tons of residues so that they can be stored safely for an indefinite period. This report describes waste streams and approaches to waste reduction of plutonium management.

Pillay, K.K.S. [Los Alamos National Laboratory, NM (United States)

1995-12-31T23:59:59.000Z

157

Plutonium finishing plant dangerous waste training plan  

SciTech Connect

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

ENTROP, G.E.

1999-05-24T23:59:59.000Z

158

EIS-0219: F-Canyon Plutonium Solutions  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the potential environmental impacts of processing the plutonium solutions to metal form using the F-Canyon and FB-Line facilities at the Savannah River Site.

159

Advanced Candu Systems For Plutonium Destruction  

Science Journals Connector (OSTI)

High neutron economy, on-line refuelling, and a simple fuel-bundle design result in a high degree of versatility in the use of the CANDU® reactor for the disposition of weapons-derived plutonium. CANDU mixed-oxid...

P.G. Boczar; M.J.N. Gagnon; P.S.W. Chan…

1997-01-01T23:59:59.000Z

160

Development of plutonium aerosol fractionation system  

E-Print Network (OSTI)

DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

Mekala, Malla R.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

July/August 2011 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

JulyAugust 2011 JulyAugust 2011 Newsletter Aug 26, 2011 In this issue: U.S., Russia Reaffirm Commitment to Dispose of Surplus Weapons-grade Plutonium NNSA Conference...

162

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

MOX Update Kelly Trice, President & COO Shaw AREVA MOX Services, LLC. 2 What is MOX? * Mission - Convert at least 34 metric tons of U.S. weapons-grade plutonium to mixed oxide...

163

Post-accident inhalation exposure and experience with plutonium  

SciTech Connect

This paper addresses the issue of inhalation exposure immediately afterward and for a long time following a nuclear accident. For the cases where either a nuclear weapon burns or explodes prior to nuclear fission, or at locations close to a nuclear reactor accident containing fission products, a major concern is the inhalation of aerosolized plutonium (Pu) particles producing alpha-radiation. We have conducted field studies of Pu- contaminated real and simulated accident sites at Bikini, Johnston Atoll, Tonopah (Nevada), Palomares (Spain), Chernobyl, and Maralinga (Australia).

Shinn, J

1998-06-01T23:59:59.000Z

164

Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan  

SciTech Connect

Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

NONE

1998-03-01T23:59:59.000Z

165

Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy  

SciTech Connect

This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO{sub 2}PuO{sub 2{minus}x}, and Pu{sub 4}O{sub 7} phases, of about 1{mu}m or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 {mu}m to liberate the plutonium from the surrounding inert matrix.

Behrens, R.G. [Los Alamos National Lab., NM (United States); Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J. [Argonne National Lab., IL (United States)

1995-09-01T23:59:59.000Z

166

IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION  

SciTech Connect

This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

Allender, J; Moore, E

2010-07-14T23:59:59.000Z

167

Method for Plutonium-Gallium Separation by Anodic Dissolution of a Solid Plutonium-Gallium Alloy  

SciTech Connect

Purified plutonium and gallium are efficiently recovered from a solid plutonium-gallium (Pu-Ga) alloy by using an electrorefining process. The solid Pu-Ga alloy is the cell anode, preferably placed in a moving basket within the electrolyte. As the surface of the Pu-Ga anode is depleted in plutonium by the electrotransport of the plutonium to a cathode, the temperature of the electrolyte is sufficient to liquify the surface, preferably at about 500 C, resulting in a liquid anode layer substantially comprised of gallium. The gallium drips from the liquified surface and is collected below the anode within the electrochemical cell. The transported plutonium is collected on the cathode surface and is recovered.

Miller, William E.; Tomczuk, Zygmunt

1998-12-08T23:59:59.000Z

168

A Supplement Analysis on Plutonium Consolidation at Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE))

DOE’s April 2002 decision to consolidate surplus, non-pit weapons-usable plutonium at Savannah River Site did not affect a 1997 DOE decision to continue storage of non-pit surplus plutonium at...

169

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. and Russia Sign Plutonium Disposition Agreement U.S. and Russia Sign Plutonium Disposition...

170

Consolidation of Surplus Plutonium at Savannah River Site | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

plutonium that had been stored at the Rocky Flats Environmental Technology Site in long-term storage at the Savannah River Site. DOE Amends Record of Decision for Plutonium...

171

Independent Oversight Review, Plutonium Finishing Plant- July 2014  

Energy.gov (U.S. Department of Energy (DOE))

Targeted Review of the Safety Significant Confinement Ventilation System and Review of Federal Assurance Capability at the Plutonium Finishing Plant

172

Independent Activity Report, Hanford Plutonium Finishing Plant- May 2012  

Energy.gov (U.S. Department of Energy (DOE))

Criticality Safety Information Meeting for the Hanford Plutonium Finishing Plant [HIAR-RL-2012-05-14

173

NNSA: Working To Prevent Nuclear Terrorism | National Nuclear...  

National Nuclear Security Administration (NNSA)

secure weapons-grade nuclear material at the Mayak Production Association in Ozersk, Russia. Completed MPC&A upgrades to 15 nuclear material buildings outside of Russia. Returned...

174

First Plutonium Bomb Successfully Tested | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Bomb Successfully Tested | National Nuclear Security Plutonium Bomb Successfully Tested | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > First Plutonium Bomb Successfully Tested First Plutonium Bomb Successfully Tested July 16, 1945 Los Alamos, NM First Plutonium Bomb Successfully Tested

175

First Plutonium Bomb Successfully Tested | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Plutonium Bomb Successfully Tested | National Nuclear Security Plutonium Bomb Successfully Tested | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > First Plutonium Bomb Successfully Tested First Plutonium Bomb Successfully Tested July 16, 1945 Los Alamos, NM First Plutonium Bomb Successfully Tested

176

Characteristics of a Mixed Thorium-Uranium Dioxide High-Burnup Fuel  

SciTech Connect

Future nuclear fuels must satisfy three sets of requirements: longer times between refueling; concerns for weapons proliferation; and development of a spent fuel form more suitable for direct geologic disposal. This project has investigated a fuel consisting of mixed thorium and uranium dioxide to satisfy these requirements. Results using the SCALE 4.3 code system indicated that the mixed Th-U fuel could be burned to 72 MWD/kg or 100 MWD/kg using 25% of 35% UO2 respectively. The uranium remained below 20% total fissile fraction throughout the cycle, making it unusable for weapons. Total plutonium production per MWD was a factor of 4.5 less in the Th-U fuel than in the conventional fuel; Pu-239 production per MWD was a factor of 6.5 less; and the plutonium produced was high in Pu-238, leading to a decay heat 5 times greater than that from plutonium derived from conventional fuel and 40 times greater than weapons grade plutonium. High decay heat would require active cooling of any crude weapon, lest the components surrounding the plutonium be melted. Spontaneous neutron production for plutonium from Th-U fuel was 2.3 times greater than that from conventional fuel and 15 times greater than that from weapons grade plutonium. High spontaneous neutron production drastically limits the probable yield of a crude weapon. Because ThO2 is the highest oxide of thorium, while UO2 can be oxidized further to U3O8, ThO2-UO2 fuel may be a superior wasteform if the spent fuel is ever to be exposed to oxygenated water. Even if the cost of fabricating the mixed Th-U fuel is $100/kg greater, the cost of the Th-U fuel is 13% to 15% less than that of the fuels using uranium only.

J. S. Herring; P. E. MacDonald

1999-06-01T23:59:59.000Z

177

Characteristics of a Mixed Thorium - Uranium Dioxide High-Burnup Fuel  

SciTech Connect

Future nuclear fuel must satisfy three sets of requirements: longer times between refueling; concerns for weapons proliferation; and development of a spent fuel form more suitable for direct geologic disposal. This project has investigated a fuel consisting of mixed thorium and uranium dioxide to satisfy these requirements. Results using the SCALE 4.3 code system indicated that the mixed Th-U fuel could be burned to 72 MWD/kg or 100 MWD/kg using 25% and 35% UO2 respectively. The uranium remained below 20 % total fissile fraction throughout the cycle, making it unusable for weapons. Total plutonium production per MWD was a factor of 4.5 less in the Th-U fuel than in the conventional fuel; Pu-239 production per MWD was a factor of 6.5 less; and the plutonium produced was high in Pu-238, leading to a decay heat 5 times greater than that from plutonium derived from conventional fuel and 40 times greater than weapons grade plutonium. High decay heat would require active cooling of any crude weapon, lest the components surrounding the plutonium be melted. Spontaneous neutron production for plutonium from Th-U fuel was 2.3 times greater than that from conventional fuel and 15 times greater than that from weapons grade plutonium. High spontaneous neutron production drastically limits the probable yield of a crude weapon. Because ThO2 is the highest oxide of thorium, while UO2 can be oxidized further to U3O8, ThO2- UO2 fuel may be a superior wasteform if the spent fuel is ever to be exposed to oxygenated water. Even if the cost of fabricating the mixed Th-U fuel is $100/kg greater, the cost of the Th-U fuel is 13% to 25% less than that of the fuels using uranium only.

Herring, James Stephen; Mac Donald, Philip Elsworth

1999-06-01T23:59:59.000Z

178

Microwave calcination for plutonium immobilization and residue stabilization  

SciTech Connect

In the late 1980`s development was begun on a process using microwave energy to vitrify low level mixed waste sludge and transuranic mixed waste sludge generated in Building 374 at Rocky Flats. This process was shown to produce a dense, highly durable waste form. With the cessation of weapons production at Rocky Flats, the emphasis has changed from treatment of low level and TRU wastes to stabilizaiton of plutonium oxide and residues. This equipment is versatile and can be used as a heat source to calcine, react or vitrify many types of residues and oxides. It has natural economies in that it heats only the material to be treated, significantly reducing cycle times over conventional furnaces. It is inexpensive to operate in that most of the working components remain outside of any necessary contamination enclosure and therefore can easily be maintained. Limited testing has been successfully performed on cerium oxide (as a surrogate for plutonium oxide), surrogate electrorefining salts, surrogate residue sludge and residue ash. Future plans also include tests on ion exchange resins. In an attempt to further the usefullness of this technology, a mobile, self-contained microwave melting system is currently under development and expected to be operational at Rocky Flats Enviromental Technology Site by the 4th quarter of FY96.

Harris, M.J.; Rising, T.L.; Roushey, W.J.; Sprenger, G.S. [Kaiser-Hill Co., Golden, CO (United States)

1995-12-01T23:59:59.000Z

179

Manhattan Project: More Piles and Plutonium, 1942  

Office of Scientific and Technical Information (OSTI)

"Met Lab" alumni at the University of Chicago -- Fermi is on the far left of the front row; Zinn is on Fermi's left; Anderson is on the far right of the front row; and Szilard is over Anderson's right shoulder. MORE PILES AND PLUTONIUM "Met Lab" alumni at the University of Chicago -- Fermi is on the far left of the front row; Zinn is on Fermi's left; Anderson is on the far right of the front row; and Szilard is over Anderson's right shoulder. MORE PILES AND PLUTONIUM (1942) Events > Difficult Choices, 1942 More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 At the University of Chicago, meanwhile, Arthur Compton had consolidated most fission research at his new Metallurgical Laboratory(Met Lab). Compton decided to combine all pile research by stages. He continued to fund Enrico Fermi's pile research at Columbia University, while Fermi began preparations to move his work to Chicago. Funding continued as well for the theoretical work of Eugene Wigner at Princeton and of J. Robert Oppenheimer at the University of California, Berkeley. Compton also appointed Leo Szilard head of materials acquisition and arranged for Glenn T. Seaborg to move his plutonium work from Berkeley to Chicago in April 1942.

180

LANL Plutonium-Processing Facilities National Security  

E-Print Network (OSTI)

of technical capabilities. These capabilities form a center of excellence for actinide science and technology, dismantlement, and materi- als management. Among other things, these efforts support requests for power sources acceptability. Plutonium experiments at TA-55 support the nation's stockpile assessment, without the need

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Plutonium and Polonium inside Giant Brown Algae  

Science Journals Connector (OSTI)

... in 1964 (see also refs. 4 and 5) when it emerged that certain marine algae accumulated plutonium so effectively that they might be used to detect small concentration changes in ... to detect small concentration changes in seawater that would be difficult to measure directly. Sessile algae are especially useful as monitoring aids because they can be sampled repeatedly. High concentrations ...

K. M. WONG; V. F. HODGE; T. R. FOLSOM

1972-06-23T23:59:59.000Z

182

Plutonium in seawater of the Pacific Ocean  

Science Journals Connector (OSTI)

The present plutonium levels in the Pacific Ocean are summarized. The 239,240Pu concentrations in surface seawaters in the early 2000s were in the range of 1.5 to 9.2 mBq·m?3 in the North Pacific and 0.8 to 4.1 m...

K. Hirose; M. Aoyama; C. S. Kim

2007-12-01T23:59:59.000Z

183

PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS  

SciTech Connect

The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The incorporation of 1 wt % Pu in the glass did not adversely impact glass viscosity (as assessed using Hf surrogate) or glass durability. Finally, evaluation of DWPF glass pour samples that had Pu concentrations below the 897 g/m{sup 3} limit showed that Pu concentrations in the glass pour stream were close to targeted compositions in the melter feed indicating that Pu neither volatilized from the melt nor stratified in the melter when processed in the DWPF melter.

Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

2011-01-04T23:59:59.000Z

184

Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials & Waste » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a welded 3013 containers that are nested in 9975 shipping containers. 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a welded 3013 containers that are nested in 9975 shipping

185

Department of Energy Announces Decision to Consolidate Surplus Plutonium in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decision to Consolidate Surplus Decision to Consolidate Surplus Plutonium in South Carolina Department of Energy Announces Decision to Consolidate Surplus Plutonium in South Carolina September 5, 2007 - 3:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced its decision to consolidate surplus, non-pit plutonium at its Savannah River Site (SRS) in South Carolina, greatly reducing storage costs and significantly enhancing security across the nation's weapons complex. DOE will begin shipping the surplus, non-pit plutonium no sooner than 30 days from today and under the plan this surplus plutonium is expected to be shipped to SRS by 2010. "Consolidation is a key part of the Department's efforts to properly manage surplus plutonium and follows our dedication to non-proliferation,

186

EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-S2: Surplus Plutonium Disposition Supplemental 3-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement Summary This EIS analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives. The original EIS is available here. For more information, see: www.nnsa.energy.gov/nepa/spdsupplementaleis Public Comment Opportunities None available at this time. Documents Available for Download April 25, 2013 EIS-0283-S2: Interim Action Determination Surplus Plutonium Disposition Supplemental Environmental Impact Statement (K-Area Materials Storage (KAMS) Area Expansion at the Savannah River Site)

187

Department of Energy Announces Decision to Consolidate Surplus Plutonium in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Announces Decision to Consolidate Surplus Department of Energy Announces Decision to Consolidate Surplus Plutonium in South Carolina Department of Energy Announces Decision to Consolidate Surplus Plutonium in South Carolina September 5, 2007 - 3:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced its decision to consolidate surplus, non-pit plutonium at its Savannah River Site (SRS) in South Carolina, greatly reducing storage costs and significantly enhancing security across the nation's weapons complex. DOE will begin shipping the surplus, non-pit plutonium no sooner than 30 days from today and under the plan this surplus plutonium is expected to be shipped to SRS by 2010. "Consolidation is a key part of the Department's efforts to properly manage surplus plutonium and follows our dedication to non-proliferation,

188

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

145-2008 145-2008 April 2008 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2008 Program Management Guide

189

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03T23:59:59.000Z

190

Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE-HDBK-1145-2013 March 2013 DOE HANDBOOK Radiological Safety Training for Plutonium Facilities U.S. Department of Energy TRNG-0061 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. ii Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2013 Program Management Foreword

191

UPWARD MOVEMENT OF PLUTONIUM TO SURFACE SEDIMENTS DURING AN 11-YEAR FIELD STUDY  

SciTech Connect

An 11-y lysimeter study was established to monitor the movement of Pu through vadose zone sediments. Sediment Pu concentrations as a function of depth indicated that some Pu moved upward from the buried source material. Subsequent numerical modeling suggested that the upward movement was largely the result of invading grasses taking up the Pu and translocating it upward. The objective of this study was to determine if the Pu of surface sediments originated from atmosphere fallout or from the buried lysimeter source material (weapons-grade Pu), providing additional evidence that plants were involved in the upward migration of Pu. The {sup 240}Pu/{sup 239}Pu and {sup 242}Pu/{sup 239}Pu atomic fraction ratios of the lysimeter surface sediments, as determined by Thermal Ionization Mass Spectroscopy (TIMS), were 0.063 and 0.00045, respectively; consistent with the signatures of the weapons-grade Pu. Our numerical simulations indicate that because plants create a large water flux, small concentrations over multiple years may result in a measurable accumulation of Pu on the ground surface. These results may have implications on the conceptual model for calculating risk associated with long-term stewardship and monitored natural attenuation management of Pu contaminated subsurface and surface sediments.

Kaplan, D.; Beals, D.; Cadieux, J.; Halverson, J.

2010-01-25T23:59:59.000Z

192

EIS-0244: Plutonium Finishing Plant Stabilization, Hanford Site, Richland, WA  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the impacts on the human environment of: Stabilization of residual, plutonium-bearing materials at the PFP Facility to a form suitable for interim storage at the PFP Facility. Immobilization of residual plutonium-bearing materials at the PFP Facility. Removal of readily retrievable, plutonium-bearing materials left behind in process equipment, process areas, and air and liquid waste management systems as a result of historic uses.

193

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

SciTech Connect

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

194

PLUTONIUM METALLIC FUELS FOR FAST REACTORS  

SciTech Connect

Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

2007-02-07T23:59:59.000Z

195

LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun ...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the shocked plutonium. Shock physics experiments complement the ongoing subcritical experiment program at NTS as part of the NNSA's stockpile stewardship program to...

196

Geomorphology of plutonium in the Northern Rio Grande  

SciTech Connect

Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography

1993-03-01T23:59:59.000Z

197

Summary - Plutonium Preparation Project at the Savannah River...  

Office of Environmental Management (EM)

3. An alternate waste disposition path that is in compliance with the current Yucca Mountain plutonium license requirements should be developed for the 5MT proposed to...

198

Influence of Iron Redox Transformations on Plutonium Sorption...  

NLE Websites -- All DOE Office Websites (Extended Search)

state of iron in the system. Experiments were conducted to examine the effect of sediment iron mineral composition and oxidation state on plutonium sorption and oxidation...

199

EIS-0276: Rocky Flats Plutonium Storage, Golden, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's proposed action to provide safe interim storage of approximately 10 metric tons of plutonium at the Rocky Flats Environmental Technology Site (RFETS).

200

S A V A N N A H R I V E R S I T E  

NLE Websites -- All DOE Office Websites (Extended Search)

Site (SRS) is the principal location for U.S. ef- Site (SRS) is the principal location for U.S. ef- forts to dispose of surplus U.S. highly enriched uranium and weap- on-grade plutonium by peaceful use as commercial nuclear fuel. To dispose of surplus weapon-grade plutonium, NNSA is constructing three facilities at SRS. The Mixed Oxide (MOX) Fuel Fabrication Fa- cility will fabricate surplus U.S. weapon-grade plutonium into MOX fuel, which will be irradiated in commercial power reactors. Once irradiated, the plutonium can no longer be readily used for nuclear weapons. This critical facility, along with the associated Waste Solidification Building (WSB) and a pit disassembly and conversion ( ) capability also planned to be built at SRS, are essential to U.S. plans to consolidate and dispose of surplus U.S. weapon-grade plutonium. Once operations commence, it is estimated that this

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site  

SciTech Connect

This report documents the position that the concentration of Uranium-233 ({sup 233}U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The {sup 233}U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ({sup 233}U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns.

Freiboth, Cameron J.; Gibbs, Frank E.

2000-03-01T23:59:59.000Z

202

Plutonium metal standards exchange program for actinide measurement quality assurance (2001–2007)  

Science Journals Connector (OSTI)

Plutonium metal exchange programs operated by the Rocky Flats Plant were conducted from 1956–1989 to ... of methods and results for plutonium, uranium, neptunium, and americium, measurements.

Lav Tandon; Kevin Kuhn; Diana Decker…

2009-11-01T23:59:59.000Z

203

Supplementary data for "Relativistic density functional theory modeling of plutonium and  

E-Print Network (OSTI)

Supplementary data for "Relativistic density functional theory modeling of plutonium and americium equilibrium geometries of plutonium and americium oxide molecules (standard .xyz files separated by empty

Titov, Anatoly

204

The design, construction, and testing of a nuclear fuel rod thermal simulation system to study gallium/Zircaloy interactions  

E-Print Network (OSTI)

friends for their unending support and patience during this project. Thank you so much! NOMENCLATURE Abbreviations and Acronyms WGPu- weapons grade plutonium DOE- Department of Energy MOX- mixed oxide fuel WG MOX- weapons grade MOX fuel LWR- light... to be employed were immobilization and fissioning the WGPu as mixed oxide (MOX) fuel in commercial power reactors. Both approaches have many advantages and disadvantages and are currently being studied by scientists and engineers all over the world. The use...

Allison, Christopher Curtis

2012-06-07T23:59:59.000Z

205

Hydrolysis of plutonium: Corrosion kinetics in DMSO solutions containing simulated high explosive and water  

SciTech Connect

A sequence of experiments is described that address the compatibility of plutonium metal with dimethyl sulfoxide solvent and with solutions containing simulated HMX explosive and simulated explosive plus water. In the absence of water, reaction is slow and forms a thin adherent product layer on clean metal surfaces. Corrosion of oxide-coated plutonium is observed after 15 to 20 days in a solution containing 0.18 mass % (0.11 M) water. After corrosion initiates, the rate accelerates rapidly and attains a value of 0.13 mg Pu/cm{sup 2} h with a surface that is approximately one percent active. Dependence of the Pu + H{sub 2}O reaction on water concentration is evaluated using the data from literature sources. Hazards associated with the use of wet dimethyl sulfoxide as a solvent for removing explosives during weapon dismantlement are identified and a simple method for their mitigation is outlined.

Haschke, J.M.; Pruner, R.E. II

1995-01-01T23:59:59.000Z

206

Standard test method for quantitative determination of americium 241 in plutonium by Gamma-Ray spectrometry  

E-Print Network (OSTI)

1.1 This test method covers the quantitative determination of americium 241 by gamma-ray spectrometry in plutonium nitrate solution samples that do not contain significant amounts of radioactive fission products or other high specific activity gamma-ray emitters. 1.2 This test method can be used to determine the americium 241 in samples of plutonium metal, oxide and other solid forms, when the solid is appropriately sampled and dissolved. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

1994-01-01T23:59:59.000Z

207

Recommended plutonium release fractions from postulated fires. Final report  

SciTech Connect

This report was written at the request of EG&G Rocky Flats, Inc. in support of joint emergency planning for the Rocky Flats Plant (RFP) by EG&G and the State of Colorado. The intent of the report is to provide the State of Colorado with an independent assessment of any respirable plutonium releases that might occur in the event of a severe fire at the plant. Fire releases of plutonium are of interest because they have been used by EG&G to determine the RFP emergency planning zones. These zones are based on the maximum credible accident (MCA) described in the RFP Final Environmental Impact Statement (FEIS) of 1980, that MCA is assumed to be a large airplane crashing into a RFP plutonium building.The objective of this report was first, to perform a worldwide literature review of relevant release experiments from 1960 to the present and to summarize those findings, and second, to provide recommendations for application of the experimental data to fire release analyses at Rocky Flats. The latter step requires translation between experimental and expected RFP accident parameters, or ``scaling.`` The parameters of particular concern are: quantities of material, environmental parameters such as the intensity of a fire, and the physico-chemical forms of the plutonium. The latter include plutonium metal, bulk plutonium oxide powder, combustible and noncombustible wastes contaminated with plutonium oxide powder, and residues from plutonium extraction processes.

Kogan, V.; Schumacher, P.M.

1993-12-01T23:59:59.000Z

208

Fuel bundle design for enhanced usage of plutonium fuel  

DOE Patents (OSTI)

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

Reese, Anthony P. (San Jose, CA); Stachowski, Russell E. (Fremont, CA)

1995-01-01T23:59:59.000Z

209

Processing of Non-PFP Plutonium Oxide in Hanford Plants  

SciTech Connect

Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanford’s Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400°C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFP’s Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)3•9H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

Jones, Susan A.; Delegard, Calvin H.

2011-03-10T23:59:59.000Z

210

Plutonium finishing plant safety systems and equipment list  

SciTech Connect

The Safety Equipment List (SEL) supports Analysis Report (FSAR), WHC-SD-CP-SAR-021 and the Plutonium Finishing Plant Operational Safety Requirements (OSRs), WHC-SD-CP-OSR-010. The SEL is a breakdown and classification of all Safety Class 1, 2, and 3 equipment, components, or system at the Plutonium Finishing Plant complex.

Bergquist, G.G.

1995-01-06T23:59:59.000Z

211

Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Plutonium Finishing Plant - Hanford Plutonium Finishing Plant - May 2012 Independent Activity Report, Hanford Plutonium Finishing Plant - May 2012 May 2012 Criticality Safety Information Meeting for the Hanford Plutonium Finishing Plant [HIAR-RL-2012-05-14] The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted a criticality safety information meeting with Hanford site criticality safety engineers on May 14, 2012, to discuss criticality safety issues and experiences principally with respect to the Decontamination and Decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP). These discussions also included aspects of Non-Destructive Assay (NDA) in support of criticality safety evaluations.

212

Final Environmental Impact Statement - Plutonium Finishing Plant Stabilization, May 1996  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Plutonium Finishing Plant Stabilization, May 1996 - Plutonium Finishing Plant Stabilization, May 1996 file:///I|/Data%20Migration%20Task/EIS-0244-FEIS-1996/eis0244f_1.html[6/27/2011 2:33:34 PM] 1.0 INTRODUCTION This Introduction contains the following information: Background of the Plutonium Finishing Plant Facility Scope of this Environmental Impact Statement Contents of this Environmental Impact Statement The presence of significant quantities of plutonium-bearing materials in the Plutonium Finishing Plant (PFP) Facility, Hanford Site, Washington, poses unacceptable risks to workers, the public, and the environment. On October 24, 1994, the United States Department of Energy (DOE) announced, in an initial mailing to 1,500 interested parties, its intent to prepare an Environmental Impact Statement (EIS) pursuant to the National

213

Thermal Stability Studies of Candidate Decontamination Agents for Hanford’s Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes  

SciTech Connect

This report provides the results of PNNL's and Fluor's studies of the thermal stabilities of potential wastes arising from decontamination of Hanford's Plutonium Finishing Plant's plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.

Scheele, Randall D.; Cooper, Thurman D.; Jones, Susan A.; Ewalt, John R.; Compton, James A.; Trent, Donald S.; Edwards, Matthew K.; Kozelisky, Anne E.; Scott, Paul A.; Minette, Michael J.

2005-09-29T23:59:59.000Z

214

E-Print Network 3.0 - aqueous nitrate plutonium Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

ameri- cium... on suitable practice. Key words Radiochemistry, radioecology, strontium, uranium, plutonium, americium, curium... determination ......

215

First Principles Investigations of Americium, Plutonium and their Mixtures using Dynamical Mean Field Theory  

SciTech Connect

We developed a relativistic dynamical mean field approach to study the properties of Plutonium Americium mixtures.

Gabriel Kotliar and Sergej Savrasov

2007-04-17T23:59:59.000Z

216

System for imaging plutonium through heavy shielding  

SciTech Connect

A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi /sup 57/Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% /sup 240/Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures.

Kuckertz, T.H.; Cannon, T.M.; Fenimore, E.E.; Moss, C.E.; Nixon, K.V.

1984-04-01T23:59:59.000Z

217

Plutonium immobilization plant using glass in existing facilities at the Savannah River Site  

SciTech Connect

The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors.

DiSabatino, A., LLNL

1998-06-01T23:59:59.000Z

218

Measurement and interpretation of plutonium spectra  

SciTech Connect

The atomic spectroscopic data available for plutonium are among the rickest of any in the periodic system. They include high-resolution grating and Fourier-transform spectra as well as extensive Zeeman and isotope-shift studies. We summarize the present status of the term analysis and cite the configurations that have been identified. A least-squares adjustment of a parametric Hamiltonian for configurations of both Pu I and Pu II has shown that almost all of the expected low levels are now known. The use of a model Hamiltonian applicable to both lanthanide and actinide atomic species has been applied to the low configurations of Pu I and Pu II making use of trends predicted by ab initio calculations. This same model has been used to describe the energy levels of Pu/sup 3 +/ in LaCl/sub 3/, and an extension has permitted preliminary calculations of the spectra of other valence states.

Blaise, J.; Fred, M.S.; Carnall, W.T.; Crosswhite, H.M.; Crosswhite, H.

1982-01-01T23:59:59.000Z

219

Thermophysical properties of coexistent phases of plutonium  

SciTech Connect

Plutonium is the element with the greatest number of allotropic phases. Thermally induced transformations between these phases are typically characterized by thermal hysteresis and incomplete phase reversion. With Ga substitutal in the lattice, low symmetry phases are replaced by a higher symmetry phase. However, the low temperature Martensitic phase transformation ({delta} {yields} {alpha}{prime}) in Ga stabilized {delta}-phase Pu is characterized by a region of thermal hysteresis which can reach 200 C in extent. These regions of thermal hysteresis offer a unique opportunity to study thermodynamics in inhomogeneous systems of coexistent phases. The results of thermophysical properties measured for samples of inhomogeneous unalloyed and Ga alloyed Pu will be discussed and compared with similar measurements of their single phase constituents.

Freibert, Franz J [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Saleh, Tarik A [Los Alamos National Laboratory; Schwartz, Dan S [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

220

Costing plutonium: economics of reprocessing in India  

Science Journals Connector (OSTI)

The relative merits of reprocessing and direct disposal of spent nuclear fuel have been widely debated in Europe and the USA. An important aspect of the debate has been the economics of reprocessing. So far there have been no studies of the subject in the Indian context. This study assesses the economics of reprocessing in India and the cost of producing plutonium for the fast breeder reactor programme. Our results suggest that the cost of reprocessing each kilogram of spent fuel would cost approximately Rs. 26,000 (approx. $600) with assumptions favourable to reprocessing, and close to Rs. 30,000 (approx. $675) under other assumptions. These costs are lower than the corresponding figures for reprocessing plants in Europe, the USA, and Japan. As in their case, however, it is unlikely to be an economically viable method of waste disposal.

M.V. Ramana; J.Y. Suchitra

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIS-0136: Special Isotope Separation Project Idaho National Engineering Laboratory, Idaho Falls, Idaho  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this EIS to provide environmental input to the decision to construct the Special Isotope Separation Project which would allow for the processing of existing fuel-grade plutonium into weapons-grade plutonium using the Atomic Laser Isotope Separation process.

222

Los Alamos National Laboratory to work on nuclear design, plutonium  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab to work on nuclear design, plutonium research Lab to work on nuclear design, plutonium research Los Alamos National Laboratory to work on nuclear design, plutonium research and development, and supercomputing LANL selected as preferred alternative site for plutonium research, development, and limited manufacturing, along with nuclear weapons design and engineering, and supercomputing. December 18, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and

223

Stailization, Packaging, and Storage of Plutonium-Bearing Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-3013-2012 MARCH 2012 DOE STANDARD STABILIZATION, PACKAGING, AND STORAGE OF PLUTONIUM-BEARING MATERIALS U.S. Department of Energy AREA PACK Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS Available on the Department of Energy Technical Standards Program Web site at http://www.hss.energy.gov/NuclearSafety/ns/techstds/ DOE-STD-3013-2012 iii ABSTRACT This Standard provides guidance for the stabilization, packaging, and safe storage of plutonium- bearing metals and oxides containing at least 30 wt% plutonium plus uranium. It supersedes DOE-STD-3013-2004, "Stabilization, Packaging, and Storage of Plutonium-Bearing Materials," and is approved for use by all DOE organizations and their contractors. Metals are stabilized by

224

Summary - Plutonium Preparation Project at the Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Site EM Project: PuPP ETR Report Date: October 2008 ETR-17 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Plutonium Preparation Project at the Savannah River Site Why DOE-EM Did This Review The purpose of the Plutonium Preparation Project (PuPP) is to prepare for disposition of plutonium materials; for examination, re-stabilization, and disassembly of the Fast Flux Test Facility (FFTF) unirradiated fuel; and for repackaging of Pu stored in 3013 containers. Of ~12.8 MT of plutonium, ~4.1 MT will be directly transferred to the MOX Fuel Fabrication Facility (MFFF); ~3.7 MT will require processing prior to transfer to the MFFF; and ~5 MT was proposed to be processed in H-Canyon with the

225

Workers Complete Demolition of Hanford's Historic Plutonium Vaults |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Complete Demolition of Hanford's Historic Plutonium Workers Complete Demolition of Hanford's Historic Plutonium Vaults Workers Complete Demolition of Hanford's Historic Plutonium Vaults April 1, 2012 - 12:00pm Addthis RICHLAND, Wash. - The Richland Operations Office and contractor CH2M HILL Plateau Remediation Company this month completed demolition of a large plutonium vault complex, formerly one of the highest security facilities at the Hanford site. "This project was a joint safety success between our workers who spent months cleaning out the facilities, the demolition crews who tore the buildings down and the crews who helped remove the waste for disposal. It took teamwork and cooperation to remove the complex safely and efficiently," said Ty Blackford, CH2M HILL Vice President of Decommissioning, Waste, Fuels and Remediation Services.

226

Process for immobilizing plutonium into vitreous ceramic waste forms  

DOE Patents (OSTI)

Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

Feng, X.; Einziger, R.E.

1997-08-12T23:59:59.000Z

227

Process for immobilizing plutonium into vitreous ceramic waste forms  

DOE Patents (OSTI)

Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

Feng, X.; Einziger, R.E.

1997-01-28T23:59:59.000Z

228

Worker Involvement Improves Safety at Hanford Site's Plutonium Finishing Plant  

Energy.gov (U.S. Department of Energy (DOE))

Employees at the Hanford site are working together to find new and innovative ways to stay safe at the Plutonium Finishing Plant, one of the site’s most complex decommissioning projects.

229

Analytical inverse model for post-event attribution of plutonium  

E-Print Network (OSTI)

specific type of nuclear event: a plutonium improvised nuclear device (IND) explosion. From post-event isotopic ratios, this method determines the device’s pre-event isotopic concentrations of special nuclear material. From the original isotopic...

Miller, James Christopher

2009-05-15T23:59:59.000Z

230

Worker Involvement Improves Safety at Hanford Site's Plutonium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RICHLAND, Wash. - Employees at the Hanford site are working together to find new and innovative ways to stay safe at the Plutonium Finishing Plant, one of the site's most...

231

Type A Accident Investigation of the March 16, 2000, Plutonium-238 Multiple Intake Event at the Plutonium Facility, Los Alamos National Laboratory, New Mexico  

Energy.gov (U.S. Department of Energy (DOE))

On March 16, 2000, at approximately 2 p.m., a radiological release of plutonium-238 occurred near a glovebox in the Plutonium Processing and Handling Facility (TA-55) of the Los Alamos National Laboratory. At least seven of the eight workers who were in the room at the time received confirmed intakes of plutonium-238.

232

Plutonium Immobilization Project System Design Description for Can Loading System  

SciTech Connect

The purpose of this System Design Description (SDD) is to specify the system and component functions and requirements for the Can Loading System and provide a complete description of the system (design features, boundaries, and interfaces), principles of operation (including upsets and recovery), and the system maintenance approach. The Plutonium Immobilization Project (PIP) will immobilize up to 13 metric tons (MT) of U.S. surplus weapons usable plutonium materials.

Kriikku, E.

2001-02-15T23:59:59.000Z

233

Recovery of weapon plutonium as feed material for reactor fuel  

SciTech Connect

This report presents preliminary considerations for recovering and converting weapon plutonium from various US weapon forms into feed material for fabrication of reactor fuel elements. An ongoing DOE study addresses the disposition of excess weapon plutonium through its use as fuel for nuclear power reactors and subsequent disposal as spent fuel. The spent fuel would have characteristics similar to those of commercial power spent fuel and could be similarly disposed of in a geologic repository.

Armantrout, G.A.; Bronson, M.A.; Choi, Jor-Shan [and others

1994-03-16T23:59:59.000Z

234

Fuel bundle design for enhanced usage of plutonium fuel  

DOE Patents (OSTI)

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

Reese, A.P.; Stachowski, R.E.

1995-08-08T23:59:59.000Z

235

Plutonium metal and oxide container weld development and qualification  

SciTech Connect

Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

1996-01-01T23:59:59.000Z

236

Wastes from plutonium conversion and scrap recovery operations  

SciTech Connect

This report deals with the handling of defense-related wastes associated with plutonium processing. It first defines the different waste categories along with the techniques used to assess waste content. It then discusses the various treatment approaches used in recovering plutonium from scrap. Next, it addresses the various waste management approaches necessary to handle all wastes. Finally, there is a discussion of some future areas for processing with emphasis on waste reduction. 91 refs., 25 figs., 4 tabs.

Christensen, D.C.; Bowersox, D.F.; McKerley, B.J.; Nance, R.L.

1988-03-01T23:59:59.000Z

237

Supercritical Fluid Extraction of Plutonium and Americium from Soil  

SciTech Connect

Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% {+-} 6.0 extraction of americium and 69% {+-} 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% {+-} 3.0 extraction of americium and 83% {+-} 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

Fox, R.V.; Mincher, B.J.

2002-05-23T23:59:59.000Z

238

Supercritical Fluid Extraction of Plutonium and Americium from Soil  

SciTech Connect

Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65°C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% ± 6.0 extraction of americium and 69% ± 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% ± 3.0 extraction of americium and 83% ± 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95°C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

Fox, Robert Vincent; Mincher, Bruce Jay

2002-08-01T23:59:59.000Z

239

Decontamination of Battelle-Columbus' Plutonium Facility. Final report  

SciTech Connect

The Plutonium Laboratory, owned and operated by Battelle Memorial Institute's Columbus Division, was located in Battelle's Nuclear Sciences area near West Jefferson, Ohio, approximately 17 miles west of Columbus, Ohio. Originally built in 1960 for plutonium research and processing, the Plutonium Laboratory was enlarged in 1964 and again in 1967. With the termination of the Advanced Fuel Program in March, 1977, the decision was made to decommission the Plutonium Laboratory and to decontaminate the building for unrestricted use. Decontamination procedures began in January, 1978. All items which had come into contact with radioactivity from the plutonium operations were cleaned or disposed of through prescribed channels, maintaining procedures to ensure that D and D operations would pose no risk to the public, the environment, or the workers. The entire program was conducted under the cognizance of DOE's Chicago Operations Office. The building which housed the Plutonium Laboratory has now been decontaminated to levels allowing it to house ordinary laboratory and office operations. A ''Finding of No Significant Impact'' (FNSI) was issued in May, 1980.

Rudolph, A.; Kirsch, G.; Toy, H.L. (comps.)

1984-11-12T23:59:59.000Z

240

In situ remediation of plutonium from glovebox exhaust ducts at the Department of Energy`s Rocky Flats Plant  

SciTech Connect

Plutonium and other miscellaneous hold-up materials have been accumulating in the glovebox exhaust ducts at the Rocky Flats Plant over the 40 years of weapons production at the site. The Duct Remediation Project was undertaken to assess the safety impacts of this material, and to remove it from the ductwork. The project necessitated the development of specialized tools, equipment and methods to remediate the material from continuously operating ventilation systems. Special engineered access locations were also required to provide access to the ductwork, and to ensure that safety and system operability were not degraded as a result of the remediation efforts. Operations personnel underwent significant training and development, and became an important asset to the success of the project. In total, the project succeeded in removing over 40 kilograms of plutonium-bearing material from one of the major weapons production buildings at the plant.

Dugdale, J.S.; Humiston, T.J.; Omer, G.E.

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Verification of plutonium content in spent fuel assemblies using neutron self-interrogation  

SciTech Connect

The large amounts of plutonium in reactor spent fuel assemblies has led to increased research directed toward the measurement of the plutonium for safeguards verification. The high levels of fission product gamma-ray activity and curium neutron backgrounds have made the plutonium measurement difficult. We have developed a new technique that can directly measure both the {sup 235}U concentration and the plutonium fissile concentration using the intrinsic neutron emission fronl the curium in the fuel assembly. The passive neutron albedo reactivity (PNAR) method has been described previously where the curium neutrons are moderated in the surrounding water and reflect back into the fuel assembly to induce fissions in the fissile material in the assembly. The cadmium (Cd) ratio is used to separate the spontaneous fission source neutrons from the reflected thermal neutron fission reactions. This method can measure the sum of the {sup 235}U and the plutonium fissile mass, but not the separate components. Our new differential die-away self-interrogation method (DDSI) can be used to separate the {sup 235}U from the {sup 239}Pu. The method has been applied to both fuel rods and full assemblies. For fuel rods the epi-thermal neutron reflection method filters the reflected neutrons through thin Cd filters so that the reflected neutrons are from the epi-cadmium energy region. The neutron fission energy response in the epi-cadmium region is distinctly different for {sup 235}U and {sup 239}Pu. We are able to measure the difference between {sup 235}U and {sup 239}Pu by sampling the neutron induced fission rate as a function of time and multiplicity after the initial fission neutron is detected. We measure the neutron fission rate using list-mode data collection that stores the time correlations between all of the counts. The computer software can select from the data base the time correlations that include singles, doubles, and triples. The die-away time for the doubles distribution is distinctly different for {sup 235}U and {sup 239}Pu. The {sup 239}Pu has a higher fission cross-section in the epi-cadmium neutron region and larger induced fission moments than {sup 235}U, so the measured die-away time can provide the relative amounts of {sup 239}Pu and {sup 235}U. This paper will present the Monte Carlo simulations for the detector and sample configurations for both fuel pins and full fuel assemblies.

Menlove, Howard O [Los Alamos National Laboratory; Menlove, Apencer H [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

242

Assessing the Feasibility of Using Neutron Resonance Transmission Analysis (NRTA) for Assaying Plutonium in Spent Fuel Assemblies  

SciTech Connect

Neutron resonance transmission analysis (NRTA) is an active-interrogation nondestructive assay (NDA) technique capable of assaying spent nuclear fuel to determine plutonium content. Prior experimental work has definitively shown the technique capable of assaying plutonium isotope composition in spent-fuel pins to a precision of approximately 3%, with a spatial resolution of a few millimeters. As a Grand Challenge to investigate NDA options for assaying spent fuel assemblies (SFAs) in the commercial fuel cycle, Idaho National Laboratory has explored the feasibility of using NRTA to assay plutonium in a whole SFA. The goal is to achieve a Pu assay precision of 1%. The NRTA technique uses low-energy neutrons from 0.1-40 eV, at the bottom end of the actinide-resonance range, in a time-of-flight arrangement. Isotopic composition is determined by relating absorption of the incident neutrons to the macroscopic cross-section of the actinides of interest in the material, and then using this information to determine the areal density of the isotopes in the SFA. The neutrons used for NRTA are produced using a pulsed, accelerator-based neutron source. Distinguishable resonances exist for both the plutonium (239,240,241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Based on extensive modeling of the problem using Monte Carlo-based simulation codes, our preliminary results suggest that by rotating an SFA to acquire four symmetric views, sufficient neutron transmission can be achieved to assay a SFA. In this approach multiple scan information for the same pins may also be unfolded to potentially allow the determination of plutonium for sub-regions of the assembly. For a 17 ? 17 pressurized water reactor SFA, a simplistic preliminary analysis indicates the mass of 239Pu may be determined with a precision on the order of 5%, without the need for operator-supplied fuel information or operational histories. This paper will present our work to date on this topic, indicate our preliminary findings for a conceptual assay approach, discuss resilience against spoofing, and outline our future plans for evaluating the NRTA technique for SFA plutonium determination.

D. L. Chichester; J. W. Sterbentz

2012-07-01T23:59:59.000Z

243

Benchmark Evaluation of Plutonium Nitrate Solution Arrays  

SciTech Connect

In October and November of 1981 thirteen approach-to-critical experiments were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington, using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas{reg_sign} reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were performed to fill a gap in experimental data regarding criticality limits for storing and handling arrays of Pu solution in reprocessing facilities. Of the thirteen approach-to-critical experiments eleven resulted in extrapolations to critical configurations. Four of the approaches were extrapolated to the critical number of bottles; these were not evaluated further due to the large uncertainty associated with the modeling of a fraction of a bottle. The remaining seven approaches were extrapolated to critical array spacing of 3-4 and 4-4 arrays; these seven critical configurations were evaluation for inclusion as acceptable benchmark experiments in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook. Detailed and simple models of these configurations were created and the associated bias of these simplifications was determined to range from 0.00116 and 0.00162 {+-} 0.00006 ?keff. Monte Carlo analysis of all models was completed using MCNP5 with ENDF/BVII.0 neutron cross section libraries. A thorough uncertainty analysis of all critical, geometric, and material parameters was performed using parameter perturbation methods. It was found that uncertainty in the impurities in the polyethylene bottles, reflector position, bottle outer diameter, and critical array spacing had the largest effect. The total uncertainty ranged from 0.00651 to 0.00920 ?keff. Evaluation methods and results will be presented and discussed in greater detail in the full paper.

M. A. Marshall; J. D. Bess

2011-09-01T23:59:59.000Z

244

Accelerated weathering of high-level and plutonium-bearing lanthanide borosilicate waste glasses under hydraulically unsaturated conditions  

Science Journals Connector (OSTI)

The US Department of Energy (DOE) has proposed that a can-in-canister waste package design be used for disposal of excess weapons-grade Pu at the proposed mined geologic repository at Yucca Mountain, Nevada. This configuration consists of a high-level waste (HLW) canister fitted with a rack that holds mini-canisters containing a Pu-bearing lanthanide borosilicate (LaBS) waste glass and/or titanate-based ceramic (?15% of the total canister volume). The remaining volume of the HLW canister is then filled with HLW glass (?85% of the total canister volume). A 6-a pressurized unsaturated flow (PUF) test was conducted to investigate waste form–waste form interactions that may occur when water penetrates the canisters and contacts the waste forms. The PUF column volumetric water content was observed to increase steadily during the test because of water accumulation associated with alteration phases formed on the surfaces of the glasses. Periodic excursions in effluent pH, electrical conductivity, and solution chemistry were monitored and correlated with the formation of a clay phase(s) during the test. Geochemical modeling, with the EQ3NR code, of select effluent solution samples suggests the dominant secondary reaction product for the surrogate HLW glass, SRL-202, is a smectite di-octahedral clay phase(s), possibly nontronite [Na0.33 Fe2(AlSi)4O10(OH)2 · n(H2O)] or beidellite [Na0.33Al2.33Si3.67O10(OH)2]. This clay phase was identified in scanning electron microscope (SEM) images as discrete spherical particles growing out of a hydrated gel layer on reacted SRL-202 glass. Alpha energy analysis (AEA) of aliquots of select effluent samples that were filtered through a 1.8 nm filter suggest that approximately 80% of the total measurable Pu was in the form of a filterable particulate, in comparison to unfiltered aliquots of the same sample. These results suggest the filterable particles are >1.8 nm but smaller than the 0.2 ?m average diameter openings of the Ti porous plate situated at the base of the column. In this advection-dominated system, Pu appeared to be migrating principally as or in association with colloids after being released from the LaBS glass. Analyses of reacted LaBS glass particles with SEM with energy dispersive X-ray spectroscopy suggest that Pu may have segregated into a discrete disk-like phase, possibly PuO2. Alteration products that contain the neutron absorber Gd have not been positively identified. Separation of the Pu and the neutron absorber Gd during glass dissolution and transport could be a criticality issue for the proposed repository. However, the translation and interpretation of these long-term PUF test results to actual disposed waste packages requires further analysis.

Eric M. Pierce; B.P. McGrail; P.F. Martin; J. Marra; B.W. Arey; K.N. Geiszler

2007-01-01T23:59:59.000Z

245

E-Print Network 3.0 - analyzing plutonium gamma-ray Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

plutonium gamma-ray Search Powered by Explorit Topic List Advanced Search Sample search results for: analyzing plutonium gamma-ray Page: << < 1 2 3 4 5 > >> 1 n December 30, 1958,...

246

An analysis of the impact of having uranium dioxide mixed in with plutonium dioxide  

SciTech Connect

An assessment was performed to show the impact on airborne release fraction, respirable fraction, dose conversion factor and dose consequences of postulated accidents at the Plutonium Finishing Plant involving uranium dioxide rather than plutonium dioxide.

MARUSICH, R.M.

1998-10-21T23:59:59.000Z

247

Amarillo National Resource Center for Plutonium. Quarterly technical progress report, February 1, 1998--April 30, 1998  

SciTech Connect

Activities from the Amarillo National Resource Center for Plutonium are described. Areas of work include materials science of nuclear and explosive materials, plutonium processing and handling, robotics, and storage.

NONE

1998-06-01T23:59:59.000Z

248

Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1, 1997--July 31, 1997  

SciTech Connect

Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.

NONE

1997-09-01T23:59:59.000Z

249

Demo of below ground site that once held the Plutonium Recycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford...

250

Assessment of plutonium exposures for an epidemiological study of US nuclear workers  

Science Journals Connector (OSTI)

......Institute for Occupational Safety and Health (NIOSH) 5555...Institute for Occupational Safety and Health (NIOSH) is...plutonium workers at the Rocky Flats Plant, Wilkinson et al...plutonium workers at the Rocky Flats Plant: a case-control......

R. D. Daniels; C. J. Lodwick; M. K. Schubauer-Berigan; H. B. Spitz

2006-04-01T23:59:59.000Z

251

The Effect of Sedimentation on Plutonium Transport in Fourmile Branch  

SciTech Connect

The major mechanisms of radioactive material transport and fate in surface water are sources, dilution, advection and dispersion of radionuclides by flow and surface waves, radionuclide decay, and interaction between sediment and radionuclides. STREAM II, an aqueous transport module of the Savannah River Site emergency response WIND system, accounts for the source term, and the effects of dilution, advection and dispersion. Although the model has the capability to account for nuclear decay, due to the short time interval of interest for emergency response, the effect of nuclear decay is very small and so it is not employed. The interactions between the sediment and radionuclides are controlled by the flow conditions and physical and chemical characteristics of the radionuclides and the sediment constituents. The STREAM II version used in emergency response must provide results relatively quickly; it therefore does not model the effects of sediment deposition/resuspension. This study estimates the effects of sediment deposition/resuspension on aqueous plutonium transport in Fourmile Branch. There are no measured data on plutonium transport through surface water available for direct model calibration. Therefore, a literature search was conducted to find the range of plutonium partition coefficients based on laboratory experiments and field measurements. A sensitivity study of the calculated plutonium peak concentrations as a function of the input parameter of partition coefficient was then performed. Finally, an estimation of the plutonium partition coefficient was made for the Fourmile Branch.

Chen, K.F.

2002-02-21T23:59:59.000Z

252

PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION  

SciTech Connect

The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

J.A. Ziegler

2000-11-20T23:59:59.000Z

253

PRESSURE DEVELOPMENT IN SEALED CONTAINERS WITH PLUTONIUM BEARING MATERIALS  

SciTech Connect

Gas generation by plutonium-bearing materials in sealed containers has been studied. The gas composition and pressure are determined over periods from months to years. The Pu-bearing materials studied represent those produced by all of the major processes used by DOE in the processing of plutonium and include the maximum amount of water (0.5% by weight) allowed by DOE's 3013 Standard. Hydrogen generation is of high interest and the Pu-bearing materials can be classed according to how much hydrogen is generated. Hydrogen generation by high-purity plutonium oxides packaged under conditions typical for actual 3013 materials is minimal, with very low generation rates and low equilibrium pressures. Materials with chloride salt impurities have much higher hydrogen gas generation rates and result in the highest observed equilibrium hydrogen pressures. Other materials such as those with high metal oxide impurities generate hydrogen at rates in between these extremes. The fraction of water that is converted to hydrogen gas as equilibrium is approached ranges from 0% to 25% under conditions typical of materials packaged to the 3013 Standard. Generation of both hydrogen and oxygen occurs when liquid water is present. The material and moisture conditions that result in hydrogen and oxygen generation for high-purity plutonium oxide and chloride salt-bearing plutonium oxide materials have been characterized. Other gases that are observed include nitrous oxide, carbon dioxide, carbon monoxide, and methane.

Duffey, J.; Livingston, R.

2010-02-01T23:59:59.000Z

254

Interstitial incorporation of plutonium into a low-dimensional potassium borate  

E-Print Network (OSTI)

D. Plutonium uptake by brucite and hydroxylated periclase.4), pyrochlore (4,23-25), brucite (26), and several other

Wang, Shuao

2014-01-01T23:59:59.000Z

255

Potential role of ABC-assisted repositories in U.S. plutonium and high-level waste disposition  

SciTech Connect

This paper characterizes the issues involving deep geologic disposal of LWR spent fuel rods, then presents results of an investigation to quantify the potential role of Accelerator-Based Conversion (ABC) in an integrated national nuclear materials and high level waste disposition strategy. The investigation used the deep geological repository envisioned for Yucca Mt., Nevada as a baseline and considered complementary roles for integrated ABC transmutation systems. The results indicate that although a U.S. geologic waste repository will continue to be required, waste partitioning and accelerator transmutation of plutonium, the minor actinides, and selected long-lived fission products can result in the following substantial benefits: plutonium burndown to near zero levels, a dramatic reduction of the long term hazard associated with geologic repositories, an ability to place several-fold more high level nuclear waste in a single repository, electricity sales to compensate for capital and operating costs.

Berwald, David; Favale, Anthony; Myers, Timothy; McDaniel, Jerry [Grumman Aerospace Corporation, Bethpage New York 11714 (United States); Bechtel Corporation, 50 Beal St., San Francisco, California 94105 (United States)

1995-09-15T23:59:59.000Z

256

All About MOX  

SciTech Connect

In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

None

2009-07-29T23:59:59.000Z

257

NNSA B-Roll: MOX Facility  

SciTech Connect

In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

2010-05-21T23:59:59.000Z

258

All About MOX  

ScienceCinema (OSTI)

In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

None

2014-08-06T23:59:59.000Z

259

CSER 96-027: storage of cemented plutonium residue containers in 55 gallon drums  

SciTech Connect

A nuclear criticality safety analysis has been performed for the storage of residual plutonium cementation containers, produced at the Plutonium Finishing Plant, in 55 gallon drums. This CSER increases the limit of total plutonium stored in each 55 gallon drum from 100 to 200 grams.

Watson, W.T.

1997-01-20T23:59:59.000Z

260

Relativistic density functional theory modeling of plutonium and americium higher oxide molecules  

E-Print Network (OSTI)

Relativistic density functional theory modeling of plutonium and americium higher oxide molecules of plutonium and americium higher oxide molecules Andréi Zaitsevskii,1,2,a) Nikolai S. Mosyagin,2,3 Anatoly V of plutonium and americium higher oxide molecules (actinide oxidation states VI through VIII) by two

Titov, Anatoly

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NNSA's Global Threat Reduction Initiative Completes First Plutonium  

National Nuclear Security Administration (NNSA)

Completes First Plutonium Completes First Plutonium Shipment | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA's Global Threat Reduction Initiative Completes First ... NNSA's Global Threat Reduction Initiative Completes First Plutonium Shipment Posted By NNSA Public Affairs NNSA Blog The United States and Sweden announced today at the 2012 Nuclear Security

262

NNSA's Global Threat Reduction Initiative Completes First Plutonium  

NLE Websites -- All DOE Office Websites (Extended Search)

Completes First Plutonium Completes First Plutonium Shipment | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA's Global Threat Reduction Initiative Completes First ... NNSA's Global Threat Reduction Initiative Completes First Plutonium Shipment Posted By NNSA Public Affairs NNSA Blog The United States and Sweden announced today at the 2012 Nuclear Security

263

Subcritical Noise Measurements with a Nickel-Reflected Plutonium Sphere  

SciTech Connect

Subcritical measurements were conducted with an a-phase plutonium sphere reflected by nickel hemishells using the 252Cf Source-Driven Noise Analysis (CSDNA) method to provide criticality safety benchmark data. Measured configurations included a bare plutonium sphere as well as the plutonium sphere reflected by the following nickel thicknesses: 1.27, 2.54, 3.81, 5.08, and 7.62 cm. A certain ratio of spectral quantities was measured for each configuration which varies linearly with the keff of the system. In addition, two types of Monte Carlo calculations were employed: a modified version of MCNP to calculate the ratio of spectral quantities and a KCODE calculation. From the measured and computed quantities the multiplication of each configuration can be approximated. A comprehensive uncertainty analysis was then performed that includes uncertainties in the geometry and materials present in the system in addition to the uncertainties in the method and nuclear data.

Jesson D. Hutchinson; John D. Bess

2009-11-01T23:59:59.000Z

264

Preliminary safety evaluation for the plutonium stabilization and packaging system  

SciTech Connect

This Preliminary Safety Evaluation (PSE) describes and analyzes the installation and operation of the Plutonium Stabilization and Packaging System (SPS) at the Plutonium Finishing Plant (PFP). The SPS is a combination of components required to expedite the safe and timely storage of Plutonium (Pu) oxide. The SPS program will receive site Pu packages, process the Pu for storage, package the Pu into metallic containers, and safely store the containers in a specially modified storage vault. The location of the SPS will be in the 2736- ZB building and the storage vaults will be in the 2736-Z building of the PFP, as shown in Figure 1-1. The SPS will produce storage canisters that are larger than those currently used for Pu storage at the PFP. Therefore, the existing storage areas within the PFP secure vaults will require modification. Other modifications will be performed on the 2736-ZB building complex to facilitate the installation and operation of the SPS.

Shapley, J.E., Fluor Daniel Hanford

1997-03-14T23:59:59.000Z

265

Recovery of plutonium from electrorefining anode heels at Savannah River  

SciTech Connect

In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control.

Gray, J H; Gray, L W; Karraker, D G

1987-03-01T23:59:59.000Z

266

Supercritical fluid carbon dioxide cleaning of plutonium parts  

SciTech Connect

Supercritical fluid carbon dioxide is under investigation in this work for use as a cleaning solvent for the final cleaning of plutonium parts. These parts must be free of organic residue to avoid corrosion in the stockpile. Initial studies on stainless steel and full-scale mock-up parts indicate that the oils of interest are easily and adequately cleaned from the metal surfaces with supercritical fluid carbon dioxide. Results from compatibility studies show that undesirable oxidation or other surface reactions are not occurring during exposure of plutonium to the supercritical fluid. Cleaning studies indicate that the oils of interest are removed from the plutonium surface under relatively mild conditions. These studies indicate that supercritical fluid carbon dioxide is a very promising cleaning medium for this application.

Hale, S.J.

1991-12-31T23:59:59.000Z

267

Evaluation of Impurity Extremes in a Plutonium-loaded Borosilicate Glass  

SciTech Connect

A vitrification technology utilizing a lanthanide borosilicate (LaBS) glass appears to be a viable option for the disposition of excess weapons-usable plutonium that is not suitable for processing into mixed oxide (MOX) fuel. A significant effort to develop a glass formulation and vitrification process to immobilize plutonium was completed in the mid-1990's. The LaBS glass formulation was found to be capable of immobilizing in excess of 10 wt % Pu and to be tolerant of a range of impurities. To confirm the results of previous testing with surrogate Pu feeds containing impurities, four glass compositions were selected for fabrication with actual plutonium oxide and impurities. The four compositions represented extremes in impurity type and concentration. The homogeneity and durability of these four compositions were measured. The homogeneity of the glasses was evaluated using x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). The XRD results indicated that the glasses were amorphous with no evidence of crystalline species in the glass. The SEM/EDS analyses did show the presence of some undissolved PuO{sub 2} material. The EDS spectra indicated that some of the PuO{sub 2} crystals also contained hafnium oxide. The SEM/EDS analyses showed that there were no heterogeneities in the glass due to the feed impurities. The durability of the glasses was measured using the Product Consistency Test (PCT). The PCT results indicated that the durability of Pu impurity glasses was comparable with Pu glasses without impurities and significantly more durable than the Environmental Assessment (EA) glass used as the benchmark for repository disposition of high-level waste (HLW) glasses. (authors)

Fox, K.M.; Crawford, C.L.; Marra, J.C.; Bibler, N.E.; Hoffman, E.N.; Edwards, T.B. [Savannah River National Laboratory, Aiken, SC (United States)

2008-07-01T23:59:59.000Z

268

Production  

Science Journals Connector (OSTI)

Production is obtained from proved reserves but the determinants of the scale of production in the industry and country components of the world total are many and complex with some unique to the individual com...

D. C. Ion

1980-01-01T23:59:59.000Z

269

Integrated development and testing plan for the plutonium immobilization project  

SciTech Connect

This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D&T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D&T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D&T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the plutonium-containing ceramic forms within large canisters of high level waste (HLW) glass. Deployment of the immobilization capability should occur by 2006 and be completed within 10 years.

Kan, T.

1998-07-01T23:59:59.000Z

270

Elemental composition in sealed plutonium–beryllium neutron sources  

Science Journals Connector (OSTI)

Abstract Five sealed plutonium–beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed.

N. Xu; K. Kuhn; D. Gallimore; A. Martinez; M. Schappert; D. Montoya; E. Lujan; K. Garduno; L. Tandon

2015-01-01T23:59:59.000Z

271

XANES Identification of Plutonium Speciation in RFETS Samples  

SciTech Connect

Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

LoPresti, V.; Conradson, S.D.; Clark, D.L.

2009-06-03T23:59:59.000Z

272

FY12 Final Report for PL10-Mod Separations-PD12: Electrochemically Modulated Separation of Plutonium from Dilute and Concentrated Dissolver Solutions for Analysis by Gamma Spectroscopy  

SciTech Connect

Accurate and timely analysis of plutonium in spent nuclear fuel is critical in nuclear safeguards for detection of both protracted and rapid plutonium diversions. Gamma spectroscopy is a viable method for accurate and timely measurements of plutonium provided that the plutonium is well separated from the interfering fission and activation products present in spent nuclear fuel. Electrochemically modulated separation (EMS) is a method that has been used successfully to isolate picogram amounts of Pu from nitric acid matrices. With EMS, Pu adsorption may be turned “on” and “off” depending on the applied voltage, allowing for collection and stripping of Pu without the addition of chemical reagents. In this work, we have scaled up the EMS process to isolate microgram quantities of Pu from matrices encountered in spent nuclear fuel during reprocessing. Several challenges have been addressed including surface area limitations, radiolysis effects, electrochemical cell performance stability, and chemical interferences. After these challenges were resolved, 6 µg Pu was deposited in the electrochemical cell with approximately an 800-fold reduction of fission and activation product levels from a spent nuclear fuel sample. Modeling showed that these levels of Pu collection and interference reduction may not be sufficient for Pu detection by gamma spectroscopy. The main remaining challenges are to achieve a more complete Pu isolation and to deposit larger quantities of Pu for successful gamma analysis of Pu. If gamma analyses of Pu are successful, EMS will allow for accurate and timely on-site analysis for enhanced Pu safeguards.

Pratt, Sandra H.; Arrigo, Leah M.; Duckworth, Douglas C.; Cloutier, Janet M.; Breshears, Andrew T.; Schwantes, Jon M.

2013-05-01T23:59:59.000Z

273

Minutes of the 28th Annual Plutonium Sample Exchange Meeting. Part II: metal sample exchange  

SciTech Connect

Contents of this publication include the following list of participating laboratories; agenda; attendees; minutes of October 25 and 26 meeting; and handout materials supplied by speakers. The handout materials cover the following: statistics and reporting; plutonium - chemical assay 100% minus impurities; americium neptunium, uranium, carbon and iron data; emission spectroscopy data; plutonium metal sample exchange; the calorimetry sample exchange; chlorine determination in plutonium metal using phyrohydrolysis; spectrophotometric determination of 238-plutonium in oxide; plutonium measurement capabilities at the Savannah River Plant; and robotics in radiochemical laboratory.

Not Available

1984-01-01T23:59:59.000Z

274

Plutonium immobilization plant using glass in new facilities at the Savannah River Site  

SciTech Connect

The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors.

DiSabatino, A.

1998-06-01T23:59:59.000Z

275

Production  

Energy.gov (U.S. Department of Energy (DOE))

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

276

Occurrence of naturally enriched {sup 235}U: Implications for plutonium behavior in natural environments  

SciTech Connect

It is generally accepted that uranium and most of the fission products, with the exception of the alkalis, alkaline earths and rare gases, remained in the irradiated uranium oxides during the nuclear reactions that took place 2.0 Ga ago in the Oklo uranium deposit (Gabon). New isotope investigations show that clay minerals from argillaceous rocks neighboring the natural fission reactor 10 at Oklo have depleted {sup 235}U with {sup 235}U/{sup 238}U ratios ranging between 0.00560 and the common natural value of 0.00725. One sample, however, is enriched in {sup 235}U with a {sup 235}U/{sup 238}U ratio of 0.007682. Leach experiments of this sample with dilute 1N HCl revealed that the {sup 235}U enrichment is actually restricted to the insoluble residue ({sup 235}U/{sup 238}U = 0.010511), whereas the leachate remains depleted in {sup 235}U. This unique discovery of very enriched uranium, together with samarium, neodymium, rubidium, and strontium isotopic analyses, indicate that a small amount of plutonium could have been more mobile than uranium in the reactor 10, and it is suggested that plutonium was incorporated in the crystallographic structure of clay minerals such as the chlorites. 28 refs., 3 figs., 1 tab.

Bros, R.; Gauthier-Lafaye, F.; Stille, P. [CNRS, Strasbourg (FR)] [CNRS, Strasbourg (FR); Turpin, L. [CNRS, Gif-sur-Yvette (FR)] [CNRS, Gif-sur-Yvette (FR); Holliger, Ph. [Centre d`Etudes Nucleaires, Grenoble (FR)] [Centre d`Etudes Nucleaires, Grenoble (FR)

1993-03-01T23:59:59.000Z

277

Plutonium Focus Area research and development plan. Revision 1  

SciTech Connect

The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

NONE

1996-11-01T23:59:59.000Z

278

Risk analysis of shipping plutonium pits and mixed oxide fuel  

E-Print Network (OSTI)

, one possible option that has been identified for disposition of excess U.S. weapons plutonium is the transformation into mixed oxide (MOX) fuel, that then would be used as fuel in a commercial nuclear power plant. Any such process will involve...

Caldwell, Amy Baker

2012-06-07T23:59:59.000Z

279

NUCLEAR ARMS DISMANTLING NAS urges steps to safeguard plutonium  

Science Journals Connector (OSTI)

Plutonium from tens of thousands of nuclear weapons being dismantled by the U.S. and the former Soviet Union presents "a clear and present danger" to international security, warns a report issued last week by a National Academy of Sciences panel.Steps ...

1994-01-31T23:59:59.000Z

280

Characterization of plutonium in Maxey Flats radioactive trench leachates  

SciTech Connect

Plutonium in trench leachates at the Maxey Flats radioactive waste disposal site exists as dissolved species, primarily complexes of the tetravalent ion with strong organic ligands such as ethylenediaminetetraacetic acid. The complexes are not sorbed well by sediment and are only partly precipitated by ferric hydroxide. These results indicate the importance of isolating radioactive waste from organic matter. 3 tables.

Cleveland, J.M.; Rees, T.F.

1981-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

System specification for the plutonium stabilization and packaging system  

SciTech Connect

This document describes functional design requirements for the Plutonium Stabilization and Packaging System (Pu SPS), as required by DOE contract DE-AC03-96SF20948 through contract modification 9 for equipment in Building 707 at Rocky Flats Environmental Technology Site (RFETS).

NONE

1996-07-01T23:59:59.000Z

282

Source terms for plutonium aerosolization from nuclear weapon accidents  

SciTech Connect

The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

Stephens, D.R.

1995-07-01T23:59:59.000Z

283

Extraction and recovery of plutonium and americium from nitric acid waste solutions by the TRUEX process - continuing development studies  

SciTech Connect

This report summarizes the work done to date on the application of the TRUEX solvent extraction process for removing and separately recovering plutonium and americium from a nitric acid waste solution containing these elements, uranium, and a complement of inert metal ions. This simulated waste stream is typical of a raffinate from a tributyl phosphate (TBP)-based solvent extraction process for removing uranium and plutonium from dissolved plutonium-containing metallurgical scrap. The TRUEX process solvent in these experiments was a solution of TBP and octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in carbon tetrachloride. A flowsheet was designed on the basis of measured batch distribution ratios to reduce the TRU content of the solidified raffinate to less than or equal to 10 nCi/g and was tested in a countercurrent experiment performed in a 14-stage Argonne-model centrifugal contractor. The process solvent was recycled without cleanup. An unexpectedly high evaporative loss of CCl/sub 4/ resulted in concentration of the active extractant, CMPO, to nearly 0.30M in the solvent. Results are consistent with this higher CMPO concentration. The raffinate contained only 2 nCi/g of TRU, but the higher CMPO concentration resulted in reduced effectiveness in the stripping of americium from the solvent. Conditions can be easily adjusted to give high yields and good separation of americium and plutonium. Experimental studies of the hydrolytic and gamma-radiolytic degradation of the TRUEX-CCl/sub 4/ showed that solvent degradation would be (1) minimal for a year of processing this typical feed, which contained no fission products, and (2) could be explained almost entirely by hydrolytic and radiolytic damage to TBP. Even for gross amounts of solvent damage, scrubbing with aqueous sodium carbonate solution restored the original americium extraction and stripping capability of the solvent. 43 refs., 5 figs., 36 tabs.

Leonard, R.A.; Vandegrift, G.F.; Kalina, D.G.; Fischer, D.F.; Bane, R.W.; Burris, L.; Horwitz, E.P.; Chiarisia, R.; Diamond, H.

1985-09-01T23:59:59.000Z

284

LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY  

SciTech Connect

A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

Nash, C.

2012-02-03T23:59:59.000Z

285

Accelerator-driven transmutation of plutonium and nuclear waste  

SciTech Connect

The ultimate disposition of spent reactor fuel and processed high-level nuclear waste (HLW) has been a subject of much concern and little progress since the dawn of the nuclear era. In the United States today, the spent fuel from more than 110 commercial light water reactors continues to be stored onsite while highly toxic liquid HLW continues to be stored in tanks at several U.S. Department of Energy sites. The management policy that has been followed in the United States for the past 12 yr is defined by the Nuclear Waste Policy Act (NWPA) of 1982 and its subsequent amendment of 1987. The NWPA requires the disposal of spent fuel assemblies in geologic waste repositories, the first of which will presumably be located at Yucca Mountain, Nevada. The pace of the process for implementing the Yucca Mountain repository discussed in a recent General Accounting Office (GAO) assessment, remains frustratingly slow. By GAO estimation, an operational permanent waste repository at Yucca Mountain could be delayed beyond the 2020 time frame. The approach to formulating an acceptable HLW disposal strategy has always involved serious consideration of nonproliferation issues. Most recently, the nuclear weapon build-down following the Cold War has stimulated the need for the United States and Russia to dispose of surplus plutonium. Consideration of this has motivated (a) a recognition that all plutonium is a proliferation hazard and (b) a renewed debate on the best approach to dispose of plutonium in general. From an international perspective, there is little agreement on the best strategy for the ultimate disposition of HLW and plutonium. This paper discusses the concept of transmutation of plutonium.

Berwald, D.H. [Grumman Aerospace Corp., Bethpage, NY (United States)

1995-12-31T23:59:59.000Z

286

Production  

Energy.gov (U.S. Department of Energy (DOE))

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

287

Draft Surplus Plutonium Disposition Supplemental Environmental...  

National Nuclear Security Administration (NNSA)

materials production activities at SRS have produced HLW that is stored on site in tanks. The function of DWPF is to vitrify the low-volume, high- activity radioactive...

288

RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)  

SciTech Connect

The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

MINETTE, M.J.

2007-05-30T23:59:59.000Z

289

MATERIAL PROPERTIES OF PLUTONIUM-BEARING OXIDES STORED IN STAINLESS STEEL CONTAINERS  

SciTech Connect

The destructive examination (DE) of 3013 containers after storage is part of the Surveillance and Monitoring Program based on the Department of Energy's standard for long-term storage of Pu (DOE-STD-3013). The stored, Pu-bearing materials may contain alkali halide contamination that varies from trace amounts of salt to about 50 weight percent, with smaller fractions of other compounds and oxides. These materials were characterized prior to packaging, and surveillance characterizations are conducted to determine the behavior of the materials during long term storage. The surveillance characterization results are generally in agreement with the pre-surveillance data. The predominant phases identified by X-ray diffraction are in agreement with the expected phase assemblages of the as-received materials. The measured densities are in reasonable agreement with the expected densities of materials containing the fraction of salts and actinide oxide specified by the pre-surveillance data. The radiochemical results are generally in good agreement with the pre-surveillance data for mixtures containing 'weapons grade' Pu (nominally 94% {sup 239}Pu and 6% {sup 240}Pu); however, the ICP-MS results from the present investigation generally produce lower concentrations of Pu than the pre-surveillance analyses. For mixtures containing 'fuel grade' Pu (nominally 81-93% {sup 239}Pu and 7-19% {sup 240}Pu), the ICP-MS results from the present investigation appear to be in better agreement with the pre-surveillance data than the radiochemistry results.

Kessinger, G.; Almond, P.; Bridges, N.; Bronikowski, M.; Crowder, M.; Duffey, J.; Livingston, R.; Mcelwee, M.; Missimer, D.; Scogin, J.; Summer, M.; Jurgensen, A.

2010-02-01T23:59:59.000Z

290

The United States Plutonium Balance, 1944-2009 | National Nuclear Security  

National Nuclear Security Administration (NNSA)

United States Plutonium Balance, 1944-2009 | National Nuclear Security United States Plutonium Balance, 1944-2009 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The United States Plutonium Balance, 1944-2009 Home > Our Mission > Managing the Stockpile > Plutonium Pits > The United States Plutonium Balance, 1944-2009 The United States Plutonium Balance, 1944-2009

291

Plutonium immobilization plant using ceramic in existing facilities at the Savannah River site  

SciTech Connect

The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources, and through a ceramic immobilization process converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans.

DiSabatino, A., LLNL

1998-06-01T23:59:59.000Z

292

An MS-DOS-based program for analyzing plutonium gamma-ray spectra  

SciTech Connect

A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.

Ruhter, W.D.; Buckley, W.M.

1989-09-07T23:59:59.000Z

293

HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX  

SciTech Connect

Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after ~4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

Kyser, E. A.; King, W. D.

2012-07-31T23:59:59.000Z

294

HB-LINE ANION EXCHANGE PURIFICATION OF AFS-2 PLUTONIUM FOR MOX  

SciTech Connect

Non-radioactive cerium (Ce) and radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the feasibility of using either gadolinium nitrate (Gd) or boric acid (B as H{sub 3}BO{sub 3}) as a neutron poison in the H-Canyon dissolution process. Expected typical concentrations of probable impurities were tested and the removal of these impurities by a decontamination wash was measured. Impurity concentrations are compared to two specifications - designated as Column A or Column B (most restrictive) - proposed for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). Use of Gd as a neutron poison requires a larger volume of wash for the proposed Column A specification. Since boron (B) has a higher proposed specification and is more easily removed by washing, it appears to be the better candidate for use in the H-Canyon dissolution process. Some difficulty was observed in achieving the Column A specification due to the limited effectiveness that the wash step has in removing the residual B after {approx}4 BV's wash. However a combination of the experimental 10 BV's wash results and a calculated DF from the oxalate precipitation process yields an overall DF sufficient to meet the Column A specification. For those impurities (other than B) not removed by 10 BV's of wash, the impurity is either not expected to be present in the feedstock or process, or recommendations have been provided for improvement in the analytical detection/method or validation of calculated results. In summary, boron is recommended as the appropriate neutron poison for H-Canyon dissolution and impurities are expected to meet the Column A specification limits for oxide production in HB-Line.

Kyser, E.; King, W.

2012-04-25T23:59:59.000Z

295

Good Practices for Ocupational Radiological Protection in Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Measurement Not Measurement Sensitive DOE- STD-1128-2013 April 2013 DOE STANDARD GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1128-2013 This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ ii DOE-STD-1128-2013 Foreword This Technical Standard does not contain any new requirements. Its purpose is to provide information on good practices, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. U.S. Department of Energy (DOE) health

296

Stabilization, Packaging, and Storage of Plutonium-Bearing Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-3013-2000 September 2000 Superseding DOE-STD-3013-99 November 1999 DOE STANDARD STABILIZATION, PACKAGING, AND STORAGE OF PLUTONIUM-BEARING MATERIALS U.S. Department of Energy AREA PACK Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3013-2000 iii ABSTRACT This Standard provides guidance for the stabilization, packaging and safe storage of plutonium-

297

Plutonium Removal from Sweden: Fact Sheet | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Removal from Sweden: Fact Sheet | National Nuclear Security Removal from Sweden: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Plutonium Removal from Sweden: Fact Sheet Fact Sheet Plutonium Removal from Sweden: Fact Sheet Mar 27, 2012 Sweden has been a global leader on nonproliferation, and was one of the

298

Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP Project W-460  

SciTech Connect

This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP.

WEISS, E.V.

2000-03-06T23:59:59.000Z

299

Dose Rates from Plutonium Metal and Beryllium Metal in a 9975 Shipping Container  

SciTech Connect

A parametric study was performed of the radiation dose rates that might be produced if plutonium metal and beryllium metal were shipped in the 9975 shipping package. These materials consist of heterogeneous combinations plutonium metal and beryllium. The plutonium metal content varies up to 4.4 kilograms while the beryllium metal varies up to 4 kilograms. This paper presents the results of that study.

Nathan, S.J.

2002-02-04T23:59:59.000Z

300

Manhattan Project: Piles and Plutonium, 1939-1942  

Office of Scientific and Technical Information (OSTI)

Enrico Fermi PILES AND PLUTONIUM Enrico Fermi PILES AND PLUTONIUM (1939-1942) Events > Early Government Support, 1939-1942 Einstein's Letter, 1939 Early Uranium Research, 1939-1941 Piles and Plutonium, 1939-1941 Reorganization and Acceleration, 1940-1941 The MAUD Report, 1941 A Tentative Decision to Build the Bomb, 1941-1942 The Uranium Committee's first report, issued on November 1, 1939, recommended that, despite the uncertainty of success, the government should immediately obtain four tons of graphite and fifty tons of uranium oxide. This recommendation led to the first outlay of government funds -- $6,000 in February 1940 -- and reflected the importance attached to the Fermi-Szilard pile (reactor) experiments already underway at Columbia University. Building upon the Fission chain reaction work performed in 1934 demonstrating the value of moderators in producing slow neutrons, Enrico Fermi thought that a mixture of the right moderator and natural uranium could produce a self-sustaining fission chain reaction. Fermi and Leo Szilard increasingly focused their attention on carbon in the form of graphite. Perhaps graphite could slow down, or moderate, the neutrons coming from the fission reaction, increasing the probability of their causing additional fissions in sustaining the chain reaction. A pile containing a large amount of natural uranium could then produce enough secondary neutrons to keep a reaction going.

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Certification of Plutonium Standards for KAMS Neutron Multiplicity Counter  

SciTech Connect

As part of the implementation of the PEIS record of decision in January of 1997, DOE will pursue two technologies to disposition fifty metric tons of its stockpile of plutonium. As a result of this and in order to expedite the closure of Rocky Flats Environmental Technology Site in Colorado, DOE decided to use existing facilities at the Savannah River Site (SRS) for storing all material containing plutonium at KAMS. A neutron multiplicity counter was designed and built to carry out receipt verification measurement at the facility. Since the material covers a wide range and different levels of impurities, it is essential that we obtain a set of working standards. An agreement was drafted to select the first drums to be these standards. A plan was developed for the certification of these standards using Rocky Flat's existing nondestructive assay equipment. This paper will discuss the types of materials to be shipped to SRS, number of standards to certify for each type of material, and the certification plan. It will also discuss the activities necessary to determine the nuclear content of these working standards to be used at SRS facilities in support of shipment and receipt of the Pu containing materials. Definition of instrument qualifications, measurement control processes, measurement methodologies, and calculations necessary to report the gram quantities and their uncertainties for plutonium, americium-241, uranium-235 (if present) and neptunium-237 (if present) will also be presented.

Salaymeh, S.R.

2002-05-31T23:59:59.000Z

302

An isotopic analysis system for plutonium samples enriched in sup 238 Pu  

SciTech Connect

We have designed and built a gamma-ray spectrometer system that measures the relative plutonium isotopic abundances of plutonium oxide enriched in {sup 238}Pu. The first system installed at Westinghouse Savannah River Company was tested and evaluated on plutonium oxide in stainless steel EP60/61 containers. {sup 238}Pu enrichments ranged from 20% to 85%. Results show that 200 grams of plutonium oxide in an EP60.61 container can be measured with {plus minus}0.3% precision and better than {plus minus}1.0% accuracy in the specific power using a counting time of 50 minutes. 3 refs., 2 figs.

Ruhter, W.D.; Camp, D.C.

1991-08-01T23:59:59.000Z

303

Project Management Plan to Maintain Safe and Compliant Conditions at the Plutonium Finishing Plant (PFP)  

SciTech Connect

This Project Management Plan presents the overall plan, description, mission, and workscope for the Plutonium Finishing Plant (PFP) maintain safe and compliant conditions project at PFP.

COX, G.J.

1999-10-25T23:59:59.000Z

304

Voluntary Protection Program Onsite Review, Plutonium Finishing Plant Closure Project- May 2007  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Plutonium Finishing Plant Closure Project is continuing to perform at a level deserving DOE-VPP Star recognition.

305

E-Print Network 3.0 - analytique du plutonium Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection: Mathematics 2 Home -Yahoo -My Yahoo -News Alerts -Help FREE Web-enabled Cell Phone Summary: radioactivity over that period. Traces of plutonium in depleted...

306

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...  

National Nuclear Security Administration (NNSA)

plutonium to meet the non-proliferation goals agreed to by the United States and Russia in September 2000. Eliminating immobilization from the disposition pathway saves...

307

E-Print Network 3.0 - accelerator-based plutonium conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Group Collection: Materials Science 79 Assessment of size-fractionated species of curium-244 via alpha spectrometry in groundwater Summary: and plutonium from the SRS heavy...

308

E-Print Network 3.0 - accidentally released plutonium Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

to a density where fission can occur. The uranium and plutonium... in the secondary burn and increase the temperature until fusion starts. The energy released by ... Source:...

309

In-line measurement of plutonium and americium in mixed solutions  

SciTech Connect

A solution assay instrument (SAI) has been developed at the Los Alamos National Laboratory and installed in the plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument is designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and Am/Pu ratios. For a 25-mL sample, the assay precision is < 1%, both for plutonium and for americium having concentrations >5 g/L within a 2000-s count time.

Li, T.K.

1981-01-01T23:59:59.000Z

310

E-Print Network 3.0 - americium-containing uranium plutonium...  

NLE Websites -- All DOE Office Websites (Extended Search)

and plutonium... - action raises the temperature even higher and burns more of the fis- ... Source: Gilfoyle, Jerry - Department of Physics, University of Richmond...

311

Workers Create Demolition Zone at Hanford Site’s Plutonium Finishing Plant  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. – In recent weeks, the look of Hanford site’s Plutonium Finishing Plant has changed as crews removed or demolished eight buildings surrounding it.

312

STUDIES IN THE NUCLEAR CHEMISTRY OF PLUTONIUM, AMERICIUM, AND CURIUM AND MASSES OF THE HEAVIEST ELEMENTS  

E-Print Network (OSTI)

CHEMISTRY OF PLUTONIUM, AMERICIUM, AND CURIUM AND THE MASSESTO ION EXCHANGE SEPARATIONS OF AMERICIUM AND CURIUM A. B.5. Tartrate elutions of americium and curium from Dowex-50

Glass, Richard Alois

2011-01-01T23:59:59.000Z

313

GeoffBrumfiel,Washington Nuclear watchdogs and former weapons  

E-Print Network (OSTI)

GeoffBrumfiel,Washington Nuclear watchdogs and former weapons scientists are taking issue with a proposal to use weapons-grade uranium and plutonium at the US National Ignition Facility.The facility is supposed to help scientists assess the nation's ageing nuclear stockpile without testing the weapons

314

Working with Russia | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Russia Working with Russia Working with Russia Posted: February 11, 2013 - 3:34pm | Y-12 Report | Volume 9, Issue 2 | 2013 For decades official maps did not show Zheleznogorsk, Russia. Created in 1950 to produce weapons-grade plutonium, the Siberian city of about 90,000 existed in secrecy until the Cold War's close in 1991. The end of that conflict between the U.S. and the Union of Soviet Socialist Republics meant the end of weapons production, causing thousands of highly skilled Russian nuclear workers to lose their livelihood. "As the Russians were reducing the number of personnel in the weapons business, the U.S. didn't want the workers to be desperate and wonder how they were going to feed their families," said Y-12 Program Manager Ken Williams.

315

CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE  

SciTech Connect

Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase-1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material.

Fuller, K.; Smith, Robert H. Jr.; Goergen, Charles R.

2013-01-09T23:59:59.000Z

316

Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248  

SciTech Connect

Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ?2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase- 1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material. (authors)

Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R. [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)] [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)

2013-07-01T23:59:59.000Z

317

SMALL-SCALE TESTING OF PLUTONIUM (IV) OXALATE PRECIPITATION AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION  

SciTech Connect

The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, SRNL conducted a series of experiments to produce calcined plutonium (Pu) oxide and measure the physical properties and water adsorption of that material. This data will help define the process operating conditions and material handling steps for HB-Line. An anion exchange column experiment produced 1.4 L of a purified 52.6 g/L Pu solution. Over the next nine weeks, seven Pu(IV) oxalate precipitations were performed using the same stock Pu solution, with precipitator feed acidities ranging from 0.77 M to 3.0 M nitric acid and digestion times ranging from 5 to 30 minutes. Analysis of precipitator filtrate solutions showed Pu losses below 1% for all precipitations. The four larger precipitation batches matched the target oxalic acid addition time of 44 minutes within 4 minutes. The three smaller precipitation batches focused on evaluation of digestion time and the oxalic acid addition step ranged from 25-34 minutes because of pump limitations in the low flow range. Following the precipitations, 22 calcinations were performed in the range of 610-690 C, with the largest number of samples calcined at either 650 or 635 C. Characterization of the resulting PuO{sub 2} batches showed specific surface areas in the range of 5-14 m{sup 2}/g, with 16 of the 22 samples in the range of 5-10 m2/g. For samples analyzed with typical handling (exposed to ambient air for 15-45 minutes with relative humidities of 20-55%), the moisture content as measured by Mass Spectrometry ranged from 0.15 to 0.45 wt % and the total mass loss at 1000 C, as measured by TGA, ranged from 0.21 to 0.58 wt %. For the samples calcined between 635 and 650 C, the moisture content without extended exposure ranged from 0.20 to 0.38 wt %, and the TGA mass loss ranged from 0.26 to 0.46 wt %. Of these latter samples, the samples calcined at 650 C generally had lower specific surface areas and lower moisture contents than the samples calcined at 635 C, which matches expectations from the literature. Taken together, the TGA-MS results for samples handled at nominally 20-50% RH, without extended exposure, indicate that the Pu(IV) oxalate precipitation process followed by calcination at 635-650 C appears capable of producing PuO{sub 2} with moisture content < 0.5 wt% as required by the 3013 Standard. Exposures of PuO{sub 2} samples to ambient air for 3 or more hours generally showed modest mass gains that were primarily gains in moisture content. These results point to the need for a better understanding of the moisture absorption of PuO{sub 2} and serve as a warning that extended exposure times, particularly above the 50% RH level observed in this study will make the production of PuO{sub 2} with less than 0.5 wt % moisture more challenging. Samples analyzed in this study generally contained approximately 2 monolayer equivalents of moisture. In this study, the bulk of the moisture released from samples below 300 C, as did a significant portion of the CO{sub 2}. Samples in this study consistently released a minor amount of NO in the 40-300 C range, but no samples released CO or SO{sub 2}. TGA-MS results also showed that MS moisture content accounted for 80 {+-} 8% of the total mass loss at 1000 C measured by the TGA. The PuO{sub 2} samples produced had particles sizes that typically ranged from 0.2-88 {micro}m, with the mean particle size ranging from 6.4-9.3 {micro}m. The carbon content of ten different calcination batches ranged from 190-480 {micro}g C/g Pu, with an average value of 290 {micro}g C/g Pu. A statistical review of the calcination conditions and resulting SSA values showed that in both cases tested, calcination temperature had a significant effect on SSA, as expected from literature data. The statistical review also showed that batch size had a significant effect on SSA, but the narrow range of batch sizes tested is a compelling reason to set aside that result until tests

Crowder, M.; Pierce, R.; Scogin, J.; Daniel, G.; King, W.

2012-06-25T23:59:59.000Z

318

Evaluation of moisture limits for uranium and plutonium mixed oxides to support on-site transportation packaging  

SciTech Connect

This report contains supporting documentation for onsite shipment of uranium and plutonium mixed oxide materials in the 9975 package.

Livingston, R.R.

2000-08-09T23:59:59.000Z

319

Criteria for Preparing and Packaging Plutonium Metals and Oxides for Long-Term Storage  

SciTech Connect

This Standard provides criteria for packaging of plutonium metals and stabilized oxides for storage periods of at least 50 years. To meet the criteria, plutonium-bearing materials must be in stable forms and be packaged in containers designed to maintain their integrity both under normal storage conditions and during anticipated handling accidents.

NONE

1994-12-01T23:59:59.000Z

320

Amarillo National Resource Center for Plutonium. Quarterly technical progress report, August 1, 1996--October 31, 1996  

SciTech Connect

This report from the Amarillo National Resource Center for Plutonium describes progress in the following areas: electronic resource library; the senior technical review group; environment, health, and safety and remedial action activities; communications, education, and training; and plutonium and other materials.

NONE

1996-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives. The original EIS is available at http://energy.gov/nepa/downloads/eis-0283-final-environmental-impact-sta....

322

Assessment of plutonium exposures for an epidemiological study of US nuclear workers  

Science Journals Connector (OSTI)

......In a study of mortality among plutonium workers at the Rocky Flats Plant, Wilkinson et al.(2) separated workers into...and internal lung doses among plutonium workers at the Rocky Flats Plant: a case-control study. Am. J. Epidemiol......

R. D. Daniels; C. J. Lodwick; M. K. Schubauer-Berigan; H. B. Spitz

2006-04-01T23:59:59.000Z

323

Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons  

SciTech Connect

Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the Fission Options'' provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium.

Omberg, R.P. (Westinghouse Hanford Co., Richland, WA (United States)); Walter, C.E. (Lawrence Livermore National Lab., CA (United States))

1993-02-05T23:59:59.000Z

324

Disposition of plutonium from dismantled nuclear weapons: Fission options and comparisons  

SciTech Connect

Over the next decade, the United States expects to recover about 50 Mg of excess weapon plutonium and the Republic of Russia expects to recover a similar amount. Ensuring that these large quantities of high-grade material are not reused in nuclear weapons has drawn considerable attention. In response to this problem, the US Department of Energy (DOE) chartered the Plutonium Disposition Task Force (PDTF), in the summer of 1992, to assess a range of practical means for disposition of excess US plutonium. This report summarizes and compares the ``Fission Options`` provided to the Fission Working Group Review Committee (the committee) of the PDTF. The review by the committee was based on preliminary information received as of December 4, 1992, and as such the results summarized in this report should also be considered preliminary. The committee concluded that irradiation of excess weapon plutonium in fission reactors in conjunction with the generation of electricity and storing the spent fuel is a fast, cost-effective, and environmentally acceptable method of addressing the safeguards (diversion) issue. When applied appropriately, this method is consistent with current nonproliferation policy. The principal effect of implementing the fission options is at most a moderate addition of plutonium to that existing in commercial spent fuel. The amount of plutonium in commercial spent fuel by the year 2000 is estimated to be 300 Mg. The addition of 50 Mg of excess weapon plutonium, in this context, is not a determining factor, moreover, several of the fission options achieve substantial annihilation of plutonium.

Omberg, R.P. [Westinghouse Hanford Co., Richland, WA (United States); Walter, C.E. [Lawrence Livermore National Lab., CA (United States)

1993-02-05T23:59:59.000Z

325

Safety of CANDU reactors utilizing plutonium-enriched mixed-oxide fuel  

SciTech Connect

Substantial quantities of plutonium have become available as a result of nuclear arms reduction agreements. Irradiation of plutonium enriched fuel in Canadian deuterium uranium (CANDU) heavy water moderated and cooled reactors, of which there are 22 in operation in Canada, has been evaluated as a means of managing it. This paper summarizes the results of a study of reactor safety.

Chan, P.; Feinroth, H.; Luxat, J.; Pendergast, D.

1994-12-31T23:59:59.000Z

326

Criticality experiments with mixed plutonium and uranium nitrate solution at a plutonium fraction of 0.5 in slab and cylindrical geometry  

SciTech Connect

A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.5. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in cylindrical and slab geometries and included measurements with a water reflector, a concrete reflector, and without an added reflector. The concentration was varied from 112 to 332 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 52% for all experiments.

Lloyd, R.C.

1986-12-01T23:59:59.000Z

327

Investigation into the feasibility of alternative plutonium shipping forms  

SciTech Connect

Pacific Northwest Laboratory (PNL), operated for the Department of Energy by the Battelle Memorial Institute, is conducting a study for the Nuclear Regulatory Commission on the feasibility of altering current plutonium shipping forms to reduce or eliminate the airborne dispersibility of PuO/sub 2/ which might occur during a shipping accident. Plutonium used for fuel fabrication is currently shipped as a PuO/sub 2/ powder with a significant fraction in the respirable size range. If the high-strength container is breached due to stresses imposed during a transportation accident, the PuO/sub 2/ powder could be subject to airborne dispersion. The available information indicated that a potential accident involving fire accompanied by crush/impact forces would lead to failure of current surface shipping containers (no assumptions were made on the possibility of such a severe accident). Criteria were defined for an alternate shipping form to mitigate the effects of such an accident. Candidate techniques and materials were evaluated as alternate shipping forms by a task team consisting of personnel from PNL and Rockwell Hanford Operations (RHO). At this time, the most promising candidate for an alternate plutonium shipping form appears to be pressing PuO/sub 2/ into unsintered (green) pellets. These green pellets satisfy the criteria for a less dispersible form without requiring significant process changes. Discussions of all candidates considered are contained in a series of appendices. Recommendations for further investigations of the applicability of green pellets as an alternate shipping form are given, including the need for a cost-benefit study.

Mishima, J.; Lindsey, C.G.

1983-06-01T23:59:59.000Z

328

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Removes Nine Metric Tons of Plutonium From Nuclear Weapons Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

329

LANL Produces First Plutonium Pit in 14 Years | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Produces First Plutonium Pit in 14 Years | National Nuclear Security Produces First Plutonium Pit in 14 Years | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > LANL Produces First Plutonium Pit in 14 Years LANL Produces First Plutonium Pit in 14 Years April 22, 2003 Los Alamos, NM LANL Produces First Plutonium Pit in 14 Years

330

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

331

Surplus weapons plutonium: Technologies for pit disassembly/conversion and MOX fuel fabrication  

SciTech Connect

This paper will provide a description of the technologies involved in the disposition of plutonium from surplus nuclear weapon components (pits), based on pit disassembly and conversion and on fabrication of mixed oxide (MOX) fuel for disposition through irradiation in nuclear reactors. The MOX/Reactor option is the baseline disposition plan for both the US and russian for plutonium from pits and other clean plutonium metal and oxide. In the US, impure plutonium in various forms will be converted to oxide and immobilized in glass or ceramic, surrounded by vitrified high level waste to provide a radiation barrier. A similar fate is expected for impure material in Russia as well. The immobilization technologies will not be discussed. Following technical descriptions, a discussion of options for monitoring the plutonium during these processes will be provided.

Toevs, J.W.

1997-12-31T23:59:59.000Z

332

Influence of Iron Redox Transformations on Plutonium Sorption to Sediments  

SciTech Connect

Plutonium subsurface mobility is primarily controlled by its oxidation state, which in turn is loosely coupled to the oxidation state of iron in the system. Experiments were conducted to examine the effect of sediment iron mineral composition and oxidation state on plutonium sorption and oxidation state. A pH 6.3 vadose zone sediment containing iron oxides and iron-containing phyllosilicates was treated with various complexants (ammonium oxalate) and reductants (dithionite-citrate-bicarbonate) to selectively leach and/or reduce iron oxide and phyllosilicate phases. Mössbauer spectroscopy was used to identify initial iron mineral composition of the sediment and monitor dissolution and reduction of iron oxides. Sorption of Pu(V) was monitored over one week for each of six treated sediment fractions. Plutonium oxidation state speciation in the aqueous and solid phases was monitored using solvent extraction, coprecipitation, and XANES. Mössbauer spectroscopy showed that the sediment contained 25-30% hematite, 60-65% Al-goethite, and <10%Fe(III) in phyllosilicate; there was no detectable Fe(II). Upon reduction with a strong chemical reductant (dithionite-citrate buffer, DCB), much of the hematite and goethite disappeared and the Fe in the phyllosilicate reduced to Fe(II). The rate of sorption was found to correlate with the 1 fraction of Fe(II) remaining within each treated sediment phase. Pu(V) was the only oxidation state measured in the aqueous phase, irrespective of treatment, whereas Pu(IV) and much smaller amounts of Pu(V) and Pu(VI) were measured in the solid phase. Surface-mediated reduction of Pu(V) to Pu(IV) occurred in treated and untreated sediment samples; Pu(V) remained on untreated sediment surface for two days before reducing to Pu(IV). Similar to the sorption kinetics, the reduction rate was correlated with sediment Fe(II) concentration. The correlation between Fe(II) concentrations and Pu(V) reduction demonstrates the potential impact of changing iron mineralogy on plutonium subsurface transport through redox transition areas. These findings should influence the conceptual models of long-term stewardship of Pu contaminated sites that have fluctuating redox conditions, such as vadose zones or riparian zones.

Hixon, Amy E.; Hu, Yung-Jin; Kaplan, Daniel I.; Kukkadapu, Ravi K.; Nitsche, Heino; Qafoku, Odeta; Powell, Brian A.

2010-10-01T23:59:59.000Z

333

Radiochemistry of uranium, neptunium and plutonium: an updating  

SciTech Connect

This report presents some procedures used in the radiochemical isolation, purification and/or analysis of uranium, neptunium, and plutonium. In this update of the procedures, we have not attempted to discuss the developments in the chemistry of U, Np, and Pu but have restricted the report to the newer procedures, most of which have resulted from the increased emphasis in environmental concern which requires analysis of extremely small amounts of the actinide element in quite complex matrices. The final section of this report describes several schemes for isolation of actinides by oxidation state.

Roberts, R.A.; Choppin, G.R.; Wild, J.F.

1986-02-01T23:59:59.000Z

334

Joint DOE-Rosatom Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement Statement on the U.S. - Russian Excess Weapon-grade Plutonium Disposition Program The U.S. Department of Energy (DOE) and the Federal Atomic Energy Agency, Russian Federation (Rosatom), as the Executive Agents for the implementation of the 2000 Plutonium Management and Disposition Agreement, hereby reaffirm their commitment to implementing the 2000 Agreement and effective and transparent disposition of 34 metric tons each of weapon- grade plutonium designated as no longer required for defense purposes. They confirm that the preferred disposition method for such plutonium to implement the 2000 Agreement is irradiation of nuclear fuel in reactors. Their expert groups are directed to: * Provide for the performance of technical analysis that will contribute to both

335

Audit Report: ER-L-02-01 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

ER-L-02-01 ER-L-02-01 Audit Report: ER-L-02-01 February 7, 2002 The Department of Energy's Strategy for Disposal of Plutonium In September 2000, the United States and the Russian Federation entered into an agreement stipulating that each country will irreversibly transform 34 metric tons of weapons-grade plutonium into forms which could not be used for weapons purposes. To meet the United States' commitment, the Department of Energy planned activities at its Savannah River Site; specifically, to immobilize 8.4 metric tons of weapons-grade plutonium and to convert 25.6 metric tons into nuclear reactor fuel. The plan called for the design and construction of three major facilities at Savannah River: the Pit Disassembly and Conversion Facility, the Plutonium Immobilization

336

Plutonium contamination in soils in open space and residential areas near Rocky Flats, Colorado  

SciTech Connect

Spatial analysis of the {sup 240}Pu:{sup 239}Pu isotopic ratio of 42 soil samples collected around Rocky Flats Plant near Golden, Colorado, was conducted to assess the effect of Rocky Flats Plant activity on the soil environment. Two probability maps that quantified the uncertainty of the spatial distribution of plutonium isotopic ratios were constructed using the sequential Gaussian simulation technique (sGs). Assuming a plutonium isotopic ratio range of 0.152 {+-} 0.003 to 0.169 {+-} 0.009 is characteristic to global fallout in Colorado, and a mean value of 0.155 is representative for the Rocky Flats Plant area, the main findings of the current work were (1) the areas northwest and southwest of Rocky Flats Plant exhibited a plutonium ratio {ge}0.155, this were minimally impacted by the plant activity; (2) he study area east of Rocky Flats Plant exhibited a plutonium isotopic ratio {le}0.155, which is a definitive indicator of Rocky Flats Plant-derived plutonium; and (3) inventory calculations across the study area exhibited large standard error of estimates. These errors were originated from the high variability in plutonium activity over a small sampling scale and the uncertainty in the global fallout isotopic ratio. Using the mean simulated estimates of plutonium isotopic ratio, coupled with plutonium activity measured at 11 soil pits and additional plutonium information published elsewhere, the plutonium loading on the open space and residential areas amounted to 111.2 GBq, with a standard error of estimate of 50.8 GBq.

Litaor, M.I. [Tel-Hai Rodman Coll., Upper Galilee (Israel). Dept. of Biotechnology and Environmental Sciences

1999-02-01T23:59:59.000Z

337

New Gas Gun Helping Scientists Better Understand Plutonium Behavior  

SciTech Connect

One of the most daunting scientific and engineering challenges today is ensuring the safety and reliability of the nation's nuclear arsenal. To effectively meet that challenge, scientists need better data showing how plutonium, a key component of nuclear warheads, behaves under extreme pressures and temperatures. On July 8, 2003, Lawrence Livermore researchers performed the inaugural experiment of a 30-meter-long, two-stage gas gun designed to obtain those data. The results from a continuing stream of successful experiments on the gas gun are strengthening scientists' ability to ensure that the nation's nuclear stockpile is safe and reliable. The JASPER (Joint Actinide Shock Physics Experimental Research) Facility at the Department of Energy's (DOE's) Nevada Test Site (NTS) is home to the two-stage gas gun. In the gun's first test, an unqualified success, Livermore scientists fired a projectile weighing 28.6 grams and traveling about 5.21 kilometers per second when it impacted an extremely small (about 30-gram) plutonium target. This experiment marked the culmination of years of effort in facility construction, gun installation, system integration, design reviews, and federal authorizations required to bring the experimental facility online. Ongoing experiments have drawn enthusiastic praise from throughout DOE, the National Nuclear Security Administration (NNSA), and the scientific community. NNSA Administrator Linton Brooks said, ''Our national laboratories now have at their disposal a valuable asset that enhances our due diligence to certify the nuclear weapons stockpile in the absence of underground nuclear weapons testing.''

Hazi, A

2005-09-20T23:59:59.000Z

338

Dosimetry of internal exposure of respiratory tract to incorporated plutonium  

Science Journals Connector (OSTI)

ICRP Publication 66 that had adopted a new approach to estimate dose to lungs and an extrathoracic region based on a revised human respiratory tract model was considered by the authors to address some aspects related to application of ICRP 66 in radiation safety practices. Comparison of committed equivalent doses received to the lungs following acute inhalation of plutonium-239 aerosols with different solubility and particle size calculated as per previous ICRP 30 approach (averaging of energy imparted by radiation to the organ over the mass of the organ) and new ICRP 66 concept (detriment-weighted dose resulting from irradiation of specific cells at risk in the lung) showed that these dose estimates are disparate. At the same time, ICRP 66 approach, being more biologically reasonable, still requires additional studies to validate risk apportionment among tissues in the lungs. Because ICRP 66 for the first time introduced a method to calculate internal radiation dose to the extrathoracic region, equivalent dose to this region following acute inhalation of different plutonium-239 aerosols was assessed in comparison with equivalent dose to the lungs. The relative contribution of the extrathoracic region to the effective dose turned out to be significant.

S.A. Romanov; Y.V. Zaytseva

2006-01-01T23:59:59.000Z

339

Benchmark Evaluation of Plutonium Hemispheres Reflected by Steel and Oil  

SciTech Connect

During the period from June 1967 through September 1969 a series of critical experiments was performed at the Rocky Flats Critical Mass Laboratory with spherical and hemispherical plutonium assemblies as nested hemishells as part of a Nuclear Safety Facility Experimental Program to evaluate operational safety margins for the Rocky Flats Plant. These assemblies were both bare and fully or partially oil-reflected. Many of these experiments were subcritical with an extrapolation to critical configurations or critical at a particular oil height. Existing records reveal that 167 experiments were performed over the course of 28 months. Unfortunately, much of the data was not recorded. A reevaluation of the experiments had been summarized in a report for future experimental and computational analyses. This report examines only fifteen partially oil-reflected hemispherical assemblies. Fourteen of these assemblies also had close-fitting stainless-steel hemishell reflectors, used to determine the effective critical reflector height of oil with varying steel-reflector thickness. The experiments and their uncertainty in keff values were evaluated to determine their potential as valid criticality benchmark experiments of plutonium.

John Darrell Bess

2008-06-01T23:59:59.000Z

340

MOISTURE AND SURFACE AREA MEASUREMENTS OF PLUTONIUM-BEARING OXIDES  

SciTech Connect

To ensure safe storage, plutonium-bearing oxides are stabilized at 950 C for at least two hours in an oxidizing atmosphere. Stabilization conditions are expected to decompose organic impurities, convert metals to oxides, and result in moisture content below 0.5 wt%. During stabilization, the specific surface area is reduced, which minimizes readsorption of water onto the oxide surface. Plutonium oxides stabilized according to these criteria were sampled and analyzed to determine moisture content and surface area. In addition, samples were leached in water to identify water-soluble chloride impurity content. Results of these analyses for seven samples showed that the stabilization process produced low moisture materials (< 0.2 wt %) with low surface area ({le} 1 m{sup 2}/g). For relatively pure materials, the amount of water per unit surface area corresponded to 1.5 to 3.5 molecular layers of water. For materials with chloride content > 360 ppm, the calculated amount of water per unit surface area increased with chloride content, indicating hydration of hygroscopic salts present in the impure PuO{sub 2}-containing materials. The low moisture, low surface area materials in this study did not generate detectable hydrogen during storage of four or more years.

Crowder, M.; Duffey, J.; Livingston, R.; Scogin, J.; Kessinger, G.; Almond, P.

2009-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Experimental critical parameters of plutonium metal cylinders flooded with water  

SciTech Connect

Forty-nine critical configurations are reported for experiments involving arrays of 3 kg plutonium metal cylinders moderated and reflected by water. Thirty-four of these describe systems assembled in the laboratory, while 15 others are derived critical parameters inferred from 46 subcritical cases. The arrays included 2x2xN, N = 2, 3, 4, and 5, in one program and 3x3x3 configurations in a later study. All were three-dimensional, nearly square arrays with equal horizontal lattice spacings but a different vertical lattice spacing. Horizontal spacings ranged from units in contact to 180 mm center-to-center; and vertical spacings ranged from about 80 mm to almost 400 mm center-to-center. Several nearly-equilateral 3x3x3 arrays exhibit an extremely sensitive dependence upon horizontal separation for identical vertical spacings. A line array of unreflected and essentially unmoderated canned plutonium metal units appeared to be well subcritical based on measurements made to assure safety during the manual assembly operations. All experiments were performed at two widely separated times in the mid-1970s and early 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory.

NONE

1996-07-01T23:59:59.000Z

342

Establishing an authorization basis for the Plutonium Finishing Plant  

SciTech Connect

In the summer of 1998, Hanford's Plutonium Finishing Plant (PFP) project prepared to restart its thermal stabilization process after 1(1/2)-yr suspension in operations. The facility had overcome a number of operational and safety problems, yet it had been unable to achieve appropriate update, approval, and implementation of an appropriate, current authorization basis. This problem threatened to prevent a timely restart, which, in turn, could have caused a loss in momentum and dampened enthusiasm within the facility. The authors describe the approach taken by B and W Hanford Company (BWHC) in conjunction with its partners, the US Department of Energy (DOE) Richland Operations Office and Fluor Daniel Hanford Company (FDH), to establish a defensible authorization basis, which allowed the facility to resume its mission of stabilizing reactive plutonium materials. The approach incorporates methods used within the DOE complex for short-term activities and those undergoing deactivation and implements principles of integrated safety management (ISM), as described in ``Defense Nuclear Facility Safety Board [(DNFSB)] Recommendation 95-2'' and related documents.

Roege, P.E.; Ramble, A.L.

1999-07-01T23:59:59.000Z

343

Plutonium and americium behavior in coral atoll environments  

SciTech Connect

Inventories of /sup 239 +240/Pu and /sup 241/Am greatly in excess of global fallout levels persist in the benthic environments of Bikini and Enewetak Atolls. Quantities of /sup 239 +240/Pu and lesser amounts of /sup 241/Am are continuously mobilizing from these sedimentary reservoirs. The amount of /sup 239 +240/Pu mobilized to solution at any time represents 0.08 to 0.09% of the sediment inventories to a depth of 16 cm. The mobilized /sup 239 +240/Pu has solute-like characteristics and different valence states coexist in solution - the largest fraction of the soluble plutonium is in an oxidized form (+V,VI). The adsorption of plutonium to sediments is not completely reversible because of changes that occur in the relative amounts of the mixed oxidation states in solution with time. Further, any characteristics of /sup 239 +240/Pu described at one location may not necessarily be relevant in describing its behavior elsewhere following mobilization and migration. The relative amounts of /sup 241/Am to /sup 239 +240/Pu in the sedimentary deposits at Enewetak and Bikini may be altered in future years because of mobilization and radiological decay. Mobilization of /sup 239 +240/Pu is not a process unique to these atolls, and quantities in solution derived from sedimentary deposits can be found at other global sites. These studies in the equatorial Pacific have significance in assessing the long-term behavior of the transuranics in any marine environment. 22 references, 1 figure, 13 tables.

Noshkin, V.E.; Wong, K.M.; Jokela, T.A.; Brunk, J.L.; Eagle, R.J.

1984-02-01T23:59:59.000Z

344

Comparative behavior of plutonium and americium in the equatorial Pacific  

SciTech Connect

Inventories of /sup 239 +240/Pu and /sup 241/Am greatly in excess of global fallout levels persist in the benthic environments of Bikini and Enewetak Atolls. The amount of /sup 239 +240/Pu mobilized to solution at the atolls can be predicted from a distribution coefficient K/sub d/ of 2.3 x 10/sup 5/ and the mean sediment concentrations. The mobilized /sup 239 +240/Pu has solute-like characteristics and different valence states coexist in solution - the largest fraction of the soluble plutonium is in an oxidized form (+V,VI). The adsorption of plutonium to sediments is not completely reversible because of changes that occur in the relative amounts of the mixed oxidation states in solution with time. Characteristics of /sup 239 +240/Pu described at one location may not necessarily describe its behavior elsewhere. The relative amounts of /sup 241/Am to /sup 239 +240/Pu may be altered in future years because of mobilization and radiological decay.

Noshkin, V.E.; Wong, K.M.; Jokela, T.A.; Brunk, J.L.; Eagle, R.J.

1983-01-01T23:59:59.000Z

345

Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory  

SciTech Connect

Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States National Institute of Standards and Technology (NIST) has independently verified the accuracy and precision of the AMS detection system for low-level bioassay measurements of plutonium isotopes through participation in an intercomparison exercise whereby performance evaluation samples were prepared in a synthetic urine matrix and submitted to participating laboratories for blind analysis. The results of the analyses were then sent to the NIST to independently evaluate the performance of laboratory participants. At LLNL, the AMS measurements of {sup 239}Pu and {sup 240}Pu met ANSI 13.30 criteria for both precision and accuracy at all sample test levels. Livermore scientists continue to test the performance of the Marshall Islands Plutonium Urinalysis Program by routine blind analysis of externally prepared quality control test samples, and through the rigorous implementation of standardized methods and procedures. Although not addressed directly in the report, AMS measurements show that the urinary excretion of plutonium by selected Marshallese populations fall into a low and reproducible range. Moreover, there appears to be no evidence of small incremental intakes of plutonium associated with resettlement activities - past or present. The improved quality, reliability and detection sensitivity of AMS for low-level plutonium isotope measurements will enable DOE to develop high-quality, baseline urinary excretion data for Marshallese populations, and accurately assess and track potential uptakes of plutonium. associated with resettlement activities and/or from long-term changes in plutonium exposure conditions in the Marshall Islands.

Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

2007-06-18T23:59:59.000Z

346

RAPID FUSION METHOD FOR DETERMINATION OF PLUTONIUM ISOTOPES IN LARGE RICE SAMPLES  

SciTech Connect

A new rapid fusion method for the determination of plutonium in large rice samples has been developed at the Savannah River National Laboratory (Aiken, SC, USA) that can be used to determine very low levels of plutonium isotopes in rice. The recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid, reliable radiochemical analyses for radionuclides in environmental and food samples. Public concern regarding foods, particularly foods such as rice in Japan, highlights the need for analytical techniques that will allow very large sample aliquots of rice to be used for analysis so that very low levels of plutonium isotopes may be detected. The new method to determine plutonium isotopes in large rice samples utilizes a furnace ashing step, a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with TEVA Resin? cartridges. The method can be applied to rice sample aliquots as large as 5 kg. Plutonium isotopes can be determined using alpha spectrometry or inductively-coupled plasma mass spectrometry (ICP-MS). The method showed high chemical recoveries and effective removal of interferences. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory plutonium particles are effectively digested. The MDA for a 5 kg rice sample using alpha spectrometry is 7E-5 mBq g{sup -1}. The method can easily be adapted for use by ICP-MS to allow detection of plutonium isotopic ratios.

Maxwell, S.

2013-03-01T23:59:59.000Z

347

Study of plutonium disposition using existing GE advanced Boiling Water Reactors  

SciTech Connect

The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

Not Available

1994-06-01T23:59:59.000Z

348

Plutonium isotopic analysis system for plutonium samples enriched in sup 238 Pu in EP 60/61 containers  

SciTech Connect

This user's manual is addressed to the Savannah River Site personnel (routine operators and supervisors) who perform measurements with the Pu-238 isotopic analysis system. Each chapter begins with a table of contents that lists the section title, illustrations, and tabular data presented in that chapter. The first chapter in this manual is an introduction to the system. Chapter 2 lists required settings for the system's commercial nuclear instrument modules. System operating procedures are given in Chapter 3. Chapter 4 contains routine and supervisorial operator interactions. Chapter 5 describes the system's short- and long-printout output formats. Chapter 6 gives instructions for changing system parameters. Error messages are listed and described Chapter 7. Chapter 8 contains a reference article on measuring relative plutonium isotopics in plutonium samples enriched in Pu-238. All commercial items mentioned in this manual are assumed to be functioning correctly for the purposes of system operation. Users are referred to individual equipment manufacturers' manuals for details of operation, trouble-shooting, and maintenance of this commercial equipment.

Ruhter, W.D.

1990-06-01T23:59:59.000Z

349

Manhattan Project: Production Reactor (Pile) Design, Met Lab, 1942  

Office of Scientific and Technical Information (OSTI)

Schematic of the X-10 Graphite Reactor, Oak Ridge PRODUCTION REACTOR (PILE) DESIGN Schematic of the X-10 Graphite Reactor, Oak Ridge PRODUCTION REACTOR (PILE) DESIGN (Met Lab, 1942) Events > The Plutonium Path to the Bomb, 1942-1944 Production Reactor (Pile) Design, 1942 DuPont and Hanford, 1942 CP-1 Goes Critical, December 2, 1942 Seaborg and Plutonium Chemistry, 1942-1944 Final Reactor Design and X-10, 1942-1943 Hanford Becomes Operational, 1943-1944 By 1942, scientists had established that some of the uranium exposed to radioactivity in a reactor (pile) would eventually decay into plutonium, which could then be separated by chemical means from the uranium. Important theoretical research on this was ongoing, but the work was scattered at various universities from coast to coast. In early 1942, Arthur Compton arranged for all pile research to be moved to the Met Lab at the University of Chicago.

350

Report by a special panel of the American Nuclear Society: Protection and management of plutonium  

SciTech Connect

The American Nuclear Society (ANS) established an independent and prestigious panel several months ago to take the matter up where the US National Academy of Science (NAS) left off. The challenge was to look at the broader issue of what to do with civil plutonium, as well as excess weapons material. In terms of approach, the report focused on several short- and long-term issues. The short-term focus was on the disposition of excess weapons plutonium, while the longer-range issue concerned the disposition of the plutonium being produced in the civil nuclear fuel cycle. For the short term, the ANS panel strongly endorsed the concept that all plutonium scheduled for release from the US and Russian weapons stocks should be converted to a form that is intensively radioactive in order to protect the plutonium from theft of seizure (the spent fuel standard). However, since the conversion will at best take several years to complete, the panel has concluded that immediate emphasis should be placed on the assurance that all unconverted materials are protected as securely as when they were part of the active weapon stockpiles. More importantly, the panel also recommended prompt implementation of the so-called reactor option for disposing of surplus US and Russian weapons plutonium. The longer-term issues covered by the panel were those posed by the growing stocks of both separated plutonium and spent fuel generated in the world`s civil nuclear power programs. These issues included what fuel cycle policies should be prudently pursued in light of proliferation risks and likely future energy needs, what steps should be taken in regard to the increase in the demand for nuclear power in the future, and how civil plutonium in its various forms should be protected and managed to minimize proliferation. Overall, the panel concluded that plutonium is an energy resource that should be used and not a waste material to be disposed of.

Bengelsdorf, H. [Bengelsdorf (Harold), Bethesda, MD (United States)

1996-07-01T23:59:59.000Z

351

Thermal Analysis of the 9975 Package as a Plutonium Storage Container  

SciTech Connect

Thermal analyses of three plutonium storage configurations (two plutonium metal and one plutonium oxide) consisting of the 3013 container within the 9975 package have been performed. All analyses are steady-state with 19 watts of Pu as contents. The analyzed conditions include allowance for storing the 9975 in a lattice configuration with stacking in a maximum ambient temperature 130 degrees F (54.4 degrees C) (assuming total loss of ventilation) and an ambient of 200 degrees F (93.3 degrees C) during accident (fire) conditions.

Hensel, S.J.

1999-06-02T23:59:59.000Z

352

Transuranic (Tru) waste volume reduction operations at a plutonium facility  

SciTech Connect

Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

353

Resource book: Decommissioning of contaminated facilities at Hanford  

SciTech Connect

In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs.

Not Available

1991-09-01T23:59:59.000Z

354

LANL names new head of Plutonium Science and Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Jeff Yarbrough joins Los Alamos from B&W Pantex Jeff Yarbrough joins Los Alamos from B&W Pantex LANL names new head of Plutonium Science and Manufacturing Jeff Yarbrough joins Los Alamos from the B&W Pantex plant in Amarillo, Texas. March 2, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Kevin Roark Communications Office

355

Management of super-grade plutonium in spent nuclear fuel  

SciTech Connect

This paper examines the security and safeguards implications of potential management options for DOE's sodium-bonded blanket fuel from the EBR-II and the Fermi-1 fast reactors. The EBR-II fuel appears to be unsuitable for the packaging alternative because of DOE's current safeguards requirements for plutonium. Emerging DOE requirements, National Academy of Sciences recommendations, draft waste acceptance requirements for Yucca Mountain and IAEA requirements for similar fuel also emphasize the importance of safeguards in spent fuel management. Electrometallurgical treatment would be acceptable for both fuel types. Meeting the known requirements for safeguards and security could potentially add more than $200M in cost to the packaging option for the EBR-II fuel.

McFarlane, H. F.; Benedict, R. W.

2000-03-20T23:59:59.000Z

356

Plutonium Finishing Plant (PFP) HVAC System Component Index  

SciTech Connect

This document lists safety class (SC) and safety significant (SS) components for the Heating Ventilation Air Conditioning (HVAC) and specifies the critical characteristics for Commercial Grade Items (CGI), as required by HNF-PRO-268 and HNF-PRO-18 19. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item. The Plutonium Finishing Plant (PFP) HVAC System includes sub-systems 25A through 25K. Specific system boundaries and justifications are contained in HNF-SD-CP-SDD-005, ''Definition and Means of Maintaining the Ventilation System Confinement Portion of the PFP Safety Envelope.'' The procurement requirements associated with the system necessitates procurement of some system equipment as Commercial Grade Items in accordance with HNF-PRO-268, ''Control of Purchased Items and Services.''

DIAZ, E.N.

2000-03-30T23:59:59.000Z

357

Establishing interim authorization bases for resumption of plutonium operations  

SciTech Connect

DOE Order 5480.23, Nuclear Safety Analysis Reports, requires that DOE facilities have an approved SAR (Safety Analysis Report). Rocky Flats Plant has a number of facilities for which no SAR exists. DOE Order 5480.21, Unreviewed Safety Questions, makes allowance for the operation of facilities without adequate SARs, through the establishment of an interim Authorization Basis (AB). In order to establish an AB, the nuclear facility must define the population of documents comprising the various elements of the AB and must use this defined population of documents as the basis for performing safety evaluations under DOE requirements. This short note explains the steps Rocky Flats Plant is taking to catalog the large body of documents available in order to establish an AB for those facilities needed to resume plutonium operations.

Ealy, K.; Satterwhite, D.

1993-06-01T23:59:59.000Z

358

OPEN AIR DEMOLITION OF FACILITIES HIGHLY CONTAMINATED WITH PLUTONIUM  

SciTech Connect

The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than ''hands on'' techniques.

LLOYD, E.R.

2007-05-31T23:59:59.000Z

359

Hanford Workers Achieve Success in Difficult Glove Box Project at Plutonium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Achieve Success in Difficult Glove Box Project at Workers Achieve Success in Difficult Glove Box Project at Plutonium Finishing Plant Hanford Workers Achieve Success in Difficult Glove Box Project at Plutonium Finishing Plant June 26, 2013 - 12:00pm Addthis Team members gather for a photo after safely and successfully completing a complicated glove box separation. Team members gather for a photo after safely and successfully completing a complicated glove box separation. Workers separate highly contaminated glove boxes from their connection points in Hanford’s Plutonium Finishing Plant. Workers separate highly contaminated glove boxes from their connection points in Hanford's Plutonium Finishing Plant. Workers pull a glove box apart and encase each section in a protective covering to prevent exposure.

360

EIS-0277: Management of Certain Plutonium Residues and Scrub Alloy Stored  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

77: Management of Certain Plutonium Residues and Scrub Alloy 77: Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site EIS-0277: Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site SUMMARY This EIS evaluates the potential alternatives and impacts associated with a proposal to process certain plutonium residues and all of the scrub alloy currently stored at Rocky Flats. While ongoing stabilization activities at Rocky Flats are addressing immediate health and safety concerns associated with existing storage conditions, the indefinite storage of these materials, even after stabilization, would continue to present health and safety concerns that could only be eliminated by disposal or other disposition of the materials. Thus, this

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Follow-up on the Management of Plutonium-239 Sealed Sources Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Follow-up on the Management of Plutonium-239 Sealed Sources Follow-up on the Management of Plutonium-239 Sealed Sources Recovery Activities, OAS-M-06-09 Follow-up on the Management of Plutonium-239 Sealed Sources Recovery Activities, OAS-M-06-09 The mission of the National Nuclear Security Administration's (NNSA) Off-site Recovery Project (OSRP) is to recover unwanted radioactive sealed sources (sources) held in the piblic sector. thereby reducing the threat of the sources being used in radiological dispersal de\iices or a "dirty bomb." Plutonium-239 (Pu-239), one of the rildioactive sealed sources recovered by OSRP, requires additional safeguards because ~t is a special nuclear material. These sources were manufactured in the United States (Li S.) and loaned or leased to colleges and universilies, commercial

362

LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun | National  

National Nuclear Security Administration (NNSA)

Conducts First Plutonium Shot Using the JASPER Gas Gun | National Conducts First Plutonium Shot Using the JASPER Gas Gun | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > LLNL Conducts First Plutonium Shot Using the ... LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun July 08, 2003 Nevada Test Site, NV

363

Plutonium Tricks Cells by "Pretending" to be Iron | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

A Chemical Detour to Quantum Criticality A Chemical Detour to Quantum Criticality Metallic Glass: A Crystal at Heart Brain Iron as an Early Predictor of Alzheimer's Disease Osmosis in Colloidal Suspensions Building a Better Battery Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Plutonium Tricks Cells by "Pretending" to be Iron JULY 14, 2011 Bookmark and Share Structural models of bovine serum transferrins derived from x-ray studies at the Advanced Photon Source. Natural di-iron transferrin (yellow) and one mixed iron plutonium transferrin (green) are recognized and taken in by cells, while the other mixed plutonium iron transferrin (red) and di-plutonium transferrin (blue) are not recognized.

364

Analysis of conventional and plutonium recycle unit-assemblies for the Yankee (Rowe) PWR  

E-Print Network (OSTI)

An analysis and comparison of Unit Conventional UO2 Fuel-Assemblies and proposed Plutonium Recycle Fuel Assemblies for the Yankee (Rowe) Reactor has been made. The influence of spectral effects, at the watergaps -and ...

Mertens, Paul Gustaaf

1971-01-01T23:59:59.000Z

365

E-Print Network 3.0 - americium plutonium uranium Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond the Myth Summary: a powerful nuclear fuel group that would master everything from uranium mining to plutonium fuels, civil... in principle to the spent fuel sent to La...

366

Fertile free fuels for plutonium and minor actinides burning in LWRs  

E-Print Network (OSTI)

The feasibility of using various uranium-free fuels for plutonium incineration in present light water reactors is investigated. Two major categories of inert matrix fuels are studied: composite ceramic fuel particles ...

Zhang, Yi, 1979-

2003-01-01T23:59:59.000Z

367

Workers Remove Glove Boxes from Ventilation at Hanford’s Plutonium Finishing Plant  

Energy.gov (U.S. Department of Energy (DOE))

An employee at Hanford’s Plutonium Finishing Plant uses a portable band saw to cut the last ventilation duct attached to glove boxes inside the facility’s former processing area.

368

The iodine–plutonium–xenon age of the Moon–Earth system revisited  

Science Journals Connector (OSTI)

...to a higher thermal regime of the...Isotopic spectrum of xenon relative...Ozima. 2012 Thermal evolution of...Plutonium-fission xenon found...spallation and neutron-induced reactions...I. High-energy irradiances...

2014-01-01T23:59:59.000Z

369

Identification of a physical metallurgy surrogate for the plutonium—1 wt.?% gallium alloy  

Science Journals Connector (OSTI)

Future plutonium research is expected to be limited due to the downsizing of the nuclear weapons complex and an industry focus on environmental remediation and decommissioning of former manufacturing and research facilities. However the need to further the understanding of the behavior of plutonium has not diminished. Disposition of high level residues long-term storage of wastes and certification of the nuclear stockpile through the Stockpile Stewardship Program are examples of the complex issues that must be addressed. Limited experimental facilities and the increasing cost of conducting plutonium research provide a strong argument for the development of surrogate materials. The purpose of this work was to identify a plutonium surrogate based on fundamental principles such as electronic structure and then to experimentally demonstrate its viability.

Frank E. Gibbs; David L. Olson; William Hutchinson

2000-01-01T23:59:59.000Z

370

Fluorination of a depleted uranium-plutonium-nitride fuel with elemental fluorine  

Science Journals Connector (OSTI)

A physical and a mathematical model have been developed to describe the physicochemical process of torch fluorination of an uranium-plutonium-nitride fuel. An algorithm for calculating the velocity, temperatur...

V. A. Karelin; V. N. Brendakov; M. V. Popadeikin

371

E-Print Network 3.0 - acutely inhaled plutonium-239 Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapon Iridium-192 74 days 100 Ci Industrial Radiography... Ca- and Zn-DTPA IV infusion Plutonium-239 Cobalt-60 12;26 Patient Management - Patient Transfer... and injuries...

372

SIA: A Safeguard Inspector Assistant to Plutonium Isotopic Composition Measurements by Means of Gamma Ray Spectrometry  

Science Journals Connector (OSTI)

In this paper we describe the design of a knowledge-based supporting system for Non Destructive Analysis of Plutonium isotopic composition, which fits into an integrated data evaluation scheme for safeguards. Thi...

Biancamaria Carniel; Gianfranco De Grandi…

1988-01-01T23:59:59.000Z

373

Trench ‘Bathtubbing’ and Surface Plutonium Contamination at a Legacy Radioactive Waste Site  

Science Journals Connector (OSTI)

Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide ...

Timothy E. Payne; Jennifer J. Harrison; Catherine E. Hughes; Mathew P. Johansen; Sangeeth Thiruvoth; Kerry L. Wilsher; Dioni I. Cendón; Stuart I. Hankin; Brett Rowling; Atun Zawadzki

2013-11-20T23:59:59.000Z

374

Assessment of the effectiveness of mixed uranium-plutonium fuel in VVÉR  

Science Journals Connector (OSTI)

An assessment of the cost-effectiveness of burning mixed uranium-plutonium fuel in VVÉR reactors is made as a function of the price of natural uranium. It is shown that for the present price structure, based on t...

N. N. Ponomarev-Stepnoi; V. F. Tsibul’skii

2007-11-01T23:59:59.000Z

375

Dioctyl butyramide and dioctyl isobutyramide as extractants for uranium(VI) and plutonium(IV)  

Science Journals Connector (OSTI)

Two isomeric monoamides, dioctyl butyramide (DOBA) and dioctyl isobutyramide (DOIBA) were synthesized for extracting uranium(VI) and plutonium(IV) from aqueous nitric acid medium into various diluents such asn-do...

G. M. Nair; G. R. Mahajan; D. R. Prabhu

1996-03-01T23:59:59.000Z

376

A Stochastic Advection-Diffusion Model for the Rocky Flats Soil Plutonium Data  

Science Journals Connector (OSTI)

An advection-diffusion equation with time and space dependent random coefficients is derived as a model for the plutonium concentration changes in the surface soil around the Rocky Flats Plant northwest of Denver...

Jaroslav Mohapl

2000-03-01T23:59:59.000Z

377

Kläui Ligand Thin Films for Rapid Plutonium Analysis by Alpha Spectrometry  

Science Journals Connector (OSTI)

Safety Considerations ... To further assess the use of the Kläui ligand thin films for environmental samples, a sample of contaminated Rocky Flats soil (NIST Standard Reference Material 4353A) was analyzed for plutonium. ...

Susan K. Hanson; Alexander H. Mueller; Warren J. Oldham, Jr.

2014-01-07T23:59:59.000Z

378

The GATA 5 gene is targeted for inactivation in plutonium induced human lung adenocarcinomas  

Science Journals Connector (OSTI)

...shown any significant difference in their methylation status between the worker and control groups. The GATA 5...plutonium-induced AdCs. Acknowledgements Research supported by the US Department of Energy Office for Environmental Safety and Health under cooperative...

Christopher M. Lyon; Frederick Gentry; Thomas H. March; Frank D. Gilliland; Galina Rusinova; Vitaliy Telnov; and Steven A. Belinsky

2005-05-01T23:59:59.000Z

379

Structural Characterization of and Plutonium Sorption on Mesoporous and Nanoparticulate Ferrihydrite  

E-Print Network (OSTI)

neptu- nium, plutonium, and americium in aqueous solutions.and then sorb), and the americium would remain in solution.The americium could be isolated by filtration of the

Brogan, Luna Kestrel Schwaiger

2012-01-01T23:59:59.000Z

380

Development of an Automatic Method for Americium and Plutonium Separation and  

E-Print Network (OSTI)

Development of an Automatic Method for Americium and Plutonium Separation and Preconcentration and separation in a short time using large sample volumes. Americium is eluted from the column with 4 mol L-1

Sánchez, David

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

An investigation into the use of biokinetic models when assessing intakes of plutonium  

E-Print Network (OSTI)

AN INVESTIGATION INTO THE USE OF BIOKINETIC MODELS WHEN ASSESSING INTAKES OF PLUTONIUM A Thesis by BRIAN ANDREW HRYCUSHKO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 2008 Major Subject: Health Physics AN INVESTIGATION INTO THE USE OF BIOKINETIC MODELS WHEN ASSESSING INTAKES OF PLUTONIUM A Thesis by BRIAN ANDREW HRYCUSHKO Submitted...

Hrycushko, Brian Andrew

2008-10-10T23:59:59.000Z

382

US weapons-useable plutonium disposition policy: implementation of the MOX fuel option  

E-Print Network (OSTI)

US WEAPONS-USEABLE PLUTONIUM DISPOSITION POLICY: IMPLEMENTATION OF THE MOX FUEL OPTION A Thesis by VANESSA L. GONZALEZ Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF ARTS August 1998 Major Subject: Political Science US WEAPONS-USEABLE PLUTONIUM DISPOSITION POLICY: IMPLEMENTATION OF THE MOX FUEL OPTION A Thesis by VANESSA L. GONZALEZ Submitted to Texas ARM University in partial fulfillment...

Gonzalez, Vanessa L

2012-06-07T23:59:59.000Z

383

Method for removal of plutonium impurity from americium oxides and fluorides  

DOE Patents (OSTI)

Method for removal of plutonium impurity from americium oxides and fluorides. AmF/sub 4/ is not further oxidized to AmF/sub 6/ by the application of O/sub 2/F at room temperature thereto, while plutonium compounds present in the americium sample are fluorinated to volatile PuF/sub 6/, which can readily be separated therefrom, leaving the purified americium oxides and/or fluorides as the solid tetrafluoride thereof.

FitzPatrick, J.R.; Dunn, J.G.; Avens, L.R.

1987-02-13T23:59:59.000Z

384

Comparison of bioturbation rates determined by lead-210 and plutonium in abyssal cores  

E-Print Network (OSTI)

COMPARISON OF BIOTURBATION RATES DETERMINED BY LEAD-210 AND PLUTONIUM IN ABYSSAI. CORES A Thesis by MARY CHRISTINE STORDAL Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1981 Major Subject: Oceanography COMPARISON OF BIOTURBATION RATES DETERMINED BY LEAD-210 AND PLUTONIUM IN ABYSSAL CORES A Thesis MARY CHRISTINE STORDAL Approved as t. o style and content by: (Chairman of Committee...

Stordal, Mary Christine

1981-01-01T23:59:59.000Z

385

Determination of useful performance parameters for the ALR8(SI) plutonium pit container system  

E-Print Network (OSTI)

DETERMINATION OF USEFUL PERFORMANCE PARAMETERS FOR THE ALRS(SI) PLUTONIUM PIT CONTAINER SYSTEM A Thesis by MARK ALAN PIERCE Submitted to the Office of Cnaduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 2000 Major Subject: Industrial Hygiene DETERMINATION OF USEFUL PERFORMANCE PARAMETERS FOR THE ALRS(SI) PLUTONIUM PIT CONTAINER SYSTEM A Thesis by MARK ALAN PIERCE Submitted to the Office of Graduate Studies...

Pierce, Mark Alan

2000-01-01T23:59:59.000Z

386

Method for removal of plutonium impurity from americium oxides and fluorides  

DOE Patents (OSTI)

Method for removal of plutonium impurity from americium oxides and fluorides. AmF.sub.4 is not further oxidized to AmF.sub.6 by the application of O.sub.2 F at room temperature, while plutonium compounds present in the americium sample are fluorinated to volatile PuF.sub.6, which can readily be separated therefrom, leaving the purified americium oxides and/or fluorides as the solid tetrafluoride.

FitzPatrick, John R. (Los Alamos, NM); Dunn, Jerry G. (Los Alamos, NM); Avens, Larry R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

387

Plutonium Finishing Plan (PFP) Treatment and Storage Unit Interim Status Closure Plan  

SciTech Connect

This document describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) Treatment and Storage Unit. The PFP Treatment and Storage Unit is located within the 234-52 Building in the 200 West Area of the Hanford Facility. Although this document is prepared based upon Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the PFP Treatment and Storage Unit manages transuranic mixed (TRUM) waste, there are many controls placed on management of the waste. Based on the many controls placed on management of TRUM waste, releases of TRUM waste are not anticipated to occur in the PFP Treatment and Storage Unit. Because the intention is to clean close the PFP Treatment and Storage Unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. The PFP Treatment and Storage Unit will be operated to immobilize and/or repackage plutonium-bearing waste in a glovebox process. The waste to be processed is in a solid physical state (chunks and coarse powder) and will be sealed into and out of the glovebox in closed containers. The containers of immobilized waste will be stored in the glovebox and in additional permitted storage locations at PFP. The waste will be managed to minimize the potential for spills outside the glovebox, and to preclude spills from reaching soil. Containment surfaces will be maintained to ensure integrity. In the unlikely event that a waste spill does occur outside the glovebox, operating methods and administrative controls will require that waste spills be cleaned up promptly and completely, and a notation will be made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

PRIGNANO, A.L.

2000-07-01T23:59:59.000Z

388

TRIFID (TRansuranic Isotopic Fraction Interrogation Device): A second generation plutonium isotopic analysis system  

SciTech Connect

The TRIFID (Transuranic Isotopic Fraction Interrogation Device) system is a second generation plutonium isotopic analysis system which incorporates many new and unique features in the area of isotopic data acquisition and isotopic analysis instrument consisting of a Canberra Series 95-MCA interfaced to a Compaq 386 computer. The entire TRIFID software package, including MCA communications and isotopic analysis routines, was developed using the C programming language. Extensive use has been made of user friendly screens and menus for ease of operation and training and to facilitate use by technical level operators. Automated TRIFID features provide for MCA/ADC setup and acquisition, spectral storage, isotopic analysis, and report generation. One unique feature of the TRIFID system design allows it to be pre-programed for an entire day's counting. The isotopic analysis module (EPICS) contains an expert system formalism which is used to detect and assay for spectral interferences, and to automatically adjust peak fitting constraints based on spectral intensity variations. A TRIFID system has been in operation in a production laboratory at the Rocky Flats Plant since September 1988. Marked decreases in training and hands-on operation time have been achieved in comparison to the older, preceding isotopic systems. 2 refs., 3 figs.

Fleissner, J G; Coressel, T W; Freier, D A; Macklin, L L

1989-01-01T23:59:59.000Z

389

The characterization and testing of candidate immobilization forms for the disposal of plutonium.  

SciTech Connect

Candidate immobilization forms for the disposal of surplus weapons-useable are being tested and characterized. The goal of the testing program was to provide sufficient data that, by August 1997, an informed selection of a single immobilization form could be made so that the form development and production R and D could be more narrowly focused. Two forms have been under consideration for the past two years: glass and ceramic. In August, 1997, the Department of Energy (DOE) selected ceramic for plutonium disposition, halting further work on the glass material. In this paper, we will briefly describe these two waste forms, then describe our characterization techniques and testing methods. The analytical methods used to characterize altered and unaltered samples are the same. A full suite of microscopic techniques is used. Techniques used include optical, scanning electron, and transmission electron microscopies. For both candidate immobilization forms, the analyses are used to characterize the material for the presence of crystalline phases and amorphous material. Crystalline materials, either in the untested immobilization form or in the alteration products from testing, are characterized with respect to morphology, crystal structure, and composition. The goal of these analyses is to provide data on critical issues such as Pu and neutron absorber volubility in the immobilization form, thermal stability, potential separation of absorber and Pu, and the long-term behavior of the materials. Results from these analyses will be discussed in the presentation. Testing methods include MCC-1 tests, product consistency tests (methods A and B), unsaturated ''drip'' tests, vapor hydration tests, single-pass flow-through tests, and pressurized unsaturated flow tests. Both candidate immobilization forms have very low dissolution rates; examples of typical test results will be reported.

Bakel, A. J.; Buck, E. C.; Chamberlain, D. B.; Ebbinghaus, B. B.; Fortner, J. A.; Marra, J. C.; Mcgrail, B. P.; Mertz, C. J.; Peeler, D. K.; Shaw, H. F.; Strachan, D. M.; Van Konynenburg, R. A.; Vienna, J. D.; Wolf, S. F.

1997-12-16T23:59:59.000Z

390

Transportation requirements for the disposition of excess weapon plutonium by burning in fission reactors  

SciTech Connect

Both the US and Russia are planning to dispose of about 50 Mg of excess weapon plutonium over a 25-year period. One option is to transfer the plutonium to Advanced Light Water (power) Reactors (ALWRs) for use as fuel. Subsequent disposal would then be considered commercial spent fuel. This disposition option, like others, involves the transportation of plutonium in various material forms as it proceeds through various points in the recovery operation. This paper examines both the disposition option and the issues surrounding the transportation of 50 Mg of excess plutonium within the US under current regulatory and infrastructure constraints. Transportation issues include criticality control, shielding, and containment of the contents. Allowable limits on each of these issues are specified by the applicable (or selected) regulation. The composition and form of the radioactive materials to be transported will determine, in part, the applicable portions of the regulations as well as the packaging design. The regulations and the packaging design, along with safeguard and security issues, will determine the quantity of plutonium or fuel assemblies per package as well as the number of packages per shipment and the type of highway carrier. For the disposition of 50 Mg of weapon plutonium using ALWRs in a 25-year campaign, the annual shipment rates are determined for the various types of carriers.

Hovingh, J.; Walter, C.E.

1996-01-01T23:59:59.000Z

391

SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS  

SciTech Connect

Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

Oji, L; Bill Wilmarth, B; David Hobbs, D

2008-05-30T23:59:59.000Z

392

Importance of plutonium contamination on vegetation surfaces at rocky flats, Colorado  

Science Journals Connector (OSTI)

Vegetation samples collected at Rocky Flats, Colorado were ultrasonically washed to remove attached soil and then analyzed for 239, 240Pu and 238Pu. Mean plutonium concentrations for washed grass, forb and shrub samples were 1.12, 0.61, 0.03 pCi/g, respectively. This compared to a mean of 28.6 pCi/g for unwashed vegetation samples from an earlier study conducted in the same area at Rocky Flats. The mean plutonium isotopic ratio (239,240Pu/238Pu) of 27.2 in vegetation was lower than a ratio of 65.4 in soil, indicating possible differential behavior of the plutonium isotopes in vegetation. Soil attachment to above-ground plant parts ranged from 0.0 to 0.25g soil per g plant. The potential for plutonium contamination on plant parts due to soil attachment was estimated to range from 0.0 to 206 pCi/g. Plutonium on vegetation was concluded to be the major contributor to total plutonium associated with vegetation.

W.J. Arthur III; A.W. Alldredge

1982-01-01T23:59:59.000Z

393

ER-L-02-01.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2002 7, 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Strategy for Disposal of Plutonium" (ER-L-02-01) INTRODUCTION AND OBJECTIVE In September 2000, the United States and the Russian Federation entered into an agreement stipulating that each country will irreversibly transform 34 metric tons of weapons-grade plutonium into forms which could not be used for weapons purposes. To meet the United States' commitment, the Department of Energy planned activities at its Savannah River Site; specifically, to immobilize 8.4 metric tons of weapons-grade plutonium and to convert 25.6 metric tons into nuclear reactor fuel. The plan called for the design and construction of three major facilities at Savannah River: the Pit

394

EIS Data Call Report: Plutonium immobilization plant using ceramic in new facilities at the Savannah River Site  

SciTech Connect

The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. This immobilization process is shown conceptually in Figure 1-1. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors. The ceramic immobilization alternative presented in this report consists of first converting the surplus material to an oxide, followed by incorporating the plutonium oxide into a titanate-based ceramic material that is placed in metal cans.

DiSabatino, A.

1998-06-01T23:59:59.000Z

395

Low-level detection and quantification of Plutonium(III, IV, V,and VI) using a liquid core waveguide  

SciTech Connect

Understanding the aqueous chemistry of plutonium, in particular in environmental conditions, is often complicated by plutonium's complex redox chemistry. Because plutonium possesses four oxidation states, all of which can coexist in solution, a reliable method for the identification of these oxidation states is needed. The identification of plutonium oxidation states at low levels in aqueous solution is often accomplished through an indirect determination using series of liquid-liquid extraction procedures using oxidation state specific reagents such as HDEHP and TTA. While these methods, coupled with radioactive counting techniques provide superior limits of detection they may influence the plutonium redox equilibrium, are time consuming, waste intensive and costly. Other analytical methods such as mass spectrometry and radioactive counting as stand alone methods provide excellent detection limits but lack the ability to discriminate between the oxidation states of the plutonium ions in solution.

Wilson, Richard E.; Hu, Yung-Jin; Nitsche, Heino

2003-06-28T23:59:59.000Z

396

Resumption of thermal stabilization of plutonium oxide in Building 707, Rocky Flats Plant, Golden, Colorado. Environmental Assessment  

SciTech Connect

The Department of Energy is proposing thermal stabilization to enhance the safe storage of plutonium at Rocky Flats Plant until decisions are made on long-term storage and disposition of the material. The proposed action is to resume thermal stabilization of pyrophoric plutonium in Building 707 at Rocky Flats Plant. Thermal stabilization would heat the pyrophoric plutonium under controlled conditions in a glovebox furnace to promote full oxidation and convert the material into stable plutonium oxide in the form of PuO{sub 2}. Other activities associated with thermal stabilization would include post-stabilization characterization of non-pyrophoric plutonium and on-site movement of pyrophoric and non-pyrophoric plutonium. This report covers; purpose and need; proposed action; alternatives to the proposed action; affected environment; environmental effects of proposed action and no action alternative; agencies and person consulted; and public participation.

Not Available

1994-02-01T23:59:59.000Z

397

Resuspension studies at Bikini Atoll. [Pulmonary exposure from dust-borne plutonium aerosols  

SciTech Connect

The following experiments were conducted on Bikini Atoll to provide key parameters for an assessment of inhalation exposure from plutonium-contaminated dust aerosols: (1) a characterization of background (plutonium activity, dust, plutonium, sea spray, and organic aerosol concentrations); (2) a study of plutonium resuspension from a bare field; (3) a study of plutonium resuspension by traffic; and (4) a study of personal inhalation exposure. Dust concentrations of 21 ..mu..g m/sup -3/ and sea spray of 34 ..mu..g m/sup -3/ were the background throughout the Bikini Island except within 50 m of the windward beach. Background concentrations of /sup 239 +240/Pu were 60 aCi m/sup -3/ in the coconut grove and 264 aCi m/sup -3/ over rain-stabilized bare soil. The ratio of plutonium activity in aerosols relative to the activity in underlying soil, defined as the enhancement factor, EF, was typically less than one. Enhancement factors increased about 3.8 as a result of tilling. Plutonium resuspension flux was estimated at 0.49 pCi m/sup -2/ year/sup -1/ over most of Bikini Island. Aerosol size distributions associated with mass and with plutonium activity were typically log-normal with median aerodynamic diameter 2.44 ..mu..m, which decreased to 2.0 ..mu..m above freshly tilled soil. The Pu concentration in aerosols collected over disturbed soil increased by a factor of 19.1. Vehicular traffic produced dust pulses typically of 10 s duration, 28 ..mu..g m/sup -3/ average concentration, and plutonium enhancement factor 2.5. Personal dosimetry showed that enhancement of dust by a worker was a factor of 2.64 for heavy work outdoors and 1.86 for light work in and around houses. Pulmonary deposition of plutonium was calculated for various exposure conditions. The pulmonary deposition ranged from 1476 aCi h/sup -1/ to 12 aCi h/sup -1/ with intermediate values for heavy outdoor work and for light work in and around houses.

Shinn, J.H.; Homan, D.N.; Robison, W.L.

1980-02-01T23:59:59.000Z

398

Speciation and spectroscopy of the uranyl and tetravalent plutonium nitrate systems: Fundamental studies and applications to used fuel reprocessing.  

E-Print Network (OSTI)

??This dissertation explores the use of UV-Visible spectroscopy and Time Resolved Laser Induced Fluorescence spectroscopy as near real time process monitors of uranium and plutonium… (more)

Smith, Nicholas A

2010-01-01T23:59:59.000Z

399

Decommissioning of the TA-42 plutonium contaminated incinerator facility  

SciTech Connect

During 1978, a plutonium (/sup 239/Pu) contaminated incinerator facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned. The project involved dismantling the facility and burying the debris at an on-site radioactive solid waste disposal/storage area. Contaminated soil from the 5000 m/sup 2/ area was also buried. The facility was constructed in 1951 to incinerate /sup 239/Pu contaminated wastes. It was later used as a decontamination facility. The major features included a 185-m/sup 2/ floor area control building, incinerator, cyclone dust collector, spray cooler, venturi scrubber, air filter bank, ash separator, and two 140 000-liter ash storage tanks. Six-hundred cubic meters of debris and 1200 m/sup 3/ of soil contaminated with less than 10 nCi /sup 239/Pu per gram of soil were buried at the Laboratory disposal area. Five cubic meters of /sup 239/Pu contaminated ash residues containing more than 10 nCi /sup 239/Pu per gram of waste were packaged and stored to meet the Department of Energy's 20-year retrievable storage criteria. The operation consumed 80 work days and 5800 manhours at a cost of $150 000. This report presents the details concerning decommissioning procedures, the health physics, the waste management, the environmental surveillance results, and a cost breakdown for the operation.

Harper, J.R.; Garde, R.

1981-11-01T23:59:59.000Z

400

Effects of lump characteristics on plutonium self absorption correction methods  

SciTech Connect

An evaluation study has been undertaken to assess the robustness of several published Pu self-absorption correction methods against variation in size, shape, density etc. for use in the gamma assay of nuclear waste. The correction methods studied are a numerical plutonium self absorption correction (PuSAC) technique, the Fleissner 2-line, Fleissner 3-line and Infinite Energy Extrapolation methods with both linear and polynomial extrapolation to 1/E=0. The performance of these methods has been compared for a limited set of measured encapsulated PuO{sub 2} sources plus a range of modelled unencapsulated Pu lumps. An indication of the magnitude of the uncertainties of the numerical PuSAC method has been determined for cases of blind assays where the Pu material, shape and distribution are unknown with the aim of ultimately applying it to real waste. The importance of the range of Pu lumps used in the baseline modelled dataset has been examined. Data are presented to illustrate how the uncertainties in the method are affected by the shape, composition, density, number and mass distribution of Pu particles in a sample for a given modelled base dataset. (authors)

Curtis, D. C.; Wormald, M. R. [Canberra UK Ltd (United Kingdom); Croft, S. [Canberra Industries Inc., 800 Research Parkway, Meriden, CT 06450 (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wide-range plutonium isotopic analysis with CDTE detector  

SciTech Connect

Nondestructive analysis (NDA) techniques applied to bulk nuclear materials (NM) are important for nuclear safeguards and material control because of timeliness, cost-effectiveness and containment integrity. The common NDA techniques, calorimetry and neutron coincidence counting, require knowledge of the isotopic composition of the material quantitative interpretation of these measurements. Gamma-ray spectroscopy with high-resolution detectors is a well-developed NDA technique for isotopics. The use of intrinsic germanium detectors cooled to cryogenic temperatures for isotopic measurements is sometimes difficult or even impossible because of severe access limitations with the sensitive, heavy detectors. Highly portable isotopics measurements are needed for in-situ verification of bulk NM quantities or, in many cases, for measurements of holdup quantities. This paper summarizes the gamma-ray measurements with a new, portable CdTe detector. It also presents the detailed results of the wide-range isotopic analysis of plutonium with FRAM v4, the first results of this kind for a non-cryogenic detector.

Vo, Duc T.; Russo, P. A. (Phyllis A.)

2001-01-01T23:59:59.000Z

402

Fire hazard analysis for Plutonium Finishing Plant complex  

SciTech Connect

A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

MCKINNIS, D.L.

1999-02-23T23:59:59.000Z

403

Land surface cleanup of plutonium at the Nevada Test Site  

SciTech Connect

The Nevada Test Site (NTS) covers approximately 3300 km{sup 2} of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model Tr-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. 5 refs., 5 figs.

Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

1991-01-01T23:59:59.000Z

404

Calculation note for Consequences of a fire in the sorting and repackaging glovebox in room 636 of bldg 2736-ZB Plutonium Finishing Plant  

SciTech Connect

This Calculation Note provides a conservative estimate of the grams of plutonium released from Building 2736-ZB of the Plutonium Finishing Plant as a result of a fire within Glovebox 636, without consideration of mitigation.

JOHNSON, L.E.

1999-08-31T23:59:59.000Z

405

Calculation of Doses Due to Accidentally Released Plutonium From An LMFBR  

SciTech Connect

Experimental data and analytical models that should be considered in assessing the transport properties of plutonium aerosols following a hypothetical reactor accident have been examined. Behaviors of released airborne materials within the reactor containment systems, as well as in the atmosphere near the reactor site boundaries, have been semiquantitatively predicted from experimental data and analytical models. The fundamental chemistry of plutonium as it may be applied in biological systems has been used to prepare models related to the intake and metabolism of plutonium dioxide, the fuel material of interest. Attempts have been made to calculate the possible doses from plutonium aerosols for a typical analyzed release in order to evaluate the magnitude of the internal exposure hazards that might exist in the vicinity of the reactor after a hypothetical LMFBR (Liquid-Metal Fast Breeder Reactor) accident. Intake of plutonium (using data for {sup 239}Pu as an example) and its distribution in the body were treated parametrically without regard to the details of transport pathways in the environment. To the extent possible, dose-response data and models have been reviewed, and an assessment of their adequacy has been made so that recommended or preferred practices could be developed.

Fish, B.R.

2001-08-07T23:59:59.000Z

406

Cost-benefit analysis of unfired PuO/sub 2/ pellets as an alternative plutonium shipping form  

SciTech Connect

A limited cost-benefit evaluation was performed concerning use of unfired plutonium dioxide pellets as a shipping form. Two specific processing operations are required for this use, one to form the pellet (pelletizing) and a second to reconstitute an acceptable powder upon receipt (reconstitution). The direct costs for the pelletizing operation are approximately $208,000 for equipment and its installation and $122 per kg of plutonium processed (based upon a 20-kg plutonium/day facility). The direct costs for reconstitution are approximately $90,000 for equipment and its installation and $81 per kg of plutonium processed. The indirect cost considered was personnel exposure from these operations. Whole body exposures ranged from 0.04 man-rem per 100 kg of low-exposure plutonium reconstituted to 0.9 man-rem per 100 kg of average-exposure plutonium pelletized. Hand exposures were much higher - 17 man-rem power 100 kg of low-exposure plutonium reconstituted to 67 man-rem per 100 kg of average plutonium pelletized. The principal benefit is a potential twentyfold reduction of airborne release in the event of an accident. An experimental plan is outlined to fill the data gaps uncovered during this study in the areas of pelletizing and reconstitution process parameters and pellet response behavior to accident-generated stresses. A study to enhance the containment potential of the inner packaging used during shipment is also outlined.

Mishima, J.; Brackenbush, L.W.; Libby, R.A.; Soldat, K.L.; White, G.D.

1983-10-01T23:59:59.000Z

407

Reaction of plutonium with water kinetic and equilibrium behavior of binary and ternary phases in the Pu + O + H system  

SciTech Connect

The kinetic and equilibrium behavior of the Pu + O + H system has been studied by measuring the production of hydrogen gas formed by a sequence of hydrolysis reactions. The kinetic dependence of the Pu + H/sub 2/O reaction on salt concentration and temperature has been defined. The metal is quantitatively converted to a fine black powder which has been identified as plutonium monoxide monohydride, PuOH. Other hydrolysis products formed in aqueous media include a second oxide hydride, Pu/sub 7/O/sub 9/H/sub 3/, and the oxides Pu/sub 2/O/sub 3/, Pu/sub 7/O/sub 12/, Pu/sub 9/O/sub 16/, Pu/sub 10/O/sub 18/, Pu/sub 12/O/sub 22/, and PuO/sub 2/. Thermal decomposition products of PuOH include Pu/sub 2/O/sub 2/H and PuO. A tentative phase diagram for Pu + O + H is presented and structural relationships of the oxide hydrides and oxides are discussed. 10 figures, 5 tables.

Haschke, J.M.; Hodges, A.E. III; Bixby, G.E.; Lucas, R.L.

1983-02-03T23:59:59.000Z

408

Plutonium Oxidation and Subsequent Reduction by Mn (IV) Minerals  

SciTech Connect

Plutonium sorbed to rock tuff was preferentially associated with manganese oxides. On tuff and synthetic pyrolusite (Mn{sup IV}O{sub 2}), Pu(IV) or Pu(V) was initially oxidized, but over time Pu(IV) became the predominant oxidation state of sorbed Pu. Reduction of Pu(V/VI), even on non-oxidizing surfaces, is proposed to result from a lower Gibbs free energy of the hydrolyzed Pu(IV) surface species versus that of the Pu(V) or Pu(VI) surface species. This work suggests that despite initial oxidation of sorbed Pu by oxidizing surfaces to more soluble forms, the less mobile form of Pu, Pu(IV), will dominate Pu solid phase speciation during long term geologic storage. The safe design of a radioactive waste or spent nuclear fuel geologic repository requires a risk assessment of radionuclides that may potentially be released into the surrounding environment. Geochemical knowledge of the radionuclide and the surrounding environment is required for predicting subsurface fate and transport. Although difficult even in simple systems, this task grows increasingly complicated for constituents, like Pu, that exhibit complex environmental chemistries. The environmental behavior of Pu can be influenced by complexation, precipitation, adsorption, colloid formation, and oxidation/reduction (redox) reactions (1-3). To predict the environmental mobility of Pu, the most important of these factors is Pu oxidation state. This is because Pu(IV) is generally 2 to 3 orders of magnitude less mobile than Pu(V) in most environments (4). Further complicating matters, Pu commonly exists simultaneously in several oxidation states (5, 6). Choppin (7) reported Pu may exist as Pu(IV), Pu(V), or Pu(VI) oxic natural groundwaters. It is generally accepted that plutonium associated with suspended particulate matter is predominantly Pu(IV) (8-10), whereas Pu in the aqueous phase is predominantly Pu(V) (2, 11-13). The influence of the character of Mn-containing minerals expected to be found in subsurface repository environments on Pu oxidation state distributions has been the subject of much recent research. Kenney-Kennicutt and Morse (14), Duff et al. (15), and Morgenstern and Choppin (16) observed oxidation of Pu facilitated by Mn(IV)-bearing minerals. Conversely, Shaughnessy et al. (17) used X-ray Absorption near-edge spectroscopy (XANES) to show reduction of Pu(VI) by hausmannite (Mn{sup II}Mn{sub 2}{sup III}O{sub 4}) and manganite ({gamma}-Mn{sup III}OOH) and Kersting et al., (18) observed reduction of Pu(VI) by pyrolusite (Mn{sup IV}O{sub 2}). In this paper, we attempt to reconcile the apparently conflicting datasets by showing that Mn-bearing minerals can indeed oxidize Pu, however, if the oxidized species remains on the solid phase, the oxidation step competes with the formation of Pu(IV) that becomes the predominant solid phase Pu species with time. The experimental approach we took was to conduct longer term (approximately two years later) oxidation state analyses on the Pu sorbed to Yucca Mountain tuff (initial analysis reported by Duff et al., (15)) and measure the time-dependant changes in the oxidation state distribution of Pu in the presence of the Mn mineral pyrolusite.

KAPLAN, DANIEL

2005-09-13T23:59:59.000Z

409

Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revieir of the Plutonium Revieir of the Plutonium Preparation Project at Savannah River Site October 2008 Dr. David S. Kosson, Vanderbilt University Dr. David R. Gallay, Logistics Management Institute Dr. R. Bruce Mathews, Consultant Mr. David Nulton, National Nuclear Security Administration (ret.) Dr. Kenneth Okafor, South Carolina State University Dr. Steven Krahn, U. S. Department of Energy I I External Technical Review of the Plutonium Preparation Project October 2008 - I Acknowledgements The Review Team thanks Ms. Michelle Ewart, Savantiah River Site, and Mr. Ricky Bell, for their exceptional support during this review. Ms. Ewart was the lead DOE representative responsible for organizing reviews held on-site by the Review Team. Mr. Theodore Venetz (Fluor Hanford Company) served as an observer to this review. The

410

Plutonium Certified Reference Materials Price List | U.S. DOE Office of  

Office of Science (SC) Website

Plutonium Plutonium Certified Reference Materials Price List New Brunswick Laboratory (NBL) NBL Home About Programs Certified Reference Materials (CRMs) Prices and Certificates Ordering Information Training Categorical Exclusion Determinations News Contact Information New Brunswick Laboratory U.S. Department of Energy Building 350 9800 South Cass Avenue Argonne, IL 60439-4899 P: (630) 252-2442 (NBL) P: (630) 252-2767 (CRM sales) F: (630) 252-6256 E: usdoe.nbl@ch.doe.gov Prices and Certificates Plutonium Certified Reference Materials Price List Print Text Size: A A A RSS Feeds FeedbackShare Page NOTE: These costs reflect pricing for CRMs shipped to U.S. addresses. Prices for CRMs shipped to non-U.S. addresses can be found on the International Price List. (Prices are valid December 1, 2012, through December 31, 2013)

411

EIS-0283-S1: Supplement to the Surplus Plutonium Disposition Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-S1: Supplement to the Surplus Plutonium Disposition 3-S1: Supplement to the Surplus Plutonium Disposition Environmental Impact Statement EIS-0283-S1: Supplement to the Surplus Plutonium Disposition Environmental Impact Statement SUMMARY The Supplement evaluates the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD November 5, 1999 EIS-0236-S1: DOE Notice of Availability of the Draft Environmental Impact Statement National Ignition Facility Draft Environmental Impact Statement to the Stockpile Stewardship and Management November 5, 1999 EIS-0236-S1: Notice of Availability for the Draft Supplemental Programmatic

412

Laboratory directed research and development on disposal of plutonium recovered from weapons. FY1994 final report  

SciTech Connect

This research project was conceived as a multi-year plan to study the use of mixed plutonium oxide-uranium oxide (MOX) fuel in existing nuclear reactors. Four areas of investigation were originally proposed: (1) study reactor physics including evaluation of control rod worth and power distribution during normal operation and transients; (2) evaluate accidents focusing upon the reduced control rod worth and reduced physical properties of PuO{sub 2}; (3) assess the safeguards required during fabrication and use of plutonium bearing fuel assemblies; and (4) study public acceptance issues associated with using material recovered from weapons to fuel a nuclear reactor. First year accomplishments are described. Appendices contain 2 reports entitled: development and validation of advanced computational capability for MOX fueled ALWR assembly designs; and long-term criticality safety concerns associated with weapons plutonium disposition.

Pitts, J.H.; Choi, J.S.

1994-11-14T23:59:59.000Z

413

Testing the plutonium isotopic analysis code FRAM with various CdTe detectors.  

SciTech Connect

The isotopic analysis code Fixed-energy Response-function Analysis with Multiple efficiency (FRAM)1,2 has been proven to successfully analyze plutonium spectra taken with a portable CdTe detector with Peltier cooling, the first results of this kind for a noncryogenic detector.3 These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than Ge spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. This paper describes further testing of FRAM with two CdTe detectors of different sizes and resolutions using different analog and digital, portable multichannel analyzers (MCAs).

Vo, Duc T.; Russo, P. A. (Phyllis A.)

2002-01-01T23:59:59.000Z

414

JOINT UNITED STATES/IAEA PROPOSED APPROACH FOR SAFEGUARDS DURING PLUTONIUM STABILIZATION, PACKAGING, AND SHIPMENT  

SciTech Connect

For safety reasons, the U.S. Department of Energy (DOE) is preparing to stabilize and package plutonium oxide currently subject to International Atomic Energy Agency safeguards at the Rocky Flats Environmental Technology Site (RFETS) beginning in the year 2001. The Hanford Site will also stabilize and package plutonium materials under IAEA safeguards. The U.S. and the IAEA began consultations in late 1996 to develop an approach to the application of safeguards during stabilization and packaging. With the plans to ship RFETS plutonium to Savannah River for interim storage prior to final disposition, this work has been extended to include safeguards during shipment. This paper will discuss the elements of a joint U.S./IAEA proposal for this task.

L. KWEI; B. SMITH; ET AL

2001-02-01T23:59:59.000Z

415

Standard practice for The separation of americium from plutonium by ion exchange  

E-Print Network (OSTI)

1.1 This practice describes the use of an ion exchange technique to separate plutonium from solutions containing low concentrations of americium prior to measurement of the 241Am by gamma counting. 1.2 This practice covers the removal of plutonium, but not all the other radioactive isotopes that may interfere in the determination of 241Am. 1.3 This practice can be used when 241Am is to be determined in samples in which the plutonium is in the form of metal, oxide, or other solid provided that the solid is appropriately sampled and dissolved (See Test Methods C758, C759, and C1168). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2001-01-01T23:59:59.000Z

416

Guide of good practices for occupational radiological protection in plutonium facilities  

SciTech Connect

This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TS replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.

NONE

1998-06-01T23:59:59.000Z

417

Assessment of plutonium storage safety issues at Department of Energy facilities  

SciTech Connect

The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ``Cold War`` era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations.

Not Available

1994-01-01T23:59:59.000Z

418

A Study of the Stability and Characterization Plutonium Dioxide and Chemical Characterization [of] Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash  

SciTech Connect

In the presentation ''A Study of the Stability and Characterization of Plutonium Dioxide'', the authors discuss their recent work on actinide stabilities and characterization, in particular, plutonium dioxide PuO{sub 2}. Earlier studies have indicated that PuO{sub 2} has the fluorite structure of CaF{sub 2} and typical oxide semiconductor properties. However, detailed results on the bulk electronic structure of this important actinide oxide have not been available. The authors have used all-electron, full potential linear combinations Gaussian type orbitals fitting function (LCGTO-FF) method to study PuO{sub 2}. The LCGTO-FF technique characterized by its use of three independent GTO basis sets to expand the orbitals, charge density, and exchange-correlation integral kernels. Results will be presented on zero pressure using both the Hedin-Lundquist local density approximation (LDA) model or the Perdew-Wang generalized gradient approximation (GGA) model. Possibilities of different characterizations of PuO{sub 2} will be explored. The paper ''Chemical Characterization Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash'' describes the results of a comprehensive study of the chemical characteristics of virgin, calcined and fluorinated incinerator ash produced at the Rocky Flats Plant and at the Los Alamos National Laboratory prior to 1988. The Rocky Flats and Los Alamos virgin, calcined, and fluorinated ashes were also dissolved using standard nitrate dissolution chemistry. Corresponding chemical evaluations were preformed on the resultant ash heel and the results compared with those of the virgin ash. Fluorination studies using FT spectroscopy as a diagnostic tool were also performed to evaluate the chemistry of phosphorus, sulfur, carbon, and silicon containing species in the ash. The distribution of plutonium and other chemical elements with the virgin ash, ash heel, fluorinated ash, and fluorinated ash heel particulates were studied in detail using microprobe analysis. Some of the more interesting results of these investigations are presented.

Ray, A.K.; Boettger, J.C.; Behrens, Robert G.

1999-11-29T23:59:59.000Z

419

NONDESTRUCTIVE EXAMINATION OF PLUTONIUM-BEARING MATERIAL CONTAINERS  

SciTech Connect

The first nondestructive examination (NDE) of 3013-type containers as part of the Department of Energy's (DOE's) Integrated Surveillance Program (ISP) was performed in February, 2005. Since that date 280 NDE surveillances on 255 containers have been conducted. These containers were packaged with plutonium-bearing materials at multiple DOE sites. The NDE surveillances were conducted at Hanford, Lawrence Livermore National Laboratory (LLNL), and Savannah River Site (SRS). These NDEs consisted of visual inspection, mass verification, radiological surveys, prompt gamma analysis, and radiography. The primary purpose of performing NDE surveillances is to determine if there has been a significant pressure buildup inside the inner 3013 container. This is done by measuring the lid deflection of the inner 3013 container using radiography images. These lid deflection measurements are converted to pressure measurements to determine if a container has a pressure of a 100 psig or greater. Making this determination is required by Surveillance and Monitoring Plan (S&MP). All 3013 containers are designed to withstand at least 699 psig as specified by DOE-STD-3013. To date, all containers evaluated have pressures under 50 psig. In addition, the radiography is useful in evaluating the contents of the 3013 container as well as determining the condition of the walls of the inner 3013 container and the convenience containers. The radiography has shown no signs of degradation of any container, but has revealed two packaging anomalies. Quantitative pressure measurements based on lid deflections, which give more information than the 'less than or greater than 100 psig' (pass/fail) data are also available for many containers. Statistical analyses of the pass/fail data combined with analysis of the quantitative data show that it is extremely unlikely that any container in the population of 3013 containers considered in this study (e.g., containers packaged according to the DOE-STD-3013 by 2006) would exceed a pressure of 100 psig. At this time, Los Alamos National Laboratory (LANL) and LLNL continue to package containers. Future NDE surveillances will address containers packaged after 2006 for both sites as well as containers requested by the Materials Identification Surveillance (MIS) working group based on knowledge gained from shelf-life study and surveillance results.

Yerger, L.; Mcclard, J.; Traver, L.; Grim, T.

2010-02-01T23:59:59.000Z

420

Optimization and implementation study of plutonium disposition using existing CANDU Reactors. Final report  

SciTech Connect

Since early 1994, the Department of Energy has been sponsoring studies aimed at evaluating the merits of disposing of surplus US weapons plutonium as Mixed Oxide (MOX) fuel in existing commercial Canadian Pressurized Heavy Water reactors, known as CANDU`s. The first report, submitted to DOE in July, 1994 (the 1994 Executive Summary is attached), identified practical and safe options for the consumption of 50 to 100 tons of plutonium in 25 years in some of the existing CANDU reactors operating the Bruce A generating station, on Lake Huron, about 300 km north east of Detroit. By designing the fuel and nuclear performance to operate within existing experience and operating/performance envelope, and by utilizing existing fuel fabrication and transportation facilities and methods, a low cost, low risk method for long term plutonium disposition was developed. In December, 1995, in response to evolving Mission Requirements, the DOE requested a further study of the CANDU option with emphasis on more rapid disposition of the plutonium, and retaining the early start and low risk features of the earlier work. This report is the result of that additional work.

NONE

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1--July 31, 1998  

SciTech Connect

Progress is reported on research projects related to the following: Electronic resource library; Environment, safety, and health; Communication, education, training, and community involvement; Nuclear and other materials; and Reporting, evaluation, monitoring, and administration. Technical studies investigate remedial action of high explosives-contaminated lands, radioactive waste management, nondestructive assay methods, and plutonium processing, handling, and storage.

NONE

1998-09-01T23:59:59.000Z

422

Characterization of wound monitoring systems used to quantify and locate plutonium contamination  

E-Print Network (OSTI)

When an accident involving the possibility of a plutonium contaminated wound occurs, the contamination is often quantified using sodium iodide (NaI(Tl)) and high purity germanium (HPGe) detection systems. The NaI(Tl) system is used to quantify...

Dimmerling, Paul James

2009-05-15T23:59:59.000Z

423

Ris-R-1321(EN) On Weapons Plutonium in the Arctic  

E-Print Network (OSTI)

and transfer of plutonium to benthic biota is low. Paper II, concludes that the resuspension of accident debris.4 Resuspension on land 33 3.5 Biota 34 4 Concluding Remarks and Future Research 34 Paper I 43 Paper II 63 Paper

424

Soil surface stabilization using an in situ plutonium coating techniuqe at the Nevada Test Site  

SciTech Connect

The Hazardous Waste Remedial Actions Program (HAZWRAP), in collaboration with the University of Nevada at Reno (UNR), has developed and is investigating an in situ plutonium treatment for soils at the Nevada Test Site (NTS). The concept, conceived by Dr. T. Tamura and refined at HAZWRAP, was developed during the Nevada Applied Ecology Program investigation. In analyzing for plutonium in soils, it was noted that the alpha emanation of plutonium was greatly attenuated if traces of iron or manganese oxides were present in the final electroplating stage. The technique would reduce resuspension of alpha particles into the air by coating the contaminants in soils in situ with an environmentally compatible, durable, and nontoxic material. The coating materials (calcium hydroxide, ferrous sulfate) reduce resuspension by providing a cementitious barrier against radiation penetration while retaining soil porosity. This technique not only stabilizes plutonium-contaminated soils, but also provides an additional protection from worker exposure to radiation during remediation activities. Additionally, the coating would decrease the water solubility of the contaminant and, thus, reduce its migration through soil and uptake by plants.

Lew, J.; Snipes, R. [Environmental Management and Enrichment Facilities, Oak Ridge, TN (United States); Tamura, T.

1996-12-31T23:59:59.000Z

425

Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream  

SciTech Connect

Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

1998-03-01T23:59:59.000Z

426

Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams  

SciTech Connect

Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

1998-07-01T23:59:59.000Z

427

National Low-Level Waste Management Program Radionuclide Report Series, Volume 17: Plutonium-239  

SciTech Connect

This report, Volume 17 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of plutonium-239 (Pu-239). This report also discusses waste types and forms in which Pu-239 can be found, waste and disposal information on Pu-239, and Pu-239 behavior in the environment and in the human body.

J. P. Adams; M. L. Carboneau

1999-03-01T23:59:59.000Z

428

A review of research programs related to the behavior of plutonium in the environment  

SciTech Connect

Plutonium-fueled radioisotopic heat sources find application in a spectrum of space, terrestrial, and underseas applications to generate electrical power by thermoelectric or dynamic-cycle conversion. Such systems under postulated accident conditions could release radioactivity into the environment resulting in risks to the general population. The released radioactivity could be dispersed into various environmental media, such as air, soil, and water and interact with people through various exposure pathways leading to inhalation, ingestion, and external radiological doses and associated health effects. The authors developed short-term exposure (RISK II) and long-term exposure (RISK III) models for use in safety risk assessments of space missions utilizing plutonium-fueled electric power systems. To effectively use these models in risk assessments, representative input values must be selected for a spectrum of environmental transfer parameters that characterize the behavior of plutonium in the environment. The selection of appropriate transfer parameters to be used in a given analysis will depend on the accident scenarios to be modeled and the terrestrial and aquatic environments to be encountered. The authors reviewed the availability of plutonium in the environment. This report summarizes the research programs presently being conducted at six Department of Energy Laboratories and makes recommendations on areas where further research is needed to fill gaps in the data necessary for risk assessments

Bartram, Bart W.; Wilkinson, Martha J.

1983-06-15T23:59:59.000Z

429

Solution Speciation of Plutonium and Americium at an Australian Legacy Radioactive Waste Disposal Site  

Science Journals Connector (OSTI)

During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. ... It should also be taken into account that, at some sites, such as the Maxey Flats disposal site,(19) codisposed organic contaminants have been implicated in actinide mobilization. ...

Atsushi Ikeda-Ohno; Jennifer J. Harrison; Sangeeth Thiruvoth; Kerry Wilsher; Henri K. Y. Wong; Mathew P. Johansen; T. David Waite; Timothy E. Payne

2014-08-15T23:59:59.000Z

430

Vitrification of plutonium at Rocky Flats the argument for a pilot plant  

SciTech Connect

Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

Moore, L. [Rocky Mountain Peace Center, Boulder, CO (United States)

1996-05-01T23:59:59.000Z

431

Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents  

SciTech Connect

This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl{sub 4}) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl{sub 4}. Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet.

Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

1998-09-30T23:59:59.000Z

432

Plutonium assay for safeguards purposes: material heterogeneity and the application of calorimetry  

SciTech Connect

A variety of nuclear materials measurement techniques have been employed by the facility operator (WHC) and the IAEA during the two physical inventory verifications (PIVs) and at other items to determine and verify the quantities of plutonium present in the safeguarded inventory. Results of these analyses were statistically evaluated and are presented in this report.

Welsh, T.I., Westinghouse Hanford

1996-07-01T23:59:59.000Z

433

Reactions of plutonium and uranium with water: Kinetics and potential hazards  

SciTech Connect

The chemistry and kinetics of reactions between water and the metals and hydrides of plutonium and uranium are described in an effort to consolidate information for assessing potential hazards associated with handling and storage. New experimental results and data from literature sources are presented. Kinetic dependencies on pH, salt concentration, temperature and other parameters are reviewed. Corrosion reactions of the metals in near-neutral solutions produce a fine hydridic powder plus hydrogen. The corrosion rate for plutonium in sea water is a thousand-fold faster than for the metal in distilled water and more than a thousand-fold faster than for uranium in sea water. Reaction rates for immersed hydrides of plutonium and uranium are comparable and slower than the corrosion rates for the respective metals. However, uranium trihydride is reported to react violently if a quantity greater than twenty-five grams is rapidly immersed in water. The possibility of a similar autothermic reaction for large quantities of plutonium hydride cannot be excluded. In addition to producing hydrogen, corrosion reactions convert the massive metals into material forms that are readily suspended in water and that are aerosolizable and potentially pyrophoric when dry. Potential hazards associated with criticality, environmental dispersal, spontaneous ignition and explosive gas mixtures are outlined.

Haschke, J.M.

1995-12-01T23:59:59.000Z

434

Radioactive Air Emission Notice of Construction for (NOC) Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling  

SciTech Connect

The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 IO) lists the requirements that must be addressed. Additionally, the following description, attachments, and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. An operations support trailer will be installed in the proximity of the 2736-ZB Building. A new exhaust stack will be built and operated at the 2736-ZB Building to handle the effluents associated with the operation of the stabilization and repackaging process. Figures provided are based on preliminary design.

JANSKY, M.T.

2000-03-01T23:59:59.000Z

435

Radioactive Air Emission Notice of Construction (NOC) for Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling  

SciTech Connect

The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Additionally, the following description, attachments, and references are provided to the US Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants''. The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. A new exhaust stack will be built and operated at the 2736-ZB Building to handle the effluents associated with the operation of the stabilization and repackaging process. Figures provided are based on preliminary design. For the activities covered under this NOC, the unabated and abated TEDE to the hypothetical MEI is 1.67 E-03 and 8.34 E-01 millirem per year, respectively.

JANSKY, M.T.

2000-05-01T23:59:59.000Z

436

Rutherford backscattering analysis of gallium implanted 316 stainless steel  

E-Print Network (OSTI)

Experimental Procedure Sample Analysis 3 3 . 9 . 11 HI THEORY. . IH. 1 Backscattering Principles HI. 2 The RBS Spectrum IH. 3 The Surface Energy Approximation . . . HI. 4 Stainless Steel 316. . IV RESULTS AND DISCUSSION . . 13 . 13 15... for the disposition of weapons grade (WG) plutonium (Pu) in the United States: MOX fuel conversion and immobilization. The first option uses nuclear reactors to transmutate WG Pu and the second imbeds the WG Pu in glass logs for deep burial. Due to the large amount...

Ortensi, Javier

2012-06-07T23:59:59.000Z

437

Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel  

SciTech Connect

This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

J. W. Sterbentz; D. L. Chichester

2011-09-01T23:59:59.000Z

438

Environmental consequences of postulated plutonium releases from Exxon Nuclear MOFP, Richland, Washington, as a result of severe natural phenomena  

SciTech Connect

Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Exxon Nuclear Company Mixed Oxide Fabrication Plant (MOFP), Richland, Washington. The severe natural phenomena considered are earthquakes, tornadoes, high straight-line winds, and floods. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values most likely to occur offsite are also given.

Jamison, J.D.; Watson, E.C.

1980-02-01T23:59:59.000Z

439

Intracellular Plutonium: Removal by Liposome-Encapsulated Chelating Agent  

Science Journals Connector (OSTI)

...Fig. 2 (right). Cumulative excretion of Pu in the...deter-mined by dark-field photomicrography, were...N-acetylglucosamine and glucu-ration oil ronate. Thus the control...contact and the 0 0 production of three-dimensional...shown to stimulate the production of cyclic AMP. If cyclic...

Yueh-Erh Rahman; Marcia W. Rosenthal; Elizabeth A. Cerny

1973-04-20T23:59:59.000Z

440

K Basins isolation barriers summary report  

SciTech Connect

The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on final disposition of the material. The Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), also known as the Tri-Party Agreement, commits to the removal of all fuel and sludge from the 105-K Basins by the year 2002.

Strickland, G.C., Westinghouse Hanford

1996-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "weapons-grade plutonium production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Proliferation resistance of small modular reactors fuels  

SciTech Connect

In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

Polidoro, F.; Parozzi, F. [RSE - Ricerca sul Sistema Energetico,Via Rubattino 54, 20134, Milano (Italy); Fassnacht, F.; Kuett, M.; Englert, M. [IANUS, Darmstadt University of Technology, Alexanderstr. 35, D-64283 Darmstadt (Germany)

2013-07-01T23:59:59.000Z

442

Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0  

SciTech Connect

The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15T23:59:59.000Z

443

Analysis of IAEA environmental samples for plutonium and uranium by ICP/MS in support of international safeguards  

Science Journals Connector (OSTI)

A method for the separation and determination of total and isotopic uranium and plutonium by ICP/MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of...

O. T. Farmer III; K. B. Olsen; M. L. Thomas…

2008-05-01T23:59:59.000Z

444

Extraction of Plutonium into 30 Percent Tri-Butyl Phosphate from Nitric Acid Solution Containing Fluoride, Aluminum, and Boron  

SciTech Connect

This work consists of experimental batch extraction data for plutonium into 30 volume-percent tri-butyl phosphate at ambient temperature from such a solution matrix and a model of this data using complexation constants from the literature.

Kyser, E.A.

2000-01-06T23:59:59.000Z

445

Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions  

E-Print Network (OSTI)

1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium nitrate solutions to determine compliance with specifications. 1.2 The analytical procedures appear in the following order: Sections Plutonium by Controlled-Potential Coulometry Plutonium by Amperometric Titration with Iron(II) Plutonium by Diode Array Spectrophotometry Free Acid by Titration in an Oxalate Solution 8 to 15 Free Acid by Iodate Precipitation-Potentiometric Titration Test Method 16 to 22 Uranium by Arsenazo I Spectrophotometric Test Method 23 to 33 Thorium by Thorin Spectrophotometric Test Method 34 to 42 Iron by 1,10-Phenanthroline Spectrophotometric Test Method 43 to 50 Impurities by ICP-AES Chloride by Thiocyanate Spectrophotometric Test Method 51 to 58 Fluoride by Distillation-Spectrophotometric Test Method 59 to 66 Sulfate by Barium Sulfate Turbidimetric Test Method 67 to 74 Isotopic Composition by Mass Spectrom...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

446

Extraction of uranium(VI) and plutonium(IV) with dihexylbutyramide and dihexylisobutyramide from nitric acid medium  

Science Journals Connector (OSTI)

The extraction of uranium(VI) and plutonium(IV) was carried out with two isomeric monoamides, dihexylbutyramide (DHBA) and dihexylisobutyramide (DHIBA) from nitric acid medium, usingn-dodecane as diluent. The pos...

G. M. Nair; D. R. Prabhu; G. R. Mahajan

1994-08-01T23:59:59.000Z

447

SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program equipment in the Savannah River Technology Center would need to be removed to accommodate pellet fabrication. This work would also be in a contaminated area.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

448

A summary of volatile impurity measurements and gas generation studies on MISSTD-1, a high-purity plutonium oxide produced by low-temperature calcination of plutonium oxalate  

SciTech Connect

Plutonium dioxide of high specific surface area was subjected to long-term tests of gas generation in sealed containers. The material preparation and the storage conditions were outside the bounds of acceptable parameters defined by DOE-STD-3013-2012 in that the material was stabilized to a lower temperature than required and had higher moisture content than allowed. The data provide useful information for better defining the bounding conditions for safe storage. Net increases in internal pressure and transient increases in H{sub 2} and O{sub 2} were observed, but were well within the bounds of gas compositions previously shown to not threaten integrity of 3013 containers.

Berg, John M. [Los Alamos National Laboratory; Narlesky, Joshua E. [Los Alamos National Laboratory; Veirs, Douglas K. [Los Alamos National Laboratory

2012-06-08T23:59:59.000Z

449

Kinetics of the reaction between plutonium dioxide and water from 25?°C to 350?°C: Formation and properties of the phases PuO 2+ X  

Science Journals Connector (OSTI)

In the areas of plutonium waste disposition and storage and medium to long-term retrievable Pu materials storage the issue of water and other small molecule interactions with pure or impure Pu oxide materials and metal has become a major concern. The interaction of PuO 2 with water was investigated from 100?°C to 350?°C using a suite of experimental techniques which include microbalance and pressure-volume-temperature (PVT) methods thermal gravimetric analysis (TGA) mass spectrometry (MS) x-ray and neutron diffraction. Reaction rates and oxide compositions were determined from measured increases in sample mass or pressure over time (t). Gaseous and solid products were analyzed using MS and diffraction methods respectively.

L. Morales; T. Allen; J. Haschke

2000-01-01T23:59:59.000Z

450

NIDC: Online Catalog of Isotope Products | Request a New Product  

NLE Websites -- All DOE Office Websites (Extended Search)

Request a New Product Request a New Product Step 1 - Enter the new product's criteria below. Element Name Actinium Aluminum Americium Antimony Argon Arsenic Astatine Barium Berkelium Beryllium Bismuth Bohrium Boron Bromine Cadmium Caesium Calcium Californium Carbon Cerium Chlorine Chromium Cobalt Copernicium Copper Curium Darmstadtium Dubnium Dysprosium Einsteinium Erbium Europium Fermium Fluorine Francium Gadolinium Gallium Germanium Gold Hafnium Hassium Helium Holmium Hydrogen Indium Iodine Iridium Iron Krypton Lanthanum Lawrencium Lead Lithium Lutetium Magnesium Manganese Meitnerium Mendelevium Mercury Molybdenum Neodymium Neon Neptunium Nickel Niobium Nitrogen Nobelium Osmium Oxygen Palladium Phosphorus Platinum Plutonium Polonium Potassium Praseodymium Promethium Protactinium Radium Radon Rhenium Rhodium Roentgenium Rubidium Ruthenium Rutherfordium Samarium Scandium Seaborgium Selenium Silicon Silver Sodium Strontium Sulfur Tantalum Technetium Tellurium Terbium Thallium Thorium Thulium Tin Titanium Tungsten Ununhexium Ununoctium Ununpentium Ununquadium Ununseptium Ununtrium Uranium Vanadium Xenon Ytterbium Yttrium Zinc Zirconium

451

Separation of plutonium and americium by low-temperature fluorination  

SciTech Connect

The authors have demonstrated separation of Pu and in-grown Am using the gaseous reagent dioxygen difluoride. Aged PuF{sub 4} was fluorinated at room temperature to generate PuF{sub 6} gas, which was trapped separately and reduced to PuF{sub 4}. The reaction product contained very little Am. Unreacted solid had elevated concentrations of Am that were consistent with a material balance. Use of a gaseous reagent and product enabled remote handling during reaction and purification. This result demonstrated a simple and minimal waste alternative that may have application to a number of actinide purification problems.

Mills, T.R.; Reese, L.W.

1993-10-01T23:59:59.000Z

452

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental Impact Statement (11/1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 of 5 3 of 5 Volume II Final Environmental Impact Statement November 1999 DOE/EIS-0283 Surplus Plutonium Disposition Final Environmental Impact Statement Volume II United States Department of Energy Office of Fissile Materials Disposition November 1999 Cover Sheet Responsible Agency: United States Department of Energy (DOE) Title: Surplus Plutonium Disposition Final Environmental Impact Statement (SPD EIS) (DOE/EIS-0283) Locations of Candidate Sites: California, Idaho, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia, and Washington Contacts: For further information on the SPD Final EIS contact: For information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Ms. Carol Borgstrom, Director Office of Fissile Materials Disposition

453

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental Impact Statement (11/1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 of 5 2 of 5 Volume I - Part B Final Environmental Impact Statement November 1999 DOE/EIS-0283 Surplus Plutonium Disposition Final Environmental Impact Statement Volume I - Part B United States Department of Energy Office of Fissile Materials Disposition November 1999 Cover Sheet Responsible Agency: United States Department of Energy (DOE) Title: Surplus Plutonium Disposition Final Environmental Impact Statement (SPD EIS) (DOE/EIS-0283) Locations of Candidate Sites: California, Idaho, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia, and Washington Contacts: For further information on the SPD Final EIS contact: For information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Ms. Carol Borgstrom, Director

454

Guide of Good Practices for Occupational Radiological Protection in Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 December 2006 DOE STANDARD GUIDE OF GOOD PRACTICES FOR OCCUPATIONAL RADIOLOGICAL PROTECTION IN PLUTONIUM FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1128-98 iii Change Notice 1: DOE-STD-1128-98, Guide of Good Practices for Occupational Radiological Protection in Plutonium Facilities

455

DOE-HDBK-1145-2001; Radiological Safety Training for Plutonium Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE SENSITIVE DOE-HDBK-1145-2001 August 2001 DOE STANDARD Radiological Safety Training for Plutonium Facilities U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Radiological Safety Training for Plutonium Facilities DOE-HDBK-1145-2001 Program Management Guide Foreword This Handbook describes an implementation process for training as recommended in

456

Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - Rev. 0 Report Number: HIAR LLNL-2013-02-27 Site: Lawrence Livermore National Laboratory (LLNL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility Date of Activity: 02/27/2013 Report Preparer: Thomas Rogers Activity Description/Purpose: The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational drill at the Plutonium Facility in Building 332 (B332). LSO and LLNS desired HS-45's participation to help

457

Criticality Safety Information Meeting for the Hanford Plutonium Finihsing Plant, May 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-05-14 2-05-14 Site: DOE-Richland Operations Office Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Criticality Safety Information Meeting for the Plutonium Finishing Plant Dates of Activity : May 14, 2012 Report Preparer: Ivon Fergus Activity Description/Purpose: The U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted a criticality safety information meeting with Hanford site criticality safety engineers on May 14, 2012, to discuss criticality safety issues and experiences principally with respect to the Decontamination and Decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP). These discussions also included aspects of Non-

458

FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL  

SciTech Connect

The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

2009-03-10T23:59:59.000Z

459

Characterization of past and present solid waste streams from the plutonium finishing plant  

SciTech Connect

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsb