Lincoln, Don
2015-06-24
In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.
WEAK GRAVITATIONAL LENSING AS A PROBE OF PHYSICAL PROPERTIES OF SUBSTRUCTURES IN DARK MATTER HALOS
Shirasaki, Masato
2015-02-01
We propose a novel method to select satellite galaxies in outer regions of galaxy groups or clusters using weak gravitational lensing. The method is based on the theoretical expectation that the tangential shear pattern around satellite galaxies would appear with negative values at an offset distance from the center of the main halo. We can thus locate the satellite galaxies statistically with an offset distance of several lensing smoothing scales by using the standard reconstruction of surface mass density maps from weak lensing observation. We test the idea using high-resolution cosmological simulations. We show that subhalos separated from the center of the host halo are successfully located even without assuming the position of the center. For a number of such subhalos, the characteristic mass and offset length can be also estimated on a statistical basis. We perform a Fisher analysis to show how well upcoming weak lensing surveys can constrain the mass density profile of satellite galaxies. In the case of the Large Synoptic Survey Telescope with a sky coverage of 20,000deg{sup 2}, the mass of the member galaxies in the outer region of galaxy clusters can be constrained with an accuracy of ?0.1 dex for galaxy clusters with mass 10{sup 14} h {sup 1} M {sub ?} at z = 0.15. Finally we explore the detectability of tidal stripping features for subhalos having a wide range of masses of 10{sup 11}-10{sup 13} h {sup 1} M {sub ?}.
Taylor, James E.; Massey, Richard J.; Leauthaud, Alexie; Tanaka, Masayuki; George, Matthew R.; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Kitching, Thomas D.; Capak, Peter; Finoguenov, Alexis; Ilbert, Olivier; Kneib, Jean-Paul; Jullo, Eric; Koekemoer, Anton M.
2012-04-20
Gravitational lensing can provide pure geometric tests of the structure of spacetime, for instance by determining empirically the angular diameter distance-redshift relation. This geometric test has been demonstrated several times using massive clusters which produce a large lensing signal. In this case, matter at a single redshift dominates the lensing signal, so the analysis is straightforward. It is less clear how weaker signals from multiple sources at different redshifts can be stacked to demonstrate the geometric dependence. We introduce a simple measure of relative shear which for flat cosmologies separates the effect of lens and source positions into multiplicative terms, allowing signals from many different source-lens pairs to be combined. Applying this technique to a sample of groups and low-mass clusters in the COSMOS survey, we detect a clear variation of shear with distance behind the lens. This represents the first detection of the geometric effect using weak lensing by multiple, low-mass groups. The variation of distance with redshift is measured with sufficient precision to constrain the equation of state of the universe under the assumption of flatness, equivalent to a detection of a dark energy component {Omega}{sub X} at greater than 99% confidence for an equation-of-state parameter -2.5 {<=} w {<=} -0.1. For the case w = -1, we find a value for the cosmological constant density parameter {Omega}{sub {Lambda}} = 0.85{sup +0.044}{sub -}0{sub .19} (68% CL) and detect cosmic acceleration (q{sub 0} < 0) at the 98% CL. We consider the systematic uncertainties associated with this technique and discuss the prospects for applying it in forthcoming weak-lensing surveys.
Gravitational lensing in plasmic medium
Bisnovatyi-Kogan, G. S. Tsupko, O. Yu.
2015-07-15
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Investigations of Galaxy Clusters Using Gravitational Lensing
Wiesner, Matthew P.
2014-08-01
In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.
Tomography and weak lensing statistics
Munshi, Dipak; Coles, Peter; Kilbinger, Martin E-mail: peter.coles@astro.cf.ac.uk
2014-04-01
We provide generic predictions for the lower order cumulants of weak lensing maps, and their correlators for tomographic bins as well as in three dimensions (3D). Using small-angle approximation, we derive the corresponding one- and two-point probability distribution function for the tomographic maps from different bins and for 3D convergence maps. The modelling of weak lensing statistics is obtained by adopting a detailed prescription for the underlying density contrast that involves hierarchal ansatz and lognormal distribution. We study the dependence of our results on cosmological parameters and source distributions corresponding to the realistic surveys such as LSST and DES. We briefly outline how photometric redshift information can be incorporated in our results. We also show how topological properties of convergence maps can be quantified using our results.
Gravitational lensing by rotating naked singularities
Gyulchev, Galin N.; Yazadjiev, Stoytcho S.
2008-10-15
We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.
Lossy compression of weak lensing data
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Vanderveld, R. Ali; Bernstein, Gary M.; Stoughton, Chris; Rhodes, Jason; Massey, Richard; Dobke, Benjamin M.
2011-07-12
Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is by construction less than the Poisson error from photon shot noise. For simulated space-based images (without cosmicmore » rays) digitized to the typical 16 bits per pixel, application of the lossy compression followed by image-wise lossless compression yields images with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m {approx} -4 x 10-4. This bias is small when compared to the many other issues that precision weak lensing surveys must confront, and furthermore we expect it to be reduced further with better calibration of ellipticity measurement methods.« less
Atmospheric Dispersion Effects in Weak Lensing Measurements
Plazas, Andrés Alejandro; Bernstein, Gary
2012-10-01
The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.
Atmospheric Dispersion Effects in Weak Lensing Measurements
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Plazas, Andrés Alejandro; Bernstein, Gary
2012-10-01
The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore » statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less
Magnified Weak Lensing Cross Correlation Tomography
Ulmer, Melville P., Clowe, Douglas I.
2010-11-30
nights on 4-m class telescopes, which gives concrete evidence of strong community support for this project. The WLT technique is based on the dependence of the gravitational shear signal on the angular diameter distances between the observer, the lens, and the lensed galaxy to measure cosmological parameters. By taking the ratio of measured shears of galaxies with different redshifts around the same lens, one obtains a measurement of the ratios of the angular diameter distances involved. Making these observations over a large range of lenses and background galaxy redshifts will measure the history of the expansion rate of the universe. Because this is a purely geometric measurement, it is insensitive to any form of evolution of objects or the necessity to understand the physics in the early universe. Thus, WLT was identified by the Dark Energy Task Force as perhaps the best method to measure the evolution of DE. To date, however, the conjecture of the DETF has not been experimentally verified, but will be by the proposed project. The primary reason for the lack of tomography measurements is that one must have an exceptional data-set to attempt the measurement. One needs both extremely good seeing (or space observations) in order to minimize the point spread function smearing corrections on weak lensing shear measurements and deep, multi-color data, from B to z, to measure reliable photometric redshifts of the background galaxies being lensed (which are typically too faint to obtain spectroscopic redshifts). Because the entire process from multi-drizzling the HST images, and then creating shear maps, to gathering the necessary ground based observations, to generating photo-zs and then carrying out the tomography is a complicated task, until the creation of our team, nobody has taken the time to connect all the levels of expertise necessary to carry out this project based on HST archival data. Our data are being used in 2 Ph.D. theses. Kellen Murphy, at Ohio University, is
Virbhadra, K. S.; Keeton, C. R.
2008-06-15
We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.
Predicting weak lensing statistics from halo mass reconstructions - Final Paper
Everett, Spencer
2015-08-20
As dark matter does not absorb or emit light, its distribution in the universe must be inferred through indirect effects such as the gravitational lensing of distant galaxies. While most sources are only weakly lensed, the systematic alignment of background galaxies around a foreground lens can constrain the mass of the lens which is largely in the form of dark matter. In this paper, I have implemented a framework to reconstruct all of the mass along lines of sight using a best-case dark matter halo model in which the halo mass is known. This framework is then used to make predictions of the weak lensing of 3,240 generated source galaxies through a 324 arcmin² field of the Millennium Simulation. The lensed source ellipticities are characterized by the ellipticity-ellipticity and galaxy-mass correlation functions and compared to the same statistic for the intrinsic and ray-traced ellipticities. In the ellipticity-ellipticity correlation function, I and that the framework systematically under predicts the shear power by an average factor of 2.2 and fails to capture correlation from dark matter structure at scales larger than 1 arcminute. The model predicted galaxy-mass correlation function is in agreement with the ray-traced statistic from scales 0.2 to 0.7 arcminutes, but systematically underpredicts shear power at scales larger than 0.7 arcminutes by an average factor of 1.2. Optimization of the framework code has reduced the mean CPU time per lensing prediction by 70% to 24 ± 5 ms. Physical and computational shortcomings of the framework are discussed, as well as potential improvements for upcoming work.
Origins of weak lensing systematics, and requirements on future...
Office of Scientific and Technical Information (OSTI)
Journal Article: Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation) Citation Details In-Document Search Title:...
What is Gravitational Lensing? (LBNL Summer Lecture Series)
Leauthaud, Alexie; Nakajima, Reiko
2009-07-28
Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
What is Gravitational Lensing? (LBNL Summer Lecture Series)
Leauthaud, Alexie; Nakajima, Reiko [Berkeley Center for Cosmological Physics
2011-04-28
Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
What is Gravitational Lensing?(LBNL Summer Lecture Series)
Alexie, Leauthaud; Reiko, Nakajima [Berkeley Center for Cosmological Physics, Berkely, California, United States
2010-01-08
July 28, 2009 Berkeley Lab summer lecture: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
Combining weak-lensing tomography and spectroscopic redshift surveys
Cai, Yan -Chuan; Bernstein, Gary
2012-05-11
Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the same sky area. For sky coverage f_{sky} = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin^{–2} are measured in the lensing survey and all halos with M > M_{min} = 10^{13}h^{–1}M_{⊙} have spectra. For the gravitational growth parameter parameter γ (f = Ω^{γ}_{m}), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 10^{13.5} (10^{14}) h^{–1} M_{⊙}. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 10^{13} -10^{14} h^{–1} M_{⊙}, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is
Combining weak-lensing tomography and spectroscopic redshift surveys
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Cai, Yan -Chuan; Bernstein, Gary
2012-05-11
Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less
Lossy compression of weak lensing data (Journal Article) | SciTech...
Office of Scientific and Technical Information (OSTI)
Lossy compression of weak lensing data Citation Details In-Document Search Title: Lossy compression of weak lensing data You are accessing a document from the Department of...
Lossy compression of weak lensing data (Journal Article) | SciTech...
Office of Scientific and Technical Information (OSTI)
Journal Article: Lossy compression of weak lensing data Citation Details In-Document Search Title: Lossy compression of weak lensing data Future orbiting observatories will survey...
Kirk, D.; et al.
2015-12-14
We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg$^{2}$ of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of $z_{\\rm med} {\\sim} 0.7$, while the CMB lensing kernel is broad and peaks at $z{\\sim}2$. The resulting cross-correlation is maximally sensitive to mass fluctuations at $z{\\sim}0.44$. Assuming the Planck 2015 best-fit cosmology, the amplitude of the DES$\\times$SPT cross-power is found to be $A = 0.88 \\pm 0.30$ and that from DES$\\times$Planck to be $A = 0.86 \\pm 0.39$, where $A=1$ corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of $2.9 \\sigma$ and $2.2 \\sigma$ respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photometric redshift uncertainty and CMB lensing systematics. Significant intrinsic alignment of galaxy shapes would increase the cross-correlation signal inferred from the data; we calculate a value of $A = 1.08 \\pm 0.36$ for DES$\\times$SPT when we correct the observations with a simple IA model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation, given the size of the statistical uncertainties and the significant impact of systematic errors, particularly IAs. We provide forecasts for the expected signal-to-noise of the combination of the five-year DES survey and SPT-3G.
The Impact of Camera Optical Alignments on Weak Lensing Measures...
Office of Scientific and Technical Information (OSTI)
The Impact of Camera Optical Alignments on Weak Lensing Measures for the Dark Energy Survey Citation Details In-Document Search Title: The Impact of Camera Optical Alignments on ...
Sample variance in weak lensing: How many simulations are required?
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Petri, Andrea; May, Morgan; Haiman, Zoltan
2016-03-24
Constraining cosmology using weak gravitational lensing consists of comparing a measured feature vector of dimension Nb with its simulated counterpart. An accurate estimate of the Nb × Nb feature covariance matrix C is essential to obtain accurate parameter confidence intervals. When C is measured from a set of simulations, an important question is how large this set should be. To answer this question, we construct different ensembles of Nr realizations of the shear field, using a common randomization procedure that recycles the outputs from a smaller number Ns ≤ Nr of independent ray-tracing N-body simulations. We study parameter confidence intervalsmore » as a function of (Ns, Nr) in the range 1 ≤ Ns ≤ 200 and 1 ≤ Nr ≲ 105. Previous work [S. Dodelson and M. D. Schneider, Phys. Rev. D 88, 063537 (2013)] has shown that Gaussian noise in the feature vectors (from which the covariance is estimated) lead, at quadratic order, to an O(1/Nr) degradation of the parameter confidence intervals. Using a variety of lensing features measured in our simulations, including shear-shear power spectra and peak counts, we show that cubic and quartic covariance fluctuations lead to additional O(1/N2r) error degradation that is not negligible when Nr is only a factor of few larger than Nb. We study the large Nr limit, and find that a single, 240 Mpc/h sized 5123-particle N-body simulation (Ns = 1) can be repeatedly recycled to produce as many as Nr = few × 104 shear maps whose power spectra and high-significance peak counts can be treated as statistically independent. Lastly, a small number of simulations (Ns = 1 or 2) is sufficient to forecast parameter confidence intervals at percent accuracy.« less
Massey, Richard; Hoekstra, Henk; Kitching, Thomas; Rhodes, Jason; Cropper, Mark; Amiaux, Jerome; Harvey, David; Mellier, Yannick; Meneghetti, Massimo; Miller, Lance; Paulin-Henriksson, Stephane; Pires, Sandrine; Scaramella, Roberto; Schrabback, Tim
2012-12-13
The first half of this paper explores the origin of systematic biases in the measurement of weak gravitational lensing. Compared to previous work, we expand the investigation of point spread function instability and fold in for the first time the effects of non-idealities in electronic imaging detectors and imperfect galaxy shape measurement algorithms. In addition, these now explain the additive A(?) and multiplicative M(?) systematics typically reported in current lensing measurements. We find that overall performance is driven by a product of a telescope/camera's absolute performance, and our knowledge about its performance.
Weak Lensing by Galaxy Clusters: from Pixels to Cosmology
Gruen, Daniel
2015-03-11
The story of the origin and evolution of our Universe is told, equivalently, by space-time itself and by the structures that grow inside of it. Clusters of galaxies are the frontier of bottom-up structure formation. They are the most massive objects to have collapsed at the present epoch. By that virtue, their abundance and structural parameters are highly sensitive to the composition and evolution of the Universe. The most common probe of cluster cosmology, abundance, uses samples of clusters selected by some observable. Applying a mass-observable relation (MOR), cosmological parameters can be constrained by comparing the sample to predicted cluster abundances as a function of observable and redshift. Arguably, however, cluster probes have not yet entered the era of per cent level precision cosmology. The primary reason for this is our imperfect understanding of the MORs. The overall normalization, the slope of mass vs. observable, the redshift evolution, and the degree and correlation of intrinsic scatters of observables at fixed mass have to be constrained for interpreting abundances correctly. Mass measurement of clusters by means of the differential deflection of light from background sources in their gravitational field, i.e. weak lensing, is a powerful approach for achieving this. This thesis presents new methods for and scientific results of weak lensing measurements of clusters of galaxies. The former include, on the data reduction side, (i) the correction of CCD images for non-linear effects due to the electric fields of accumulated charges and (ii) a method for masking artifact features in sets of overlapping images of the sky by comparison to the median image. Also, (iii) I develop a method for the selection of background galaxy samples based on their color and apparent magnitude that includes a new correction for contamination with cluster member galaxies. The main scientific results are the following. (i) For the Hubble Frontier Field cluster RXC J
Gravitational lenses in generalized Einstein-aether theory: The bullet cluster
Dai, D.-C.; Matsuo, Reijiro; Starkman, Glenn
2008-11-15
We study the lensing properties of an asymmetric mass distribution and vector field in generalized Einstein-aether (GEA) theory. As vector-field fluctuations are responsible in GEA for seeding baryonic structure formation, vector-field concentrations can exist independently of baryonic matter. Such concentrations would not be expected to be tied to baryonic matter except gravitationally, and so, like dark matter halos, would become separated from baryonic matter in interacting systems such as the bullet cluster. These vector-field concentrations cause metric deviations that affect weak lensing. Therefore, the distribution of weak lensing deviates from that which would be inferred from the luminous mass distribution, in a way that numerical calculations demonstrate can be consistent with observations. This suggests that MOND-inspired theories can reproduce weak lensing observations, but makes clear the price: the existence of a coherent large-scale fluctuation of a field(s) weakly tied to the baryonic matter, not completely dissimilar to a dark matter halo.
Higher-order gravitational lensing reconstruction using Feynman diagrams
Jenkins, Elizabeth E.; Manohar, Aneesh V.; Yadav, Amit P.S.; Waalewijn, Wouter J. E-mail: amanohar@ucsd.edu E-mail: ayadav@physics.ucsd.edu
2014-09-01
We develop a method for calculating the correlation structure of the Cosmic Microwave Background (CMB) using Feynman diagrams, when the CMB has been modified by gravitational lensing, Faraday rotation, patchy reionization, or other distorting effects. This method is used to calculate the bias of the Hu-Okamoto quadratic estimator in reconstructing the lensing power spectrum up to O(?{sup 4}) in the lensing potential ?. We consider both the diagonal noise TT TT, EB EB, etc. and, for the first time, the off-diagonal noise TT TE, TB EB, etc. The previously noted large O(?{sup 4}) term in the second order noise is identified to come from a particular class of diagrams. It can be significantly reduced by a reorganization of the ? expansion. These improved estimators have almost no bias for the off-diagonal case involving only one B component of the CMB, such as EE EB.
Strong gravitational lensing with Gauss-Bonnet correction
Sadeghi, J.; Vaez, H. E-mail: h.vaez@umz.ac.ir
2014-06-01
In this paper we investigate the strong gravitational lensing in a five dimensional background with Gauss-Bonnet gravity, so that in 4-dimensions the Gauss-Bonnet correction disappears. By considering the logarithmic term for deflection angle, we obtain the deflection angle α-circumflex and corresponding parameters ā and b-bar . Finally, we estimate some properties of relativistic images such as θ{sub ∞}, s and r{sub m}.
Catastrophic photometric redshift errors: Weak-lensing survey requirements
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using onlymore » the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less
The DES Science Verification Weak Lensing Shear Catalogs
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Jarvis, M.
2016-05-01
We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SVmore » data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.« less
The DES Science Verification Weak Lensing Shear Catalogs
Jarvis, M.
2015-07-20
We present weak lensing shear catalogs for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogs of 2.12 million and 3.44 million galaxies respectively. We also detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. Furthermore, we discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogs for the full 5-year DES, which is expected to cover 5000 square degrees.
SPITZER IMAGING OF HERSCHEL-ATLAS GRAVITATIONALLY LENSED SUBMILLIMETER SOURCES
Hopwood, R.; Negrello, M.; Wardlow, J.; Cooray, A.; Khostovan, A. A.; Kim, S.; Barton, E.; Da Cunha, E.; Cooke, J.; Burgarella, D.; Aretxaga, I.; Auld, R.; Baes, M.; Bertoldi, F.; Bonfield, D. G.; Blundell, R.; Buttiglione, S.; Cava, A.; Dannerbauer, H.
2011-02-10
We present physical properties of two submillimeter selected gravitationally lensed sources, identified in the Herschel Astrophysical Terahertz Large Area Survey. These submillimeter galaxies (SMGs) have flux densities >100 mJy at 500 {mu}m, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5 {mu}m data and successfully disentangle the foreground lens from the background source in each case, providing important constraints on the spectral energy distributions (SEDs) of the background SMG at rest-frame optical-near-infrared wavelengths. The SED fits show that these two SMGs have high dust obscuration with A{sub V} {approx} 4-5 and star formation rates of {approx}100 M{sub sun} yr{sup -1}. They have low gas fractions and low dynamical masses compared with 850 {mu}m selected galaxies.
Optimizing weak lensing mass estimates for cluster profile uncertainty
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gruen, D.; Bernstein, G. M.; Lam, T. Y.; Seitz, S.
2011-09-11
Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M200m due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement Map that minimizes the mass estimate variance <(Map - M200m)2> in the presence of all these forms of variability. Dependingmore » on halo mass and observational conditions, the resulting mass estimator improves on Map filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.« less
Optimizing weak lensing mass estimates for cluster profile uncertainty
Gruen, D.; Bernstein, G. M.; Lam, T. Y.; Seitz, S.
2011-09-11
Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M_{200m }due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement M_{ap} that minimizes the mass estimate variance <(M_{ap} - M_{200m})^{2}> in the presence of all these forms of variability. Depending on halo mass and observational conditions, the resulting mass estimator improves on M_{ap} filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.
Weak lensing by galaxy troughs in DES Science Verification data
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; M. Jarvis; Kavprzak, T.; Krause, E.; et al
2015-11-29
In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers ofmore » the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.« less
Weak lensing by galaxy troughs in DES Science Verification data
Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Hartley, W.; Jain, B.; M. Jarvis; Kavprzak, T.; Krause, E.; Mana, A.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Becker, M. R.; Benoit-Levy, A.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Neto, A. Fausti; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miguel, R.; Mohr, J. J.; Nord, B.; Orgando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Zhang, Y.; Zuntz, J.
2015-11-29
In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.
Weak Lensing by Galaxy Troughs in DES Science Verification Data
Gruen, D.
2015-09-29
We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.
Gravitational lens equation for embedded lenses; magnification and ellipticity
Chen, B.; Kantowski, R.; Dai, X.
2011-10-15
We give the lens equation for light deflections caused by point mass condensations in an otherwise spatially homogeneous and flat universe. We assume the signal from a distant source is deflected by a single condensation before it reaches the observer. We call this deflector an embedded lens because the deflecting mass is part of the mean density. The embedded lens equation differs from the conventional lens equation because the deflector mass is not simply an addition to the cosmic mean. We prescribe an iteration scheme to solve this new lens equation and use it to compare our results with standard linear lensing theory. We also compute analytic expressions for the lowest order corrections to image amplifications and distortions caused by incorporating the lensing mass into the mean. We use these results to estimate the effect of embedding on strong lensing magnifications and ellipticities and find only small effects, <1%, contrary to what we have found for time delays and for weak lensing, {approx}5%.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Applegate, D. E; Mantz, A.; Allen, S. W.; von der Linden, A.; Morris, R. G.; Hilbert, S.; Kelly, P. L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; et al
2016-02-04
This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within amore » characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c200 = 3.0+4.4–1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.« less
Shirasaki, Masato; Yoshida, Naoki
2014-05-01
The measurement of cosmic shear using weak gravitational lensing is a challenging task that involves a number of complicated procedures. We study in detail the systematic errors in the measurement of weak-lensing Minkowski Functionals (MFs). Specifically, we focus on systematics associated with galaxy shape measurements, photometric redshift errors, and shear calibration correction. We first generate mock weak-lensing catalogs that directly incorporate the actual observational characteristics of the Canada-France-Hawaii Lensing Survey (CFHTLenS). We then perform a Fisher analysis using the large set of mock catalogs for various cosmological models. We find that the statistical error associated with the observational effects degrades the cosmological parameter constraints by a factor of a few. The Subaru Hyper Suprime-Cam (HSC) survey with a sky coverage of ?1400 deg{sup 2} will constrain the dark energy equation of the state parameter with an error of ?w {sub 0} ? 0.25 by the lensing MFs alone, but biases induced by the systematics can be comparable to the 1? error. We conclude that the lensing MFs are powerful statistics beyond the two-point statistics only if well-calibrated measurement of both the redshifts and the shapes of source galaxies is performed. Finally, we analyze the CFHTLenS data to explore the ability of the MFs to break degeneracies between a few cosmological parameters. Using a combined analysis of the MFs and the shear correlation function, we derive the matter density ?{sub m0}=0.256{sub 0.046}{sup 0.054}.
UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS
Serjeant, S.
2014-09-20
The Euclid space telescope will observe ?10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the H? luminosity function and the H I mass function. Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ?1% of the total haul of Euclid lenses, this sample has ?100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.
Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M.; André, M.; Anton, G.; Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J.; Basa, S.; Biagi, S.; Capone, A.; Caramete, L.; and others
2014-11-01
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.
COMPARING DENSE GALAXY CLUSTER REDSHIFT SURVEYS WITH WEAK-LENSING MAPS
Hwang, Ho Seong; Geller, Margaret J.; Zahid, H. Jabran; Diaferio, Antonaldo; Rines, Kenneth J. E-mail: mgeller@cfa.harvard.edu E-mail: diaferio@ph.unito.it
2014-12-20
We use dense redshift surveys of nine galaxy clusters at z ∼ 0.2 to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70%-89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross-correlate the galaxy number density maps with the weak-lensing maps. The cross-correlation signal when we include foreground and background galaxies at 0.5z {sub cl} < z < 2z {sub cl} is 10%-23% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross-correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross-correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross-correlation signal excesses (>20% for A383, A689, and A750). The fractional excess in the cross-correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.
CLASH: Weak-lensing shear-and-magnification analysis of 20 galaxy clusters
Umetsu, Keiichi; Czakon, Nicole [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Medezinski, Elinor; Lemze, Doron; Ford, Holland [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Nonino, Mario; Balestra, Italo; Biviano, Andrea [INAF-Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Merten, Julian [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Postman, Marc; Koekemoer, Anton [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Meneghetti, Massimo [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Donahue, Megan [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Molino, Alberto; Bentez, Narciso [Instituto de Astrofsica de Andaluca (CSIC), E-18008 Granada (Spain); Seitz, Stella; Gruen, Daniel [Universitts-Sternwarte, Mnchen, Scheinerstrasse 1, D-81679 Munich Germany (Germany); Broadhurst, Tom [Ikerbasque, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, E-48011 Bilbao (Spain); Grillo, Claudio [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Melchior, Peter, E-mail: keiichi@asiaa.sinica.edu.tw [Center for Cosmology and Astro-Particle Physics and Department of Physics, The Ohio State University, Columbus, OH 43210 (United States); and others
2014-11-10
We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ? z ? 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ? 25 in the radial range of 200-3500 kpc h {sup 1}, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c{sub 200c}=4.01{sub ?0.32}{sup +0.35} at an effective halo mass of M{sub 200c}=1.34{sub ?0.09}{sup +0.10}10{sup 15} M{sub ?}. We show that this is in excellent agreement with ? cold dark matter (?CDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is ?{sub E}=0.191{sub ?0.068}{sup +0.071}, which is consistent with the NFW-equivalent Einasto parameter of ?0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as a two-halo term
A DETECTION OF WEAK-LENSING MAGNIFICATION USING GALAXY SIZES AND MAGNITUDES
Schmidt, Fabian; Rhodes, Jason; Leauthaud, Alexie; Tanaka, Masayuki; Massey, Richard; George, Matthew R.; Koekemoer, Anton M.; Finoguenov, Alexis
2012-01-10
Weak lensing is commonly measured using shear through galaxy ellipticities or using the effect of magnification bias on galaxy number densities. Here, we report on the first detection of weak-lensing magnification with a new, independent technique using the distribution of galaxy sizes and magnitudes. These data come for free in galaxy surveys designed for measuring shear. We present the magnification estimator and apply it to an X-ray-selected sample of galaxy groups in the COSMOS Hubble Space Telescope survey. The measurement of the projected surface density {Sigma}(r) is consistent with the shear measurements within the uncertainties and has roughly 40% of the signal to noise of the latter. We discuss systematic issues and challenges to realizing the potential of this new probe of weak lensing.
A NEW APPROACH TO IDENTIFYING THE MOST POWERFUL GRAVITATIONAL LENSING TELESCOPES
Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark; Keeton, Charles R.; Hogg, David W.; Gonzalez, Anthony H.
2013-05-20
The best gravitational lenses for detecting distant galaxies are those with the largest mass concentrations and the most advantageous configurations of that mass along the line of sight. Our new method for finding such gravitational telescopes uses optical data to identify projected concentrations of luminous red galaxies (LRGs). LRGs are biased tracers of the underlying mass distribution, so lines of sight with the highest total luminosity in LRGs are likely to contain the largest total mass. We apply this selection technique to the Sloan Digital Sky Survey and identify the 200 fields with the highest total LRG luminosities projected within a 3.'5 radius over the redshift range 0.1 {<=} z {<=} 0.7. The redshift and angular distributions of LRGs in these fields trace the concentrations of non-LRG galaxies. These fields are diverse; 22.5% contain one known galaxy cluster and 56.0% contain multiple known clusters previously identified in the literature. Thus, our results confirm that these LRGs trace massive structures and that our selection technique identifies fields with large total masses. These fields contain two to three times higher total LRG luminosities than most known strong-lensing clusters and will be among the best gravitational lensing fields for the purpose of detecting the highest redshift galaxies.
Constraining the minimum luminosity of high redshift galaxies through gravitational lensing
Mashian, Natalie; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu
2013-12-01
We simulate the effects of gravitational lensing on the source count of high redshift galaxies as projected to be observed by the Hubble Frontier Fields program and the James Webb Space Telescope (JWST) in the near future. Taking the mass density profile of the lensing object to be the singular isothermal sphere (SIS) or the Navarro-Frenk-White (NFW) profile, we model a lens residing at a redshift of z{sub L} = 0.5 and explore the radial dependence of the resulting magnification bias and its variability with the velocity dispersion of the lens, the photometric sensitivity of the instrument, the redshift of the background source population, and the intrinsic maximum absolute magnitude (M{sub max}) of the sources. We find that gravitational lensing enhances the number of galaxies with redshifts z∼> 13 detected in the angular region θ{sub E}/2 ≤ θ ≤ 2θ{sub E} (where θ{sub E} is the Einstein angle) by a factor of ∼ 3 and 1.5 in the HUDF (df/dν{sub 0} ∼ 9 nJy) and medium-deep JWST surveys (df/dν{sub 0} ∼ 6 nJy). Furthermore, we find that even in cases where a negative magnification bias reduces the observed number count of background sources, the lensing effect improves the sensitivity of the count to the intrinsic faint-magnitude cut-off of the Schechter luminosity function. In a field centered on a strong lensing cluster, observations of z∼> 6 and z∼> 13 galaxies with JWST can be used to infer this cut-off magnitude for values as faint as M{sub max} ∼ -14.4 and -16.1 mag (L{sub min} ≈ 2.5 × 10{sup 26} and 1.2 × 10{sup 27} erg s{sup −1} Hz{sup −1}) respectively, within the range bracketed by existing theoretical models. Gravitational lensing may therefore offer an effective way of constraining the low-luminosity cut-off of high-redshift galaxies.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Okura, Yuki; Petri, Andrea; May, Morgan; Plazas, Andrés A.; Tamagawa, Toru
2016-06-27
Weak gravitational lensing causes subtle changes in the apparent shapes of galaxies due to the bending of light by the gravity of foreground masses. By measuring the shapes of large numbers of galaxies (millions in recent surveys, up to tens of billions in future surveys) we can infer the parameters that determine cosmology. Imperfections in the detectors used to record images of the sky can introduce changes in the apparent shape of galaxies, which in turn can bias the inferred cosmological parameters. Here in this paper we consider the effect of two widely discussed sensor imperfections: tree-rings, due to impuritymore » gradients which cause transverse electric fields in the Charge-Coupled Devices (CCD), and pixel-size variation, due to periodic CCD fabrication errors. These imperfections can be observed when the detectors are subject to uniform illumination (flat field images). We develop methods to determine the spurious shear and convergence (due to the imperfections) from the flat-field images. We calculate how the spurious shear when added to the lensing shear will bias the determination of cosmological parameters. We apply our methods to candidate sensors of the Large Synoptic Survey Telescope (LSST) as a timely and important example, analyzing flat field images recorded with LSST prototype CCDs in the laboratory. In conclusion, we find that tree-rings and periodic pixel-size variation present in the LSST CCDs will introduce negligible bias to cosmological parameters determined from the lensing power spectrum, specifically w,Ωm and σ8.« less
NOISY WEAK-LENSING CONVERGENCE PEAK STATISTICS NEAR CLUSTERS OF GALAXIES AND BEYOND
Fan Zuhui; Shan Huanyuan; Liu Jiayi
2010-08-20
Taking into account noise from intrinsic ellipticities of source galaxies, in this paper, we study the peak statistics in weak-lensing convergence maps around clusters of galaxies and beyond. We emphasize how the noise peak statistics is affected by the density distribution of nearby clusters, and also how cluster-peak signals are changed by the existence of noise. These are the important aspects to be thoroughly understood in weak-lensing analyses for individual clusters as well as in cosmological applications of weak-lensing cluster statistics. We adopt Gaussian smoothing with the smoothing scale {theta} {sub G} = 0.5arcmin in our analyses. It is found that the noise peak distribution near a cluster of galaxies sensitively depends on the density profile of the cluster. For a cored isothermal cluster with the core radius R{sub c} , the inner region with R {<=} R{sub c} appears noisy containing on average {approx}2.4 peaks with {nu} {>=} 5 for R{sub c} = 1.7arcmin and the true peak height of the cluster {nu} = 5.6, where {nu} denotes the convergence signal-to-noise ratio. For a Navarro-Frenk-White (NFW) cluster of the same mass and the same central {nu}, the average number of peaks with {nu} {>=} 5 within R {<=} R{sub c} is {approx}1.6. Thus a high peak corresponding to the main cluster can be identified more cleanly in the NFW case. In the outer region with R{sub c} < R {<=} 5R{sub c} , the number of high noise peaks is considerably enhanced in comparison with that of the pure noise case without the nearby cluster. For {nu} {>=} 4, depending on the treatment of the mass-sheet degeneracy in weak-lensing analyses, the enhancement factor f is in the range of {approx}5 to {approx}55 for both clusters as their outer density profiles are similar. The properties of the main-cluster-peak identified in convergence maps are also significantly affected by the presence of noise. Scatters as well as a systematic shift for the peak height are present. The height distribution is
GALAXIES IN X-RAY GROUPS. II. A WEAK LENSING STUDY OF HALO CENTERING
George, Matthew R.; Ma, Chung-Pei; Leauthaud, Alexie; Bundy, Kevin; Finoguenov, Alexis; Rykoff, Eli S.; Tinker, Jeremy L.; Wechsler, Risa H.; Massey, Richard; Mei, Simona
2012-09-20
Locating the centers of dark matter halos is critical for understanding the mass profiles of halos, as well as the formation and evolution of the massive galaxies that they host. The task is observationally challenging because we cannot observe halos directly, and tracers such as bright galaxies or X-ray emission from hot plasma are imperfect. In this paper, we quantify the consequences of miscentering on the weak lensing signal from a sample of 129 X-ray-selected galaxy groups in the COSMOS field with redshifts 0 < z < 1 and halo masses in the range 10{sup 13}-10{sup 14} M{sub Sun }. By measuring the stacked lensing signal around eight different candidate centers (such as the brightest member galaxy, the mean position of all member galaxies, or the X-ray centroid), we determine which candidates best trace the center of mass in halos. In this sample of groups, we find that massive galaxies near the X-ray centroids trace the center of mass to {approx}< 75 kpc, while the X-ray position and centroids based on the mean position of member galaxies have larger offsets primarily due to the statistical uncertainties in their positions (typically {approx}50-150 kpc). Approximately 30% of groups in our sample have ambiguous centers with multiple bright or massive galaxies, and some of these groups show disturbed mass profiles that are not well fit by standard models, suggesting that they are merging systems. We find that halo mass estimates from stacked weak lensing can be biased low by 5%-30% if inaccurate centers are used and the issue of miscentering is not addressed.
Okura, Yuki; Futamase, Toshifumi E-mail: tof@astr.tohoku.ac.jp
2013-07-01
This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging, but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.
Mediavilla, E.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.
2011-11-01
We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N {sup -3/4} dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.
Strong gravitational lensing as a tool to investigate the structure of jets at high energies
Barnacka, Anna; Geller, Margaret J.; Benbow, Wystan; Dell'antonio, Ian P.
2014-06-20
The components of blazar jets that emit radiation span a factor of 10{sup 10} in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources, and the observed light curve is thus the sum of the images. Durations of ?-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.
Mask effects on cosmological studies with weak-lensing peak statistics
Liu, Xiangkun; Pan, Chuzhong; Fan, Zuhui; Wang, Qiao
2014-03-20
With numerical simulations, we analyze in detail how the bad data removal, i.e., the mask effect, can influence the peak statistics of the weak-lensing convergence field reconstructed from the shear measurement of background galaxies. It is found that high peak fractions are systematically enhanced because of the presence of masks; the larger the masked area is, the higher the enhancement is. In the case where the total masked area is about 13% of the survey area, the fraction of peaks with signal-to-noise ratio ? ? 3 is ?11% of the total number of peaks, compared with ?7% of the mask-free case in our considered cosmological model. This can have significant effects on cosmological studies with weak-lensing convergence peak statistics, inducing a large bias in the parameter constraints if the effects are not taken into account properly. Even for a survey area of 9 deg{sup 2}, the bias in (? {sub m}, ?{sub 8}) is already intolerably large and close to 3?. It is noted that most of the affected peaks are close to the masked regions. Therefore, excluding peaks in those regions in the peak statistics can reduce the bias effect but at the expense of losing usable survey areas. Further investigations find that the enhancement of the number of high peaks around the masked regions can be largely attributed to the smaller number of galaxies usable in the weak-lensing convergence reconstruction, leading to higher noise than that of the areas away from the masks. We thus develop a model in which we exclude only those very large masks with radius larger than 3' but keep all the other masked regions in peak counting statistics. For the remaining part, we treat the areas close to and away from the masked regions separately with different noise levels. It is shown that this two-noise-level model can account for the mask effect on peak statistics very well, and the bias in cosmological parameters is significantly reduced if this model is applied in the parameter fitting.
Impact of spurious shear on cosmological parameter estimates from weak lensing observables
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Petri, Andrea; May, Morgan; Haiman, Zoltán; Kratochvil, Jan M.
2014-12-30
We research, residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet (Ωm,w,σ8) derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MFs), low-order moments (LMs), and peak counts (PKs). Our main results are as follows: (i) We find an order of magnitude smaller biasesmore » from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of σsys2 ≈ 10-7, biases from the PS and LM would be unimportant even for a survey with the statistical power of Large Synoptic Survey Telescope. However, we find that for surveys larger than ≈ 100 deg2, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF, PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in (Ωm,w,σ8) parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.« less
Impact of spurious shear on cosmological parameter estimates from weak lensing observables
Petri, Andrea; May, Morgan; Haiman, Zoltán; Kratochvil, Jan M.
2014-12-30
We research, residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet (Ω_{m},w,σ_{8}) derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MFs), low-order moments (LMs), and peak counts (PKs). Our main results are as follows: (i) We find an order of magnitude smaller biases from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of σ_{sys}^{2} ≈ 10^{-7}, biases from the PS and LM would be unimportant even for a survey with the statistical power of Large Synoptic Survey Telescope. However, we find that for surveys larger than ≈ 100 deg^{2}, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF, PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in (Ωm,w,σ8) parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.
Self-calibration of photometric redshift scatter in weak-lensing surveys
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary
2010-06-11
Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less
Impact of spurious shear on cosmological parameter estimates from weak lensing observables
Petri, Andrea; May, Morgan; Haiman, Zoltn; Kratochvil, Jan M.
2014-12-30
We research, residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet (?_{m},w,?_{8}) derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MFs), low-order moments (LMs), and peak counts (PKs). Our main results are as follows: (i) We find an order of magnitude smaller biases from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of ?_{sys}^{2} ? 10^{-7}, biases from the PS and LM would be unimportant even for a survey with the statistical power of Large Synoptic Survey Telescope. However, we find that for surveys larger than ? 100 deg^{2}, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF, PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in (?m,w,?8) parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.
Self-calibration of photometric redshift scatter in weak-lensing surveys
Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary
2010-06-11
Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as the planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-? level, but is unlikely to completely invalidate the self-calibration technique.
Schlaufman, K
2004-10-11
Atmospheric turbulence can mimic the effects of weak lensing in astronomical images, so it is necessary to understand to what degree turbulence affects weak lensing measurements. In particular, we studied the ellipticity induced upon the point-spread functions (PSFs) of a grid of simulated stars separated by distances (d {approx} 1{prime}) that will be characteristic of Large Synoptic Survey Telescope (LSST) images. We observe that atmospherically induced ellipticity changes on small scales (d < 0.5{prime}) and use linear interpolation between stars separated by d = 0.5{prime} to determine the induced ellipticity everywhere in the field-of-view.
Bonnett, C.
2015-07-21
We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties ?_{z} ? 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of ?_{8} of approx. 3%. This shift is within the one sigma statistical errors on ?8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, ?_{crit}, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.
Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E.; Wyithe, J. Stuart B.; Levan, Andrew J.
2012-08-01
Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
Liu, Jia; May, Morgan; Petri, Andrea; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M.
2015-03-04
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ω_{m}, σ_{8}, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ω_{m}, σ_{8}, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ω_{m}, σ_{8}) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ_{8}(Ω_{m}/0.27)0.63 = 0.85^{+0.03}_{-0.03}.
Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Liu, Jia; May, Morgan; Petri, Andrea; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M.
2015-03-04
Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ωm, σ8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator thatmore » interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ωm, σ8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ωm, σ8) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ8(Ωm/0.27)0.63 = 0.85+0.03-0.03.« less
Shape profiles and orientation bias for weak and strong lensing cluster halos
Groener, A. M.; Goldberg, D. M.
2014-11-10
We study the intrinsic shape and alignment of isodensities of galaxy cluster halos extracted from the MultiDark MDR1 cosmological simulation. We find that the simulated halos are extremely prolate on small scales and increasingly spherical on larger ones. Due to this trend, analytical projection along the line of sight produces an overestimation of the concentration index as a decreasing function of radius, which we quantify by using both the intrinsic distribution of three-dimensional concentrations (c {sub 200}) and isodensity shape on weak and strong lensing scales. We find this difference to be ?18% (?9%) for low- (medium-)mass cluster halos with intrinsically low concentrations (c {sub 200} = 1-3), while we find virtually no difference for halos with intrinsically high concentrations. Isodensities are found to be fairly well aligned throughout the entirety of the radial scale of each halo population. However, major axes of individual halos have been found to deviate by as much as ?30. We also present a value-added catalog of our analysis results, which we have made publicly available to download.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Baxter, E. J.; Keisler, R.; Dodelson, S.; Aird, K. A.; Allen, S. W.; Ashby, M. L.N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; et al
2015-06-22
Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We also develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error andmore » find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. Furthermore, we apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M200,lens = 0.83+0.38-0.37 M200,SZ (68% C.L., statistical error only).« less
Atmospheric PSF Interpolation for Weak Lensing in Short Exposure Imaging Data
Chang, C.; Marshall, P.J.; Jernigan, J.G.; Peterson, J.R.; Kahn, S.M.; Gull, S.F.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, S.; Meert, A.
2012-09-19
A main science goal for the Large Synoptic Survey Telescope (LSST) is to measure the cosmic shear signal from weak lensing to extreme accuracy. One difficulty, however, is that with the short exposure time ({approx_equal}15 seconds) proposed, the spatial variation of the Point Spread Function (PSF) shapes may be dominated by the atmosphere, in addition to optics errors. While optics errors mainly cause the PSF to vary on angular scales similar or larger than a single CCD sensor, the atmosphere generates stochastic structures on a wide range of angular scales. It thus becomes a challenge to infer the multi-scale, complex atmospheric PSF patterns by interpolating the sparsely sampled stars in the field. In this paper we present a new method, psfent, for interpolating the PSF shape parameters, based on reconstructing underlying shape parameter maps with a multi-scale maximum entropy algorithm. We demonstrate, using images from the LSST Photon Simulator, the performance of our approach relative to a 5th-order polynomial fit (representing the current standard) and a simple boxcar smoothing technique. Quantitatively, psfent predicts more accurate PSF models in all scenarios and the residual PSF errors are spatially less correlated. This improvement in PSF interpolation leads to a factor of 3.5 lower systematic errors in the shear power spectrum on scales smaller than {approx} 13, compared to polynomial fitting. We estimate that with psfent and for stellar densities greater than {approx_equal}1/arcmin{sup 2}, the spurious shear correlation from PSF interpolation, after combining a complete 10-year dataset from LSST, is lower than the corresponding statistical uncertainties on the cosmic shear power spectrum, even under a conservative scenario.
Mapping all the mass in the universe (with weak gravitational lensing) - Oral Presentation
Everett, Spencer
2015-08-13
Recent discoveries have shown that most of the universe is made of an exotic dark matter that behaves much differently than the normal matter that we experience in everyday life. As we cannot detect dark matter directly, we must infer its location in the universe by indirect effects, such as the distortion of light from distant galaxies as it travels through large clouds of dark matter. While the degree of distortion should be proportional to the amount of dark matter present, we don't know the original shape of the galaxy so the distortion is difficult to quantify. If we had a model of how dark matter is linked to galaxies, and thus be able predict the amount of distortion that should occur, we could apply the model to galaxy surveys to map out the dark matter in our universe. In this research, I attach a spherical 'halo' of dark matter to each galaxy in a simulated universe to approximate its known complex dark matter structure. I then predict how the halos distort the light from distant galaxies generated behind the halos. As the data is simulated, the true distortion of the light is known which is compared to the halo-predicted distortion. I find that, on average, the model under-predicts the degree of distortion on all scales and fails to capture distortions from large-scale dark matter structure. These issues are likely due to missing features in the model, as the halo model is a greatly simplified version of the actual distribution of dark matter. Potential improvements to the model for future work are discussed.
Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek
2014-12-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ?35% at redshift z ? 7 to ? 65% at z ? 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.
MacLeod, Chelsea L. [Physics Department, United States Naval Academy, Annapolis, MD 21403 (United States); Jones, Ramsey; Agol, Eric [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Kochanek, Christopher S., E-mail: macleod@usna.edu [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States)
2013-08-10
We present 11.2 {mu}m observations of the gravitationally lensed, radio-loud z{sub s} = 2.64 quasar MG0414+0534, obtained using the Michelle camera on Gemini North. We find a flux ratio anomaly of A2/A1 = 0.93 {+-} 0.02 for the quasar images A1 and A2. When combined with the 11.7 {mu}m measurements from Minezaki et al., the A2/A1 flux ratio is nearly 5{sigma} from the expected ratio for a model based on the two visible lens galaxies. The mid-IR flux ratio anomaly can be explained by a satellite (substructure), 0.''3 northeast of image A2, as can the detailed very long baseline interferometry (VLBI) structures of the jet produced by the quasar. When we combine the mid-IR flux ratios with high-resolution VLBI measurements, we find a best-fit mass between 10{sup 6.2} and 10{sup 7.5} M{sub Sun} inside the Einstein radius for a satellite substructure modeled as a singular isothermal sphere at the redshift of the main lens (z{sub l} = 0.96). We are unable to set an interesting limit on the mass to light ratio due to its proximity to the quasar image A2. While the observations used here were technically difficult, surveys of flux anomalies in gravitational lenses with the James Webb Space Telescope will be simple, fast, and should well constrain the abundance of substructure in dark matter halos.
Ren, Jing; Xianyu, Zhong-Zhi; He, Hong-Jian E-mail: xianyuzhongzhi@gmail.com
2014-06-01
We study gravitational interaction of Higgs boson through the unique dimension-4 operator ?H{sup }HR, with H the Higgs doublet and R the Ricci scalar curvature. We analyze the effect of this dimensionless nonminimal coupling ? on weak gauge boson scattering in both Jordan and Einstein frames. We explicitly establish the longitudinal-Goldstone equivalence theorem with nonzero ? coupling in both frames, and analyze the unitarity constraints. We study the ?-induced weak boson scattering cross sections at O(1?30) TeV scales, and propose to probe the Higgs-gravity coupling via weak boson scattering experiments at the LHC (14 TeV) and the next generation pp colliders (50-100 TeV). We further extend our study to Higgs inflation, and quantitatively derive the perturbative unitarity bounds via coupled channel analysis, under large field background at the inflation scale. We analyze the unitarity constraints on the parameter space in both the conventional Higgs inflation and the improved models in light of the recent BICEP2 data.
Discovery of two gravitationally lensed quasars in the Dark Energy Survey
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Agnello, A.
2015-10-01
In this study, we present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at zs = 1.64. The Einstein Radius estimated from the DES images is 0.51''. DES J2146-0047 is in the area of overlap between DES andmore » the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at zs = 2.38 and absorption compatible with Mg II and Fe II at zl = 0.799, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. Furthermore, the Einstein Radius is 0.68'' corresponding to an enclosed mass of 1.6 × 1011 M⊙. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.« less
Discovery of two gravitationally lensed quasars in the Dark Energy Survey
Agnello, A.
2015-10-01
In this study, we present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at z_{s} = 1.64. The Einstein Radius estimated from the DES images is 0.51''. DES J2146-0047 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at z_{s} = 2.38 and absorption compatible with Mg II and Fe II at z_{l} = 0.799, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. Furthermore, the Einstein Radius is 0.68'' corresponding to an enclosed mass of 1.6 10^{11} M_{?}. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.
Starikova, Svetlana; Jones, Christine; Forman, William R.; Vikhlinin, Alexey; Kurtz, Michael J.; Fabricant, Daniel G.; Murray, Stephen S.; Geller, Margaret J.; Dell'Antonio, Ian P.
2014-05-10
We compare galaxy clusters selected in Chandra and XMM-Newton X-ray observations of the 4 deg{sup 2} Deep Lens Survey (DLS) F2 field to the cluster samples previously selected in the same field from a sensitive weak-lensing shear map derived from the DLS and from a detailed galaxy redshift surveythe Smithsonian Hectospec Lensing Survey (SHELS). Our Chandra and XMM-Newton observations cover 1.6 deg{sup 2} of the DLS F2 field, including all 12 weak-lensing peaks above a signal-to-noise ratio of 3.5, along with 16 of the 20 SHELS clusters with published velocity dispersions >500 km s{sup 1}. We detect 26 extended X-ray sources in this area and confirm 23 of them as galaxy clusters using the optical imaging. Approximately 75% of clusters detected in either X-ray or spectroscopic surveys are found in both; these follow the previously established scaling relations between velocity dispersion, L {sub X}, and T {sub X}. A lower percentage, 60%, of clusters are in common between X-ray and DLS samples. With the exception of a high false-positive rate in the DLS weak-lensing search (5 out of 12 DLS candidates appear to be false), differences between the three cluster detection methods can be attributed primarily to observational uncertainties and intrinsic scatter between different observables and cluster mass.
CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?
Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J.; Philpott, L. C.; Abe, F.; Muraki, Y.; Albrow, M. D.; Bennett, D. P.; Bond, I. A.; Christie, G. W.; Natusch, T.; Dionnet, Z.; Gould, A.; Han, C.; Heyrovský, D.; McCormick, J. M.; Skowron, J.; and others
2015-02-01
Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.
Buckley-Geer, E J; Lin, H; Drabek, E R; Allam, S S; Tucker, D L; Armstrong, R; Barkhouse, W A; Bertin, E; Brodwin, M; Desai, S; Frieman, J A
2011-11-03
We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in October 2006 during a BCS observing run. Follow-up spectroscopic observations with the GMOS instrument on the Gemini South 8m telescope confirmed the lensing nature of this system. Using weak plus strong lensing, velocity dispersion, cluster richness N_{200}, and fitting to an NFW cluster mass density profile, we have made three independent estimates of the mass M_{200} which are all very consistent with each other. The combination of the results from the three methods gives M_{200} = (5.1 x 1.3) x 10^{14} _{circle_dot}, which is fully consistent with the individual measurements. The final NFW concentration c_{200} from the combined fit is c_{200} = 5.4_{-1.1}^{+1.4}. We have compared our measurements of M_{200} and c_{200} with predictions for (a) clusters from ?CDM simulations, (b) lensing selected clusters from simulations, and (c) a real sample of cluster lenses. We find that we are most compatible with the predictions for ?CDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to ?CDM. Finally, using the flux measured from the [OII]3727 line we have determined the star formation rate (SFR) of the source galaxy and find it to be rather modest given the assumed lens magnification.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Buckley-Geer, E. J.; Lin, H.; Drabek, E. R.; Allam, S. S.; Tucker, D. L.; Armstrong, R.; Barkhouse, W. A.; Bertin, E.; Brodwin, M.; Desai, S.; et al
2011-11-03
We report on the serendipitous discovery in the Blanco Cosmology Survey (BCS) imaging data of a z = 0.9057 galaxy that is being strongly lensed by a massive galaxy cluster at a redshift of z = 0.3838. The lens (BCS J2352-5452) was discovered while examining i- and z-band images being acquired in October 2006 during a BCS observing run. Follow-up spectroscopic observations with the GMOS instrument on the Gemini South 8m telescope confirmed the lensing nature of this system. Using weak plus strong lensing, velocity dispersion, cluster richness N200, and fitting to an NFW cluster mass density profile, we havemore » made three independent estimates of the mass M200 which are all very consistent with each other. The combination of the results from the three methods gives M200 = (5.1 x 1.3) x 1014 circle_dot, which is fully consistent with the individual measurements. The final NFW concentration c200 from the combined fit is c200 = 5.4-1.1+1.4. We have compared our measurements of M200 and c200 with predictions for (a) clusters from λCDM simulations, (b) lensing selected clusters from simulations, and (c) a real sample of cluster lenses. We find that we are most compatible with the predictions for λCDM simulations for lensing clusters, and we see no evidence based on this one system for an increased concentration compared to λCDM. Finally, using the flux measured from the [OII]3727 line we have determined the star formation rate (SFR) of the source galaxy and find it to be rather modest given the assumed lens magnification.« less
Mahdavi, Andisheh; Hoekstra, Henk; Babul, Arif; Bildfell, Chris; Jeltema, Tesla; Henry, J. Patrick
2013-04-20
We present a study of multiwavelength X-ray and weak lensing scaling relations for a sample of 50 clusters of galaxies. Our analysis combines Chandra and XMM-Newton data using an energy-dependent cross-calibration. After considering a number of scaling relations, we find that gas mass is the most robust estimator of weak lensing mass, yielding 15% {+-} 6% intrinsic scatter at r{sub 500}{sup WL} (the pseudo-pressure Y{sub X} yields a consistent scatter of 22% {+-} 5%). The scatter does not change when measured within a fixed physical radius of 1 Mpc. Clusters with small brightest cluster galaxy (BCG) to X-ray peak offsets constitute a very regular population whose members have the same gas mass fractions and whose even smaller (<10%) deviations from regularity can be ascribed to line of sight geometrical effects alone. Cool-core clusters, while a somewhat different population, also show the same (<10%) scatter in the gas mass-lensing mass relation. There is a good correlation and a hint of bimodality in the plane defined by BCG offset and central entropy (or central cooling time). The pseudo-pressure Y{sub X} does not discriminate between the more relaxed and less relaxed populations, making it perhaps the more even-handed mass proxy for surveys. Overall, hydrostatic masses underestimate weak lensing masses by 10% on the average at r{sub 500}{sup WL}; but cool-core clusters are consistent with no bias, while non-cool-core clusters have a large and constant 15%-20% bias between r{sub 2500}{sup WL} and r{sub 500}{sup WL}, in agreement with N-body simulations incorporating unthermalized gas. For non-cool-core clusters, the bias correlates well with BCG ellipticity. We also examine centroid shift variance and power ratios to quantify substructure; these quantities do not correlate with residuals in the scaling relations. Individual clusters have for the most part forgotten the source of their departures from self-similarity.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle
2015-07-08
We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 1013 h–1 M⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less
Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle
2015-07-08
We present galaxy cluster massrichness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These massrichness relations are presented for four redshift bins, 0.1 < z ? 0.4, 0.4 < z ? 0.7, 0.7 < z ? 1.0 and 0.1 < z ? 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stacked weak lensing shear signal in redshift and richness bins in order to measure virial mass (M_{200}). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present massrichness relations using richness measure N_{VT} with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the massrichness relation. As a result, we present measurements of the mass coefficient (M_{200|20}) and the power-law slope (?) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 0.526, 14.1 1.78, 30.2 8.74 and 9.23 0.525 10^{13} h^{1} M_{?} for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 0.0585, 0.948 0.100, 1.33 0.260 and 0.883 0.0500, respectively.
Zemcov, M.; Cooray, A.; Bock, J.; Dowell, C. D.; Nguyen, H. T.; Blain, A.; Bethermin, M.; Conley, A.; Glenn, J.; Conversi, L.; Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Griffin, M.; Halpern, M.; Marsden, G.; Jullo, E.; Kneib, J.-P.; Richard, J.; and others
2013-06-01
We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I{sub 250{mu}m}>0.69{sub -0.03}{sup +0.03}(stat.){sub -0.06}{sup +0.11}(sys.) MJy sr{sup -1}, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.
Hamano, Satoshi; Kobayashi, Naoto [Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Kondo, Sohei [Koyama Astronomical Observatory, Kyoto-Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Tsujimoto, Takuji [National Astronomical Observatory of Japan and Department of Astronomical Science, Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Okoshi, Katsuya [Faculty of Industrial Science and Technology, Tokyo University of Science, 102-1 Tomino, Oshamanbe, Hokkaido 049-3514 (Japan); Shigeyama, Toshikazu, E-mail: hamano@ioa.s.u-tokyo.ac.jp [Research Center for the Early Universe, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)
2012-08-01
Using the Subaru 8.2 m Telescope with the IRCS Echelle spectrograph, we obtained high-resolution (R = 10,000) near-infrared (1.01-1.38 {mu}m) spectra of images A and B of the gravitationally lensed QSO B1422+231 (z = 3.628) consisting of four known lensed images. We detected Mg II absorption lines at z = 3.54, which show a large variance of column densities ({approx}0.3 dex) and velocities ({approx}10 km s{sup -1}) between sightlines A and B with a projected separation of only 8.4h{sup -1}{sub 70} pc at that redshift. This is the smallest spatial structure of the high-z gas clouds ever detected after Rauch et al. found a 20 pc scale structure for the same z = 3.54 absorption system using optical spectra of images A and C. The observed systematic variances imply that the system is an expanding shell as originally suggested by Rauch et al. By combining the data for three sightlines, we managed to constrain the radius and expansion velocity of the shell ({approx}50-100 pc, 130 km s{sup -1}), concluding that the shell is truly a supernova remnant (SNR) rather than other types of shell objects, such as a giant H II region. We also detected strong Fe II absorption lines for this system, but with much broader Doppler width than that of {alpha}-element lines. We suggest that this Fe II absorption line originates in a localized Fe II-rich gas cloud that is not completely mixed with plowed ambient interstellar gas clouds showing other {alpha}-element low-ion absorption lines. Along with the Fe richness, we conclude that the SNR is produced by an SN Ia explosion.
Atek, Hakim; Kneib, Jean-Paul; Richard, Johan; Clement, Benjamin; Jauzac, Mathilde; Schaerer, Daniel; Limousin, Marceau; Jullo, Eric; Natarajan, Priyamvada; Egami, Eiichi; Ebeling, Harald
2015-02-10
Exploiting the power of gravitational lensing, the Hubble Frontier Fields (HFF) program aims at observing six massive galaxy clusters to explore the distant universe far beyond the limits of blank field surveys. Using the complete Hubble Space Telescope observations of the first HFF cluster A2744, we report the detection of 50 galaxy candidates at z ∼ 7 and eight candidates at z ∼ 8 in a total survey area of 0.96 arcmin{sup 2} in the source plane. Three of these galaxies are multiply imaged by the lensing cluster. Using an updated model of the mass distribution in the cluster we were able to calculate the magnification factor and the effective survey volume for each galaxy in order to compute the ultraviolet galaxy luminosity function (LF) at both redshifts 7 and 8. Our new measurements reliably extend the z ∼ 7 UV LF down to an absolute magnitude of M {sub UV} ∼ –15.5. We find a characteristic magnitude of M{sub UV}{sup ⋆}=−20.90{sub −0.73}{sup +0.90} mag and a faint-end slope α=−2.01{sub −0.28}{sup +0.20}, close to previous determinations in blank fields. We show here for the first time that this slope remains steep down to very faint luminosities of 0.01 L {sup *}. Although prone to large uncertainties, our results at z ∼ 8 also seem to confirm a steep faint-end slope below 0.1 L {sup *}. The HFF program is therefore providing an extremely efficient way to study the faintest galaxy populations at z > 7 that would otherwise be inaccessible with current instrumentation. The full sample of six galaxy clusters will provide even better constraints on the buildup of galaxies at early epochs and their contribution to cosmic reionization.
Magnification relations for Kerr lensing and testing cosmic censorship
Werner, M. C.; Petters, A. O.
2007-09-15
A Kerr black hole with mass parameter m and angular momentum parameter a acting as a gravitational lens gives rise to two images in the weak field limit. We study the corresponding magnification relations, namely, the signed and absolute magnification sums and the centroid up to post-Newtonian order. We show that there are post-Newtonian corrections to the total absolute magnification and centroid proportional to a/m, which is in contrast to the spherically symmetric case where such corrections vanish. Hence we also propose a new set of lensing observables for the two images involving these corrections, which should allow measuring a/m with gravitational lensing. In fact, the resolution capabilities needed to observe this for the Galactic black hole should in principle be accessible to current and near-future instrumentation. Since a/m>1 indicates a naked singularity, a most interesting application would be a test of the cosmic censorship conjecture. The technique used to derive the image properties is based on the degeneracy of the Kerr lens and a suitably displaced Schwarzschild lens at post-Newtonian order. A simple physical explanation for this degeneracy is also given.
Beach, Raymond J. , Benett
1994-01-01
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic.
Galaxy cluster lensing masses in modified lensing potentials
Barreira, Alexandre; Li, Baojiu; Jennings, Elise; Merten, Julian; King, Lindsay; Baugh, Carlton M.; Pascoli, Silvia
2015-10-28
In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentration and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.
Galaxy cluster lensing masses in modified lensing potentials
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Barreira, Alexandre; Li, Baojiu; Jennings, Elise; Merten, Julian; King, Lindsay; Baugh, Carlton M.; Pascoli, Silvia
2015-10-28
In this study, we determine the concentration–mass relation of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble survey in theories of gravity that directly modify the lensing potential. We model the clusters as Navarro–Frenk–White haloes and fit their lensing signal, in the Cubic Galileon and Nonlocal gravity models, to the lensing convergence profiles of the clusters. We discuss a number of important issues that need to be taken into account, associated with the use of non-parametric and parametric lensing methods, as well as assumptions about the background cosmology. Our results show that the concentrationmore » and mass estimates in the modified gravity models are, within the error bars, the same as in Λ cold dark matter. This result demonstrates that, for the Nonlocal model, the modifications to gravity are too weak at the cluster redshifts, and for the Galileon model, the screening mechanism is very efficient inside the cluster radius. However, at distances ~ [2–20] Mpc/h from the cluster centre, we find that the surrounding force profiles are enhanced by ~ 20–40% in the Cubic Galileon model. This has an impact on dynamical mass estimates, which means that tests of gravity based on comparisons between lensing and dynamical masses can also be applied to the Cubic Galileon model.« less
Keeton, Charles R.; Petters, A.O.
2005-11-15
We are developing a general, unified, and rigorous analytical framework for using gravitational lensing by compact objects to test different theories of gravity beyond the weak-deflection limit. In this paper we present the formalism for computing corrections to lensing observables for static, spherically symmetric gravity theories in which the corrections to the weak-deflection limit can be expanded as a Taylor series in one parameter, namely, the gravitational radius of the lens object. We take care to derive coordinate-independent expressions and compute quantities that are directly observable. We compute series expansions for the observables that are accurate to second order in the ratio {epsilon}={theta} /{theta}{sub E} of the angle subtended by the lens's gravitational radius to the weak-deflection Einstein radius, which scales with mass as {epsilon}{proportional_to}M {sup 1/2}. The positions, magnifications, and time delays of the individual images have corrections at both first and second order in {epsilon}, as does the differential time delay between the two images. Interestingly, we find that the first-order corrections to the total magnification and centroid position vanish in all gravity theories that agree with general relativity in the weak-deflection limit, but they can remain nonzero in modified theories that disagree with general relativity in the weak-deflection limit. For the Reissner-Nordstroem metric and a related metric from heterotic string theory, our formalism reveals an intriguing connection between lensing observables and the condition for having a naked singularity, which could provide an observational method for testing the existence of such objects. We apply our formalism to the galactic black hole and predict that the corrections to the image positions are at the level of 10 {mu}arc s (microarcseconds), while the correction to the time delay is a few hundredths of a second. These corrections would be measurable today if a pulsar were
Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies
Carbone, Carmelita; Baldi, Marco; Baccigalupi, Carlo E-mail: marco.baldi5@unibo.it E-mail: bacci@sissa.it
2013-09-01
We produce lensing potential and deflection-angle maps in order to simulate the weak gravitational lensing of the Cosmic Microwave Background (CMB) via ray-tracing through the COupled Dark Energy Cosmological Simulations (CoDECS), the largest suite of N-body simulations to date for interacting Dark Energy cosmologies. The constructed maps faithfully reflect the N-body cosmic structures on a range of scales going from the arcminute to the degree scale, limited only by the resolution and extension of the simulations. We investigate the variation of the lensing pattern due to the underlying Dark Energy (DE) dynamics, characterised by different background and perturbation behaviours as a consequence of the interaction between the DE field and Cold Dark Matter (CDM). In particular, we study in detail the results from three cosmological models differing in the background and perturbations evolution at the epoch in which the lensing cross section is most effective, corresponding to a redshift of ∼ 1, with the purpose to isolate their imprints in the lensing observables, regardless of the compatibility of these models with present constraints. The scenarios investigated here include a reference ΛCDM cosmology, a standard coupled DE (cDE) scenario, and a ''bouncing'' cDE scenario. For the standard cDE scenario, we find that typical differences in the lensing potential result from two effects: the enhanced growth of linear CDM density fluctuations with respect to the ΛCDM case, and the modified nonlinear dynamics of collapsed structures induced by the DE-CDM interaction. As a consequence, CMB lensing highlights the DE impact in the cosmological expansion, even in the degenerate case where the amplitude of the linear matter density perturbations, parametrised through σ{sub 8}, is the same in both the standard cDE and ΛCDM cosmologies. For the ''bouncing'' scenario, we find that the two opposite behaviours of the lens density contrast and of the matter abundance lead to
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Vikram, V.
2015-07-29
Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density across the sky. These “mass maps” provide a powerful tool for studying cosmology as they probe both luminous and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in a 139 deg2 area from the Dark Energy Survey (DES) science verification data. We compare the distribution of mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map correlate well with the distribution of optically detected clusters. We demonstrate that candidate superclustersmore » and voids along the line of sight can be identified, exploiting the tight scatter of the cluster photometric redshifts. We cross-correlate the mass map with a foreground magnitude-limited galaxy sample from the same data. Our measurement gives results consistent with mock catalogs from N-body simulations that include the primary sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the cross-correlation is at the 6.8σ level with 20 arcminute smoothing. We find that the contribution of systematics to the lensing mass maps is generally within measurement uncertainties. In this study, we analyze less than 3% of the final area that will be mapped by the DES; the tools and analysis techniques developed in this paper can be applied to forthcoming larger data sets from the survey.« less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Vikram, V.; Sheldon, E.; Chang, C.; Jain, B.; Bacon, D.; Amara, A.; Becker, M. R.; Bernstein, G.; Bonnett, C.; Bridle, S.; et al
2015-07-29
Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density across the sky. These mass maps provide a powerful tool for studying cosmology as they probe both luminous and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in a 139 deg2 area from the Dark Energy Survey science verification data. We compare the distribution of mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map correlate well with the distribution of optically detected clusters. We demonstrate that candidate superclusters andmorevoids along the line of sight can be identified, exploiting the tight scatter of the cluster photometric redshifts. We cross-correlate the mass map with a foreground magnitude-limited galaxy sample from the same data. Our measurement gives results consistent with mock catalogs from N-body simulations that include the primary sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the cross-correlation is at the 6.8? level with 20 arcminute smoothing. We find that the contribution of systematics to the lensing mass maps is generally within measurement uncertainties. We analyze less than 3% of the final area that will be mapped by the DES; the tools and analysis techniques developed in this paper can be applied to forthcoming larger data sets from the survey.less
Vikram, V.; Sheldon, E.; Chang, C.; Jain, B.; Bacon, D.; Amara, A.; Becker, M. R.; Bernstein, G.; Bonnett, C.; Bridle, S.; Brout, D.; Busha, M.; Frieman, J.; Gaztanaga, E.; Hartley, W.; Jarvis, M.; Kacprzak, T.; Kovacs, A.; Lahav, O.; Leistedt, B.; Lin, H.; Melchior, P.; Peiris, H.; Rozo, E.; Rykoff, E.; Sanchez, C.; Sheldon, E.; Troxel, M. A.; Wechsler, R.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Benoit-Levy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Kind, M. Carrasco; Castander, F. J.; Crocce, M.; Cunha, C. E.
2015-07-29
Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density across the sky. These mass maps provide a powerful tool for studying cosmology as they probe both luminous and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in a 139 deg^{2} area from the Dark Energy Survey science verification data. We compare the distribution of mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map correlate well with the distribution of optically detected clusters. We demonstrate that candidate superclusters and voids along the line of sight can be identified, exploiting the tight scatter of the cluster photometric redshifts. We cross-correlate the mass map with a foreground magnitude-limited galaxy sample from the same data. Our measurement gives results consistent with mock catalogs from N-body simulations that include the primary sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the cross-correlation is at the 6.8? level with 20 arcminute smoothing. We find that the contribution of systematics to the lensing mass maps is generally within measurement uncertainties. We analyze less than 3% of the final area that will be mapped by the DES; the tools and analysis techniques developed in this paper can be applied to forthcoming larger data sets from the survey.
Vikram, V.
2015-07-29
Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density across the sky. These mass maps provide a powerful tool for studying cosmology as they probe both luminous and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in a 139 deg^{2} area from the Dark Energy Survey (DES) science verification data. We compare the distribution of mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map correlate well with the distribution of optically detected clusters. We demonstrate that candidate superclusters and voids along the line of sight can be identified, exploiting the tight scatter of the cluster photometric redshifts. We cross-correlate the mass map with a foreground magnitude-limited galaxy sample from the same data. Our measurement gives results consistent with mock catalogs from N-body simulations that include the primary sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the cross-correlation is at the 6.8? level with 20 arcminute smoothing. We find that the contribution of systematics to the lensing mass maps is generally within measurement uncertainties. In this study, we analyze less than 3% of the final area that will be mapped by the DES; the tools and analysis techniques developed in this paper can be applied to forthcoming larger data sets from the survey.
Lensed CMB simulation and parameter estimation
Lewis, Antony
2005-04-15
Modelling of the weak lensing of the CMB will be crucial to obtain correct cosmological parameter constraints from forthcoming precision CMB anisotropy observations. The lensing affects the power spectrum as well as inducing non-Gaussianities. We discuss the simulation of full-sky CMB maps in the weak lensing approximation and describe a fast numerical code. The series expansion in the deflection angle cannot be used to simulate accurate CMB maps, so a pixel remapping must be used. For parameter estimation accounting for the change in the power spectrum but assuming Gaussianity is sufficient to obtain accurate results up to Planck sensitivity using current tools. A fuller analysis may be required to obtain accurate error estimates and for more sensitive observations. We demonstrate a simple full-sky simulation and subsequent parameter estimation at Planck-like sensitivity. The lensed CMB simulation and parameter estimation codes are publicly available.
Gravitational instabilities of superspinars
Pani, Paolo; Barausse, Enrico; Berti, Emanuele; Cardoso, Vitor
2010-08-15
Superspinars are ultracompact objects whose mass M and angular momentum J violate the Kerr bound (cJ/GM{sup 2}>1). Recent studies analyzed the observable consequences of gravitational lensing and accretion around superspinars in astrophysical scenarios. In this paper we investigate the dynamical stability of superspinars to gravitational perturbations, considering either purely reflecting or perfectly absorbing boundary conditions at the 'surface' of the superspinar. We find that these objects are unstable independently of the boundary conditions, and that the instability is strongest for relatively small values of the spin. Also, we give a physical interpretation of the various instabilities that we find. Our results (together with the well-known fact that accretion tends to spin superspinars down) imply that superspinars are very unlikely astrophysical alternatives to black holes.
Wide-Field Lensing Mass Maps from DES Science Verification Data
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Chang, C.; Vikram, V.; Jain, B.
2015-07-29
We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg2 from the Dark Energy Survey (DES) Science Verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for super-clusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8? level with 20 arcminute smoothing. These measurementsmoreare consistent with simulated galaxy catalogs based on ?CDM Nbody simulations, suggesting low systematics uncertainties in the map. We summarize our key findings in this letter; the detailed methodology and tests for systematics are presented in a companion paper.less
LENSING NOISE IN MILLIMETER-WAVE GALAXY CLUSTER SURVEYS
Hezaveh, Yashar; Vanderlinde, Keith; Holder, Gilbert; De Haan, Tijmen
2013-08-01
We study the effects of gravitational lensing by galaxy clusters of the background of dusty star-forming galaxies (DSFGs) and the cosmic microwave background (CMB), and examine the implications for Sunyaev-Zel'dovich-based (SZ) galaxy cluster surveys. At the locations of galaxy clusters, gravitational lensing modifies the probability distribution of the background flux of the DSFGs as well as the CMB. We find that, in the case of a single-frequency 150 GHz survey, lensing of DSFGs leads both to a slight increase ({approx}10%) in detected cluster number counts (due to a {approx}50% increase in the variance of the DSFG background, and hence an increased Eddington bias) and a rare (occurring in {approx}2% of clusters) 'filling-in' of SZ cluster signals by bright strongly lensed background sources. Lensing of the CMB leads to a {approx}55% reduction in CMB power at the location of massive galaxy clusters in a spatially matched single-frequency filter, leading to a net decrease in detected cluster number counts. We find that the increase in DSFG power and decrease in CMB power due to lensing at cluster locations largely cancel, such that the net effect on cluster number counts for current SZ surveys is subdominant to Poisson errors.
DOE R&D Accomplishments [OSTI]
Lee, T. D.
1970-07-01
While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.
Shnir, Ya. M.
2015-12-15
We construct solutions of the 3 + 1 dimensional Faddeev–Skyrme model coupled to Einstein gravity. The solutions are static and asymptotically flat. They are characterized by a topological Hopf number. We investigate the dependence of the ADM masses of gravitating Hopfions on the gravitational coupling. When gravity is coupled to flat space solutions, a branch of gravitating Hopfion solutions arises and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead, in the limit of a vanishing coupling constant, it connects to either the Bartnik–McKinnon or a generalized Bartnik–McKinnon solution. We further find that in the strong-coupling limit, there is no difference between the gravitating solitons of the Skyrme model and the Faddeev–Skyrme model.
Probing gravitational dark matter
Ren, Jing; He, Hong-Jian
2015-03-27
So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.
Gravitational waves from gravitational collapse
Fryer, Christopher L; New, Kimberly C
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Analytic models of plausible gravitational lens potentials
Baltz, Edward A.; Marshall, Phil; Oguri, Masamune, E-mail: eabaltz@slac.stanford.edu, E-mail: pjm@physics.ucsb.edu, E-mail: oguri@slac.stanford.edu [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, PO Box 20450, MS29, Stanford, CA 94309 (United States)] [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, PO Box 20450, MS29, Stanford, CA 94309 (United States)
2009-01-15
Gravitational lenses on galaxy scales are plausibly modelled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sersic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasising that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential. We also provide analytic formulae for the lens potentials of Sersic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modelled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses.
Three gravitationally lensed supernovae behind clash galaxy clusters...
Office of Scientific and Technical Information (OSTI)
Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States) Department of Physics and Astronomy, The Johns Hopkins ...
Discovery of Four Gravitationally Lensed Quasarsfrom the Sloan...
Office of Scientific and Technical Information (OSTI)
Resource Type: Journal Article Resource Relation: Journal Name: The Astronimical Journal Research Org: Stanford Linear Accelerator Center (SLAC) Sponsoring Org: USDOE...
Gu, X.; Altinbas, Z.; Bruno, D.; Binello, S.; Costanzo, M.; Drees, A.; Fischer, W.; Gassner, D. M.; Hock, J.; Hock, K.; Harvey, M.; Luo, Y.; Marusic, A.; Mi, C.; Mernick, K.; Minty, M.; Michnoff, R.; Miller, T. A.; Pikin, A. I.; Robert-Demolaize, G.; Samms, T.; Shrey, T. C.; Schoefer, V.; Tan, Y.; Than, R.; Thieberger, P.; White, S. M.
2015-05-03
In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.
Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.
2000-01-01
A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.
CMB ISW-lensing bispectrum from cosmic strings
Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro E-mail: sendouda@cc.hirosaki-u.ac.jp
2014-02-01
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
DOE R&D Accomplishments [OSTI]
Lee, T. D.
1957-06-01
Experimental results on the non-conservation of parity and charge conservation in weak interactions are reviewed. The two-component theory of the neutrino is discussed. Lepton reactions are examined under the assumption of the law of conservation of leptons and that the neutrino is described by a two- component theory. From the results of this examination, the universal Fermi interactions are analyzed. Although reactions involving the neutrino can be described, the same is not true of reactions which do not involve the lepton, as the discussion of the decay of K mesons and hyperons shows. The question of the invariance of time reversal is next examined. (J.S.R.)
Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Chang, C.
2015-07-29
We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg2 from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We also find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8σ level with 20 arc min smoothing. Thesemore » measurements are consistent with simulated galaxy catalogs based on N-body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. Finally, we summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.« less
Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data
Chang, C.
2015-07-29
We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg^{2} from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We also find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8σ level with 20 arc min smoothing. These measurements are consistent with simulated galaxy catalogs based on N-body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. Finally, we summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.
Relativistic images in Randall-Sundrum II braneworld lensing
Bin-Nun, Amitai Y.
2010-06-15
In this paper, we explore the properties of gravitational lensing by black holes in the Randall-Sundrum II braneworld. We use numerical techniques to calculate lensing observables using the tidal Reissner-Nordstrom (TRN) and Garriga-Tanaka metrics to examine supermassive black holes and primordial black holes. We introduce a new way to parametrize tidal charge in the TRN metric which results in a large increase in image magnifications for braneworld primordial black holes compared to their 4-dimensional analogs. Finally, we offer a mathematical analysis that allows us to assess the validity of the logarithmic approximation of the bending angle for any static, spherically symmetric metric. We apply this to the TRN metric and show that it is valid for any amount of tidal charge.
The M31 pixel lensing plan campaign: MACHO lensing and self-lensing signals
Calchi Novati, S.; Scarpetta, G.; Bozza, V.; Bruni, I.; Gualandi, R.; Dall'Ora, M.; De Paolis, F.; Ingrosso, G.; Nucita, A.; Strafella, F.; Dominik, M.; Jetzer, Ph.; Mancini, L.; Safonova, M.; Subramaniam, A.; Sereno, M.; Gould, A.; Collaboration: PLAN Collaboration
2014-03-10
We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out over 4 years (2007-2010) at the 1.5 m Cassini telescope in Loiano (Astronomical Observatory of BOLOGNA, OAB) plus 10 days of data taken in 2010 at the 2 m Himalayan Chandra Telescope monitoring the central part of M31 (two fields of about 13' 12.'6). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations. As a result, we detect three microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both 'self lensing' and 'MACHO lensing' lens populations, given by M31 stars and dark matter halo MACHOs, in M31 and the Milky Way, respectively. The total number of events is consistent with the expected self-lensing rate. Specifically, we evaluate an expected signal of about two self-lensing events. As for MACHO lensing, for full 0.5(10{sup 2}) M {sub ?} MACHO halos, our prediction is for about four (seven) events. The comparatively small number of expected MACHO versus self-lensing events, together with the small number statistics at our disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would-be MACHO population, f, of about 15% for 0.5 M {sub ?} MACHOs.
Gravitational Waves Community Lecture
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Gravitational Waves Community Lecture Gravitational Waves Community Lecture WHEN: Sep 19, 2016 7:30 PM - 8:30 PM WHERE: Grand Ballroom at the Eldorado Hotel 309 W San Francisco St Santa Fe, New Mexico 87501 USA (505) 988-4455 SPEAKER: Gabriela Gonzalez CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Sponsored by Los Alamos National Laboratory, University of New Mexico, St. John's College and Santa Fe Community College The Los Alamos National
Weak Interaction | Jefferson Lab
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Weak Interaction February 22, 2011 Jefferson Lab has an accelerator designed to do incisive medium energy physics. This program is dominated by experiments aimed at developing our...
Tevatron Electron Lenses: Design and Operation
Shiltsev, Vladimir; Bishofberger, Kip; Kamerdzhiev, Vsevolod; Kozub, Sergei; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; /Fermilab /SLAC /Fermilab /Serpukhov, IHEP /Novosibirsk, IYF /Serpukhov, IHEP /Fermilab
2008-08-01
The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.
3C 220.3: A radio galaxy lensing a submillimeter galaxy
Haas, Martin; Westhues, Christian; Chini, Rolf; Leipski, Christian; Klaas, Ulrich; Meisenheimer, Klaus; Barthel, Peter; Koopmans, Lon V. E.; Wilkes, Belinda J.; Bussmann, R. Shane; Willner, S. P.; Ashby, Matthew L. N.; Kuraszkiewicz, Joanna; Vegetti, Simona; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Lagattuta, David J.; Stern, Daniel; Wylezalek, Dominika
2014-07-20
Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ?1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 0.3 and 0.55 0.3. The mass to i-band light ratios of A and B, M/L{sub i}?84 M{sub ?} L{sub ?}{sup ?1}, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 ?m) = 440 mJy owing to a magnification factor ? ? 10. The SMG spectrum shows luminous, narrow C IV ?1549 emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust-enshrouded nucleus.
Gravitational properties of antimatter
Goldman, T.; Nieto, M.M.
1985-01-01
Quantum gravity is at the forefront of modern particle physics, yet there are no direct tests, for antimatter, of even the principle of equivalence. We note that modern descriptions of gravity, such as fibre bundles and higher dimensional spacetimes, allow violations of the commonly stated form of the principle of equivalence, and of CPT. We review both indirect arguments and experimental tests of the expected gravitational properties of CPT-conjugate states. We conclude that a direct experimental test of the gravitational properties of antimatter, at the 1% (or better) level, would be of great value. We identify some experimental reasons which make the antiproton a prime candidate for this test, and we strongly urge that such an experiment be done at LEAR. 21 references.
Fabrication of wedged multilayer Laue lenses
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.
2015-01-01
We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less
Fabrication of wedged multilayer Laue lenses
Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.
2015-01-01
We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Braggs law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.
A redshift survey of the strong-lensing cluster ABELL 383
Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.; Diaferio, Antonaldo; Coe, Dan; Rines, Kenneth J. E-mail: hhwang@cfa.harvard.edu E-mail: diaferio@ph.unito.it E-mail: kenneth.rines@wwu.edu
2014-03-01
Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.
Searching for Novel Gravitational Effects
Christopher Stubb
2010-09-01
Stubbs, Chair of the Physics Department at Harvard University, discusses experiments that search for novel gravitational effect and scientific observations about it.
Electron Lenses for the Large Hadron Collider
Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua, Belen
2014-07-01
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.
Jackson, N.
2011-09-20
We present new radio observations of the large-separation gravitationally lensed quasar SDSS J1004+4112, taken in a total of 6 hr of observations with the Expanded Very Large Array. The maps reach a thermal noise level of approximately 4 {mu}Jy. We detect four of the five lensed images at the 15-35 {mu}Jy level, representing a source of intrinsic flux density, after allowing for lensing magnification, of about 1 {mu}Jy, intrinsically probably the faintest radio source yet detected. This reinforces the utility of gravitational lensing in potentially allowing us to study nJy-level sources before the advent of the Square Kilometre Array. In an optical observation taken three months after the radio observation, image C is the brightest image, whereas the radio map shows flux density ratios consistent with previous optical observations. Future observations separated by a time delay will give the intrinsic flux ratios of the images in this source.
Impact of magnification and size bias on the weak lensing power...
Office of Scientific and Technical Information (OSTI)
DOI: 10.1103PhysRevD.89.023515 Select the DOI to obtain a copy of this journal article from the publisher. Find in Google Scholar Find in Google Scholar Search WorldCat Search ...
Spherical gravitational collapse in N dimensions
Goswami, Rituparno; Joshi, Pankaj S.
2007-10-15
We investigate here spherically symmetric gravitational collapse in a space-time with an arbitrary number of dimensions and with a general type I matter field, which is a broad class that includes most of the physically reasonable matter forms. We show that given the initial data for matter in terms of the initial density and pressure profiles at an initial surface t=t{sub i} from which the collapse evolves, there exist the rest of the initial data functions and classes of solutions of Einstein equations which we construct here, such that the space-time evolution goes to a final state which is either a black hole or a naked singularity, depending on the nature of initial data and evolutions chosen, and subject to validity of the weak energy condition. The results are discussed and analyzed in the light of the cosmic censorship hypothesis in black hole physics. The formalism here combines the earlier results on gravitational collapse in four dimensions in a unified treatment. Also the earlier work is generalized to higher-dimensional space-times to allow a study of the effect of the number of dimensions on the possible final outcome of the collapse in terms of either a black hole or naked singularity. No restriction is adopted on the number of dimensions, and other limiting assumptions such as self-similarity of space-time are avoided, in order to keep the treatment general. Our methodology allows us to consider to an extent the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse.
Weakly broken galileon symmetry
Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN...
Office of Scientific and Technical Information (OSTI)
Authors: Carrasco, E. R. ; Gomez, P. L. ; Lee, H. ; Diaz, R. ; Bergmann, M. ; Turner, J. E. H. ; Miller, B. W. ; West, M. J. 1 ; Verdugo, T. 2 + Show Author Affiliations Gemini ...
Brandao, C. S. S.; De Araujo, J. C. N., E-mail: claudiosoriano.uesc@gmail.com, E-mail: jcarlos.dearaujo@inpe.br [Divisao de Astrofisica, Instituto Nacional de Pesquisas Espaciais, S. J. Campos, SP 12227-010 (Brazil)
2012-05-01
A way to probe alternative theories of gravitation is to study if they could account for the structures of the universe. We therefore modified the well-known Gadget-2 code to probe alternative theories of gravitation through galactic dynamics. As an application, we simulate the evolution of spiral galaxies to probe alternative theories of gravitation whose weak field limits have a Yukawa-like gravitational potential. These simulations show that galactic dynamics can be used to constrain the parameters associated with alternative theories of gravitation. It is worth stressing that the recipe given in this study can be applied to any other alternative theory of gravitation in which the superposition principle is valid.
Automation Enhancement of Multilayer Laue Lenses
Lauer K. R.; Conley R.
2010-12-01
X-ray optics fabrication at Brookhaven National Laboratory has been facilitated by a new, state of the art magnetron sputtering physical deposition system. With its nine magnetron sputtering cathodes and substrate carrier that moves on a linear rail via a UHV brushless linear servo motor, the system is capable of accurately depositing the many thousands of layers necessary for multilayer Laue lenses. I have engineered a versatile and automated control program from scratch for the base system and many subsystems. Its main features include a custom scripting language, a fully customizable graphical user interface, wireless and remote control, and a terminal-based interface. This control system has already been successfully used in the creation of many types of x-ray optics, including several thousand layer multilayer Laue lenses.Before reaching the point at which a deposition can be run, stencil-like masks for the sputtering cathodes must be created to ensure the proper distribution of sputtered atoms. Quality of multilayer Laue lenses can also be difficult to measure, given the size of the thin film layers. I employ my knowledge of software and algorithms to further ease these previously painstaking processes with custom programs. Additionally, I will give an overview of an x-ray optic simulator package I helped develop during the summer of 2010. In the interest of keeping my software free and open, I have worked mostly with the multiplatform Python and the PyQt application framework, utilizing C and C++ where necessary.
Weakly relativistic plasma expansion
Fermous, Rachid Djebli, Mourad
2015-04-15
Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.
On possible use of electron lenses in LHC
Shiltsev, V.; /Fermilab
2006-10-01
We present basic facts about electron lenses used in high-energy accelerators and discuss their possible application in the LHC. Four proposals are presented: (a) electron lenses for compensation of head-on beam-beam effects; (b) electron lens as tune-spreader for better beam stability; (c) as electromagnetic primary collimator for ions and protons; (d) satellite bunch cleaning by electron lenses. Main requirements are discussed.
What are Gravitational Waves? | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
are Gravitational Waves? What are Gravitational Waves? June 27, 2016 - 1:03pm Addthis Einstein was right! Gravitational Waves exist. Find out how they work. | Graphic courtesy of California Institute of Technology. Einstein was right! Gravitational Waves exist. Find out how they work. | Graphic courtesy of California Institute of Technology. Daniel Holz University of Chicago Albert Einstein first predicted gravitational waves almost a century ago, but only since September 15, 2015, have
Tevatron Electron Lenses: Design and Operation
Shiltsev, Vladimir; Bishofberger, Kip; Kamerdzhiev, Vsevolod; Kozub, Sergei; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; Seryi, Andrei; Solyak, Nikolai; Sytnik, Veniamin; Tiunov, Mikhail; Tkachenko, Leonid; Wildman, David; Wolff, Daniel; Zhang, Xiao-Long; /Fermilab
2011-09-12
Fermilab's Tevatron is currently the world's highest energy accelerator in which tightly focused beams of 980 GeV protons and antiprotons collide at two dedicated interaction points (IPs). Both beams share the same beam pipe and magnet aperture and, in order to avoid multiple detrimental head-on collisions, the beams are placed on separated orbits everywhere except the main IPs by using high-voltage (HV) electrostatic separators. The electromagnetic beam-beam interaction at the main IPs together with the long-range interactions between separated beams adversely affect the collider performance, reducing the luminosity integral per store (period of continuous collisions) by 10-30%. Tuning the collider operation for optimal performance becomes more and more cumbersome as the beam intensities and luminosity increase. The long-range effects which (besides being nonlinear) vary from bunch to bunch are particularly hard to mitigate. A comprehensive review of the beam-beam effects in the Tevatron Collider Run II can be found in Ref. [1]. The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.
Electron beam generation in Tevatron electron lenses
Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF
2006-08-01
New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.
Construction progress of the RHIC electron lenses
Fischer W.; Altinbas, Z.; Anerella, M.; Beebe, E.; et al
2012-05-20
In polarized proton operation the RHIC performance is limited by the head-on beam-beam effect. To overcome this limitation two electron lenses are under construction. We give an overview of the construction progress. Guns, collectors and the warm electron beam transport solenoids with their power supplies have been constructed. The superconducting solenoids that guide the electron beam during the interaction with the proton beam are near completion. A test stand has been set up to verify the performance of the gun, collector and some of the instrumentation. The infrastructure is being prepared for installation, and simulations continue to optimize the performance.
Compound Refractive Lenses for Thermal Neutron Applications
Gary, Charles K.
2013-11-12
This project designed and built compound refractive lenses (CRLs) that are able to focus, collimate and image using thermal neutrons. Neutrons are difficult to manipulate compared to visible light or even x rays; however, CRLs can provide a powerful tool for focusing, collimating and imaging neutrons. Previous neutron CRLs were limited to long focal lengths, small fields of view and poor resolution due to the materials available and manufacturing techniques. By demonstrating a fabrication method that can produce accurate, small features, we have already dramatically improved the focal length of thermal neutron CRLs, and the manufacture of Fresnel lens CRLs that greatly increases the collection area, and thus efficiency, of neutron CRLs. Unlike a single lens, a compound lens is a row of N lenslets that combine to produce an N-fold increase in the refraction of neutrons. While CRLs can be made from a variety of materials, we have chosen to mold Teflon lenses. Teflon has excellent neutron refraction, yet can be molded into nearly arbitrary shapes. We designed, fabricated and tested Teflon CRLs for neutrons. We demonstrated imaging at wavelengths as short as 1.26 ? with large fields of view and achieved resolution finer than 250 μm which is better than has been previously shown. We have also determined designs for Fresnel CRLs that will greatly improve performance.
Gavazzi, R.; Cooray, A.; Conley, A.; Aguirre, J. E.; Amblard, A.; Auld, R.; Beelen, A.; Blain, A.; Bock, J.; Bradford, C. M.; Bridge, C.; Djorgovski, S. G.; Blundell, R.; Brisbin, D.; Burgarella, D.; Chanial, P.; Christopher, N.; Clements, D. L.; Cox, P.
2011-09-10
We present the results of a gravitational lensing analysis of the bright z{sub s} = 2.957 submillimeter galaxy (SMG) HERMES found in the Herschel/SPIRE science demonstration phase data from the Herschel Multi-tiered Extragalactic Survey (HerMES) project. The high-resolution imaging available in optical and near-IR channels, along with CO emission obtained with the Plateau de Bure Interferometer, allows us to precisely estimate the intrinsic source extension and hence estimate the total lensing magnification to be {mu} = 10.9 {+-} 0.7. We measure the half-light radius R{sub eff} of the source in the rest-frame near-UV and V bands that characterize the unobscured light coming from stars and find R{sub eff,*} = [2.0 {+-} 0.1] kpc, in good agreement with recent studies on the SMG population. This lens model is also used to estimate the size of the gas distribution (R{sub eff,gas} = [1.1 {+-} 0.5] kpc) by mapping back in the source plane the CO (J = 5 {yields} 4) transition line emission. The lens modeling yields a relatively large Einstein radius R{sub Ein} = 4.''10 {+-} 0.''02, corresponding to a deflector velocity dispersion of [483 {+-} 16] km s{sup -1}. This shows that HERMES is lensed by a galaxy group-size dark matter halo at redshift z{sub l} {approx} 0.6. The projected dark matter contribution largely dominates the mass budget within the Einstein radius with f{sub dm}(< R{sub Ein}) {approx} 80%. This fraction reduces to f{sub dm}(< R{sub eff,G1} {approx_equal} 4.5 kpc) {approx} 47% within the effective radius of the main deflecting galaxy of stellar mass M{sub *,G1} = [8.5 {+-} 1.6] x 10{sup 11} M{sub sun}. At this smaller scale the dark matter fraction is consistent with results already found for massive lensing ellipticals at z {approx} 0.2 from the Sloan Lens ACS Survey.
GRAVITATIONAL WAVES FROM STELLAR COLLAPSE
C. L. FRYER
2001-01-01
Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.
Constraints on axion inflation from the weak gravity conjecture
Rudelius, Tom
2015-09-08
We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and ‘anti-alignment’ of C{sub 4} axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the ‘generalized’ weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of C{sub 4} axions in type IIB compactifications on a Calabi-Yau three-fold is dominated by contributions from D7-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.
MEASURING MICROLENSING USING SPECTRA OF MULTIPLY LENSED QUASARS
Motta, V.; Mediavilla, E.; Munoz, J. A. E-mail: emg@iac.es E-mail: jmunoz@uv.es
2012-08-10
We report on a program of spectroscopic observations of gravitationally lensed QSOs with multiple images. We seek to establish whether microlensing is occurring in each QSO image using only single-epoch observations. We calculate flux ratios for the cores of emission lines in image pairs to set a baseline for no microlensing. The offset of the continuum flux ratios relative to this baseline yields the microlensing magnification free from extinction, as extinction affects the continuum and the lines equally. When we find chromatic microlensing, we attempt to constrain the size of the QSO accretion disk. SDSSJ1004+4112 and HE1104-1805 show chromatic microlensing with amplitudes 0.2 < |{Delta}m| < 0.6 and 0.2 < |{Delta}m| < 0.4 mag, respectively. Modeling the accretion disk with a Gaussian source (I{proportional_to}exp (- R{sup 2}/2r{sup 2}{sub s})) of size r{sub s} {proportional_to}{lambda}{sup p} and using magnification maps to simulate microlensing, we find r{sub s} ({lambda}3363) = 7 {+-} 3 lt-day(18.1 {+-} 7.8 Multiplication-Sign 10{sup 15} cm) and p = 1.1 {+-} 0.4 for SDSS1004+4112, and r{sub s} ({lambda}3363) = 6 {+-} 2 lt-day(15.5 {+-} 5.2 Multiplication-Sign 10{sup 15} cm) and p = 0.7 {+-} 0.1 for HE1104-1805. For SDSSJ1029+2623, we find strong chromaticity of {approx}0.4 mag in the continuum flux ratio, which probably arises from microlensing, although not all the available data fit within this explanation. For Q0957+561, we measure B - A magnitude differences of 0.4 mag, much greater than the {approx}0.05 mag amplitude usually inferred from light-curve variability. It may substantially modify the current interpretations of microlensing in this system, likely favoring the hypothesis of smaller sources and/or larger microdeflectors. For HS0818+1227, our data yield possible evidence of microlensing.
Lensing reconstruction from a patchwork of polarization maps
Namikawa, Toshiya; Nagata, Ryo E-mail: rnagata@post.kek.jp
2014-09-01
The lensing signals involved in CMB polarization maps have already been measured with ground-based experiments such as SPTpol and POLARBEAR, and would become important as a probe of cosmological and astrophysical issues in the near future. Sizes of polarization maps from ground-based experiments are, however, limited by contamination of long wavelength modes of observational noise. To further extract the lensing signals, we explore feasibility of measuring lensing signals from a collection of small sky maps each of which is observed separately by a ground-based large telescope, i.e., lensing reconstruction from a patchwork map of large sky coverage organized from small sky patches. We show that, although the B-mode power spectrum obtained from the patchwork map is biased due to baseline uncertainty, bias on the lensing potential would be negligible if the B-mode on scales larger than the blowup scale of 1/f noise is removed in the lensing reconstruction. As examples of cosmological applications, we also show 1) the cross-correlations between the reconstructed lensing potential and full-sky temperature/polarization maps from satellite missions such as PLANCK and LiteBIRD, and 2) the use of the reconstructed potential for delensing B-mode polarization of LiteBIRD observation.
Kroger, H.
1980-09-23
The disclosed SQUID (Superconducting quantum interference device) comprises two superposed superconductive layers with an insulating layer therebetween. A plurality of holes through the insulating layer filled with superconductive material form weak links between the superconductive layers. One or more control lines superposed with respect to the superconductive layers provide magnetic flux through the area between the weak links to control the zero voltage supercurrent flowing through the weak links from one of the superconductive layers to the other thereby providing the switching function for Josephson superconductive circuits.
Design and demonstration of broadband thin planar diffractive acoustic lenses
Wang, Wenqi; Xie, Yangbo; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.
2014-09-08
We present here two diffractive acoustic lenses with subwavelength thickness, planar profile, and broad operation bandwidth. Tapered labyrinthine unit cells with their inherently broadband effective material properties are exploited in our design. Both the measured and the simulated results are showcased to demonstrate the lensing effect over more than 40% of the central frequency. The focusing of a propagating Gaussian modulated sinusoidal pulse is also demonstrated. This work paves the way for designing diffractive acoustic lenses and more generalized phase engineering diffractive elements with labyrinthine acoustic metamaterials.
Coupling effect on the proton optics from the electron lenses
Luo, Y.; Gu, X.; Fischer, W.
2010-08-01
In this note we calculate the effect of the electron lense solenoids on the proton optics. Electron lenses (e-lenses) are to be used for head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). Electron lenses are to be used for head-on beam-beam compensation in the polarized proton (pp) runs to compensate the large tune spread generated by the head-on proton-proton beam-beam interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). The main part of an electron lens is a superconducting solenoid with a longitudinal magnetic field up to 6 T. In this report, we will estimate the e-elenses effects on the {beta} and dispersion functions with 100 GeV and 250 GeV pp run lattices. Table 1 lists some lattice and beam parameters to be used in the following study.
Gravitational wave background from Standard Model physics: qualitative features
Ghiglieri, J.; Laine, M.
2015-07-16
Because of physical processes ranging from microscopic particle collisions to macroscopic hydrodynamic fluctuations, any plasma in thermal equilibrium emits gravitational waves. For the largest wavelengths the emission rate is proportional to the shear viscosity of the plasma. In the Standard Model at T>160 GeV, the shear viscosity is dominated by the most weakly interacting particles, right-handed leptons, and is relatively large. We estimate the order of magnitude of the corresponding spectrum of gravitational waves. Even though at small frequencies (corresponding to the sub-Hz range relevant for planned observatories such as eLISA) this background is tiny compared with that from non-equilibrium sources, the total energy carried by the high-frequency part of the spectrum is non-negligible if the production continues for a long time. We suggest that this may constrain (weakly) the highest temperature of the radiation epoch. Observing the high-frequency part directly sets a very ambitious goal for future generations of GHz-range detectors.
Finite mass gravitating Yang monopoles
Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram
2008-12-15
We show that gravity cures the infrared divergence of the Yang monopole when a proper definition of conserved quantities in curved backgrounds is used, i.e. the gravitating Yang monopole in cosmological Einstein theory has a finite mass in generic even dimensions (including time). In addition, we find exact Yang-monopole type solutions in the cosmological Einstein-Gauss-Bonnet-Yang-Mills theory and briefly discuss their properties.
Quantum discord with weak measurements
Singh, Uttam Pati, Arun Kumar
2014-04-15
Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the super quantum discord, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states. -- Highlights: Introduced the role of weak measurements in quantifying quantum correlation. We have introduced the notion of the super quantum discord (SQD). For pure entangled state, we show that the SQD exceeds the entanglement entropy. This shows that quantum correlation depends not only on observer but also on measurement strength.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, David A.; Keller, Richard A.
1985-01-01
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10.sup.-5 cm.sup.-1 has been demonstrated using this technique.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, D.A.; Keller, R.A.
1985-10-01
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be related to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10[sup [minus]5] cm[sup [minus]1] has been demonstrated using this technique. 6 figs.
Apparatus and method for measurement of weak optical absorptions by thermally induced laser pulsing
Cremers, D.A.; Keller, R.A.
1982-06-08
The thermal lensing phenomenon is used as the basis for measurement of weak optical absorptions when a cell containing the sample to be investigated is inserted into a normally continuous-wave operation laser-pumped dye laser cavity for which the output coupler is deliberately tilted relative to intracavity circulating laser light, and pulsed laser output ensues, the pulsewidth of which can be rlated to the sample absorptivity by a simple algorithm or calibration curve. A minimum detection limit of less than 10/sup -5/ cm/sup -1/ has been demonstrated using this technique.
Corrigendum and addendum. Modeling weakly nonlinear acoustic...
Office of Scientific and Technical Information (OSTI)
Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation Citation Details In-Document Search Title: Corrigendum and addendum. Modeling weakly nonlinear ...
Gravitational effects on inflaton decay
Ema, Yohei; Jinno, Ryusuke; Mukaida, Kyohei; Nakayama, Kazunori
2015-05-22
We point out that the inflaton inevitably couples to all non-conformally coupled matters gravitationally through an oscillation in the Hubble parameter or the cosmic scale factor. It leads to particle production during the inflaton oscillation regime, which is most efficient just after inflation. Moreover, the analysis is extended to the model with non-minimal inflaton couplings to gravity, in which the Hubble parameter oscillates more violently. We apply our results to the graviton production by the inflaton: gravitons are also produced just after inflation, but the non-minimal coupling does not induce inflaton decay into the graviton pair.
Critical condition in gravitational shock wave collision and...
Office of Scientific and Technical Information (OSTI)
Critical condition in gravitational shock wave collision and heavy ion collisions Citation Details In-Document Search Title: Critical condition in gravitational shock wave ...
Stability analysis of 5D gravitational solutions with N bulk...
Office of Scientific and Technical Information (OSTI)
Stability analysis of 5D gravitational solutions with N bulk scalar fields Prev Next Title: Stability analysis of 5D gravitational solutions with N bulk scalar fields ...
General properties of the gravitational wave spectrum from phase...
Office of Scientific and Technical Information (OSTI)
General properties of the gravitational wave spectrum from phase transitions Citation Details In-Document Search Title: General properties of the gravitational wave spectrum from ...
A STUDY OF GRAVITATIONAL LENS CHROMATICITY WITH THE HUBBLE SPACE TELESCOPE
Munoz, J. A.; Mosquera, A. M.; Mediavilla, E.; Kochanek, C. S.; Falco, E. E.
2011-12-01
We report Hubble Space Telescope observations of six gravitational lenses with the Advanced Camera for Surveys. We measured the flux ratios between the lensed images in seven filters from 8140 #Angstrom# to 2200 #Angstrom#. In three of the systems, HE0512-3329, B1600+434, and H1413+117, we were able to construct UV extinction curves partially overlapping the 2175 #Angstrom# feature and characterize the properties of the dust relative to the Galaxy and the Magellanic Clouds. In HE1104-1804, we detect chromatic microlensing and use it to study the physical properties of the quasar accretion disk. For a Gaussian model of the disk exp (- r{sup 2}/2r{sup 2}{sub s}), scaling with wavelength as r{sub s} {proportional_to}{lambda}{sup p}, we estimate r{sub s} ({lambda}3363) = 4{sup +4}{sub -2} (7 {+-} 4) light days and p = 1.1 {+-} 0.6 (1.0 {+-} 0.6) for a logarithmic (linear) prior on r{sub s} . The remaining two systems, FBQ0951+2635 and SBS1520+530, yielded no useful estimates of extinction or chromatic microlensing.
Chanowitz, M.S.
1986-03-01
Prospects for the study of standard model weak interactions at the SSC are reviewed, with emphasis on the unique capability of the SSC to study the mechanism of electroweak symmetry breaking whether the associated new quanta are at the TeV scale or higher. Symmetry breaking by the minimal Higgs mechanism and by related strong interaction dynamical variants is summarized. A set of measurements is outlined that would calibrate the proton structure functions and the backgrounds to new physics. The ability to measure the three weak gauge boson vertex is found to complement LEP II, with measurements extending to larger Q/sup 2/ at a comparable statistical level in detectable decays. B factory physics is briefly reviewed as one example of a possible broad program of high statistics studies of sub-TeV scale phenomena. The largest section of the talk is devoted to the possible manifestations of symmetry breaking in the WW and ZZ production cross sections. Some new results are presented bearing on the ability to detect high mass WW and ZZ pairs. The principal conclusion is that although nonstandard model scenarios are typically more forgiving, the capability to study symmetry breaking in the standard model (and in related strong interaction dynamical variants) requires achieving the SSC design goals of ..sqrt.. s,L = 40Tev, 10/sup 33/cm/sup -2/sec/sup -1/. 28 refs., 5 figs.
Probing the Proton's Weak Side | Jefferson Lab
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Probing the Proton's Weak Side Probing the Proton's Weak Side Scientists know that the sun gets its shine through the actions of a little-understood fundamental force of nature called the weak force. But there's a lot that they don't know about the weak force. So for the first time, researchers at the U.S. Department of Energy's Jefferson Lab are trying to precisely measure the weak force's grasp on the ubiquitous proton. The weak force is one of four fundamental forces, which include
Gravitational-Wave Astronomy Vicky Kalogera
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Dawn of a new Era: Gravitational-Wave Astronomy Vicky Kalogera Northwestern University - CIERA (Center for Interdisciplinary Exploration & Research March 23, 2016 4:00 p.m. - Wilson Hall, One West The LIGO detectors have detected gravitational waves for the first time ever. The source GW150914 is a pair of heavy black holes that coalesce causing the most powerful explosion of energy ever detected. I will discuss the discovery and its implications for astrophysics
Fundamentals of the relativistic theory of gravitation
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
An extended exposition of the relativistic theory of gravitation (RTG) proposed by Logunov, Vlasov, and Mestvirishvili is presented. The RTG was constructed uniquely on the basis of the relativity principle and the geometrization principle by regarding the gravitational field as a physical field in the spirit of Faraday and Maxwell possessing energy, momentum, and spins 2 and 0. In the theory, conservation laws for the energy, momentum, and angular momentum for the matter and gravitational field taken together are strictly satisfied. The theory explains all the existing gravitational experiments. When the evolution of the universe is analyzed, the theory leads to the conclusion that the universe is infinite and flat, and it is predicted to contain a large amount of hidden mass. This missing mass exceeds by almost 40 times the amount of matter currently observed in the universe. The RTG predicts that gravitational collapse, which for a comoving observer occurs after a finite proper time, does not lead to infinite compression of matter but is halted at a certain finite density of the collapsing body. Therefore, according to the RTG there cannot be any objects in nature in which the gravitational contraction of matter to infinite density occurs, i.e., there are no black holes.
Gravitational waves found, black-hole models led the way
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Gravitational waves found, black-hole models led the way Gravitational waves found, black-hole models led the way Gravitational waves were predicted by Einstein's theory of general relativity in 1916, and now, almost exactly 100 years later, the faint ripples across space-time have been found. February 11, 2016 A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. A simulation of two merging black holes, creating gravitational waves. Photo courtesy of
Holography of gravitational action functionals
Mukhopadhyay, Ayan; Padmanabhan, T.
2006-12-15
Einstein-Hilbert (EH) action can be separated into a bulk and a surface term, with a specific ('holographic') relationship between the two, so that either can be used to extract information about the other. The surface term can also be interpreted as the entropy of the horizon in a wide class of spacetimes. Since EH action is likely to just the first term in the derivative expansion of an effective theory, it is interesting to ask whether these features continue to hold for more general gravitational actions. We provide a comprehensive analysis of Lagrangians of the form {radical}(-g)L={radical}(-g)Q{sub a}{sup bcd}R{sup a}{sub bcd}, in which Q{sub a}{sup bcd} is a tensor with the symmetries of the curvature tensor, made from metric and curvature tensor and satisfies the condition {nabla}{sub c}Q{sub a}{sup bcd}=0, and show that they share these features. The Lanczos-Lovelock Lagrangians are a subset of these in which Q{sub a}{sup bcd} is a homogeneous function of the curvature tensor. They are all holographic, in a specific sense of the term, and--in all these cases--the surface term can be interpreted as the horizon entropy. The thermodynamics route to gravity, in which the field equations are interpreted as TdS=dE+pdV, seems to have a greater degree of validity than the field equations of Einstein gravity itself. The results suggest that the holographic feature of EH action could also serve as a new symmetry principle in constraining the semiclassical corrections to Einstein gravity. The implications are discussed.
Riechers, Dominik A.; Cooray, A.; Carpenter, J. M.; Bock, J.; Omont, A.; Neri, R.; Cox, P.; Harris, A. I.; Baker, A. J.; Frayer, D. T.; Auld, R.; Aussel, H.; Chanial, P.; Blundell, R.; Brisbin, D.; Burgarella, D.; Chapman, S. C.; Clements, D. L.
2011-05-20
We report the detection of CO(J = 5 {yields} 4), CO(J = 3 {yields} 2), and CO(J = 1 {yields} 0) emission in the strongly lensed, Herschel/SPIRE-selected submillimeter galaxy (SMG) HERMES J105751.1+573027 at z = 2.9574 {+-} 0.0001, using the Plateau de Bure Interferometer, the Combined Array for Research in Millimeter-wave Astronomy, and the Green Bank Telescope. The observations spatially resolve the molecular gas into four lensed images with a maximum separation of {approx}9'' and reveal the internal gas dynamics in this system. We derive lensing-corrected CO line luminosities of L'{sub CO(1-0)} = (4.17 {+-} 0.41), L'{sub CO(3-2)} = (3.96 {+-} 0.20), and L'{sub CO(5-4)} = (3.45 {+-} 0.20) x 10{sup 10} ({mu}{sub L}/10.9){sup -1} K km s{sup -1} pc{sup 2}, corresponding to luminosity ratios of r{sub 31} = 0.95 {+-} 0.10, r{sub 53} = 0.87 {+-} 0.06, and r{sub 51} = 0.83 {+-} 0.09. This suggests a total molecular gas mass of M{sub gas} = 3.3x10{sup 10} ({alpha}{sub CO}/0.8) ({mu}{sub L}/10.9){sup -1} M{sub sun}. The gas mass, gas mass fraction, gas depletion timescale, star formation efficiency, and specific star formation rate are typical for an SMG. The velocity structure of the gas reservoir suggests that the brightest two lensed images are dynamically resolved projections of the same dust-obscured region in the galaxy that are kinematically offset from the unresolved fainter images. The resolved kinematics appear consistent with the complex velocity structure observed in major, 'wet' (i.e., gas-rich) mergers. Major mergers are commonly observed in SMGs and are likely to be responsible for fueling their intense starbursts at high gas consumption rates. This study demonstrates the level of detail to which galaxies in the early universe can be studied by utilizing the increase in effective spatial resolution and sensitivity provided by gravitational lensing.
Novel Nanoparticle Production Method Could Lead to Better Lights, Lenses,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Solar Cells Nanoparticle Production Method Could Lead to Better Lights, Lenses, Solar Cells - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization
Gravitational wave extraction in simulations of rotating stellar core collapse
Reisswig, C.; Ott, C. D.; Sperhake, U.; Schnetter, E.
2011-03-15
We perform simulations of general relativistic rotating stellar core collapse and compute the gravitational waves (GWs) emitted in the core-bounce phase of three representative models via multiple techniques. The simplest technique, the quadrupole formula (QF), estimates the GW content in the spacetime from the mass-quadrupole tensor only. It is strictly valid only in the weak-field and slow-motion approximation. For the first time, we apply GW extraction methods in core collapse that are fully curvature based and valid for strongly radiating and highly relativistic sources. These techniques are not restricted to weak-field and slow-motion assumptions. We employ three extraction methods computing (i) the Newman-Penrose (NP) scalar {Psi}{sub 4}, (ii) Regge-Wheeler-Zerilli-Moncrief master functions, and (iii) Cauchy-characteristic extraction (CCE) allowing for the extraction of GWs at future null infinity, where the spacetime is asymptotically flat and the GW content is unambiguously defined. The latter technique is the only one not suffering from residual gauge and finite-radius effects. All curvature-based methods suffer from strong nonlinear drifts. We employ the fixed-frequency integration technique as a high-pass waveform filter. Using the CCE results as a benchmark, we find that finite-radius NP extraction yields results that agree nearly perfectly in phase, but differ in amplitude by {approx}1%-7% at core bounce, depending on the model. Regge-Wheeler-Zerilli-Moncrief waveforms, while, in general, agreeing in phase, contain spurious high-frequency noise of comparable amplitudes to those of the relatively weak GWs emitted in core collapse. We also find remarkably good agreement of the waveforms obtained from the QF with those obtained from CCE. The results from QF agree very well in phase and systematically underpredict peak amplitudes by {approx}5%-11%, which is comparable to the NP results and is certainly within the uncertainties associated with core collapse
CMB lensing reconstruction in the presence of diffuse polarized foregrounds
Fantaye, Y.; Baccigalupi, C.; Leach, S.M.; Yadav, A.P.S. E-mail: bacci@sissa.it E-mail: ayadav@physics.ucsd.edu
2012-12-01
The measurement and characterization of the lensing of the cosmic microwave background (CMB) is key goal of the current and next generation of CMB experiments. We perform a case study of a three-channel balloon-borne CMB experiment observing the sky at (l,b)=(250°,−38°) and attaining a sensitivity of 5.25 μK−arcmin with 8' angular resolution at 150 GHz, in order to assess whether the effect of polarized Galactic dust is expected to be a significant contaminant to the lensing signal reconstructed using the EB quadratic estimator. We find that for our assumed dust model, polarization fractions of about as low as a few percent may lead to a significant dust bias to the lensing convergence power spectrum. We investigated a parametric component separation method, proposed by Stompor et al. (2009), as well as a template cleaning method, for mitigating the effect of this dust bias. The template-based method recovers unbiased convergence power spectrum in all polarization fraction cases we considered, while for the component separation technique we find a dust contrast regime in which the accuracy of the profile likelihood spectral index estimate breaks down, and in which external information on the dust frequency scaling is needed. We propose a criterion for putting a requirement on the accuracy with which the dust spectral index must be estimated or constrained, and demonstrate that if this requirement is met, then the dust bias can be removed.
Combining Galaxy-Galaxy Lensing and Galaxy Clustering
Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa
2015-01-01
Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Erin Sheldon, Brookhaven National Laboratory Title: Weak Gravitational Lensing of Galaxy Clusters 3:30 DIRECTOR'S COFFEE BREAK 2nd Flr X-Over 4:00 All Experimenters' Meeting...
The Third Image of the Large-Separation Lensed Quasar SDSS J1029+2623
Oguri, Masamune; Ofek, Eran O.; Inada, Naohisa; Morokuma, Tomoki; Falco, Emilio E.; Kochanek, Christopher S.; Kayo, Issha; Broadhurst, Tom; Richards, Gordon T.
2008-02-22
We identify a third image in the unique quasar lens SDSS J1029+2623, the second known quasar lens produced by a massive cluster of galaxies. The spectrum of the third image shows similar emission and absorption features, but has a redder continuum than the other two images which can be explained by differential extinction or microlensing. We also identify several lensed arcs. Our observations suggest a complicated structure of the lens cluster at z {approx} 0.6. We argue that the three lensed images are produced by a naked cusp on the basis of successful mass models, the distribution of cluster member galaxies, and the shapes and locations of the lensed arcs. Lensing by a naked cusp is quite rare among galaxy-scale lenses but is predicted to be common among large-separation lensed quasars. Thus the discovery can be viewed as support for an important theoretical prediction of the standard cold dark matter model.
High Energy Electromagnetic and Weak Interaction Processes
DOE R&D Accomplishments [OSTI]
Lee, T. D.
1972-01-11
This talk reviews some known features of the high energy electromagnetic and weak interaction processes and then tries to speculate on some particular aspects of their future possibilities.
Hough transform search for continuous gravitational waves
Krishnan, Badri; Papa, Maria Alessandra; Sintes, Alicia M.; Schutz, Bernard F.; Frasca, Sergio; Palomba, Cristiano
2004-10-15
This paper describes an incoherent method to search for continuous gravitational waves based on the Hough transform, a well-known technique used for detecting patterns in digital images. We apply the Hough transform to detect patterns in the time-frequency plane of the data produced by an earth-based gravitational wave detector. Two different flavors of searches will be considered, depending on the type of input to the Hough transform: either Fourier transforms of the detector data or the output of a coherent matched-filtering type search. We present the technical details for implementing the Hough transform algorithm for both kinds of searches, their statistical properties, and their sensitivities.
Plans for Deployment of Hollow Electron Lenses at the LHC for...
Office of Scientific and Technical Information (OSTI)
Hollow electron lenses are considered as a possible means to improve the LHC beam collimation system, providing active control of halo diffusion rates and suppressing the ...
CP Violation, Neutral Currents, and Weak Equivalence
DOE R&D Accomplishments [OSTI]
Fitch, V. L.
1972-03-23
Within the past few months two excellent summaries of the state of our knowledge of the weak interactions have been presented. Correspondingly, we will not attempt a comprehensive review but instead concentrate this discussion on the status of CP violation, the question of the neutral currents, and the weak equivalence principle.
Weak rigidity in the PPN formalism
del Olmo, V.; Olivert, J.
1987-04-01
The influence of the concept of weakly rigid almost-thermodynamic material schemes on the classical deformations is analyzed. The methods of the PPN approximation are considered. In this formalism, the equations that characterize the weak rigidity are expressed. As a consequence of that, an increase of two orders of magnitude in the strain rate tensor is obtained.
Optical loss due to diffraction by concentrator Fresnel lenses
Hornung, Thorsten Nitz, Peter
2014-09-26
Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.
Reversing entanglement change by a weak measurement
Sun Qingqing; Zubairy, M. Suhail; Al-Amri, M.; Davidovich, Luiz
2010-11-15
Entanglement of a system changes due to interactions with the environment. A typical type of interaction is amplitude damping. If we add a detector to monitor the environment and only select the no-damping outcome, this amplitude damping is modified into a weak measurement. Here we show that the entanglement change of a two-qubit state due to amplitude damping or weak measurement can be probabilistically reversed. For the amplitude-damping case, the entanglement partially recovers under most conditions. For the weak-measurement case, the recovery of the initial entangled state is exact. The reversal procedure involves another weak measurement, preceded and followed by bit flips applied to both qubits. We propose a linear optics scheme for the experimental demonstration of these procedures.
Prolate spheroidal harmonic expansion of gravitational field
Fukushima, Toshio
2014-06-01
As a modification of the oblate spheroidal case, a recursive method is developed to compute the point value and a few low-order derivatives of the prolate spheroidal harmonics of the second kind, Q{sub nm} (y), namely the unnormalized associated Legendre function (ALF) of the second kind with its argument in the domain, 1 < y < ∞. They are required in evaluating the prolate spheroidal harmonic expansion of the gravitational field in addition to the point value and the low-order derivatives of P-bar {sub nm}(t), the 4π fully normalized ALF of the first kind with its argument in the domain, |t| ≤ 1. The new method will be useful in the gravitational field computation of elongated celestial objects.
Gravitational radiation from a cylindrical naked singularity
Nakao, Ken-ichi; Morisawa, Yoshiyuki
2005-06-15
We construct an approximate solution which describes the gravitational emission from a naked singularity formed by the gravitational collapse of a cylindrical thick shell composed of dust. The assumed situation is that the collapsing speed of the dust is very large. In this situation, the metric variables are obtained approximately by a kind of linear perturbation analysis in the background Morgan solution which describes the motion of cylindrical null dust. The most important problem in this study is what boundary conditions for metric and matter variables should be imposed at the naked singularity. We find a boundary condition that all the metric and matter variables are everywhere finite at least up to the first order approximation. This implies that the spacetime singularity formed by this high-speed dust collapse is very similar to that formed by the null dust and the final singularity will be a conical one. Weyl curvature is completely released from the collapsed dust.
Proton's Weak Charge Determined for First Time | Jefferson Lab
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Weak Charge Determined for First Time Proton's Weak Charge Determined for First Time Q-weak at Jefferson Lab has measured the proton's weak charge Q-weak at Jefferson Lab has measured the proton's weak charge. NEWPORT NEWS, VA, Sept. 17, 2013 - Researchers have made the first experimental determination of the weak charge of the proton in research carried out at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab). The results, accepted for publication in
Core and filament formation in magnetized, self-gravitating isothermal layers
Van Loo, Sven; Keto, Eric; Zhang, Qizhou
2014-07-01
We examine the role of the gravitational instability in an isothermal, self-gravitating layer threaded by magnetic fields on the formation of filaments and dense cores. Using a numerical simulation, we follow the non-linear evolution of a perturbed equilibrium layer. The linear evolution of such a layer is described in the analytic work of Nagai et al. We find that filaments and dense cores form simultaneously. Depending on the initial magnetic field, the resulting filaments form either a spiderweb-like network (for weak magnetic fields) or a network of parallel filaments aligned perpendicular to the magnetic field lines (for strong magnetic fields). Although the filaments are radially collapsing, the density profile of their central region (up to the thermal scale height) can be approximated by a hydrodynamical equilibrium density structure. Thus, the magnetic field does not play a significant role in setting the density distribution of the filaments. The density distribution outside of the central region deviates from the equilibrium. The radial column density distribution is then flatter than the expected power law of r {sup 4} and similar to filament profiles observed with Herschel. Our results do not explain the near constant filament width of ?0.1pc. However, our model does not include turbulent motions. It is expected that the accretion-driven amplification of these turbulent motions provides additional support within the filaments against gravitational collapse. Finally, we interpret the filamentary network of the massive star forming complex G14.225-0.506 in terms of the gravitational instability model and find that the properties of the complex are consistent with being formed out of an unstable layer threaded by a strong, parallel magnetic field.
RESOLVING THE BARYON-FRACTION PROFILE IN LENSING GALAXIES
Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Falco, Emilio E.
2011-10-20
The study of the distribution of baryonic matter within dark halos enriches our understanding of galaxy formation. We show the radial dependence of stellar baryon-fraction curves derived for 21 lensing galaxies from the CfA-Arizona Space Telescope LEns Survey (CASTLES) by means of stellar population synthesis and pixel-based mass reconstruction. The sample covers a stellar mass range of M{sub s} {approx_equal} 2 x 10{sup 9}-3 x 10{sup 11} M{sub sun} (solar masses) which corresponds to a total enclosed mass range of M{sub L} {approx_equal} 7 x 10{sup 9}-3 x 10{sup 12} M{sub sun} on radial scales from 0.25R{sub e} to 5R{sub e} (effective radii). By examining the M{sub s} and M{sub L} dependence on radial distance to the center of each galaxy, we find that there are pairs of lenses on small to intermediate mass scales which approach at large radii the same values for their enclosed total mass but exhibit very different stellar masses and stellar baryon fractions. This peculiar behavior subsides for the most massive lensing galaxies. All the baryon-fraction profiles show that the dark matter halo overtakes the stellar content between 1.5 and 2.5R{sub e}. At 3R{sub e} most of the stellar component is enclosed. We find evidence for a stellar baryon fraction steadily declining over the full mass range. Furthermore, we shed light on the Fundamental Plane puzzle by showing that the slope of the M{sub L} (< R)-to-M{sub s} (< R) relation approaches the mass-to-light relation of recent Fundamental Plane studies at large radii. We also introduce novel concentration indices c = R90/R50 for stellar and total mass profiles (i.e., the ratio of radii enclosing 90% and 50% of the stellar or total mass). We show that the value c = 2.6 originally determined by light profiles which separates early-type galaxies from late-type galaxies also holds for stellar mass. In particular, less massive dark matter halos turn out to be influenced by the distribution of stellar matter on resolved
Camera, Stefano; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco
2013-07-01
Both cosmic shear and cosmological gamma-ray emission stem from the presence of dark matter (DM) in the universe: DM structures are responsible for the bending of light in the weak-lensing regime and those same objects can emit gamma rays, either because they host astrophysical sources (active galactic nuclei or star-forming galaxies) or directly by DM annihilations (or decays, depending on the properties of the DM particle). Such gamma rays should therefore exhibit strong correlation with the cosmic shear signal. In this Letter, we compute the cross-correlation angular power spectrum of cosmic shear and gamma rays produced by the annihilation/decay of weakly interacting massive particle DM, as well as by astrophysical sources. We show that this observable provides novel information on the composition of the extragalactic gamma-ray background (EGB), since the amplitude and shape of the cross-correlation signal strongly depend on which class of sources is responsible for the gamma-ray emission. If the DM contribution to the EGB is significant (at least in a definite energy range), although compatible with current observational bounds, its strong correlation with the cosmic shear makes such signal potentially detectable by combining Fermi Large Area Telescope data with forthcoming galaxy surveys, like the Dark Energy Survey and Euclid. At the same time, the same signal would demonstrate that the weak-lensing observables are indeed due to particle DM matter and not to possible modifications of general relativity.
OSTIblog Articles in the Laser Interferometer Gravitational-Wave...
Office of Scientific and Technical Information (OSTI)
Observatory (LIGO), a national facility for gravitational wave research. LIGO is funded by the National Science Foundation and other public and private institutions. ...
Gravitational waves from phase transitions at the electroweak...
Office of Scientific and Technical Information (OSTI)
Country of Publication: United States Language: English Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ELECTROMAGNETIC INTERACTIONS; GEV RANGE; GRAVITATIONAL WAVES; HIGGS ...
Gravitational Waves Amber L. Stuver LIGO Livingston Observatory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
LIGO and the Detection of Gravitational Waves Amber L. Stuver LIGO Livingston Observatory July 27, 2016 4:00 p.m. - Wilson Hall, One West This colloquium will discuss what gravitational waves are and how they are used to observe the universe in a new way. The history of the search for gravitational waves will be reviewed leading up to today's advanced detectors and how they operate. Most sources of detectable gravitational waves are some of the most violent, energetic events in the universe from
Standing gravitational waves from domain walls
Gogberashvili, Merab; Myrzakul, Shynaray; Singleton, Douglas
2009-07-15
We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.
Theory and Modeling of Weakly Bound/Physisorbed Materials for...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Theory and Modeling of Weakly BoundPhysisorbed Materials for Hydrogen Storage Theory and Modeling of Weakly BoundPhysisorbed Materials for Hydrogen Storage Presentation on the ...
T-728: Apache Tomcat HTTP DIGEST Authentication Weaknesses Let...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
8: Apache Tomcat HTTP DIGEST Authentication Weaknesses Let Remote Users Conduct Bypass Attacks T-728: Apache Tomcat HTTP DIGEST Authentication Weaknesses Let Remote Users Conduct...
Metal Nanostructure Formation on Graphene: Weak versus Strong...
Office of Scientific and Technical Information (OSTI)
Metal Nanostructure Formation on Graphene: Weak versus Strong Bonding Citation Details In-Document Search Title: Metal Nanostructure Formation on Graphene: Weak versus Strong...
Guide for 3D WARP simulations of hollow electron beam lenses...
Office of Scientific and Technical Information (OSTI)
test stand Citation Details In-Document Search Title: Guide for 3D WARP simulations of hollow electron beam lenses. Practical explanation on basis of Tevatron electron lens test ...
Superconducting Focusing Lenses for the SSR1 Cryomodule of PXIE Test Stand at Fermilab
DiMarco, J.; Tartaglia, M.; Terechkine, I.
2016-01-01
Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses in the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. This report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.
Miller, D. C.; Carloni, J. D.; Pankow, J. W.; Gjersing, E. L.; To, B.; Packard, C. E.; Kennedy, C. E.; Kurtz, S. R.
2012-01-01
Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).
Hainline, Laura J.; Morgan, Christopher W.; MacLeod, Chelsea L.; Landaal, Zachary D. [Department of Physics, United States Naval Academy, 572C Holloway Rd, Annapolis, MD 21402 (United States); Kochanek, C. S. [Department of Astronomy, The Ohio State University, 140 West 18th Ave, Columbus, OH 43210 (United States); Harris, Hugh C.; Tilleman, Trudy [United States Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Goicoechea, L. J.; Shalyapin, V. N. [Facultad de Ciencias, Universidad de Cantabria, Avda. de Los Castros s/n, E-39005 Santander (Spain); Falco, Emilio E., E-mail: hainline@usna.edu, E-mail: cmorgan@usna.edu, E-mail: macleod@usna.edu, E-mail: m123894@usna.edu, E-mail: ckochanek@astronomy.ohio-state.edu, E-mail: hch@nofs.navy.mil, E-mail: trudy@nofs.navy.mil, E-mail: goicol@unican.es, E-mail: vshal@ukr.net, E-mail: falco@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States)
2013-09-01
We present three complete seasons and two half-seasons of Sloan Digital Sky Survey (SDSS) r-band photometry of the gravitationally lensed quasar SBS 0909+532 from the U.S. Naval Observatory, as well as two seasons each of SDSS g-band and r-band monitoring from the Liverpool Robotic Telescope. Using Monte Carlo simulations to simultaneously measure the system's time delay and model the r-band microlensing variability, we confirm and significantly refine the precision of the system's time delay to {Delta}t{sub AB} = 50{sub -4}{sup +2} days, where the stated uncertainties represent the bounds of the formal 1{sigma} confidence interval. There may be a conflict between the time delay measurement and a lens consisting of a single galaxy. While models based on the Hubble Space Telescope astrometry and a relatively compact stellar distribution can reproduce the observed delay, the models have somewhat less dark matter than we would typically expect. We also carry out a joint analysis of the microlensing variability in the r and g bands to constrain the size of the quasar's continuum source at these wavelengths, obtaining log {l_brace}(r{sub s,r}/cm)[cos i/0.5]{sup 1/2}{r_brace} = 15.3 {+-} 0.3 and log {l_brace}(r{sub s,g}/cm)[cos i/0.5]{sup 1/2}{r_brace} = 14.8 {+-} 0.9, respectively. Our current results do not formally constrain the temperature profile of the accretion disk but are consistent with the expectations of standard thin disk theory.
Science on the Hill: Gravitational waves open new window on universe
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Gravitational waves open new window on universe Gravitational waves open new window on universe Viewing the very large and very small workings of what's out there. May 8, 2016 Science on the Hill: Gravitational waves open new window on universe A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. Science on the Hill: Gravitational waves open new window on universe Now that gravitational waves have been found, what can be done with them? Lots, it turns
From weak discontinuities to nondissipative shock waves
Garifullin, R. N. Suleimanov, B. I.
2010-01-15
An analysis is presented of the effect of weak dispersion on transitions from weak to strong discontinuities in inviscid fluid dynamics. In the neighborhoods of transition points, this effect is described by simultaneous solutions to the Korteweg-de Vries equation u{sub t}'+ uu{sub x}' + u{sub xxx}' = 0 and fifth-order nonautonomous ordinary differential equations. As x{sup 2} + t{sup 2} {yields}{infinity}, the asymptotic behavior of these simultaneous solutions in the zone of undamped oscillations is given by quasi-simple wave solutions to Whitham equations of the form r{sub i}(t, x) = tl{sub i} x/t{sup 2}.
CMB lensing tomography with the DES Science Verification galaxies
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Giannantonio, T.
2016-01-07
We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range 0.2 < zphot < 1.2, a cross-correlation signal is detected at 6σ and 4σ with SPT and Planck respectively. We then divide the DES galaxies into five photometric redshift bins, finding significant (>2σ) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution of themore » signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the z < 1.2 universe is 0.73 ± 0.16 times as large as predicted in the LCDM Planck cosmology, a 1.7σ deviation.« less
Weak measurement and Bohmian conditional wave functions
Norsen, Travis; Struyve, Ward
2014-11-15
It was recently pointed out and demonstrated experimentally by Lundeen etal. that the wave function of a particle (more precisely, the wave function possessed by each member of an ensemble of identically-prepared particles) can be directly measured using weak measurement. Here it is shown that if this same technique is applied, with appropriate post-selection, to one particle from a perhaps entangled multi-particle system, the result is precisely the so-called conditional wave function of Bohmian mechanics. Thus, a plausibly operationalist method for defining the wave function of a quantum mechanical sub-system corresponds to the natural definition of a sub-system wave function which Bohmian mechanics uniquely makes possible. Similarly, a weak-measurement-based procedure for directly measuring a sub-systems density matrix should yield, under appropriate circumstances, the Bohmian conditional density matrix as opposed to the standard reduced density matrix. Experimental arrangements to demonstrate this behaviorand also thereby reveal the non-local dependence of sub-system state functions on distant interventionsare suggested and discussed. - Highlights: We study a direct measurement protocol for wave functions and density matrices. Weakly measured states of entangled particles correspond to Bohmian conditional states. Novel method of observing quantum non-locality is proposed.
Peters, Thomas; Klessen, Ralf S.; Federrath, Christoph; Smith, Rowan J.; Schleicher, Dominik R. G.; Banerjee, Robi; Sur, Sharanya
2012-12-01
Stars form by the gravitational collapse of interstellar gas. The thermodynamic response of the gas can be characterized by an effective equation of state. It determines how gas heats up or cools as it gets compressed, and hence plays a key role in regulating the process of stellar birth on virtually all scales, ranging from individual star clusters up to the galaxy as a whole. We present a systematic study of the impact of thermodynamics on gravitational collapse in the context of high-redshift star formation, but argue that our findings are also relevant for present-day star formation in molecular clouds. We consider a polytropic equation of state, P = k{rho}{sup {Gamma}}, with both sub-isothermal exponents {Gamma} < 1 and super-isothermal exponents {Gamma} > 1. We find significant differences between these two cases. For {Gamma} > 1, pressure gradients slow down the contraction and lead to the formation of a virialized, turbulent core. Weak magnetic fields are strongly tangled and efficiently amplified via the small-scale turbulent dynamo on timescales corresponding to the eddy-turnover time at the viscous scale. For {Gamma} < 1, on the other hand, pressure support is not sufficient for the formation of such a core. Gravitational contraction proceeds much more rapidly and the flow develops very strong shocks, creating a network of intersecting sheets and extended filaments. The resulting magnetic field lines are very coherent and exhibit a considerable degree of order. Nevertheless, even under these conditions we still find exponential growth of the magnetic energy density in the kinematic regime.
GRAVITATIONAL WAVE SIGNATURES OF HYPERACCRETING COLLAPSAR DISKS
Kotake, Kei; Takiwaki, Tomoya; Harikae, Seiji
2012-08-20
By performing two-dimensional special relativistic (SR) magnetohydrodynamic simulations, we study possible signatures of gravitational waves (GWs) in the context of the collapsar model for long-duration gamma-ray bursts. In our SR simulations, the central black hole is treated as an absorbing boundary. By doing so, we focus on the GWs generated by asphericities in neutrino emission and matter motions in the vicinity of the hyperaccreting disks. We compute nine models by adding initial angular momenta and magnetic fields parametrically to a precollapse core of a 35 M{sub Sun} progenitor star. As for the microphysics, a realistic equation of state is employed and the neutrino cooling is taken into account via a multi-flavor neutrino leakage scheme. To accurately estimate GWs produced by anisotropic neutrino emission, we perform a ray-tracing analysis in general relativity by a post-processing procedure. By employing a stress formula that includes contributions from both magnetic fields and SR corrections, we also study the effects of magnetic fields on the gravitational waveforms. We find that the GW amplitudes from anisotropic neutrino emission show a monotonic increase with time, whose amplitudes are much larger than those from matter motions of the accreting material. We show that the increasing trend of the neutrino GWs stems from the excess of neutrino emission in the direction near parallel to the spin axis illuminated from the hyperaccreting disks. We point out that a recently proposed future space-based interferometer like Fabry-Perot-type DECIGO would permit the detection of these GW signals within Almost-Equal-To 100 Mpc.
On the Unreasonable Effectiveness of post-Newtonian Theory in Gravitational-Wave Physics
Clifford M. Will
2010-01-08
The first indirect detection of gravitational waves involved a binary system of neutron stars. In the future, the first direct detection may also involve binary systems -- inspiralling and merging binary neutron stars or black holes. This means that it is essential to understand in full detail the two-body system in general relativity, a notoriously difficult problem with a long history. Post-Newtonian approximation methods are thought to work only under slow motion and weak field conditions, while numerical solutions of Einstein's equations are thought to be limited to the final merger phase. Recent results have shown that post-Newtonian approximations seem to remain unreasonably valid well into the relativistic regime, while advances in numerical relativity now permit solutions for numerous orbits before merger. It is now possible to envision linking post-Newtonian theory and numerical relativity to obtain a complete ``solution'' of the general relativistic two-body problem. These solutions will play a central role in detecting and understanding gravitational wave signals received by interferometric observatories on Earth and in space.
PLASMA EMISSION BY WEAK TURBULENCE PROCESSES
Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.; Pavan, J. E-mail: rudi.gaelzer@ufrgs.br E-mail: joel.pavan@ufpel.edu.br
2014-11-10
The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.
Boson Hubbard model with weakly coupled fermions
Lutchyn, Roman M.; Tewari, Sumanta; Das Sarma, S.
2008-12-01
Using an imaginary-time path integral approach, we develop the perturbation theory suited to the boson Hubbard model and apply it to calculate the effects of a dilute gas of spin-polarized fermions weakly interacting with the bosons. The full theory captures both the static and the dynamic effects of the fermions on the generic superfluid-insulator phase diagram. We find that, in a homogenous system described by a single-band boson Hubbard Hamiltonian, the intrinsic perturbative effect of the fermions is to generically suppress the insulating lobes and to enhance the superfluid phase.
HERSCHEL-ATLAS: TOWARD A SAMPLE OF {approx}1000 STRONGLY LENSED GALAXIES
Gonzalez-Nuevo, J.; Lapi, A.; Bressan, S.; Danese, L.; De Zotti, G.; Cai, Z.-Y.; Fan, L.; Fleuren, S.; Sutherland, W.; Negrello, M.; Baes, M.; Baker, A. J.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Dunne, L.; Dye, S.; Eales, S.; Frayer, D. T.; Harris, A. I.; and others
2012-04-10
While the selection of strongly lensed galaxies (SLGs) with 500 {mu}m flux density S{sub 500} > 100 mJy has proven to be rather straightforward, for many applications it is important to analyze samples larger than the ones obtained when confining ourselves to such a bright limit. Moreover, only by probing to fainter flux densities is it possible to exploit strong lensing to investigate the bulk of the high-z star-forming galaxy population. We describe HALOS (the Herschel-ATLAS Lensed Objects Selection), a method for efficiently selecting fainter candidate SLGs, reaching a surface density of {approx_equal} 1.5-2 deg{sup -2}, i.e., a factor of about 4-6 higher than that at the 100 mJy flux limit. HALOS will allow the selection of up to {approx}1000 candidate SLGs (with amplifications {mu} {approx}> 2) over the full H-ATLAS survey area. Applying HALOS to the H-ATLAS Science Demonstration Phase field ({approx_equal} 14.4 deg{sup 2}) we find 31 candidate SLGs, whose candidate lenses are identified in the VIKING near-infrared catalog. Using the available information on candidate sources and candidate lenses we tentatively estimate a {approx_equal} 72% purity of the sample. As expected, the purity decreases with decreasing flux density of the sources and with increasing angular separation between candidate sources and lenses. The redshift distribution of the candidate lensed sources is close to that reported for most previous surveys for lensed galaxies, while that of candidate lenses extends to redshifts substantially higher than found in the other surveys. The counts of candidate SLGs are also in good agreement with model predictions. Even though a key ingredient of the method is the deep near-infrared VIKING photometry, we show that H-ATLAS data alone allow the selection of a similarly deep sample of candidate SLGs with an efficiency close to 50%; a slightly lower surface density ({approx_equal} 1.45 deg{sup -2}) can be reached with a {approx}70% efficiency.
Observable induced gravitational waves from an early matter phase
Alabidi, Laila; Sasaki, Misao; Kohri, Kazunori; Sendouda, Yuuiti E-mail: kohri@post.kek.jp E-mail: sendouda@cc.hirosaki-u.ac.jp
2013-05-01
Assuming that inflation is succeeded by a phase of matter domination, which corresponds to a low temperature of reheating T{sub r} < 10{sup 9}GeV, we evaluate the spectra of gravitational waves induced in the post-inflationary universe. We work with models of hilltop-inflation with an enhanced primordial scalar spectrum on small scales, which can potentially lead to the formation of primordial black holes. We find that a lower reheat temperature leads to the production of gravitational waves with energy densities within the ranges of both space and earth based gravitational wave detectors.
Blanchard, Peter K.; Bayliss, Matthew B.; McDonald, Michael; Dahle, Hakon; Gladders, Michael D.; Sharon, Keren; Mushotzky, Richard
2013-07-20
The process by which the mass density profile of certain galaxy clusters becomes centrally concentrated enough to produce high strong lensing (SL) cross-sections is not well understood. It has been suggested that the baryonic condensation of the intracluster medium (ICM) due to cooling may drag dark matter to the cores and thus steepen the profile. In this work, we search for evidence of ongoing ICM cooling in the first large, well-defined sample of SL selected galaxy clusters in the range 0.1 < z < 0.6. Based on known correlations between the ICM cooling rate and both optical emission line luminosity and star formation, we measure, for a sample of 89 SL clusters, the fraction of clusters that have [O II]{lambda}{lambda}3727 emission in their brightest cluster galaxy (BCG). We find that the fraction of line-emitting BCGs is constant as a function of redshift for z > 0.2 and shows no statistically significant deviation from the total cluster population. Specific star formation rates, as traced by the strength of the 4000 A break, D{sub 4000}, are also consistent with the general cluster population. Finally, we use optical imaging of the SL clusters to measure the angular separation, R{sub arc}, between the arc and the center of mass of each lensing cluster in our sample and test for evidence of changing [O II] emission and D{sub 4000} as a function of R{sub arc}, a proxy observable for SL cross-sections. D{sub 4000} is constant with all values of R{sub arc}, and the [O II] emission fractions show no dependence on R{sub arc} for R{sub arc} > 10'' and only very marginal evidence of increased weak [O II] emission for systems with R{sub arc} < 10''. These results argue against the ability of baryonic cooling associated with cool core activity in the cores of galaxy clusters to strongly modify the underlying dark matter potential, leading to an increase in SL cross-sections.
The effects of the RHIC E-lenses magnetic structure layout on the proton beam trajectory
Gu, X.; Pikin, A.; Luo, Y.; Okamura, M.; Fischer, W.; Gupta, R.; Hock, J.; Raparia, D.
2011-03-28
We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed in RHIC IR10. First, the layout of these two E-lenses is introduced. Then the effects of e-lenses on proton beam are discussed. For example, the transverse fields of the e-lens bending solenoids and the fringe field of the main solenoids will shift the proton beam. For the effects of the e-lens on proton beam trajectory, we calculate the transverse kicks that the proton beam receives in the electron lens via Opera at first. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.
OSTIblog Articles in the Laser Interferometer Gravitational-Wave
Office of Scientific and Technical Information (OSTI)
Observatory (LIGO) Topic | OSTI, US Dept of Energy Office of Scientific and Technical Information Laser Interferometer Gravitational-Wave Observatory (LIGO) Topic Incredible Laser Interferometers by Kathy Chambers 12 Aug, 2016 in ligo_300.jpg Laser Interferometer Gravitational-Wave Observatory (LIGO) in Livingston, LA. Image credit: LIGO Laboratory Interferometers are investigative tools used in many fields in science and engineering. They work by merging two or more sources of light or
Princeton physicists share in excitement of gravitational waves Einstein
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
predicted | Princeton Plasma Physics Lab Princeton physicists share in excitement of gravitational waves Einstein predicted By Catherine Zandonella, Office of the Dean for Research February 12, 2016 Tweet Widget Google Plus One Share on Facebook The collision of two black holes - an event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory, or LIGO - is seen in this still from a computer simulation. (Image by SXS) The collision of two black holes - an
Inflationary gravitational waves and the evolution of the early universe
Jinno, Ryusuke; Moroi, Takeo; Nakayama, Kazunori E-mail: moroi@hep-th.phys.s.u-tokyo.ac.jp
2014-01-01
We study the effects of various phenomena which may have happened in the early universe on the spectrum of inflationary gravitational waves. The phenomena include phase transitions, entropy productions from non-relativistic matter, the production of dark radiation, and decoupling of dark matter/radiation from thermal bath. These events can create several characteristic signatures in the inflationary gravitational wave spectrum, which may be direct probes of the history of the early universe and the nature of high-energy physics.
Gravitational waves from global second order phase transitions
Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier; Vlcek, Brian E-mail: larryp@caltech.edu E-mail: bvlcek@uwm.edu
2012-11-01
Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.
Anisotropies in the gravitational-wave stochastic background
Ölmez, S.; Mandic, V.; Siemens, X. E-mail: mandic@physics.umn.edu
2012-07-01
We consider anisotropies in the stochastic background of gravitational-waves (SBGW) arising from random fluctuations in the number of gravitational-wave sources. We first develop the general formalism which can be applied to different cosmological or astrophysical scenarios. We then apply this formalism to calculate the anisotropies of SBGW associated with the fluctuations in the number of cosmic string loops, considering both cosmic string cusps and kinks. We calculate the anisotropies as a function of angle and frequency.
Gravitational radiation from magnetically funneled supernova fallback onto a magnetar
Melatos, A.; Priymak, M., E-mail: amelatos@unimelb.edu.au, E-mail: m.priymak@pgrad.unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)
2014-10-20
Protomagnetars spun up to millisecond rotation periods by supernova fallback are predicted to radiate gravitational waves via hydrodynamic instabilities for ?10{sup 2} s before possibly collapsing to form a black hole. It is shown that magnetic funneling of the accretion flow (1) creates a magnetically confined polar mountain, which boosts the gravitational wave signal, and (2) 'buries' the magnetic dipole moment, delaying the propeller phase and assisting black hole formation.
Princeton physicists share in excitement of gravitational waves Einstein
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
predicted | Princeton Plasma Physics Lab Princeton physicists share in excitement of gravitational waves Einstein predicted By Catherine andonella, Office of the Dean for Research February 12, 2016 Tweet Widget Google Plus One Share on Facebook The collision of two black holes - an event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory, or LIGO - is seen in this still from a computer simulation. (Image by SXS) The collision of two black holes - an
Unitarity check in gravitational Higgs mechanism (Journal Article) |
Office of Scientific and Technical Information (OSTI)
SciTech Connect Journal Article: Unitarity check in gravitational Higgs mechanism Citation Details In-Document Search Title: Unitarity check in gravitational Higgs mechanism The effective field theory of massive gravity has long been formulated in a generally covariant way [N. Arkani-Hamed, H. Georgi, and M. D. Schwartz, Ann. Phys. (N.Y.) 305, 96 (2003).]. Using this formalism, it has been found recently that there exists a class of massive nonlinear theories that are free of the
Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles
Walstrom, Peter Lowell
2014-11-10
Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole 10 lens with so-called Russian or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called non-local correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero roll
Magnetic reconnection in a weakly ionized plasma
Leake, James E.; Lukin, Vyacheslav S.; Linton, Mark G.
2013-06-15
Magnetic reconnection in partially ionized plasmas is a ubiquitous phenomenon spanning the range from laboratory to intergalactic scales, yet it remains poorly understood and relatively little studied. Here, we present results from a self-consistent multi-fluid simulation of magnetic reconnection in a weakly ionized reacting plasma with a particular focus on the parameter regime of the solar chromosphere. The numerical model includes collisional transport, interaction and reactions between the species, and optically thin radiative losses. This model improves upon our previous work in Leake et al.[“Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” Astrophys. J. 760, 109 (2012)] by considering realistic chromospheric transport coefficients, and by solving a generalized Ohm's law that accounts for finite ion-inertia and electron-neutral drag. We find that during the two dimensional reconnection of a Harris current sheet with an initial width larger than the neutral-ion collisional coupling scale, the current sheet thins until its width becomes less than this coupling scale, and the neutral and ion fluids decouple upstream from the reconnection site. During this process of decoupling, we observe reconnection faster than the single-fluid Sweet-Parker prediction, with recombination and plasma outflow both playing a role in determining the reconnection rate. As the current sheet thins further and elongates, it becomes unstable to the secondary tearing instability, and plasmoids are seen. The reconnection rate, outflows, and plasmoids observed in this simulation provide evidence that magnetic reconnection in the chromosphere could be responsible for jet-like transient phenomena such as spicules and chromospheric jets.
Effect of the electron lenses on the RHIC proton beam closed orbit
Gu, X.; Luo, Y.; Pikin, A.; Okamura, M.; Fischer, W.; Montag, C.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.
2011-02-01
We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed at RHIC IR10. The transverse fields of the E-lenses bending solenoids and the fringe field of the main solenoids will shift the proton beam. We calculate the transverse kicks that the proton beam receives in the electron lens via Opera. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.
Gravitational radiation from rotating monopole-string systems
Babichev, E.; Dokuchaev, V.; Kachelriess, M.
2005-02-15
We study the gravitational radiation from a rotating monopole-antimonopole pair connected by a string. While at not too high frequencies the emitted gravitational spectrum is described asymptotically by P{sub n}{proportional_to}n{sup -1}, the spectrum is exponentially suppressed in the high-frequency limit, P{sub n}{proportional_to}exp(-n/n{sub cr}). Below n{sub cr}, the emitted spectrum of gravitational waves is very similar to the case of an oscillating monopole pair connected by a string, and we argue, therefore, that the spectrum found holds approximately for any moving monopole-string system. As an application, we discuss the stochastic gravitational wave background generated by monopole-antimonopole pairs connected by strings in the early Universe and gravitational wave bursts emitted at present by monopole-string networks. We confirm that advanced gravitational wave detectors have the potential to detect a signal for string tensions as small as G{mu}{approx}10{sup -13}.
Bussmann, R. S.; Gurwell, M. A.; Fu Hai; Cooray, A.; Smith, D. J. B.; Bonfield, D.; Dunne, L.; Dye, S.; Eales, S.; Auld, R.; Baes, M.; Fritz, J.; Baker, A. J.; Cava, A.; Clements, D. L.; Dariush, A.; Coppin, K.; Dannerbauer, H.; De Zotti, G.; Hopwood, R.; and others
2012-09-10
We present high-spatial resolution imaging obtained with the Submillimeter Array (SMA) at 880 {mu}m and the Keck adaptive optics (AO) system at the K{sub S}-band of a gravitationally lensed submillimeter galaxy (SMG) at z = 4.243 discovered in the Herschel Astrophysical Terahertz Large Area Survey. The SMA data (angular resolution Almost-Equal-To 0.''6) resolve the dust emission into multiple lensed images, while the Keck AO K{sub S}-band data (angular resolution Almost-Equal-To 0.''1) resolve the lens into a pair of galaxies separated by 0.''3. We present an optical spectrum of the foreground lens obtained with the Gemini-South telescope that provides a lens redshift of z{sub lens} = 0.595 {+-} 0.005. We develop and apply a new lens modeling technique in the visibility plane that shows that the SMG is magnified by a factor of {mu} = 4.1 {+-} 0.2 and has an intrinsic infrared (IR) luminosity of L{sub IR} = (2.1 {+-} 0.2) Multiplication-Sign 10{sup 13} L{sub Sun }. We measure a half-light radius of the background source of r{sub s} = 4.4 {+-} 0.5 kpc which implies an IR luminosity surface density of {Sigma}{sub IR} (3.4 {+-} 0.9) Multiplication-Sign 10{sup 11} L{sub Sun} kpc{sup -2}, a value that is typical of z > 2 SMGs but significantly lower than IR luminous galaxies at z {approx} 0. The two lens galaxies are compact (r{sub lens} Almost-Equal-To 0.9 kpc) early-types with Einstein radii of {theta}{sub E1} 0.57 {+-} 0.01 and {theta}{sub E2} = 0.40 {+-} 0.01 that imply masses of M{sub lens1} = (7.4 {+-} 0.5) Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub lens2} = (3.7 {+-} 0.3) Multiplication-Sign 10{sup 10} M{sub Sun }. The two lensing galaxies are likely about to undergo a dissipationless merger, and the mass and size of the resultant system should be similar to other early-type galaxies at z {approx} 0.6. This work highlights the importance of high spatial resolution imaging in developing models of strongly lensed galaxies discovered by Herschel.
Dust magneto-gravitational drift wave in g×B configuration
Salahshoor, M. Niknam, A. R.
2014-11-15
The dispersion relation of electrostatic waves in a magnetized complex plasma under gravity is presented. It is assumed that the waves propagate perpendicular to the external fields. The effects of weak electric field, neutral drag force, and ion drag force are also taken into account. The dispersion relation is numerically examined in an appropriate parameter space in which the gravity plays the dominant role in the dynamics of magnetized microparticles. The numerical results show that an unstable low frequency drift wave can be developed in the long wavelength limit. This unstable mode is transformed into an aperiodic stationary structure at a cut-off wavenumber. Furthermore, the influence of the external fields on the dispersion properties is analyzed. It is shown that the instability is essentially due to the E×B drift motion of plasma particles. However, in the absence of weak electric field, the g×B drift motion of microparticles can cause the instability in a wide range of wavenumbers. It is also found that by increasing the magnetic field strength, the wave frequency is first increased and then decreased. This behaviour is explained by the existence of an extremum point in the dust magneto-gravitational drift velocity.
Electron lenses for compensation of beam-beam effects: Tevatron, RHIC, LHC
Shiltsev, V.; /Fermilab
2007-12-01
Since previous BEAM'06 workshop a year ago, significant progress has been made in the field of beam-beam compensation (BBC)--it has been experimentally demonstrated that both Tevatron Electron Lenses (TEL) significantly improve proton and luminosity lifetimes in high-luminosity stores. This article summarizes these results and discusses prospects of the BBC in Tevatron, RHIC and LHC.
Simon, Joseph; Polin, Abigail; Lommen, Andrea; Christy, B; Stappers, Ben; Finn, Lee Samuel; Jenet, F. A.
2014-03-20
The steadily improving sensitivity of pulsar timing arrays (PTAs) suggests that gravitational waves (GWs) from supermassive black hole binary (SMBHB) systems in the nearby universe will be detectable sometime during the next decade. Currently, PTAs assume an equal probability of detection from every sky position, but as evidence grows for a non-isotropic distribution of sources, is there a most likely sky position for a detectable single source of GWs? In this paper, a collection of Galactic catalogs is used to calculate various metrics related to the detectability of a single GW source resolvable above a GW background, assuming that every galaxy has the same probability of containing an SMBHB. Our analyses of these data reveal small probabilities that one of these sources is currently in the PTA band, but as sensitivity is improved regions of consistent probability density are found in predictable locations, specifically around local galaxy clusters.
Gravitational-wave generation in hybrid quintessential inflationary models
Sa, Paulo M.; Henriques, Alfredo B.
2010-06-15
We investigate the generation of gravitational waves in the hybrid quintessential inflationary model. The full gravitational-wave energy spectrum is calculated using the method of continuous Bogoliubov coefficients. The postinflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a peak at high frequencies. The maximum of the peak is firmly located at the megahertz-gigahertz region of the spectrum and corresponds to {Omega}{sub GW{approx_equal}}10{sup -12}. This peak is substantially smaller than the one appearing in the gravitational-wave energy spectrum of the original quintessential inflationary model, therefore avoiding any conflict with the nucleosynthesis constraint on {Omega}{sub GW}.
Studying inflation with future space-based gravitational wave detectors
Jinno, Ryusuke; Moroi, Takeo; Takahashi, Tomo E-mail: moroi@phys.s.u-tokyo.ac.jp
2014-12-01
Motivated by recent progress in our understanding of the B-mode polarization of cosmic microwave background (CMB), which provides important information about the inflationary gravitational waves (IGWs), we study the possibility to acquire information about the early universe using future space-based gravitational wave (GW) detectors. We perform a detailed statistical analysis to estimate how well we can determine the reheating temperature after inflation as well as the amplitude, the tensor spectral index, and the running of the inflationary gravitational waves. We discuss how the accuracies depend on noise parameters of the detector and the minimum frequency available in the analysis. Implication of such a study on the test of inflation models is also discussed.
GRAVITATIONAL WAVES OF JET PRECESSION IN GAMMA-RAY BURSTS
Sun Mouyuan; Liu Tong; Gu Weimin; Lu Jufu
2012-06-10
The physical nature of gamma-ray bursts (GRBs) is believed to involve an ultra-relativistic jet. The observed complex structure of light curves motivates the idea of jet precession. In this work, we study the gravitational waves of jet precession based on neutrino-dominated accretion disks around black holes, which may account for the central engine of GRBs. In our model, the jet and the inner part of the disk may precess along with the black hole, which is driven by the outer part of the disk. Gravitational waves are therefore expected to be significant from this black-hole-inner-disk precession system. By comparing our numerical results with the sensitivity of some detectors, we find that it is possible for DECIGO and BBO to detect such gravitational waves, particularly for GRBs in the Local Group.
Weak interactions of supersymmetric staus at high energies (Journal...
Office of Scientific and Technical Information (OSTI)
Neutrino telescopes may have the potential to detect the quasistable staus predicted by ... We show that the neutral-current weak interaction contribution is much smaller than ...
Neutron Beta Decay as a Probe of Weak Interactions (Conference...
Office of Scientific and Technical Information (OSTI)
Citation Details In-Document Search Title: Neutron Beta Decay as a Probe of Weak Interactions Authors: Saunders, Alexander 1 + Show Author Affiliations Los Alamos National ...
Van der Waals metal-semiconductor junction: Weak Fermi level...
Office of Scientific and Technical Information (OSTI)
Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier Citation Details In-Document Search Title: Van der Waals ...
Direct Measurement of the Neutral Weak Dipole Moments of the...
Office of Scientific and Technical Information (OSTI)
Visit OSTI to utilize additional information resources in energy science and technology. A ... We present direct measurements of the neutral weak anomalous magnetic dipole moment, asub ...
Viscous gravitational aether and the cosmological constant problem
Kuang, Xiaomei; Ling, Yi E-mail: yling@ncu.edu.cn
2009-10-01
Recently a notion of gravitational aether is advocated to solve the cosmological constant problem. Through the modification of the source of gravity one finds that the effective Newton's constant is source dependent so as to provide a simple but consistent way to decouple gravity from the vacuum energy. However, in the original paper the ratio of the effective Newton's constants for pressureless dust and radiation has an upper bound which is 0.75. In this paper we propose a scheme to loose this bound by introducing a bulk viscosity for the gravitational aether, and expect this improvement will provide more space for matching predictions from this theoretical programm with observational constraints.
Axisymmetric plasma equilibrium in gravitational and magnetic fields
Krasheninnikov, S. I.; Catto, P. J.
2015-12-15
Plasma equilibria in gravitational and open-ended magnetic fields are considered for the case of topologically disconnected regions of the magnetic flux surfaces where plasma occupies just one of these regions. Special dependences of the plasma temperature and density on the magnetic flux are used which allow the solution of the Grad–Shafranov equation in a separable form permitting analytic treatment. It is found that plasma pressure tends to play the dominant role in the setting the shape of magnetic field equilibrium, while a strong gravitational force localizes the plasma density to a thin disc centered at the equatorial plane.
COLLOQUIUM: The Observation of Gravitational Waves from a Binary Black Hole
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Merger | Princeton Plasma Physics Lab 29, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: The Observation of Gravitational Waves from a Binary Black Hole Merger Dr. Duncan Brown Syracuse University On September 14, 2015 the the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed gravitational waves from a binary black hole merger. The gravitational waves observed match the waveform predicted by general
The mass distribution of the strong lensing cluster SDSS J1531+3414
Sharon, Keren; Johnson, Traci L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Rigby, Jane R. [Observational Cosmology Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wuyts, Eva [Max-Planck-Institut fr extraterrestrische Physik, Giessenbachstr. 1, D-85741 Garching (Germany); Bayliss, Matthew B. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Florian, Michael K. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Dahle, Hkon, E-mail: kerens@umich.edu [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway)
2014-11-01
We present the mass distribution at the core of SDSS J1531+3414, a strong-lensing cluster at z = 0.335. We find that the mass distribution is well described by two cluster-scale halos with a contribution from cluster-member galaxies. New Hubble Space Telescope observations of SDSS J1531+3414 reveal a signature of ongoing star formation associated with the two central galaxies at the core of the cluster, in the form of a chain of star forming regions at the center of the cluster. Using the lens model presented here, we place upper limits on the contribution of a possible lensed image to the flux at the central region, and rule out that this emission is coming from a background source.
Three-point galaxy-galaxy lensing as a probe of dark matter halo shapes
Adhikari, Susmita; Chue, Chun Yin Ricky; Dalal, Neal E-mail: chue2@illinois.edu
2015-01-01
We propose a method to measure the ellipticities of dark matter halos using the lens-shear-shear 3-point correlation function. This method is immune to effects of galaxy-halo misalignments that can potentially limit 2-point galaxy-galaxy lensing measurements of halo anisotropy. Using a simple model for the projected mass distributions of dark matter halos, we construct an ellipticity estimator that sums over all possible triangular configurations of the 3-point function. By applying our estimator to halos from N-body simulations, we find that systematic errors in the recovered ellipticity will be at the ?<5% fractional level. We estimate that future imaging surveys like LSST will have sufficient statistics to detect halo ellipticities using 3-point lensing.
Optics solutions for pp operation with electron lenses at 100 GeV
White, S.; Fischer, W.; Luo, Y.
2014-07-12
Electron lenses for head-on compensation are currently under commissioning and foreseen to be operational for the 2015 polarized proton run. These devices will provide a partial compensation of head-on beam-beam effects and allow to double the RHIC proton luminosity. This note reviews the optics constraints related to beam-beam compensation and summarizes the current lattice options for proton operation at 100 GeV.
Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wang, Peng; Mohammad, Nabil; Menon, Rajesh
2016-02-12
We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm,more » respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Lastly, our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.« less
Joint Analysis of Galaxy-Galaxy Lensing and Galaxy Clustering: Methodology and Forecasts for DES
Park, Y.
2015-07-19
The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.
Generalized crossing states in the interacting case: The uniform gravitational field
Villanueva, Anthony D.; Galapon, Eric A.
2010-11-15
We reconsider Baute et al.'s free crossing states [Phys. Rev. A 61, 022118 (2000)] and show that if we require a generalization in the interacting case that goes in complete parallel with the free-particle case, then this generalized crossing state cannot be arbitrary but is determined by the null space of the particle's quantum time-of-arrival operator. Nonetheless, the free crossing states appear as the leading term in the asymptotic expansion of our generalized crossing state in the limit of large momentum. We then examine the quantum time-of-arrival problem of a spinless particle in a uniform gravitational field. Mass-dependent time-of-arrival probability distributions emerge, signifying quantum departures from the weak equivalence principle. However, in the classical limit of large mass and vanishing uncertainty in position, the mass dependence of the quantum time-of-arrival distribution becomes exponentially small and the mean quantum time of arrival reduces to the classical time of arrival.
Ultra-weak sector, Higgs boson mass, and the dilaton
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Allison, Kyle; Hill, Christopher T.; Ross, Graham G.
2014-09-26
The Higgs boson mass may arise from a portal coupling to a singlet fieldmore » $$\\sigma$$ which has a very large VEV $$f \\gg m_\\text{Higgs}$$. This requires a sector of "ultra-weak" couplings $$\\zeta_i$$, where $$\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $$\\sigma$$ in the $$\\zeta_i \\rightarrow 0$$ limit. The singlet field $$\\sigma$$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.« less
Ultra-weak sector, Higgs boson mass, and the dilaton
Allison, Kyle; Hill, Christopher T.; Ross, Graham G.
2014-11-01
The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.
Ultra-weak sector, Higgs boson mass, and the dilaton
Allison, Kyle; Hill, Christopher T.; Ross, Graham G.
2014-09-26
The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.
Evidence for a Weak Iron Core at Earth's Center
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Evidence for a Weak Iron Core at Earth's Center Print Seismic waves that pass through the center of the Earth travel faster going from pole to pole than along the equatorial...
First upper limits from LIGO on gravitational wave bursts
B. Abbott et al.
2004-03-09
We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h{sub rss}; typical sensitivities lie in the range h{sub rss} {approx} 10{sup -19} - 10{sup -17} strain/{radical}Hz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.
Massive gravitational waves in Chern-Simons modified gravity
Myung, Yun Soo; Moon, Taeyoon E-mail: tymoon@inje.ac.kr
2014-10-01
We consider the nondynamical Chern-Simons (nCS) modified gravity, which is regarded as a parity-odd theory of massive gravity in four dimensions. We first find polarization modes of gravitational waves for θ=x/μ in nCS modified gravity by using the Newman-Penrose formalism where the null complex tetrad is necessary to specify gravitational waves. We show that in the Newman–Penrose formalism, the number of polarization modes is one in addition to an unspecified Ψ{sub 4}, implying three degrees of freedom for θ=x/μ. This compares with two for a canonical embedding of θ=t/μ. Also, if one introduces the Ricci tensor formalism to describe a massive graviton arising from the nCS modified gravity, one finds one massive mode after making second-order wave equations, which is compared to five found from the parity-even Einstein–Weyl gravity.
Gravitational radiation from first-order phase transitions
Child, Hillary L.; Giblin, John T. Jr. E-mail: giblinj@kenyon.edu
2012-10-01
It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.
Motion of gravitationally interacting particles in Born-Infeld electrodynamics
Shkolnik, N.; Mallett, R.L.
1986-12-15
The motion of charged particles in the framework of the Einstein-Infeld-Hoffmann method is examined. The Born-Infeld energy-momentum tensor is used on the right-hand side of the gravitational field equations. It is shown that this results in a modified behavior of charged particles. In particular, it leads to a modification of Coulomb's law at small distances. It is also shown that a stable system of two charged particles is possible.
The quantum gravitational back-reaction on inflation
Tsamis, N.C. |; Woodard, R.P.
1995-02-01
We describe our recent calculation of the dominant late time behavior of the expectation value of the metric at two loops in a locally de Sitter background on the manifold T{sup 3} {times} {Re}. If correct, our result proves that quantum gravitational effects slow the rate of inflation by an amount which becomes non-perturbatively large at late times. 11 refs., 9 figs., 11 tabs.
SPINDOWN OF ISOLATED NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?
Staff, Jan E.; Jaikumar, Prashanth; Chan, Vincent; Ouyed, Rachid
2012-05-20
We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B {<=} 10{sup 13} G. For realistic values of the saturation amplitude {alpha}{sub sat}, the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.
GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE
Cerd-Durn, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, Jos A.; Obergaulinger, Martin
2013-12-20
We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates ? 0.1yr{sup 1}.