Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Property:Wavemaking Capabilities | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellhead Jump to:TechnologyUtilityLocation Jump

2

Property:Programmable Wavemaking | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Description

3

Property:Wavemaking Description | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellhead Jump to:TechnologyUtilityLocation

4

Science Technology Engineering Math Science Technology Engineering Math Mechanical Engineering Aerospace Engineering  

E-Print Network [OSTI]

Science Technology Engineering Math Science Technology Engineering Math Mechanical Engineering Soil Science Sound and Vibrations Wavemaker Kazoo/Flute Harmonica Dancing doggie College

Zhou, Chongwu

5

ENVIRONMENTAL CAPABILITIES  

E-Print Network [OSTI]

· Section 25 - Electrostatic Discharge Additional Capabilities: · RF Cable Insertion Loss and VSWR Testing to advance technologies. The Institute's clientele include many of the world's aerospace manufacturers, NASAEquipment·FAA ·Medical ·Electrical ·Automotive ·Mechanical ·RailRoad ·Pneumatic ·Nautical ·Hydraulic ·Metallic

6

Copyright 1998,AmericanInstitute of Aeronautics and Astronautics, Inc. Calculation of Plunging Breakers with A Fully-Implicit  

E-Print Network [OSTI]

, sprays, and noise and is responsible for the gen- eration of water surface droplets. Breaking waves for convergence accelera- tion are also implemented. The kinematic boundary is formulated by the Eulerian the wave motions as well as the wavemaker's oscillations. Comparisons are made between the numerical

Jameson, Antony

7

2:00-2:30 Beverages, 2:30-4 PM Seminar Abstract The mechanics of gravity water waves are both challenging and exciting. A  

E-Print Network [OSTI]

2/21/2014 2:00-2:30 Beverages, 2:30-4 PM Seminar Abstract The mechanics of gravity water waves. Crucially, the input boundary ­ the wavemaker ­ imposes a particular kinematics profile (or wave form-8347 Water Wave Generation Techniques: Theory and Practice By Dr. Johannes Spinneken Imperial College, London

Keaveny, Tony

8

Gravity surface wave turbulence in a laboratory flume  

E-Print Network [OSTI]

We present experimental results for water wave turbulence excited by piston-like programmed wavemakers in a water flume with horisontal dimensions 6x12x1.5 meters. Our main finding is that for a wide range of excitation amplitudes the energy spectrum has a power-law scaling, $E_\\omega \\sim \\omega^{-\

Petr Denissenko; Sergei Lukaschuk; Sergey Nazarenko

2006-11-08T23:59:59.000Z

9

Federal Technical Capability Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides requirements and responsibilities to ensure recruitment and hiring of technically capable personnel to retain critical technical capabilities within the Department at all times. Cancels DOE M 426.1-1. Canceled by DOE O 426.1.

2004-05-18T23:59:59.000Z

10

NSTec Overview and Capabilities  

SciTech Connect (OSTI)

This presentation describes the history of the Nevada National Security Site (Nevada Test Site) Contract as well as current capabilities.

Meidinger, A.

2012-07-27T23:59:59.000Z

11

Reorganization bolsters nuclear nonproliferation capability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of...

12

ICIS Facilities and Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and government authorities. This core capability extends to unmanned air vehicles (UAV) designs, where designers have access to an isolated airfield with full radio spectrum...

13

Federal Technical Capability Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

2000-06-05T23:59:59.000Z

14

Federal Technical Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

2009-11-19T23:59:59.000Z

15

Experimental Capabilities & Apparatus  

E-Print Network [OSTI]

top-10 green building product" by BuildingGreen, Inc. at the US Green Building Council's annual GreenBuildExperimental Capabilities & Apparatus Directory Building Technologies Research and Integration Center #12;Building Technologies Research Oak Ridge National Laboratory's (ORNL) Building Technologies

Oak Ridge National Laboratory

16

Metrology Measurement Capabilities  

SciTech Connect (OSTI)

This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

Dr. Glen E. Gronniger

2007-10-02T23:59:59.000Z

17

MECHANICAL TEST LAB CAPABILITIES  

E-Print Network [OSTI]

MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

18

Electronic Mail Analysis Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes the pilot program to test the Department of Energy (DOE) Electronic Mail Analysis Capability (EMAC), which will be used to monitor and analyze outgoing and incoming electronic mail (e-mail) from the National Nuclear Security Administration (NNSA) and DOE laboratories that are engaged in nuclear weapons design or work involving special nuclear material. No cancellation.

2001-01-08T23:59:59.000Z

19

Federal Technical Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg. 1 dated 9-20-11 Cancels DOE O 426.1. Cancels DOE P 426.1.

2009-11-19T23:59:59.000Z

20

Metrology Measurement Capabilities  

SciTech Connect (OSTI)

This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001080.pdf. These parameters are summarized in the table at the bottom of this introduction.

Barnes, L.M.

2003-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and Novel ComputationalBeckyScienceCapabilities

22

Sandia National Laboratories: Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF Researchers answer Alan Alda'sCapabilities

23

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and Novel ComputationalBeckyScienceCapabilities FEI

24

NREL: Geothermal Technologies - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria Photo of twoCapabilities The

25

NREL: Transportation Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecastingAlternative Fuel FleetCapabilities

26

Sandia National Laboratories: Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergy Commission Linde,Capabilities What We Do

27

Nonintrusive subsurface surveying capability  

SciTech Connect (OSTI)

This presentation describes the capabilities of a ground-pentrating radar (GPR) system developed by EG&G Energy Measurements (EM), a prime contractor to the Department of Energy (DOE). The focus of the presentation will be on the subsurface survey of DOE site TA-21 in Los Alamos, New Mexico. EG&G EM developed the system for the Department of Defense. The system is owned by the Department of the Army and currently resides at KO in Albuquerque. EM is pursuing efforts to transfer this technology to environmental applications such as waste-site characterization with DOE encouragement. The Army has already granted permission to use the system for the waste-site characterization activities.

Tunnell, T.W.; Cave, S.P.

1994-06-01T23:59:59.000Z

28

Mobile systems capability plan  

SciTech Connect (OSTI)

This plan was prepared to initiate contracting for and deployment of these mobile system services. 102,000 cubic meters of retrievable, contact-handled TRU waste are stored at many sites around the country. Also, an estimated 38,000 cubic meters of TRU waste will be generated in the course of waste inventory workoff and continuing DOE operations. All the defense TRU waste is destined for disposal in WIPP near Carlsbad NM. To ship TRU waste there, sites must first certify that the waste meets WIPP waste acceptance criteria. The waste must be characterized, and if not acceptable, subjected to additional processing, including repackaging. Most sites plan to use existing fixed facilities or open new ones between FY1997-2006 to perform these functions; small-quantity sites lack this capability. An alternative to fixed facilities is the use of mobile systems mounted in trailers or skids, and transported to sites. Mobile systems will be used for all characterization and certification at small sites; large sites can also use them. The Carlsbad Area Office plans to pursue a strategy of privatization of mobile system services, since this offers a number of advantages. To indicate the possible magnitude of the costs of deploying mobile systems, preliminary estimates of equipment, maintenance, and operating costs over a 10-year period were prepared and options for purchase, lease, and privatization through fixed-price contracts considered.

NONE

1996-09-01T23:59:59.000Z

29

LANL Analytical and Radiochemistry Capabilities  

SciTech Connect (OSTI)

The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities.

Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; Lamont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

2012-07-27T23:59:59.000Z

30

Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4Tours SHARE ToursCanyon

31

A bivariate process capability index  

E-Print Network [OSTI]

, bivariate and multivariate process capability indices which do consider deviations from the target might be more attractive. 27 REFERENCES [l], J. M. , Juran and F. M. Gryna, Quality Planning and Analysis, McGraw-Hill Publishing Co. , New York, New...A BIVARIATE PROCESS CAPABILITY INDEX A Thesis by SUSAN LOHMER MICHALSKI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major...

Michalski, Susan Lohmer

1992-01-01T23:59:59.000Z

32

Accelerator and electrodynamics capability review  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

Jones, Kevin W [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

33

Building Technologies Experimental Capabilities and Apparatus...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental Capabilities and Apparatus Directory October 01, 2014 ORNL Building Technologies Research and Integration Center (BTRIC) provides unique experimental capabilities...

34

Research for new UAV capabilities  

SciTech Connect (OSTI)

This paper discusses research for new Unmanned Aerial Vehicles (UAV) capabilities. Findings indicate that UAV performance could be greatly enhanced by modest research. Improved sensors and communications enhance near term cost effectiveness. Improved engines, platforms, and stealth improve long term effectiveness.

Canavan, G.H.; Leadabrand, R.

1996-07-01T23:59:59.000Z

35

Electricity Subsector Cybersecurity Capability Maturity Model...  

Office of Environmental Management (EM)

Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Electricity Subsector Cybersecurity...

36

Electricity Subsector Cybersecurity Capability Maturity Model...  

Office of Environmental Management (EM)

Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) The...

37

Cybersecurity Capability Maturity Model - Frequently Asked Questions...  

Broader source: Energy.gov (indexed) [DOE]

- Frequently Asked Questions (February 2014) Cybersecurity Capability Maturity Model - Frequently Asked Questions (February 2014) The Cybersecurity Capability Maturity Model (C2M2)...

38

Cybersecurity Capability Maturity Model - Facilitator Guide ...  

Broader source: Energy.gov (indexed) [DOE]

- Facilitator Guide (February 2014) Cybersecurity Capability Maturity Model - Facilitator Guide (February 2014) The Cybersecurity Capability Maturity Model (C2M2) program is...

39

Joint Capability Technology Demonstration (JCTD) Industry Day...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Agenda outlines the activities of the 2014...

40

ORISE Science Education Programs: Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControlsOMBRadiation TreatmentCapabilities

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Testing whether major innovation capabilities are systemic design capabilities: analyzing rule-renewal design capabilities in a case-  

E-Print Network [OSTI]

1 Testing whether major innovation capabilities are systemic design capabilities: analyzing rule-renewal design capabilities are positively related to new business development, whereas rule-reuse design-renewal design capabilities in a case- control study of historical new business developments. Authors: Pascal Le

Paris-Sud XI, Université de

42

Project Development and Finance: Capabilities (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities overview of NREL's Project Finance and Development Group within the Deployment and Market Transformation Directorate.

Not Available

2013-01-01T23:59:59.000Z

43

OPSAID improvements and capabilities report.  

SciTech Connect (OSTI)

Process Control System (PCS) and Industrial Control System (ICS) security is critical to our national security. But there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. Sandia National Laboratories has performed the research and development of the OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy Office of Electricity Delivery and Energy Reliability (DOE/OE), to address this issue. OPSAID is an open-source architecture for PCS/ICS security that provides a design basis for vendors to build add-on security devices for legacy systems, while providing a path forward for the development of inherently-secure PCS elements in the future. Using standardized hardware, a proof-of-concept prototype system was also developed. This report describes the improvements and capabilities that have been added to OPSAID since an initial report was released. Testing and validation of this architecture has been conducted in another project, Lemnos Interoperable Security Project, sponsored by DOE/OE and managed by the National Energy Technology Laboratory (NETL).

Halbgewachs, Ronald D.; Chavez, Adrian R.

2011-08-01T23:59:59.000Z

44

Solar mechanics thermal response capabilities.  

SciTech Connect (OSTI)

In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

Dobranich, Dean D.

2009-07-01T23:59:59.000Z

45

Visual Absorption Capability1 Lee Anderson  

E-Print Network [OSTI]

Visual Absorption Capability1 Lee Anderson 2a/ Jerry Mosier 2b/ Geoffrey Chandler 2c/ 1/ Submitted, Lassen National Forest, Susanville, California. Abstract: Visual absorption capability (VAC) is a tool development which is in harmony with the visual resource vis- ual absorption capability (VAC) is a tool which

Standiford, Richard B.

46

Force-controlled absorption in a fully-nonlinear numerical wave tank  

SciTech Connect (OSTI)

An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

Spinneken, Johannes, E-mail: j.spinneken@imperial.ac.uk; Christou, Marios; Swan, Chris

2014-09-01T23:59:59.000Z

47

Available transfer capability and first order sensitivity  

SciTech Connect (OSTI)

A method of calculating Available Transfer Capability and the exploration of the first order effects of certain power system network variables are described. The Federal Energy Regulatory Commission has ordered that bulk electrical control areas must provide to market participants a ``commercially viable`` network transfer capability for the import, export, and through-put of energy. A practical method for deriving this transfer capability utilizing both linear and non-linear power flow analysis methods is developed that acknowledges both thermal and voltage system limitations. The Available Transfer Capability is the incremental transfer capability derived by the method reduced by margins. A procedure for quantifying the first order effect of network uncertainties such as load forecast error and simultaneous transfers on the calculated transfer capability of a power system snapshot are explored. The quantification of these network uncertainties can provide information necessary for system operation, planning, and energy market participation.

Gravener, M.H. [PJM Interconnection, L.L.C., Valley Forge, PA (United States)] [PJM Interconnection, L.L.C., Valley Forge, PA (United States); Nwankpa, C. [Drexel Univ., Philadelphia, PA (United States)] [Drexel Univ., Philadelphia, PA (United States)

1999-05-01T23:59:59.000Z

48

Materials Characterization Capabilities at the High Temperature...  

Broader source: Energy.gov (indexed) [DOE]

Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites Project ID: LM027 DOE 2011 Vehicle Technologies Annual Merit...

49

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 -- Washington D.C. lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

50

Materials Characterization Capabilities at the HTML: Surface...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

density analysis of forming samples using advanced characterization techniques Materials Characterization Capabilities at the HTML: SurfaceSub-surface dislocation density...

51

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review and Peer Evaluation lm028laracurzio2011o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

52

Materials Characterization Capabilities at the High Temperature...  

Broader source: Energy.gov (indexed) [DOE]

and Peer Evaluation Meeting lm028laracurzio2012o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

53

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 18-22, 2009 -- Washington D.C. lm01laracurzio.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

54

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory: Focus on Carbon Fiber and Composites Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites 2011 DOE...

55

Analytical Chemistry Core Capability Assessment - Preliminary Report  

SciTech Connect (OSTI)

The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be useful in defining a roadmap for what future capability needs to look like.

Barr, Mary E. [Los Alamos National Laboratory; Farish, Thomas J. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

56

CTH reference manual : composite capability and technologies.  

SciTech Connect (OSTI)

The composite material research and development performed over the last year has greatly enhanced the capabilities of CTH for non-isotropic materials. The enhancements provide the users and developers with greatly enhanced capabilities to address non-isotropic materials and their constitutive model development. The enhancements to CTH are intended to address various composite material applications such as armor systems, rocket motor cases, etc. A new method for inserting non-isotropic materials was developed using Diatom capabilities. This new insertion method makes it possible to add a layering capability to a shock physics hydrocode. This allows users to explicitly model each lamina of a composite without the overhead of modeling each lamina as a separate material to represent a laminate composite. This capability is designed for computational speed and modeling efficiency when studying composite material applications. In addition, the layering capability also allows a user to model interlaminar mechanisms. Finally, non-isotropic coupling methods have been investigated. The coupling methods are specific to shock physics where the Equation of State (EOS) is used with a nonisotropic constitutive model. This capability elastically corrects the EOS pressure (typically isotropic) for deviatoric pressure coupling for non-isotropic materials.

Key, Christopher T.; Schumacher, Shane C.

2009-02-01T23:59:59.000Z

57

National Renewable Energy Laboratory Analysis Capabilities  

E-Print Network [OSTI]

National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

58

Overview of Capabilities Conversion System Technology  

E-Print Network [OSTI]

cycles Heat exchanger design and optimization TES Material Integration & Optimization: Solar power plantOverview of Capabilities Conversion System Technology - Power System Demonstrations - Systems Conceptual Design/Trade Space Exploration - Simulation Modeling for Manufacturing - Hybrid Energy Systems

Lee, Dongwon

59

DIRSIG Cloud Modeling Capabilities; A Parametric Study  

E-Print Network [OSTI]

1 DIRSIG Cloud Modeling Capabilities; A Parametric Study Kristen Powers powers:................................................................................................................... 13 Calculation of Sensor Reaching Radiance Truth Values for Cloudless & Stratus Cloud Scenes and Atmospheric Database Creation for Stratus Cloud Scene & Calculation of Associated Sensor Reaching Radiance

Salvaggio, Carl

60

capabilitiesFlier_subsurfaceFlow_WEB  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From the micron scale to the geographic scale, EMSL houses an integrated suite of capabilities to support EMSL offers users access to cutting-edge instruments and the in-house...

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Workflow Collaboration with Constraint Solving Capabilities  

E-Print Network [OSTI]

, perform specialised tasks and achieve common goals. We give an account of our approach for the workflow assisted collaboration with a specialised knowledge agent. In this case, a system with constraint solving capabilities. We found that systems built...

Chen-Burger, Y-H; Hui, K; Preece, A D; Gray, P.M.D; Tate, Austin

62

The New MCNP6 Depletion Capability  

SciTech Connect (OSTI)

The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

Fensin, Michael Lorne [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory

2012-06-19T23:59:59.000Z

63

PV Performance and Reliability Validation Capabilities at Sandia...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Performance and Reliability Validation Capabilities at Sandia National Laboratories PV Performance and Reliability Validation Capabilities at Sandia National Laboratories This...

64

Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)  

SciTech Connect (OSTI)

D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

Not Available

2013-07-01T23:59:59.000Z

65

Facility Interface Capability Assessment (FICA) summary report  

SciTech Connect (OSTI)

The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from the commercial facilities. In support of the development of the CRWMS, OCRWM sponsored the Facility Interface Capability Assessment (FICA) project. The objective of this project was to assess the capability of each commercial facility to handle various spent nuclear fuel shipping casks. The purpose of this report is to summarize the results of the facility assessments completed within the FICA project. The project was conducted in two phases. During Phase I, the data items required to complete the facility assessments were identified and the data base for the project was created. During Phase II, visits were made to 122 facilities on 76 sites to collect data and information, the data base was updated, and assessments of the cask-handling capabilities at each facility were performed.

Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States); Pope, R.B. [ed.] [Oak Ridge National Lab., TN (United States)

1992-05-01T23:59:59.000Z

66

Connectivity To Atmospheric Release Advisory Capability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish DOE and NNSA connectivity to Atmospheric Release Advisory Capability (ARAC) for sites and facilities that have the potential for releasing hazardous materials sufficient to generate certain emergency declarations and to promote efficient use of resources for consequence assessment activities at DOE sites, facilities, operations, and activities in planning for and responding to emergency events. No cancellations.

2001-02-26T23:59:59.000Z

67

Matlab-based Optimization Basic Capabilities  

E-Print Network [OSTI]

Matlab-based Optimization Basic Capabilities Gene Cliff (AOE/ICAM - ecliff@vt.edu ) 3:00pm - 4:45pm: Interdisciplinary Center for Applied Mathematics 1 / 28 #12;Matlab-based Optimization Introduction & function functions fminbnd fminsearch lsqnonneg fzero 2 / 28 #12;INTRO: Basic Matlab provides several functions

Crawford, T. Daniel

68

TMV Technology Capabilities Brake Stroke Monitor  

E-Print Network [OSTI]

TMV Technology Capabilities Brake Stroke Monitor Brake monitoring systems are proactive maintenance This technology allows for CMV operators to have knowledge of their steer, drive, and tandem axle group weights setup is required. Current Safety/Enforcement Technologies EOBR (electronic on-board recorder) On

69

Dynamic Capabilities Building Blocks of Innovation  

E-Print Network [OSTI]

Pollution Control licensing · 1992 · Irish Environmental Protection Agency. #12;High DC · strategy to `liftDynamic Capabilities Building Blocks of Innovation Rachel Hilliard Centre for Innovation the intellectual capacity of the organisation' · `routine setting of new environmental targets and objectives

Paxton, Anthony T.

70

Chemical Imaging Initiative Delivering New Capabilities for  

E-Print Network [OSTI]

Chemical Imaging Initiative Delivering New Capabilities for In Situ, Molecular-Scale Imaging A complete, precise and realistic view of chemical, materials and biochemical processes and an understanding sources and mathematical models. At Pacific Northwest National Laboratory, the Chemical Imaging Initiative

71

n CAPABILITY STATEMENT Centre for Ocean Engineering,  

E-Print Network [OSTI]

n CAPABILITY STATEMENT Centre for Ocean Engineering, Science and Technology Overview The Centre for Ocean Engineering, Science and Technology (COEST) is dedicated to the ocean, the most fascinating and the most challenging environment for human endeavour. COEST brings together the disciplines of ocean

Liley, David

72

Fuel Fabrication Capability Research and Development Plan  

SciTech Connect (OSTI)

The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

Senor, David J.; Burkes, Douglas

2013-06-28T23:59:59.000Z

73

Blue Waters: An Extraordinary Research Capability for  

E-Print Network [OSTI]

Blue Waters: An Extraordinary Research Capability for Ad ancing Science & Engineering Frontiers will talk about the new supercomputer Blue Waters and its proposed use by the science and engineering of the University of Illinois at Urbana-Champaign. This system, called Blue Waters, is based on the latest computing

74

ARAC: A support capability for emergency managers  

SciTech Connect (OSTI)

This paper is intended to introduce to the non-radiological emergency management community the 20-year operational history of the Atmospheric Release Advisory Capability (ARAC), its concept of operations, and its applicability for use in support of emergency management decision makers. ARAC is a centralized federal facility for assessing atmospheric releases of hazardous materials in real time, using a robust suite of three-dimensional atmospheric transport and diffusion models, extensive geophysical and source-description databases, automated meteorological data acquisition systems, and experienced staff members. Although originally conceived to respond to nuclear accidents, the ARAC system has proven to be extremely adaptable, and has been used successfully during a wide variety of nonradiological hazardous chemical situations. ARAC represents a proven, validated, operational support capability for atmospheric hazardous releases.

Pace, J.C.; Sullivan, T.J.; Baskett, R.L. [and others

1995-08-01T23:59:59.000Z

75

Leak detection capability in CANDU reactors  

SciTech Connect (OSTI)

This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

Azer, N.; Barber, D.H.; Boucher, P.J. [and others

1997-04-01T23:59:59.000Z

76

Recombinant organisms capable of fermenting cellobiose  

DOE Patents [OSTI]

This invention relates to a recombinant microorganism which expresses pyruvate decarboxylase, alcohol dehydrogenase, Klebsiella phospho-.beta.-glucosidase and Klebsiella (phosphoenolpyruvate-dependent phosphotransferase system) cellobiose-utilizing Enzyme II, wherein said phospho-.beta.-glucosidase and said (phosphoenolpyruvate-dependent phosphotransferase) cellobiose-utilizing Enzyme II are heterologous to said microorganism and wherein said microorganism is capable of utilizing both hemicellulose and cellulose, including cellobiose, in the production of ethanol.

Ingram, Lonnie O. (Gainesville, FL); Lai, Xiaokuang (Gainesville, FL); Moniruzzaman, Mohammed (Gainesville, FL); York, Sean W. (Gainesville, FL)

2000-01-01T23:59:59.000Z

77

ORISE: Capabilities in Climate and Atmospheric Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping Application ORISE develops mappingCapabilities

78

Improving Department of Energy Capabilities for Mitigating Beyond...  

Broader source: Energy.gov (indexed) [DOE]

Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April...

79

Oil and Natural Gas Subsector Cybersecurity Capability Maturity...  

Broader source: Energy.gov (indexed) [DOE]

Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) The Oil...

80

analysis capability fact: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provides improved resource optimization and enhanced capabilities Narasayya, Vivek 127 Waste Isolation Pilot Plant (WIPP) We are applying our unique capabilities in actinide and...

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Local Energy Alliance Program Adds Green Appraisal Capabilities...  

Broader source: Energy.gov (indexed) [DOE]

Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy Efficiency Services Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy...

82

Leveraging National Lab Capabilities: 2014 Fuel Cell Seminar...  

Energy Savers [EERE]

Leveraging National Lab Capabilities: 2014 Fuel Cell Seminar and Energy Exposition Leveraging National Lab Capabilities: 2014 Fuel Cell Seminar and Energy Exposition Presentation...

83

Property:Wind Capabilities | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellhead JumpCapabilities" Showing 25 pages using this

84

NREL: Process Development and Integration Laboratory - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7 NovemberCapabilities The

85

National Criticality Experiments Research Center (NCERC) capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering OfSilicaAdvancedNathanielNCERC capabilities

86

Sandia National Laboratories: Joint Capability Technology Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University SandiaJim SpeckCapability

87

Tonopah Test Range capabilities: technical manual  

SciTech Connect (OSTI)

This manual describes Tonopah Test Range (TTR), defines its testing capabilities, and outlines the steps necessary to schedule tests on the Range. Operated by Sandia National Laboratories, TTR is a major test facility for DOE-funded weapon programs. The Range presents an integrated system for ballistic test vehicle tracking and data acquisition. Multiple radars, optical trackers, telemetry stations, a central computer complex, and combined landline/RF communications systems assure full Range coverage for any type of test. Range operations are conducted by a department within Sandia's Field Engineering Directorate. While the overall Range functions as a complete system, it is operationally divided into the Test Measurements, Instrumentation Development, and Range Operations divisions. The primary function of TTR is to support DOE weapons test activities. Management, however, encourages other Government agencies and their contractors to schedule tests on the Range which can make effective use of its capabilities. Information concerning Range use by organizations outside of DOE is presented. Range instrumentation and support facilities are described in detail. This equipment represents the current state-of-the-art and reflects a continuing commitment by TTR management to field the most effective tracking and data acquisition system available.

Manhart, R.L.

1982-11-01T23:59:59.000Z

88

NUCLEAR INCIDENT CAPABILITIES, KNOWLEDGE & ENABLER LEVERAGING  

SciTech Connect (OSTI)

The detonation of a 10 Kiloton Improvised Nuclear Device (IND) is a serious scenario that the United States must be prepared to address. The likelihood of a single nuclear bomb exploding in a single city is greater today than at the height of the Cold War. Layered defenses against domestic nuclear terrorism indicate that our government continues to view the threat as credible. The risk of such an event is further evidenced by terrorists desire to acquire nuclear weapons. The act of nuclear terrorism, particularly an act directed against a large population center in the United States, will overwhelm the capabilities of many local and state governments to respond, and will seriously challenge existing federal response capabilities. A 10 Kiloton IND detonation would cause total infrastructure damage in a 3-mile radius and levels of radiation spanning out 3,000 square miles. In a densely populated urban area, the anticipated casualties would be in excess of several hundred thousand. Although there would be enormous loss of life, housing and infrastructure, an IND detonation is a recoverable event. We can reduce the risk of these high-consequence, nontraditional threats by enhancing our nuclear detection architecture and establishing well planned and rehearsed plans for coordinated response. It is also important for us to identify new and improved ways to foster collaboration regarding the response to the IND threat to ensure the demand and density of expertise required for such an event is postured and prepared to mobilize, integrate, and support a myriad of anticipated challenges. We must be prepared to manage the consequences of such an event in a deliberate manner and get beyond notions of total devastation by adopting planning assumptions around survivability and resiliency. Planning for such a scenario needs to be decisive in determining a response based on competencies and desired outcomes. It is time to synthesize known threats and plausible consequences into action. Much work needs to be accomplished to enhance nuclear preparedness and to substantially bolster and clarify the capacity to deploy competent resources. Until detailed plans are scripted, and personnel and other resources are postured, and exercised, IND specific planning remains an urgent need requiring attention and action. Although strategic guidance, policies, concepts of operations, roles, responsibilities, and plans governing the response and consequence management for the IND scenario exist, an ongoing integration challenge prevails regarding how best to get capable and competent surge capacity personnel (disaster reservists) and other resources engaged and readied in an up-front manner with pre-scripted assignments to augment the magnitude of anticipated demands of expertise. With the above in mind, Savannah River National Laboratory (SRNL) puts science to work to create and deploy practical, high-value, cost-effective nuclear solutions. As the Department of Energy's (DOE) applied research and development laboratory, SRNL supports Savannah River Site (SRS) operations, DOE, national initiatives, and other federal agencies, across the country and around the world. SRNL's parent at SRS also employs more than 8,000 personnel. The team is a great asset that seeks to continue their service in the interest of national security and stands ready to accomplish new missions. Overall, an integral part of the vision for SRNL's National and Homeland Security Directorate is the establishment of a National Security Center at SRNL, and development of state of the science capabilities (technologies and trained technical personnel) for responding to emergency events on local, regional, or national scales. This entails leveraging and posturing the skills, knowledge and experience base of SRS personnel to deliver an integrated capability to support local, state, and federal authorities through the development of pre-scripted requests for assistance, agreements, and plans. It also includes developing plans, training, exercises, recruitment strategies, and processes to e

Kinney, J.; Newman, J.; Goodwyn, A.; Dewes, J.

2011-04-18T23:59:59.000Z

89

A Roadmap for NEAMS Capability Transfer  

SciTech Connect (OSTI)

The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place requirements gathering from prospective users on a more formal footing, updating requirements on a regular basis and incorporate them into planning and execution of the project in a traceable fashion; (4) Seek out the best available data for validation purposes, and work with experimental programs to design and carry out new experiments that satisfy the need for data suitable for validation of high-fidelity M&S codes; (5) Develop and implement program-wide plans and policies for export control, licensing, and distribution of NEAMS software products; (6) Establish a program of sponsored alpha testing by experienced users in order to obtain feedback on NEAMS codes; (7) Provide technical support for NEAMS software products; (8) Develop and deliver documentation, tutorial materials, and live training classes; and (9) Be prepared to support outside users who wish to contribute to the codes.

Bernholdt, David E [ORNL

2011-11-01T23:59:59.000Z

90

Business Capabilities Centric Enterprise Architecture Thiago Barroero,1  

E-Print Network [OSTI]

Architecture and Business Capabilities modeling Nowadays scenario of Enterprise Architecture (EA) testifies each enterprise capability into business component (BC). Each BC is an individual business model are the modular building blocks that compose an enterprise. 1.2 Business Capabilities Models A Business Capability

Boyer, Edmond

91

Overview of ASC Capability Computing System Governance Model  

SciTech Connect (OSTI)

This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

Doebling, Scott W. [Los Alamos National Laboratory

2012-07-11T23:59:59.000Z

92

Turbine vane with high temperature capable skins  

DOE Patents [OSTI]

A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

Morrison, Jay A. (Oviedo, FL)

2012-07-10T23:59:59.000Z

93

Lagrangian kinematics of steep waves up to the inception of a spilling breaker  

E-Print Network [OSTI]

Horizontal Lagrangian velocities and accelerations at the surface of steep water-waves are studied by Particle Tracking Velocimetry (PTV) for gradually increasing crest heights up to the inception of a spilling breaker. Localized steep waves are excited using wavemaker-generated Peregrine breather-type wave trains. Actual crest and phase velocities are estimated from video recorded sequences of the instantaneous wave shape as well as from surface elevation measurements by wave gauges. Effects of nonlinearity and spectral width on phase velocity, as well as relation between the phase velocity and crest propagation speed are discussed. The inception of a spilling breaker is associated with the horizontal velocity of water particles at the crest attaining that of the crest, thus confirming the kinematic criterion for inception of breaking.

Shemer, Lev

2013-01-01T23:59:59.000Z

94

RELAP-7 Beta Release: Summary of Capabilities  

SciTech Connect (OSTI)

RELAP-7 is a nuclear systems safety analysis code being developed at the Idaho National Laboratory (INL). Building upon the decades of software development at the INL, we began the development of RELAP-7 in 2011 to support the Risk Informed Safety Margins Characterization (RISMC) Pathway. As part of this development, the first lines of RELAP-7 code were committed to the software revision control repository on November 7th, 2011. The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical methods, and physical models in order to provide capabilities needed for the RISMC methodology and to support nuclear power safety analysis. RELAP-7 is built using the INLs modern scientific software development framework, MOOSE (Multi-physics Object Oriented Simulation Environment). MOOSE provides improved numerical calculations (including higher-order integration in both space and time, yielding converged second-order accuracy). The RELAP-7 code structure is based on multiple physical component models such as pipes, junctions, pumps, etc. Each component can have options for different fluid models such as single- and two-phase flow. This component-based and physics-based software architecture allows RELAP-7 to adopt different physical models for different applications. A relatively new two-phase hydrodynamic model, termed the 7-Equation model for two phasic pressures, velocities, energies, and volumetric fraction, is incorporated into RELAP-7 for liquid-gas (water-steam) flows. This new model allows second-order integration because it is well-posed, which will reduce the numerical error associated with traditional systems analysis codes. In this paper, we provide a RELAP-7 capability list describing analysis features, range of applicability, and reactor components that will be available for the December 15th, 2014 beta release of the software.

Richard C. Martineau; Hongbin Zhang; Haihua Zhao

2014-12-01T23:59:59.000Z

95

Continuous chain bit with downhole cycling capability  

DOE Patents [OSTI]

A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

Ritter, Don F. (Albuquerque, NM); St. Clair, Jack A. (Albuquerque, NM); Togami, Henry K. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

96

Refueling machine with relative positioning capability  

DOE Patents [OSTI]

A refueling machine is disclosed having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images. 11 figs.

Challberg, R.C.; Jones, C.R.

1998-12-15T23:59:59.000Z

97

Meso-scale machining capabilities and issues  

SciTech Connect (OSTI)

Meso-scale manufacturing processes are bridging the gap between silicon-based MEMS processes and conventional miniature machining. These processes can fabricate two and three-dimensional parts having micron size features in traditional materials such as stainless steels, rare earth magnets, ceramics, and glass. Meso-scale processes that are currently available include, focused ion beam sputtering, micro-milling, micro-turning, excimer laser ablation, femto-second laser ablation, and micro electro discharge machining. These meso-scale processes employ subtractive machining technologies (i.e., material removal), unlike LIGA, which is an additive meso-scale process. Meso-scale processes have different material capabilities and machining performance specifications. Machining performance specifications of interest include minimum feature size, feature tolerance, feature location accuracy, surface finish, and material removal rate. Sandia National Laboratories is developing meso-scale electro-mechanical components, which require meso-scale parts that move relative to one another. The meso-scale parts fabricated by subtractive meso-scale manufacturing processes have unique tribology issues because of the variety of materials and the surface conditions produced by the different meso-scale manufacturing processes.

BENAVIDES,GILBERT L.; ADAMS,DAVID P.; YANG,PIN

2000-05-15T23:59:59.000Z

98

Evolution of a Unique Systems Engineering Capability  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INLs Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INLs Systems Engineering Department has chosen to focus on customer intimacy where the customers needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

Robert M. Caliva; James A. Murphy; Kyle B. Oswald

2011-06-01T23:59:59.000Z

99

REDUCTIONS WITHOUT REGRET: DEFINING THE NEEDED CAPABILITIES  

SciTech Connect (OSTI)

This is the second of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. This paper begins with a discussion of the current nuclear force and the plans and procurement programs for the modernization of that force. Current weapon systems and warheads were conceived and built decades ago, and procurement programs have begun for the modernization or replacement of major elements of the nuclear force: the heavy bomber, the air-launched cruise missile, the ICBMs, and the ballistic-missile submarines. In addition, the Nuclear Weapons Council has approved a new framework for nuclear-warhead life extension ? not fully fleshed out yet ? that aims to reduce the current number of nuclear explosives from seven to five, the so-called ?3+2? vision. This vision includes three interoperable warheads for both ICBMs and SLBMs (thus eliminating one backup weapon) and two warheads for aircraft delivery (one gravity bomb and one cruise-missile, eliminating a second backup gravity bomb). This paper also includes a discussion of the current and near-term nuclear-deterrence mission, both global and regional, and offers some observations on future of the strategic deterrence mission and the challenges of regional and extended nuclear deterrence.

Swegle, J.; Tincher, D.

2013-09-10T23:59:59.000Z

100

Sandia National Laboratories: User Fees for NSTTF Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FacilityUser Fees for NSTTF Capabilities User Fees for NSTTF Capabilities NSTTFpricing A site access fee is charged for all projects. The fee includes such things as office space,...

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oil and Natural Gas Subsector Cybersecurity Capability Maturity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural...

102

Federal Technical Capability Policy for Defense Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The policy regarding the Federal Technical Capability Program, which provides for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities.

1998-12-10T23:59:59.000Z

103

Methods for fluid separations, and devices capable of separating fluids  

DOE Patents [OSTI]

Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

2006-05-30T23:59:59.000Z

104

Methods for fluid separations, and devices capable of separating fluids  

DOE Patents [OSTI]

Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

TeGrotenhuis, Ward E. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

2007-09-25T23:59:59.000Z

105

Federal Technical Capability Program (FTCP) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Illness Compensation Program Pamphlet Federal Technical Capability Program (FTCP) Accident Investigation Reports Nuclear Safety Facility Safety Security Classification...

106

The Capability Concept and the Evolution of European Social Policy  

E-Print Network [OSTI]

, University of Cambridge Abstract Amartya Sen's capability approach has the potential to counter neoliberal of `capability', developed by Amartya Sen in a series of economic and philosophical texts,1 could play a major equivalent to Sen's notion of `capability'. However, certain legal concepts undoubtedly bear a certain

de Gispert, Adrià

107

Mobile Munitions Assessment System Field Capabilities  

SciTech Connect (OSTI)

The US has developed, stored, tested, and conducted disposal operations on various forms of chemical munitions for several decades. The remnants of these activities have resulted in the presence of suspect CWM at more than 200 sites in the US, the District of Columbia, and the US Virgin Islands. An advanced Mobile Munitions Assessment System (Phase II MMAS) has been designed, fabricated, assembled, and tested by the Idaho National Engineering and Environmental Laboratory under contract to the US Army's Project Manager for Non-Stockpile Chemical Materiel for use in the assessment and characterization of ''non-stockpile'' chemical warfare materiel (CWM). The Phase II MMAS meets the immediate need to augment response equipment currently used by the US Army with a system that includes state-of-the-art assessment equipment and advanced sensors. The Phase II MMAS will be used for response to known storage and remediation sites. This system is designed to identify the munition type; evaluate the condition of the CWM; evaluate the environmental conditions in the vicinity of the CWM; determine if fuzes, bursters, or safety and arming devices are in place; identify the chemical fill; provide other data (e.g., meteorological data) necessary for assessing the risk associated with handling, transporting, and disposing of CWM; and record the data on a dedicated computer system. The Phase II MMAS is capable of over-the-road travel and air transport to any site for conducting rigorous assessments of suspect CWM. The Phase II MMAS utilizes a specially-designed commercial motor home to provide a means to transport an interactive network of non-intrusive characterization and assessment equipment. The assessment equipment includes radiography systems, a gamma densitometer system, a Portable Isotopic Neutron Spectroscopy (PINS) system, a Secondary Ion Mass Spectroscopy (SIMS) system, air monitoring equipment (i.e., M-90s and a field ion spectroscopy system), and a phase determination equipment Command and control equipment includes a data acquisition and handling system, two meteorological stations, video equipment, and multiple communication systems. The Phase II MMAS motor home also serves an as environmentally controlled on-site command post for the MMAS operators when deployed. The data developed by the MMAS will be used to help determine the appropriate methods and safeguards necessary to transport, store, and dispose of agent-filled munitions in a safe and environmentally acceptable manner.

A. M. Snyder; D. A. Verrill; K. D. Watts

1999-05-27T23:59:59.000Z

108

Fuel Fabrication Capability Research and Development Plan  

SciTech Connect (OSTI)

The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing is between now and 2016 when the candidate processes are down-selected in preparation for the MP-1, FSP-1, and MP-2 plate manufacturing campaigns. A number of key risks identified by the FFC are discussed in this plan, with recommended mitigating actions for those activities within FFC, and identification of risks that are impacted by activities in other areas of the Convert Program. The R&D Plan does not include discussion of FFC initiatives related to production-scale manufacturing of fuel (e.g., establishment of the Pilot Line Production Facility), rather, the goal of this plan is to document the R&D activities needed ultimately to enable high-quality and cost-effective production of the fuel by the commercial fuel fabricator. The intent is for this R&D Plan to be a living document that will be reviewed and updated on a regular basis (e.g., annually) to ensure that FFC R&D activities remain properly aligned to the needs of the Convert Program. This version of the R&D Plan represents the first annual review and revision.

Senor, David J.; Burkes, Douglas

2014-04-17T23:59:59.000Z

109

Transmission Services WIST Task Force Dynamic Transfer Capability...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Force Dynamic Transfer Capability Report - Phase I BPA is an active participant in the Wind Integration Study Team (WIST), especially the Task Force looking at DTC study...

110

annotation query capabilities: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for building cooperative data driven applications in domains characterized by a rapid evolution of knowledge. We will point out the semantic capabilities of annotated databases...

111

Jefferson Lab technology, capabilities take center stage in constructi...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

semi for its road test. Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator By James Schultz January...

112

Equipment and capabilities at Los Alamos National Laboratory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alamos instruments Equipment and capabilities at Los Alamos National Laboratory's Lujan Neutron Scattering Center enabled a geologist to determine that a dazzling 217.78-gram...

113

NCT HE roadmap meeting/LANL capabilities and perspectives  

SciTech Connect (OSTI)

The presentation is a summary of LANL capabilities and perspectives on high explosives. it describes our high explosives research capabilities (firing sites and diagnostics), a list of the extent to which high explosive materials have been characterized at LANL, as well as LANL's perspectives on potential research direction for the NCT program.

Robbins, David [Los Alamos National Laboratory

2010-12-15T23:59:59.000Z

114

Health and justice: the capability to be healthy.  

E-Print Network [OSTI]

This is an inter-disciplinary argument for a moral entitlement to a capability to be healthy. Motivated by the goal to make a human right to health intelligible and justifiable, the thesis extends the capability approach, advocated by Amartya Sen...

Venkatapuram, Sridhar

2009-08-18T23:59:59.000Z

115

Carbon Nanotube Field-effect Transistors: AC Performance Capabilities.  

E-Print Network [OSTI]

Carbon Nanotube Field-effect Transistors: AC Performance Capabilities. D.L. Pulfrey, D.L. John-barrier carbon nanotube field-effect transistors are examined via simulations using a self-consistent Schrödinger is known about the DC capabilities of carbon nanotube field-effect transistors [1,2,3], and devices

Pulfrey, David L.

116

237Poverty and Human Capability Studies Poverty and Human  

E-Print Network [OSTI]

237Poverty and Human Capability Studies Poverty and Human CaPability StudieS (Pov) Core FaCulty: PROFESSORS beCKley*, GOLDSMITH, MARGAND The Shepherd Program for the interdisciplinary Study of Poverty and graduate studies can prepare them as futureprofessionalsandcitizenstoaddresstheproblems of poverty and how

Dresden, Gregory

117

227Poverty and Human Capability Studies Poverty AND HUMAN  

E-Print Network [OSTI]

227Poverty and Human Capability Studies Poverty AND HUMAN CAPABILIty StUDIeS (Pov) Core FACULty: PROFESSORS BeCKLey*, GOLDSMITH, MARGAND The Shepherd Program for the Interdisciplinary Study of Poverty studies can prepare them as future professionals and citizens to address the problems of poverty

Dresden, Gregory

118

Programmatic mission capabilities - chemistry and metallurgy research replacement (CMRR) project  

SciTech Connect (OSTI)

CMRR will have analysis capabilities that support all the nuclear-material programs and national security needs. CMRR will replace the aging CMR Building and provide a key component responsive infrastructure necessary to sustain all nuclear programs and the nuclear-weapons complex. Material characterization capabilities - evaluate the microstructures and properties of nuclear materials and provide experimental data to validate process and performance models. Analytical chemistry capabilities - provide expertise in chemical and radiochemical analysis of materials where actinide elements make up a significant portion of the sample.

Gunderson, L Nguyen [Los Alamos National Laboratory; Kornreich, Drew E [Los Alamos National Laboratory; Wong, Amy S [Los Alamos National Laboratory

2011-01-04T23:59:59.000Z

119

Title: Canada Land Inventory: Land Capability for Recreation Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: Land Capability for Recreation Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

120

Title: Canada Land Inventory: Land Capability for Ungulates Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: Land Capability for Ungulates Data Creator / Copyright Owner: National Archives of Canada, visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Title: Canada Land Inventory: Land Capability for Agriculture Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: Land Capability for Agriculture Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

122

Loop simulation capability for sodium-cooled systems  

E-Print Network [OSTI]

A one-dimensional loop simulation capability has been implemented in the thermal-hydraulic analysis code, THERMIT-4E. This code had been used to simulate and investigate flow in test sections of experimental sodium loops ...

Adekugbe, Oluwole A.

1984-01-01T23:59:59.000Z

123

A GPU Accelerated Smoothed Particle Hydrodynamics Capability For Houdini  

E-Print Network [OSTI]

on the desired result. One common fluid simulation technique is the Smoothed Particle Hydrodynamics (SPH) method. This method is highly parellelizable. I have implemented a method to integrate a Graphics Processor Unit (GPU) accelerated SPH capability into the 3D...

Sanford, Mathew

2012-10-19T23:59:59.000Z

124

Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report  

SciTech Connect (OSTI)

An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities capabilities distributed among multiple locations ? Modify Existing DOE Facilities capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

Jeff Bryan; Bill Landman; Porter Hill

2012-12-01T23:59:59.000Z

125

Survey of Biomass Resource Assessments and Assessment Capabilities  

E-Print Network [OSTI]

Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Energy ...................................................................................................................................4 Biomass Resource Assessment Products and Assessment Methodologies, Department of Industry, Tourism and Resources, Australia Ms. Siti Hafsah, Office of the Minister of Energy

126

Software Interoperability Tools: Standardized Capability-Profiling Methodology ISO16100  

E-Print Network [OSTI]

Software Interoperability Tools: Standardized Capability-Profiling Methodology ISO16100 Michiko, qwang@seu.ac.jp Abstract. The ISO 16100 series has been developed for Manufacturing software for developing general software applications including enterprise applications. In this paper, ISO 16100

Paris-Sud XI, Universit de

127

Design and delivery of a national pilot survey of capabilities  

E-Print Network [OSTI]

body dimensions thereby limiting the data to a few specific aspects of capability. Ergonomics databases such as Adultdata (Peebles and Norris, 1998), Older Adultdata (Smith et al, 2000) and Childata (Norris and Wilson, 1995) gather together a range...

Tenneti, Raji; Goodman-Deane, Joy; Langdon, Patrick; Waller, Sam; Ruggeri, Kai; Clarkson, P. John; Huppert, Felicia A.

2014-02-19T23:59:59.000Z

128

antigen presentation capability: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results were based on non-amplitude techniques and pattern display of S- and B-scan. The sizing capability is far better than ASME XI tolerances for performance demonstration and...

129

Soft x-ray capabilities for investigating the strongly correlated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soft x-ray capabilities for investigating the strongly correlated electron materials Friday, September 14, 2012 - 1:00pm SLAC, Bldg. 137, Room 226 Jun-Sik Lee Seminar One of the...

130

NGNP Component Test Capability Design Code of Record  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testingthrough large-scale, integrated testscan be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

2009-09-01T23:59:59.000Z

131

Designing data collection schemes for process capability analysis  

E-Print Network [OSTI]

DESIGNING DATA COLLECTION SCHEMES FOR PROCESS CAPABILITY ANALYSIS A Thesis by NITIN RAMESH MANTRI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1994 Major Subject: Industrial Engineering DESIGNING DATA COLLECTION SCHEMES FOR PROCESS CAPABILITY ANALYSIS A Thesis by NITIN RAMESH MANTRI Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

Mantri, Nitin Ramesh

1994-01-01T23:59:59.000Z

132

Energy Management and Control System: Desired Capabilities and Functionality  

SciTech Connect (OSTI)

This document discusses functions and capabilities of a typical building/facility energy management and control systems (EMCS). The overall intent is to provide a building operator, manager or engineer with basic background information and recommended functions, capabilities, and good/best practices that will enable the control systems to be fully utilized/optimized, resulting in improved building occupant quality of life and more reliable, energy efficient facilities.

Hatley, Darrel D.; Meador, Richard J.; Katipamula, Srinivas; Brambley, Michael R.; Wouden, Carl

2005-04-29T23:59:59.000Z

133

Post Irradiation Capabilities at the Idaho National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

J. L. Schulthess; K. E. Rosenberg

2011-05-01T23:59:59.000Z

134

Presto 4.20 user's guide : addendum for shock capabilities.  

SciTech Connect (OSTI)

This is an addendum to the Presto 4.20 User's Guide to document additional capabilities that are available for use in the Presto{_}ITAR code that are not available for use in the standard version of Presto. Presto{_}ITAR is an enhanced version of Presto that provides capabilities that make it regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export-control rules. This code is part of the Vivace product, and is only distributed to entities that comply with ITAR regulations. The enhancements primarily focus on material models that include an energy-dependent pressure response, appropriate for very large deformations and strain rates. Since this is an addendum to the standard Presto User's Guide, please refer to that document first for general descriptions of code capability and use. This addendum documents material models and element features that support energy-dependent material models.

Spencer, Benjamin Whiting

2011-06-01T23:59:59.000Z

135

Hydrogen peroxide modified sodium titanates with improved sorption capabilities  

DOE Patents [OSTI]

The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

Nyman, May D. (Albuquerque, NM); Hobbs, David T. (North Augusta, SC)

2009-02-24T23:59:59.000Z

136

Title: Canada Land Inventory: Land Capability for Forestry Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: Land Capability for Forestry Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division; Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed by Natural

137

Verification and validation of COBRA-SFS transient analysis capability  

SciTech Connect (OSTI)

This report provides documentation of the verification and validation testing of the transient capability in the COBRA-SFS code, and is organized into three main sections. The primary documentation of the code was published in September 1995, with the release of COBRA-SFS, Cycle 2. The validation and verification supporting the release and licensing of COBRA-SFS was based solely on steady-state applications, even though the appropriate transient terms have been included in the conservation equations from the first cycle. Section 2.0, COBRA-SFS Code Description, presents a capsule description of the code, and a summary of the conservation equations solved to obtain the flow and temperature fields within a cask or assembly model. This section repeats in abbreviated form the code description presented in the primary documentation (Michener et al. 1995), and is meant to serve as a quick reference, rather than independent documentation of all code features and capabilities. Section 3.0, Transient Capability Verification, presents a set of comparisons between code calculations and analytical solutions for selected heat transfer and fluid flow problems. Section 4.0, Transient Capability Validation, presents comparisons between code calculations and experimental data obtained in spent fuel storage cask tests. Based on the comparisons presented in Sections 2.0 and 3.0, conclusions and recommendations for application of COBRA-SFS to transient analysis are presented in Section 5.0.

Rector, D.R.; Michener, T.E.; Cuta, J.M.

1998-05-01T23:59:59.000Z

138

Entirely passive heat pipe apparatus capable of operating against gravity  

DOE Patents [OSTI]

The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

Koenig, Daniel R. (Santa Fe, NM)

1982-01-01T23:59:59.000Z

139

Core Capabilities and Technical Enhancement -- FY-98 Annual Report  

SciTech Connect (OSTI)

The Core Capability and Technical Enhancement (CC&TE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CC&TE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CC&TE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

Miller, David Lynn

1999-04-01T23:59:59.000Z

140

Core capabilities and technical enhancement, FY-98 annual report  

SciTech Connect (OSTI)

The Core Capability and Technical Enhancement (CCTE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CCTE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CCTE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

Miller, D.L.

1999-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fault detection and diagnosis capabilities of test sequence selection  

E-Print Network [OSTI]

Review Fault detection and diagnosis capabilities of test sequence selection methods based on the FSM model T Ramalingam*, Anindya Dast and K ThuIasiraman* Different test sequence selection methods resolution in diagnosing the fault. The test sequence selection methods are then compared based on the length

Thulsiraman, Krishnaiyan

142

Nuclear Data Capabilities Supported by the DOE NCSP  

E-Print Network [OSTI]

Nuclear Data Capabilities Supported by the DOE NCSP Symposium on Nuclear Data for Criticality responsible for developing, implementing, and maintaining nuclear criticality safety. 3 #12;NCSP Technical the Production Codes and Methods for Criticality Safety Engineers (e.g. MCNP, SCALE, & COG) · Nuclear Data

Danon, Yaron

143

Exploring Humanoid Robots Locomotion Capabilities in Virtual Disaster Response Scenarios  

E-Print Network [OSTI]

since the Fukushima Daiichi nuclear power plant accident that followed the 2011 Great East JapanExploring Humanoid Robots Locomotion Capabilities in Virtual Disaster Response Scenarios Karim-like motor skills to be achieved. We use virtual scenes under the fully- 3D-modeled-environment assumption

Paris-Sud XI, Université de

144

Space Robotic Capabilities David Kortenkamp (NASA Johnson Space Center)  

E-Print Network [OSTI]

Johnson Space Center Space Robotic Capabilities David Kortenkamp (NASA Johnson Space Center) Liam) David Wettergreen (Carnegie Mellon University) Dan Clancy (NASA Ames) #12;Johnson Space Center 12/18/2001 Space Robotics State-of-Art 2 ! Motivation Science Objectives Mission Concepts Robots Human

Kortenkamp, David

145

IT-based modeling for organizational capability management  

E-Print Network [OSTI]

automotive supplier. Keywords Competency management, Industrial engineering, Organizational capability 1 policy to all the suppliers, which can be thus become a core competency of the company (Sanchez et al, as emphasized in Figure 1. - Qualification approach: it is one of the earliest human resource approaches

Paris-Sud XI, Université de

146

Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman  

E-Print Network [OSTI]

Capabilities of the VLA pipeline in AIPS Lor??ant O. Sjouwerman National Radio Astronomy Observatory November 15, 2006 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line

Sjouwerman, Loránt

147

AIPS Memo 112 Capabilities of the VLA pipeline in AIPS  

E-Print Network [OSTI]

AIPS Memo 112 Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman March 19, 2007 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line. The latter and an analysis of a pilot

Sjouwerman, Loránt

148

CHARACTERIZATION OF THE ADVANCED RADIOGRAPHIC CAPABILITY FRONT END ON NIF  

SciTech Connect (OSTI)

We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

Haefner, C; Heebner, J; Dawson, J; Fochs, S; Shverdin, M; Crane, J K; Kanz, V K; Halpin, J; Phan, H; Sigurdsson, R; Brewer, W; Britten, J; Brunton, G; Clark, W; Messerly, M J; Nissen, J D; Nguyen, H; Shaw, B; Hackel, R; Hermann, M; Tietbohl, G; Siders, C W; Barty, C J

2009-07-15T23:59:59.000Z

149

www.nasa.gov WHITE SANDS MISSILE RANGE ACCESS CAPABILITIES  

E-Print Network [OSTI]

and missile launch, tracking, and recovery · Nuclear effects testing · High-speed sled track · Directed energy weapons testing · Climatic and dynamic environments testing · Atmospheric research · Electronicwww.nasa.gov WHITE SANDS MISSILE RANGE ACCESS CAPABILITIES SUMMARY White Sands Test Facility (WSTF

150

Sensor test facilities and capabilities at the Nevada Test Site  

SciTech Connect (OSTI)

Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of energy`s Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite (GPS) receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force`s Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

Boyer, W.B.; Burke, L.J.; Gomez, B.J.; Livingston, L.; Nelson, D.S.; Smathers, D.C.

1996-12-31T23:59:59.000Z

151

www.nasa.gov WSTF SAFETY AND HEALTH CAPABILITIES  

E-Print Network [OSTI]

a positive safety culture where employees and management work together to identify hazards and eliminate jobwww.nasa.gov WSTF SAFETY AND HEALTH CAPABILITIES SUMMARY The White Sands Test Facility (WSTF) Safety & Mission Assurance (S&MA) offices support all WSTF test activities and general industrial safety

152

Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration  

SciTech Connect (OSTI)

In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energys Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.?

Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

2012-09-28T23:59:59.000Z

153

Developing an operational capabilities index of the emergency services sector.  

SciTech Connect (OSTI)

In order to enhance the resilience of the Nation and its ability to protect itself in the face of natural and human-caused hazards, the ability of the critical infrastructure (CI) system to withstand specific threats and return to normal operations after degradation must be determined. To fully analyze the resilience of a region and the CI that resides within it, both the actual resilience of the individual CI and the capability of the Emergency Services Sector (ESS) to protect against and respond to potential hazards need to be considered. Thus, a regional resilience approach requires the comprehensive consideration of all parts of the CI system as well as the characterization of emergency services. This characterization must generate reproducible results that can support decision making with regard to risk management, disaster response, business continuity, and community planning and management. To address these issues, Argonne National Laboratory, in collaboration with the U.S. Department of Homeland Security (DHS) Sector Specific Agency - Executive Management Office, developed a comprehensive methodology to create an Emergency Services Sector Capabilities Index (ESSCI). The ESSCI is a performance metric that ranges from 0 (low level of capabilities) to 100 (high). Because an emergency services program has a high ESSCI, however, does not mean that a specific event would not be able to affect a region or cause severe consequences. And because a program has a low ESSCI does not mean that a disruptive event would automatically lead to serious consequences in a region. Moreover, a score of 100 on the ESSCI is not the level of capability expected of emergency services programs; rather, it represents an optimal program that would rarely be observed. The ESSCI characterizes the state of preparedness of a jurisdiction in terms of emergency and risk management. Perhaps the index's primary benefit is that it can systematically capture, at a given point in time, the capabilities of a jurisdiction to protect itself from, mitigate, respond to, and recover from a potential incident. On the basis of this metric, an interactive tool - the ESSCI Dashboard - can identify scenarios for enhancement that can be implemented, and it can identify the repercussions of these scenarios on the jurisdiction. It can assess the capabilities of law enforcement, fire fighting, search and rescue, emergency medical services, hazardous materials response, dispatch/911, and emergency management services in a given jurisdiction and it can help guide those who need to prioritize what limited resources should be used to improve these capabilities. Furthermore, this tool can be used to compare the level of capabilities of various jurisdictions that have similar socioeconomic characteristics. It can thus help DHS define how it can support risk reduction and community preparedness at a national level. This tool aligns directly with Presidential Policy Directive 8 by giving a jurisdiction a metric of its ESS's capabilities and by promoting an interactive approach for defining options to improve preparedness and to effectively respond to a disruptive event. It can be used in combination with other CI performance metrics developed at Argonne National Laboratory, such as the vulnerability index and the resilience index for assessing regional resilience.

Collins, M.J.; Eaton, L.K.; Shoemaker, Z.M.; Fisher, R.E.; Veselka, S.N.; Wallace, K.E.; Petit, F.D. (Decision and Information Sciences)

2012-02-20T23:59:59.000Z

154

From capability to strategic action: the case of Green IT/S Dynamic Capability Paola Floreddu1  

E-Print Network [OSTI]

processes and products more ecologically sustainable (Chen, Boudreau, & Watson, 2008). IT/S can be used), as it incorporates a greater variety of possible initiatives to support ecologically sustainable business processes Technologies/Systems (IT/S). Dynamic Capability is defined as the two-fold organizational process of: (1

Paris-Sud XI, Université de

155

Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs  

SciTech Connect (OSTI)

The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

James Werner

2014-07-01T23:59:59.000Z

156

National Criticality Experiments Research Center: Capability and Status  

SciTech Connect (OSTI)

After seven years, the former Los Alamos Critical Experiments Facility (LACEF), or Pajarito Site, has reopened for business as the National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS). Four critical assembly machines (Comet, Planet, Flat-Top, and Godiva-IV) made the journey from Los Alamos to the NNSS. All four machines received safety system upgrades along with new digital control systems. Between these machines, systems ranging from the thermal through the intermediate to the fast spectrum may be assembled. Steady-State, transient, and super-prompt critical conditions may be explored. NCERC is the sole remaining facility in the United States capable of conducting general-purpose nuclear materials handling including the construction and operation of high-multiplication assemblies, delayed critical assemblies, and prompt critical assemblies. Reconstitution of the unique capabilities at NCERC ensures the viability of (1) The Nuclear Renaissance, (2) Stockpile Stewardship, and (3) and the next generation of criticality experimentalists.

Hayes, David K. [Los Alamos National Laboratory; Myers, William L. [Los Alamos National Laboratory

2012-07-12T23:59:59.000Z

157

Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review  

SciTech Connect (OSTI)

The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

Redondo, Antonio [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

158

Development of a fourth generation predictive capability maturity model.  

SciTech Connect (OSTI)

The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNL's mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy

2013-09-01T23:59:59.000Z

159

Site in the Sky: Climate Facility Offers New Observational Capabilities  

SciTech Connect (OSTI)

This article is intended for publication in the trade journal, Meteorological Technology International. Its purpose is to introduce the audience to the ARM Climate Research Facility by describing its key capabilities (fixed, mobile and aerial facilities) with examples of field campaigns using each. It also summarizes coming enhancements to the facility through the American Recovery and Reinvestment Act of 2009, and mentions the data archive and proposal opportunities to use the facility.

Roeder, Lynne R.

2010-06-01T23:59:59.000Z

160

3D J-Integral Capability in Grizzly  

SciTech Connect (OSTI)

This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Size and transportation capabilities of the existing US cask fleet  

SciTech Connect (OSTI)

This study investigates the current spent nuclear fuel cask fleet capability in the United States. In addition, it assesses the degree to which the current fleet would be available, as a contingency, until proposed Office of Civilian Radioactive Waste Management casks become operational. A limited fleet of ten spent fuel transportation casks is found to be readily available for use in Federal waste management efforts over the next decade.

Danese, F.L. (Science Applications International Corp., Oak Ridge, TN (USA)); Johnson, P.E.; Joy, D.S. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

162

Quality Assurance Program Application for the Component Test Capability  

SciTech Connect (OSTI)

This paper documents the application of quality requirements to Component Test Capability (CTC) Project activities for each CTC alternative. Four alternatives are considered for quality program application: do nothing, vendor testing, existing testing facility modification, and Component Test Facility. It also describes the advantages and disadvantages of using the existing Next Generation Nuclear Plant Quality Program Plan with CTC modifications versus a stand-alone CTC Quality Program Plan.

Stephanin L. Austad

2009-06-01T23:59:59.000Z

163

INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS  

SciTech Connect (OSTI)

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

2011-07-18T23:59:59.000Z

164

Network Communication as a Service-Oriented Capability  

SciTech Connect (OSTI)

In widely distributed systems generally, and in science-oriented Grids in particular, software, CPU time, storage, etc., are treated as"services" -- they can be allocated and used with service guarantees that allows them to be integrated into systems that perform complex tasks. Network communication is currently not a service -- it is provided, in general, as a"best effort" capability with no guarantees and only statistical predictability. In order for Grids (and most types of systems with widely distributed components) to be successful in performing the sustained, complex tasks of large-scale science -- e.g., the multi-disciplinary simulation of next generation climate modeling and management and analysis of the petabytes of data that will come from the next generation of scientific instrument (which is very soon for the LHC at CERN) -- networks must provide communication capability that is service-oriented: That is it must be configurable, schedulable, predictable, and reliable. In order to accomplish this, the research and education network community is undertaking a strategy that involves changes in network architecture to support multiple classes of service; development and deployment of service-oriented communication services, and; monitoring and reporting in a form that is directly useful to the application-oriented system so that it may adapt to communications failures. In this paper we describe ESnet's approach to each of these -- an approach that is part of an international community effort to have intra-distributed system communication be based on a service-oriented capability.

Johnston, William; Johnston, William; Metzger, Joe; Collins, Michael; Burrescia, Joseph; Dart, Eli; Gagliardi, Jim; Guok, Chin; Oberman, Kevin; O'Conner, Mike

2008-01-08T23:59:59.000Z

165

Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System  

SciTech Connect (OSTI)

Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify intended capabilities of a carbon monitoring system and what system components are needed to develop the capabilities. This paper is intended to promote discussion on what capabilities are needed in a carbon monitoring system based on requirements for different areas of carbon-related research and, ultimately, for carbon management. While many methods exist to quantify different components of the carbon cycle, research is needed on how these methods can be coupled or integrated to obtain carbon stock and flux estimates regularly and at a resolution that enables attribution of carbon dynamics to respective sources. As society faces sustainability and climate change conerns, carbon management activities implemented to reduce carbon emissions or increase carbon stocks will become increasingly important. Carbon management requires moderate to high resolution monitoring. Therefore, if monitoring is intended to help inform management decisions, management priorities should be considered prior to development of a monitoring system.

West, Tristram O.; Brown, Molly E.; Duran, Riley M.; Ogle, Stephen; Moss, Richard H.

2013-08-08T23:59:59.000Z

166

Unmanned and Unattended Response Capability for Homeland Defense  

SciTech Connect (OSTI)

An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologies supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.

BENNETT, PHIL C.

2002-11-01T23:59:59.000Z

167

RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)  

SciTech Connect (OSTI)

--Idaho National Laboratorys, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply powersupporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

Kelly Lively; Stephen Johnson; Eric Clarke

2014-07-01T23:59:59.000Z

168

Production of Working Reference Materials for the Capability Evaluation Project  

SciTech Connect (OSTI)

Nondestructive waste assay (NDA) methods are employed to determine the mass and activity of waste-entrained radionuclides as part of the National TRU (Trans-Uranic) Waste Characterization Program. In support of this program the Idaho National Engineering and Environmental Laboratory Mixed Waste Focus Area developed a plan to acquire capability/performance data on systems proposed for NDA purposes. The Capability Evaluation Project (CEP) was designed to evaluate the NDA systems of commercial contractors by subjecting all participants to identical tests involving 55 gallon drum surrogates containing known quantities and distributions of radioactive materials in the form of sealed-source standards, referred to as working reference materials (WRMs). Although numerous Pu WRMs already exist, the CEP WRM set allows for the evaluation of the capability and performance of systems with respect to waste types/configurations which contain increased amounts of {sup 241}Am relative to weapons grade Pu, waste that is dominantly {sup 241}Am, as well as wastes containing various proportions of depleted uranium. The CEP WRMs consist of a special mixture of PuO{sub 2}/AmO{sub 2} (IAP) and diatomaceous earth (DE) or depleted uranium (DU) oxide and DE and were fabricated at Los Alamos National Laboratory. The IAP WRMS are contained inside a pair of welded inner and outer stainless steel containers. The DU WRMs are singly contained within a stainless steel container equivalent to the outer container of the IAP standards. This report gives a general overview and discussion relating to the production and certification of the CEP WRMs.

Phillip D. Noll, Jr.; Robert S. Marshall

1999-03-01T23:59:59.000Z

169

Verification of New Floating Capabilities in FAST v8: Preprint  

SciTech Connect (OSTI)

In the latest release of NREL's wind turbine aero-hydro-servo-elastic simulation software, FAST v8, several new capabilities and major changes were introduced. FAST has been significantly altered to improve the simulator's modularity and to include new functionalities in the form of modules in the FAST v8 framework. This paper is focused on the improvements made for the modeling of floating offshore wind systems. The most significant change was to the hydrodynamic load calculation algorithms, which are embedded in the HydroDyn module. HydroDyn is now capable of applying strip-theory (via an extension of Morison's equation) at the member level for user-defined geometries. Users may now use a strip-theory-only approach for applying the hydrodynamic loads, as well as the previous potential-flow (radiation/diffraction) approach and a hybrid combination of both methods (radiation/diffraction and the drag component of Morison's equation). Second-order hydrodynamic implementations in both the wave kinematics used by the strip-theory solution and the wave-excitation loads in the potential-flow solution were also added to HydroDyn. The new floating capabilities were verified through a direct code-to-code comparison. We conducted a series of simulations of the International Energy Agency Wind Task 30 Offshore Code Comparison Collaboration Continuation (OC4) floating semisubmersible model and compared the wind turbine response predicted by FAST v8, the corresponding FAST v7 results, and results from other participants in the OC4 project. We found good agreement between FAST v7 and FAST v8 when using the linear radiation/diffraction modeling approach. The strip-theory-based approach inherently differs from the radiation/diffraction approach used in FAST v7 and we identified and characterized the differences. Enabling the second-order effects significantly improved the agreement between FAST v8 and the other OC4 participants.

Wendt, F.; Robertson, A.; Jonkman, J.; Hayman, G.

2015-01-01T23:59:59.000Z

170

Engineered microorganisms capable of producing target compounds under anaerobic conditions  

DOE Patents [OSTI]

The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

Buelter, Thomas (Denver, CO); Meinhold, Peter (Denver, CO); Feldman, Reid M. Renny (San Francisco, CA); Hawkins, Andrew C. (Parker, CO); Urano, Jun (Irvine, CA); Bastian, Sabine (Pasadena, CA); Arnold, Frances (La Canada, CA)

2012-01-17T23:59:59.000Z

171

Overview of US fast-neutron facilities and testing capabilities  

SciTech Connect (OSTI)

Rather than attempt a cataloging of the various fast neutron facilities developed and used in this country over the last 30 years, this paper will focus on those facilities which have been used to develop, proof test, and explore safety issues of fuels, materials and components for the breeder and fusion program. This survey paper will attempt to relate the evolution of facility capabilities with the evolution of development program which use the facilities. The work horse facilities for the breeder program are EBR-II, FFTF and TREAT. For the fusion program, RTNS-II and FMIT were selected.

Evans, E.A.; Cox, C.M.; Jackson, R.J.

1982-01-01T23:59:59.000Z

172

Enhancing Staging Capabilities at the Device Assembly Facility  

SciTech Connect (OSTI)

The radioactive material limits allowed by the Documented Safety Analysis (DSA) at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF) can support larger quantities than the floor space will accommodate. In order to maximize the full staging bunker capability, National Security Technologies, LLC, (NSTec) is developing a plan to take advantage of these high inventory limits and evaluate staging options such as shelves, racks, and mezzanines. This plan will investigate cost and evaluate U.S. Department of Energy (DOE) complex-wide alternatives used at other sites (Highly Enriched Uranium Manufacturing Facility, Pantex, Los Alamos National Laboratory, Sandia National Laboratories, etc.) that addressed similar situations.

Kanning, R. A.; Long, R. G.; Garcia, B. O.; Williams, V. D.

2013-06-08T23:59:59.000Z

173

Transportation capabilities study of DOE-owned spent nuclear fuel  

SciTech Connect (OSTI)

This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1994-10-01T23:59:59.000Z

174

Alternative fuel capabilities of the Mod II Stirling vehicle  

SciTech Connect (OSTI)

The Stirling engine's characteristics make it a prime candidate for both multifuel and alternative fuel uses. In this paper, the relevant engine characteristics of the Mod II Stirling engine are examined, including the external heat system and basic operation. Adaptation of the Stirling to multifuel operation is addressed, and its experience with alternative fuels in automotive applications is summarized. The results of the U.S. Air Force review of the Stirling's multifuel capability are described, and the Stirling's advantages with liquid, gaseous, and solid fuels are discussed.

Grandin, A.W.; Ernst, W.D.

1988-01-01T23:59:59.000Z

175

Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities  

SciTech Connect (OSTI)

The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

2012-09-01T23:59:59.000Z

176

Center for Nanophase Materials Sciences (CNMS) - Research Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium:andNationalCNMS Hours ofRESEARCH CAPABILITIES

177

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards andAnalyses Capabilities in

178

NREL: Biomass Research - Capabilities in Integrated Biorefinery Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards andAnalyses Capabilities

179

ALS Capabilities Reveal How Like Can Attract Like  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALS Capabilities Reveal How

180

ALS Capabilities Reveal How Like Can Attract Like  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALS Capabilities Reveal HowALS

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ALS Capabilities Reveal How Like Can Attract Like  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALS Capabilities Reveal

182

ALS Capabilities Reveal How Like Can Attract Like  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALS Capabilities RevealALS

183

ALS Capabilities Reveal How Like Can Attract Like  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALS Capabilities RevealALSALS

184

ALS Capabilities Reveal How Like Can Attract Like  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALS Capabilities

185

ALS Capabilities Reveal Multiple Functions of Ebola Virus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALS CapabilitiesALS

186

ALS Capabilities Reveal Multiple Functions of Ebola Virus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALS CapabilitiesALSALS

187

ALS Capabilities Reveal Multiple Functions of Ebola Virus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALS CapabilitiesALSALSALS

188

ALS Capabilities Reveal Multiple Functions of Ebola Virus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During theALS CapabilitiesALSALSALSALS

189

Lattice physics capabilities of the SCALE code system using TRITON  

SciTech Connect (OSTI)

This paper describes ongoing calculations used to validate the TRITON depletion module in SCALE for light water reactor (LWR) fuel lattices. TRITON has been developed to provide improved resolution for lattice physics mixed-oxide fuel assemblies as programs to burn such fuel in the United States begin to come online. Results are provided for coupled TRITON/PARCS analyses of an LWR core in which TRITON was employed for generation of appropriately weighted few-group nodal cross-sectional sets for use in core-level calculations using PARCS. Additional results are provided for code-to-code comparisons for TRITON and a suite of other depletion packages in the modeling of a conceptual next-generation boiling water reactor fuel assembly design. Results indicate that the set of SCALE functional modules used within TRITON provide an accurate means for lattice physics calculations. Because the transport solution within TRITON provides a generalized-geometry capability, this capability is extensible to a wide variety of non-traditional and advanced fuel assembly designs. (authors)

DeHart, M. D. [Oak Ridge National Laboratory, MS 6170, P.O. Box 2008, Oak Ridge, TN 37831-6170 (United States)

2006-07-01T23:59:59.000Z

190

EMERGING CAPABILITIES FOR MATERIALS CHARACTERIZATION WITH POLYCHROMATIC MICRODIFFRACTION8  

SciTech Connect (OSTI)

Polychromatic microdiffraction is an emerging tool for mapping local crystal structure with submicron three-dimensional resolution. The method is sensitive to the local crystal phase, crystallographic orientation, elastic strain, and lattice curvature. For many materials it is also nondestructive, which allows for unique experiments that probe how particular structural configurations evolve during processing and service. This capability opens up the possibility of testing and guiding theories without the limitations imposed by destructive techniques, surface-limited measurements or ensemble averages. This new capability will impact long-standing issues of materials science ranging from the factors that control anisotropic materials deformation to factors that influence grain growth, grain boundary migration, electromigration and stress driven materials evolution. Such mesoscopic phenomena are at the heart of virtually all materials processing and form the basis for modern materials engineering. Here we describe the state-of-the-art, and discuss new instrumentation with the promise of better sensitivity and better real and reciprocal space resolution. Example science and future research opportunities are described.

Ice, Gene E [ORNL; Larson, Ben C [ORNL; Budai, John D [ORNL; Specht, Eliot D [ORNL; Barabash, Rozaliya [ORNL; Pang, Judy [ORNL; Tischler, Jonathan [Argonne National Laboratory (ANL); Liu, Wenjun [ORNL

2014-01-01T23:59:59.000Z

191

SRS K-AREA MATERIAL STORAGE - EXPANDING CAPABILITIES  

SciTech Connect (OSTI)

In support of the Department of Energys continued plans to de-inventory and reduce the footprint of Cold War era weapons material production sites, the K-Area Material Storage (KAMS) facility, located in the K-Area Complex (KAC) at the Savannah River Site reservation, has expanded since its startup authorization in 2000 to accommodate DOEs material consolidation mission. During the facilitys growth and expansion, KAMS will have expanded its authorization capability of material types and storage containers to allow up to 8200 total shipping containers once the current expansion effort completes in 2014. Recognizing the need to safely and cost effectively manage other surplus material across the DOE Complex, KAC is constantly evaluating the storage of different material types within K area. When modifying storage areas in KAC, the Documented Safety Analysis (DSA) must undergo extensive calculations and reviews; however, without an extensive and proven security posture the possibility for expansion would not be possible. The KAC maintains the strictest adherence to safety and security requirements for all the SNM it handles. Disciplined Conduct of Operations and Conduct of Projects are demonstrated throughout this historical overview highlighting various improvements in capability, capacity, demonstrated cost effectiveness and utilization of the KAC as the DOE Center of Excellence for safe and secure storage of surplus SNM.

Koenig, R.

2013-07-02T23:59:59.000Z

192

Validation of Heavy Ion Transport Capabilities in PHITS  

SciTech Connect (OSTI)

The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.

Ronningen, Reginald M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States)

2007-03-19T23:59:59.000Z

193

Final Technical Report: Development of Post?Installation Monitoring Capabilities  

SciTech Connect (OSTI)

The development of approaches to harness marine and hydrokinetic energy at large?scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under?developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6?meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington. The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger?scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with colonization of the subsea base support structure. In support of these plans, the project team developed and field tested a strobe?illuminated stereooptical camera system suitable for studying near?turbine interactions with marine animals. The camera system underwent short?term field testing at the proposed turbine deployment site and a multi?month endurance test in shallower water to evaluate the effectiveness of biofouling mitigation measures for the optical ports on camera and strobe pressure housings. These tests demonstrated that the camera system is likely to meet the objectives of the near?turbine monitoring plan and operate, without maintenance, for periods of at least three months. The project team also advanced monitoring capabilities related to passive acoustic monitoring of marine mammals and monitoring of tidal currents. These capabilities will be integrated in a recoverable monitoring package that has a single interface point with the OpenHydro turbines, connects to shore power and data via a wet?mate connector, and can be recovered to the surface for maintenance and reconfiguration independent of the turbine. A logical next step would be to integrate these instruments within the package, such that one instrument can trigger the operation of another.

Polagye, Brian [University of Washington] [University of Washington

2014-03-31T23:59:59.000Z

194

Fission matrix capability for MCNP, Part II - Applications  

SciTech Connect (OSTI)

This paper describes the initial experience and results from implementing a fission matrix capability into the MCNP Monte Carlo code. The fission matrix is obtained at essentially no cost during the normal simulation for criticality calculations. It can be used to provide estimates of the fundamental mode power distribution, the reactor dominance ratio, the eigenvalue spectrum, and higher mode spatial eigenfunctions. It can also be used to accelerate the convergence of the power method iterations. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of the matrix, permitting much larger and more accurate fission matrix representations. Numerous examples are presented. A companion paper (Part I - Theory) describes the theoretical basis for the fission matrix method. (authors)

Carney, S. E. [University of Michigan, NERS Department, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Brown, F. B. [Los Alamos National Laboratory, Monte Carlo Codes Group, MS A143, PO Box 1663, Los Alamos, NM 87545 (United States); Kiedrowski, B. C. [University of Michigan, NERS Department, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Martin, W. R. [Los Alamos National Laboratory, Monte Carlo Codes Group, MS A143, PO Box 1663, Los Alamos, NM 87545 (United States)

2013-07-01T23:59:59.000Z

195

Stand Up of Uranium Capability for Swipe Analysis  

SciTech Connect (OSTI)

The INL has established the capability to process and analyze swipe samples to determine if the amount of U and Pu present on equipment and facilities are at the level typical for natural background, to quantify their isotopic composition and to determine if any off-normal isotopic ratio present in the sample is statistically relevant. A previous report detailed this capability for Pu and preliminarily for U; this report describes the measurements and analysis that were performed to demonstrate the INL capability for U. To establish that a piece of equipment is not contaminated with the element to be sampled, a fabric swipe is used to collect a sample of the materials present on the surface. The swipes are then processed and analyzed to determine if Pu and U are present on the sample at levels above what is accepted as natural background and, for the case of U, whether the isotope ratios deviate from the accepted natural background levels. Both the method applied for chemical processing of the swipes to remove and isolate the U and Pu and the method used to analyze the extracts influences the sensitivity and specificity. Over the years various methods have been developed for processing and analyzing these types of samples; the gold standard for these measurements involves a lengthy and complex separation process followed by analysis using thermal ionization mass spectrometry (TIMS). However, this method is expensive and time consuming, thus driving a need for a less complicated and more efficient method that provides the necessary level of sensitivity and specificity. Advances in Inductively Coupled Plasma Mass Spectrometry (ICPMS) over the last decade have enabled analyses of U and Pu that rival that of TIMS. This, coupled with the potential for simplifying the extraction and separation process required for an ICPMS analysis, prompted the INLs development of methods that provide the analysis of swipes in a timely and efficient manner. U is present in the blank swipe material at nanogram (~2 x 10-9 g) levels for a typical sample, a level easily detected with ICPMS. The abundance of the isotopes ranges over 4 orders of magnitude for the naturally occurring 234U, 235U and 238U and a goal was set to be able to detect the presence of 236U at 6 orders of magnitude lower than the 238U. The 236U measurement is particularly important because the presence of 236U is a strong indicator that the uranium as been in a nuclear reactor. To demonstrate these capabilities the following sample types were used: blank swipe material, blank process reagents, swipe material spiked with a natural abundance U isotope standard, swipe material spiked with an environmental standard (Columbia River sediment), and swipes taken at various locations within the processing laboratories and the INL environment. This report summarizes the method used to extract the U from the swipe material, the ICPMS analyses that demonstrate the limit of detection (LOD) and the limit of quantification (LOQ) for the U isotopes of interest, the precision of the measured isotope ratios and the dependence of precision on the quantity of U present, and the method proposed to determine if an off-normal ratio is statistically relevant.

Matthew Watrous; Anthony Appelhans; Robert Hague; Tracy Houghton; John Olson

2013-11-01T23:59:59.000Z

196

Kazakhstan seeks to step up crude oil export capabilities  

SciTech Connect (OSTI)

This paper reports that the Commonwealth of Independent States' Kazakhstan republic is driving to achieve international export capability for its crude oil production. Latest official figures showed Kazakhstan producing 532,000 b/d, or a little more than 5% of the C.I.S. total of 10.292 million b/d. As part of its oil export campaign, Kazakhstan agreed with Oman to a joint venture pipeline to ship oil from Kazakh fields, including supergiant Tengiz, earmarked for further development by a Chevron Corp. joint venture. In addition, Kazakh leaders were scheduled to conduct 3 days of talks last week with Turkish officials covering construction of a crude oil pipeline to the Mediterranean Sea through Turkey.

Not Available

1992-06-22T23:59:59.000Z

197

New capabilities and applications for electrophoretically deposited coatings  

SciTech Connect (OSTI)

Our primary purpose in this test is to provide a brief general description of a few applications of various electrophoretic systems which have been investigated and have found use in various coating applications at Sandia National Laboratories. Both organic and inorganic suspensions in aqueous and non-aqueous media have been considered in these studies. Applications include high voltage insulating dielectrics, thermally conductive/electrically insulating films, adherent lubricating films, uniform photoresist films, glass coatings, and fissile uranium oxide/carbon composite films for studies of nuclear powered lasers. More recently, we have become interested in the beneficial environmental aspects of being able to provide protective polymer coatings which reduce or minimize the use of organic solvents required by traditional spray coat processes. Important practical factors which relate to film uniformity, adhesion, and composition are related to unique coating or plating capabilities and applications. 6 refs., 2 figs., 1 tab.

Sharp, D.J.

1991-01-01T23:59:59.000Z

198

Magma simulation facility design considerations, capabilities, and operational considerations  

SciTech Connect (OSTI)

The high-pressure, high temperature (60 Kpsi or 413.6 MPa/1600/sup 0/C) facility described is being used for molten rock (magma) experiments and metallurgical pressure bonding experiments. The unique design of the facility will accommodate samples as large as 10 cm dia. by 10 cm in height in an isothermal (+-4/sup 0/C at 1400/sup 0/C and 44 Kpsi or 303.3 MPa) cylindrical hot zone. The facility history, capabilities, and operational considerations are thoroughly discussed with appropriate illustrations. Since the system-contained energy while operating is approximately 1 x 10/sup 6/ ft-lbs (1.356 x 10/sup 6/ N-m) or 0.7 lbs (318 g) TNT equivalent, considerable discussion is related to hazards analysis and protection of the equipment and the operating personnel from damage caused by nonstandard conditions (interrupted H/sub 2/O flow, power outage, overpressure, etc.).

Wemple, R.P.

1981-04-01T23:59:59.000Z

199

Y-12 defense programs: Nuclear Packaging Systems testing capabilities  

SciTech Connect (OSTI)

The Nuclear Packaging Systems (NPS) Department can manage/accomplish any packaging task. The NPS organization is responsible for managing the design, testing, certification, procurement, operation, refurbishment, maintenance, and disposal of packaging used to transport radioactive materials, other hazardous materials, and general cargoes on public roads and within the Oak Ridge Y-12 Plant. Additionally, the NPS Department has developed a Quality Assurance plan for all packaging, design and procurement of nonweapon shipping containers for radioactive materials, and design and procurement of performance-oriented packaging for hazardous materials. Further, the NPS Department is responsible for preparation and submittal of Safety Analysis Reports for Packaging (SARP). The NPS Department coordinates shipping container procurement and safety certification activities that have lead-times of up to two years. A Packaging Testing Capabilities Table at the Oak Ridge complex is included as a table.

NONE

1995-06-01T23:59:59.000Z

200

Production capabilities in US nuclear reactors for medical radioisotopes  

SciTech Connect (OSTI)

The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. (Oak Ridge National Lab., TN (United States)); Schenter, R.E. (Westinghouse Hanford Co., Richland, WA (United States))

1992-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A New Capability for Nuclear Thermal Propulsion Design  

SciTech Connect (OSTI)

This paper describes a new capability for Nuclear Thermal Propulsion (NTP) design that has been developed, and presents the results of some analyses performed with this design tool. The purpose of the tool is to design to specified mission and material limits, while maximizing system thrust to weight. The head end of the design tool utilizes the ROCket Engine Transient Simulation (ROCETS) code to generate a system design and system design requirements as inputs to the core analysis. ROCETS is a modular system level code which has been used extensively in the liquid rocket engine industry for many years. The core design tool performs high-fidelity reactor core nuclear and thermal-hydraulic design analysis. At the heart of this process are two codes TMSS-NTP and NTPgen, which together greatly automate the analysis, providing the capability to rapidly produce designs that meet all specified requirements while minimizing mass. A PERL based command script, called CORE DESIGNER controls the execution of these two codes, and checks for convergence throughout the process. TMSS-NTP is executed first, to produce a suite of core designs that meet the specified reactor core mechanical, thermal-hydraulic and structural requirements. The suite of designs consists of a set of core layouts and, for each core layout specific designs that span a range of core fuel volumes. NTPgen generates MCNPX models for each of the core designs from TMSS-NTP. Iterative analyses are performed in NTPgen until a reactor design (fuel volume) is identified for each core layout that meets cold and hot operation reactivity requirements and that is zoned to meet a radial core power distribution requirement.

Amiri, Benjamin W. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Nuclear and Radiological Engineering Department, University of Florida, Gainesville, FL 32611 (United States); Kapernick, Richard J. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sims, Bryan T. [Nuclear Systems Design Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Simpson, Steven P. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2007-01-30T23:59:59.000Z

202

Neutron source capability assessment for cumulative fission yields measurements  

SciTech Connect (OSTI)

A recent analysis of high-quality cumulative fission yields data for Pu-239 published in the peer-reviewed literature showed that the quoted experimental uncertainties do not allow a clear statement on how the fission yields vary as a function of energy. [Prussin2009] To make such a statement requires a set of experiments with well 'controlled' and understood sources of experimental errors to reduce uncertainties as low as possible, ideally in the 1 to 2% range. The Inter Laboratory Working Group (ILWOG) determined that Directed Stockpile Work (DSW) would benefit from an experimental program with the stated goal to reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Following recent discussions between Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL), there is a renewed interest in developing a concerted experimental program to measure fission yields in a neutron energy range from thermal energy (0.025 eV) to 14 MeV with an emphasis on discrete energies from 0.5 to 4 MeV. Ideally, fission yields would be measured at single energies, however, in practice there are only 'quasi-monoenergetic' neutrons sources of finite width. This report outlines a capability assessment as of June 2011 of available neutron sources that could be used as part of a concerted experimental program to measure cumulative fission yields. In a framework of international collaborations, capabilities available in the United States, at the Atomic Weapons Establishment (AWE) in the United Kingdom and at the Commissariat Energie Atomique (CEA) in France are listed. There is a need to develop an experimental program that will reduce the measurement uncertainties significantly in order to make a definitive statement of the relationship of energy dependence to the cumulative fission yields. Fission and monoenergetic neutron sources are available that could support these fission yield experiments in the US, as well as at AWE and CEA. Considerations that will impact the final choice of experimental venues are: (1) Availability during the timeframe of interest; (2) Ability to accommodate special nuclear materials; (3) Cost; (4) Availability of counting facilities; and (5) Expected experimental uncertainties.

Descalle, M A; Dekin, W; Kenneally, J

2011-04-06T23:59:59.000Z

203

Development of High Temperature Capacitor Technology and Manufacturing Capability  

SciTech Connect (OSTI)

The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200C and non-hermetic packages at 250C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

None

2011-05-15T23:59:59.000Z

204

Dual-band infrared capabilities for imaging buried object sites  

SciTech Connect (OSTI)

We discuss dual-band infrared (DBIR) capabilities for imaging buried object sizes. We identify physical features affecting thermal contrast needed to distinguish buried object sites from undisturbed sites or surface clutter. Apart from atmospheric transmission and system performance, these features include: object size, shape, and burial depth; ambient soil, disturbed soil and object site thermal diffusivity differences; surface temperature, emissivity, plant-cover, slope, albedo and roughness variations; weather conditions and measurement times. We use good instrumentation to measure the time-varying temperature differences between buried object sites and undisturbed soil sites. We compare near surface soil temperature differences with radiometric infrared (IR) surface temperature differences recorded at 4.7 {plus_minus} 0.4 {mu}m and at 10.6 {plus_minus} 1.0 {mu}m. By producing selective DBIR image ratio maps, we distinguish temperature-difference patterns from surface emissivity effects. We discuss temperature differences between buried object sites, filled hole site (without buried objects), cleared (undisturbed) soil sites, and grass-covered sites (with and without different types of surface clutter). We compare temperature, emissivity-ratio, visible and near-IR reflectance signatures of surface objects, leafy plants and sod. We discuss the physical aspects of environmental, surface and buried target features affecting interpretation of buried targets, surface objects and natural backgrounds.

Del Grande, N.K.; Durbin, P.F.; Gorvad, M.R.; Perkins, D.E.; Clark, G.A.; Hernandez, J.E.; Sherwood, R.J.

1993-04-02T23:59:59.000Z

205

Advanced Test Reactor Capabilities and Future Irradiation Plans  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR), located at the Idaho National Laboratory (INL), is one of the most versatile operating research reactors in the Untied States. The ATR has a long history of supporting reactor fuel and material research for the US government and other test sponsors. The INL is owned by the US Department of Energy (DOE) and currently operated by Battelle Energy Alliance (BEA). The ATR is the third generation of test reactors built at the Test Reactor Area, now named the Reactor Technology Complex (RTC), whose mission is to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The current experiments in the ATR are for a variety of customers--US DOE, foreign governments and private researchers, and commercial companies that need neutrons. The ATR has several unique features that enable the reactor to perform diverse simultaneous tests for multiple test sponsors. The ATR has been operating since 1967, and is expected to continue operating for several more decades. The remainder of this paper discusses the ATR design features, testing options, previous experiment programs, future plans for the ATR capabilities and experiments, and some introduction to the INL and DOE's expectations for nuclear research in the future.

Frances M. Marshall

2006-10-01T23:59:59.000Z

206

A workshop on enhanced national capability for neutron scattering  

SciTech Connect (OSTI)

This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.

Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

207

The Role of Surface Chemistry on the Cycling and Rate Capability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Role of Surface Chemistry on the Cycling and Rate Capability of Lithium Positive Electrode Materials The Role of Surface Chemistry on the Cycling and Rate Capability of Lithium...

208

Assessment of TexSIM capabilities for analyzing freeway ramp metering  

E-Print Network [OSTI]

capabilities. The purposes of this study were to calibrate the TEXSIM model for various traffic facilities and to assess its capabilities of freeway simulation with various ramp metering strategies. Due to lack of suitable field data, the TEXSIM model...

Neerudu, Venugopal R

2012-06-07T23:59:59.000Z

209

TOWARD A "CAPABILITY" ANALYTICAL MODEL OF PUBLIC POLICY? LESSONS FROM ACADEMIC GUIDANCE ISSUES  

E-Print Network [OSTI]

capability. To calibrate public action in terms of individual capability, the economist Amartya Sen has may seem surprising since many debates about Amartya Sen's approach deal with its normative feature, Sciences Po Bordeaux, 33000 Bordeaux, France. Keywords: Sen, Capability, Justice, Fairness. Abstract: Often

Boyer, Edmond

210

Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

Taylor, Antoinette J [Los Alamos National Laboratory

2012-04-20T23:59:59.000Z

211

E-Print Network 3.0 - advance capability reliability Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Formation Partnerships for R&D on commercial and Summary: all factors influencing system energy production, long-term reliability, and safety. Capabilities... Formation Sandia has...

212

E-Print Network 3.0 - aperture radar capabilities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SURVEILLANCE NEEDS Summary: -area and long- range aircraft surveillance and weather measurement capability is described and a radar network... to acquire replacement radars. The...

213

E-Print Network 3.0 - aircraft mission capable Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that decisions are feasible with respect to aircraft availability... of planning and scheduling capabilities. By default, ... Source: Carnegie Mellon University, School of...

214

E-Print Network 3.0 - assessment capability rev Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and information systems with the gains in capabilities and improved support of organizational... . The security controls are assessed and monitored to assure continued...

215

ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT- CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations, addressing attenuation-based remedies at the Savannah River Site F Area and performance assessment for a representative waste tank, illustrate integration of linked ASCEM capabilities and initial integration efforts with tools from the Cementitious Barriers Partnership.

Seitz, R.

2013-02-26T23:59:59.000Z

216

ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS  

SciTech Connect (OSTI)

The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations, addressing attenuation-based remedies at the Savannah River Site F Area and performance assessment for a representative waste tank, illustrate integration of linked ASCEM capabilities and initial integration efforts with tools from the Cementitious Barriers Partnership.

Seitz, Roger; Freshley, Mark D.; Dixon, Paul; Hubbard, Susan S.; Freedman, Vicky L.; Flach, Gregory P.; Faybishenko, Boris; Gorton, Ian; Finsterle, Stefan A.; Moulton, John D.; Steefel, Carl I.; Marble, Justin

2013-06-27T23:59:59.000Z

217

Developing and managing organizational capabilities to meet emerging customer needs : insights from the Joint Strike Fighter program  

E-Print Network [OSTI]

This research examines the development and management of dynamic organizational capabilities. These capabilities include, among other things, how enterprises generate and integrate knowledge, understand and respond to ...

Moon, Hee Sung

2006-01-01T23:59:59.000Z

218

An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System  

E-Print Network [OSTI]

DRAFT 1 An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System September 26, 2005 The best way to assess the hydroelectric system's peaking capability is to simulate its. This model simulates the operation of the major hydroelectric projects over a one-week (168 hour) period

219

A Robust STATCOM Control to Augment LVRT capability of Fixed Speed Wind Turbines  

E-Print Network [OSTI]

A Robust STATCOM Control to Augment LVRT capability of Fixed Speed Wind Turbines M. J. Hossain, H Compensator (STATCOM) to enhance the Low-Voltage Ride- Through (LVRT) capability of fixed-speed wind turbines cost and maintenance due to rugged brushless construction. Constant speed wind turbines equipped

Pota, Himanshu Roy

220

Analysis of Property-Preservation Capabilities of the ROX and ESh Hash Domain Extenders  

E-Print Network [OSTI]

Analysis of Property-Preservation Capabilities of the ROX and ESh Hash Domain Extenders Mohammad domain extension trans- forms are the Ramdom-Oracle-XOR (ROX) transform and the Enveloped Shoup (ESh showed that ESh is capable of preserving five important security notions; namely CR, message

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION CAPABILITIES BASED ON SIMULATION MODELS  

E-Print Network [OSTI]

1 A CONTROLLER FOR HVAC SYSTEMS WITH FAULT DETECTION CAPABILITIES BASED ON SIMULATION MODELS T. I describes a control scheme with fault detection capabilities suitable for application to HVAC systems as a reference of correct operation. Faults that occur in the HVAC system under control cause the PI

222

Learning to Export: Building farmers' capabilities through partnerships in Kenya LEARNING TO EXPORT  

E-Print Network [OSTI]

Learning to Export: Building farmers' capabilities through partnerships in Kenya Bolo, M.O LEARNING TO EXPORT: BUILDING FARMERS' CAPABILITIES THROUGH PARTNERSHIPS IN KENYA'S FLOWER INDUSTRY Maurice Ochieng in volume, value and acreage of cut flowers in Kenya ­ largely from large scale growers. In order to improve

Paris-Sud XI, Université de

223

RPM-2: A recyclable porous material with unusual adsorption capability: self assembly via structural transformations  

E-Print Network [OSTI]

-assembly of molecular electronics and smart materials will bring a new era in the field of material science.1 HoweverRPM-2: A recyclable porous material with unusual adsorption capability: self assembly via, fully recyclable porous material (RPM-2) with a very high sorption capability. Self

Li, Jing

224

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations  

E-Print Network [OSTI]

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic of multi-megawatt turbines requires a new generation of modeling capability to assess individual turbine. Key Result The work is generating several models, including actuator line models of several wind

225

Capability Improvement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4Tours SHARE ToursCanyonTrinity /

226

Cybersecurity Capability  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009Site | DepartmentOfficeEnergyposters

227

Experimental Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film

228

CAMS Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergyArchaeologyBylawsSEP 10CAMDCAMS

229

Experimental Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERP Submit an Science

230

Implementing NCNP's 21st century geometry capability: requirements, issues, and problems  

SciTech Connect (OSTI)

A new geometry capability has been implemented in MCNP that permits the existence of an unstructured mesh with its legacy Constructive Solid Geometry (CSG) capability to form a hybrid geometry. This new feature enables the user to build complex 3-D models with Computer Aided Engineering (CAE) tools, such as Abaqus, and perform a neutronics analysis on the same geometry mesh that is used for thermo-mechanical analyses. This paper will present an overview of the issues and problems encountered in implementing the requirements for the hybrid geometry capability in MCNP.

Martz, Roger L [Los Alamos National Laboratory; Goorley, John T [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

231

Analysis of the capabilities of continuous high-speed microcontact printing  

E-Print Network [OSTI]

Microcontact printing uses elastomeric stamps to transfer ink onto a substrate by the process of self-assembly. It has the capability to print features as small as 200nm over large areas. Because of this it has many potential ...

Khanna, Kanika

2008-01-01T23:59:59.000Z

232

Title: Canada Land Inventory: Land Capability for Waterfowl Wildlife Data Creator /  

E-Print Network [OSTI]

Title: Canada Land Inventory: Land Capability for Waterfowl Wildlife Data Creator / Copyright Owner: National Archives of Canada, Visual and Sound Archives Division Publisher: National Archives of Canada, Visual and Sound Archives Division; developed under the auspices of Environment Canada; distributed

233

The Materials Reliability Division has established several capabilities for analyzing the reliability of  

E-Print Network [OSTI]

The Materials Reliability Division has established several capabilities for analyzing the reliability of small scale structures, including a number of custom instruments developed specifically@boulder.nist.gov FACILITIES Measurement Facilities: Small-Scale Mechanical Reliability Materials Science and Engineering

234

Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)  

SciTech Connect (OSTI)

This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

Tabares Velasco, P. C.

2011-04-01T23:59:59.000Z

235

Analyzing Volunteer Geographic Information Accuracy and Determining its Capabilities for Scientific Research Data  

E-Print Network [OSTI]

Analyzing Volunteer Geographic Information Accuracy and Determining its Capabilities for Scientific Research Data. (May 2014) Michael Schwind, Kelsi Davis, Payton Baldridge Department of Geography Texas A&M University Research Advisor: Dr...

Baldridge, Payton Lloyd

2014-04-14T23:59:59.000Z

236

SciTech Connect: Verification of the New FAST v8 Capabilities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint Citation Details In-Document Search Title: Verification of the New FAST...

237

Verification of the New FAST v8 Capabilities for the Modeling...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines Preprint B. Barahona, J. Jonkman, R. Damiani, A. Robertson, and G. Hayman National...

238

Foreign Direct Investment, Intra-organizational Proximity, and Technological Capability: The Case of China's Automobile Industry  

E-Print Network [OSTI]

of China's Automobile Industry by Kyung-Min Nam B.S., Urban Planning and Engineering, Yonsei University Capability: The Case of China's Automobile Industry by Kyung-Min Nam Submitted to the Department of Urban

239

Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies  

SciTech Connect (OSTI)

This survey of biomass resource assessments and assessment capabilities in Asia-Pacific Economic Cooperation (APEC) economies considered various sources: academic and government publications, media reports, and personal communication with contacts in member economies.

Milbrandt, A.; Overend, R. P

2008-11-01T23:59:59.000Z

240

Decentralized Control to Augment LVRT Capability of Wind Generators with STATCOM/ESS  

E-Print Network [OSTI]

Decentralized Control to Augment LVRT Capability of Wind Generators with STATCOM/ESS M. J. Hossain). In this paper it is shown that STATCOM with energy storage system (STATCOM/ESS), controlled via robust control

Pota, Himanshu Roy

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

300C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Project objectives: Enable geothermal wellbore monitoring through the development of SiC based electronics and ceramic packaging capable of sustained operation at temperatures up to 300?C and 10 km depth. Demonstrate the technology with a temperature sensor system.

242

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network [OSTI]

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

243

E-Print Network 3.0 - aero projects capabilities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: aero projects capabilities Page: << < 1 2 3 4 5 > >> 1 Aero-Optics 1 Physics and Computation of Aero-Optics Summary: Aero-Optics 1 Physics and...

244

Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine  

E-Print Network [OSTI]

Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine-Frequency Control (LFC) is gradually shifted to Variable Speed Wind Turbines (VSWTs). In order to equip VSWT

Silva, Filipe Faria Da

245

Scenario Planning as the Development of Leadership Capability and Capacity; and Virtual Human Resource Development  

E-Print Network [OSTI]

with the development of leadership capability and capacity. Findings from the second stream of inquiry into sophisticated virtual environments included formal and informal learning in the 3D virtual world of Second Life (SL). Respondents in the study completed forty...

McWhorter, Rochell 1963-

2011-08-03T23:59:59.000Z

246

Does early success and market dominance help or hinder future innovative capability?  

E-Print Network [OSTI]

Many successful innovative companies are acquired and become absorbed into larger more structured organizations. The innovation capabilities of the company change in the new environment depending on the extent to which ...

O'Flanagan, Sinead E

2007-01-01T23:59:59.000Z

247

Nano-DESI Source for OA Samples Analyses. EMSL Research and Capability Development Proposals  

E-Print Network [OSTI]

Nano-DESI Source for OA Samples Analyses. EMSL Research and Capability Development Proposals Electrospray Ionization (nano-DESI) method developed as part of this project and other atmospheric ionization

248

Effects of different restrained foot positions on hand force exertion capability-implications for microgravity operations  

E-Print Network [OSTI]

An experiment was conducted to determine restrained foot positions that increase hand force exertion capability (HFEC) over that available under the existing restrained foot position utilized by NASA astronauts during Extra Vehicular Activity (EVA...

Whalen, Scott Allan

1997-01-01T23:59:59.000Z

249

Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161  

SciTech Connect (OSTI)

The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations, addressing attenuation-based remedies at the Savannah River Site F Area and performance assessment for a representative waste tank, illustrate integration of linked ASCEM capabilities and initial integration efforts with tools from the Cementitious Barriers Partnership. (authors)

Seitz, Roger R.; Flach, Greg [Savannah River National Laboratory, Savannah River Site, Bldg 773-43A, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Bldg 773-43A, Aiken, SC 29808 (United States); Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States)] [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Dixon, Paul; Moulton, J. David [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States)] [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States); Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States)] [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Marble, Justin [Department of Energy, 19901 Germantown Road, Germantown, MD 20874-1290 (United States)] [Department of Energy, 19901 Germantown Road, Germantown, MD 20874-1290 (United States)

2013-07-01T23:59:59.000Z

250

Materials capability review Los Alamos National Laboratory, May 3-6, 2010  

SciTech Connect (OSTI)

The 2010 'Capability Review' process at LANL significantly differs from the Division reviews of prior years. The Capabilities being reviewed (some 4-8 per year) are deliberately chosen to be crosscutting over the Laboratory, and therefore will include not only several experimental, theoretical and simulation disciplines, but also contributions from multiple line organizations. This approach is consistent with the new Laboratory organizational structure, focusing on agile and integrated capabilities applied to present national security missions, and also nurtured to be available for rapid application to future missions. The overall intent is that the Committee assess the quality of the science, engineering, and technology identified in the agenda, and advise the LANS Board of Governors and Laboratory management. Specifically, the Committees will: (1) Assess the quality of science, technology and engineering within the Capability in the areas defined in the agenda. Identify issues to develop or enhance the core competencies within this capability. (2) Evaluate the integration of this capability across the Laboratory organizations that are listed in the agenda in terms of joint programs, projects, proposals, and/or publications. Describe the integration of this capability in the wider scientific community using the recognition as a leader within the community, ability to set research agendas, and attraction and retention of staff. (3) Assess the quality and relevance of this capability's science, technology and engineering contributions to current and emerging Laboratory programs, including Nuclear Weapons, Threat Reduction/Homeland Security, and Energy Security. (4) Advise the Laboratory Director/Principal Associate Director for Science, Technology and Engineering on the health of the Capability including the current and future (5 year) science, technology and engineering staff needs, mix of research and development activities, program opportunities, environment for conducting science, technology and engineering. The specific charge for the Materials Capability Review is to assess the Los Alamos Laboratory Directed Research and Development project titled, 'First Principles Predictive Capabilities for Transuranic Materials: Mott Insulators to Correlated Metals' using the criteria performance, quality, and relevance for the current status of the project. The committee is requested to provide advice on future direction of the project.

Taylor, Antoinette [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

251

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect (OSTI)

This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).

Wayne Moe

2013-05-01T23:59:59.000Z

252

National laboratories` capabilities summaries for the DOE Virtual Center for Multiphase Dynamics (VCMD)  

SciTech Connect (OSTI)

The Virtual Center For Multiphase Dynamics (VCMD) integrates and develops the resources of industry, government, academia, and professional societies to enable reliable analysis in multiphase computational fluid dynamics. The primary means of the VCMD focus will be by the creation, support, and validation of a computerized simulation capability for multiphase flow and multiphase flow applications. This paper briefly describes the capabilities of the National Laboratories in this effort.

Joyce, E.L.

1997-03-01T23:59:59.000Z

253

NGNP Data Management and Analysis System Analysis and Web Delivery Capabilities  

SciTech Connect (OSTI)

Projects for the Very High Temperature Reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the very high temperature reactor. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high-temperature and high-fluence environments. The NGNP Data Management and Analysis System (NDMAS) at the Idaho National Laboratory has been established to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and for data analysis to identify useful relationships among the measured quantities. The capabilities are described from the perspective of NDMAS users, starting with those who just view experimental data and analytical results on the INL NDMAS web portal. Web display and delivery capabilities are described in detail. Also the current web pages that show Advanced Gas Reactor, Advanced Graphite Capsule, and High Temperature Materials test results are itemized. Capabilities available to NDMAS developers are more extensive, and are described using a second series of examples. Much of the data analysis efforts focus on understanding how thermocouple measurements relate to simulated temperatures and other experimental parameters. Statistical control charts and correlation monitoring provide an ongoing assessment of instrument accuracy. Data analysis capabilities are virtually unlimited for those who use the NDMAS web data download capabilities and the analysis software of their choice. Overall, the NDMAS provides convenient data analysis and web delivery capabilities for studying a very large and rapidly increasing database of well-documented, pedigreed data.

Cynthia D. Gentillon

2011-09-01T23:59:59.000Z

254

Computational physics and applied mathematics capability review June 8-10, 2010  

SciTech Connect (OSTI)

Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics. Theme 3: Monte Carlo - Monte Carlo was invented at Los Alamos. This theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology. Theme 4: Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling. Theme 5: Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling. Theme 6: Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The Laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1,2, 3, and 6. Because these reviews occur every three years, Themes 4 and 5 will be reviewed in 2013, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other five themes). Yearly written status reports will be provided to the CPAM Committee Chair during off-cycle years.

Lee, Stephen R [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

255

NOAA's autonomous balloons, capable of crossing oceans and sampling at very low altitudes, use advanced instrument and communication technology  

E-Print Network [OSTI]

NOAA's autonomous balloons, capable of crossing oceans and sampling at very low altitudes, use- grams. This paper traces the innovations in design and gains in capability of the autonomous Lagrangian

Businger, Steven

256

In-Situ Creep Testing Capability for the Advanced Test Reactor  

SciTech Connect (OSTI)

An instrumented creep testing capability is being developed for specimens irradiated in Pressurized Water Reactor (PWR) coolant conditions at the Advanced Test Reactor (ATR). The test rig has been developed such that samples will be subjected to stresses ranging from 92 to 350 MPa at temperatures between 290 and 370 C up to at least 2 dpa (displacement per atom). The status of Idaho National Laboratory (INL) efforts to develop the test rig in-situ creep testing capability for the ATR is described. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper reports efforts by INL to evaluate a prototype test rig in an autoclave at INLs High Temperature Test Laboratory (HTTL). Initial data from autoclave tests with 304 stainless steel (304 SS) specimens are reported.

B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

2012-09-01T23:59:59.000Z

257

ITIL frameworks to ITD Company for improving capabilities in service management  

E-Print Network [OSTI]

IT operates in dynamic environments with the need always to change and adapt. There is a need to improve performance. Many gaps were found when we conduct the IT audit and we tried to seek to close gaps in capabilities. One way to the close these gaps is the adoption of good practices in wide industry use. There are several sources for good practices including public frameworks and standards such as ITIL, COBIT, CMMI, eSCM-SP, PRINCE2, ISO 9000, ISO/IEC 20000 and ISO/IEC 27001, etc. The paper propose ITIL frameworks to ITD Company for improving capabilities in service management.

Nguyen, Phuc V

2011-01-01T23:59:59.000Z

258

Milagro Version 2 An Implicit Monte Carlo Code for Thermal Radiative Transfer: Capabilities, Development, and Usage  

SciTech Connect (OSTI)

We have released Version 2 of Milagro, an object-oriented, C++ code that performs radiative transfer using Fleck and Cummings' Implicit Monte Carlo method. Milagro, a part of the Jayenne program, is a stand-alone driver code used as a methods research vehicle and to verify its underlying classes. These underlying classes are used to construct Implicit Monte Carlo packages for external customers. Milagro-2 represents a design overhaul that allows better parallelism and extensibility. New features in Milagro-2 include verified momentum deposition, restart capability, graphics capability, exact energy conservation, and improved load balancing and parallel efficiency. A users' guide also describes how to configure, make, and run Milagro2.

T.J. Urbatsch; T.M. Evans

2006-02-15T23:59:59.000Z

259

Cryogenic, high-resolution x-ray detector with high count rate capability  

DOE Patents [OSTI]

A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

Frank, Matthias (Oakland, CA); Mears, Carl A. (Windsor, CA); Labov, Simon E. (Berkeley, CA); Hiller, Larry J. (Livermore, CA); Barfknecht, Andrew T. (Menlo Park, CA)

2003-03-04T23:59:59.000Z

260

Capabilities of the DOE Remote Sensing Laboratory`s aerial measuring system  

SciTech Connect (OSTI)

This report describes the capabilities of the Remote Sensing Laboratory`s aircraft for use in environmental radiation surveys, multispectral (visible, near infrared, and thermal infrared) surveys of vegetation and buildings, and photographic documentation of the areas covered by the two other surveys. The report discusses the technical capabilities of the various systems and presents examples of the data from a recent demonstration survey. To provide a view of the types of surveys the Remote Sensing Laboratory has conducted in the past, the appendices describe several of the previous area surveys and emergency search surveys.

Riedhauser, S.R.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system  

SciTech Connect (OSTI)

The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium D?, D?, D? line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M. [Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM/CCFE Fusion Association, Culham Science Center, Abingdon OX14 3DB (United Kingdom); Collaboration: JET-EFDA Team

2014-11-15T23:59:59.000Z

262

Energy-Efficient Protocols for Wireless Networks with Adaptive MIMO Capabilities  

E-Print Network [OSTI]

of a power-aware routing (PAR) scheme that selects minimum-energy end-to-end paths. Our adaptive designs (see Krunz et. al [5] for a survey)1 , some of which are aimed at energy conservation (e.g., Agarwal etEnergy-Efficient Protocols for Wireless Networks with Adaptive MIMO Capabilities Mohammad Z. Siam

Krunz, Marwan M.

263

New Strontium-based Bioactive Glasses: Physicochemical Reactivity and Delivering Capability  

E-Print Network [OSTI]

1 New Strontium-based Bioactive Glasses: Physicochemical Reactivity and Delivering Capability, strontium- doped bioactive glasses are of major interest; their key property relies on the increased that closely resembles to the biological apatite present in bones. Compared to strontium-free materials

Boyer, Edmond

264

Moving from ISO9000 to the Higher Levels of the Capability Maturity Model (CMM)  

E-Print Network [OSTI]

in the world that are ISO9001 certified. Many of these are now considering adopting the SEI's Capability]. In this transition from ISO9001 to CMM, processes have to be enhanced to suit the CMM (while preserving ISO9001 issue of an ISO organization transitioning to higher levels of CMM. ISO 9001 is a standard that has 20

Jalote, Pankaj

265

NEW COLLABORATION TO PROTECT A SPECIES AT RISK GRAPE: IMPROVING SEVERE ACCIDENT ANALYSIS CAPABILITIES  

E-Print Network [OSTI]

CAPABILITIES AECL'S INTERNATIONAL FOOTPRINT IN SAFETY, SECURITY AND NON-PROLIFERATION Volume 9, Issue 2 | 2014 E R New AECL technology reaches private sector implementation AECL has recently submitted a patent of this innovative AECL technology in the field is a clear example of how AECL helps to support a strong nuclear

Blouin-Demers, Gabriel

266

UAVs OVER AUSTRALIA -Market And Capabilities Dr. K.C. Wong  

E-Print Network [OSTI]

UAVs OVER AUSTRALIA - Market And Capabilities Dr. K.C. Wong Department of Aeronautical Engineering Building J07 University of Sydney NSW 2006 Australia Tel: +61 2 9351 2347 Fax: +61 2 9351 4841 kc Australia Tel: +61 3 9647 3053 Fax: +61 3 9647 3050 c.bil@rmit.edu.au ABSTRACT It is generally accepted

Wong, K. C.

267

Los Alamos National Laboratory Training Capabilities (Possible Applications in the Global Initiatives for Proliferation Prevention Program)  

SciTech Connect (OSTI)

The briefing provides an overview of the training capabilities at Los Alamos National Laboratory that can be applied to nonproliferation/responsible science education at nuclear institutes in the Former Soviet Union, as part of the programmatic effort under the Global Initiatives for Proliferation Prevention program (GIPP).

Martin, Olga [Los Alamos National Laboratory

2012-06-04T23:59:59.000Z

268

Doing More With Less: Cost-Effective Infrastructure for Automotive Vision Capabilities  

E-Print Network [OSTI]

recognition, and 360-degree sensing. At the same time, fully autonomous vehicles have been demonstrated is automotive systems. In this domain, a proliferation of advanced sensor technology is being fueled by an expanding range of autonomous capabilities. Driver-assist features, such as blind spot warnings, automatic

Jeffay, Kevin

269

MNHMT2009-18484 INVESTIGATION OF NANOPILLAR WICKING CAPABILITIES FOR HEAT PIPES  

E-Print Network [OSTI]

MNHMT2009-18484 INVESTIGATION OF NANOPILLAR WICKING CAPABILITIES FOR HEAT PIPES APPLICATIONS Conan that increases the system's complexity and ultimately power consumption. Heat pipes are passive fluidic systems of the coolant in a heat pipe is done passively by means of a wicking structure that induces capillary flow from

Hidrovo, Carlos H.

270

The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR) is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATRs control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

S. Blaine Grover

2008-09-01T23:59:59.000Z

271

Introduction to Matlab The purpose of this intro is to show some of Matlab's basic capabilities.  

E-Print Network [OSTI]

operator · Vector functions and operators · Matlab ("continous") functions · Plotting graphs · Plotting' in Matlab - '.*', './', '.^'. original_matrix=A % Here we use the classical power operator ^ - whichIntroduction to Matlab The purpose of this intro is to show some of Matlab's basic capabilities

Turkel, Eli

272

Transferring new dynamic capabilities to SMEs: the role of ONERA the French Aerospace LabTM  

E-Print Network [OSTI]

the public R&D laboratories and the SMEs in terms of Technology Readiness Levels (TRLs). Some the "national innovation system". Keywords: French SMEs, technology transfer, information asymmetries, dynamic1 Transferring new dynamic capabilities to SMEs: the role of ONERA ­ the French Aerospace Lab

Paris-Sud XI, Université de

273

UPDATE: EFFECTIVE LOAD CARRYING CAPABILITY OF PHOTOVOLTAICS IN THE UNITED STATES  

E-Print Network [OSTI]

Carrying Capability (ELLC) by analyzing recent load data from 39 US utilities and time-coincident output Electric Indianapolis Power & Light City of Chattanooga Florida Power and Light First Energy Consolidated003m@mail.rochester.edu ABSTRACT We provide an update on the US distribution of PV's Effective Load

Perez, Richard R.

274

UNH Jerard/Fussell 1 Project Summary -Dynamic Evaluation of Machine Tool Process Capability  

E-Print Network [OSTI]

UNH ­ Jerard/Fussell 1 Project Summary - Dynamic Evaluation of Machine Tool Process Capability large and small plant operations and decisions. For example, we show some real world examples where part, annual expenditures on machining operations total more than $200 Billion or about 2% of GDP. · Self

New Hampshire, University of

275

CRADA Benefits PNNL's CRADA partners can access the Laboratory's capabilities and are given  

E-Print Network [OSTI]

CRADA Benefits ­ PNNL's CRADA partners can access the Laboratory's capabilities and are given the opportunity to obtain rights to commercialize the results of government R&D. How do I get a CRADA started? DOE to respond to the needs of the participant. All CRADAs are subject to DOE approval. Start by contacting PNNL

276

Panel "Social Rights and Capabilities" (SASE Conference, Paris, 16-18 July 2009)  

E-Print Network [OSTI]

Bloch, Berlin) The crucial point in Amartya Sen's approach lies in his emphasis on the informational. Real freedom and capability In discussing the informational basis of judgment, Amartya Sen has joined capacités. Amartya Sen au-delà du libéralisme, Paris, Editions de l'EHESS, Raisons pratiques 18, p. 297

Boyer, Edmond

277

Design of an Autonomous DNA Nanomechanical Device Capable of Universal Computation and Universal Translational Motion  

E-Print Network [OSTI]

Design of an Autonomous DNA Nanomechanical Device Capable of Universal Computation and Universal, and in DNA computing provide a solid foundation for the next step forward: designing autonomous DNA construction of autonomous unidirectional DNA walking devices that move along linear tracks, we present

Yin, Peng

278

Verification of Unstructured Mesh Capabilities in MCNP6 for Reactor Physics Problems  

SciTech Connect (OSTI)

New unstructured mesh capabilities in MCNP6 (developmental version during summer 2012) show potential for conducting multi-physics analyses by coupling MCNP to a finite element solver such as Abaqus/CAE[2]. Before these new capabilities can be utilized, the ability of MCNP to accurately estimate eigenvalues and pin powers using an unstructured mesh must first be verified. Previous work to verify the unstructured mesh capabilities in MCNP was accomplished using the Godiva sphere [1], and this work attempts to build on that. To accomplish this, a criticality benchmark and a fuel assembly benchmark were used for calculations in MCNP using both the Constructive Solid Geometry (CSG) native to MCNP and the unstructured mesh geometry generated using Abaqus/CAE. The Big Ten criticality benchmark [3] was modeled due to its geometry being similar to that of a reactor fuel pin. The C5G7 3-D Mixed Oxide (MOX) Fuel Assembly Benchmark [4] was modeled to test the unstructured mesh capabilities on a reactor-type problem.

Burke, Timothy P. [Los Alamos National Laboratory; Martz, Roger L. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

2012-08-22T23:59:59.000Z

279

Online Capable Optimized Planning of Power Split in a Hybrid Energy Storage System  

E-Print Network [OSTI]

Online Capable Optimized Planning of Power Split in a Hybrid Energy Storage System Karl Stephan, D-33095 Paderborn (Germany) {stille,romaus,boecker}@lea.upb.de Abstract--A hybrid energy storage system is an energy storage consisting of more than one type of energy storages combining

Paderborn, Universität

280

Designing Automated Agents Capable of Efficiently Negotiating with People -Overcoming the Challenge  

E-Print Network [OSTI]

efficiently with people. Many challenges are facing agents design- ers who aim to design an automatedDesigning Automated Agents Capable of Efficiently Negotiating with People - Overcoming negotiator, even when people are not in the loop. In addition, the fact that people are scarce resources

Kraus, Sarit

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Beamforming on the MISO interference channel with multi-user decoding capability  

E-Print Network [OSTI]

1 Beamforming on the MISO interference channel with multi-user decoding capability K. M. Ho , D,mochaourab}@ifn.et.tu-dresden.de Abstract-- This paper considers the multiple-input- single-output interference channel (MISO-IC) in which the received signal. On the MISO-IC with single user decoding, transmit beamforming vectors are designed

Gesbert, David

282

Abstract-Homing and navigation capabilities are essential for many Autonomous Underwater Vehicle  

E-Print Network [OSTI]

Abstract- Homing and navigation capabilities are essential for many Autonomous Underwater Vehicle's position in the vehicle frame. In order to triangulate his position, the AUV need to maneuver while an initial estimate of the vehicle's location with respect to a fixed or moving beacon. These initials

Paris-Sud XI, Universit de

283

Entirely passive heat-pipe apparatus capable of operating against gravity  

DOE Patents [OSTI]

The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

Koenig, D.R.

1981-02-11T23:59:59.000Z

284

Modern Grid Strategy: Enhanced GridLAB-D Capabilities Final Report  

SciTech Connect (OSTI)

GridLAB-D is a software simulation environment that was initially developed by the US Department of Energy (DOE) Office of Electricity (OE) for the purpose of enabling the effective analysis of emerging smart grid technologies. In order to achieve this goal GridLAB-D was developed using an open source approach with the intent that numerous people and organizations would contribute to the ongoing development. Because of the breadth and complexity of the emerging smart grid technologies the inclusion of multiple groups of developers is essential in order to address the many aspects of the smart grid. As part of the continuing Modern Grid Strategy (MGS) the Pacific Northwest National Laboratory (PNNL) has been tasked with developing an advanced set of GridLAB-D capabilities. These capabilities were developed to enable the analysis of complex use case studies which will allow for multi-disciplinary analysis of smart grid operations. The advanced capabilities which were developed include the implementation of an unbalanced networked power flow algorithm, the implementation of an integrated transmission and distribution system solver, and a set of use cases demonstrating the capabilities of the new solvers.

Schneider, Kevin P.; Fuller, Jason C.; Tuffner, Francis K.; Chen, Yousu

2009-09-09T23:59:59.000Z

285

The Use of Stand-capable Workstations for Reducing Sedentary Time in Office Employees  

E-Print Network [OSTI]

in seated time ranges from 0-2 hours. Two types of stand-capable workstations exist: a sit-stand workstation that allows the user to adjust their desk surface between seated and standing height, and a stand-biased workstation that utilizes a desk set...

Kress, Meghan Michelle

2014-02-20T23:59:59.000Z

286

Fusion Engineering and Design 42 (1998) 235245 Verification of ITER shielding capability and FENDL data  

E-Print Network [OSTI]

of the calculated-to-experimental (C/E) data. These two objectives will guide designers with regard and calculated data that should be implemented in the design process. Both differential and integral experimentalFusion Engineering and Design 42 (1998) 235­245 Verification of ITER shielding capability and FENDL

Abdou, Mohamed

287

CONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES  

E-Print Network [OSTI]

. The exhaust gas from a gas turbine with CO2 as working fluid, is used as heating medium for a steam cycleCONTROL DESIGN FOR A GAS TURBINE CYCLE WITH CO2 CAPTURE CAPABILITIES Dagfinn Snarheim Lars Imsland. of Science and Technology, 7491 Trondheim Abstract: The semi-closed oxy-fuel gas turbine cycle has been

Foss, Bjarne A.

288

Comparative Study of PMSM and SRM Capabilities A. Lebsir, A. Bentounsi, R. Rebbah and S. Belakehal  

E-Print Network [OSTI]

Comparative Study of PMSM and SRM Capabilities A. Lebsir, A. Bentounsi, R. Rebbah and S. Belakehal machine (PMSM) and switched reluctance machine (SRM), since more competing by conventional machines. Finally, an analytical-numerical method for PMSM and SRM structures design will be proposed. Keywords--PMSM

Paris-Sud XI, Université de

289

Extreme-Wind Observation Capability for the Next Generation Satellite Wind  

E-Print Network [OSTI]

Extreme-Wind Observation Capability for the Next Generation Satellite Wind Scatterometer Instrument ­ 6 June 2013 RadarSAT-2 observation of extreme-winds VH HH Gradual saturation at higher wind Better ­ Matera, Italy, 3 ­ 6 June 2013 VH-GMF for extreme-winds (1) RadarSAT-2 dual-polarisation images of 12

Haak, Hein

290

Extension of load follow capability of a PWR reactor by optimal control  

SciTech Connect (OSTI)

The problem of extending that part of the fuel life cycle during which a reactor is capable of sustaining load-follow operation is formulated as an optimal control problem. A two-node model representation of pressurized water reactor dynamics is used, leading to a set of non-linear ordinary differential equations. Differential Dynamic Programming is used to solve directly the resulting nonlinear optimization problem and obtain the trajectories of soluble boron concentration and control rod insertion. Results of computations performed for a reference reactor are presented, showing how the optimal control policy stretches the capability of the reactor to follow an average daily load curve towards the end of the fuel life cycle.

Winokur, M.; Tepper, L.

1984-04-01T23:59:59.000Z

291

Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste  

SciTech Connect (OSTI)

This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW.

Morrell, D.K.; Fischer, D.K.

1995-01-01T23:59:59.000Z

292

Real-time capable first principle based modelling of tokamak turbulent transport  

E-Print Network [OSTI]

A real-time capable core turbulence tokamak transport model is developed. This model is constructed from the regularized nonlinear regression of quasilinear gyrokinetic transport code output. The regression is performed with a multilayer perceptron neural network. The transport code input for the neural network training set consists of five dimensions, and is limited to adiabatic electrons. The neural network model successfully reproduces transport fluxes predicted by the original quasilinear model, while gaining five orders of magnitude in computation time. The model is implemented in a real-time capable tokamak simulator, and simulates a 300s ITER discharge in 10s. This proof-of-principle for regression based transport models anticipates a significant widening of input space dimensionality and physics realism for future training sets. This aims to provide unprecedented computational speed coupled with first-principle based physics for real-time control and integrated modelling applications.

Breton, S; Felici, F; Imbeaux, F; Aniel, T; Artaud, J F; Baiocchi, B; Bourdelle, C; Camenen, Y; Garcia, J

2015-01-01T23:59:59.000Z

293

Candidate processes for diluting the {sup 235}U isotope in weapons-capable highly enriched uranium  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) is evaluating options for rendering its surplus inventories of highly enriched uranium (HEU) incapable of being used to produce nuclear weapons. Weapons-capable HEU was earlier produced by enriching uranium in the fissile {sup 235}U isotope from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by diluting its concentration of the fissile {sup 235}U isotope in a uranium blending process, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel.

Snider, J.D.

1996-02-01T23:59:59.000Z

294

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect (OSTI)

This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

Phillip Mills

2012-02-01T23:59:59.000Z

295

Radiative Return Capabilities of a High-Energy, High-Luminosity $e^+e^-$ Collider  

E-Print Network [OSTI]

An electron-positron collider operating at a center-of-mass energy $E_{CM}$ can collect events at all lower energies through initial-state radiation (ISR or radiative return). We explore the capabilities for radiative return studies by a proposed high-luminosity collider at $E_{CM}$ = 250 or 90 GeV, to fill in gaps left by lower-energy colliders such as PEP, PETRA, TRISTAN, and LEP. These capabilities are compared with those of the lower-energy $e^+e^-$ colliders as well as hadron colliders such as the Tevatron and the CERN Large Hadron Collider (LHC). Some examples of accessible questions in dark photon searches and heavy flavor spectroscopy are given.

Karliner, Marek; Rosner, Jonathan L; Wang, Lian-Tao

2015-01-01T23:59:59.000Z

296

Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping  

SciTech Connect (OSTI)

Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissile material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.

Permana, Sidik; Novitrian,; Waris, Abdul [Nuclear Physics and Biophysics Research Division, Physics Department, Institut Teknologi Bandung (Indonesia); Ismail [Center for Technical Assessment of Nuclear Installation and Materials, Indonesian Nuclear Energy Regulatory (Indonesia); Suzuki, Mitsutoshi [Department of Science and Technology for Nuclear Material Management (STNM), Japan Atomic Energy Agency (JAEA) (Japan); Saito, Masaki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Japan)

2014-09-30T23:59:59.000Z

297

Loading capability of HVDC transformer bushings with restricted oil circulation for use in HVDC valve halls  

SciTech Connect (OSTI)

The loading capability of a 500 kV HVDC transformer bushing is calculated with some unusual conditions: the internal oil circulation in the bushing is blocked at the flange level and the ambient air temperature is raised to 60 C. The theoretical model was verified with a full-scale heat run test on a 7.8 m long bushing. A 220 m[sup 3] insulated test chamber was required to enclose the test set-up.

Johansson, L.; Magnuson, B. (ABB Components AB, Ludvika (Sweden)); Riffon, P. (Hydro-Quebec, Montreal, Quebec (Canada))

1993-07-01T23:59:59.000Z

298

Developing Next-Generation Multimodal Chemical Imaging Capability by Combining STEM/APT/STXM/HIM  

E-Print Network [OSTI]

Pristine STXM Ni map of Li-ion battery cathode material: Li1.2Ni0.2Mn0.6O2 nanoparticles Cycled O K edge Mn of Physical Chemistry Letters 4(6):993-998. STXM-TEM-APT analysis of Li-ion battery cathode materials 100nm the use of STXM-TEM- APT multimodal capability for analyzing phase transformations in Na-ion battery

299

Improvement of modelling capabilities for assessing urban contamination : The EMRAS Urban Remediation Working Group.  

SciTech Connect (OSTI)

The Urban Remediation Working Group of the International Atomic Energy Agency's Environmental Modeling for Radiation Safety (EMRAS) programme was established to improve modeling and assessment capabilities for radioactively contaminated urban situations, including the effects of countermeasures. An example of the Working Group's activities is an exercise based on Chernobyl fallout data in Ukraine, which has provided an opportunity to compare predictions among several models and with available measurements, to discuss reasons for discrepancies, and to identify areas where additional information would be helpful.

Thiessen, K. M.; Batandjieva, B.; Andersson, K. G.; Arkhipov, A.; Charnock, T. W.; Gallay, F.; Gaschak, S.; Golikov, V.; Hwang, W. T.; Kaiser, J. C.; Kamboj, S.; Steiner, M.; Tomas, J.; Trifunovic, D.; Yu, C.; Ziemer, R. L.; Zlobenko, B.; Environmental Science Division; SENES Oak Ridge; IAEA; Riso National Lab.; Chernobyl Center for Nuclear Safety; Health Protection Agency; IRSN; Inst. of Radiation Hygene of the Ministry of Public Health, Russian Federation; KAERI, Republic of Korea; GSF, Germany; BfS, Germany; CPHR, Cuba; State Office for Radiation Protection, Croatia; AECL, Canada; National Academy of Science, Ukraine

2008-01-01T23:59:59.000Z

300

Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer  

SciTech Connect (OSTI)

A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup } 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 Nm, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ?1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

Benafan, O., E-mail: othmane.benafan@nasa.gov [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States); Padula, S. A. [NASA Glenn Research Center, Structures and Materials Division, Cleveland, Ohio 44135 (United States); Skorpenske, H. D.; An, K. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Vaidyanathan, R. [Advanced Materials Processing and Analysis Center, Materials Science and Engineering Department, University of Central Florida, Orlando, Florida 32816 (United States)

2014-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NWChem Meeting on Science Driven Petascale Computing and Capability Development at EMSL  

SciTech Connect (OSTI)

On January 25, and 26, 2007, an NWChem meeting was held that was attended by 65 scientists from 29 institutions including 22 universities and 5 national laboratories. The goals of the meeting were to look at major scientific challenges that could be addressed by computational modeling in environmental molecular sciences, and to identify the associated capability development needs. In addition, insights were sought into petascale computing developments in computational chemistry. During the meeting common themes were identified that will drive the need for the development of new or improved capabilities in NWChem. Crucial areas of development that the developer's team will be focusing on are (1) modeling of dynamics and kinetics in chemical transformations, (2) modeling of chemistry at interfaces and in the condensed phase, and (3) spanning longer time scales in biological processes modeled with molecular dynamics. Various computational chemistry methodologies were discussed during the meeting, which will provide the basis for the capability developments in the near or long term future of NWChem.

De Jong, Wibe A.

2007-02-19T23:59:59.000Z

302

Sierra/SolidMechanics 4.22 user's guide : addendum for shock capabilities.  

SciTech Connect (OSTI)

This is an addendum to the Sierra/SolidMechanics 4.22 User's Guide to document additional capabilities that are available for use in the Presto{_}ITAR code that are not available for use in the standard version of Sierra/SolidMechanics (Sierra/SM). Presto{_}ITAR is an enhanced version of Sierra/SM that provides capabilities that make it regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export-control rules. This code is part of the Vivace product, and is only distributed to entities that comply with ITAR regulations. The enhancements primarily focus on material models that include an energy-dependent pressure response, appropriate for very large deformations and strain rates. Since this is an addendum to the standard Sierra/SolidMechanics User's Guide, please refer to that document first for general descriptions of code capability and use. This addendum documents material models and element features that support energy-dependent material models.

Not Available

2011-10-01T23:59:59.000Z

303

An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion  

SciTech Connect (OSTI)

Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

James Werner; Sam Bhattacharyya; Mike Houts

2011-02-01T23:59:59.000Z

304

Engineering evaluation of the General Motors (GM) diesel rating and capabilities  

SciTech Connect (OSTI)

K-Reactor`s number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine`s original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine`s capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine`s overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine`s original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine`s failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines` 12OOkw continuous rating.

Gross, R.E.

1992-04-01T23:59:59.000Z

305

Engineering evaluation of the General Motors (GM) diesel rating and capabilities  

SciTech Connect (OSTI)

K-Reactor's number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine's original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators Was excessive wear of the piston pin bushings a result of having exceeded the engine's capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts Considering the engine's overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine's original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine's failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines' 12OOkw continuous rating.

Gross, R.E.

1992-04-01T23:59:59.000Z

306

Intent, Capability and Opportunity: A Holistic Approach to Addressing Proliferation as a Risk Management Issue  

SciTech Connect (OSTI)

Currently, proliferation risk assessment models are designed to evaluate only a portion of the overall risk, focusing exclusively on either technological or social factors to determine the extent of a threat. Many of these models are intended to act as a means of predicting proliferation potential rather than assessing the system as a whole, ignoring the ability to enhance mitigating factors and manage, rather just establish the presence of, the threat. While the information garnered through these forms of analysis is necessary, it remains incomplete. By incorporating political, social, economic and technical capabilities as well as human factors such as intent into a single, multi-faceted risk management model, proliferation risk can be evaluated more effectively. Framing this information around how to improve and expand the Regime already in place and establishing where there are gaps in the system allows for a more complete approach to risk management, mitigation and resource allocation. The research conducted here seeks to combine all three elements (intent, capability and opportunity) in a comprehensive evaluation which incorporates an assessment of state-level variables, possible proliferation pathways and technical capability. Each portion of the analysis is carried out independently then combined to illustrate the full scope of a State's nuclear infrastructure while showing areas of weakness in the institutional framework.

Amanda Rynes; Trond Bjornard

2011-07-01T23:59:59.000Z

307

AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF  

SciTech Connect (OSTI)

Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

2014-11-15T23:59:59.000Z

308

CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE  

SciTech Connect (OSTI)

Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase-1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material.

Fuller, K.; Smith, Robert H. Jr.; Goergen, Charles R.

2013-01-09T23:59:59.000Z

309

Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248  

SciTech Connect (OSTI)

Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ?2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase- 1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material. (authors)

Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R. [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)] [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)

2013-07-01T23:59:59.000Z

310

EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations  

E-Print Network [OSTI]

Thermal Energy Storage capability to EnergyPlus. Thermal Energy Storage The ACMchiller-based thermal energy storage (TES) as an optional

Hong, Tianzhen

2009-01-01T23:59:59.000Z

311

Development of a Fiber Laser Welding Capability for the W76, MC4702 Firing Set  

SciTech Connect (OSTI)

Development work to implement a new welding system for a Firing Set is presented. The new system is significant because it represents the first use of fiber laser welding technology at the KCP. The work used Six-Sigma tools for weld characterization and to define process performance. Determinations of workable weld parameters and comparison to existing equipment were completed. Replication of existing waveforms was done utilizing an Arbitrary Pulse Generator (APG), which was used to modulate the fiber lasers exclusive continuous wave (CW) output. Fiber laser weld process capability for a Firing Set is demonstrated.

Samayoa, Jose

2010-05-12T23:59:59.000Z

312

Simbol-X capability of detecting the non-thermal emission of stellar flares  

E-Print Network [OSTI]

We investigate the capability of detecting, with Simbol-X, non-thermal emission during stellar flares, and distinguishing it from hot thermal emission. We find that flare non-thermal emission is detectable when at least ~20 cts are detected with the CZT detector in the 20-80 keV band. Therefore Simbol-X will detect the non-thermal emission from some of the X-ray brightest nearby stars, whether the thermal vs. non-thermal relation, derived for solar flares, holds.

C. Argiroffi; G. Micela; A. Maggio

2008-01-16T23:59:59.000Z

313

Update: Effective Load-Carrying Capability of Photovoltaics in the United States; Preprint  

SciTech Connect (OSTI)

This paper provides an update on the U.S. distribution of effective load-carrying capability (ELLC) for photovoltaics by analyzing recent load data from 39 U.S. utilities and time-coincident output of PV installations simulated from high-resolution, time/site-specific satellite data. Results show that overall regional trends identified in the early 1990s remain pertinent today, while noting a significant increase in PV ELCC in the western and northern United States, and a modest decrease in the central and eastern United States.

Perez, R.; Margolis, R.; Kmiecik, M.; Schwab, M.; Perez, M.

2006-06-01T23:59:59.000Z

314

The Development of New User Research Capabilities in Environmental Molecular Science: Workshop Report  

SciTech Connect (OSTI)

On August 1, and 2, 2006, 104 scientists representing 40 institutions including 24 Universities and 5 National Laboratories gathered at the W.R. Wiley Environmental Molecular Sciences Laboratory, a National scientific user facility, to outline important science challenges for the next decade and identify major capabilities needed to pursue advanced research in the environmental molecular sciences. EMSLs four science themes served as the framework for the workshop. The four science themes are 1) Biological Interactions and Interfaces, 2) Geochemistry/Biogeochemistry and Surface Science, 3) Atmospheric Aerosol Chemistry, and 4) Science of Interfacial Phenomena.

Felmy, Andrew R.; Baer, Donald R.; Fredrickson, Jim K.; Gephart, Roy E.; Rosso, Kevin M.

2006-10-31T23:59:59.000Z

315

An Advanced Neutronic Analysis Toolkit with Inline Monte Carlo capability for BHTR Analysis  

SciTech Connect (OSTI)

Monte Carlo capability has been combined with a production LWR lattice physics code to allow analysis of high temperature gas reactor configurations, accounting for the double heterogeneity due to the TRISO fuel. The Monte Carlo code MCNP5 has been used in conjunction with CPM3, which was the testbench lattice physics code for this project. MCNP5 is used to perform two calculations for the geometry of interest, one with homogenized fuel compacts and the other with heterogeneous fuel compacts, where the TRISO fuel kernels are resolved by MCNP5.

William R. Martin; John C. Lee

2009-12-30T23:59:59.000Z

316

IFE thick liquid wall chamber dynamics: Governing mechanisms andmodeling and experimental capabilities  

SciTech Connect (OSTI)

For thick liquid wall concepts, it is important to understand the different mechanisms affecting the chamber dynamics and the state of the chamber prior to each shot a compared with requirements from the driver and target. These include ablation mechanisms, vapor transport and control, possible aerosol formation, as well as protective jet behavior. This paper was motivated by a town meeting on this subject which helped identify the major issues, assess the latest results, review the capabilities of existing modeling and experimental facilities with respect to addressing remaining issues, and helping guide future analysis and R&D efforts; the paper covers these exact points.

Raffray, A.R.; Meier, W.; Abdel-Khalik, S.; Bonazza, R.; Calderoni, P.; Debonnel, C.S.; Dragojlovic, Z.; El-Guebaly, L.; Haynes,D.; Latkowski, J.; Olson, C.; Peterson, P.F.; Reyes, S.; Sharpe, P.; Tillack, M.S.; Zaghloul, M.

2005-01-24T23:59:59.000Z

317

The Role of Surface Chemistry on the Cycling and Rate Capability of Lithium  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategory 2 NuclearThe RoadCapability

318

Cyclus fuel cycle simulation capabilities with the CYDER disposal system model  

SciTech Connect (OSTI)

An algorithm and supporting database for rapid thermal repository loading calculation was implemented in CYDER. This algorithm employs a Specific Temperature Change (STC) method and has resulted from combining detailed spent nuclear fuel composition data with a detailed thermal repository performance analysis tool from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and the Used Fuel Disposition (UFD) campaign. By abstraction of and benchmarking against these detailed thermal models, CYDER captures the dominant physics of thermal phenomena affecting repository capacity in various geologic media and as a function of spent fuel composition. Abstraction based on detailed computational thermal repository performance calculations with the LLNL semi-analytic model has resulted in implementation of the STC estimation algorithm and a supporting reference dataset. This method is capable of rapid estimation of temperature increase near emplacement tunnels as a function of waste composition, limiting radius, waste package spacing, near field thermal conductivity and near field thermal diffusivity. The sensitivity analyses and validation efforts conducted in this work demonstrate the capability of the CYDER tool to provide repository capacity and performance metrics in the context of dynamic fuel cycle.

Huff, K.D. [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); University of Wisconsin, 1500 Engineering Drive, Madison, WI 53706 (United States)

2013-07-01T23:59:59.000Z

319

Progress on an integrated multi-physics simulation predictive capability for plasma chamber nuclear components  

SciTech Connect (OSTI)

Understanding the behavior of a plasma chamber component in the fusion environment requires a simulation technique that is capable of integrating multi-disciplinary computational codes while appropriately treating geometric heterogeneity and complexity. Such a tool should be able to interpret phenomena from mutually dependent scientific disciplines and predict performance with sufficient accuracy and consistency. Integrated multi-physics simulation predictive capability (ISPC) relies upon advanced numerical simulation techniques and is being applied to ITER first wall/shield and Test Blanket Module (TBM) designs. In this paper, progress in ISPC development is described through the presentation of a number of integrated simulations. The simulations cover key physical phenomena encountered in a fusion plasma chamber system, including tritium permeation, fluid dynamics, and structure mechanics. Interface engines were developed in order to pass field data, such as surface deformation or nuclear heating rate, from the structural analysis to the thermo-fluid MHD analysis code for magnetohydrodynamic (MHD) velocity profile assessments, or from the neutronics analysis to the thermo-fluid analysis for temperature calculations, respectively. Near-term effort toward further ISPC development is discussed.

A. Ying; M. Abdou; H. Zhang; R. Munipalli; M. Ulrickson; M. Sawan; B. Merrill

2010-12-01T23:59:59.000Z

320

Role of the basin boundary conditions in gravity wave turbulence  

E-Print Network [OSTI]

Gravity wave turbulence is studied experimentally in a large wave basin where irregular waves are generated unidirectionally. The role of the basin boundary conditions (absorbing or reflecting) and of the forcing properties are investigated. To that purpose, an absorbing sloping beach opposite to the wavemaker can be replaced by a reflecting vertical wall. We observe that the wave field properties depend strongly on these boundary conditions. Quasi-one dimensional field of nonlinear waves propagate before to be damped by the beach whereas a more multidirectional wave field is observed with the wall. In both cases, the wave spectrum scales as a frequency-power law with an exponent that increases continuously with the forcing amplitude up to a value close to -4, which is the value predicted by the weak turbulence theory. The physical mechanisms involved are probably different according to the boundary condition used, but cannot be easily discriminated with only temporal measurements. We have also studied freely decaying gravity wave turbulence in the closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonlinear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, nonlinear and dissipative time scales to test the time scale separation that highlights the important role of a large scale Fourier mode. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant is evaluated and found to be compatible with a recent theoretical value.

Luc Deike; Benjamin Miquel; Pablo Gutirrez-Matus; Timothe Jamin; Benoit Semin; Sbastien Aumaitre; Michael Berhanu; Eric Falcon; Flicien BONNEFOY

2014-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

Redondo, Antonio [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

322

MA Doping Analysis on Breeding Capability and Protected Plutonium Production of Large FBR  

SciTech Connect (OSTI)

Spent fuel from LWR can be seen as long-live waste if it is not recycled or as a 'new fuel' resource if it is recycled into the reactors. Uranium and plutonium have been used for 'new fuel' resources from LWR spent fuel as MOX fuel type which is loaded into thermal reactor or fast reactor types. Other actinides from the spent fuel such as neptunium, americium and curium as minor actinide (MA) are considered to be loaded into the reactors for specific purposes, recently. Those purposes such as for increasing protected plutonium production and breeding capability for protected plutonium as well as in the same time those amount of MA can be reduced to a small quantity as a burner or transmutation purpose. Some investigations and scientific approaches are performed in order to increase a material ''barrier'' in plutonium isotope composition by increasing the even mass number of plutonium isotope such as Pu-238, Pu-240 and Pu-242 as plutonium protected composition. Higher material barrier which related to intrinsic properties of plutonium isotopes with even mass number (Pu-238, Pu-240 and Pu-242), are recognized because of their intense decay heat (DH) and high spontaneous fission neutron (SFN) rates. Those even number mass of plutonium isotope contribute to some criteria of plutonium characterization which will be adopted for present study such as IAEA, Pellaud and Kessler criteria (IAEA, 1972; Pellaud, 2002; and Kessler, 2007). The present paper intends to evaluate the breeding capability as a fuel sustainability index of the reactors and to analyze the composition of protected plutonium production of large power reactor based on the FaCT FBR as reference (Ohki, et al., 2008). Three dimensional FBR core configuration has been adopted which is based on the core optimization calculation of SRAC-CITATION code as reactor core analysis and JENDL-3.3 is adopted for nuclear data library. Some MA doping materials are loaded into the blanket regions which can be considered as breeding region for protected plutonium production. Breeding capability of the reactor can be increased effectively by increasing MA doping rate while criticality condition of the reactor is reduced by doping MA. Adopting MA cycle is also effective to increase the isotopic Pu-238 production in plutonium vector composition for denaturing purpose of plutonium.

Permana, Sidik; Suzuki, Mitsutoshi; Kuno, Yusuke [Japan Atomic Energy Agency, Nuclear Non-proliferation Science and Technology Center, 2-4 Shirane Shirakata, Tokai-mura, Ibaraki, 319-1195 (Japan)

2010-06-22T23:59:59.000Z

323

Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability  

DOE Patents [OSTI]

A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

Hunsbedt, A.; Boardman, C.E.

1995-04-11T23:59:59.000Z

324

Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability  

DOE Patents [OSTI]

A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1995-01-01T23:59:59.000Z

325

Army National Guard (ARNG) Objective Supply Capability Adaptive Redesign (OSCAR) end-user manual  

SciTech Connect (OSTI)

The Objective Supply Capability Adaptive Redesign (OSCAR) project is designed to identify and develop programs which automate requirements not included in standard army systems. This includes providing automated interfaces between standard army systems at the National Guard Bureau (NGB) level and at the state/territory level. As part of the OSCAR project, custom software has been installed at NGB to streamline management of major end items. This software allows item managers to provide automated disposition on excess equipment to states operating the Standard Army Retail Supply System Objective (SARSS-O). It also accelerates movement of excess assets to improve the readiness of the Army National Guard (ARNG)--while reducing excess on hand. The purpose of the End-User Manual is to provide direction and guidance to the customer for implementing the ARNG Excess Management Program.

Pelath, R.P. [National Guard Bureau, Arlington, VA (United States)] [National Guard Bureau, Arlington, VA (United States); Rasch, K.A. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

1997-12-01T23:59:59.000Z

326

Purex Plant gaseous iodine-129 control capability and process development requirements  

SciTech Connect (OSTI)

This report describes the ability of the Purex Plant to effectively control iodine-129 emissions. Based on historical evidence, the current Purex Plant iodine control system appears capable of meeting the goal of limiting gaseous iodine-129 emissions at the point of discharge to levels stipulated by the Department of Energy (DOE) for an uncontrolled area. Expected decontamination factors (DF`s) with the current system will average about 100 and will be above the calculated DF`s of 2.2 and 87 required to meet DOE yearly average concentration limits for controlled and uncontrolled areas respectively, but below the calculated DF of 352 required for meeting the proposed Environmental Protection Agency (EPA) mass emission limit. Chemical costs for maintaining compliance with the DOE limits will be approximately $166 per metric ton of fuel processed (based on a silver nitrate price of $12.38/oz). Costs will increase in proportion to increases in silver prices.

Evoniuk, C.J.

1981-01-01T23:59:59.000Z

327

Impacts of SNF burnup credit on the shipment capability of the GA-4 cask  

SciTech Connect (OSTI)

Scoping analyses were performed to determine the impacts of two different levels of burnup credit and two different spent fuel pickup rates on the shipment capability and the minimum fleet size of the GA-4 cask. The analyses involved developing loading curves for the GA-4 cask based on the actinide-only and principal-isotope burnup credit considerations. The analyses also involved examination of the spent nuclear fuel assembly population at nine reactor sites and categorization of the assemblies in accordance with the loading restrictions imposed. The results revealed that for the nine sites considered, depending on the level of burnup credit and the pickup rate assumed, the total savings in shipment and cask fleet costs (1994 dollars) can range from $55 million to $74 million.

Mobasheran, A.S. [Roy F. Weston, Inc., Washington, DC (United States); Lake, W. [Department of Energy, Washington, DC (United States); Richardson, J. [Raytheon Nuclear Inc., Washington, DC (United States)

1996-12-01T23:59:59.000Z

328

Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.  

SciTech Connect (OSTI)

The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandia's extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

2013-07-01T23:59:59.000Z

329

After Action Report: Specific Manufacturing Capability 2014 Evaluated Drill October 29, 2014  

SciTech Connect (OSTI)

On October 29, 2014, the Specific Manufacturing Capability (SMC) facility located at the Idaho National Laboratory (INL) conducted its annual evaluated emergency drill. As a result, this after action report is required by DOE O 151.1C, Comprehensive Emergency Management System. The SMC facility, in coordination with other onsite organizations, and the Department of Energy Idaho Operations Office (DOE ID) conducted an annual facility emergency drill to demonstrate the ability to implement the requirements of DOE O 151.1C, Comprehensive Emergency Management System. The INL contractor, Battelle Energy Alliance, LLC (BEA) in coordination with other onsite organizations, conducted operations and demonstrated proper response measures to mitigate an event and protect the health and safety of onsite personnel, the environment, and property. Report data was collected from multiple sources, including documentation generated during drill response, critiques conducted immediately after terminating the drill, and evaluation critiques.

V. Scott Barnes

2014-12-01T23:59:59.000Z

330

LDRD final report : a lightweight operating system for multi-core capability class supercomputers.  

SciTech Connect (OSTI)

The two primary objectives of this LDRD project were to create a lightweight kernel (LWK) operating system(OS) designed to take maximum advantage of multi-core processors, and to leverage the virtualization capabilities in modern multi-core processors to create a more flexible and adaptable LWK environment. The most significant technical accomplishments of this project were the development of the Kitten lightweight kernel, the co-development of the SMARTMAP intra-node memory mapping technique, and the development and demonstration of a scalable virtualization environment for HPC. Each of these topics is presented in this report by the inclusion of a published or submitted research paper. The results of this project are being leveraged by several ongoing and new research projects.

Kelly, Suzanne Marie; Hudson, Trammell B. (OS Research); Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico); Pedretti, Kevin Thomas Tauke; Levenhagen, Michael J.; Brightwell, Ronald Brian

2010-09-01T23:59:59.000Z

331

Load following capability of CANDLE reactor by adjusting coolant operation condition  

SciTech Connect (OSTI)

The load following capability of CANDLE reactor is investigated in the condition that the control rods are unavailable. Both sodium cooled metallic fuel fast reactor (SFR) and {sup 208}Pb cooled metallic fuel fast reactor (LFR) are investigated for their performance in power rate changing by changing its coolant operation condition; either coolant flow rate or coolant inlet temperature. The change by coolant flow rate is difficult especially for SFR because the maximum temperature criteria on cladding material may be violated. The power rate can be changed for its full range easily by changing the coolant temperature at the core inlet. LFR can reduce the same amount of power rate by smaller change of temperature than SFR. However, the coolant output temperature is generally decreased for this method and the thermal efficiency becomes worse.

Sekimoto, Hiroshi; Nakayama, Sinsuke [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology 2-12-1-N1-17, Ookayama, Meguro-ku 152-8550 (Japan)

2012-06-06T23:59:59.000Z

332

Data acquisition system with pulse height capability for the TOFED time-of-flight neutron spectrometer  

SciTech Connect (OSTI)

A new time-of-flight neutron spectrometer TOFED has been constructed for installation at Experimental Advanced Superconducting Tokamak. A data acquisition system combining measurements of flight time and energy from the interaction of neutrons with the TOFED scintillators has been developed. The data acquisition system can provide a digitizing resolution better than 1.5% (to be compared with the >10% resolution of the recoil particle energy in the plastic scintillators) and a time resolution <1 ns. At the same time, it is compatible with high count rate event recording, which is an essential feature to investigate phenomena occurring on time scales faster than the slowing down time (?100 ms) of the beam ions in the plasma. Implications of these results on the TOFED capability to resolve fast ion signatures in the neutron spectrum from EAST plasmas are discussed.

Chen, Z. J.; Peng, X. Y.; Zhang, X.; Du, T. F.; Hu, Z. M.; Cui, Z. Q.; Ge, L. J.; Xie, X. F.; Yuan, X.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S., E-mail: tsfan@pku.edu.cn [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Gorini, G.; Nocente, M.; Tardocchi, M. [Dipartimento di Fisica, Universit di Milano-Bicocca, Milano, Piazza della Scienza 3, 20126 Milano (Italy); Istituto di Fisica del Plasma P. Caldirola, EURATOM-ENEA-CNR Association, Via Cozzi 53, 20125 Milano (Italy); Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

2014-11-15T23:59:59.000Z

333

Beamforming on the MISO interference channel with multi-user decoding capability  

E-Print Network [OSTI]

This paper considers the multiple-input-single-output interference channel (MISO-IC) with interference decoding capability (IDC), so that the interference signal can be decoded and subtracted from the received signal. On the MISO-IC with single user decoding, transmit beamforming vectors are classically designed to reach a compromise between mitigating the generated interference (zero forcing of the interference) or maximizing the energy at the desired user. The particularly intriguing problem arising in the multi-antenna IC with IDC is that transmitters may now have the incentive to amplify the interference generated at the non-intended receivers, in the hope that Rxs have a better chance of decoding the interference and removing it. This notion completely changes the previous paradigm of balancing between maximizing the desired energy and reducing the generated interference, thus opening up a new dimension for the beamforming design strategy. Our contributions proceed by proving that the optimal rank of the...

Ho, Z K M; Jorswieck, E; Mochaourab, R

2011-01-01T23:59:59.000Z

334

LWR codes capability to address SFR BDBA scenarios: Modeling of the ABCOVE tests  

SciTech Connect (OSTI)

The sound background built-up in LWR source term analysis in case of a severe accident, make it worth to check the capability of LWR safety analysis codes to model accident SFR scenarios, at least in some areas. This paper gives a snapshot of such predictability in the area of aerosol behavior in containment. To do so, the AB-5 test of the ABCOVE program has been modeled with 3 LWR codes: ASTEC, ECART and MELCOR. Through the search of a best estimate scenario and its comparison to data, it is concluded that even in the specific case of in-containment aerosol behavior, some enhancements would be needed in the LWR codes and/or their application, particularly with respect to consideration of particle shape. Nonetheless, much of the modeling presently embodied in LWR codes might be applicable to SFR scenarios. These conclusions should be seen as preliminary as long as comparisons are not extended to more experimental scenarios. (authors)

Herranz, L. E.; Garcia, M. [Unit of Nuclear Safety Research, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Morandi, S. [Nuclear and Industrial Plant Safety Team, Power Generation System Dept., RSE via Rubattino 54, 20134 Milano (Italy)

2012-07-01T23:59:59.000Z

335

Siting study for a consolidated waste capability at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Decision analysis was used to rank alternative sites for a new Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed lowlevel, transuranic, and low-level waste) at Los Alamos National Laboratory's TA-54 Area G. An original list of 21 site alternatives was pre-screened to ten sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. Three passes of the analysis were required to assess different site scenarios: 1) a fully consolidated CWC with both transfer/storage and LL W disposal in one location (45 acre minimum), 2) CWC transfer/storage only (12 acre minimum), and 3) LLW disposal only (33 acre minimum). The top site choice for all three options is TA-63/52/46; the second choice is TA-18/36. TA-54 East, Zone 4 also deserves consideration as a LLW disposal site.

Booth, Steven Richard [Los Alamos National Laboratory

2011-01-26T23:59:59.000Z

336

ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

J. C. Giglio; A. A. Jackson

2012-03-01T23:59:59.000Z

337

The diagnostic capability of x-ray scattering parameters for the characterization of breast cancer  

SciTech Connect (OSTI)

Purpose: The evaluation of the diagnostic capability of easy to measure x-ray scattering profile characterization parameters for the detection of breast cancer in excised samples. The selected parameters are the full width at half maximum (FWHM) and area under the x-ray scattering profile of breast tissue in addition to the ratio of scattering intensities (I{sub 2}/I{sub 1}%) at 1.6 nm{sup -1} to that at 1.1 nm{sup -1} (corresponding to scattering from soft and adipose tissues, respectively). Methods: A histopathologist is asked to classify 36 excised breast tissue samples into healthy or malignant. A conventional x-ray diffractometer is used to acquire the scattering profiles of the investigated samples. The values of three profile characterization parameters are calculated and the diagnostic capability of each is evaluated by determining the optimal cutoffs of scatter diagrams, calculating the diagnostic indices, and plotting the receiver operating characteristic (ROC) curves. Results: At the calculated optimal cutoff for each of the examined parameters, the sensitivity ranged from 78% (for area under curve) up to 94% (for FWHM), the specificity ranged from 94%[for I{sub 2}/I{sub 1}% and area under curve] up to 100% (for FWHM), and the diagnostic accuracy ranged from 86% (for area under curve) up to 97% (for FWHM). The area under the ROC curves is greater than 0.95 for all of the investigated parameters, reflecting a highly accurate diagnostic performance. Conclusions: The discussed tests offered a means to quantitatively evaluate the performance of the suggested breast tissue x-ray scattering characterization parameters. The performance results are promising, indicating that the evaluated parameters would be considered a tool for fast, on spot probing of breast cancer in excised tissue samples.

Elshemey, Wael M.; Desouky, Omar S.; Fekry, Mostafa M.; Talaat, Sahar M.; Elsayed, Anwar A. [Department of Biophysics, Faculty of Science, Cairo University, Giza 12613 (Egypt); Department of Radiation Physics, National Centre for Radiation Research and Technology, Madinet Nasr 13759 (Egypt); Department of Biophysics, Faculty of Science, Cairo University, Giza 12613 (Egypt); Department of Pathology, Faculty of Medicine, Cairo University, Cairo 11559 (Egypt); Department of Biophysics, Faculty of Science, Cairo University, Giza 12613 (Egypt)

2010-08-15T23:59:59.000Z

338

Advanced Mesh-Enabled Monte carlo capability for Multi-Physics Reactor Analysis  

SciTech Connect (OSTI)

This project will accumulate high-precision fluxes throughout reactor geometry on a non- orthogonal grid of cells to support multi-physics coupling, in order to more accurately calculate parameters such as reactivity coefficients and to generate multi-group cross sections. This work will be based upon recent developments to incorporate advanced geometry and mesh capability in a modular Monte Carlo toolkit with computational science technology that is in use in related reactor simulation software development. Coupling this capability with production-scale Monte Carlo radiation transport codes can provide advanced and extensible test-beds for these developments. Continuous energy Monte Carlo methods are generally considered to be the most accurate computational tool for simulating radiation transport in complex geometries, particularly neutron transport in reactors. Nevertheless, there are several limitations for their use in reactor analysis. Most significantly, there is a trade-off between the fidelity of results in phase space, statistical accuracy, and the amount of computer time required for simulation. Consequently, to achieve an acceptable level of statistical convergence in high-fidelity results required for modern coupled multi-physics analysis, the required computer time makes Monte Carlo methods prohibitive for design iterations and detailed whole-core analysis. More subtly, the statistical uncertainty is typically not uniform throughout the domain, and the simulation quality is limited by the regions with the largest statistical uncertainty. In addition, the formulation of neutron scattering laws in continuous energy Monte Carlo methods makes it difficult to calculate adjoint neutron fluxes required to properly determine important reactivity parameters. Finally, most Monte Carlo codes available for reactor analysis have relied on orthogonal hexahedral grids for tallies that do not conform to the geometric boundaries and are thus generally not well-suited to coupling with the unstructured meshes that are used in other physics simulations.

Wilson, Paul; Evans, Thomas; Tautges, Tim

2012-12-24T23:59:59.000Z

339

Capabilities for high explosive pulsed power research at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclear Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.

Goforth, James H [Los Alamos National Laboratory; Oona, Henn [Los Alamos National Laboratory; Tasker, Douglas G [Los Alamos National Laboratory; Kaul, A M [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

340

The ARM Climate Research Facility: A Review of Structure and Capabilities  

SciTech Connect (OSTI)

The Atmospheric Radiation Measurement (ARM) program (www.arm.gov) is a Department of Energy, Office of Science, climate research user facility that provides atmospheric observations from diverse climatic regimes around the world. Use of ARM data is free and available to anyone through the ARM data archive. ARM is approaching 20 years of operations. In recent years, the facility has grown to add two mobile facilities and an aerial facility to its network of fixed-location sites. Over the past year, ARM has enhanced its observational capabilities with a broad array of new instruments at its fixed and mobile sites and the aerial facility. Instruments include scanning millimeter- and centimeter-wavelength radars; water vapor, cloud/aerosol extinction, and Doppler lidars; a suite of aerosol instruments for measuring optical, physical, and chemical properties; instruments including eddy correlation systems to expand measurements of the surface and boundary layer; and aircraft probes for measuring cloud and aerosol properties. Taking full advantage of these instruments will involve the development of complex data products. This work is underway but will benefit from engagement with the broader scientific community. In this article we will describe the current status of the ARM program with an emphasis on developments over the past eight years since ARM was designated a DOE scientific user facility. We will also describe the new measurement capabilities and provide thoughts for how these new measurements can be used to serve the climate research community with an invitation to the community to engage in the development and use of these data products.

Mather, James H.; Voyles, Jimmy W.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features  

SciTech Connect (OSTI)

Background: The bacterium Pelobacter carbinolicus is able to grow by fermentation, syntrophic hydrogen/formate transfer, or electron transfer to sulfur from short-chain alcohols, hydrogen or formate; it does not oxidize acetate and is not known to ferment any sugars or grow autotrophically. The genome of P. carbinolicus was sequenced in order to understand its metabolic capabilities and physiological features in comparison with its relatives, acetate-oxidizing Geobacter species. Results: Pathways were predicted for catabolism of known substrates: 2,3-butanediol, acetoin, glycerol, 1,2-ethanediol, ethanolamine, choline and ethanol. Multiple isozymes of 2,3-butanediol dehydrogenase, ATP synthase and [FeFe]-hydrogenase were differentiated and assigned roles according to their structural properties and genomic contexts. The absence of asparagine synthetase and the presence of a mutant tRNA for asparagine encoded among RNA-active enzymes suggest that P. carbinolicus may make asparaginyl-tRNA in a novel way. Catabolic glutamate dehydrogenases were discovered, implying that the tricarboxylic acid (TCA) cycle can function catabolically. A phosphotransferase system for uptake of sugars was discovered, along with enzymes that function in 2,3-butanediol production. Pyruvate: ferredoxin/flavodoxin oxidoreductase was identified as a potential bottleneck in both the supply of oxaloacetate for oxidation of acetate by the TCA cycle and the connection of glycolysis to production of ethanol. The P. carbinolicus genome was found to encode autotransporters and various appendages, including three proteins with similarity to the geopilin of electroconductive nanowires. Conclusions: Several surprising metabolic capabilities and physiological features were predicted from the genome of P. carbinolicus, suggesting that it is more versatile than anticipated.

Aklujkar, Muktak [University of Massachusetts, Amherst; Haveman, Shelley [University of Massachusetts, Amherst; DiDonatoJr., Raymond [University of Massachusetts, Amherst; Chertkov, Olga [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Brown, Peter [University of Massachusetts, Amherst; Lovley, Derek [University of Massachusetts, Amherst

2012-01-01T23:59:59.000Z

342

AST Review, October 2010 The mission of the PSAAP Center at Stanford is to build and demonstrate computational capabilities for  

E-Print Network [OSTI]

capabilities for the simulations of supersonic combustion engines (scramjet) of hypersonic the operability limit of the scramjet as the fuel flow rate is increased the scramjet performance. Quantification of Margins and Uncertainties (QMU) provides

Prinz, Friedrich B.

343

A.24 ENHANCING THE CAPABILITY OF COMPUTATIONAL EARTH SYSTEM MODELS AND NASA DATA FOR OPERATION AND ASSESSMENT  

E-Print Network [OSTI]

A.24-1 A.24 ENHANCING THE CAPABILITY OF COMPUTATIONAL EARTH SYSTEM MODELS AND NASA DATA) computational support of Earth system modeling. #12;A.24-2 2.1 Acceleration of Operational Use of Research Data

344

Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document  

SciTech Connect (OSTI)

This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA

Sharry, J A

2009-12-30T23:59:59.000Z

345

Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)  

SciTech Connect (OSTI)

Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations (broadly defined) in a variety of settings, including particle transport, solvers, and plasma physics; (3) Monte Carlo - Monte Carlo was invented at Los Alamos, and this theme discusses these vitally important methods and their application in everything from particle transport, to condensed matter theory, to biology; (4) Molecular Dynamics - This theme describes the widespread use of molecular dynamics for a variety of important applications, including nuclear energy, materials science, and biological modeling; (5) Discrete Event Simulation - The technical scope of this theme represents a class of complex system evolutions governed by the action of discrete events. Examples include network, communication, vehicle traffic, and epidemiology modeling; and (6) Integrated Codes - This theme discusses integrated applications (comprised of all of the supporting science represented in Themes 1-5) that are of strategic importance to the Laboratory and the nation. The laboratory has in approximately 10 million source lines of code in over 100 different such strategically important applications. Of these themes, four of them will be reviewed during the 2010 review cycle: Themes 1, 2, 3, and 6. Because these capability reviews occur every three years, Themes 4 and 5 will be reviewed in 2013, along with Theme 6 (which will be reviewed during each review, owing to this theme's role as an integrator of the supporting science represented by the other 5 themes). Yearly written status reports will be provided to the Capability Review Committee Chair during off-cycle years.

Lee, Stephen R [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

346

Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program  

SciTech Connect (OSTI)

EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper model inputs. An example input data file, suitable for distribution to EnergyPlus users, was created for each new or improved feature to illustrate the input requirements for the model.

Don Shirey

2008-02-28T23:59:59.000Z

347

Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents  

SciTech Connect (OSTI)

The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

Radulescu, Georgeta [ORNL] [ORNL; Lefebvre, Robert A [ORNL] [ORNL; Peplow, Douglas E. [ORNL] [ORNL; Williams, Mark L [ORNL] [ORNL; Scaglione, John M [ORNL] [ORNL

2014-01-01T23:59:59.000Z

348

High heat flux testing capabilities at Sandia National Laboratories - New Mexico  

SciTech Connect (OSTI)

High heat flux testing for the United States fusion power program is the primary mission of the Plasma Materials Test Facility (PMTF) located at Sandia National Laboratories - New Mexico. This facility, which is owned by the United States Department of Energy, has been in operation for over 17 years and has provided much of the high heat flux data used in the design and evaluation of plasma facing components for many of the world`s magnetic fusion, tokamak experiments. In addition to domestic tokamaks such as Tokamak Fusion Test Reactor (TFTR) at Princeton and the DIII-D tokamak at General Atomics, components for international experiments like TEXTOR, Tore-Supra, and JET also have been tested at the PMTF. High heat flux testing spans a wide spectrum including thermal shock tests on passively cooled materials, thermal response and thermal fatigue tests on actively cooled components, critical heat flux-burnout tests, braze reliability tests and safety related tests. The objective of this article is to provide a brief overview of the high heat flux testing capabilities at the PMTF and describe a few of the experiments performed over the last year.

Youchison, D.L.; McDonald, J.M.; Wold, L.S.

1994-12-31T23:59:59.000Z

349

Evaluation of National Seismograph Network detection capabilities. Annual report, July 1994--July 1995: Volume 1  

SciTech Connect (OSTI)

This first annual report presents detection thresholds and probabilities, and location error ellipse projects for the United States National Seismic Network (USNSN) with and without cooperative stations in the eastern US. Network simulation methods are used with spectral noise levels at stations to simulate the processes of excitation, propagation, detection, and processing of seismic phases. USNSN alone should be capable of detecting 4 or more P waves for shallow crustal earthquakes in nearly all the eastern and central US at magnitude 3.8 level. When cooperative stations are added, the network should be able to detect 4 or more P waves from events 0.2 to 0.3 magnitude units lower. Planned expansion of USNSN and cooperative stations should improve detection levels by an additional 0.2-0.3 magnitudes units in many areas. Location uncertainties for USNSN can be improved by adding real-time cooperative stations. Median error ellipses for magnitude 4.5 earthquakes depend strongly on location, but uncertainties should be less than 100 km{sup 2} in the central US and degrade to 200 km{sup 2} or more offshore and sosuth and north of the international boundaries. Close cooperation with the Canadian National Network should substantially improve detection thresholds and location uncertainties along the Canadian border.

McLaughlin, K.L.; Bennett, T.J. [S-Cubed, La Jolla, CA (United States)

1996-03-01T23:59:59.000Z

350

Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment  

SciTech Connect (OSTI)

This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

Sharry, J A

2009-12-30T23:59:59.000Z

351

Assessment of existing Sierra/Fuego capabilities related to grid-to-rod-fretting (GTRF).  

SciTech Connect (OSTI)

The following report presents an assessment of existing capabilities in Sierra/Fuego applied to modeling several aspects of grid-to-rod-fretting (GTRF) including: fluid dynamics, heat transfer, and fluid-structure interaction. We compare the results of a number of Fuego simulations with relevant sources in the literature to evaluate the accuracy, efficiency, and robustness of using Fuego to model the aforementioned aspects. Comparisons between flow domains that include the full fuel rod length vs. a subsection of the domain near the spacer show that tremendous efficiency gains can be obtained by truncating the domain without loss of accuracy. Thermal analysis reveals the extent to which heat transfer from the fuel rods to the coolant is improved by the swirling flow created by the mixing vanes. Lastly, coupled fluid-structure interaction analysis shows that the vibrational modes of the fuel rods filter out high frequency turbulent pressure fluctuations. In general, these results allude to interesting phenomena for which further investigation could be quite fruitful.

Turner, Daniel Zack; Rodriguez, Salvador B.

2011-06-01T23:59:59.000Z

352

Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities  

SciTech Connect (OSTI)

The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power deposition was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ????0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.

Farina, D.; Figini, L. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, via Cozzi 53, 20125 Milano (Italy); Henderson, M. [ITER Organization, 13108 Saint-Paul-lez-Durance (France); Saibene, G. [Fusion for Energy, c/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain)

2014-06-15T23:59:59.000Z

353

PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT  

SciTech Connect (OSTI)

Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual. The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.

Low, M; Matthew02 Miller, M; Thomas Reilly, T

2007-04-30T23:59:59.000Z

354

Post-Swift Gamma-ray Burst Science and Capabilities Needed to EXIST  

E-Print Network [OSTI]

The exhilerating results from Swift in its first year of operations have opened a new era of exploration of the high energy universe. The surge to higher redshifts of the Gamma-ray bursts now imaged with increased sensitivity establishes them as viable cosmic probes of the early universe. Wide-field coded aperture imaging with solid-state pixel detectors (Cd-Zn-Te) has been also established as the optimum approach for GRB discovery and location as well as to conduct sensitive full-sky hard X-ray sky surveys. I outline the current and future major science questions likely to dominate the post-Swift era for GRBs and several related disciplines and the mission requirements to tackle these. The EXIST mission, under study for NASA's Black Hole Finder Probe (BHFP) in the Beyond Einstein Program, could achieve these objectives as the Next Generation GRB Mission with `ultimate' sensitivity and wide-field survey capability. Analysis tools for processing Swift/BAT slew data are under development at CfA and will both te...

Grindlay, J E

2006-01-01T23:59:59.000Z

355

Survey of commercial firms with mixed-waste treatability study capability  

SciTech Connect (OSTI)

According to the data developed for the Proposed Site Treatment Plans, the US Department of Energy (DOE) mixed low-level and mixed transuranic waste inventory was estimated at 230,000 m{sup 3} and embodied in approximately 2,000 waste streams. Many of these streams are unique and may require new technologies to facilitate compliance with Resource Conservation and Recovery Act disposal requirements. Because most waste streams are unique, a demonstration of the selected technologies is justified. Evaluation of commercially available or innovative technologies in a treatability study is a cost-effective method of providing a demonstration of the technology and supporting decisions on technology selection. This paper summarizes a document being prepared by the Mixed Waste Focus Area of the DOE Office of Science and Technology (EM-50). The document will provide DOE waste managers with a list of commercial firms (and universities) that have mixed-waste treatability study capabilities and with the specifics regarding the technologies available at those facilities. In addition, the document will provide a short summary of key points of the relevant regulations affecting treatability studies and will compile recommendations for successfully conducting an off-site treatability study. Interim results of the supplier survey are tabulated in this paper. The tabulation demonstrates that treatment technologies in 17 of the US Environmental Protection Agency`s technology categories are available at commercial facilities. These technologies include straightforward application of standard technologies, such as pyrolysis, as well as proprietary technologies developed specifically for mixed waste. The paper also discusses the key points of the management of commercial mixed-waste treatability studies.

McFee, J.; McNeel, K.; Eaton, D. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Kimmel, R. [Dept. of Energy, Idaho Falls, ID (United States). Idaho Operations Office

1996-04-01T23:59:59.000Z

356

The Expanded Capabilities Of The Cementitious Barriers Partnership Software Toolbox Version 2.0 - 14331  

SciTech Connect (OSTI)

The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The CBP Software Toolbox Version 1.0 was released early in FY2013 and was used to support DOE-EM performance assessments in evaluating various degradation mechanisms that included sulfate attack, carbonation and constituent leaching. The sulfate attack analysis predicted the extent and damage that sulfate ingress will have on concrete vaults over extended time (i.e., > 1000 years) and the carbonation analysis provided concrete degradation predictions from rebar corrosion. The new release Version 2.0 includes upgraded carbonation software and a new software module to evaluate degradation due to chloride attack. Also included in the newer version are a dual regime module allowing evaluation of contaminant release in two regimes both fractured and un-fractured. The integrated software package has also been upgraded with new plotting capabilities and many other features that increase the user-friendliness of the package. Experimental work has been generated to provide data to calibrate the models to improve the credibility of the analysis and reduce the uncertainty. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox is and will continue to produce tangible benefits to the working DOE Performance Assessment (PA) community.

Burns, Heather; Flach, Greg; Smith, Frank; Langton, Christine; Brown, Kevin; Kosson, David; Samson, Eric; Mallick, Pramod

2014-01-10T23:59:59.000Z

357

FTIR (Fourier transform infrared) spectrophotometry for thin film monitors: Computer and equipment integration for enhanced capabilities  

SciTech Connect (OSTI)

Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG), phosphosilicate (PSG), silicon oxynitride (SiON:H,OH), and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique, FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool, FTIR instruments can rapidly generate large amounts of data. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three caused of enhancement. First, the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it, instructing it to perform sophisticated processing, and returning the result to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second, the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third, processing of calibration spectra is performed on the minicomputer to optimize the accuracy and precision of a Partial Least Squares'' analysis mode. This model is then transferred to the data station in the fab. The analysis of BPSG thin films is discussed in this regard. The prospects for fully automated at-line monitoring and for real-time, in-situ monitoring will be discussed. 10 refs., 4 figs.

Cox, J.N.; Sedayao, J.; Shergill, G.; Villasol, R. (Intel Corp., Santa Clara, CA (USA)); Haaland, D.M. (Sandia National Labs., Albuquerque, NM (USA))

1990-01-01T23:59:59.000Z

358

Development of a dynamic radiographic capability using high-speed video  

SciTech Connect (OSTI)

High-speed video equipment can be used to optically image up to 2000 full frames per second or 12,000 partial frames per second. X-ray image intensifiers have historically been used to image radiographic images at 30 frames per second. By combining these two types of equipment, it is possible to perform dynamic x-ray imaging of up to 2,000 full frames per second. The technique has been demonstrated using conventional, industrial x-ray sources such as 150 kV and 300 kV constant potential x-ray generators, 2.5 MeV Van de Graaffs, and linear accelerators. A crude form of this high-speed radiographic imaging has been shown to be possible with a cobalt 60 source. Use of a maximum aperture lens makes best use of the available light output from the image intensifier. The x-ray image intensifier input and output fluors decay rapidly enough to allow the high frame rate imaging. Data are presented on the maximum possible video frame rates versus x-ray penetration of various thicknesses of aluminum and steel. Photographs illustrate typical radiographic setups using the high speed imaging method. Video recordings show several demonstrations of this technique with the played-back x-ray images slowed down up to 100 times as compared to the actual event speed. Typical applications include boiling type action of liquids in metal containers, compressor operation with visualization of crankshaft, connecting rod and piston movement and thermal battery operation. An interesting aspect of this technique combines both the optical and x-ray capabilities to observe an object or event with both external and internal details with one camera in a visual mode and the other camera in an x-ray mode. This allows both kinds of video images to appear side by side in a synchronized presentation.

Bryant, L.E. Jr.

1984-01-01T23:59:59.000Z

359

Evaluation of Nondestructive Assay/Nondestructive Examination Capabilities for Department of Energy Spent Nuclear Fuel  

SciTech Connect (OSTI)

This report summarizes an evaluation of the potential use of nondestructive assay (NDA) and nondestructive examination (NDE) technologies on DOE spent nuclear fuel (SNF). It presents the NDA/NDE information necessary for the National Spent Nuclear Fuel Program (NSNFP) and the SNF storage sites to use when defining that role, if any, of NDA/NDE in characterization and certification processes. Note that the potential role for NDA/NDE includes confirmatory testing on a sampling basis and is not restricted to use as a primary, item-specific, data collection method. The evaluation does not attempt to serve as a basis for selecting systems for development or deployment. Information was collected on 27 systems being developed at eight DOE locations. The systems considered are developed to some degree, but are not ready for deployment on the full range of DOE SNF and still require additional development. The system development may only involve demonstrating performance on additional SNF, packaging the system for deployment, and developing calibration standards, or it may be as extensive as performing additional basic research. Development time is considered to range from one to four years. We conclude that NDA/NDE systems are capable of playing a key role in the characterization and certification of DOE SNF, either as the primary data source or as a confirmatory test. NDA/NDE systems will be able to measure seven of the nine key SNF properties and to derive data for the two key properties not measured directly. The anticipated performance goals of these key properties are considered achievable except for enrichment measurements on fuels near 20% enrichment. NDA/NDE systems can likely be developed to measure the standard canisters now being considered for co-disposal of DOE SNF. This ability would allow the preparation of DOE SNF for storage now and the characterization and certification to be finalize later.

Luptak, A.J.; Bulmahn, K.D.

1998-09-01T23:59:59.000Z

360

MAINTAINING HIGH RESOLUTION MASS SPECTROMETRY CAPABILITIES FOR NATIONAL NUCLEAR SECURITY ADMINISTRATION APPLICATIONS  

SciTech Connect (OSTI)

The Department of Energy (DOE) National Nuclear Security Administration (NNSA) has a specialized need for analyzing low mass gas species at very high resolutions. The currently preferred analytical method is electromagnetic sector mass spectrometry. This method allows the NNSA Nuclear Security Enterprise (NSE) to resolve species of similar masses down to acceptable minimum detection limits (MDLs). Some examples of these similar masses are helium-4/deuterium and carbon monoxide/nitrogen. Through the 1980s and 1990s, there were two vendors who supplied and supported these instruments. However, with declining procurements and down turns in the economy, the supply of instruments, service and spare parts from these vendors has become less available, and in some cases, nonexistent. The largest NSE user of this capability is the Savannah River Site (SRS), located near Aiken, South Carolina. The Research and Development Engineering (R&DE) Group in the Savannah River National Laboratory (SRNL) investigated the areas of instrument support that were needed to extend the life cycle of these aging instruments. Their conclusions, as to the focus areas of electromagnetic sector mass spectrometers to address, in order of priority, were electronics, software and hardware. Over the past 3-5 years, the R&DE Group has designed state of the art electronics and software that will allow high resolution legacy mass spectrometers, critical to the NNSA mission, to be operated for the foreseeable future. The funding support for this effort has been from several sources, including the SRS Defense Programs, NNSA Readiness Campaign, Pantex Plant and Sandia National Laboratory. To date, electronics systems have been upgraded on one development system at SRNL, two production systems at Pantex and one production system at Sandia National Laboratory. An NSE working group meets periodically to review strategies going forward. The R&DE Group has also applied their work to the electronics for a Thermal Ionization Mass Spectrometer (TIMS) instrument, which applies a similar mass spectrometric technology for resolving high mass isotopes, such as plutonium and uranium. Due to non-compete clauses for DOE, all work has been performed and applied to instruments which are obsolete and are no longer supported by the original vendor.

Wyrick, S.; Cordaro, J.; Reeves, G.; Mcintosh, J.; Mauldin, C.; Tietze, K.; Varble, D.

2011-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Siting study for a consolidated waste capability at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Decision analysis was used to rank alternative sites for a potential Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed low-level, transuranic, and low-level waste) at Los Alamos National Laboratory's Technical Area (TA)-54. An original list of 21 site alternatives was pre-screened to seven sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. The top site choice is TA-63/52/46; the second choice is TA-18/36. The seven sites are as follows. TA-18/36 (62 acres) is located on Potrillo Drive that intersects Pajarito Road at the bottom of a steep grade. It has some blast zone issues on its southwest side and some important archeological sites on the southeast section. TA-60 (50 acres) is located at the end of Eniwetok Road off Diamond Drive, east of TA-3. Most of the site is within a fifty foot-deep ravine (that may have contamination in the drainage), with a small section on the mesa above. TA-63/52/46 (110 acres) lies to the north of Pajarito Road along Puye Road. It is centrally located in a brown field industrial area, with good access to generators on a controlled road. TA-46 (22 acres) is a narrow site on the south side of Pajarito Road across from TA-46 office buildings. TA-48 (14 acres) is also narrow, and is located on the north side of Pajarito Road near the west vehicle access portal (VAP). TA-51 (19 acres) is located on the south side of Pajarito Road at the top of the hill above TA-18 near the current entrance to the TA-54. TA-54 West (16 acres) is just north of the entrance to TA-54 at Pajarito Road and is close to Zone 4. Although it is near the San Ildefonso Pueblo property line, there may be adequate set-back for sight screening.

Booth, Steven Richard [Los Alamos National Laboratory

2010-11-05T23:59:59.000Z

362

IAD Scientific Assembly 2013, Potsdam, Germany, Sept 1-6, 2013 On the capability of non-dedocated GPS-  

E-Print Network [OSTI]

IAD Scientific Assembly 2013, Potsdam, Germany, Sept 1-6, 2013 On the capability of non Geodesy, Graz University of Technology, Austria #12;IAD Scientific Assembly 2013, Potsdam, Germany, Sept 1-5 year data gap (?) year #12;IAD Scientific Assembly 2013, Potsdam, Germany, Sept 1-6, 2013 high-low SST

Stuttgart, Universität

363

Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids  

DOE Patents [OSTI]

Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

TeGrotenhuis, Ward E. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

2008-03-18T23:59:59.000Z

364

Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids  

DOE Patents [OSTI]

Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

2005-04-05T23:59:59.000Z

365

Irradiated Materials Testing Complex (IMTL) The Irradiated Materials Testing Laboratory provides the capability to conduct high temperature  

E-Print Network [OSTI]

provides the capability to conduct high temperature corrosion and stress corrosion cracking of neutron next to a hot cell. This configuration allows us to disconnect the autoclave from its water loop, maneuver it into the hot cell, where the neutron irradiated specimens can be safely mounted

Kamat, Vineet R.

366

Robust STATCOM Control for the Enhancement of Fault Ride-Through Capability of Fixed Speed Wind Generators  

E-Print Network [OSTI]

-slip relationships as well as through simulations. The wind generator is a highly nonlinear system, which is modelled power generation. This type of wind generator always consumes reactive power from the grid. WhenRobust STATCOM Control for the Enhancement of Fault Ride-Through Capability of Fixed Speed Wind

Pota, Himanshu Roy

367

New capability will help accelerate design improvements by providing a high-fidelity simulation tool to study power  

E-Print Network [OSTI]

New capability will help accelerate design improvements by providing a high-fidelity simulation augmentation and use of the combined LES-hydroelastic code will help accelerate the development of effective, efficient, and reliable hydrokinetic energy conversion technologies, thus helping to lower the cost

368

Alfalfa is capable of producing high yields of high quality forage for hay, haylage, and pasture. However,  

E-Print Network [OSTI]

Alfalfa is capable of producing high yields of high quality forage for hay, haylage, and pasture are appropriate. Alfalfa requires deep, well-drained soils with a pH >6.5 and high levels of phosphorus (P to alfalfa performance. There are several hundred alfalfa varieties on the mar- ket, and many do well

Liskiewicz, Maciej

369

Investigating the Operational Capabilities of Custom and Pedestrian Portal Monitoring Systems for Screening Livestock for Radioactive Contamination  

E-Print Network [OSTI]

radionuclide identification capabilities. An array of six sodium iodide detectors was mounted on a panel and field-tested beside a cattle chute and in a walkway. The custom portal, the Bovine Screening Portal (BSP), observed increased count rates (>10?) from a...

Erchinger, Jennifer

2013-05-01T23:59:59.000Z

370

Joint Estimation of NDE Inspection Capability and Flaw-size Distribution for in-service Aircraft Inspections  

E-Print Network [OSTI]

1 Joint Estimation of NDE Inspection Capability and Flaw- size Distribution for in-service Aircraft, Dayton, OH 45469 Abstract: Nondestructive evaluation (NDE) is widely used in the aerospace industry of unknown existing cracks is more difficult. If NDE signal strength is recorded at all inspections

371

Development of Real-Time Fuel Management Capability at the Texas A&M Nuclear Science Center  

E-Print Network [OSTI]

For the Texas A&M University Nuclear Science Center reactor a fuel depletion code was created to develop real-time fuel management capability. This code package links MCNP8 and ORIGEN26 and is interfaced through a Visual Basic code. Microsoft Visual...

Parham, Neil A.

2010-07-14T23:59:59.000Z

372

Building organizational technical capabilities: a new approach to address the office of environmental management cleanup challenges in the 21. century  

SciTech Connect (OSTI)

The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for the nations nuclear weapons program legacy wastes cleanup. The EM cleanup efforts continue to progress, however the cleanup continues to be technologically complex, heavily regulated, long-term, and a high life cycle cost estimate (LCCE) effort. Over the past few years, the EM program has undergone several changes to accelerate its cleanup efforts with varying degrees of success. Several cleanup projects continued to experience schedule delays and cost growth. The schedule delays and cost growth have been attributed to several factors such as changes in technical scope, regulatory and safety considerations, inadequacy of acquisition approach and project management. This article will briefly review the background and schools of thought on strategic management and organizational change practiced in the United States over the last few decades to improve an organisation's competitive edge and cost performance. The article will briefly review examples such as the change at General Electric, and the recent experience obtained from the nuclear industry, namely the long-term response to the 1986 Chernobyl accident. The long-term response to Chernobyl, though not a case of organizational change, could provide some insight in the strategic management approaches used to address people issues. The article will discuss briefly EM attempts to accelerate cleanup over the past few years, and the subsequent paradigm shift. The paradigm shift targets enhancing and/or creating organizational capabilities to achieve cost savings. To improve its ability to address the 21. century environmental cleanup challenges and achieve cost savings, EM has initiated new corporate changes to develop new and enhance existing capabilities. These new and enhanced organizational capabilities include a renewed emphasis on basics, especially technical capabilities including safety, project management, acquisition management and people. The new enhanced organizational capabilities coupled with more effective communications; oversight and decision-making processes are expected to help EM meet the 21. century challenges. This article will focus on some of the initiatives to develop and enhance organizational technical capabilities. Some of these development initiatives are a part of DOE corporate actions to respond to the Defense Nuclear Facilities Safety Board (DNFSB) recommendations 93-3 and 2004-1. Other development initiatives have been tailored to meet EM specific needs for organizational capabilities such as case studies analysis and cost estimating. (authors)

Fiore, J.J.; Rizkalla, E.I. [Office of Environmental Management, The United States Dept. of Energy, Washington, D.C. (United States)

2007-07-01T23:59:59.000Z

373

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

SciTech Connect (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle, May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

374

Assessing the Predictive Capability of the LIFEIV Nuclear Fuel Performance Code using Sequential Calibration  

SciTech Connect (OSTI)

This report considers the problem of calibrating a numerical model to data from an experimental campaign (or series of experimental tests). The issue is that when an experimental campaign is proposed, only the input parameters associated with each experiment are known (i.e. outputs are not known because the experiments have yet to be conducted). Faced with such a situation, it would be beneficial from the standpoint of resource management to carefully consider the sequence in which the experiments are conducted. In this way, the resources available for experimental tests may be allocated in a way that best 'informs' the calibration of the numerical model. To address this concern, the authors propose decomposing the input design space of the experimental campaign into its principal components. Subsequently, the utility (to be explained) of each experimental test to the principal components of the input design space is used to formulate the sequence in which the experimental tests will be used for model calibration purposes. The results reported herein build on those presented and discussed in [1,2] wherein Verification & Validation and Uncertainty Quantification (VU) capabilities were applied to the nuclear fuel performance code LIFEIV. In addition to the raw results from the sequential calibration studies derived from the above, a description of the data within the context of the Predictive Maturity Index (PMI) will also be provided. The PMI [3,4] is a metric initiated and developed at Los Alamos National Laboratory to quantitatively describe the ability of a numerical model to make predictions in the absence of experimental data, where it is noted that 'predictions in the absence of experimental data' is not synonymous with extrapolation. This simply reflects the fact that resources do not exist such that each and every execution of the numerical model can be compared against experimental data. If such resources existed, the justification for numerical models would be reduced considerably. The authors note that the PMI is primarily intended to provide a high-level, quantitative description of year-to-year (or version-to-version) improvements in numerical models, where these descriptions can be used as a means of justifying funding requests to support further model development research. It is in this context that the present report should be considered: the availability of data from experimental tests should be viewed as a time-dependent variable, where experiments are added to the calibration suite as resources become available. For the present report, the experimental data is of course already available (permitting demonstration of the proposed methodology). Furthermore, the authors are not proposing this methodology as the answer to the question of how to allocate resources for experimental tests, and readers are directed to [5] and the references contained in Section 1 of [5] for additional information on the subject. However, the strength of this methodology is that it offers a means by which to select the sequence of experiments in a pre-arranged experimental campaign (a situation for which the methods discussed in [5] are less appropriate). The report is organized as follows. Section 2 describes the methodology employed to formulate the sequences of experiments for the calibrations performed for this study. Section 3 then presents the results associated with two sequences; supplementary results are provided in the Appendix. The report then concludes in Section 4 with a brief summary.

Stull, Christopher J. [Los Alamos National Laboratory; Williams, Brian J. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory

2012-07-05T23:59:59.000Z

375

A 4000-A HVDC (high-voltage direct-current) circuit breaker with fast fault-clearing capability: Final report  

SciTech Connect (OSTI)

This project is a follow-up of the first development of a 500 kV HVDC airblast circuit breaker (EPRI project 1507-3). The objective was to increase the current interrupting capability from 2200 A to 4000 A and shorten its fault clearing time. A high current 500 kV HVDC circuit breaker has been built using the passive commutation circuit. The breaker is modular in construction and can be designed for a wide variety of system conditions. More than 400 current interruptions were carried out successfully. Tests have shown that this circuit breaker is capable of interrupting more than 4000 A dc. Practical breakers with current interrupting capability of even 5500 A dc could be built. The circuit breaker operation and the fault-clearing process can be materially speeded up if the trip signal is given as soon as the fault is detected and without waiting for the current levels to come down in response to converter control action. The new dc breakers are shown to be capable of withstanding these transient arc currents of 8000 A without affecting its ability to interrupt the direct current that follows the transient. This transient current withstand capability is greater than is likely to occur during dc faults. The fault clearing time of this HVDC circuit breaker is comparable to the fault clearing time of conventional ac breakers for ac faults. The developed HVDC circuit breaker is now commercially available and can be supplied for use in HVDC systems. Its use in such systems is expected to provide flexibility in system design and contribute to system stability. 38 refs., 52 figs., 9 tabs.

Not Available

1988-04-01T23:59:59.000Z

376

Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability  

SciTech Connect (OSTI)

The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

Lessard, R.D.; Blecher, W.A.; Merrick, D.

1981-09-01T23:59:59.000Z

377

Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)  

SciTech Connect (OSTI)

The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INLs support of the U.S. Department of Energys Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

Richard Barney Carlson; Don Scoffield; Brion Bennett

2013-12-01T23:59:59.000Z

378

Isotopic Tailoring to Improve the Breeding Capability of the Sn-Li Eutectic in Liquid First Wall Fusion Blanket Concepts  

SciTech Connect (OSTI)

Due to its low vapor pressure, the Sn-Li eutectic has been identified as a potential breeder for deployment in the liquid first wall (FW)/Blanket concepts under investigation in the APEX study for high power density fusion reactors. However, its breeding capability is limited. This drawback is rather improved due to the neutron multiplication via Sn(n,2n) reactions. However, the 'local' tritium breeding ratio (TBR) was found to be still on the marginal side (even with 90%Li-6 enrichment). Aside from using a beryllium multiplier, other means to improve the capability of Sn-Li for breeding are explored. In this paper, we show that by isotopic tailoring of Tin in the Sn-Li breeder, one can achieve substantial improvement in TBR in addition to attaining significant reduction in the activation level in this material.

Youssef, Mahmoud Z. [University of California-Los Angeles (United States)

2003-09-15T23:59:59.000Z

379

Report on Toyota/Prius Motor Torque-Capability, Torque-Property, No-Load Back EMF, and Mechanical Losses  

SciTech Connect (OSTI)

In today's hybrid vehicle market, the Toyota Prius drive system is currently considered the leader in electrical, mechanical, and manufacturing innovations. It is significant that in today's marketplace, Toyota is able to manufacture and sell the vehicle for a profit. This project's objective is to test the torque capability of the 2004 Prius motor and to analyze the torque properties relating to the rotor structure. The tested values of no-load back electromotive force (emf) and mechanical losses are also presented.

Hsu, J.S.

2004-09-30T23:59:59.000Z

380

1 Why and How to be Ambidextrous? The Relationship between Environmental Factors, Innovation Strategy and Organizational Capabilities  

E-Print Network [OSTI]

Organizational ambidexterity has become an emerging research trend in both the organizational management and knowledge management field (Gibson & Birkinshaw, 2004; He & Wong, 2004). The central theme on organizational ambidexterity is about organizational capability to simultaneously deal with paradoxical or conflicting activities such as organizational alignment and adaptation; evolutionary and revolutionary change; manufacturing efficiency and flexibility; strategic alliance formation; and even strategic renewal (Adler, Goldoftas, & Levine,

Pei-wen Huang

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Cost Benefit Analysis of a V2G-Capable Electric School Bus Compared to a Traditional Diesel School Bus  

E-Print Network [OSTI]

A Cost Benefit Analysis of a V2G-Capable Electric School Bus Compared to a Traditional Diesel analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Applied Energy (rmccorma@udel.edu) 1 Center for Carbon-Free Power Integration, University of Delaware ISE Lab, Newark, DE

Firestone, Jeremy

382

COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.5.1.2 Capability to Upload Data  

E-Print Network [OSTI]

COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.5.1.2 Capability to Upload Data Date. Brownsberger 2-13-01 The Center for Astrophysics and Space Astronomy Reviewed: Approved: COS DCE BOOT FSW v1 Initial Release COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.5.1.2 Capability to Upload

Colorado at Boulder, University of

383

COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.5.1.2 Capability to Upload Data  

E-Print Network [OSTI]

COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.5.1.2 Capability to Upload Data Date. Brownsberger 2-13-01 The Center for Astrophysics and Space Astronomy Reviewed: Approved: COS DCE BOOT FSW v1 Initial Release COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.5.1.2 Capability to Upload

Colorado at Boulder, University of

384

COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.1.2.3 Capability to Log Diagnostics  

E-Print Network [OSTI]

COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.1.2.3 Capability to Log Diagnostics. Brownsberger 2-13-01 The Center for Astrophysics and Space Astronomy Reviewed: Approved: COS DCE BOOT FSW v1 Astronomy Initial Release COS DCE BOOT FSW v1.09 Component Test Results Requirement 5.1.2.3 Capability

Colorado at Boulder, University of

385

COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.1.2.3 Capability to Log Diagnostics  

E-Print Network [OSTI]

COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.1.2.3 Capability to Log Diagnostics. Brownsberger 2-13-01 The Center for Astrophysics and Space Astronomy Reviewed: Approved: COS DCE BOOT FSW v1 Astronomy Initial Release COS DCE BOOT FSW v1.13 Component Test Results Requirement 5.1.2.3 Capability

Colorado at Boulder, University of

386

REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS  

SciTech Connect (OSTI)

The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.

Donna Post Guillen; Daniel S. Wendt

2007-11-01T23:59:59.000Z

387

REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD-BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS  

SciTech Connect (OSTI)

The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.

Donna Post Guillen; Daniel S. Wendt; Steven P. Antal; Michael Z. Podowski

2007-11-01T23:59:59.000Z

388

Characterization of Bond Strength of U-Mo Fuel Plates Using the Laser Shockwave Technique: Capabilities and Preliminary Results  

SciTech Connect (OSTI)

This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties of the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.

J. A. Smith; D. L. Cottle; B. H. Rabin

2013-09-01T23:59:59.000Z

389

Evaluation of night capable sensors for the detection of oil on water. Final report, May 1993-March 1994  

SciTech Connect (OSTI)

During May, 1993, the USCG participated in a field exercise conducted at the Canadian Forces Base, Petawawa, Canada. Environment Canada set up a test facility that consisted of a lined pool separated into twelve individual tanks. Four types of petroleum products were added to nine of the tanks while three tanks were left clean as control tanks. The field exercise provided an opportunity to evaluate several night-capable sensors for detection of oil slicks on water. The USCG evaluated the day and night imaging capabilities of long wave infrared (LWIR) sensors (FLIR 2000, WF-360TL, and RS- 18C) installed on three Coast Guard aircraft. Three commercially-available hand-held medium wave infrared (MWIR) sensors (AGEMA Thermovision 210, FSI PRISM, and IRC-160ST) were also evaluated. Surface truth data were collected at the test site and through the use of visible-spectrum imagers (S-VHS camcorder and WF-360TL TV camera - day and Dark Invader Owl NVG camcorder night). Sensor imagery was recorded to S-VHS tape format for post exercise review and processing Analysis of the images confirmed several aspects of expected phenomenology. Both IR and visible spectrum sensors were readily able to detect the oil slicks during daytime sorties. Infrared, Infrared images, Long wave infrared, Medium wave infrared, Night vision goggles, Oil slick detection, visible spectrum, Remote sensing of oil slicks.

Hover, G.L.; Plourde, J.V.

1994-03-01T23:59:59.000Z

390

Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan  

SciTech Connect (OSTI)

Background: Cumulative arsenic exposure (CAE) from drinking water has been shown to be associated with hypertension in a dose-response pattern. This study further explored the association between arsenic methylation capability and hypertension risk among residents of arseniasis-hyperendemic areas in Taiwan considering the effect of CAE and other potential confounders. Method: There were 871 subjects (488 women and 383 men) and among them 372 were diagnosed as having hypertension based on a positive history or measured systolic blood pressure {>=} 140 mm Hg and/or diastolic blood pressure {>=} 90 mm Hg. Urinary arsenic species were determined by high-performance liquid chromatography-hydride generator and atomic absorption spectrometry. Primary arsenic methylation index [PMI, defined as monomethylarsonic acid (MMA{sup V}) divided by (As{sup III} + As{sup V})] and secondary arsenic methylation index (SMI, defined as dimethylarsinic acid divided by MMA{sup V}) were used as indicators for arsenic methylation capability. Results: The level of urinary arsenic was still significantly correlated with cumulative arsenic exposure (CAE) calculated from a questionnaire interview (p = 0.02) even after the residents stopped drinking the artesian well water for 2-3 decades. Hypertensive subjects had higher percentages of MMA{sup V} and lower SMI than subjects without hypertension. However, subjects having CAE > 0 mg/L-year had higher hypertension risk than those who had CAE = 0 mg/L-year disregard a high or low methylation index. Conclusion: Inefficient arsenic methylation ability may be related with hypertension risk.

Huang, Y.-K. [Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Tseng, C.-H. [National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (China); Department of Medical Research and Development, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin, Taiwan (China); Huang, Y.-L. [Department of Public Health, School of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan (China); Yang, M.-H. [Department of Nuclear Science, National Tsing-Hua University, Hsinchu, Taiwan (China); Chen, C.-J. [Genomic Research Center, Academia Sinica, Taipei, Taiwan (China); Graduate Institute of Epidemiology, College of Public Health, National Taiwan University Taipei, Taiwan (China); Hsueh, Y.-M. [Department of Public Health, School of Medicine, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan (China)]. E-mail: ymhsueh@tmu.edu.tw

2007-01-15T23:59:59.000Z

391

capabilities Disaster Resiliency and  

E-Print Network [OSTI]

and infrastructure resiliency Energy information and education Policy, financing, and partnership development Broad and sustainable energy systems and facilities. Economic Recovery Through partnerships with local stakeholders The National Renewable Energy Laboratory (NREL) is the nation's leader in energy efficient and renewable energy

392

PILOT: design and capabilities  

E-Print Network [OSTI]

The proposed design for PILOT is a general-purpose, wide-field 1 degree 2.4m, f/10 Ritchey-Chretien telescope, with fast tip-tilt guiding, for use 0.5-25 microns. The design allows both wide-field and diffraction-limited use at these wavelengths. The expected overall image quality, including median seeing, is 0.28-0.3" FWHM from 0.8-2.4 microns. Point source sensitivities are estimated.

W. Saunders; P. R. Gillingham; A. J. McGrath; J. W. V. Storey; J. S. Lawrence

2008-01-29T23:59:59.000Z

393

Hydrologic Modeling Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management Programs has both experience and technical knowledge to use and develop Earth systems models. Hydrological Modeling Models are simplified representations of...

394

JLAB Electron Driver Capabilities  

SciTech Connect (OSTI)

Several schemes have been proposed for adding a positron beam option at the Continuous Electron Beam Facility (CEBAF) at Jefferson Laboratory (JLAB). They involve using a primary beam of electrons or gamma rays striking a target to produce a positron beam. At JLAB electron beams are produced and used in two different accelerators, CEBAF and the JLAB FEL (Free Electron Laser). Both have low emittance and energy spread. The CEBAF beam is polarized. The FEL beam is unpolarized but the injector can produce a higher current electron beam. In this paper we describe the characteristics of these beams and the parameters relevant for positron production.

Kazimi, Reza [Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

2009-09-02T23:59:59.000Z

395

Advanced capability RFID system  

DOE Patents [OSTI]

A radio-frequency transponder device having an antenna circuit configured to receive radio-frequency signals and to return modulated radio-frequency signals via continuous wave backscatter, a modulation circuit coupled to the antenna circuit for generating the modulated radio-frequency signals, and a microprocessor coupled to the antenna circuit and the modulation circuit and configured to receive and extract operating power from the received radio-frequency signals and to monitor inputs on at least one input pin and to generate responsive signals to the modulation circuit for modulating the radio-frequency signals. The microprocessor can be configured to generate output signals on output pins to associated devices for controlling the operation thereof. Electrical energy can be extracted and stored in an optional electrical power storage device.

Gilbert, Ronald W. (Morgan Hill, CA); Steele, Kerry D. (Kennewick, WA); Anderson, Gordon A. (Benton City, WA)

2007-09-25T23:59:59.000Z

396

PNNL Chemical Hydride Capabilities  

Broader source: Energy.gov (indexed) [DOE]

* Quantum chemistry, density functional theory, Car- Parinello, ab initio dynamics, variational transition state theory, molecular dynamics Strategy * Bring some of the...

397

Science & Engineering Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Outages NERSC Scheduled

398

Scientific Capabilities | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System OutagesNews PressThemes »PacifichemJLab

399

Sandia National Laboratories: Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF Researchers answer Alan Alda's

400

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and Novel ComputationalBeckyScience

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and Novel

402

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and NovelFEG-SEM with EDAX Genesis SDD-EDS

403

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and NovelFEG-SEM with EDAX Genesis SDD-EDSSEM

404

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and NovelFEG-SEM with EDAX Genesis SDD-EDSSEM2017)

405

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and NovelFEG-SEM with EDAX Genesis

406

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and NovelFEG-SEM with EDAX GenesisUltraSTEM 60-100

407

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and NovelFEG-SEM with EDAX GenesisUltraSTEM

408

Leveraging National Lab Capabilities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report: IO1OP001 FebruaryBluffs Substation

409

EMSL: Capabilities: Computing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:DirectivesSAND2015-21271 7AnUserFAQ Search EMSL Home About

410

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling &NuclearNewsletter3

411

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling

412

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2 Annual Report

413

Advanced Simulation Capability for  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2 Annual Reportfor

414

Instruments and Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReactionResearchAtom Probe

415

Instruments and Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReactionResearchAtom

416

Instruments and Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign InReactionResearchAtomScanning

417

Instruments/Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault SignSpecimen Preparation Equipment:

418

Capabilities Strategy: Science Pillars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: CelebratingMissionat Cornell News

419

NREL: Biomass Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards and

420

Sierra/Fuego Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShift EndSidney D. Drell, 2000Assessment of

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sandia National Laboratories: Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergy Commission Linde, Sandia

422

Sandia National Laboratories: Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergy Commission Linde, SandiaMolecular

423

Sandia National Laboratories: Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergy Commission Linde, SandiaMolecularWins DOE

424

Sandia National Laboratories: Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergy Commission Linde, SandiaMolecularWins

425

Sandia National Laboratories: Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergy Commission Linde, SandiaMolecularWinsJoint

426

Sandia National Laboratories: Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergy Commission Linde,

427

Statement of Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff Basic Energy2011Future Direction

428

SERAPH facility capabilities  

SciTech Connect (OSTI)

The SERAPH (Solar Energy Research and Applications in Process Heat) facility addresses technical issues concerning solar thermal energy implementation in industry. Work will include computer predictive modeling (refinement and validation), system control and evaluation, and the accumulation of operation and maintenance experience. Procedures will be consistent (to the extent possible) with those of industry. SERAPH has four major components: the solar energy delivery system (SEDS); control and data acquisition (including sequencing and emergency supervision); energy distribution system (EDS); and areas allocated for storage development and load devices.

Castle, J.; Su, W.

1980-06-01T23:59:59.000Z

429

Development of a Neutron Diffraction Based Experiemental Capability for Investigating Hydraulic Fracturing for EGS-like Conditions  

SciTech Connect (OSTI)

Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had both the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture and map the associated internal strain states of the sample. This will hopefully enable a more precise mapping of the rock material failure envelope, facilitate a more refined understanding of the mechanism of hydraulically induced rock fracture, particularly in crystalline rocks, and serve as a platform for validating and improving fracture simulation codes. The elements of the research program and preliminary strain mapping results of a Sierra White granite sample subjected only to compressive loading will be discussed in this paper.

Polsky, Yarom [ORNL] [ORNL; Anovitz, Lawrence {Larry} M [ORNL; An, Ke [ORNL] [ORNL; Carmichael, Justin R [ORNL] [ORNL; Bingham, Philip R [ORNL] [ORNL; Dessieux Jr, Luc Lucius [ORNL] [ORNL

2013-01-01T23:59:59.000Z

430

Simulation information regarding Sandia National Laboratories%3CU%2B2019%3E trinity capability improvement metric.  

SciTech Connect (OSTI)

Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory each selected a representative simulation code to be used as a performance benchmark for the Trinity Capability Improvement Metric. Sandia selected SIERRA Low Mach Module: Nalu, which is a uid dynamics code that solves many variable-density, acoustically incompressible problems of interest spanning from laminar to turbulent ow regimes, since it is fairly representative of implicit codes that have been developed under ASC. The simulations for this metric were performed on the Cielo Cray XE6 platform during dedicated application time and the chosen case utilized 131,072 Cielo cores to perform a canonical turbulent open jet simulation within an approximately 9-billion-elementunstructured- hexahedral computational mesh. This report will document some of the results from these simulations as well as provide instructions to perform these simulations for comparison.

Agelastos, Anthony Michael; Lin, Paul T.

2013-10-01T23:59:59.000Z

431

Extending the Capabilities of the Mooring Analysis Program: A Survey of Dynamic Mooring Line Theories for Integration into FAST: Preprint  

SciTech Connect (OSTI)

Techniques to model dynamic mooring lines come in various forms. The most widely used models include either a heuristic representation of the physics (such as a Lumped-Mass, LM, system), a Finite-Element Analysis (FEA) discretization of the lines (discretized in space), or a Finite-Difference (FD) model (which is discretized in both space and time). In this paper, we explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this manuscript, the lumped-mass representation is selected for implementation in MAP based on its simplicity, computational cost, and ability to provide similar physics captured by higher-order models.

Masciola, M.; Jonkman, J.; Robertson, A.

2014-03-01T23:59:59.000Z

432

Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste  

SciTech Connect (OSTI)

A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

1997-05-01T23:59:59.000Z

433

validation and Enhancement of Computational Fluid Dynamics and Heat Transfer Predictive Capabilities for Generation IV Reactor Systems  

SciTech Connect (OSTI)

Nationwide, the demand for electricity due to population and industrial growth is on the rise. However, climate change and air quality issues raise serious questions about the wisdom of addressing these shortages through the construction of additional fossil fueled power plants. In 1997, the President's Committee of Advisors on Science and Technology Energy Research and Development Panel determined that restoring a viable nuclear energy option was essential and that the DOE should implement a R&D effort to address principal obstacles to achieving this option. This work has addressed the need for improved thermal/fluid analysis capabilities, through the use of computational fluid dynamics, which are necessary to support the design of generation IV gas-cooled and supercritical water reactors.

Robert E. Spall; Barton Smith; Thomas Hauser

2008-12-08T23:59:59.000Z

434

TIGER -- A technology to improve the delivery capability of nuclear bombs and the survivability of the delivery aircraft  

SciTech Connect (OSTI)

The TIGER (Terminal guided and Extended-Range) Program was initiated in 1972 to study improved delivery capabilities for stockpiled tactical nuclear bombs. The Southeast Asia conflict fostered the development of air-delivered standoff conventional weapons utilizing terminal guidance systems. SNL initiated the TIGER program to determine if current nuclear bombs could be provided with a similarly accurate standoff capabilities. These conventional weapon delivery techniques, while allowing highly accurate attack, generally require entering the target area at high altitude to establish line of sight to the target. In parallel with the TIGER program, system studies analyzed this concept and showed marked improvement in aircraft and weapon survivability with moderate standoff (10--20 km) if low level deliveries (60 m) could be accomplished. As a result of this work, the TIGER program was redirected in early 1974 to demonstrate a standoff bomb with good accuracy (90 m CEP) when delivered from low flying aircraft. This program redirection resulted in the selection of an inertial guidance system to replace the earlier terminal guidance systems. This program was called the Extended-Range Bomb (ERB). In May 1974, a joint Air Force/DOE study identified the desirability of having a single tactical weapon which could be employed against either fixed, preselected targets, or mobile battlefield targets. Studies conducted on the ERB system showed that the inertially guided weapon could fly not only the standoff mission but also a return-to-target mission against the mobile battlefield targets whose locations are not known accurately enough to use a standoff delivery. The ERB program evolved from these initial investigations into an exploratory program to develop the hardware and demonstrate the technology required to fly standoff and return-to-target trajectories. The application of this technology in the form of field retrofit kits to the B61 bomb is called TIGER II.

NONE

1980-12-31T23:59:59.000Z

435

EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017.

436

EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations  

SciTech Connect (OSTI)

California has been using DOE-2 as the main building energy analysis tool in the development of building energy efficiency standards (Title 24) and the code compliance calculations. However, DOE-2.1E is a mature program that is no longer supported by LBNL on contract to the USDOE, or by any other public or private entity. With no more significant updates in the modeling capabilities of DOE-2.1E during recent years, DOE-2.1E lacks the ability to model, with the necessary accuracy, a number of building technologies that have the potential to reduce significantly the energy consumption of buildings in California. DOE-2's legacy software code makes it difficult and time consuming to add new or enhance existing modeling features in DOE-2. Therefore the USDOE proposed to develop a new tool, EnergyPlus, which is intended to replace DOE-2 as the next generation building simulation tool. EnergyPlus inherited most of the useful features from DOE-2 and BLAST, and more significantly added new modeling capabilities far beyond DOE-2, BLAST, and other simulations tools currently available. With California's net zero energy goals for new residential buildings in 2020 and for new commercial buildings in 2030, California needs to evaluate and promote currently available best practice and emerging technologies to significantly reduce energy use of buildings for space cooling and heating, ventilating, refrigerating, lighting, and water heating. The California Energy Commission (CEC) needs to adopt a new building energy simulation program for developing and maintaining future versions of Title 24. Therefore, EnergyPlus became a good candidate to CEC for its use in developing and complying with future Title 24 upgrades. In 2004, the Pacific Gas and Electric Company contracted with ArchitecturalEnergy Corporation (AEC), Taylor Engineering, and GARD Analytics to evaluate EnergyPlus in its ability to model those energy efficiency measures specified in both the residential and nonresidential Alternative Calculation Method (ACM) of the Title-24 Standards. The AEC team identified gaps between EnergyPlus modeling capabilities and the requirements of Title 24 and ACMs. AEC's evaluation was based on the 2005 version of Title 24 and ACMs and the version 1.2.1 of EnergyPlus released on October 1, 2004. AEC's evaluation is useful for understanding the functionality and technical merits of EnergyPlus for implementing the performance-based compliance methods described in the ACMs. However, it did not study the performance of EnergyPlus in actually making building energy simulations for both the standard and proposed building designs, as is required for any software program to be certified by the CEC for use in doing Title-24 compliance calculations. In 2005, CEC funded LBNL to evaluate the use of EnergyPlus for compliance calculations by comparing the ACM accuracy test runs between DOE-2.1E and EnergyPlus. LBNL team identified key technical issues that must be addressed before EnergyPlus can be considered by the CEC for use in developing future Nonresidential Title-24 Standards or as an ACM tool. With Title 24 being updated to the 2008 version (which adds new requirements to the standards and ACMs), and EnergyPlus having been through several update cycles from version 1.2.1 to 2.1, it becomes crucial to review and update the previously identified gaps of EnergyPlus for use in Title 24, and more importantly to close the gaps which would help pave the way for EnergyPlus to be adopted as a Title 24 compliance ACM. With this as the key driving force, CEC funded LBNL in 2008 through this PIER (Public Interest Energy Research) project with the overall technical goal to expand development of EnergyPlus to provide for its use in Title-24 standard compliance and by CEC staff.

Hong, Tianzhen; Buhl, Fred; Haves, Philip

2008-03-28T23:59:59.000Z

437

Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries  

DOE Patents [OSTI]

Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

Deng, Haixia; Belharouak, Ilias; Amine, Khalil

2012-10-02T23:59:59.000Z

438

Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

1994-09-01T23:59:59.000Z

439

Case histories in the Europe/Africa area demonstrate improved capabilities of fiber-optic video camera technology  

SciTech Connect (OSTI)

Cost constraints in the oilfield restrict the performance of remedial services unless a high probability of success can be assured. Unfortunately, a method that could accurately diagnose wellbore problems in a broad scope of oilfield environments was not available, and until the 90`s, accuracy of problem assessment was compromised to the point that estimates of remedial success could not be determined. During the 90`s, however, a downhole video system that showed promise of providing the sought-after diagnostic accuracy for today`s operational conditions was introduced to the oilfield. With the combined capabilities of fiber-optic signal transmission and downhole video camera technology, the system can now provide the oil and gas industry with a diagnostic tool that is rapidly becoming invaluable in oilfield services and is proving the worth of the old adage, seeing is believing. This paper will present a brief overview of the use of the downhole video (DHV) camera technique from its first documented usage until early 1992. The enhancements that have been instrumental in enlarging the scope of its usage since that time will then be discussed. Case histories recorded by the video camera operation in the Europe/Africa area will be presented and analyzed to demonstrate usage and benefits of the system.

Olsen, J.E.; Kristensen, R.; Taylor, R.W.

1995-10-01T23:59:59.000Z

440

Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1  

SciTech Connect (OSTI)

US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC or state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.

NONE

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Utilization of the atmospheric release advisory capability (ARAC) services during and after the Three Mile Island accident  

SciTech Connect (OSTI)

At 0820 PST on 28 March 1979, the Department of Energy's Emergency Operations Center advised the Atmospheric Release Advisory Capability (ARAC) that the Three Mile Island nuclear power plant in Harrisburg, Pennsylvania, had experienced an accident some four hours earlier, resulting in the atmospheric release of xenon-133 and krypton-88. This report describes ARAC's response to the Three Mile Island accident, including the role ARAC played throughout the 20 days that real-time assessments were made available to the Department of Energy on-scene commander. It also describes the follow-up population-dose calculations performed for the President's Commission on Three Mile Island. At the request of the Nuclear Regulatory Commission, a questionnaire addressing the usefulness of ARAC products during the accident was sent to ARAC-product users. A summary of the findings from this questionnaire, along with recommendations for improving ARAC service, is also presented. The accident at Mississauga, Ontario, Canada, is discussed in the context of a well-planned emergency response by local and Federal officials.

Knox, J.B.; Dickerson, M.H.; Greenly, G.D.; Gudiksen, P.H.; Sullivan, T.J.

1980-07-01T23:59:59.000Z

442

APNEA/WIT system nondestructive assay capability evaluation plan for select accessibly stored INEL RWMC waste forms  

SciTech Connect (OSTI)

Bio-Imaging Research Inc. (BIR) and Lockheed Martin Speciality Components (LMSC) are engaged in a Program Research and Development Agreement and a Rapid Commercialization Initiative with the Department of Energy, EM-50. The agreement required BIR and LMSC to develop a data interpretation method that merges nondestructive assay and nondestructive examination (NDA/NDE) data and information sufficient to establish compliance with applicable National TRU Program (Program) waste characterization requirements and associated quality assurance performance criteria. This effort required an objective demonstration of the BIR and LMSC waste characterization systems in their standalone and integrated configurations. The goal of the test plan is to provide a mechanism from which evidence can be derived to substantiate nondestructive assay capability and utility statement for the BIT and LMSC systems. The plan must provide for the acquisition, compilation, and reporting of performance data thereby allowing external independent agencies a basis for an objective evaluation of the standalone BIR and LMSC measurement systems, WIT and APNEA respectively, as well as an expected performance resulting from appropriate integration of the two systems. The evaluation is to be structured such that a statement regarding select INEL RWMC waste forms can be made in terms of compliance with applicable Program requirements and criteria.

Becker, G.K.

1997-01-01T23:59:59.000Z

443

Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release Version 1.1  

SciTech Connect (OSTI)

Cielo is a massively parallel supercomputer funded by the DOE/NNSA Advanced Simulation and Computing (ASC) program, and operated by the Alliance for Computing at Extreme Scale (ACES), a partnership between Los Alamos National Laboratory (LANL) and Sandia National Laboratories (SNL). The primary Cielo compute platform is physically located at Los Alamos National Laboratory. This Cielo Computational Environment Usage Model documents the capabilities and the environment to be provided for the Q1 FY12 Level 2 Cielo Capability Computing (CCC) Platform Production Readiness Milestone. This document describes specific capabilities, tools, and procedures to support both local and remote users. The model is focused on the needs of the ASC user working in the secure computing environments at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, or Sandia National Laboratories, but also addresses the needs of users working in the unclassified environment. The Cielo Computational Environment Usage Model maps the provided capabilities to the tri-Lab ASC Computing Environment (ACE) Version 8.0 requirements. The ACE requirements reflect the high performance computing requirements for the Production Readiness Milestone user environment capabilities of the ASC community. A description of ACE requirements met, and those requirements that are not met, are included in each section of this document. The Cielo Computing Environment, along with the ACE mappings, has been issued and reviewed throughout the tri-Lab community.

Vigil,Benny Manuel [Los Alamos National Laboratory; Ballance, Robert [SNL; Haskell, Karen [SNL

2012-08-09T23:59:59.000Z

444

Method and Case Study for Estimating the Ramping Capability of a Control Area or Balancing Authority and Implications for Moderate or High Wind Penetration: Preprint  

SciTech Connect (OSTI)

In several regions of the United States there has been a significant increase in wind generation capability over the past several years. As the penetration rate of wind capacity increases, grid operators and planners are increasingly concerned about accommodating the increased variability that wind contributes to the system. In this paper we examine the distinction between regulation, load following, hourly energy, and energy imbalance to understand how restructured power systems accommodate and value inter-hour ramps. We use data from two restructured markets, California and PJM, and from Western Area Power Administration's (WAPA's) Rocky Mountain control area to determine expected load-following capability in each region. Our approach is to examine the load-following capability that currently exists using data from existing generators in the region. We then examine the levels of wind penetration that can be accommodated with this capability using recently collected wind farm data. We discuss how load-following costs are captured in restructured markets, what resources are available to meet these requirements, why there are no explicit load-following tariffs, and the societal importance of being able to access generator ramping capability. Finally, the implications for wind plants and wind integration costs are examined.

Kirby, B.; Milligan, M.

2005-05-01T23:59:59.000Z

445

Transmutation Performance Analysis for Inert Matrix Fuels in Light Water Reactors and Computational Neutronics Methods Capabilities at INL  

SciTech Connect (OSTI)

The urgency for addressing repository impacts has grown in the past few years as a result of Spent Nuclear Fuel (SNF) accumulation from commercial nuclear power plants. One path that has been explored by many is to eliminate the transuranic (TRU) inventory from the SNF, thus reducing the need for additional long term repository storage sites. One strategy for achieving this is to burn the separated TRU elements in the currently operating U.S. Light Water Reactor (LWR) fleet. Many studies have explored the viability of this strategy by loading a percentage of LWR cores with TRU in the form of either Mixed Oxide (MOX) fuels or Inert Matrix Fuels (IMF). A task was undertaken at INL to establish specific technical capabilities to perform neutronics analyses in order to further assess several key issues related to the viability of thermal recycling. The initial computational study reported here is focused on direct thermal recycling of IMF fuels in a heterogeneous Pressurized Water Reactor (PWR) bundle design containing Plutonium, Neptunium, Americium, and Curium (IMF-PuNpAmCm) in a multi-pass strategy using legacy 5 year cooled LWR SNF. In addition to this initial high-priority analysis, three other alternate analyses with different TRU vectors in IMF pins were performed. These analyses provide comparison of direct thermal recycling of PuNpAmCmCf, PuNpAm, PuNp, and Pu. The results of this infinite lattice assembly-wise study using SCALE 5.1 indicate that it may be feasible to recycle TRU in this manner using an otherwise typical PWR assembly without violating peaking factor limits.

Michael A. Pope; Samuel E. Bays; S. Piet; R. Ferrer; Mehdi Asgari; Benoit Forget

2009-05-01T23:59:59.000Z

446

Five-Year Implementation Plan For Advanced Separations and Waste Forms Capabilities at the Idaho National Laboratory (FY 2011 to FY 2015)  

SciTech Connect (OSTI)

DOE-NE separations research is focused today on developing a science-based understanding that builds on historical research and focuses on combining a fundamental understanding of separations and waste forms processes with small-scale experimentation coupled with modeling and simulation. The result of this approach is the development of a predictive capability that supports evaluation of separations and waste forms technologies. The specific suite of technologies explored will depend on and must be integrated with the fuel development effort, as well as an understanding of potential waste form requirements. This five-year implementation plan lays out the specific near-term tactical investments in people, equipment and facilities, and customer capture efforts that will be required over the next five years to quickly and safely bring on line the capabilities needed to support the science-based goals and objectives of INLs Advanced Separations and Waste Forms RD&D Capabilities Strategic Plan.

Not Listed

2011-03-01T23:59:59.000Z

447

Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322  

SciTech Connect (OSTI)

The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

Geisz, J. F.

2012-11-01T23:59:59.000Z

448

Advances in mass storage technology are producing devices capable of holding terabytes of data. These new devices, often called tertiary storage devices, have dramatically different performance  

E-Print Network [OSTI]

-overwrite technique for managing storage. This technique allows the user to see the entire history of the database of the database at any moment in history. This capability is referred to as time travel. Since only the start time characteristics than magnetic disks. Conventional database systems include explicit dependen- cies on magnetic

California at Irvine, University of

449

Off-site Nuclear Emergency Management -Capabilities and Challenges -Salzburg, Austria, 29 September -3 October 2003 Protective Actions in the Late Phase -Intervention Criteria and Decision-making  

E-Print Network [OSTI]

in the late phase of a nuclear or radiological accident where long-lived radionuclides have been dispersed AND COUNTERMEASURES A nuclear accident is normally divided into three phases: a pre-release phase with a time scaleOff-site Nuclear Emergency Management - Capabilities and Challenges - Salzburg, Austria, 29

450

Current capabilities in soil thermal representations within a large scale hydrology model Laura C. Bowling (bowling@purdue.edu) and Keith A. Cherkauer, Purdue University, West Lafayette, IN  

E-Print Network [OSTI]

Current capabilities in soil thermal representations within a large scale hydrology model Laura C. Adam, now at Washington State University, Pullman, WA · Observations of dramatic hydrologic change hydrology under a changing climate (e.g. Smith et al. 2005; Adam & Lettenmaier 2008). Although mathematical

Cherkauer, Keith

451

The Lujan Center is a national user facility funded by Basic Energy Sciences of the Department of Energy which o ers capability for basic and applied neutron scattering  

E-Print Network [OSTI]

of Energy which o ers capability for basic and applied neutron scattering relevant to national security are the domain of the low-Q scattering intrument, LQD. These well-established neutron techniques probe long Matter, Local Structure, and Nanomaterials The Lujan Neutron Scattering Center encompasses a set

452

6 8 IEEE SOFTWARE Published by the IEEE Computer Society 0740-7459/05/$20.00 2005 IEEE capabilities to manage, develop, and deliver  

E-Print Network [OSTI]

capabilities to manage, develop, and deliver quality products. We looked at the role of process improve- ment become a major force in software development process improve- ment. Companies strive to increase, University of Maryland A case study of a five-year-old startup company looks at process improvement

Zelkowitz, Marvin V.

453

Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.  

SciTech Connect (OSTI)

Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

Starke, Michael R [ORNL; Kirby, Brendan J [ORNL; Kueck, John D [ORNL; Todd, Duane [Alcoa; Caulfield, Michael [Alcoa; Helms, Brian [Alcoa

2009-02-01T23:59:59.000Z

454

Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure  

SciTech Connect (OSTI)

To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

Cal Ozaki

2010-06-01T23:59:59.000Z

455

Integrated Program of Experimental Diagnostics at the NNSS: An Integrated, Prioritized Work Plan for Diagnostic Development and Maintenance and Supporting Capability  

SciTech Connect (OSTI)

This Integrated Program of Experimental Diagnostics at the NNSS is an integrated prioritized work plan for the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), program that is independent of individual National Security Enterprise Laboratories (Labs) requests or specific Subprograms being supported. This prioritized work plan is influenced by national priorities presented in the Predictive Capability Framework (PCF) and other strategy documents (Primary and Secondary Assessment Technologies Plans and the Plutonium Experiments Plan). This document satisfies completion criteria for FY 2010 MRT milestone #3496: Document an integrated, prioritized work plan for diagnostic development, maintenance, and supporting capability. This document is an update of the 3?year NNSS plan written a year ago, September 21, 2009, to define and understand Lab requests for diagnostic implementation. This plan is consistent with Lab interpretations of the PCF, Primary Assessment Technologies, and Plutonium Experiment plans.

NSTec Mission and Projects Division

2010-09-30T23:59:59.000Z

456

Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste  

SciTech Connect (OSTI)

Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

1996-03-01T23:59:59.000Z

457

8612 Chem. Commun., 2010, 46, 86128614 This journal is c The Royal Society of Chemistry 2010 A novel microporous MOF with the capability of selective adsorption  

E-Print Network [OSTI]

bottles. Because of such great economic worth, a great deal of pX is produced every year. However, due isomers have been measured. The isotherms indicate that JUC-77 has potential capability for separating p a reversible type-I isotherm. (Fig. 2) The Langmuir and the BET surface area are 1066 m2 g?1 and 976 m2 g?1

458

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations  

SciTech Connect (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

Waters, R.D.; Gruebel, M.M. [eds.] [eds.

1996-03-01T23:59:59.000Z

459

Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries  

E-Print Network [OSTI]

], 0000 | 1 Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries Kai Xi,a Piran R. Kidambi,b Renjie Chen,c Chenlong Gao,a Xiaoyu Peng,a Caterina... Ducati,a Stephan Hofmannb* and R. Vasant Kumar a* 5 Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries...

Xi, Kai; Kidambi, Piran R.; Chen, Renjie; Gao, Chenlong; Peng, Xiaoyu; Ducati, Caterina; Hofmann, Stephan; Kumar, R. Vasant

2014-03-04T23:59:59.000Z

460

NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY  

SciTech Connect (OSTI)

A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

2009-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SWRI notes synthetic fuels capabilities  

SciTech Connect (OSTI)

A report is given of the test facilities developed by the Southwest Research Institute of San Antonio, Texas. Briefly described are a combustion bomb system for the study of the ignition quality of fuels for diesel engines; a variable compression ratio, direct injection, small cylinder engine allowing photography and monitoring of fuel combustion; a mathematical model which predicts cetane number from NMR measurements; another model for blending alcohols and gasoline to specified fuel properties; and a single cylinder, four stroke diesel engine representative of railroad and marine engines, the only engine of this size and speed range available for research in the US.

Not Available

1987-03-01T23:59:59.000Z

462

INTEGRATION OF DIAGNOSTIC CAPABILITIES WITH  

E-Print Network [OSTI]

. Mohan Sridharan Texas Tech University, REU Site July 8, 2013 DISCLAIMER This material is based upon work Non- monotonic Logical Reasoning and Probabilistic Planning on Mobile Robots. International Conference- Level Cognitive Functions for Service Robots. International Conference on Autonomous Agents

Sridharan, Mohan

463

Scalable Equation of State Capability  

SciTech Connect (OSTI)

The purpose of this techbase project was to investigate the use of parallel array data types to reduce the memory footprint of the Livermore Equation Of State (LEOS) library. Addressing the memory scalability of LEOS is necessary to run large scientific simulations on IBM BG/L and future architectures with low memory per processing core. We considered using normal MPI, one-sided MPI, and Global Arrays to manage the distributed array and ended up choosing Global Arrays because it was the only communication library that provided the level of asynchronous access required. To reduce the runtime overhead using a parallel array data structure, a least recently used (LRU) caching algorithm was used to provide a local cache of commonly used parts of the parallel array. The approach was initially implemented in a isolated copy of LEOS and was later integrated into the main trunk of the LEOS Subversion repository. The approach was tested using a simple test. Testing indicated that the approach was feasible, and the simple LRU caching had a 86% hit rate.

Epperly, T W; Fritsch, F N; Norquist, P D; Sanford, L A

2007-12-03T23:59:59.000Z

464

Capability Workshops: ADTSC: LANL Inside  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4Tours SHARE ToursCanyonTrinity

465

Core Capabilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov ContactsContractOfficeCoolWhyCopyThe

466

Reorganization bolsters nuclear nonproliferation capability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories » Removing nuclear waste, oneReordering MPI

467

Sourcing Capabilities | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights SuccessSmartPortalSolving

468

Sandia National Laboratories: Enabling Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAids Energy IndependenceofEFRCEnabling

469

NREL: Buildings Research - Residential Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below are upcoming eventsResidential

470

NREL: Energy Systems Integration - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterials Science LearnSecond

471

NREL: Water Power Research - Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and EvaluationManagement Image of

472

Unique Capabilities | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProduction Undergraduateproperties: a

473

Sandia National Laboratories: Enabling Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortium for AdvancedEnergyElectric Go About

474

Sandia National Laboratories: Enabling Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortium for AdvancedEnergyElectric Go AboutLIMITS

475

Sandia National Laboratories: Enabling Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortium for AdvancedEnergyElectric Go

476

Sandia National Laboratories: Enabling Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortium for AdvancedEnergyElectric GoFusion Energy

477

Sandia National Laboratories: Enabling Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortium for AdvancedEnergyElectric GoFusion

478

Sandia National Laboratories: Grid Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at ExploraGlobal Sandia Co-HostsTheGlobal1 Goal

479

Sandia National Laboratories: NSTTF Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt Storage System ArevaNRG Sandia

480

RCPO1 - A Monte Carlo program for solving neutron and photon transport problems in three dimensional geometry with detailed energy description and depletion capability  

SciTech Connect (OSTI)

The RCP01 Monte Carlo program is used to analyze many geometries of interest in nuclear design and analysis of light water moderated reactors such as the core in its pressure vessel with complex piping arrangement, fuel storage arrays, shipping and container arrangements, and neutron detector configurations. Written in FORTRAN and in use on a variety of computers, it is capable of estimating steady state neutron or photon reaction rates and neutron multiplication factors. The energy range covered in neutron calculations is that relevant to the fission process and subsequent slowing-down and thermalization, i.e., 20 MeV to 0 eV. The same energy range is covered for photon calculations.

Ondis, L.A., II; Tyburski, L.J.; Moskowitz, B.S.

2000-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavemaking capabilities wavemaking" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Modeling and Control System Design for an Integrated Solar Generation and Energy Storage System with a Ride-Through Capability: Preprint  

SciTech Connect (OSTI)

This paper presents a generic approach for PV panel modeling. Data for this modeling can be easily obtained from manufacturer datasheet, which provides a convenient way for the researchers and engineers to investigate the PV integration issues. A two-stage power conversion system (PCS) is adopted in this paper for the PV generation system and a Battery Energy Storage System (BESS) can be connected to the dc-link through a bi-directional dc/dc c