Sample records for wavelength electromagnetic radiation

  1. Source of coherent short wavelength radiation

    DOE Patents [OSTI]

    Villa, Francesco (Alameda, CA)

    1990-01-01T23:59:59.000Z

    An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

  2. Electricity and short wavelength radiation generator

    DOE Patents [OSTI]

    George, E.V.

    1985-08-26T23:59:59.000Z

    Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.

  3. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  4. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

    2011-12-06T23:59:59.000Z

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  5. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09T23:59:59.000Z

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  6. Electromagnetic Radiation and Motion of Real Particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-06-21T23:59:59.000Z

    Relativistically covariant equation of motion for real dust particle under the action of electromagnetic radiation is derived. The particle is neutral in charge. Equation of motion is expressed in terms of particle's optical properties, standardly used in optics for stationary particles.

  7. Electromagnetic radiation from relativistic nuclear collisions

    E-Print Network [OSTI]

    Charles Gale; Kevin L. Haglin

    2003-06-16T23:59:59.000Z

    We review some of the results obtained in the study of the production of electromagnetic radiation in relativistic nuclear collisions. We concentrate on the emission of real photons and dileptons from the hot and dense strongly interacting phases of the reaction. We examine the contributions from the partonic sector, as well as those from the nonperturbative hadronic sector. We examine the current data, some of the predictions for future measurements, and comment on what has been learnt so far.

  8. General Polarization Matrix of Electromagnetic Radiation

    E-Print Network [OSTI]

    Muhammet Ali Can; Alexander S. Shumovsky

    2001-05-15T23:59:59.000Z

    A general form of the polarization matrix valid for any type of electromagnetic radiation (plane waves, multipole radiation etc.) is defined in terms of a certain bilinear form in the field-strength tensor. The quantum counterpart is determined as an operator matrix with normal-ordered elements with respect to the creation and annihilation operators. The zero-point oscillations (ZPO) of polarization are defined via difference between the anti-normal and normal ordered operator polarization matrices. It is shown that ZPO of the multipole field are stronger than those described by the model of plane waves and are concentrated in a certain neighborhood of a local source.

  9. Detecting excess ionizing radiation by electromagnetic breakdown of air

    SciTech Connect (OSTI)

    Granatstein, Victor L.; Nusinovich, Gregory S. [Center for Applied Electromagnetics, Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2010-09-15T23:59:59.000Z

    A scheme is proposed for detecting a concealed source of ionizing radiation by observing the occurrence of breakdown in atmospheric air by an electromagnetic wave whose electric field surpasses the breakdown field in a limited volume. The volume is chosen to be smaller than the reciprocal of the naturally occurring concentration of free electrons. The pulse duration of the electromagnetic wave must exceed the avalanche breakdown time (10-200 ns) and could profitably be as long as the statistical lag time in ambient air (typically, microseconds). Candidate pulsed electromagnetic sources over a wavelength range, 3 mm>{lambda}>10.6 {mu}m, are evaluated. Suitable candidate sources are found to be a 670 GHz gyrotron oscillator with 200 kW, 10 {mu}s output pulses and a Transversely Excited Atmospheric-Pressure (TEA) CO{sub 2} laser with 30 MW, 100 ns output pulses. A system based on 670 GHz gyrotron would have superior sensitivity. A system based on the TEA CO{sub 2} laser could have a longer range >100 m.

  10. Electromagnetic Radiation Hardness of Diamond Detectors

    E-Print Network [OSTI]

    T. Behnke; M. Doucet; N. Ghodbane; A. Imhof; C. Martinez; W. Zeuner

    2001-08-22T23:59:59.000Z

    The behavior of artificially grown CVD diamond films under intense electromagnetic radiation has been studied. The properties of irradiated diamond samples have been investigated using the method of thermally stimulated current and by studying their charge collection properties. Diamonds have been found to remain unaffected after doses of 6.8 MGy of 10 keV photons and 10 MGy of MeV-range photons. This observation makes diamond an attractive detector material for a calorimeter in the very forward region of the proposed TESLA detector.

  11. Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    E-Print Network [OSTI]

    Ganapati, Vidya; Yablonovitch, Eli

    2013-01-01T23:59:59.000Z

    Light trapping in solar cells allows for increased current and voltage, as well as reduced materials cost. It is known that in geometrical optics, a maximum 4n^2 absorption enhancement factor can be achieved by randomly texturing the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength. In sub-wavelength thin films, the fundamental questions remain unanswered: (1) what is the sub-wavelength absorption enhancement limit and (2) what surface texture realizes this optimal absorption enhancement? We turn to computational electromagnetic optimization in order to design nanoscale textures for light trapping in sub-wavelength thin films. For high-index thin films, in the weakly absorbing limit, our optimized surface textures yield an angle- and frequency-averaged enhancement factor ~39. They perform roughly 30% better than randomly textured structures, but they fall...

  12. Electromagnetic Radiation and Motion of Really Shaped Particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-08-13T23:59:59.000Z

    Relativistically covariant form of equation of motion for real particle (neutral in charge) under the action of electromagnetic radiation is derived. Various formulations of the equation of motion in the proper frame of reference of the particle are used. Main attention is devoted to the reformulation of the equation of motion in the general frame of reference, e. g., in the frame of reference of the source of electromagnetic radiation. This is the crucial form of equation of motion in applying it to motion of particles (cosmic dust, asteroids, ...) in the Universe if electromagnetic radiation acts on the particles. General relativistic equation of motion is presented.

  13. Behavior of Electric Current Subjected to ELF Electromagnetic Radiation

    E-Print Network [OSTI]

    Fran De Aquino

    2002-10-05T23:59:59.000Z

    Gravitational effects produced by ELF electromagnetic radiation upon the electric current in a conductor are studied. An apparatus has been constructed to test the behavior of current subjected to ELF radiation. The experimental results are in agreement with theoretical predictions and show that ELF radiation can cause transitory interruptions in electric current conduction.

  14. Use of Dynamical Undulator Mechanism to Produce Short Wavelength Radiation in Volume FEL (VFEL)

    E-Print Network [OSTI]

    V. G. Baryshevsky; K. G. Batrakov

    2002-09-06T23:59:59.000Z

    VFEL lasing in system with dynamical undulator is described. In this system radiation of long wavelength creates the undulator for lasing on shorter wavelength. Two diffraction gratings with different spatial periods form VFEL resonator. The grating with longer period pumps the resonator with long wavelength radiation to provide necessary amplitude of undulator field. The grating with shorter period makes mode selection for short wavelength radiation. Lasing of such a system in terahertz frequency range is discussed.

  15. Electromagnetic radiation and motion of arbitrarily shaped particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-07-06T23:59:59.000Z

    Covariant form of equation of motion for arbitrarily shaped particle in the electromagnetic radiation field is presented. Equation of motion in the proper frame of the particle uses the radiation pressure cross section 3 $\\times$ 3 matrix. The obtained equation of motion is compared with known result.

  16. Remote Sensing Ayman F. Habib Electro-Magnetic Radiation

    E-Print Network [OSTI]

    Habib, Ayman

    Remote Sensing Ayman F. Habib 1 Chapter 2 Electro-Magnetic Radiation #12;Remote Sensing Ayman F. Habib 2 Elements of Remote Sensing #12;Remote Sensing Ayman F. Habib 3 Chapter 2 Radiation: nature & source #12;Remote Sensing Ayman F. Habib 4 Chapter 2 Interaction with the atmosphere #12;Remote Sensing

  17. Remote Sensing Ayman F. Habib Electro-Magnetic Radiation

    E-Print Network [OSTI]

    Habib, Ayman

    Remote Sensing Ayman F. Habib 1 Chapter 2 Electro-Magnetic Radiation Remote Sensing Ayman F. Habib 2 Elements of Remote Sensing #12;Remote Sensing Ayman F. Habib 3 Chapter 2 Radiation: nature & source Remote Sensing Ayman F. Habib 4 Chapter 2 Interaction with the atmosphere #12;Remote Sensing Ayman

  18. ELECTROMAGNETIC RADIATION FROM A STRONG DC ELECTRIC FIELD

    E-Print Network [OSTI]

    Guedel, Manuel

    ELECTROMAGNETIC RADIATION FROM A STRONG DC ELECTRIC FIELD Manuel G¨udel 1 and Donat G. Wentzel 2 1 accelerated by a strong dc electric field show not only very efficient generation of beam waves but also emission of o­mode radiation. We present a set of particle simulations for which we study the behavior

  19. Inferring black hole charge from backscattered electromagnetic radiation

    E-Print Network [OSTI]

    Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira

    2014-09-16T23:59:59.000Z

    We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.

  20. Filling of a cavity with zero-point electromagnetic radiation

    E-Print Network [OSTI]

    Jiri J. Mares; V. Spicka; J. Kristofik; P. Hubik

    2003-11-11T23:59:59.000Z

    In the present contribution we analyse a simple thought process at T = 0 in an idealized heat engine having partitions made of a material with an upper frequency cut-off and bathed in zero-point (ZP) electromagnetic radiation. As a result, a possible mechanism of filling real cavities with ZP radiation based on Doppler's effect has been suggested and corresponding entropy changes are discussed.

  1. Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation

    E-Print Network [OSTI]

    Santolik, Ondrej

    12 Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation, containing waves which simultaneously propagate in different directions and/or wave modes the concept emission is found to propagate predominantly in the R-X mode with wave energy distributed in relatively

  2. First observations of short wavelength coherent synchrotron radiation (CSR) at BC3

    E-Print Network [OSTI]

    First observations of short wavelength coherent synchrotron radiation (CSR) at BC3 Christopher-FLA) short wavelength CSR at BC3 11th December 2007 1 / 26 #12;Outline 1 Motivation CSR at BC3 End Christopher Behrens (DESY-FLA) short wavelength CSR at BC3 11th December 2007 2 / 26 #12

  3. Electromagnetic signatures of far-field gravitational radiation in the 1+3 approach

    E-Print Network [OSTI]

    Alvin J. K. Chua; Priscilla Cañizares; Jonathan R. Gair

    2014-12-06T23:59:59.000Z

    Gravitational waves from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1+3 approach to relativity. Linearised equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshtein conversion of gravitational waves in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetised pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave-wave resonances previously described in the literature are absent when the electric-magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the gravitational wave strength increases towards the gravitational-electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources.

  4. Compression of Laser Radiation in Plasmas Using Electromagnetic Cascading

    SciTech Connect (OSTI)

    Kalmykov, Serguei; Shvets, Gennady [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, One University Station C1500, Austin, Texas 78712 (United States)

    2005-06-17T23:59:59.000Z

    Compressing high-power laser beams in plasmas via generation of a coherent cascade of electromagnetic sidebands is described. The technique requires two copropagating beams detuned by a near-resonant frequency {omega} < or approx. {omega}{sub p}. The ponderomotive force of the laser beat wave drives an electron plasma wave which modifies the refractive index of plasma so as to produce a periodic phase modulation of the laser field with the beat period {tau}{sub b}=2{pi}/{omega}. A train of chirped laser beat notes (each of duration {tau}{sub b}) is thus created. The group velocity dispersion of radiation in plasma can then compress each beat note to a few-laser-cycle duration. As a result, a train of sharp electromagnetic spikes separated in time by {tau}{sub b} is formed. Depending on the plasma and laser parameters, chirping and compression can be implemented either concurrently in the same plasma or sequentially in different plasmas.

  5. Compression of laser radiation in plasmas via electromagnetic cascading

    SciTech Connect (OSTI)

    Kalmykov, Serguei; Shvets, Gennady [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, One University Station C1500, Austin, Texas 78712 (United States)

    2006-05-15T23:59:59.000Z

    A train of few-laser-cycle relativistically intense radiation spikes with a terahertz repetition rate can be organized self-consistently in plasma from two frequency detuned co-propagating laser beams of low intensity. Large frequency bandwidth for the compression of spikes is produced via laser-induced periodic modulation of the plasma refractive index. The beat-wave-driven electron plasma wave downshifted from the plasma frequency creates a moving index grating thus inducing a periodic phase modulation of the driving laser (in spectral terms, electromagnetic cascading). The group velocity dispersion compresses the chirped laser beat notes to a few-cycle duration and relativistic intensity either concurrently in the same, or sequentially in different plasmas. Particle-in-cell simulations indicate that the effect persists in a realistic three-dimensional axisymmetric geometry.

  6. Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    E-Print Network [OSTI]

    California at Irvine, University of

    the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength limit of 4n2 50. Introduction Texturing of solar cell surfaces allows for absorption enhancement, owing

  7. On the Wavelength of the Rossby Waves Radiated by Tropical Cyclones KYLE D. KROUSE

    E-Print Network [OSTI]

    Sobel, Adam

    of tropical cyclones; the theory then predicts the zonal separation distance of such tropical cyclone pairsOn the Wavelength of the Rossby Waves Radiated by Tropical Cyclones KYLE D. KROUSE Department cyclone (TC). In some cases, such disturbances undergo tropical cyclogenesis, resulting in a pair

  8. An estimate of the error caused by the elongation of the wavelength in a focused beam in free-space electromagnetic parameters measurement

    SciTech Connect (OSTI)

    Zhang, Yunpeng; Li, En, E-mail: lien@uestc.edu.cn; Guo, Gaofeng; Xu, Jiadi; Wang, Chao [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China)

    2014-09-15T23:59:59.000Z

    A pair of spot-focusing horn lens antenna is the key component in a free-space measurement system. The electromagnetic constitutive parameters of a planar sample are determined using transmitted and reflected electromagnetic beams. These parameters are obtained from the measured scattering parameters by the microwave network analyzer, thickness of the sample, and wavelength of a focused beam on the sample. Free-space techniques introduced by most papers consider the focused wavelength as the free-space wavelength. But in fact, the incident wave projected by a lens into the sample approximates a Gaussian beam, thus, there has an elongation of the wavelength in the focused beam and this elongation should be taken into consideration in dielectric and magnetic measurement. In this paper, elongation of the wavelength has been analyzed and measured. Measurement results show that the focused wavelength in the vicinity of the focus has an elongation of 1%–5% relative to the free-space wavelength. Elongation's influence on the measurement result of the permittivity and permeability has been investigated. Numerical analyses show that the elongation of the focused wavelength can cause the increase of the measured value of the permeability relative to traditionally measured value, but for the permittivity, it is affected by several parameters and may increase or decrease relative to traditionally measured value.

  9. The electromagnetic fields and the radiation of a spatio-temporally varying electric current loop

    E-Print Network [OSTI]

    Markus Lazar

    2013-04-12T23:59:59.000Z

    The electric and magnetic fields of a spatio-temporally varying electric current loop are calculated using the Jefimenko equations. The radiation and the nonradiation parts of the electromagnetic fields are derived in the framework of Maxwell's theory of electromagnetic fields. In this way, a new, exact, analytical solution of the Maxwell equation is found.

  10. Ground-state cooling of a trapped ion using long-wavelength radiation

    E-Print Network [OSTI]

    S. Weidt; J. Randall; S. C. Webster; E. D. Standing; A. Rodriguez; A. E. Webb; B. Lekitsch; W. K. Hensinger

    2015-01-07T23:59:59.000Z

    We demonstrate ground-state cooling of a trapped ion using long-wavelength radiation. This is a powerful tool for the implementation of quantum operations, where long-wavelength radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $\\overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)\\%. After preparing in the vibrational Fock state $\\left|n=0\\right\\rangle$, we implement sideband Rabi oscillations which last for more than 10 ms, demonstrating the long coherence time of our system. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

  11. Ground-state cooling of a trapped ion using long-wavelength radiation

    E-Print Network [OSTI]

    Weidt, S; Webster, S C; Standing, E D; Rodriguez, A; Webb, A E; Lekitsch, B; Hensinger, W K

    2015-01-01T23:59:59.000Z

    We demonstrate ground-state cooling of a trapped ion using long-wavelength radiation. This is a powerful tool for the implementation of quantum operations, where long-wavelength radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $\\overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)\\%. After preparing in the vibrational Fock state $\\left|n=0\\right\\rangle$, we implement sideband Rabi oscillations which last for more than 10 ms, demonstrating the long coherence time of our system. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

  12. Electromagnetic Radiation in Hot QCD Matter: Rates, Electric Conductivity, Flavor Susceptibility and Diffusion

    E-Print Network [OSTI]

    Chang-Hwan Lee; Ismail Zahed

    2014-03-07T23:59:59.000Z

    We discuss the general features of the electromagnetic radiation from a thermal hadronic gas as constrained by chiral symmetry. The medium effects on the electromagnetic spectral functions and the partial restoration of chiral symmetry are quantified in terms of the pion densities. The results are compared with the electromagnetic radiation from a strongly interacting quark-gluon plasma in terms of the leading gluon condensate operators. We use the spectral functions as constrained by the emission rates to estimate the electric conductivity, the light flavor susceptibility and diffusion constant across the transition from the correlated hadronic gas to a strongly interacting quark-gluon plasma.

  13. Electromagnetic Radiation and Equation of Motion for Really Shaped Particle -- New Covariant Formulation

    E-Print Network [OSTI]

    Jozef Klacka

    2002-01-07T23:59:59.000Z

    Relativistically covariant form of equation of motion for real particle (body) under the action of electromagnetic radiation is derived. Equation of motion in the proper frame of the particle uses the radiation pressure cross section 3 $\\times$ 3 matrix. Obtained covariant equation of motion is compared with another covariant equation of motion which was presented more than one year ago.

  14. Orbital elements for motion of real particle under the action of electromagnetic radiation

    E-Print Network [OSTI]

    Jozef Klacka

    2002-01-14T23:59:59.000Z

    Discussion of different types of osculating orbital elements for motion of real dust particle under the action of electromagnetic radiation in the central gravitational field is presented. It is shown that physically correct access is based on gravitational acceleration as the only radial acceleration -- ``radiation pressure'' is not included in the radial acceleration.

  15. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOE Patents [OSTI]

    Kee, Robert J. (864 Lucille St., Livermore, CA 94550); Ting, Aili (7329 Stonedale Dr., Pleasanton, CA 94558)

    1996-01-01T23:59:59.000Z

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  16. Hot spot generation in energetic materials created by long-wavelength infrared radiation

    SciTech Connect (OSTI)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S.; Dlott, Dana D., E-mail: dlott@illinois.edu [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-02-10T23:59:59.000Z

    Hot spots produced by long-wavelength infrared (LWIR) radiation in an energetic material, crystalline RDX (1,3,5-trinitroperhydro-1,3,5-triazine), were studied by thermal-imaging microscopy. The LWIR source was a CO{sub 2} laser operating in the 28-30?THz range. Hot spot generation was studied using relatively low intensity (?100?W cm{sup ?2}), long-duration (450 ms) LWIR pulses. The hot spots could be produced repeatedly in individual RDX crystals, to investigate the fundamental mechanisms of hot spot generation by LWIR, since the peak hot-spot temperatures were kept to ?30?K above ambient. Hot spots were generated preferentially beneath RDX crystal planes making oblique angles with the LWIR beam. Surprisingly, hot spots were more prominent when the LWIR wavelength was tuned to be weakly absorbed (absorption depth ?30??m) than when the LWIR wavelength was strongly absorbed (absorption depth ?5??m). This unexpected effect was explained using a model that accounts for LWIR refraction and RDX thermal conduction. The weakly absorbed LWIR is slightly focused underneath the oblique crystal planes, and it penetrates the RDX crystals more deeply, increasing the likelihood of irradiating RDX defect inclusions that are able to strongly absorb or internally focus the LWIR beam.

  17. Device for conversion of electromagnetic radiation into electrical current

    DOE Patents [OSTI]

    Blakeslee, A.E.; Mitchell, K.W.

    1980-03-25T23:59:59.000Z

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  18. Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    E-Print Network [OSTI]

    The CMS Electromagnetic Calorimeter Group; P. Adzic; N. Almeida; D. Andelin; I. Anicin; Z. Antunovic; R. Arcidiacono; M. W. Arenton; E. Auffray; S. Argiro; A. Askew; S. Baccaro; S. Baffioni; M. Balazs; D. Bandurin; D. Barney; L. M. Barone; A. Bartoloni; C. Baty; S. Beauceron; K. W. Bell; C. Bernet; M. Besancon; B. Betev; R. Beuselinck; C. Biino; J. Blaha; P. Bloch; A. Borisevitch; A. Bornheim; J. Bourotte; R. M. Brown; M. Buehler; P. Busson; B. Camanzi; T. Camporesi; N. Cartiglia; F. Cavallari; A. Cecilia; P. Chang; Y. H. Chang; C. Charlot; E. A. Chen; W. T. Chen; Z. Chen; R. Chipaux; B. C. Choudhary; R. K. Choudhury; D. J. A. Cockerill; S. Conetti; S. Cooper; F. Cossutti; B. Cox; D. G. Cussans; I. Dafinei; D. R. Da Silva Di Calafiori; G. Daskalakis; A. David; K. Deiters; M. Dejardin; A. De Benedetti; G. Della Ricca; D. Del Re; D. Denegri; P. Depasse; J. Descamps; M. Diemoz; E. Di Marco; G. Dissertori; M. Dittmar; L. Djambazov; M. Djordjevic; L. Dobrzynski; A. Dolgopolov; S. Drndarevic; G. Drobychev; D. Dutta; M. Dzelalija; A. Elliott-Peisert; H. El Mamouni; I. Evangelou; B. Fabbro; J. L. Faure; J. Fay; A. Fedorov; F. Ferri; D. Franci; G. Franzoni; K. Freudenreich; W. Funk; S. Ganjour; S. Gascon; M. Gataullin; F. X. Gentit; A. Ghezzi; A. Givernaud; S. Gninenko; A. Go; B. Gobbo; N. Godinovic; N. Golubev; P. Govoni; N. Grant; P. Gras; M. Haguenauer; G. Hamel de Monchenault; M. Hansen; J. Haupt; H. F. Heath; B. Heltsley; W. Hintz; R. Hirosky; P. R. Hobson; A. Honma; G. W. S. Hou; Y. Hsiung; M. Huhtinen; B. Ille; Q. Ingram; A. Inyakin; P. Jarry; C. Jessop; D. Jovanovic; K. Kaadze; V. Kachanov; S. Kailas; S. K. Kataria; B. W. Kennedy; P. Kokkas; T. Kolberg; M. Korjik; N. Krasnikov; D. Krpic; Y. Kubota; C. M. Kuo; P. Kyberd; A. Kyriakis; M. Lebeau; P. Lecomte; P. Lecoq; A. Ledovskoy; M. Lethuillier; S. W. Lin; W. Lin; V. Litvine; E. Locci; E. Longo; D. Loukas; P. D. Luckey; W. Lustermann; Y. Ma; M. Malberti; J. Malclès; D. Maletic; N. Manthos; Y. Maravin; C. Marchica; N. Marinelli; A. Markou; C. Markou; M. Marone; V. Matveev; C. Mavrommatis; P. Meridiani; P. Milenovic; P. Miné; O. Missevitch; A. K. Mohanty; F. Moortgat; P. Musella; Y. Musienko; A. Nardulli; J. Nash; P. Nedelec; P. Negri; H. B. Newman; A. Nikitenko; F. Nessi-Tedaldi; M. M. Obertino; G. Organtini; T. Orimoto; M. Paganoni; P. Paganini; A. Palma; L. Pant; A. Papadakis; I. Papadakis; I. Papadopoulos; R. Paramatti; P. Parracho; N. Pastrone; J. R. Patterson; F. Pauss; J-P. Peigneux; E. Petrakou; D. G. Phillips II; P. Piroué; F. Ptochos; I. Puljak; A. Pullia; T. Punz; J. Puzovic; S. Ragazzi; S. Rahatlou; J. Rander; P. A. Razis; N. Redaelli; D. Renker; S. Reucroft; P. Ribeiro; C. Rogan; M. Ronquest; A. Rosowsky; C. Rovelli; P. Rumerio; R. Rusack; S. V. Rusakov; M. J. Ryan; L. Sala; R. Salerno; M. Schneegans; C. Seez; P. Sharp; C. H. Shepherd-Themistocleous; J. G. Shiu; R. K. Shivpuri; P. Shukla; C. Siamitros; D. Sillou; J. Silva; P. Silva; A. Singovsky; Y. Sirois; A. Sirunyan; V. J. Smith; F. Stöckli; J. Swain; T. Tabarelli de Fatis; M. Takahashi; V. Tancini; O. Teller; K. Theofilatos; C. Thiebaux; V. Timciuc; C. Timlin; M. Titov; A. Topkar; F. A. Triantis; S. Troshin; N. Tyurin; K. Ueno; A. Uzunian; J. Varela; P. Verrecchia; J. Veverka; T. Virdee; M. Wang; D. Wardrope; M. Weber; J. Weng; J. H. Williams; Y. Yang; I. Yaselli; R. Yohay; A. Zabi; S. Zelepoukine; J. Zhang; L. Y. Zhang; K. Zhu; R. Y. Zhu

    2009-12-22T23:59:59.000Z

    Ensuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered.

  19. Multipole radiation in a collisonless gas coupled to electromagnetism or scalar gravitation

    E-Print Network [OSTI]

    Sebastian Bauer; Markus Kunze; Gerhard Rein; Alan D. Rendall

    2005-08-29T23:59:59.000Z

    We consider the relativistic Vlasov-Maxwell and Vlasov-Nordstr\\"om systems which describe large particle ensembles interacting by either electromagnetic fields or a relativistic scalar gravity model. For both systems we derive a radiation formula analogous to the Einstein quadrupole formula in general relativity.

  20. ElectroMagnetic Radiations of FPGAs: High Spatial Resolution Cartography and Attack of a

    E-Print Network [OSTI]

    Boyer, Edmond

    ElectroMagnetic Radiations of FPGAs: High Spatial Resolution Cartography and Attack, a "root of trust" must be defined, insulated and then carefully protected. Until very recently, this role agencies) have tackled the issue of protecting ASICs from side-channel attacks (SCAs). In the meantime

  1. Modulational and filamentational instabilities of two electromagnetic pulses in a radiation background

    E-Print Network [OSTI]

    M. Marklund; P. K. Shukla; G. Brodin; L. Stenflo

    2004-10-21T23:59:59.000Z

    The nonlinear interaction, due to quantum electrodynamical (QED) effects, between two electromagnetic pulses and a radiation gas is investigated. It is found that the governing equations admit both modulational and filamentational instabilities. The instability growth rates are derived, and the results are discussed.

  2. Shapiro steps and stimulated radiation of electromagnetic waves due to Josephson oscillations in layered superconductors.

    SciTech Connect (OSTI)

    Bulaevskii, L. N.; Kosehlev, A. E.; Tachiki, M.; Materials Science Division; LANL; Univ. of Tokyo

    2008-01-01T23:59:59.000Z

    Single crystals of layered high-temperature superconductors intrinsically behave as stacks of Josephson junctions. We analyze response of current-biased stack of intrinsic junctions to irradiation by the external electromagnetic (em) wave. In addition to well-known Shapiro steps in the current-voltage characteristics, irradiation promotes stimulated radiation which adds with spontaneous Josephson radiation from the crystal. Such enhancement of radiation from current-biased crystal may be used for amplification of em waves. Irradiation also facilitates synchronization of Josephson oscillations in all intrinsic Josephson junctions of a single crystal as well as oscillations in intrinsic junctions of different crystals.

  3. Radiative Reactions and Coherence Modeling in the High Altitude Electromagnetic Pulse

    E-Print Network [OSTI]

    Charles N. Vittitoe; Mario Rabinowitz

    2003-06-03T23:59:59.000Z

    A high altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10^4 V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self field effect. The Compton electron interaction with the self generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self generated electric field accounts for the energy flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  4. Electromagnetic radiation from a plasma slab during the development of Weibel instability

    SciTech Connect (OSTI)

    Vagin, K. Yu.; Romanov, A. Yu.; Uryupin, S. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2012-01-15T23:59:59.000Z

    Electromagnetic radiation from an anisotropic plasma slab formed by ionization of matter in the field of a high-power femtosecond pulse is studied. It is shown that the growth of initial field perturbations in the course of Weibel instability is accompanied by the generation of nonmonochromatic radiation with a characteristic frequency on the order of the instability growth rate. It is found that perturbations with characteristic scale lengths less than or on the order of the ratio of the speed of light to the Langmuir frequency are excited and radiated most efficiently, provided that the slab is thicker than this ratio.

  5. LFS-3 - new radiation hard scintillator for electromagnetic calorimeters

    E-Print Network [OSTI]

    Kozlov, V A; Zavartsev, Yu D; Zavertyaev, M V; Zerrouk, A F

    2009-01-01T23:59:59.000Z

    Radiation damage of new heavy LFS-3 scintillating crystals has been studied using powerful $^{60}Co$ source at the dose rate of 4 Krad/min. No deterioration in optical transmission of LFS-3 crystals was observed after irradiation with the dose of 23 Mrad.

  6. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOE Patents [OSTI]

    Bell, Zane W. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  7. Apparatuses and method for converting electromagnetic radiation to direct current

    DOE Patents [OSTI]

    Kotter, Dale K; Novack, Steven D

    2014-09-30T23:59:59.000Z

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  8. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30T23:59:59.000Z

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  9. Electromagnetic radiation from nuclear collisions at RHIC energies

    E-Print Network [OSTI]

    Simon Turbide; Charles Gale; Evan Frodermann; Ulrich Heinz

    2007-12-20T23:59:59.000Z

    The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at mid-rapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R_AA), and the azimuthal anisotropy (v_2) that agree with the photon measurements performed by the PHENIX collaboration at RHIC.

  10. Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor

    DOE Patents [OSTI]

    Datskos, Panagiotis G. (Knoxville, TN); Rajic, Slobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN)

    2002-01-01T23:59:59.000Z

    A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

  11. Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field

    E-Print Network [OSTI]

    N. I. Kolosnitsyn; V. N. Rudenko

    2015-04-24T23:59:59.000Z

    Brief review of principal ideas in respect of the high frequency gravitational radiation generated and detected in the laboratory condition is presented. Interaction of electro-magnetic and gravitational waves into a strong magnetic field is considered as a more promising variant of the laboratory GW-Hertz experiment. The formulae of the direct and inverse Gertsenshtein-Zeldovich effect are derived. Numerical estimates are given and a discussion of a possibility of observation of these effects in a lab is carried out.

  12. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect (OSTI)

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109-5010 (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109-5010 (United States)

    2013-08-15T23:59:59.000Z

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3 × 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 ± 0.036, 0.121 ± 0.023, and 0.093 ± 0.013 cm.Conclusions: The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.

  13. The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications

    E-Print Network [OSTI]

    Mitchell Revalski; Will Rhodes; Thulsi Wickramasinghe

    2015-02-03T23:59:59.000Z

    We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.

  14. Amplification of electromagnetic radiation by a nonequilibrium plasma unstable against the development of Weibel instability

    SciTech Connect (OSTI)

    Vagin, K. Yu.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.r [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2010-10-15T23:59:59.000Z

    The reflection of an electromagnetic pulse by a nonequilibrium plasma in which the development of Weibel instability is possible has been studied. An exponentially strong amplification of the reflected signal at the stage of instability development has been found to be possible. The amplification maximum takes place at a radiation frequency comparable to the instability growth rate. A nonequilibrium plasma is shown to be a generator of radiation even after the switch-off of the incident pulse. The described effect of amplification of the reflected signal points, in particular, to a new possibility in mastering the terahertz frequency band.

  15. Effect of Electromagnetic Pulse Transverse Inhomogeneity on the Ion Acceleration by Radiation Pressure

    E-Print Network [OSTI]

    Lezhnin, K V; Beskin, V S; Kando, M; Esirkepov, T Zh; Bulanov, S V

    2014-01-01T23:59:59.000Z

    In the ion acceleration by radiation pressure a transverse inhomogeneity of the electromagnetic pulse results in the displacement of the irradiated target in the off-axis direction limiting achievable ion energy. This effect is described analytically within the framework of the thin foil target model and with the particle-in-cell simulations showing that the maximum energy of accelerated ions decreases while the displacement from the axis of the target initial position increases. The results obtained can be applied for optimization of the ion acceleration by the laser radiation pressure with the mass limited targets.

  16. Superconductors as quantum transducers and antennas for gravitational and electromagnetic radiation

    E-Print Network [OSTI]

    Raymond Y. Chiao

    2002-07-29T23:59:59.000Z

    Superconductors will be considered as macroscopic quantum gravitational antennas and transducers, which can directly convert upon reflection a beam of quadrupolar electromagnetic radiation into gravitational radiation, and vice versa, and thus serve as practical laboratory sources and receivers of microwave and other radio-frequency gravitational waves. An estimate of the transducer conversion efficiency on the order of unity comes out of the Ginzburg-Landau theory for an extreme type II, dissipationless superconductor with minimal coupling to weak gravitational and electromagnetic radiation fields, whose frequency is smaller than the BCS gap frequency, thus satisfying the quantum adiabatic theorem. The concept of ``the impedance of free space for gravitational plane waves'' is introduced, and leads to a natural impedance-matching process, in which the two kinds of radiation fields are impedance-matched to each other around a hundred coherence lengths beneath the surface of the superconductor. A simple, Hertz-like experiment has been performed to test these ideas, and preliminary results will be reported. (PACS nos.: 03.65.Ud, 04.30.Db, 04.30.Nk, 04.80.Nn, 74.60-w, 74.72.Bk)

  17. Radiative reactions and coherence modeling in the high-altitude electromagnetic pulse

    SciTech Connect (OSTI)

    Vittitoe, C.N.; Rabinowitz, M.

    1988-03-15T23:59:59.000Z

    A high-altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10/sup 4/ V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self-field effect. The Compton electron interaction with the self-generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self-generated electric field accounts for the energy-flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  18. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOE Patents [OSTI]

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14T23:59:59.000Z

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  19. "Millikan oil drops" as quantum transducers between electromagnetic and gravitational radiation

    E-Print Network [OSTI]

    Raymond Y. Chiao

    2007-02-25T23:59:59.000Z

    Pairs of Planck-mass-scale drops of superfluid helium coated by electrons (i.e., "Millikan oil drops"), when levitated in the presence of strong magnetic fields and at low temperatures, can be efficient quantum transducers between electromagnetic (EM) and gravitational (GR) radiation. A Hertz-like experiment, in which EM waves are converted at the source into GR waves, and then back-converted at the receiver from GR waves back into EM waves, should be practical to perform. This would open up observations of the gravity-wave analog of the Cosmic Microwave Background from the extremely early Big Bang, and also communications directly through the interior of the Earth.

  20. Reflection of electromagnetic radiation from plasma with an anisotropic electron velocity distribution

    SciTech Connect (OSTI)

    Vagin, K. Yu., E-mail: vagin@sci.lebedev.ru; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-08-15T23:59:59.000Z

    The reflection of a test electromagnetic pulse from the plasma formed as a result of tunnel ionization of atoms in the field of a circularly polarized high-power radiation pulse is analyzed using the kinetic approach to describe electron motion. It is shown that the reflected pulse is significantly amplified due to the development of Weibel instability. The amplification efficiency is determined by the maximum value of the instability growth rate, which depends on the degree of anisotropy of the photoelectron distribution function.

  1. The Radiation Dose Measurement System for the BaBar Electromagnetic Calorimeter

    SciTech Connect (OSTI)

    Khan, A.; /Brunel U.; Meyer, W.T.; /Iowa State U.; Stelzer, J.; /Stanford U., Phys. Dept.; Yi, Jong; /Manchester U.

    2006-08-14T23:59:59.000Z

    An array of 116 p-channel radiation sensitive MOSFET transistors (RadFETs) has been operational for the past 6 years at the BaBar experiment at the PEP-II asymmetric B-Factory at the Stanford Linear Accelerator Center (SLAC). This system maps the integrated dose absorbed by different regions of the Electromagnetic Calorimeter (EMC) during the running of the experiment. We report on the design and implementation of the system and finally, the performance of the monitoring system during the last 6 years of BaBar data-taking.

  2. On the spontaneous emission of electromagnetic radiation in the CSL model

    SciTech Connect (OSTI)

    Donadi, Sandro, E-mail: sandro.donadi@ts.infn.it [Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste (Italy) [Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste (Italy); Deckert, Dirk-André, E-mail: deckert@math.ucdavis.edu [Department of Mathematics, University of California, One Shields Ave, 95616 Davis (United States)] [Department of Mathematics, University of California, One Shields Ave, 95616 Davis (United States); Bassi, Angelo, E-mail: bassi@ts.infn.it [Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste (Italy) [Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste (Italy)

    2014-01-15T23:59:59.000Z

    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in Adler (2013) the formula for the emission rate, to first perturbative order, contains two terms: one is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In Adler (2013) it was shown that the unphysical term disappears when the noise is confined to a bounded region and the final particle’s state is a wave packet. Here we investigate the origin of this unphysical term and why it vanishes according to the previous prescription. We will see that perturbation theory is formally not valid in the large time limit since the effect of the noise accumulates continuously in time. Therefore either one performs an exact calculation (or at least in some way includes higher order terms) as we do here, or one finds a way to make a perturbative calculation meaningful, e.g., by confining the system as in Adler (2013). -- Highlights: •We compute the electromagnetic radiation emission in collapse models. •Under only the dipole approximation, the equations of motion are solved exactly. •The electromagnetic interaction must be treated exactly. •In order to obtain the correct emission rate the particle must be bounded.

  3. Influence of electromagnetic radiation on the power balance in a radiofrequency microdischarge with a hollow needle electrode

    SciTech Connect (OSTI)

    Despax, B.; Pascal, O.; Gherardi, N.; Naude, N.; Belinger, A.; Pitchford, L. C.

    2012-10-01T23:59:59.000Z

    This study is focused on the power deposition in microplasma jet discharges generated by application of radiofrequency (RF) excitation to a hollow needle electrode. The plasma jet is initiated at atmospheric pressure in open air with a flow of helium through the electrode. We show that in this configuration, a significant part of the injected power is dissipated in electromagnetic radiation. Many recent works have demonstrated the potential of either cold plasma jets or of RF radiation for applications in medicine, and therefore a source that produces both a cold plasma jet and RF radiation could be of interest.

  4. Thin layer imaging process for microlithography using radiation at strongly attenuated wavelengths

    DOE Patents [OSTI]

    Wheeler, David R.

    2004-01-06T23:59:59.000Z

    A method for patterning of resist surfaces which is particularly advantageous for systems having low photon flux and highly energetic, strongly attenuated radiation. A thin imaging layer is created with uniform silicon distribution in a bilayer format. An image is formed by exposing selected regions of the silylated imaging layer to radiation. The radiation incident upon the silyliated resist material results in acid generation which either catalyzes cleavage of Si--O bonds to produce moieties that are volatile enough to be driven off in a post exposure bake step or produces a resist material where the exposed portions of the imaging layer are soluble in a basic solution, thereby desilylating the exposed areas of the imaging layer. The process is self limiting due to the limited quantity of silyl groups within each region of the pattern. Following the post exposure bake step, an etching step, generally an oxygen plasma etch, removes the resist material from the de-silylated areas of the imaging layer.

  5. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    SciTech Connect (OSTI)

    Rosfjord, Kristine Marie

    2004-07-01T23:59:59.000Z

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium.

  6. A Topological Structure in the Set of Classical Free Radiation Electromagnetic Fields

    E-Print Network [OSTI]

    A. F. Ranada; A. Tiemblo

    2014-07-29T23:59:59.000Z

    The aim of this work is to proceed with the development of a model of topological electromagnetism in empty space, proposed by one of us some time ago and based on the existence of a topological structure associated with the radiation fields in standard Maxwell's theory. This structure consists in pairs of complex scalar fields, say $\\phi$ and $\\theta$, that can be interpreted as maps $\\phi,\\theta: S^3\\mapsto S^2$, the level lines of which are orthogonal to one another, where $S^3$ is the compactified physical 3-space $R^3$, with only one point at infinity, and $S^2$ is the 2-sphere identified with the complete complex plane. These maps were discovered and studied in 1931 by the German mathematician H. Hopf, who showed that the set of all of them can be ordered in homotopy classes, labeled by the so called Hopf index, equal to $\\gamma=\\pm 1,\\,\\pm 2,\\,\\cdots ,\\, \\pm k,...$ but without $\\gamma=0$. In the model presented here and at the level of the scalars $\\phi$ and $\\theta$, the equations of motion are highly nonlinear; however there is a transformation of variables that converts exactly these equations (not by truncation!) into the linear Maxwell's ones for the magnetic and electric fields $\\B$ and $\\E$.

  7. Neutral interstellar hydrogen in the inner heliosphere under influence of wavelength-dependent solar radiation pressure

    E-Print Network [OSTI]

    Tarnopolski, S

    2007-01-01T23:59:59.000Z

    We study the influence of the non-flat shape of the solar Lyman-alpha line on the distribution of neutral interstellar hydrogen in the inner heliosphere, assess importance of this effect for interpretation of heliospheric measurements. Based on available data, we construct a model of evolution of the solar Lyman-alpha line profile with solar activity. Modify existing test-particle code calculating distribution of neutral interstellar hydrogen in the inner heliosphere to take into account the dependence of radiation pressure on radial velocity. Discrepancies between the classical and Doppler models appear at ~ 10 AU and increase towards the Sun from a few percent to a factor of 2 at 1 AU. The classical model overestimates density everywhere except a ~ 60 deg cone around the downwind direction, where a density deficit appears. The magnitude of discrepancies depends appreciably on the phase of solar cycle, but only weakly on the parameters of the gas at the termination shock. The intensity of backscatter radiati...

  8. Neutral interstellar hydrogen in the inner heliosphere under influence of wavelength-dependent solar radiation pressure

    E-Print Network [OSTI]

    S. Tarnopolski; M. Bzowski

    2008-04-21T23:59:59.000Z

    We study the influence of the non-flat shape of the solar Lyman-alpha line on the distribution of neutral interstellar hydrogen in the inner heliosphere and assess importance of this effect for interpretation of heliospheric in situ measurements. Based on available data, construct a model of evolution of the solar Lyman-alpha line profile with solar activity. Modify an existing test-particle code calculating distribution of neutral interstellar hydrogen in the inner heliosphere to take into account the dependence of radiation pressure on radial velocity. Discrepancies between the classical and Doppler models appear at ~ 5 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates density everywhere except a ~ 60 deg cone around the downwind direction, where a density deficit appears. The magnitude of discrepancies depends appreciably on the phase of solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~ 1 AU, as those planned for IBEX, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degree, which, when unaccounted for, would bring an error of a few degrees and a few km/s in determination of the bulk velocity vector at the termination shock. The Doppler correction is appreciable for in situ observations of neutral H populations and their derivatives performed a few AU from the Sun.

  9. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    DOE Patents [OSTI]

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29T23:59:59.000Z

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  10. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    SciTech Connect (OSTI)

    Astapenko, V. A., E-mail: astval@mail.ru [Moscow Institute of Physics and Technology (Russian Federation)

    2011-02-15T23:59:59.000Z

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of 'elastic' scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  11. Comparison of electromagnetic and gravitational radiation; what we can learn about each from the other

    E-Print Network [OSTI]

    Richard H. Price; John W. Belcher; David A. Nichols

    2012-12-19T23:59:59.000Z

    We compare the nature of electromagnetic fields and of gravitational fields in linearized general relativity. We carry out this comparison both mathematically and visually. In particular the "lines of force" visualizations of electromagnetism are contrasted with the recently introduced tendex/vortex eigenline technique for visualizing gravitational fields. Specific solutions, visualizations, and comparisons are given for an oscillating point quadrupole source. Among the similarities illustrated are the quasistatic nature of the near fields, the transverse 1/r nature of the far fields, and the interesting intermediate field structures connecting these two limiting forms. Among the differences illustrated are the meaning of field line motion, and of the flow of energy.

  12. VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001 Ion-Trap Quantum Logic Using Long-Wavelength Radiation

    E-Print Network [OSTI]

    Wunderlich, Christof

    radiation in the radiofrequency or microwave regime. DOI: 10.1103/PhysRevLett.87.257904 PACS numbers: 03 Logic Using Long-Wavelength Radiation Florian Mintert1 and Christof Wunderlich2,* 1 I. Institut für radiation; the atom with mass m is trapped in a harmonic potential characterized by angular frequency vl

  13. Tailoring single-cycle electromagnetic pulses in the 2-9 THz frequency range using DAST/SiO2 multilayer structures pumped at Ti:sapphire wavelength

    E-Print Network [OSTI]

    Stepanov, Andrei G; Bonacina, Luigi; Wolf, Jean-Pierre; Hauri, Christoph P

    2014-01-01T23:59:59.000Z

    We present a numerical parametric study of single-cycle electromagnetic pulse generation in a DAST/SiO2 multilayer structure via collinear optical rectification of 800 nm femtosecond laser pulses. It is shown that modifications of the thicknesses of the DAST and SiO2 layers allow tuning of the average frequency of the generated THz pulses in the frequency range from 3 to 6 THz. The laser-to-THz energy conversion efficiency in the proposed structures is compared with that in a bulk DAST crystal and a quasi-phase-matching periodically poled DAST crystal and shows significant enhancement.

  14. Electromagnetic Transponders Indicate Prostate Size Increase Followed by Decrease During the Course of External Beam Radiation Therapy

    SciTech Connect (OSTI)

    King, Benjamin L. [Radiation Oncology Department, University of Washington, Seattle, WA (United States); Butler, Wayne M., E-mail: wbutler@wheelinghospital.or [Schiffler Cancer Center, Wheeling Hospital, Wheeling, WV (United States); Wheeling Jesuit University, Wheeling, WV (United States); Merrick, Gregory S. [Schiffler Cancer Center, Wheeling Hospital, Wheeling, WV (United States); Wheeling Jesuit University, Wheeling, WV (United States); Kurko, Brian S.; Reed, Joshua L.; Murray, Brian C. [Schiffler Cancer Center, Wheeling Hospital, Wheeling, WV (United States); Wallner, Kent E. [Puget Sound Health Care System, Department of Veteran's Affairs, Seattle, VA (United States)

    2011-04-01T23:59:59.000Z

    Purpose: Real-time image guidance enables more accurate radiation therapy by tracking target movement. This study used transponder positions to monitor changes in prostate volume that may be a source of dosimetric and target inaccuracy. Methods and Materials: Twenty-four men with biopsy-proven T1c-T3a prostate cancer each had three electromagnetic transponders implanted transperineally. Their coordinates were recorded by the Calypso system, and the perimeter of the triangle formed by the transponders was used to calculate prostate volumes at sequential time points throughout the course of radiation therapy to a dose of 81 Gy in 1.8-Gy fractions. Results: There was a significant decrease in mean prostate volume of 10.9% from the first to the final day of radiation therapy. The volume loss did not occur monotonically but increased in most patients (75%) during the first several weeks to a median maximum on Day 7. The volume increased by a mean of 6.1% before decreasing by a mean maximum difference of 18.4% to nadir (p < 0.001 for both increase and decrease). Glandular shrinkage was asymmetric, with the apex to right base dimension varying more than twice that of the lateral dimension. For all dimensions, the mean change was <0.5 cm. Conclusion: Real-time transponder positions indicated a volume increase during the initial days of radiation therapy and then significant and asymmetric shrinkage by the final day. Understanding and tracking volume fluctuations of the prostate during radiation therapy can help real-time imaging technology perform to its fullest potential.

  15. Experimental methodology for non-thermal effects of electromagnetic radiation on biologics

    E-Print Network [OSTI]

    Cox, Felicia C. A. I

    2006-01-01T23:59:59.000Z

    Appropriate equipment is needed for research on the effects of radio-frequency radiation from radio-frequency identification (RF-ID) systems on biological materials. In the present study, a complete test system comprising ...

  16. The response of certain stored products insects to various wavebands of electromagnetic radiation

    E-Print Network [OSTI]

    Stermer, Raymond Andrew

    1958-01-01T23:59:59.000Z

    ?Numbers refer to referenoee listed in the bibliography. attracted to' blaok light, ultraviolet. Inseot traps using eleotromag-, netio radiation are reooszzsn4ed by Tenhet and Bare as a survey tool to 6 reflect the degree of infestation in tobacoo... INSECTS TO VARIOUS WAVESANDS OP ELECTRONAGNETIC RADIATION INTRODUCTION Interest in the attraotion of inseots to fire and light dates baok to the dsye of primitive man. From early literature such as "the Sanskrit EKooh~~atiks attributed to King Sudraka...

  17. Coherent THz electromagnetic radiation emission as a shock wave diagnostic and probe of ultrafast phase transformations

    SciTech Connect (OSTI)

    Reed, E J; Armstrong, M R; Kim, K Y; Glownia, J H; Howard, M; Piner, E; Roberts, J

    2009-06-30T23:59:59.000Z

    We present the first experimental observations of terahertz frequency radiation emitted when a terahertz frequency acoustic wave propagates past an interface between materials of differing piezoelectric coefficients. We show that this fundamentally new phenomenon can be used to probe structural properties of thin films. Then, we present molecular dynamics simulations showing that detectable THz frequency radiation can be emitted when a wurtzite structure crystal transforms to a rocksalt structure under shock compression on picosecond timescales. We show that information about the kinetics of the transformation is contained in the time-dependence of the THz field.

  18. Semiconductor lasers emitting at the 0.98 {mu}m wavelength with radiation coupling-out through the substrate

    SciTech Connect (OSTI)

    Zvonkov, N B; Zvonkov, B N; Ershov, A V; Uskova, E A; Maksimov, G A [Scientific-Research Physicotechnical Institute at the Nizhnii Novgorod State University, Nizhnii Novgorod (Russian Federation)

    1998-07-31T23:59:59.000Z

    A semiconductor laser based on a new design of the InGaAs/GaAs/InGaP structure was developed and investigated experimentally. The radiation from this laser was coupled out through the substrate, which ensured a narrow angular distribution in a plane perpendicular to the p-n junction. An output power of 0.63 W in a beam with the radiation divergence of 1.2{sup 0} in this plane was obtained. (lasers, active media)

  19. The Dosimetric Impact of Prostate Rotations During Electromagnetically Guided External-Beam Radiation Therapy

    SciTech Connect (OSTI)

    Amro, Hanan, E-mail: hanan.amro@gmail.com [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Hamstra, Daniel A.; Mcshan, Daniel L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Sandler, Howard [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California (United States)] [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California (United States); Vineberg, Karen; Hadley, Scott; Litzenberg, Dale [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-01-01T23:59:59.000Z

    Purpose: To study the impact of daily rotations and translations of the prostate on dosimetric coverage during radiation therapy (RT). Methods and Materials: Real-time tracking data for 26 patients were obtained during RT. Intensity modulated radiation therapy plans meeting RTOG 0126 dosimetric criteria were created with 0-, 2-, 3-, and 5-mm planning target volume (PTV) margins. Daily translations and rotations were used to reconstruct prostate delivered dose from the planned dose. D{sub 95} and V{sub 79} were computed from the delivered dose to evaluate target coverage and the adequacy of PTV margins. Prostate equivalent rotation is a new metric introduced in this study to quantify prostate rotations by accounting for prostate shape and length of rotational lever arm. Results: Large variations in prostate delivered dose were seen among patients. Adequate target coverage was met in 39%, 65%, and 84% of the patients for plans with 2-, 3-, and 5-mm PTV margins, respectively. Although no correlations between prostate delivered dose and daily rotations were seen, the data showed a clear correlation with prostate equivalent rotation. Conclusions: Prostate rotations during RT could cause significant underdosing even if daily translations were managed. These rotations should be managed with rotational tolerances based on prostate equivalent rotations.

  20. Tunability enhanced electromagnetic wiggler

    DOE Patents [OSTI]

    Schlueter, Ross D. (Albany, CA); Deis, Gary A. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  1. Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure

    E-Print Network [OSTI]

    Tarnopolski, S; 10.1051/0004-6361:20077058

    2008-01-01T23:59:59.000Z

    With the plethora of detailed results from heliospheric missions and at the advent of the first mission dedicated IBEX, we have entered the era of precision heliospheric studies. Interpretation of these data require precision modeling, with second-order effects quantitatively taken into account. We study the influence of the non-flat shape of the solar Ly-alpha line on the distribution of neutral interstellar H in the inner heliosphere. Based on available data, we (i) construct a model of evolution for the solar Ly-alpha line profile with solar activity, (ii) modify an existing test-particle code used to calculate the distribution of neutral interstellar H in the inner heliosphere so that it takes the dependence of radiation pressure on radial velocity into account, and (iii) compare the results of the old and new version. Discrepancies between the classical and Doppler models appear between ~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestima...

  2. Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure

    E-Print Network [OSTI]

    S. Tarnopolski; M. Bzowski

    2008-12-04T23:59:59.000Z

    With the plethora of detailed results from heliospheric missions and at the advent of the first mission dedicated IBEX, we have entered the era of precision heliospheric studies. Interpretation of these data require precision modeling, with second-order effects quantitatively taken into account. We study the influence of the non-flat shape of the solar Ly-alpha line on the distribution of neutral interstellar H in the inner heliosphere. Based on available data, we (i) construct a model of evolution for the solar Ly-alpha line profile with solar activity, (ii) modify an existing test-particle code used to calculate the distribution of neutral interstellar H in the inner heliosphere so that it takes the dependence of radiation pressure on radial velocity into account, and (iii) compare the results of the old and new version. Discrepancies between the classical and Doppler models appear between ~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates the density everywhere except for a ~60-degr cone around the downwind direction, where a density deficit appears. The magnitude of the discrepancies appreciably depends on the phase of the solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~1 AU, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degrees, respectively, which, when unaccounted for, would introduce an error of a few km/s and degrees in determination of the magnitude and direction of the bulk velocity vector at the termination shock.

  3. Method of lightening radiation darkened optical elements

    DOE Patents [OSTI]

    Reich, Frederich R. (Richland, WA); Schwankoff, Albert R. (W. Richland, WA)

    1980-01-01T23:59:59.000Z

    A method of lightening a radiation-darkened optical element in wich visible optical energy or electromagnetic radiation having a wavelength in the range of from about 2000 to about 20,000 angstroms is directed into the radiation-darkened optical element; the method may be used to lighten radiation-darkened optical element in-situ during the use of the optical element to transmit data by electronically separating the optical energy from the optical output by frequency filtering, data cooling, or interlacing the optic energy between data intervals.

  4. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect (OSTI)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01T23:59:59.000Z

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  5. Search for quantum transducers between electromagnetic and gravitational radiation: A measurement of an upper limit on the transducer conversion efficiency of yttrium barium copper oxide

    E-Print Network [OSTI]

    R. Y. Chiao; W. J. Fitelson; A. D. Speliotopoulos

    2003-04-07T23:59:59.000Z

    A minimal coupling rule for the coupling of the electron spin to curved spacetime in general relativity suggests the possibility of a coupling between electromagnetic and gravitational radiation mediated by means of a quantum fluid. Thus quantum transducers between these two kinds of radiation fields might exist. We report here on the first attempt at a Hertz-type experiment, in which a high-$\\rm{T_c}$ superconductor (YBCO) was the sample material used as a possible quantum transducer to convert EM into GR microwaves, and a second piece of YBCO in a separate apparatus was used to back-convert GR into EM microwaves. An upper limit on the conversion efficiency of YBCO was measured to be $1.6\\times10^{-5}$ at liquid nitrogen temperature.

  6. Reflection, absorption, and transmission of ultra-low-frequency electromagnetic waves through a Gaussian conductor

    SciTech Connect (OSTI)

    Hammond, R.T. [Physics Department, North Dakota State University, Fargo, North Dakota 58105 (United States)] [Physics Department, North Dakota State University, Fargo, North Dakota 58105 (United States); Davis, J.; Bobb, L. [Naval Air Warfare Center, Code 4556, Mail Stop 2, Patuxent River, Maryland 20670 (United States)] [Naval Air Warfare Center, Code 4556, Mail Stop 2, Patuxent River, Maryland 20670 (United States)

    1997-02-01T23:59:59.000Z

    The reflection, transmission, and absorption coefficients are derived for long-wavelength electromagnetic radiation propagating through a medium that exhibits a Gaussian conductivity. It is shown that, under certain circumstances, this applies to the ionosphere. The effects of different peak conductivities and Gaussian widths are examined, and a useful form for calculating transmission and reflection coefficients is presented. {copyright} {ital 1997 American Institute of Physics.}

  7. Astronomical Interferometry at Submillimetre Wavelengths

    E-Print Network [OSTI]

    Lay, Oliver Peter

    1994-10-18T23:59:59.000Z

    of length d and convert incoming electromagnetic radiation to voltages V1(t) and V2(t). The output of the correlator, Gout, is the time-averaged product of the two signals. Consider a very distant, monochromatic point source located a small angle b.() away...

  8. The Long Wavelength Array System Technical Requirements

    E-Print Network [OSTI]

    Ellingson, Steven W.

    (frequency) DR Dynamic Range EMC Electromagnetic Compatibility FOV Field of View G.N.D. Galactic Noise Intermediate Array with 16 antennas (core) MCS Monitor and Control System ns nanosecond RFI Radio FrequencyThe Long Wavelength Array System Technical Requirements Version: Draft #9 2007-November-19 Compiled

  9. A Challenge to Control Gravity via Applying Electromagnetic Low-Frequency Radiation - Theory and Proposed Model Experiments

    E-Print Network [OSTI]

    Julius Vanko; Miroslav Sukenik; Jozef Sima

    2007-05-29T23:59:59.000Z

    Including Vaidya metric into the model of Expansive Nondecelerative Universe allows to localize the energy of gravitational field. A term of effective gravitational range is introduced and classic Newton potential is substituted for Yukawa-type potential. It allows to allocate a typical frequency value to each gravitational field. Derived theoretical conclusions led us to investigate the effect of electromagnetic field with a precisely predetermined frequency and intensity on iron. We believe that under certain circumstances a decrease in iron gravitational mass should be observed. Two model experiments verifying the theoretical conclusions are proposed.

  10. Cellular Manipulation and Control by Electromagnetism | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phenomenon for sensors; however, one may also use intense electromagnetic radiation, such as pulsed power, plasmas, or lasers, to induce changes in cellular...

  11. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15T23:59:59.000Z

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  12. Electromagnetic fasteners

    DOE Patents [OSTI]

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01T23:59:59.000Z

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  13. Electromagnetic fasteners

    DOE Patents [OSTI]

    Crane, Randolph W. (Idaho Falls, ID); Marts, Donna J. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  14. Electrical wire insulation and electromagnetic coil

    DOE Patents [OSTI]

    Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

    1984-01-01T23:59:59.000Z

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  15. Advances in non-planar electromagnetic prototyping

    E-Print Network [OSTI]

    Ehrenberg, Isaac M

    2013-01-01T23:59:59.000Z

    The advent of metamaterials has introduced new ways to manipulate how electromagnetic waves reflect, refract and radiate in systems where the range of available material properties now includes negative permittivity, ...

  16. Electromagnetic Reciprocity.

    SciTech Connect (OSTI)

    Aldridge, David F.

    2014-11-01T23:59:59.000Z

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.

  17. "Light" or the Electromagnetic spectrum www.nasa.gov

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    #12;"Light" or the Electromagnetic spectrum www.nasa.gov #12;Diffraction and Light · When passed through a prism or grating, light is separated into its component wavelengths · This looks like a rainbow in visible light · There are wavelengths we can't see with our eyes · White light contains all visible colors

  18. Space-time Curvature of Classical Electromagnetism

    E-Print Network [OSTI]

    R. W. M. Woodside

    2004-10-08T23:59:59.000Z

    The space-time curvature carried by electromagnetic fields is discovered and a new unification of geometry and electromagnetism is found. Curvature is invariant under charge reversal symmetry. Electromagnetic field equations are examined with De Rham co homology theory. Radiative electromagnetic fields must be exact and co exact to preclude unobserved massless topological charges. Weyl's conformal tensor, here called ``the gravitational field'', is decomposed into a divergence-free non-local piece with support everywhere and a local piece with the same support as the matter. By tuning a local gravitational field to a Maxwell field the electromagnetic field's local gravitational field is discovered. This gravitational field carries the electromagnetic field's polarization or phase information, unlike Maxwell's stress-energy tensor. The unification assumes Einstein's equations and derives Maxwell's equations from curvature assumptions. Gravity forbids magnetic monopoles! This unification is stronger than the Einstein-Maxwell equations alone, as those equations must produce the electromagnetic field's local gravitational field and not just any conformal tensor. Charged black holes are examples. Curvature of radiative null electromagnetic fields is characterized.

  19. Short wavelength laser

    DOE Patents [OSTI]

    Hagelstein, P.L.

    1984-06-25T23:59:59.000Z

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  20. Systematic wavelength selection for improved multivariate spectral analysis

    DOE Patents [OSTI]

    Thomas, Edward V. (2828 Georgia NE., Albuquerque, NM 87110); Robinson, Mark R. (1603 Solano NE., Albuquerque, NM 87110); Haaland, David M. (809 Richmond Dr. SE., Albuquerque, NM 87106)

    1995-01-01T23:59:59.000Z

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  1. Short wavelength laser

    DOE Patents [OSTI]

    Hagelstein, Peter L. (Livermore, CA)

    1986-01-01T23:59:59.000Z

    A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

  2. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1998-01-01T23:59:59.000Z

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  3. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, P.H.

    1998-09-22T23:59:59.000Z

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  4. Sandia National Laboratories: Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

  5. Fast quantum dot single photon source triggered at telecommunications wavelength

    E-Print Network [OSTI]

    Kelley Rivoire; Sonia Buckley; Arka Majumdar; Hyochul Kim; Pierre Petroff; Jelena Vuckovic

    2010-12-20T23:59:59.000Z

    We demonstrate a quantum dot single photon source at 900 nm triggered at 300 MHz by a continuous wave telecommunications wavelength laser followed by an electro-optic modulator. The quantum dot is excited by on-chip-generated second harmonic radiation, resonantly enhanced by a GaAs photonic crystal cavity surrounding the InAs quantum dot. Our result suggests a path toward the realization of telecommunications-wavelength-compatible quantum dot single photon sources with speeds exceeding 1 GHz.

  6. Investigation of electromagnetic welding

    E-Print Network [OSTI]

    Pressl, Daniel G. (Daniel Gerd)

    2009-01-01T23:59:59.000Z

    We propose several methodologies to study and optimize the electromagnetic process for Electromagnetic Forming (EMF) and Welding (EMW), thereby lowering the necessary process energy up to a factor of three and lengthening ...

  7. Development and testing of radiation and electromagnetic pulse-hardened silicon carbide-based electronics. Quarterly report, 1 Dec 90-28 Feb 91

    SciTech Connect (OSTI)

    Edmond, J.A.; Palmour, J.W.

    1991-04-30T23:59:59.000Z

    There were three primary objectives for this reporting period. The first was to electrically characterize junction diodes as a function of temperature. This included both current-voltage (I-V) and capacitance-voltage (C-V) measurements. The second was to fabricate low (about 125 V) and medium (about 450 V) voltage p-n junction rectifiers for neutron and gamma exposure tests. The third objective was to fabricate JFET devices with reduced gate and drain leakage currents than those discussed in the previous report and to package these devices in preparation for radiation testing.

  8. Symmetry aspects of fermions coupled to torsion and electromagnetic fields

    E-Print Network [OSTI]

    J. L. Boldo; C. A. G. Sasaki

    2002-09-24T23:59:59.000Z

    We study and explore the symmetry properties of fermions coupled to dynamical torsion and electromagnetic fields. The stability of the theory upon radiative corrections as well as the presence of anomalies are investigated.

  9. Theory of electromagnetic fields

    E-Print Network [OSTI]

    Wolski, Andrzej

    2011-01-01T23:59:59.000Z

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  10. Method for radiation detection and measurement

    DOE Patents [OSTI]

    Miller, S.D.

    1993-12-21T23:59:59.000Z

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. 9 figures.

  11. Method for radiation detection and measurement

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1993-01-01T23:59:59.000Z

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength.

  12. Interactions between Electromagnetic Fields and Biological Tissues: Questions, Some Answers and Future Trends.

    E-Print Network [OSTI]

    Poignard, Clair

    , the governments have imposed some limitations to the authorized radiated fields by the power systems. It has been a more acceptable limit to these radiated fields. On the other hand, electromagnetic fields are used is obtained by submitting locally the patient to a radiofrequency (RF) electromagnetic field. The focalization

  13. Electromagnetic probes of the QGP

    E-Print Network [OSTI]

    E. L. Bratkovskaya; O. Linnyk; W. Cassing

    2014-09-15T23:59:59.000Z

    We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow $v_2$ of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleus-nucleus collisions can be employed to shed some more light on the origin of the photon $v_2$ "puzzle". While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

  14. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a wider range of wavelengths in this region. Phosphors based on divalent europium (Eu+2) are available in the green and even into the blue emission region. Photon...

  15. Radiation reaction in quantum field theory

    E-Print Network [OSTI]

    Atsushi Higuchi

    2004-03-30T23:59:59.000Z

    We investigate radiation-reaction effects for a charged scalar particle accelerated by an external potential realized as a space-dependent mass term in quantum electrodynamics. In particular, we calculate the position shift of the final-state wave packet of the charged particle due to radiation at lowest order in the fine structure constant alpha and in the small h-bar approximation. We show that it disagrees with the result obtained using the Lorentz-Dirac formula for the radiation-reaction force, and that it agrees with the classical theory if one assumes that the particle loses its energy to radiation at each moment of time according to the Larmor formula in the static frame of the potential. However, the discrepancy is much smaller than the Compton wavelength of the particle. We also point out that the electromagnetic correction to the potential has no classical limit. (Correction. Surface terms were erroneously discarded to arrive at Eq. (59). By correcting this error we find that the position shift according to the Lorentz-Dirac theory obtained from Eq. (12) is reproduced by quantum field theory in the hbar -> 0 limit. We also find that the small V(z) approximation is unnecessary for this agreement. See Sec. VII.)

  16. Development of a laced electromagnetic wiggler

    SciTech Connect (OSTI)

    Christensen, T.C.; Burns, M.J.; Deis, G.A.; Parkison, C.D.; Prosnitz, D.; Halbach, K.

    1987-01-01T23:59:59.000Z

    The laced electromagnetic wiggler is a new concept being developed to attain higher magnetic fields, shorter wavelengths, and larger gaps for the induction-linear accelerator, free-electron-laser (FEL) program. In the laced wiggler design, permanent magnets are located (''laced'') between the electromagnetic coils to increase the reverse-bias flux in the iron pole beyond that possible with only pole-edge (''side'') permanent magnets. This increase in reverse-bias flux allows wiggler operation at midplane magnetic field intensities comparable to those of a hybrid permanent magnet/steel wiggler, but with field adjustability over a specified range. The maximum field intensity and tuning range are selected, within limits, for specific design requirements. We have designed and tested a one-period prototype of this concept with promising results.

  17. Global aspects of radiation memory

    E-Print Network [OSTI]

    J. Winicour

    2014-10-11T23:59:59.000Z

    Gravitational radiation has a memory effect represented by a net change in the relative positions of test particles. Both the linear and nonlinear sources proposed for this radiation memory are of the "electric" type, or E mode, as characterized by the even parity of the polarization pattern. Although "magnetic" type, or B mode, radiation memory is mathematically possible, no physically realistic source has been identified. There is an electromagnetic counterpart to radiation memory in which the velocity of charged particles obtain a net "kick". Again, the physically realistic sources of electromagnetic radiation memory that have been identified are of the electric type. In this paper, a global null cone description of the electromagnetic field is applied to establish the non-existence of B mode radiation memory and the non-existence of E mode radiation memory due to a bound charge distribution.

  18. Electro-optical SLS devices for operating at new wavelength ranges

    DOE Patents [OSTI]

    Osbourn, Gordon C. (Albuquerque, NM)

    1986-01-01T23:59:59.000Z

    An intrinsic semiconductor electro-optical device includes a p-n junction intrinsically responsive, when cooled, to electromagnetic radiation in the wavelength range of 8-12 um. The junction consists of a strained-layer superlattice of alternating layers of two different III-V semiconductors having mismatched lattice constants when in bulk form. A first set of layers is either InAs.sub.1-x Sb.sub.x (where x is aobut 0.5 to 0.7) or In.sub.1-x Ga.sub.x As.sub.1-y Sb.sub.y (where x and y are chosen such that the bulk bandgap of the resulting layer is about the same as the minimum bandgap in the In.sub.1-x Ga.sub.x As.sub.1-y Sb.sub.y family). The second set of layers has a lattice constant larger than the lattice constant of the layers in the first set.

  19. Laser beat wave excitation of terahertz radiation in a plasma slab

    SciTech Connect (OSTI)

    Chauhan, Santosh; Parashar, Jetendra, E-mail: j.p.parashar@gmail.com [Department of Applied Physics, Samrat Ashok Technological Institute, Vidisha 464001, Madhya Pradesh (India)

    2014-10-15T23:59:59.000Z

    Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasma boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ?10{sup 17?}W/cm{sup 2} at 1??m, one obtains the THz intensity ?1?GW/cm{sup 2} at 3 THz radiation frequency.

  20. Modulation compression for short wavelength harmonic generation

    E-Print Network [OSTI]

    Qiang, J.

    2010-01-01T23:59:59.000Z

    Wavelength Harmonic Generation Ji Qiang Lawrence Berkeleyform a basis for fourth generation light source. Currently,e?ciency was proposed for generation of short wavelength

  1. Inter-network regions of the Sun at millimetre wavelengths

    E-Print Network [OSTI]

    S. Wedemeyer-Boehm; H. -G. Ludwig; M. Steffen; J. Leenaarts; B. Freytag

    2007-05-18T23:59:59.000Z

    The continuum intensity at wavelengths around 1 mm provides an excellent way to probe the solar chromosphere. Future high-resolution millimetre arrays, such as the Atacama Large Millimeter Array (ALMA), will thus produce valuable input for the ongoing controversy on the thermal structure and the dynamics of this layer. Synthetic brightness temperature maps are calculated on basis of three-dimensional radiation (magneto-)hydrodynamic (MHD) simulations. While the millimetre continuum at 0.3mm originates mainly from the upper photosphere, the longer wavelengths considered here map the low and middle chromosphere. The effective formation height increases generally with wavelength and also from disk-centre towards the solar limb. The average intensity contribution functions are usually rather broad and in some cases they are even double-peaked as there are contributions from hot shock waves and cool post-shock regions in the model chromosphere. Taking into account the deviations from ionisation equilibrium for hydrogen gives a less strong variation of the electron density and with it of the optical depth. The result is a narrower formation height range. The average brightness temperature increases with wavelength and towards the limb. The relative contrast depends on wavelength in the same way as the average intensity but decreases towards the limb. The dependence of the brightness temperature distribution on wavelength and disk-position can be explained with the differences in formation height and the variation of temperature fluctuations with height in the model atmospheres.

  2. Combined Use of Magnetic and Electrically Conductive Fillers in a Polymer Matrix for Electromagnetic Interference Shielding

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    by radiofrequency radiation (such as that emitted by a cellular phone), there is a growing need for devel- oping) shielding refers to the blocking of electromagnetic radiation so that the radiation essentially cannot pass conductors such as met- als and carbons mainly shield by reflection of the radiation. On the other hand

  3. Apparatus And Methods For Launching And Receiving A Broad Wavelength Range Source

    DOE Patents [OSTI]

    Von Drasek, William A. (Oak Forest, IL); Sonnenfroh, David (North Andover, MA); Allen, Mark G. (Boston, MA); Stafford-Evans, Joy (Andover, MA)

    2006-02-28T23:59:59.000Z

    An apparatus and method for simultaneous detection of N gas species through laser radiation attenuation techniques is disclosed. Each of the N species has a spectral absorption band. N laser sources operate at a wavelength ?N in a spectral absorption band separated by the cutoff wavelength for single-mode transmission. Each laser source corresponds to a gas species and transmits radiation through an optical fiber constructed and arranged to provide single-mode transmission with minimal power loss.

  4. Electromagnetic Radiation and in-Medium Effects

    E-Print Network [OSTI]

    Ralf Rapp

    2005-03-14T23:59:59.000Z

    The theory of thermal photon and dilepton emission from a hot and dense hadronic gas, as well as from the Quark-Gluon Plasma, is reviewed in the context of extracting in-medium properties of the matter constituents. In phenomenological applications to ultrarelativistic heavy-ion collisions we focus on recent photon and dilepton spectra as measured by WA98 and CERES/NA45, respectively, at CERN-SPS energies.

  5. Photophoresis and the scattering of electromagnetic radiation

    SciTech Connect (OSTI)

    Ipser, J.R.

    1985-09-01T23:59:59.000Z

    Electron-microscope photographs of soot lend support to the picture in which a soot particle is modeled as a collection of chains of small carbon spheres. The soot particle itself is typically considerably larger than the small carbon spheres making up the chains. Thus the soot particles might have a size approx.0.1 - 1 ..mu..m while the small carbon spheres might have a size approx.0.03 ..mu..m in typical situations. Further, measurements of the density of soot yield values much less than that of normal carbon, indicating that an individual soot particle has a rather small filling factor, i.e., the fraction of the volume of the particle tht is occupied by chains. If a soot particle is taken to be a sphere partially filled with carbon chains, what are its scattering and absorption properties. Several workers have adopted the view that the net scattering and absorption properties can be determined simply by summing the cross-sections for the individual small carbon spheres. We feel that such a procedure cannot be valid in general because it neglects coherence effects among the various randomly located scatterers within the soot particle. It appears that in a first rough approximation the scattering and absorption properties of soot can be determined by estimating the effective dielectric constant of a soot sphere.

  6. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 1, JANUARY 2009 129 Very-Low-Frequency Electromagnetic Field

    E-Print Network [OSTI]

    Motai, Yuichi

    . This electronic system can be used to monitor VLF electromagnetic radiation in residential and occupational-Low-Frequency Electromagnetic Field Detector With Data Acquisition Saba A. Hanna, Member, IEEE, Yuichi Motai, Member, IEEE-made VLF electromagnetic fields are stronger and have been suspected of causing negative health effects

  7. Electromagnetic or other directed energy pulse launcher

    DOE Patents [OSTI]

    Ziolkowski, Richard W. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  8. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, S.B.

    1986-04-01T23:59:59.000Z

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  9. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, Stephen B. (Pittsburgh, PA)

    1986-01-01T23:59:59.000Z

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  10. Electromagnetic rotational actuation.

    SciTech Connect (OSTI)

    Hogan, Alexander Lee

    2010-08-01T23:59:59.000Z

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  11. The CLAS Forward Electromagnetic Calorimeter

    SciTech Connect (OSTI)

    M. Amarian; Geram Asryan; Kevin Beard; Will Brooks; Volker Burkert; Tom Carstens; Alan Coleman; Raphael Demirchyan; Yuri Efremenko; Hovanes Egiyan; Kim Egiyan; Herb Funsten; Vladimir Gavrilov; Kevin L. Giovanetti; R.M. Marshall; Berhard Mecking; R.C. Minehart; H. Mkrtchan; Mavrik Ohandjanyan; Youri Sharabian; L.C. Smith; Stepan Stepanyan; W.A. Stephens; T.Y. Tung; Carl Zorn

    2001-05-01T23:59:59.000Z

    The CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab utilizes six iron-free superconducting coils to provide an approximately toroidal magnetic field. The six sectors are instrumented individually to form six independent spectrometers. The forward region (8deg < (theta) < 45deg) of each sector is equipped with a lead-scintillator electromagnetic sampling calorimeter (EC), 16 radiation lengths thick, using a novel triangular geometry with stereo readout. With its good energy and position resolution, the EC is used to provide the primary electron trigger for CLAS. It is also used to reject pions, reconstruct pi-0 and eta decays and detect neutrons, This paper treats the design, construction and performance of the calorimeter.

  12. Radiation detection system

    DOE Patents [OSTI]

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA); Lyons, Peter B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  13. Solar Radiation and Asteroidal Motion

    E-Print Network [OSTI]

    Jozef Klacka

    2000-09-07T23:59:59.000Z

    Effects of solar wind and solar electromagnetic radiation on motion of asteroids are discussed. The results complete the statements presented in Vokrouhlick\\'{y} and Milani (2000). As for the effect of electromagnetic radiation, the complete equation of motion is presented to the first order in $v/c$ -- the shape of asteroid (spherical body is explicitly presented) and surface distribution of albedo should be taken into account. Optical quantities must be calculated in proper frame of reference.

  14. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, J.R.; Schertz, W.W.

    1985-06-27T23:59:59.000Z

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  15. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

    1986-01-01T23:59:59.000Z

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  16. Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts

    E-Print Network [OSTI]

    Pablo L. Saldanha

    2010-02-04T23:59:59.000Z

    It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the same form than in vacuum, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

  17. Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts

    E-Print Network [OSTI]

    Saldanha, Pablo L

    2009-01-01T23:59:59.000Z

    It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the same form than in vacuum, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

  18. auroral kilometric radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation (AKR) is generated by the accelerated electrons Strangeway, Robert J. 2 Propagation of electromagnetic waves in the source region of thePropagation of...

  19. Electromagnetic properties of baryons

    SciTech Connect (OSTI)

    Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Martin-Camalich, J. [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC, Spain and Department of Physics and Astronomy, University of Sussex, BN1 9Qh, Brighton (United Kingdom)

    2011-10-21T23:59:59.000Z

    We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.

  20. Weak and electromagnetic mechanisms of neutrino-pair photoproduction in a strongly magnetized electron gas

    SciTech Connect (OSTI)

    Borisov, A. V.; Kerimov, B. K.; Sizin, P. E., E-mail: borisov@phys.msu.ru [Moscow State University (Russian Federation)

    2012-11-15T23:59:59.000Z

    Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.

  1. On Storage Rings for Short Wavelength FELs

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01T23:59:59.000Z

    for a hypothetical 144 m long storage ring optimized for FELin the Proceedings On Storage Rings for Short WavelengthLBL-28483 ESG Note-92 ON STORAGE RINGS FOR SHORT WAVELENGTH

  2. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    E-Print Network [OSTI]

    Fawley, William

    2010-01-01T23:59:59.000Z

    FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTEDrest frame), the red-shifted FEL radiation and blue-shiftedper- mit direct study of FEL problems for which the eikonal

  3. Transverse electromagnetic horn antenna with resistively-loaded exterior surfaces

    DOE Patents [OSTI]

    Aurand, John F. (Edgewood, NM)

    1999-01-01T23:59:59.000Z

    An improved transverse electromagnetic (TEM) horn antenna comprises a resistive loading material on the exterior surfaces of the antenna plates. The resistive loading material attenuates or inhibits currents on the exterior surfaces of the TEM horn antenna. The exterior electromagnetic fields are of opposite polarity in comparison to the primary and desired interior electromagnetic field, thus inherently cause partial cancellation of the interior wave upon radiation or upon reception. Reducing the exterior fields increases the radiation efficiency of the antenna by reducing the cancellation of the primary interior field (supported by the interior surface currents). This increases the transmit gain and receive sensitivity of the TEM horn antenna, as well as improving the transient (time-domain) response.

  4. Radiation trapping in coherent media

    E-Print Network [OSTI]

    A. B. Matsko; I. Novikova; M. O. Scully; G. R. Welch

    2001-01-31T23:59:59.000Z

    We show that the effective decay rate of Zeeman coherence, generated in a Rb87 vapor by linearly polarized laser light, increases significantly with the atomic density. We explain this phenomenon as the result of radiation trapping. Our study shows that radiation trapping must be taken into account to fully understand many electromagnetically induced transparency experiments with optically thick media.

  5. Electromagnetic source localization with finite set of frequency measurements

    E-Print Network [OSTI]

    Abdul Wahab; Amer Rasheed; Rab Nawaz; Saman Anjum

    2014-09-16T23:59:59.000Z

    A phase conjugation algorithm for localizing an extended radiating electromagnetic source from boundary measurements of the electric field is presented. Measurements are taken over a finite number of frequencies. The artifacts related to the finite frequency data are tackled with $l_1-$regularization blended with the fast iterative shrinkage-thresholding algorithm with backtracking of Beck & Teboulle.

  6. Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations

    E-Print Network [OSTI]

    Kuhn, Markus

    Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations Markus G. Kuhn and Ross J, a trusted screen driver can display sensitive information using fonts which minimise the energy the data being processed. Known as compromising emanations or Tempest radiation, a code word for a U.S. gov

  7. Active absorption of electromagnetic pulses in a cavity

    E-Print Network [OSTI]

    Horsley, S A R; Tyc, T; Philbin, T G

    2014-01-01T23:59:59.000Z

    We show that a pulse of electromagnetic radiation launched into a cavity can be completely absorbed into an infinitesimal region of space, provided one has a high degree of control over the current flowing through this region. We work out explicit examples of this effect in a cubic cavity and a cylindrical one, and experimentally demonstrate the effect in the microwave regime.

  8. Quasi light fields: Extending the light field to coherent radiation

    E-Print Network [OSTI]

    Accardi, Anthony J.

    Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of ...

  9. Enhanced radiation detectors using luminescent materials

    DOE Patents [OSTI]

    Vardeny, Zeev V. (Holladay, UT); Jeglinski, Stefan A. (Durham, NC); Lane, Paul A. (Sheffield, GB)

    2001-01-01T23:59:59.000Z

    A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

  10. Method for increased sensitivity of radiation detection and measurement

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1994-01-01T23:59:59.000Z

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. Reduced background is accomplished by more thorough annealing and enhanced radiation induced luminescence is obtained by treating the crystalline material to coalesce primary damage centers into secondary damage centers.

  11. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05T23:59:59.000Z

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  12. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11T23:59:59.000Z

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  13. Wavelength limits for InGaN quantum wells on GaN

    SciTech Connect (OSTI)

    Pristovsek, Markus, E-mail: markus@pristovsek.de [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)] [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom)

    2013-06-17T23:59:59.000Z

    The emission wavelength of coherently strained InGaN quantum wells (QW) is limited by the maximum thickness before relaxation starts. For high indium contents x>40% the resulting wavelength decreases because quantum confinement dominates. For low indium content x<40% the electron hole wave function overlap (and hence radiative emission) is strongly reduced with increasing QW thickness due to the quantum confined Stark effect and imposes another limit. This results in a maximum usable emission wavelength at around 600?nm for QWs with 40%-50% indium content. Relaxed InGaN buffer layers could help to push this further, especially on non- and semi-polar orientations.

  14. Semiconductor light source with electrically tunable emission wavelength

    DOE Patents [OSTI]

    Belenky, Gregory (Port Jefferson, NY); Bruno, John D. (Bowie, MD); Kisin, Mikhail V. (Centereach, NY); Luryi, Serge (Setauket, NY); Shterengas, Leon (Centereach, NY); Suchalkin, Sergey (Centereach, NY); Tober, Richard L. (Elkridge, MD)

    2011-01-25T23:59:59.000Z

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  15. Wavelength-resonant surface-emitting semiconductor laser

    DOE Patents [OSTI]

    Brueck, Steven R. J. (Albuquerque, NM); Schaus, Christian F. (Albuquerque, NM); Osinski, Marek A. (Albuquerque, NM); McInerney, John G. (Cedar Crest, NM); Raja, M. Yasin A. (Albuquerque, NM); Brennan, Thomas M. (Albuquerque, NM); Hammons, Burrell E. (Tijeras, NM)

    1989-01-01T23:59:59.000Z

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  16. Coherent hybrid electromagnetic field imaging

    DOE Patents [OSTI]

    Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)

    2008-08-26T23:59:59.000Z

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  17. agents uv radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gyr. The steep source spectra and existing data on UVA and longer-wavelength radiation damage in terrestrial organisms suggest that the mutational effects may operate even on...

  18. Wavelength-doubling optical parametric oscillator

    DOE Patents [OSTI]

    Armstrong, Darrell J. (Albuquerque, NM); Smith, Arlee V. (Albuquerque, NM)

    2007-07-24T23:59:59.000Z

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  19. SYNCHROTRON RADIATION SOURCES

    SciTech Connect (OSTI)

    HULBERT,S.L.; WILLIAMS,G.P.

    1998-07-01T23:59:59.000Z

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

  20. Optical sensing based on wavelength modulation spectroscopy

    DOE Patents [OSTI]

    Buckley, Steven G. (Redmond, WA); Gharavi, Mohammadreza (Tehran, IR); Borchers; Marco (Berlin, DE)

    2011-06-28T23:59:59.000Z

    Techniques, apparatus and systems for using Wavelength Modulation Spectroscopy measurements to optically monitor gas media such as gases in gas combustion chambers.

  1. The Intense Radiation Gas

    E-Print Network [OSTI]

    M. Marklund; P. K. Shukla; B. Eliasson

    2005-03-08T23:59:59.000Z

    We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

  2. Evaluation of methodologies for estimating vulnerability to electromagnetic pulse effects

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    High-altitude electromagnetic pulse (EMP) is an electromagnetic radiation of very short rise time, large amplitude, and brief duration that follows a nuclear explosion above the atmosphere. The area over which a single EMP event is experienced can be very great if the explosion if high enough and large enough. Several such nuclear explosions might render unprotected electronic equipment and systems inoperative over an area as large as the continental United States. Damage may occur when high currents and voltages, driven by EMP, reach vital internal circuits. It is therefore essential to protect the systems and to form some idea of how well they will withstand EMP.

  3. RADIATION RESEARCH 169, 2837 (2008) 0033-7587/08 $15.00

    E-Print Network [OSTI]

    Jerby, Eli

    2008-01-01T23:59:59.000Z

    Peripheral Blood Lymphocytes to Radiofrequency Electromagnetic Fields for 72 Hours. Radiat. Res. 169, 2828 RADIATION RESEARCH 169, 28­37 (2008) 0033-7587/08 $15.00 2008 by Radiation Research Society. All In Vitro Exposure of Human Peripheral Blood Lymphocytes to Radiofrequency Electromagnetic Fields for 72

  4. Electromagnetic pump stator coil

    DOE Patents [OSTI]

    Fanning, A.W.; Dahl, L.R.

    1996-06-25T23:59:59.000Z

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  5. Electromagnetic pump stator coil

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Dahl, Leslie R. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  6. Semiconductor laser with multiple lasing wavelengths

    DOE Patents [OSTI]

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-07-29T23:59:59.000Z

    A new class of multi-terminal vertical-cavity semiconductor laser components has been developed. These multi-terminal laser components can be switched, either electrically or optically, between distinct lasing wavelengths, or can be made to lase simultaneously at multiple wavelengths.

  7. The momentum of an electromagnetic wave inside a dielectric

    SciTech Connect (OSTI)

    Testa, Massimo, E-mail: massimo.testa@roma1.infn.it

    2013-09-15T23:59:59.000Z

    The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from the conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.

  8. Electromagnetic reactions on light nuclei

    E-Print Network [OSTI]

    Sonia Bacca; Saori Pastore

    2014-07-13T23:59:59.000Z

    Electromagnetic reactions on light nuclei are fundamental to advance our understanding of nuclear structure and dynamics. The perturbative nature of the electromagnetic probes allows to clearly connect measured cross sections with the calculated structure properties of nuclear targets. We present an overview on recent theoretical ab-initio calculations of electron-scattering and photonuclear reactions involving light nuclei. We encompass both the conventional approach and the novel theoretical framework provided by chiral effective field theories. Because both strong and electromagnetic interactions are involved in the processes under study, comparison with available experimental data provides stringent constraints on both many-body nuclear Hamiltonians and electromagnetic currents. We discuss what we have learned from studies on electromagnetic observables of light nuclei, starting from the deuteron and reaching up to nuclear systems with mass number A=16.

  9. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    E-Print Network [OSTI]

    von der Linde, D.

    to the optical components required to utilize XFEL beams, including radiation damage. Theoretical workDamage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength SC were exposed to single 25 fs long pulses of 32.5 nm free-electron-laser radiation at fluences of up

  10. Nucleon Electromagnetic Form Factors

    SciTech Connect (OSTI)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01T23:59:59.000Z

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  11. Optical amplification at the 1. 31 wavelength

    DOE Patents [OSTI]

    Cockroft, N.J.

    1994-02-15T23:59:59.000Z

    An optical amplifier operating at the 1.31 [mu]m wavelength for use in such applications as telecommunications, cable television, and computer systems is described. An optical fiber or other waveguide device is doped with both Tm[sup 3+] and Pr[sup 3+] ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm[sup 3+] ions to the Pr[sup 3+] ions, causing the Pr[sup 3+] ions to amplify at a wavelength of 1.31. 1 figure.

  12. Measurements of short wavelength VLF bursts in the auroral ionosphere: A case for electromagnetic mode conversion?

    E-Print Network [OSTI]

    California at Berkeley, University of

    electric field measurements from dipole antennas and an onboard burst memory system. The observation the local lower hybrid frequency (flh) up to the electron plasma or cyclotron frequencies heating in the auroral ionosphere. Vago et al. [1992] and Labelle et al. [1986] have measured Trans

  13. Algorithm for Computation of Electromagnetic Fields of An Accelerated Short Bunch Inside a Rectangular Chamber

    SciTech Connect (OSTI)

    Novokhatski, Alexander; /SLAC; Sullivan, Michael; /SLAC; ,

    2010-09-14T23:59:59.000Z

    We discuss the feasibility of an application of an implicit finite-difference approximation to calculate the fields of a relativistic bunch moving with no restriction inside a vacuum chamber. We assume that a bunch trajectory is not straight but is inside a vacuum chamber or its branch. The bunch can be deflected by the fields of bending magnets. The bunch can be short enough to produce coherent synchrotron radiation (CSR). Accelerator physicists believe that electromagnetic phenomena of charged beams are governed by Maxwell's equations together with Newton's equations for particle dynamics. To understand the behavior of the beams and radiated fields we just need to find a solution to these equations for the case, which can fully describe the real accelerator environment. So, at first we make a model, which contains all the necessary components, but at the same time can be easily 'inserts' into the equations. Sometimes, it is possible to find analytical solutions, but usually they are only work for one-dimensional cases and rarer for two-dimension cases. To find a solution in general we may transform the equations into a equivalent finite-difference form and solve them using computers. We can find a lot of finite-difference schemes, which approximate Maxwell's equations since the first one that was published in 1966. Most of them are so called explicit schemes. That means that the value of the field at the new time step is calculated only by the field values at the previous time step. Stability conditions for these schemes do not allow a time step to be greater than or equal to a space (mesh) step. This limitation brings an additional troublesome effect for short wavelengths compared a mesh step. We state that this effect works like a frequency dispersion media, which is 'hidden' in the finite-difference equation.

  14. Apparatus for shifting the wavelength of light

    DOE Patents [OSTI]

    McCulla, William H. (Oak Ridge, TN); Allen, Jr., John D. (Knoxville, TN)

    1983-01-01T23:59:59.000Z

    A light beam is reflected back and forth between a rotating body having a retroreflection corner at opposite ends thereof and a fixed mirror to change the wavelength of the light beam by the Doppler effect.

  15. Sandia National Laboratories: Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because of the steep drop-off in human eye sensitivity at longer wavelength) and absorption in the near-UV or blue region has been difficult to achieve. Broader-band...

  16. Nuclear electromagnetic charge and current operators in Chiral EFT

    SciTech Connect (OSTI)

    Girlanda, Luca [Università del Salento; Marcucci, Laura Elisa [Univ. Pisa; Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Piarulli, Maria [Department of Physics, Old Dominion University, Norfolk, VA; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, Michele

    2013-08-01T23:59:59.000Z

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  17. Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)

    E-Print Network [OSTI]

    PANDA Collaboration; W. Erni; I. Keshelashvili; B. Krusche; M. Steinacher; Y. Heng; Z. Liu; H. Liu; X. Shen; O. Wang; H. Xu; J. Becker; F. Feldbauer; F. -H. Heinsius; T. Held; H. Koch; B. Kopf; M. Pelizaeus; T. Schroeder; M. Steinke; U. Wiedner; J. Zhong; A. Bianconi; M. Bragadireanu; D. Pantea; A. Tudorache; V. Tudorache; M. De Napoli; F. Giacoppo; G. Raciti; E. Rapisarda; C. Sfienti; E. Bialkowski; A. Budzanowski; B. Czech; M. Kistryn; S. Kliczewski; A. Kozela; P. Kulessa; K. Pysz; W. Schaefer; R. Siudak; A. Szczurek; W. Czy. zycki; M. Domagala; M. Hawryluk; E. Lisowski; F. Lisowski; L. Wojnar; D. Gil; P. Hawranek; B. Kamys; St. Kistryn; K. Korcyl; W. Krzemien; A. Magiera; P. Moskal; Z. Rudy; P. Salabura; J. Smyrski; A. Wronska; M. Al-Turany; I. Augustin; H. Deppe; H. Flemming; J. Gerl; K. Goetzen; R. Hohler; D. Lehmann; B. Lewandowski; J. Luehning; F. Maas; D. Mishra; H. Orth; K. Peters; T. Saito; G. Schepers; C. J. Schmidt; L. Schmitt; C. Schwarz; B. Voss; P. Wieczorek; A. Wilms; K. -T. Brinkmann; H. Freiesleben; R. Jaekel; R. Kliemt; T. Wuerschig; H. -G. Zaunick; V. M. Abazov; G. Alexeev; A. Arefiev; V. I. Astakhov; M. Yu. Barabanov; B. V. Batyunya; Yu. I. Davydov; V. Kh. Dodokhov; A. A. Efremov; A. G. Fedunov; A. A. Feshchenko; A. S. Galoyan; S. Grigoryan; A. Karmokov; E. K. Koshurnikov; V. Ch. Kudaev; V. I. Lobanov; Yu. Yu. Lobanov; A. F. Makarov; L. V. Malinina; V. L. Malyshev; G. A. Mustafaev; A. Olshevski; M. A. . Pasyuk; E. A. Perevalova; A. A. Piskun; T. A. Pocheptsov; G. Pontecorvo; V. K. Rodionov; Yu. N. Rogov; R. A. Salmin; A. G. Samartsev; M. G. Sapozhnikov; A. Shabratova; G. S. Shabratova; A. N. Skachkova; N. B. Skachkov; E. A. Strokovsky; M. K. Suleimanov; R. Sh. Teshev; V. V. Tokmenin; V. V. Uzhinsky; A. S. Vodopianov; S. A. Zaporozhets; N. I. Zhuravlev; A. G. Zorin; D. Branford; K. Foehl; D. Glazier; D. Watts; P. Woods; W. Eyrich; A. Lehmann; A. Teufel; S. Dobbs; Z. Metreveli; K. Seth; B. Tann; A. Tomaradze; D. Bettoni; V. Carassiti; A. Cecchi; P. Dalpiaz; E. Fioravanti; I. Garzia; M. Negrini; M. Savri`e; G. Stancari; B. Dulach; P. Gianotti; C. Guaraldo; V. Lucherini; E. Pace; A. Bersani; M. Macri; M. Marinelli; R. F. Parodi; I. Brodski; W. Doering; P. Drexler; M. Dueren; Z. Gagyi-Palffy; A. Hayrapetyan; M. Kotulla; W. Kuehn; S. Lange; M. Liu; V. Metag; M. Nanova; R. Novotny; C. Salz; J. Schneider; P. Schoenmeier; R. Schubert; S. Spataro; H. Stenzel; C. Strackbein; M. Thiel; U. Thoering; S. Yang; T. Clarkson; E. Cowie; E. Downie; G. Hill; M. Hoek; D. Ireland; R. Kaiser; T. Keri; I. Lehmann; K. Livingston; S. Lumsden; D. MacGregor; B. McKinnon; M. Murray; D. Protopopescu; G. Rosner; B. Seitz; G. Yang; M. Babai; A. K. Biegun; A. Bubak; E. Guliyev; V. S. Jothi; M. Kavatsyuk; H. Loehner; J. Messchendorp; H. Smit; J. C. van der Weele; F. Garcia; D. -O. Riska; M. Buescher; R. Dosdall; R. Dzhygadlo; A. Gillitzer; D. Grunwald; V. Jha; G. Kemmerling; H. Kleines; A. Lehrach; R. Maier; M. Mertens; H. Ohm; D. Prasuhn; T. Randriamalala; J. Ritman; M. Roeder; T. Stockmanns; P. Wintz; P. Wuestner; J. Kisiel; S. Li; Z. Li; Z. Sun; H. Xu; S. Fissum; K. Hansen; L. Isaksson; M. Lundin; B. Schroeder; P. Achenbach; M. C. Mora Espi; J. Pochodzalla; S. Sanchez; A. Sanchez-Lorente; V. I. Dormenev; A. A. Fedorov; M. V. Korzhik; O. V. Missevitch; V. Balanutsa; V. Chernetsky; A. Demekhin; A. Dolgolenko; P. Fedorets; A. Gerasimov; V. Goryachev; A. Boukharov; O. Malyshev; I. Marishev; A. Semenov; C. Hoeppner; B. Ketzer; I. Konorov; A. Mann; S. Neubert; S. Paul; Q. Weitzel; A. Khoukaz; T. Rausmann; A. Taeschner; J. Wessels; R. Varma; E. Baldin; K. Kotov; S. Peleganchuk; Yu. Tikhonov; J. Boucher; T. Hennino; R. Kunne; S. Ong; J. Pouthas; B. Ramstein; P. Rosier; M. Sudol; J. Van de Wiele; T. Zerguerras; K. Dmowski; R. Korzeniewski; D. Przemyslaw; B. Slowinski; G. Boca; A. Braghieri; S. Costanza; A. Fontana; P. Genova; L. Lavezzi; P. Montagna; A. Rotondi; N. I. Belikov; A. M. Davidenko; A. A. Derevschikov; Y. M. Goncharenko; V. N. Grishin; V. A. Kachanov; D. A. Konstantinov; V. A. Kormilitsin; V. I. Kravtsov; Y. A. Matulenko; Y. M. Melnik; A. P. Meschanin; N. G. Minaev; V. V. Mochalov; D. A. Morozov; L. V. Nogach; S. B. Nurushev; A. V. Ryazantsev; P. A. Semenov; L. F. Soloviev; A. V. Uzunian; A. N. Vasiliev; A. E. Yakutin; T. Baeck; B. Cederwall; C. Bargholtz; L. Geren; P. E. Tegner; S. Belostotski; G. Gavrilov; A. Itzotov; A. Kisselev; P. Kravchenko; S. Manaenkov; O. Miklukho; Y. Naryshkin; D. Veretennikov; V. Vikhrov; A. Zhadanov; L. Fava; D. Panzieri; D. Alberto; A. Amoroso; E. Botta; T. Bressani; S. Bufalino; M. P. Bussa; L. Busso; F. De Mori; M. Destefanis; L. Ferrero; A. Grasso; M. Greco; T. Kugathasan; M. Maggiora; S. Marcello; G. Serbanut; S. Sosio; R. Bertini; D. Calvo; S. Coli; P. De Remigis; A. Feliciello; A. Filippi; G. Giraudo; G. Mazza; A. Rivetti

    2008-10-07T23:59:59.000Z

    This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment, which is being developed for the Facility for Antiproton and Ion Research (FAIR) at Darmstadt, Germany. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface.

  18. Electromagnetically driven peristaltic pump

    DOE Patents [OSTI]

    Marshall, Douglas W. (Blackfoot, ID)

    2000-01-01T23:59:59.000Z

    An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

  19. Scattering of an ultrashort electromagnetic pulse in a plasma

    SciTech Connect (OSTI)

    Astapenko, V. A. [Moscow Institute of Physics and Technology (Russian Federation)

    2011-11-15T23:59:59.000Z

    An analytic approach is developed to describing how ultrashort electromagnetic pulses with a duration of one period or less at the carrier frequency are scattered in a plasma. Formulas are derived to calculate and analyze the angular and spectral probabilities of radiation scattering via two possible mechanisms-Compton and transition radiation channels-throughout the entire pulse. Numerical simulations were carried out for a Gaussian pulse. The effect of the phase of the carrier frequency relative to the pulse envelope on the scattering parameters is investigated.

  20. Radiation and Dynamics of Dust Particle

    E-Print Network [OSTI]

    Jozef Klacka

    2002-09-23T23:59:59.000Z

    Relativistically covariant form of equation of motion for arbitrarily shaped dust particle (neutral in charge) under the action of electromagnetic radiation is derived -- emission, scattering and absorption of radiation is considered. The result is presented in the form of optical quantities used in optics of dust particles. The obtained equation of motion represents a generalization of the Poynting-Robertson (P-R) effect, which is standardly used in orbital evolution of dust particles in astrophysics. Simultaneous action of electromagnetic radiation and gravitational fields of the central body -- star -- on the motion of the particle is discussed.

  1. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16T23:59:59.000Z

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  2. Sensitivity of blackbody effective emissivity to wavelength and temperature: By genetic algorithm

    SciTech Connect (OSTI)

    Ejigu, E. K.; Liedberg, H. G. [National Metrology Institute of South Africa (NMISA), Private Bag X34, Lynnwood Ridge, Pretoria, 0040 (South Africa)] [National Metrology Institute of South Africa (NMISA), Private Bag X34, Lynnwood Ridge, Pretoria, 0040 (South Africa)

    2013-09-11T23:59:59.000Z

    A variable-temperature blackbody (VTBB) is used to calibrate an infrared radiation thermometer (pyrometer). The effective emissivity (?{sub eff}) of a VTBB is dependent on temperature and wavelength other than the geometry of the VTBB. In the calibration process the effective emissivity is often assumed to be constant within the wavelength and temperature range. There are practical situations where the sensitivity of the effective emissivity needs to be known and correction has to be applied. We present a method using a genetic algorithm to investigate the sensitivity of the effective emissivity to wavelength and temperature variation. Two matlab® programs are generated: the first to model the radiance temperature calculation and the second to connect the model to the genetic algorithm optimization toolbox. The effective emissivity parameter is taken as a chromosome and optimized at each wavelength and temperature point. The difference between the contact temperature (reading from a platinum resistance thermometer or liquid in glass thermometer) and radiance temperature (calculated from the ?{sub eff} values) is used as an objective function where merit values are calculated and best fit ?{sub eff} values selected. The best fit ?{sub eff} values obtained as a solution show how sensitive they are to temperature and wavelength parameter variation. Uncertainty components that arise from wavelength and temperature variation are determined based on the sensitivity analysis. Numerical examples are considered for illustration.

  3. Evaluation of wavelength shifters for spectral separation of barium fluoride emissions

    SciTech Connect (OSTI)

    DeVol, T.A. [Michigan Univ., Ann Arbor, MI (United States)

    1993-10-01T23:59:59.000Z

    BaF{sub 2} has the advantage over other scintillators, when comparing radiation hardness, scintillation decay time, and fast scintillation yield. Since the fast BaF{sub 2} emissions have peak wavelengths of 220, 195, and 170 nm, a wavelength shifter (WLS) is needed. Organic fluors were evaluated as WLS components. Results indicate that spectral separation using WLS is possible, but not to the extent desired; other techniques must be used also. Alternative scintillators, such as CeF{sub 3}, should be investigated.

  4. Radio Wavelength Observatories within the Exploration Architecture

    E-Print Network [OSTI]

    J. Lazio; R. J. Macdowall; J. Burns; L. Demaio; D. L. Jones; K. W. Weiler

    2007-01-26T23:59:59.000Z

    Observations at radio wavelengths address key problems in astrophysics, astrobiology, and lunar structure including the first light in the Universe (the Epoch of Reionization), the presence of magnetic fields around extrasolar planets, particle acceleration mechanisms, and the structure of the lunar ionosphere. Moreover, achieving the performance needed to address these scientific questions demands observations at wavelengths longer than those that penetrate the Earth's ionosphere, observations in extremely "radio quiet" locations such as the Moon's far side, or both. We describe a series of lunar-based radio wavelength interferometers of increasing capability. The Radio Observatory for Lunar Sortie Science (ROLSS) is an array designed to be deployed during the first lunar sorties (or even before via robotic rovers) and addressing particle acceleration and the lunar ionosphere. Future arrays would be larger, more capable, and deployed as experience is gained in working on the lunar surface.

  5. Device for wavelength-selective imaging

    DOE Patents [OSTI]

    Frangioni, John V. (Wayland, MA)

    2010-09-14T23:59:59.000Z

    An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.

  6. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30T23:59:59.000Z

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  7. ECE 444: Antennas and Radiation Pre-requisites

    E-Print Network [OSTI]

    Schumacher, Russ

    effect in good conductors - Can analyze lossless and lossy transmission lines with different terminations Electromagnetic Field Energy and Radiation - Can apply Poynting's theorem to discuss power balance - Can use retarded electromagnetic potentials to find electric and magnetic fields due to high

  8. Classification of Electromagnetic and Gravitational Hopfions by Algebraic Type

    E-Print Network [OSTI]

    Amy Thompson; Alexander Wickes; Joe Swearngin; Dirk Bouwmeester

    2015-05-02T23:59:59.000Z

    We extend the definition of hopfions to include a class of spin-$h$ fields and use this to introduce the electromagnetic and gravitational hopfions of different algebraic types. The fields are constructed through the Penrose contour integral transform, thus the singularities of the generating functions are directly related to the geometry of the resulting physical fields. We discuss this relationship and how the topological structure of the fields is related to the Robinson congruence. Since the topology appears in the lines of force for both electromagnetism and gravity, the gravito-electromagnetic formalism is used to analyze the gravitational hopfions and describe the time evolution of their tendex and vortex lines. The correspondence between fields of different spin results in analogous configurations based on the same topological structure. The null and type N fields propagate at the speed of light, while the non-null and type D fields radiate energy outward from the center. Finally we discuss the type III gravitational hopfion, which has no direct electromagnetic analog, but find that it still exhibits some of the characteristic features common to the other hopfion fields.

  9. 5. Wavelengths and periods of field motions

    E-Print Network [OSTI]

    Finlay, Christopher

    . Using a technique based on the Radon transform [2], we determined the amount of power propagating5. Wavelengths and periods of field motions 2D frequency-wavenumber (FK) power spectra were of the large scale magnetic field at the surface of the core. Here we deconstruct such a model (gufm1

  10. Two-wavelength spatial-heterodyne holography

    DOE Patents [OSTI]

    Hanson, Gregory R. (Clinton, TN); Bingham, Philip R. (Knoxville, TN); Simpson, John T. (Knoxville, TN); Karnowski, Thomas P. (Knoxville, TN); Voelkl, Edgar (Austin, TX)

    2007-12-25T23:59:59.000Z

    Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.

  11. Radiation and evolution of small relativistic dipole in QED

    E-Print Network [OSTI]

    B. Blok

    2003-05-26T23:59:59.000Z

    We study in the quasiclassical approximation the radiation reaction and its influence on the space-time evolution for the small relativistic dipole moving in a constant external electromagnetic field in QED.

  12. Electromagnetic-gravitational cross-sections in external electromagnetic fields

    E-Print Network [OSTI]

    Long, H N; Tran, T A; Tuan, T A; Long, Hoang Ngoc; Van Soa, Dang; Tran, Tuan A; Tuan, Tran Anh

    1994-01-01T23:59:59.000Z

    The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condesor and the magnetic field of the selenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario.

  13. Method and apparatus for generating high power laser pulses in the two to six micron wavelength range

    DOE Patents [OSTI]

    MacPherson, D.C.; Nelson, L.D.; O`Brien, M.J.

    1996-12-10T23:59:59.000Z

    Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength. 30 figs.

  14. Nanoplasmonics-enabled On-Demand and Systematic Gene Regulation

    E-Print Network [OSTI]

    Lee, Eunice Somin

    2010-01-01T23:59:59.000Z

    electromagnetic radiation (electric field E, wave vector k)radiation, the antenna is subject to a uniform static electricelectric field when its size is much smaller than the wavelength of the incoming electromagnetic radiation,

  15. Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles

    E-Print Network [OSTI]

    Hanson, George

    in radiofrequency-terahertz heating of nanoparticles G. W. Hanson,1,a) R. C. Monreal,2 and S. P. Apell3 1 Department on the absorption of electromagnetic radiation by metallic nanoparticles in the radio and far infrared frequency by which nonmagnetic metallic nanoparticles can absorb low frequency radiation, including both classical

  16. Electromagnetic effects on geodesic acoustic modes

    SciTech Connect (OSTI)

    Bashir, M. F., E-mail: frazbashir@yahoo.com [Salam Chair in Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Department of Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Smolyakov, A. I. [University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada); Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); Elfimov, A. G. [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Melnikov, A. V. [Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); National Research Nuclear University MEPhI, 115409, Moscow (Russian Federation); Murtaza, G. [Visiting Professor, Department of Physics, Quaid-e-Azam University, Islamabad (Pakistan)

    2014-08-15T23:59:59.000Z

    By using the full electromagnetic drift kinetic equations for electrons and ions, the general dispersion relation for geodesic acoustic modes (GAMs) is derived incorporating the electromagnetic effects. It is shown that m?=?1 harmonic of the GAM mode has a finite electromagnetic component. The electromagnetic corrections appear for finite values of the radial wave numbers and modify the GAM frequency. The effects of plasma pressure ?{sub e}, the safety factor q, and the temperature ratio ? on GAM dispersion are analyzed.

  17. Electromagnetic design considerations for fast acting controllers

    SciTech Connect (OSTI)

    Woodford, D.A. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)

    1996-07-01T23:59:59.000Z

    Electromagnetic design considerations for fast acting controllers in a power system is introduced and defined. A distinction is made in relation to the more commonly understood system control design necessary for damping electromechanical oscillations using stability programs and eigenanalysis. Electromagnetic eigenanalysis tools have limited availability and are consequently rarely used. Electromagnetic transients programs (emtp) on the other hand are widely used and a procedure for undertaking electromagnetic control design of fast acting controllers in a power system using emtp is presented.

  18. A multi-crystal wavelength dispersive x-ray spectrometer

    SciTech Connect (OSTI)

    Alonso-Mori, Roberto; Montanez, Paul; Delor, James; Bergmann, Uwe [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kern, Jan [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States); Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis [SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States)

    2012-07-15T23:59:59.000Z

    A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

  19. Structurally Electromagnetic Formation Flight (EMFF)

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Structurally connected secondary mirror EMFF secondary mirror EMFF Design Electromagnetic Formation for a smaller, simpler system. µEMFF investigates the use of conventional conductors, capacitors, and solar propellants that often limit lifetime, the EMFF system uses solar power to energize a magnetic field

  20. WAVELENGTH CALIBRATION OF THE HAMILTON ECHELLE SPECTROGRAPH

    SciTech Connect (OSTI)

    Pakhomov, Yu. V. [Institute of Astronomy, Russian Academy of Sciences, Moscow (Russian Federation); Zhao, G., E-mail: pakhomov@inasan.ru [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-10-01T23:59:59.000Z

    We present the wavelength calibration of the Hamilton Echelle Spectrograph at Lick Observatory. The main problem with the calibration of this spectrograph arises from the fact that thorium lines are absent in the spectrum of the presumed ThAr hollow-cathode lamp now under operation; numerous unknown strong lines, which have been identified as titanium lines, are present in the spectrum. We estimate the temperature of the lamp's gas which permits us to calculate the intensities of the lines and to select a large number of relevant Ti I and Ti II lines. The resulting titanium line list for the Lick hollow-cathode lamp is presented. The wavelength calibration using this line list was made with an accuracy of about 0.006 Å.

  1. Scattering of particles by radiation fields: a comparative analysis

    E-Print Network [OSTI]

    Donato Bini; Andrea Geralico; Maria Haney; Robert T. Jantzen

    2014-08-22T23:59:59.000Z

    The features of the scattering of massive neutral particles propagating in the field of a gravitational plane wave are compared with those characterizing their interaction with an electromagnetic radiation field. The motion is geodesic in the former case, whereas in the case of an electromagnetic pulse it is accelerated by the radiation field filling the associated spacetime region. The interaction with the radiation field is modeled by a force term entering the equations of motion proportional to the 4-momentum density of radiation observed in the particle's rest frame. The corresponding classical scattering cross sections are evaluated too.

  2. Long wavelength, high gain InAsSb strained-layer superlattice photoconductive detectors

    DOE Patents [OSTI]

    Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Fritz, Ian J. (Albuquerque, NM); Kurtz, Steven R. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A high gain photoconductive device for 8 to 12 .mu.m wavelength radiation including an active semiconductor region extending from a substrate to an exposed face, the region comprising a strained-layer superlattice of alternating layers of two different InAs.sub.1-x Sb.sub.x compounds having x>0.75. A pair of spaced electrodes are provided on the exposed face, and changes in 8 to 12 .mu.m radiation on the exposed face cause a large photoconductive gain between the spaced electrodes.

  3. Chapter 30: Quantum Physics 9. The tungsten filament in a standard light bulb can be considered a blackbody radiator.

    E-Print Network [OSTI]

    Kioussis, Nicholas

    . 1 Chapter 30: Quantum Physics 9. The tungsten filament in a standard light bulb can be considered frequency is that of infrared electromagnetic radiation, the light bulb radiates more energy in the infrared

  4. Magnetospheric line radiation event observed simultaneously on board Cluster 1, Cluster 2 and DEMETER spacecraft

    E-Print Network [OSTI]

    Santolik, Ondrej

    be related to power line harmonic radiation (PLHR, an electromagnetic radiation from electric power systemsMagnetospheric line radiation event observed simultaneously on board Cluster 1, Cluster 2., O. Santolík, M. Parrot, and J. S. Pickett (2012), Magnetospheric line radiation event observed

  5. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

    1993-01-01T23:59:59.000Z

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  6. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23T23:59:59.000Z

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  7. Long-term Electro-Magnetic Robustness of Integrated Circuits: EMRIC research project

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EMR in the scientific community and will contribute to develop EMR qualification procedures, EMR) and their low electromagnetic radiation (emission) that could disturb neighbour equipment. Ensuring both low. Integrating EMR models to simulation flow and developing EMR qualification procedures will help IC designer

  8. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    SciTech Connect (OSTI)

    Liangping, Wang; Mo, Li; Juanjuan, Han; Ning, Guo [Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Key State Laboratory of Simulation and Effect for Intense Pulse Radiation, Xi'an 710024 (China); Jian, Wu [Xi'an Jiaotong University, Xi'an 710049 (China); Aici, Qiu [Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Xi'an Jiaotong University, Xi'an 710049 (China)

    2014-06-15T23:59:59.000Z

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100?ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. The kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 ? in about 10–20?ns.

  9. Thermonuclear yield of targets under the action of high-power short-wavelength (lambda< or =1. mu. ) lasers

    SciTech Connect (OSTI)

    Basov, N.G.; Gus'kov, S.Y.; Danilova, G.V.; Demchenko, N.N.; Zmitrenko, N.V.; Karpov, V.Y.; Mishchenko, T.V.; Rozanov, V.B.; Samarskii, A.A.

    1985-06-01T23:59:59.000Z

    A unified optimization scheme is used in a numerical calculation of the dependences of the thermonuclear yield of two-layer shell targets on the absorbed laser energy in the range 0.3--10 mJ for lasers emitting radiation of wavelengths shorter than 1 ..mu...

  10. Cosmic Electromagnetic Fields due to Perturbations in the Gravitational Field

    E-Print Network [OSTI]

    Bishop Mongwane; Peter K. S. Dunsby; Bob Osano

    2012-10-21T23:59:59.000Z

    We use non-linear gauge-invariant perturbation theory to study the interaction of an inflation produced seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime. We compare the effects of this coupling under the assumptions of poor conductivity, infinite conductivity and the case where the electric field is sourced via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic (MHD) regime, thus generalizing, improving on and correcting previous results. We solve our equations for long wavelength limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic field variables, showing where the modes cross the horizon. We find that the rotation of the electric field dominates the power spectrum on small scales, in agreement with previous arguments.

  11. Influence of Adsorption Site and Wavelength on the Photodesorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adsorption Site and Wavelength on the Photodesorption of NO from the (Fe,Cr)3O4(111) Mixed Oxide Surface. Influence of Adsorption Site and Wavelength on the Photodesorption of NO...

  12. Surfatron acceleration of a relativistic particle by electromagnetic plane wave

    E-Print Network [OSTI]

    A. I. Neishtadt; A. A. Vasiliev; A. V. Artemyev

    2010-11-09T23:59:59.000Z

    We study motion of a relativistic charged particle in a plane slow electromagnetic wave and background uniform magnetic field. The wave propagates normally to the background field. Under certain conditions, the resonance between the wave and the Larmor motion of the particle is possible. Capture into this resonance results in acceleration of the particle along the wave front (surfatron acceleration). We analyse the phenomenon of capture and show that a captured particle never leaves the resonance and its energy infinitely grows. Scattering on the resonance is also studied. We find that this scattering results in diffusive growth of the particle energy. Finally, we estimate energy losses due to radiation by an accelerated particle.

  13. Laminated electromagnetic pump stator core

    DOE Patents [OSTI]

    Fanning, A.W.

    1995-08-08T23:59:59.000Z

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  14. Electromagnetism Tutorial (Tutorial de Eletromagnetismo)

    E-Print Network [OSTI]

    Dantas, Christine C

    2009-01-01T23:59:59.000Z

    The present tutorial aims at covering the fundamentals of electromagnetism, in a condensed and clear manner. Some solved and proposed exercises have been included. The reader is assumed to have knowledge of basic electricity, partial derivatives and multiple integrals. ----- O presente tutorial visa cobrir os fundamentos do eletromagnetismo, de forma condensada e clara. Alguns exercicios resolvidos e propostos foram incluidos. Assume-se conhecimento de eletricidade basica, derivadas parciais e integrais multiplas.

  15. Experimental Studies: sensor strip attachment and electroplating embedding The wireless system was tested in the presence of an electromagnetic field at a

    E-Print Network [OSTI]

    Thomas, Brian G.

    system was tested in the presence of an electromagnetic field at a commercial steel company and was shown casting, this sensor will monitor the thermal condition of the mold. The sensors inside the fiber function system causes the wavelength of light emitted along the fiber to depend on thermal strain, which varies

  16. Electromagnetic Signatures of Massive Black Hole Binaries

    E-Print Network [OSTI]

    Tamara Bogdanovic; Britton D. Smith; Michael Eracleous; Steinn Sigurdsson

    2006-09-28T23:59:59.000Z

    We model the electromagnetic emission signatures of massive black hole binaries (MBHBs) with an associated gas component. The method comprises numerical simulations of relativistic binaries and gas coupled with calculations of the physical properties of the emitting gas. We calculate the accretion powered UV/X-ray and Halpha light curves and the Halpha emission line profiles. The simulations have been carried out with a modified version of the parallel tree SPH code Gadget. The heating, cooling, and radiative processes for the solar metallicity gas have been calculated with the photoionization code Cloudy. We investigate gravitationally bound, sub-parsec binaries which have not yet entered the gravitational radiation phase. The results from the first set of calculations, carried out for a coplanar binary and gas disk, suggest that the outbursts in the X-ray light curve are pronounced during pericentric passages and can serve as a fingerprint for this type of binaries if periodic outbursts are a long lived signature of the binary. The Halpha emission-line profiles also offer strong indications of a binary presence and may be used as a criterion for selection of MBHB candidates for further monitoring from existing archival data. The orbital period and mass ratio of a binary could be determined from the Halpha light curves and profiles of carefully monitored candidates. Although systems with the orbital periods studied here are not within the frequency band of the Laser Interferometer Space Antenna (LISA), their discovery is important for understanding of the merger rates of MBHBs and the evolution of such binaries through the last parsec and towards the detectable gravitational wave window.

  17. ELECTROMAGNETIC CONSTRUCTION OF A 1 KM-RADIUS RADIATION SHIELD

    E-Print Network [OSTI]

    in the light of recent studies on bootstrapped lunar solar-electric power plants, mass drivers, and autonomous-drivers, (g) teleoperation of lunar and orbital facilities, (h) orbital assembly of lunar-derived solar power presence beyond Earth is limited to a very few government employees and robots who are sent up, entirely

  18. Electromagnetic Effects in SDF Explosions

    SciTech Connect (OSTI)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12T23:59:59.000Z

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise between optimizing the combustion performance and keeping the number of elementary charges low. Further tests in a barometric bomb calorimeter of 21.2 l volume were performed with four types of aluminum. The mass fraction burned in this case appeared to depend on the morphology of the aluminum particles. Flake aluminum exhibited a better performance than granulated aluminum with particle sizes ranging from below 25 {micro}m to 125 {micro}m for the coarsest material. In addition, a feasibility study on electro-magnetic effects from SDF charges detonated in a tunnel has been performed. A method was developed to measure the local, unsteady electro-conductivity in the detonation/combustion products cloud. This method proved to yield reproducible results. A variety of methods were tested with regard to probing electro-magnetic pulses from the detonation of SDF charges. The results showed little reproducibility and were small compared to the effect from pulsed high voltage discharges of comparatively small energy (around 32 J). Thus either no significant electromagnetic pulse is generated in our small-scale tests or the tested techniques have to be discarded as too insensitive or too limited in bandwidth to detect possibly very high frequency electro-magnetic disturbances.

  19. Radiation in (2+1)-dimensions

    E-Print Network [OSTI]

    Mauricio Cataldo; Alberto A. García

    2014-05-15T23:59:59.000Z

    In this paper we discuss the radiation equation of state $p=\\rho/2$ in (2+1)-dimensions. In (3+1)-dimensions the equation of state $p=\\rho/3$ may be used to describe either actual electromagnetic radiation (photons) as well as a gas of massless particles in a thermodynamic equilibrium (for example neutrinos). In this work it is shown that in the framework of (2+1)-dimensional Maxwell electrodynamics the radiation law $p=\\rho/2$ takes place only for plane waves, i.e. for $E = B$. Instead of the linear Maxwell electrodynamics, to derive the (2+1)-radiation law for more general cases with $E \

  20. Enhanced ULF electromagnetic activity detected by DEMETER above seismogenic regions

    E-Print Network [OSTI]

    Athanasiou, M; David, C; Anagnostopoulos, G

    2013-01-01T23:59:59.000Z

    In this paper we present results of a comparison between ultra low frequency (ULF) electromagnetic (EM) radiation, recorded by an electric field instrument (ICE) onboard the satellite DEMETER in the topside ionosphere, and the seismicity of regions with high and lower seiismic activity. In particular we evaluated the energy variations of the ULF Ez-electric field component during a period of four years (2006-2009), in order to examine check the possible relation of ULF EM radiation with seismogenic regions located in central America, Indonesia, Eastern Mediterranean Basin and Greece. As a tool of evaluating the ULF Ez energy variations we used Singular Spectrum Analysis (SSA) techniques. The results of our analysis clearly show a significant increase of the ULF EM energy emmited from regions of highest seismic activity at the tectonic plates boundaries. We interpret these results as suggesting that the highest ULF EM energy detected in the topside ionosphere is originated from seismic processes within Earth's...

  1. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  2. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    SciTech Connect (OSTI)

    Henry Hao-Chuan Kang

    2004-12-19T23:59:59.000Z

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  3. Entanglement from thermal black body radiation

    E-Print Network [OSTI]

    Daniel Braun

    2005-09-06T23:59:59.000Z

    Two non--interacting quantum systems which couple to a common environment with many degrees of freedom initially in thermal equilibrium can become entangled due to the indirect interaction mediated through this heat bath. I examine here the dynamics of reservoir induced entanglement for a heat bath consisting of a thermal electro--magnetic radiation field, such as black body radiation or the cosmic microwave background, and show how the effect can be understood as result of an effective induced interaction.

  4. Digital Frequency Domain Multiplexer for mm-Wavelength Telescopes

    SciTech Connect (OSTI)

    Spieler, Helmuth G; Dobbs, Matt; Bissonnette, Eric; Spieler, Helmuth G.

    2007-07-23T23:59:59.000Z

    An FPGA based digital signal processing (DSP) system for biasing and reading out multiplexed bolometric detectors for mm-wavelength telescopes is presented. This readout system is being deployed for balloon-borne and ground based cosmology experiments with the primary goal of measuring the signature of inflation with the Cosmic Microwave Background Radiation. The system consists of analog superconducting electronics running at 250 mK and 4 K, coupled to digital room temperature backend electronics described here. The digital electronics perform the real time functionality with DSP algorithms implemented in firmware. A soft embedded processor provides all of the slow housekeeping control and communications. Each board in the system synthesizes multi-frequency combs of 8 to 32 carriers in the MHz band to bias the detectors. After the carriers have been modulated with the sky-signal by the detectors, the same boards digitize the comb directly. The carriers are mixed down to base-band and low pass filtered. The signal bandwidth of 0.050Hz-100 Hz places extreme requirements on stability and requires powerful filtering techniques to recover the sky-signal from the MHz carriers.

  5. At-wavelength Optical Metrology Development at the ALS

    SciTech Connect (OSTI)

    Yuan, Sheng Sam; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Smith, Brian V.; Domning, Edward E.; McKinney, Wayne R.; Warwick, Tony

    2010-07-19T23:59:59.000Z

    Nano-focusing and brightness preservation for ever brighter synchrotron radiation and free electron laser beamlines require surface slope tolerances of x-ray optics on the order of 100 nrad. While the accuracy of fabrication and ex situ metrology of x-ray mirrors has improved over time, beamline in situ performance of the optics is often limited by application specific factors such as x-ray beam heat loading, temperature drift, alignment, vibration, etc. In the present work, we discuss the recent results from the Advanced Light Source developing high accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad accuracy surface slope measurements with reflecting x-ray optics. The techniques will ultimately allow closed-loop feedback systems to be implemented for x-ray nano-focusing. In addition, we present a dedicated metrology beamline endstation, applicable to a wide range of in situ metrology and test experiments. The design and performance of a bendable Kirkpatrick-Baez (KB) mirror with active temperature stabilization will also be presented. The mirror is currently used to study, refine, and optimize in situ mirror alignment, bending and metrology methods essential for nano-focusing application.

  6. A study of electromagnetic fields in horn antennas containing two eielectrics

    E-Print Network [OSTI]

    Quddus, Mohammad Abdul

    1960-01-01T23:59:59.000Z

    A STUDY OF ELECTROMAGNETIC FIELDS IN HORN ANTENNAS CONTAINING TWO DIELECTRICS A Thesis by MD. ABDUL QUDDUS Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... dielectric has been made by Barrow and Chu. The design of optimum air- 2 filled horn has been studied by Barrow and Chu and by Braun. Barton 3 13 11 and Rhodes4 have worked on the radiation pattern, and the gain of the electromagnetic horns has been...

  7. Quasi light fields: extending the light field to coherent radiation

    E-Print Network [OSTI]

    Wornell, Gregory W.

    Quasi light fields: extending the light field to coherent radiation Anthony Accardi1,2 and Gregory light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field

  8. Y-12 electromagnetic separation process wins approval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    work immediately. Just like what we know of Groves, huh. The gaseous diffusion, reactor pile and electromagnetic separation approaches were reviewed with each group attempting to...

  9. Electromagnetic compatibility of nuclear power plants

    SciTech Connect (OSTI)

    Cabayan, H.S.

    1983-01-01T23:59:59.000Z

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  10. Airborne electromagnetic surveys as a reconnaissance technique...

    Open Energy Info (EERE)

    geothermal exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Airborne electromagnetic surveys as a reconnaissance technique for...

  11. 6.630 Electromagnetic Theory, Fall 2002

    E-Print Network [OSTI]

    Kong, Jin Au, 1942-

    6.630 is an introductory subject on electromagnetics, emphasizing fundamental concepts and applications of Maxwell equations. Topics covered include: polarization, dipole antennas, wireless communications, forces and energy, ...

  12. Quantum modulation against electromagnetic interference

    E-Print Network [OSTI]

    Juan Carlos Garcia-Escartin

    2014-11-26T23:59:59.000Z

    Periodic signals in electrical and electronic equipment can cause interference in nearby devices. Randomized modulation of those signals spreads their energy through the frequency spectrum and can help to mitigate electromagnetic interference problems. The inherently random nature of quantum phenomena makes them a good control signal. I present a quantum modulation method based on the random statistics of quantum light. The paper describes pulse width modulation schemes where a Poissonian light source acts as a random control that spreads the energy of the potential interfering signals. I give an example application for switching-mode power supplies and comment the further possibilities of the method.

  13. Electromagnetic properties of massive neutrinos

    SciTech Connect (OSTI)

    Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

    2013-10-15T23:59:59.000Z

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  14. Why does gravitational radiation produce vorticity?

    E-Print Network [OSTI]

    L. Herrera; W. Barreto; J. Carot; A. Di Prisco

    2007-03-26T23:59:59.000Z

    We calculate the vorticity of world--lines of observers at rest in a Bondi--Sachs frame, produced by gravitational radiation, in a general Sachs metric. We claim that such an effect is related to the super--Poynting vector, in a similar way as the existence of the electromagnetic Poynting vector is related to the vorticity in stationary electrovacum spacetimes.

  15. Coherent Radio Pulses From GEANT Generated Electromagnetic Showers In Ice

    E-Print Network [OSTI]

    Soebur Razzaque; Surujhdeo Seunarine; David Z. Besson; Douglas W. McKay; John P. Ralston; David Seckel

    2002-02-25T23:59:59.000Z

    Radio Cherenkov radiation is arguably the most efficient mechanism for detecting showers from ultra-high energy particles of 1 PeV and above. Showers occuring in Antarctic ice should be detectable at distances up to 1 km. We report on electromagnetic shower development in ice using a GEANT Monte Carlo simulation. We have studied energy deposition by shower particles and determined shower parameters for several different media, finding agreement with published results where available. We also report on radio pulse emission from the charged particles in the shower, focusing on coherent emission at the Cherenkov angle. Previous work has focused on frequencies in the 100 MHz to 1 GHz range. Surprisingly, we find that the coherence regime extends up to tens of Ghz. This may have substantial impact on future radio-based neutrino detection experiments as well as any test beam experiment which seeks to measure coherent Cherenkov radiation from an electromagnetic shower. Our study is particularly important for the RICE experiment at the South Pole.

  16. 466 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Electromagnetic Pulses Produced by

    E-Print Network [OSTI]

    Florida, University of

    discharge, lightning electromagnetic (EM) pulse, trav- eling wave, wave reflections. I. INTRODUCTION466 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Electromagnetic Pulses Produced by Bouncing-Wave-Type Lightning Discharges Amitabh Nag, Member, IEEE, and Vladimir A

  17. Progress In Electromagnetics Research, Vol. 114, 317332, 2011 PULSED BEAM EXPANSION OF ELECTROMAGNETIC

    E-Print Network [OSTI]

    Melamed, Timor

    Progress In Electromagnetics Research, Vol. 114, 317­332, 2011 PULSED BEAM EXPANSION-based pulsed-beams expansion of planar aperture time- dependent electromagnetic fields. The propagating field-beam waveobjects over the frame spectral lattice. Explicit asymptotic expressions for the electromagnetic pulsed

  18. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12T23:59:59.000Z

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  19. Electromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    to avoid corrosion or fire. Lithium's high electrical conductivity may possibly permit efficient, compactElectromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999 6-1 CHAPTER 6: ELECTROMAGNETICALLY RESTRAINED LITHIUM BLANKET Contributors Robert Woolley #12;Electromagnetically Restrained Lithium

  20. Narrow field electromagnetic sensor system and method

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  1. Ultimate Energy Densities for Electromagnetic Pulses

    E-Print Network [OSTI]

    Mankei Tsang

    2008-03-06T23:59:59.000Z

    The ultimate electric and magnetic energy densities that can be attained by bandlimited electromagnetic pulses in free space are calculated using an ab initio quantized treatment, and the quantum states of electromagnetic fields that achieve the ultimate energy densities are derived. The ultimate energy densities also provide an experimentally accessible metric for the degree of localization of polychromatic photons.

  2. Narrow field electromagnetic sensor system and method

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-11-19T23:59:59.000Z

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  3. Optimization Material Distribution methodology: Some electromagnetic examples

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    730 1 Optimization Material Distribution methodology: Some electromagnetic examples P. Boissoles, H. Ben Ahmed, M. Pierre, B. Multon Abstract--In this paper, a new approach towards Optimization Material to be highly adaptive to various kinds of electromagnetic actuator optimization approaches. Several optimal

  4. Radiation of a neutral polarizable particle moving uniformly through a thermal radiation field

    E-Print Network [OSTI]

    G. V. Dedkov; A. A. Kyasov

    2014-06-25T23:59:59.000Z

    We discuss the properties of thermal electromagnetic radiation produced by a neutral polarizable nanoparticle moving with an arbitrary relativistic velocity in a heated vacuum background with a fixed temperature. We show that the particle in its own rest frame acquires the radiation temperature of vacuum, multiplied by a velocity-dependent factor, and then emits thermal photons predominantly in the forward direction. The intensity of radiation proves to be much higher than for the particle at rest. For metal particles with high energy, the ratio of emitted and absorbed radiation power is proportional to the Lorentz-factor squared.

  5. Noninvasive valve monitor using alternating electromagnetic field

    DOE Patents [OSTI]

    Eissenberg, David M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Casada, Donald A. (Knoxville, TN)

    1993-01-01T23:59:59.000Z

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  6. An electromagnetic black hole made of metamaterials

    E-Print Network [OSTI]

    Cheng, Qiang

    2009-01-01T23:59:59.000Z

    Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...

  7. Short Wavelength Seeding through Compression for Fee Electron Lasers

    E-Print Network [OSTI]

    Qiang, Ji

    2010-01-01T23:59:59.000Z

    tunable short wavelength free electron lasers (FELs) providereduces the laser power needed for the generation of shortbetween the laser ?eld and the electron beam inside a short

  8. Provably Good Solutions for Wavelength Assignment in Optical ...

    E-Print Network [OSTI]

    In this paper, we study the minimum converter wavelength assignment problem in .... like linear programming based branch-and-bound on the assignment ...

  9. Wavelength Assignment in Multi-Fiber WDM Networks by ...

    E-Print Network [OSTI]

    In this paper, we study wavelength assignment problems in multi-fiber WDM net- ... A comparison with linear programming lower bounds reveals that the bounds ...

  10. Controlled Source Frequency-Domain Electromagnetics At Neal Hot...

    Open Energy Info (EERE)

    Source Frequency-Domain Electromagnetics Activity Date 2011 - 2011 Usefulness useful DOE-funding Unknown Exploration Basis Electromagnetic surveys were conducted to gain a better...

  11. applied computational electromagnetics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electromagnetics Geosciences Websites Summary: Max Optics, Inc. 12;MadMax Optics 2 Stealth Electromagnetic interference Antennas on complex platformsFMM Code...

  12. Slow-light plasmonic metamaterial based on dressed-state analog of electromagnetically-induced transparency

    E-Print Network [OSTI]

    Raza, Søren

    2015-01-01T23:59:59.000Z

    We consider a simple configuration for realizing one-dimensional slow-light metamaterials with large bandwidth-delay products using stub-shaped Fabry-Perot resonators as building blocks. Each metaatom gives rise to large group indices due to a classical analog of the dressed-state picture of electromagnetically-induced transparency. By connecting up to eight metaatoms, we find bandwidth-delay products over unity and group indices approaching 100. Our approach is quite general and can be applied to any type of Fabry-Perot resonators and tuned to different operating wavelengths.

  13. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17T23:59:59.000Z

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  14. Visible-wavelength semiconductor lasers and arrays

    DOE Patents [OSTI]

    Schneider, Jr., Richard P. (Albuquerque, NM); Crawford, Mary H. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

  15. Visible-wavelength semiconductor lasers and arrays

    DOE Patents [OSTI]

    Schneider, R.P. Jr.; Crawford, M.H.

    1996-09-17T23:59:59.000Z

    The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1{lambda}) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%. 5 figs.

  16. Observation of a Long-Wavelength Hosing Modulation of a High-Intensity Laser Pulse in Underdense Plasma

    E-Print Network [OSTI]

    Kaluza, M C; Thomas, A G R; Najmudin, Z; Dangor, A E; Murphy, C D; Collier, J L; Divall, E J; Foster, P S; Hooker, C J; Langley, A J; Smith, J; Krushelnick, K

    2010-01-01T23:59:59.000Z

    We report the first experimental observation of a long-wavelength hosing modulation of a high-intensity laser pulse. Side-view images of the scattered optical radiation at the fundamental wave-length of the laser reveal a transverse oscillation of the laser pulse during its propagation through underdense plasma. The wavelength of the oscillation \\lambda_hosing depends on the background plasma density n_e and scales as \\lambda_hosing~n_e^-3/2. Comparisons with an analytical model and 2-dimensional particle-in-cell simulations reveal that this laser hosing can be induced by a spatio-temporal asymmetry of the intensity distribution in the laser focus which can be caused by a misalignment of the parabolic focussing mirror or of the diffraction gratings in the pulse compressor.

  17. Wavelength calibration of x-ray imaging crystal spectrometer on Joint Texas Experimental Tokamak

    SciTech Connect (OSTI)

    Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Jin, W.; Huang, D. W.; Ding, Y. H.; Li, J. C.; Zhang, X. Q.; Zhuang, G. [School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Lee, S. G.; Shi, Y. J. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

    2014-11-15T23:59:59.000Z

    The wavelength calibration of x-ray imaging crystal spectrometer is a key issue for the measurements of plasma rotation. For the lack of available standard radiation source near 3.95 Å and there is no other diagnostics to measure the core rotation for inter-calibration, an indirect method by using tokamak plasma itself has been applied on joint Texas experimental tokamak. It is found that the core toroidal rotation velocity is not zero during locked mode phase. This is consistent with the observation of small oscillations on soft x-ray signals and electron cyclotron emission during locked-mode phase.

  18. Efficient weakly-radiative wireless energy transfer: An EIT-like approach

    E-Print Network [OSTI]

    Hamam, Rafif E.

    Inspired by a quantum interference phenomenon known in the atomic physics community as electromagnetically induced transparency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme between two ...

  19. Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report

    SciTech Connect (OSTI)

    McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

    2009-09-01T23:59:59.000Z

    A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

  20. Survey of ambient electromagnetic and radio-frequency interference levels in nuclear power plants

    SciTech Connect (OSTI)

    Kercel, S.W.; Moore, M.R.; Blakeman, E.D.; Ewing, P.D.; Wood, R.T.

    1996-11-01T23:59:59.000Z

    This document reports the results of a survey of ambient electromagnetic conditions in representative nuclear power plants. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research engaged the Oak Ridge National Laboratory (ORNL) to perform these measurements to characterize the electromagnetic interference (EMI) and radio-frequency interference (RFI) levels that can be expected in nuclear power plant environments. This survey is the first of its kind, being based on long-term unattended observations. The data presented in this report were measured at eight different nuclear units and required 14 months to collect. A representative sampling of power plant conditions (reactor type, operating mode, site location) monitored over extended observation periods (up to 5 weeks) were selected to more completely determine the characteristic electromagnetic environment for nuclear power plants. Radiated electric fields were measured over the frequency range of 5 MHz to 8 GHz. Radiated magnetic fields and conducted EMI events were measured over the frequency range of 305 Hz to 5 MHz. Highest strength observations of the electromagnetic ambient environment across all measurement conditions at each site provide frequency-dependent profiles for EMI/RFI levels in nuclear power plants.

  1. ATS 351, Spring 2010 Energy & Radiation 60 points

    E-Print Network [OSTI]

    Rutledge, Steven

    energy per wave? Why? Shorter wavelengths carry more energy per wave. Therefore, the sun's radiationATS 351, Spring 2010 Lab #2 Energy & Radiation ­ 60 points Please show your work for calculations Question #1: Energy (11 points) Heat is a measure of the transfer of energy from a body with a higher

  2. Composite scintillators for detection of ionizing radiation

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN) [Knoxville, TN; Stephan, Andrew Curtis (Knoxville, TN) [Knoxville, TN; Brown, Suree S. (Knoxville, TN) [Knoxville, TN; Wallace, Steven A. (Knoxville, TN) [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28T23:59:59.000Z

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  3. Counting energy packets in the electromagnetic wave

    E-Print Network [OSTI]

    Stefan Popescu; Bernhard Rothenstein

    2007-05-18T23:59:59.000Z

    We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

  4. Selective radiative heating of nanostructures using hyperbolic metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ding, Ding; Minnich, Austin J

    2015-01-01T23:59:59.000Z

    Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

  5. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    DOE Patents [OSTI]

    Cockeram, Brian Vern

    2004-01-27T23:59:59.000Z

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  6. Linked and Knotted Gravitational Radiation

    E-Print Network [OSTI]

    Amy Thompson; Joe Swearngin; Dirk Bouwmeester

    2014-08-15T23:59:59.000Z

    We show that the torus knot topology is inherent in electromagnetic and gravitational radiation by constructing spin-$N$ fields based on this topology from the elementary states of twistor theory. The twistor functions corresponding to the elementary states admit a parameterization in terms of the poloidal and toroidal winding numbers of the torus knots, allowing one to choose the degree of linking or knotting of the associated field configuration. Using the gravito-electromagnetic formalism, we show that the torus knot structure is exhibited in the tendex and vortex lines for the analogous linearized gravitational solutions. We describe the topology of the gravitational fields and its physical interpretation in terms of the tidal and frame drag forces of the gravitational field.

  7. Plasma diagnostic potential of 2p4f in N$^+$ -- accurate wavelengths and oscillator strengths

    E-Print Network [OSTI]

    Shen, Xiaozhi; Jönsson, Per; Wang, Jianguo

    2015-01-01T23:59:59.000Z

    Radiative emission lines from nitrogen and its ions are often observed in nebulae spectra, where the N$^{2+}$ abundance can be inferred from lines of the 2p4f configuration. In addition, intensity ratios between lines of the 2p3p -- 2p3s and 2p4f -- 2p3d transition arrays can serve as temperature diagnostics. To aid abundance determinations and plasma diagnostics, wavelengths and oscillator strengths were calculated with high-precision for electric-dipole (E1) transitions from levels in the 2p4f configuration of N$^{+}$. Electron correlation and relativistic effects, including the Breit interaction, were systematically taken into account within the framework of the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Except for the 2p4f - 2p4d transitions with quite large wavelengths and the two-electron-one-photon 2p4f -2s2p$^3$ transitions, the uncertainties of the present calculations were controlled to within 3% and 5% for wavelengths and oscillator strengths, respectively. We also compared our results w...

  8. First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

    E-Print Network [OSTI]

    Andruszków, J; Ayvazyan, V T; Baboi, N I; Bakker, R; Balakin, V; Barni, D; Bazhan, A; Bernard, M; Bosotti, A; Bourdon, J C; Brefeld, W; Brinkmann, R; Bühler, S; Carneiro, J P; Castellano, M G; Castro, P; Catani, L; Chel, S; Cho, Y; Choroba, S; Colby, E R; Decking, W; Den Hartog, P; Desmons, M; Dohlus, M; Edwards, D; Edwards, H T; Faatz, B; Feldhaus, J; Ferrario, M; Fitch, M J; Flöttmann, K; Fouaidy, M; Gamp, A; Garvey, Terence; Geitz, M A; Gluskin, E S; Gretchko, V; Hahn, U; Hartung, W H; Hubert, D; Hüning, M; Ischebek, R; Jablonka, M; Joly, J M; Juillard, M; Junquera, T; Jurkiewicz, P; Kabel, A C; Kahl, J; Kaiser, H; Kamps, T; Katelev, V V; Kirchgessner, J L; Körfer, M; Kravchuk, L V; Kreps, G; Krzywinski, J; Lokajczyk, T; Lange, R; Leblond, B; Leenen, M; Lesrel, J; Liepe, M; Liero, A; Limberg, T; Lorenz, R; Lu, H H; Lu, F H; Magne, C; Maslov, M A; Materlik, G; Matheisen, A; Menzel, J; Michelato, P; Möller, W D; Mosnier, A; Müller, U C; Napoly, O; Novokhatskii, A V; Omeich, M; Padamsee, H; Pagani, C; Peters, F; Petersen, B; Pierini, P; Pflüger, J; Piot, P; Phung Ngoc, B; Plucinski, L; Proch, D; Rehlich, K; Reiche, S; Reschke, D; Reyzl, I; Rosenzweig, J; Rossbach, J; Roth, S; Saldin, E L; Sandner, W; Sanok, Z; Schlarb, H; Schmidt, G; Schmüser, P; Schneider, J R; Schneidmiller, E A; Schreiber, H J; Schreiber, S; Schütt, P; Sekutowicz, J; Serafini, L; Sertore, D; Setzer, S; Simrock, S; Sonntag, B F; Sparr, B; Stephan, F; Sytchev, V V; Tazzari, S; Tazzioli, F; Tigner, Maury; Timm, M; Tonutti, M; Trakhtenberg, E; Treusch, R; Trines, D; Verzilov, V A; Vielitz, T; Vogel, V; Von Walter, G; Wanzenberg, R; Weiland, T; Weise, H; Weisend, J G; Wendt, M; Werner, M; White, M M; Will, I; Wolff, S; Yurkov, M V; Zapfe, K; Zhogolev, P; Zhou, F

    2000-01-01T23:59:59.000Z

    We present the first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the existing models for SASE FELs.

  9. The effects of selected wavelengths and energy levels of ultraviolet irradiation on the endopeptidase and hemolytic activity of Aeromonas proteolytica

    E-Print Network [OSTI]

    Lovett, David Franklin

    1972-01-01T23:59:59.000Z

    irradiation of the radiosensitive B strain of Escherichia cali induced, at a high frequency, a radiation resistance strain, which she designated as B/r. Six years later Clark (2) found that this B/r strain was not only more resistant to ultraviolet...THE EFFECTS OF SELECTED WAVELENGTHS AND ENERGY LEVELS OF ULTRAVIOLET IRRADIATION ON THE ENDOPEPTIDASE AND HEMOLYTIC ACTIVITY OF AEROMONAS PROTEOLYTICA A Thesis by DAVID FRANKLIN LOVETT Submitted to the Graduate College of Texas ASM...

  10. Influence of nanoparticle height on plasmonic resonance wavelength and electromagnetic field enhancement in two-dimensional arrays

    E-Print Network [OSTI]

    Paiella, Roberto

    -enhanced spectroscopy, and efficiency enhancement in solid-state light emitters and solar cells.1,2 The tunability and Computer Engineering and Photonics Center, Boston University, 8 St. Mary's Street, Boston, Massachusetts such as light-emission efficiency enhancement. © 2009 American Institute of Physics. doi:10.1063/1.3255979 I

  11. Projectile transverse motion and stability in electromagnetic induction launchers

    SciTech Connect (OSTI)

    Shokair, I.R.

    1993-12-31T23:59:59.000Z

    The transverse motion of a projectile in an electromagnetic induction launcher is considered. The equations of motion for translation and rotation are derived assuming a rigid projectile and a flyway restoring force per unit length that is proportional to the local displacement. Linearized transverse forces and torques due to energized coils are derived for displaced or tilted armature elements based on a first order perturbation method. The resulting equations of motion for a rigid projectile composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system of equations and a simple linear stability condition is derived. The equations of motion are incorporated into the 2-D Slingshot circuit code and numerical solutions for the transverse motion are obtained. For a launcher with a 10 cm bore radius with a 40 cm long solid armature, we find that stability is achieved with a restoring force (per unit length) constant of k {approx} 1 {times} 10{sup 8} N/m{sup 2}. For k = 1.5 {times} 10{sup 8} N/m{sup 2} and sample coil misalignment modeled as a sine wave of 1 mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a maximum of 4 mm. This growth is due to resonance between the natural frequency of the projectile transverse motion and the coil displacement wavelength. This resonance does not persist because of the changing axial velocity. Random coil displacement is also found to cause roughly the same projectile displacement. For the maximum displacement a rough estimate of the transverse pressure is 50 bars. Results for a wound armature with uniform current density throughout show very similar displacements.

  12. Dynamic programming applied to electromagnetic satellite actuation

    E-Print Network [OSTI]

    Eslinger, Gregory John

    2013-01-01T23:59:59.000Z

    Electromagnetic formation flight (EMFF) is an enabling technology for a number of space mission architectures. While much work has been done for EMFF control for large separation distances, little work has been done for ...

  13. Testing Loop Quantum Gravity and Electromagnetic Dark Energy in Superconductors

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2009-08-06T23:59:59.000Z

    In 1989 Cabrera and Tate reported an anomalous excess of mass of the Cooper pairs in rotating thin Niobium rings. So far, this experimental result never received a proper theoretical explanation in the context of superconductor's physics. In the present work we argue that what Cabrera and Tate interpreted as an anomalous excess of mass can also be associated with a deviation from the classical gravitomagnetic Larmor theorem due to the presence of dark energy in the superconductor, as well as with the discrete structure of the area of the superconducting Niobium ring as predicted by Loop Quantum Gravity. From Cabrera and Tate measurements we deduce that the quantization of spacetime in superconducting circular rings occurs at the Planck-Einstein scale $l_{PE} = (\\hbar G/c^3 \\Lambda)^{1/4}\\sim 3.77\\times 10 ^{-5} m$, instead of the Planck scale $l_{P} =(\\hbar G / c^3)^{1/2}=1.61 \\times 10 ^{-35} m$, with an Immirzi parameter which depends on the specific critical temperature of the superconducting material and on the area of the ring. The stephan-Boltzmann law for quantized areas delimited by superconducting rings is predicted, and an experimental concept based on the electromagnetic black-body radiation emitted by this surfaces, is proposed to test loop quantum gravity and electromagnetic dark energy in superconductors.

  14. Generation and characterization of superradiant undulator radiation

    SciTech Connect (OSTI)

    Bocek, D.

    1997-06-01T23:59:59.000Z

    High-power, pulsed, coherent, far-infrared (FIR) radiation has many scientific applications, such as pump-probe studies of surfaces, liquids, and solids, studies of high-T{sub c} superconductors, biophysics, plasma diagnostics, and excitation of Rydberg atoms. Few sources of such FIR radiation currently exist. Superradiant undulator radiation produced at the SUNSHINE (Stanford UNiversity SHort INtense Electron-source) is such a FIR source. First proposed in the mm-wave spectral range by Motz, superradiant undulator radiation has been realized in the 45 {micro}m to 300 {micro}m spectral range by using sub-picosecond electron bunches produced by the SUNSHINE facility. The experimental setup and measurements of this FIR radiation are reported in this thesis. In addition, to being a useful FIR source, the superradiant undulator radiation produced at SUNSHINE is an object of research in itself. Measured superlinear growth of the radiated energy along the undulator demonstrates the self-amplification of radiation by the electron bunch. This superlinear growth is seen at 47 {micro}m to 70 {micro}m wavelengths. These wavelengths are an order of magnitude shorter than in previous self-amplification demonstrations.

  15. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect (OSTI)

    Sati, Priti; Tripathi, V. K. [Indian Institute of Technology, Hauz Khas, Delhi 110054 (India)

    2012-12-15T23:59:59.000Z

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  16. Sub-wavelength resonant structures at microwave and optical frequencies

    E-Print Network [OSTI]

    Simi?, Aleksandar

    2011-01-01T23:59:59.000Z

    x axis, while the electric dipole has a radiation null alongloop) and the electric dipole (across the small z Radiationelectric dipole constructively contribute to the total radiation

  17. Characterization of electromagnetic transients in power substations

    E-Print Network [OSTI]

    Goers, William Chester

    1980-01-01T23:59:59.000Z

    CHARACTERIZATION OF ELECTROMAGNETIC TRANSIENTS IN POWER SUBSTATIONS A Thesis by WILLIAM CHESTER CiOERS, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1980 Major Subject: Electrical Engineering CHARACTERIZATION OF ELECTROMAGNETIC TRANSIENTS IN POWER SUBSTATIONS A Thesis by WILLIAM CHESTER GOERS, JR. Approved as to style and content by: Dr. B. Don Russell (Chairman of Committee...

  18. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect (OSTI)

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M. [Swedish Institute of Space Physics, Uppsala (Sweden); BAE Systems Advanced Technologies, Washington, D.C. (United States)

    2009-02-13T23:59:59.000Z

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  19. Electromagnetic pulse (EMP), Part I: Effects on field medical equipment

    SciTech Connect (OSTI)

    Vandre, R.H.; Klebers, J.; Tesche, F.M.; Blanchard, J.P. (Walter Reed Army Medical Center, Washington, DC (United States))

    1993-04-01T23:59:59.000Z

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.

  20. Pure Boron-Doped Photodiodes: a Solution for Radiation Detection in EUV Lithography

    E-Print Network [OSTI]

    Technische Universiteit Delft

    Pure Boron-Doped Photodiodes: a Solution for Radiation Detection in EUV Lithography F. Sarubbi, L for radiation detection in the extreme-ultra-violet (EUV) spectral range. Outstanding electrical and optical has triggered a growing interest in UV radiation detection at wavelengths between 10 nm and 200 nm

  1. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  2. Radiative Heat Transfer between Neighboring Particles

    E-Print Network [OSTI]

    Alejandro Manjavacas; F. Javier Garcia de Abajo

    2012-01-26T23:59:59.000Z

    The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

  3. Digitized dual wavelength radar data from a Texas thunderstorm

    E-Print Network [OSTI]

    Radlein, Robin Ann

    1977-01-01T23:59:59.000Z

    DIGITIZED DUAL WAVL'LENGTH RADAR DATA FROM A TEXAS THUNDERSTORM A Thesis ROBIN ANN RADLEIN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree ol MASTER OF SCIENCE December 1977... Wavelength Radar Data from a Texas Thunderstorm. (December 1977) Robin Ann Radlein~ B. S , Texas ASN University Chairman of Advisory Committee: Dr Vance Noyer Nulti-tilt digitized dual wavelength radar data collected during a Texas thunderstorm were...

  4. Stability of Wavelengths and Spatiotemporal Intermittency in Coupled Map Lattices

    E-Print Network [OSTI]

    A. Lambert; R. Lima

    1994-08-01T23:59:59.000Z

    In relation to spatiotemporal intermittency, as it can be observed in coupled map lattices, we study the stability of different wavelengths in competition. Introducing a two dimensional map, we compare its dynamics with the one of the whole lattice. We conclude a good agreement between the two. The reduced model also allows to introduce an order parameter which combines the diffusion parameter and the spatial wavelength under consideration.

  5. RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA

    SciTech Connect (OSTI)

    Tanaka, Masaomi [National Astronomical Observatory of Japan, Mitaka, Tokyo (Japan); Hotokezaka, Kenta, E-mail: masaomi.tanaka@nao.ac.jp, E-mail: hotoke@tap.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto (Japan)

    2013-10-01T23:59:59.000Z

    Mergers of binary neutron stars (NSs) are among the most promising gravitational wave (GW) sources. Next generation GW detectors are expected to detect signals from NS mergers within about 200 Mpc. The detection of electromagnetic wave (EM) counterparts is crucial to understanding the nature of GW sources. Among the possible EM emission from the NS merger, emission powered by radioactive r-process nuclei is one of the best targets for follow-up observations. However, predictions so far have not taken into account detailed r-process element abundances in the ejecta. We perform for the first time radiative transfer simulations of the NS merger ejecta including all the r-process elements from Ga to U. We show that the opacity of the NS merger ejecta is about ? = 10 cm{sup 2} g{sup –1}, which is higher than that of Fe-rich Type Ia supernova ejecta by a factor of ?100. As a result, the emission is fainter and lasts longer than previously expected. The spectra are almost featureless due to the high expansion velocity and bound-bound transitions of many different r-process elements. We demonstrate that the emission is brighter for a higher mass ratio of the two NSs and a softer equation of state adopted in the merger simulations. Because of the red color of the emission, follow-up observations in red optical and near-infrared (NIR) wavelengths will be the most efficient. At 200 Mpc, the expected brightness of the emission is i = 22-25 AB mag, z = 21-23 AB mag, and 21-24 AB mag in the NIR JHK bands. Thus, observations with wide-field 4 m- and 8 m-class optical telescopes and wide-field NIR space telescopes are necessary. We also argue that the emission powered by radioactive energy can be detected in the afterglow of nearby short gamma-ray bursts.

  6. Flashlamp radiation recycling for enhanced pumping efficiency and reduced thermal load

    DOE Patents [OSTI]

    Jancaitis, Kenneth S. (Pleasant Hill, CA); Powell, Howard T. (Livermore, CA)

    1989-01-01T23:59:59.000Z

    A method for recycling laser flashlamp radiation in selected wavelength ranges to decrease thermal loading of the solid state laser matrix while substantially maintaining the pumping efficiency of the flashlamp.

  7. High speed infrared radiation thermometer, system, and method

    DOE Patents [OSTI]

    Markham, James R. (Middlefield, CT)

    2002-01-01T23:59:59.000Z

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  8. Massless Dirac Fermions in Electromagnetic Field

    E-Print Network [OSTI]

    Ahmed Jellal; Abderrahim El Mouhafid; Mohammed Daoud

    2012-02-12T23:59:59.000Z

    We study the relations between massless Dirac fermions in an electromagnetic field and atoms in quantum optics. After getting the solutions of the energy spectrum, we show that it is possible to reproduce the 2D Dirac Hamiltonian, with all its quantum relativistic effects, in a controllable system as a single trapped ion through the Jaynes--Cummings and anti-Jaynes--Cummings models. Also we show that under certain conditions the evolution of the Dirac Hamiltonian provides us with Rashba spin-orbit and linear Dresselhaus couplings. Considering the multimode multiphoton Jaynes-Cummings model interacting with N modes of electromagnetic field prepared in general pure quantum states, we analyze the Rabi oscillation. Evaluating time evolution of the Dirac position operator, we determine the Zitterbewegung frequency and the corresponding oscillating term as function of the electromagnetic field.

  9. Active remote detection of radioactivity based on electromagnetic signatures

    SciTech Connect (OSTI)

    Sprangle, P. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States) [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); University of Maryland, College Park, Maryland 20742-4111 (United States); Hafizi, B. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)] [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Milchberg, H.; Nusinovich, G. [University of Maryland, College Park, Maryland 20742-4111 (United States)] [University of Maryland, College Park, Maryland 20742-4111 (United States); Zigler, A. [University of Maryland, College Park, Maryland 20742-4111 (United States) [University of Maryland, College Park, Maryland 20742-4111 (United States); Icarus Research, Inc., PO Box 30780, Bethesda, Maryland 20824-0780 (United States); The Hebrew University of Jerusalem, Jerusalem (Israel)

    2014-01-15T23:59:59.000Z

    This paper presents a new concept for the remote detection of radioactive materials. The concept is based on the detection of electromagnetic signatures in the vicinity of radioactive material and can enable stand-off detection at distances greater than 100?m. Radioactive materials emit gamma rays, which ionize the surrounding air. The ionized electrons rapidly attach to oxygen molecules forming O{sub 2}{sup ?} ions. The density of O{sub 2}{sup ?} around radioactive material can be several orders of magnitude greater than background levels. The elevated population of O{sub 2}{sup ?} extends several meters around the radioactive material. Electrons are easily photo-detached from O{sub 2}{sup ?} ions by laser radiation. The photo-detached electrons, in the presence of laser radiation, initiate avalanche ionization which results in a rapid increase in electron density. The rise in electron density induces a frequency modulation on a probe beam, which becomes a direct spectral signature for the presence of radioactive material.

  10. Radiation Reaction, Renormalization and Poincaré Symmetry

    E-Print Network [OSTI]

    Yurij Yaremko

    2005-11-25T23:59:59.000Z

    We consider the self-action problem in classical electrodynamics of a massive point-like charge, as well as of a massless one. A consistent regularization procedure is proposed, which exploits the symmetry properties of the theory. The radiation reaction forces in both 4D and 6D are derived. It is demonstrated that the Poincar\\'e-invariant six-dimensional electrodynamics of the massive charge is renormalizable theory. Unlike the massive case, the rates of radiated energy-momentum tend to infinity whenever the source is accelerated. The external electromagnetic fields, which do not change the velocity of the particle, admit only its presence within the interaction area. The effective equation of motion is the equation for eigenvalues and eigenvectors of the electromagnetic tensor. The interference part of energy-momentum radiated by two massive point charges arbitrarily moving in flat spacetime is evaluated. It is shown that the sum of work done by Lorentz forces of charges acting on one another exhausts the effect of combination of outgoing electromagnetic waves generated by the charges.

  11. Electromagnetic continuous casting project: Final report

    SciTech Connect (OSTI)

    Battles, J.E.; Rote, D.M.; Misra, B.; Praeg, W.F.; Hull, J.R.; Turner, L.R.; Shah, V.L.; Lari, R.J.; Gopalsami, N.; Wiencek, T.

    1988-10-01T23:59:59.000Z

    This report describes the work on development of an electromagnetic casting process for steel, which was carried out at Argonne National Laboratory between January 1985 and December 1987. This effort was concerned principally with analysis and design work on magnet technology, liquid metal feed system, coolant system, and sensors and process controllers. Experimentation primarily involved (1) electromagnetic studies to determine the conditions and controlling parameters for stable levitation and (2) feed-system studies to establish important parameters that control and influence fluid flow from the liquid metal source to the caster. 73 refs., 91 figs., 11 tabs.

  12. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Anhui, CN); Schultz, Peter G. (La Jolla, CA); Wei, Tao (Sunnyvale, CA)

    2003-01-01T23:59:59.000Z

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  13. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

    2001-01-01T23:59:59.000Z

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  14. Forces in electromagnetic field and gravitational field

    E-Print Network [OSTI]

    Zihua Weng

    2011-03-31T23:59:59.000Z

    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in the interplanetary space between the sun and the earth.

  15. Bioelectromagnetic effects of the electromagnetic pulse (EMP)

    SciTech Connect (OSTI)

    Patrick, E.L.; Vault, W.L.

    1990-03-01T23:59:59.000Z

    The public has expressed concern about the biological effects and hazards of non-ionizing electromagnetic fields produced by the electro-magnetic pulse (EMP) simulators that simulate the EMP emanating from a high-altitude nuclear explosion. This paper provides a summary of the bioelectromagnetic effects literature up through the present, describes current occupational standards for workers exposed to the EMP environment, and discusses the use of medical surveillance as it relates to the potential human health hazards associated with exposure to the EMP environment.

  16. Scattering of radiation in collisionless dusty plasmas

    SciTech Connect (OSTI)

    Tolias, P.; Ratynskaia, S. [Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44 (Sweden)

    2013-04-15T23:59:59.000Z

    Scattering of electromagnetic waves in collisionless dusty plasmas is studied in the framework of a multi-component kinetic model. The investigation focuses on the spectral distribution of the scattered radiation. Pronounced dust signatures are identified in the coherent spectrum due to scattering from the shielding cloud around the dust grains, dust acoustic waves, and dust-ion acoustic waves. The magnitude and shape of the scattered signal near these spectral regions are determined with the aid of analytical expressions and its dependence on the dust parameters is investigated. The use of radiation scattering as a potential diagnostic tool for dust detection is discussed.

  17. Physical and computer modeling of military earth grounding practices in a HEMP (high-altitude electromagnetic pulse) environment. Technical memo

    SciTech Connect (OSTI)

    Cuneo, A.A. Jr.; Loftus, J.J.; Perala, R.A.

    1983-06-01T23:59:59.000Z

    Military grounding practices compatible with hardening electronic systems to high-altitude electromagnetic pulse (HEMP) illumination are considered. This study concerns the grounding practices outlined in MIL-STD-188-124, Common Long-Haul/Tactical Communications Systems. Three standard grounding schemes and one new scheme were chosen for study at a 10:1 scale, illuminated by a 59-V/m peak simulated HEMP. There were several significant results: (a) The theoretical technique in general agrees to within a factor of three with the experimental results, (b) The type end of earth ground system does not appear to be important, and (c) Intrasite transients tend to be dominated by electromagnetic coupling to completed conductive loops. When the loop is broken, the transient is characterized by the half-wavelength resonance of the conductor. Grounding paths which do not form part of the loop do not contribute significantly to the transient in the loop.

  18. Highly efficient entanglement swapping and teleportation at telecom wavelength

    E-Print Network [OSTI]

    Rui-Bo Jin; Masahiro Takeoka; Utako Takagi; Ryosuke Shimizu; Masahide Sasaki

    2014-10-01T23:59:59.000Z

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors.We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 $\\pm$ 1.0% (85.1 $\\pm$ 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test.Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swaping and multi-photon entanglement generation experiments at around 800\\,nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

  19. Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone

    E-Print Network [OSTI]

    Yakovlev, Vadim

    Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone Shawn M (electromagnetic and thermal) modeling to cover practically valuable scenarios of hybrid (heat radiation is applied to the process of hybrid heating of cylindrical samples of limestone in Ceralink's MAT TM kiln

  20. Scattering of terahertz radiation on a graphene-based nano-antenna

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Scattering of terahertz radiation on a graphene-based nano-antenna Ignacio Llatser, , Christian. Scattering of the terahertz radiation on a graphene-based nano-antenna is considered. Different electromagnetic models of graphene are discussed and applied to calculate extinction, scattering and absorption

  1. Asymmetric radiative damping of low shear toroidal Alfvn eigenmodes R. M. Nyqvist and S. E. Sharapov

    E-Print Network [OSTI]

    Asymmetric radiative damping of low shear toroidal Alfvén eigenmodes R. M. Nyqvist and S. E by the American Institute of Physics. Related Articles Influence of electromagnetic radiation on the power balance in a radiofrequency microdischarge with a hollow needle electrode Appl. Phys. Lett. 101, 144104 (2012) Plasma

  2. Passive electromagnetic damping device for motion control of building structures

    E-Print Network [OSTI]

    Palomera-Arias, Rogelio, 1972-

    2005-01-01T23:59:59.000Z

    The research presented in this thesis develops a new device for the passive control of motion in building structures: an electromagnetic damper. The electromagnetic damper is a self-excited device that provides a reaction ...

  3. Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered

    E-Print Network [OSTI]

    Oughstun, Kurt

    Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered Biological Media- cally rigorous, physically correct description of the propagation of pulsed electromagnetic fields pulses through multilayered biological media consisting of three biological tissue layers rep- resenting

  4. Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz

    E-Print Network [OSTI]

    Yavuz, Deniz

    Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz Department pulses inside an atomic medium using electromag- netically induced transparency. Extending the suggestion.65. k Over the last decade, counterintuitive optical effects using electromagnetically induced

  5. Mathematical Methods for Electromagnetic and Optical Waves1

    E-Print Network [OSTI]

    Lu, Ya Yan

    Mathematical Methods for Electromagnetic and Optical Waves1 Ya Yan Lu Department of Mathematics . . . . . . . . . . . . . . . . . . . . . . 5 1.6 The energy law of electromagnetic field . . . . . . . . . . . . . . . . . . . . . 7 2.5 Pulse propagation and temporal solitons . . . . . . . . . . . . . . . . . . . . . 70 2 #12;Chapter 1

  6. Radiation reaction in quantum field theory

    E-Print Network [OSTI]

    Higuchi, A

    2002-01-01T23:59:59.000Z

    We investigate radiation-reaction effects for a charged scalar particle accelerated by an external potential realized as a space-dependent mass term in quantum electrodynamics. In particular, we calculate the position shift of the final-state wave packet of the charged particle due to radiation at lowest order in the fine structure constant alpha and in the small h-bar approximation. This quantity turns out to be much smaller than the width of the wave packet but can be compared with the classical counterpart. We show that it disagrees with the result obtained using the Abraham-Lorentz-Dirac formula for the radiation-reaction force, and that it agrees with the classical theory if one assumes that the particle loses its energy to radiation at each moment of time according to the Larmor formula in the static frame of the potential. We also point out that the electromagnetic correction to the potential has no classical limit.

  7. Waveguide-based Ultrasonic and Far-field Electromagnetic Sensors...

    Office of Environmental Management (EM)

    ultrasonic and farfield electromagnetic sensors to measure key Enhanced Geothermal Systems (EGS) reservoir parameters, including directional temperature, pressure,...

  8. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless Charging...

  9. Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths

    E-Print Network [OSTI]

    Monreal, P; Sánchez, E; Parra, F I; Bustos, A; Könies, A; Kleiber, R; Görler, T

    2015-01-01T23:59:59.000Z

    In the linear collisionless limit, a zonal potential perturbation in a toroidal plasma relaxes, in general, to a non-zero residual value. Expressions for the residual value in tokamak and stellarator geometries, and for arbitrary wavelengths, are derived. These expressions involve averages over the lowest order particle trajectories, that typically cannot be evaluated analytically. In this work, an efficient numerical method for the evaluation of such expressions is reported. It is shown that this method is faster than direct gyrokinetic simulations. Calculations of the residual value in stellarators are provided for much shorter wavelengths than previously available in the literature. Electrons must be treated kinetically in stellarators because, unlike in tokamaks, kinetic electrons modify the residual value even at long wavelengths. This effect, that had already been predicted theoretically, is confirmed by gyrokinetic simulations.

  10. Analysis of a spinning polygon wavelength swept laser

    E-Print Network [OSTI]

    Johnson, Bart; Kuznetsov, Mark; Goldberg, Brian D; Whitney, Peter; Flanders, Dale C

    2015-01-01T23:59:59.000Z

    It has been known for quite some time that spinning polygon, and similar, swept lasers used in OCT favor the short to long wavelength sweep direction because of four wave mixing in the gain medium. Here we have reformulated the problem in the time domain and show experimentally and through numerical simulation that these lasers are pulsed. The emitted pulses modulate the gain medium refractive index to red shift the light. Instead of new wavelengths being built up slowly from spontaneous emission, each pulse hops to a longer wavelength by nonlinear means, tracking the tunable filter. This allows high speed, low noise tuning in the blue to red direction. Based on this model, we make the first coherence length calculations for a swept source.

  11. Wavelength calibration of the JWST-MIRI medium resolution spectrometer

    E-Print Network [OSTI]

    Martinez-Galarza, J R; Hernan-Caballero, A; Azzollini, R; Glasse, A; Kendrew, S; Brandl, B; Lahuis, F

    2010-01-01T23:59:59.000Z

    We present the wavelength and spectral resolution characterisation of the Integral Field Unit (IFU) Medium Resolution Spectrometer for the Mid-InfraRed Instrument (MIRI), to fly onboard the James Webb Space Telescope in 2014. We use data collected using the Verification Model of the instrument and develop an empirical method to calibrate properties such as wavelength range and resolving power in a portion of the spectrometer's full spectral range (5-28 microns). We test our results against optical models to verify the system requirements and combine them with a study of the fringing pattern in the instrument's detector to provide a more accurate calibration. We show that MIRI's IFU spectrometer will be able to produce spectra with a resolving power above R=2800 in the wavelength range 6.46-7.70 microns, and that the unresolved spectral lines are well fitted by a Gaussian profile.

  12. Electromagnetic field of a charge intersecting a cold plasma boundary in a waveguide

    SciTech Connect (OSTI)

    Alekhina, Tatiana Yu.; Tyukhtin, Andrey V. [Radiophysics Department of St. Petersburg University, 1 Ulyanovskaya, St. Petersburg 198504 (Russian Federation)

    2011-06-15T23:59:59.000Z

    We analyze the electromagnetic field of a charge crossing a boundary between a vacuum and cold plasma in a waveguide. We obtain exact expressions for the field components and the spectral density of the transition radiation. With the steepest descent technique, we investigate the field components. We show that the electromagnetic field has a different structure in a vacuum than in cold plasma. We also develop an algorithm for the computation of the field based on a certain transformation of the integration path. The behavior of the field depending on distance and time and the spectral density depending on frequency are explored for different charge velocities. Some important physical effects are noted. A considerable increase and concentration of the field near the wave front in the plasma is observed for the case of ultrarelativistic particles. In the plasma, the mode envelopes and spectral density show zero points when the charge velocity is within certain limits.

  13. Electromagnetic Pulse (EMP) survey of the Louisiana State Emergency Operating Center, Baton Rouge, Louisiana

    SciTech Connect (OSTI)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1989-08-01T23:59:59.000Z

    The purpose of this report is to develop an engineering design package to protect the federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high-altitude electromagnetic pulses (HEMP). This report refers to the Louisiana State Emergency Operating Center (EOC) in Baton Rouge, Louisiana. This report addresses electromagnetic pulse (EMP) effects only, and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe conditions. The threatening environment will therefore be limited to HEMP situations. 76 figs., 2 tabs.

  14. Structural composites with integrated electromagnetic functionality

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Structural composites with integrated electromagnetic functionality Syrus C. Nemat-Nasser, Alireza, such as wires, into polymer-based or ceramic-based composites. In addition to desired structural properties, these materials may be leveraged for active tasks such as filtering. The advantages of such hybrid composites

  15. Electromagnetic Composites at the Compton Scale

    E-Print Network [OSTI]

    Frederick J. Mayer; John R. Reitz

    2011-09-10T23:59:59.000Z

    A new class of electromagnetic composite particles is proposed. The composites are very small (the Compton scale), potentially long-lived, would have unique interactions with atomic and nuclear systems, and, if they exist, could explain a number of otherwise anomalous and conflicting observations in diverse research areas.

  16. Electromagnetic Wellbore Heating Ibrahim Agyemang1

    E-Print Network [OSTI]

    Bohun, C. Sean

    Chapter 5 Electromagnetic Wellbore Heating Ibrahim Agyemang1 , Matthew Bolton2 , Lloyd Bridge2 with the recovery of petroleum fluids from an oil reservoir using electrical energy. By its very nature this problem must deal with both the equations that describe the fluid flow as well as the heat flow equations

  17. Turbulent Transition in an Electromagnetically Levitated Droplet

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Turbulent Transition in an Electromagnetically Levitated Droplet Christina R. Rizer, Robert W a marked transition from laminar to turbulent flow, which can be observed by following the movement, will oscillate and break apart, marking the transition to turbulence. Using videos taken of these metal samples

  18. FMM Code Libraries for Computational Electromagnetics

    E-Print Network [OSTI]

    Maryland at College Park, University of

    Max Optics, Inc. #12;MadMax Optics 2 · Stealth · Electromagnetic interference · Antennas on complex platforms ­ Closed and open surfaces, complex materials · Fast, Direct Solvers for Ill-Conditioned Problems ­ handle isotropic materials with closed surfaces ­ Open surfaces still active area of research · Geometric

  19. Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae

    E-Print Network [OSTI]

    Xiong, Qihua

    Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae Stephanie Dodson, Mohamed: Sensitivity is a key factor in the improvement of nanoparticle-based biosensors. Bowtie nanoantennae have resonance (LSPR)-based biosensing. In this work, optical bowtie nanoantennae with varying geometries were

  20. Decomposition of Electromagnetic Q and P Media

    E-Print Network [OSTI]

    Lindell, I V

    2015-01-01T23:59:59.000Z

    Two previously studied classes of electromagnetic media, labeled as those of Q media and P media, are decomposed according to the natural decomposition introduced by Hehl and Obukhov. Six special cases based on either non-existence or sole existence of the three Hehl-Obukhov components, are defined for both medium classes.

  1. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  2. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  3. Matched slow pulses using double electromagnetically induced transparency

    E-Print Network [OSTI]

    Lvovsky, Alexander

    Matched slow pulses using double electromagnetically induced transparency Andrew MacRae,* Geoff, 2008 We implement double electromagnetically induced transparency (DEIT) in rubidium vapor using Optical Society of America OCIS codes: 270.1670, 270.5585, 190.5530. Electromagnetically induced

  4. Cosmological electromagnetic fields due to gravitational wave perturbations Mattias Marklund*

    E-Print Network [OSTI]

    Dunsby, Peter

    show that this coupling leads to an initial pulse of electromagnetic waves whose width and amplitude to produce a pulse of gravitationally induced electromagnetic waves. In particular, because of the differentCosmological electromagnetic fields due to gravitational wave perturbations Mattias Marklund

  5. Precision Determination of Atmospheric Extinction at Optical and Near IR Wavelengths

    SciTech Connect (OSTI)

    Burke, David L.; /SLAC; Axelrod, T.; /Arizona U., Astron. Dept. - Steward Observ.; Blondin, Stephane; /European Southern Observ. /Marseille, CPPM; Claver, Chuck; /NOAO, Tucson; Ivezic, Zeljko; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Saha, Abhijit; /NOAO, Tucson; Smith, Allyn; /Austin Peay State U.; Smith, R.Chris; /Cerro-Tololo InterAmerican Obs.; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-08-24T23:59:59.000Z

    The science goals for future ground-based all-sky surveys, such as the Dark Energy Survey, PanSTARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better, and absolute calibration of color measurements that are similarly accurate. This performance will need to be achieved with measurements made from multiple images taken over the course of many years, and these surveys will observe in less than ideal conditions. This paper describes a technique to implement a new strategy to directly measure variations of atmospheric transmittance at optical wavelengths and application of these measurements to calibration of ground-based observations. This strategy makes use of measurements of the spectra of a small catalog of bright 'probe' stars as they progress across the sky and back-light the atmosphere. The signatures of optical absorption by different atmospheric constituents are recognized in these spectra by their characteristic dependences on wavelength and airmass. State-of-the-art models of atmospheric radiation transport and modern codes are used to accurately compute atmospheric extinction over a wide range of observing conditions. We present results of an observing campaign that demonstrate that correction for extinction due to molecular constituents and aerosols can be done with precisions of a few millimagnitudes with this technique.

  6. First operation of a Free-Electron Laser generating GW power radiation at 32 nm wavelength

    E-Print Network [OSTI]

    , 97074 Würzburg, Germany 3 BESSY GmbH, Albert-Einstein-Str.15, 12489 Berlin, Germany 4 Center Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22603 Hamburg, Germany 7 Deutsches Elektronen-Synchrotron

  7. Spontaneous excitation of a circularly accelerated atom coupled to electromagnetic vacuum fluctuations

    SciTech Connect (OSTI)

    Jin, Yao; Hu, Jiawei [Institute of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Institute of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China)

    2014-05-15T23:59:59.000Z

    We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature. -- Highlights: •We study the spontaneous excitation of a circularly accelerated atom. •Contribution of radiation reaction to the excitation is affected by acceleration. •The radiation perceived by a circularly orbiting observer is no longer thermal. •An effective temperature can be defined in terms of atomic transition rates. •Effective temperature is larger than Unruh temperature and frequency-dependent.

  8. First Lasing of Volume FEL (VFEL) at Wavelength Range $?\\sim $ 4-6 mm

    E-Print Network [OSTI]

    V. Baryshevsky; K. Batrakov; A. Gurinovich; I. Ilienko; A. Lobko; V. Moroz; P. Sofronov; V. Stolyarsky

    2001-07-18T23:59:59.000Z

    First lasing of volume free electron laser (VFEL) is described. The generating system consists of two metal diffraction grating with different spatial periods. The first grating creates the conditions for Smith Purcell emission mechanism. The second grating provides the distributed feedback for emitted wave. The length of diffraction grating is 10 cm. Electron beam pulse with a time duration $\\tau \\sim$ 10 ms has a sinusoidal form with the amplitude varied from 1 to ~10 kV. The measured microwave power reached the value of about 3-4 W in mm wavelength range. The generation stops at threshold current value. When the current tends to the threshold value, the region of generation tends to a narrow band near to 5 kV. At higher current values the radiation appears in electron energy range 5 - 7.5 KeV.

  9. High detectivity short-wavelength II-VI quantum cascade detector

    SciTech Connect (OSTI)

    Ravikumar, Arvind P., E-mail: aravikum@princeton.edu; Gmachl, Claire F. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Garcia, Thor A.; Tamargo, Maria C. [Department of Chemistry, The Graduate Center and The City College of New York, CUNY, New York, New York 10031 (United States); Jesus, Joel De [Department of Physics, The Graduate Center and The City College of New York, CUNY, New York, New York 10031 (United States)

    2014-08-11T23:59:59.000Z

    We report on the experimental demonstration of a ZnCdSe/ZnCdMgSe-based short-wavelength photovoltaic Quantum Cascade Detector (QCD). The QCD operates in two spectral bands centered around 2.6??m and 3.6??m. Calibrated blackbody measurements yield a peak responsivity of 0.1?mA/W or 2400?V/W at 80?K, and a corresponding 300?K background radiation limited infrared performance detectivity (BLIP) of ?2.5?×?10{sup 10?}cm ?Hz/W. Comparison of background illuminated and dark current-voltage measurements demonstrates a BLIP temperature of 200?K. The device differential resistance-area product, decreases from about 10{sup 6} ? cm{sup 2} at 80?K to about 8000 ? cm{sup 2} at 300?K, indicative of the ultra-low Johnson noise in the detectors.

  10. Optimised low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range

    E-Print Network [OSTI]

    Pastuszczak, Anna

    2011-01-01T23:59:59.000Z

    We optimise the effective skin-depth and resolution of Ag-TiO2, Ag-SrTiO3, and Ag-GaP multilayers for imaging with sub-wavelength resolution. In terms of transmission and resolution the optimised multilayers outperform simple designs based on combined use of effective medium theory, impedance matching and Fabry-Perot resonances. For instance, an optimised Ag-GaP multilayer consisting of only 17 layers, operating at the wavelength of 490 nm and having a total thickness equal to one wavelength, combines 78% intensity transmission with a resolution of 60 nm. It is also shown that use of the effective medium theory leads to sub-optimal multilayer designs with respect to the trade-off between the skin depth and resolution already when the period of the structure is on the order of 40 nm or larger.

  11. Induced radiation processes in single-bubble sonoluminescence

    E-Print Network [OSTI]

    Prigara, F V

    2005-01-01T23:59:59.000Z

    According to the recent revision of the theory of thermal radiation, thermal black-body radiation has an induced origin. We show that in single-bubble sonoluminescence thermal radiation is emitted by a spherical resonator, coincident with the sonoluminescing bubble itself, instead of the ensemble of elementary resonators emitting thermal black-body radiation in the case of open gaseous media. For a given wavelength, the diameter of the resonator is fixed, and this explains the very high constancy in phase of light flashes from the sonoluminesing bubble, which is better than the constancy of period of a driving acoustic wave.

  12. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOE Patents [OSTI]

    Efthimion, Philip C. (Bedminister, NJ); Helfritch, Dennis J. (Flemington, NJ)

    1989-11-28T23:59:59.000Z

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  13. 532 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Lightning Electromagnetic Field Coupling to

    E-Print Network [OSTI]

    Florida, University of

    of both the incident lightning electromagnetic pulse (LEMP) and the effects of coupling of this field- mental validation using: 1) reduced-scale setups with LEMP and nuclear electromagnetic pulse (NEMP532 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Lightning

  14. The long wavelength limit of hard thermal loop effective actions

    E-Print Network [OSTI]

    F T Brandt; J Frenkel; J C Taylor

    2009-01-22T23:59:59.000Z

    We derive a closed form expression for the long wavelength limit of the effective action for hard thermal loops in an external gravitational field. It is a function of the metric, independent of time derivatives. It is compared and contrasted with the static limit, and with the corresponding limits in an external Yang-Mills field.

  15. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

    1992-01-01T23:59:59.000Z

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  16. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, J.M.; Kurtz, S.R.

    1992-11-24T23:59:59.000Z

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  17. Laser cooling and trapping of potassium at magic wavelengths

    E-Print Network [OSTI]

    M. S. Safronova; U. I. Safronova; Charles W. Clark

    2013-01-14T23:59:59.000Z

    We carry out a systematic study of the static and dynamic polarizabilities of the potassium atom using a first-principles high-precision relativistic all-order method in which all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Recommended values are provided for a large number of electric-dipole matrix elements. Static polarizabilities of the 4s, 4p_j, 5s, 5p_j, and 3d_j states are compared with other theory and experiment where available. We use the results of the polarizability calculations to identify magic wavelengths for the 4s-np transitions for $n = 4, 5$, i.e. those wavelengths for which the two levels have the same ac Stark shifts. These facilitate state-insensitive optical cooling and trapping. The magic wavelengths for the $4s-5p$ transitions are of particular interest for attaining a quantum gas of potassium at high phase-space density. We find 20 such wavelengths in the technically interest region of 1050-1130 nm. Uncertainties of all recommended values are estimated.

  18. Resonator design for a visible wavelength free-electron laser (*)

    SciTech Connect (OSTI)

    Bhowmik, A.; Lordi, N. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.); Ben-Zvi, I.; Gallardo, J. (Brookhaven National Lab., Upton, NY (United States))

    1990-01-01T23:59:59.000Z

    Design requirements for a visible wavelength free-electron laser being developed at the Accelerator Test Facility at Brookhaven National Laboratory are presented along with predictions of laser performance from 3-D numerical simulations. The design and construction of the optical resonator, its alignment and control systems are also described. 15 refs., 8 figs., 4 tabs.

  19. Stellar Surface Convection, Line Asymmetries, and Wavelength Shifts

    E-Print Network [OSTI]

    , Box 43, SE­22100 Lund, Sweden Abstract. Wavelength positions of photospheric absorption lines may the sinking and cooler (darker) gas. For the Sun, the effect is around 300 m s \\Gamma1 , expected to increase), and intergranular lanes with local redshifts (sinking motion), as naturally expected in convective energy transfer

  20. Magic Wavelength for Hydrogen 1S-2S Transition

    E-Print Network [OSTI]

    Kawasaki, Akio

    2015-01-01T23:59:59.000Z

    The magic wavelength for an optical lattice for hydrogen atoms that cancels the first order AC Stark shift of 1S-2S transition is calculated to be 513 nm. The amount of AC Stark shift $ \\Delta E = -1.19$ kHz/(10kW/cm$^2$) and the slope $d\\Delta E/d \

  1. Optical add/drop filter for wavelength division multiplexed systems

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); Strand, Oliver T. (Castro Valley, CA); Garrett, Henry E. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.

  2. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    SciTech Connect (OSTI)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2012-11-15T23:59:59.000Z

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  3. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  4. About consistence between pi N Delta spin-3/2 gauge couplings and electromagnetic gauge invariance

    E-Print Network [OSTI]

    D. Badagnani; C. Barbero; A. Mariano

    2015-03-05T23:59:59.000Z

    We analyze the consistence between the recently proposed "spin 3/2 gauge" interaction for the Delta resonance with nucleons and pions, and the fundamental electromagnetic gauge invariance in any radiative amplitude. Chiral symmetric pion-derivative pi N Delta couplings can be substituted through a linear transformation to get Delta-derivative ones, which have the property of decoupling the 1/2 field components of the Delta propagator. Nevertheless, the electromagnetic gauge invariance introduced through minimal substitution in all derivatives, can only be fulfilled at a given order n without destroying the spin 3/2 one by dropping n+1 order terms within an effective field theory (EFT) framework with a defined power counting. In addition, we show that the Ward identity for the gamma Delta gamma vertex cannot be fulfilled with a trimmed 3/2 propagator, which should be necessary in order to keep the spin 3/2 gauge symmetry in the radiative case for the gamma Delta gamma amplitude. Finally, it is shown that radiative corrections of the spin 3/2 gauge strong vertexes at one loop, reintroduce the conventional interaction.

  5. Particle dynamics and deviation effects in the field of a strong electromagnetic wave

    E-Print Network [OSTI]

    Donato Bini; Andrea Geralico; Maria Haney; Antonello Ortolan

    2014-08-23T23:59:59.000Z

    Some strong field effects on test particle motion associated with the propagation of a plane electromagnetic wave in the exact theory of general relativity are investigated. Two different profiles of the associated radiation flux are considered in comparison, corresponding to either constant or oscillating electric and magnetic fields with respect to a natural family of observers. These are the most common situations to be experimentally explored, and have a well known counterpart in the flat spacetime limit. The resulting line elements are determined by a single metric function, which turns out to be expressed in terms of standard trigonometric functions in the case of a constant radiation flux, and in terms of special functions in the case of oscillating flux, leading to different features of test particle motion. The world line deviation between both uncharged and charged particles on different spacetime trajectories due to the combined effect of gravitational and electromagnetic forces is studied. The interaction of charged particles with the background radiation field is also discussed through a general relativistic description of the inverse Compton effect. Motion as well as deviation effects on particles endowed with spin are studied too. Special situations may occur in which the direction of the spin vector change during the interaction, leading to obsevables effects like spin-flip.

  6. GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 8, PAGES 1281-1284, APRIL 15, 1998 ELF Radiation Produced by Electrical Currents in

    E-Print Network [OSTI]

    Cummer, Steven A.

    . Introduction Luminous high altitude glows referred to as sprites pro- vide dramatic evidence of electrodynamic et al., 1995; Roussel-Dupr´e and Gurevich, 1996], and heating by lightning electromagnetic pulses [e) lightning discharges which strongly radiate electromagnetic energy in the ELF (

  7. Black Hole Radiation and Volume Statistical Entropy

    E-Print Network [OSTI]

    Mario Rabinowitz

    2005-06-29T23:59:59.000Z

    The simplest possible equation for Hawking radiation, and other black hole radiated power is derived in terms of black hole density. Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy. Variations of Sbh can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius which is similar to the Compton wavelength relation.

  8. Radiation damage by neutrons to plastic scintillators

    SciTech Connect (OSTI)

    Buss, G.; Dannemann, A.; Holm, U.; Wick, K. [Univ. Hamburg (Germany). Inst. fuer Experimentalphysik] [Univ. Hamburg (Germany). Inst. fuer Experimentalphysik

    1995-08-01T23:59:59.000Z

    Polystyrene based scintillator SCSN38, wavelength shifter Y7 with polymethylmethacrylate matrix and pure PM-MA light guide GS218 have been irradiated in the mixed radiation field of a pool reactor. About 77% of the dose released in SCSN38 was caused by the {gamma}-field, 23% by fast neutrons. The total dose ranged from 2 to 105 kGy. The dose measurements were made using alanine dosimeters. Transmission and fluorescence of the samples have been measured before and several times after irradiation. The radiation damage results shown o differences to irradiations in pure {gamma}-fields with corresponding released doses.

  9. Electromagnetic Propagation Modeling in Office Environment

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ]-[2], or is the wavelength, featuring a brick enclosure walls, two metal wardrobes, one metal heater, two metal desks, two), the spatial step (/10 chosen to be small to get a perfect continuity of space and time and to minimize domain for each spatial step, and produce the field's values for the defined output points in `txt' files

  10. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The Federal Regulation

  11. Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves

    E-Print Network [OSTI]

    Urzhumov, Yaroslav; Smith, David R; 10.1063/1.3691242

    2012-01-01T23:59:59.000Z

    We propose a generalization of the two-dimensional eikonal-limit cloak derived from a conformal transformation to three dimensions. The proposed cloak is a spherical shell composed of only isotropic media; it operates in the transmission mode and requires no mirror or ground plane. Unlike the well-known omnidirectional spherical cloaks, it may reduce visibility of an arbitrary object only for a very limited range of observation angles. In the short-wavelength limit, this cloaking structure restores not only the trajectories of incident rays, but also their phase, which is a necessary ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse vector-wave (electromagnetic) versions are presented.

  12. Review of exposure limits and experimental data for corneal and lenticular damage from short pulsed UV and IR laser radiation

    E-Print Network [OSTI]

    duration. The thermal UV damage data are compared with levels inferred from CO2 radiation thresholds exposure limits appear to be unnecessarily high. The lack of data for nanosecond exposures for wavelengths. The wavelength dependence of photochemical interac- tions and of the optical absorption properties

  13. Effects of radiation reaction in relativistic laser acceleration

    SciTech Connect (OSTI)

    Hadad, Y.; Labun, L.; Rafelski, J.; Elkina, N.; Klier, C.; Ruhl, H. [Departments of Physics and Mathematics, University of Arizona, Tucson, Arizona, 85721 (United States); Department fuer Physik der Ludwig-Maximillians-Universitaet, Theresienstrasse 37A, 80333 Muenchen (Germany)

    2010-11-01T23:59:59.000Z

    The goal of this paper is twofold: to explore the response of classical charges to electromagnetic force at the level of unity in natural units and to establish a criterion that determines physical parameters for which the related radiation-reaction effects are detectable. In pursuit of this goal, the Landau-Lifshitz equation is solved analytically for an arbitrary (transverse) electromagnetic pulse. A comparative study of the radiation emission of an electron in a linearly polarized pulse for the Landau-Lifshitz equation and for the Lorentz force equation reveals the radiation-reaction-dominated regime, in which radiation-reaction effects overcome the influence of the external fields. The case of a relativistic electron that is slowed down by a counterpropagating electromagnetic wave is studied in detail. We further show that when the electron experiences acceleration of order unity, the dynamics of the Lorentz force equation, the Landau-Lifshitz equation and the Lorentz-Abraham-Dirac equation all result in different radiation emission that could be distinguished in experiment. Finally, our analytic and numerical results are compared with those appearing in the literature.

  14. Longitudinal information and radiation damage in EM calorimetry

    SciTech Connect (OSTI)

    Green, D.

    1993-02-05T23:59:59.000Z

    The SCC radiation field is higher than that encountered by previous hadron collider detectors. In particular, the electromagnetic (EM) calorimeter compartment sees the highest radiation dose. Since an EM calorimeter also makes the most precise energy measurement, special care must be lavished on this part of a calorimeter. Previous studies have concentrated on Monte Carlo examinations of 2 longitudinal compartments within the EM which can alleviate radiation damage. Recently, it was realized that a ``shower maximum`` detector, such as exists in CDF, also contains information of the conversion point of an electromagnetic shower. As such, it can potentially be used in a fashion analogous to the longitudinal compartments, although it is not designed to be optimized for this role.

  15. Single electron detection and spectroscopy via relativistic cyclotron radiation

    E-Print Network [OSTI]

    D. M. Asner; R. F. Bradley; L. de Viveiros; P. J. Doe; J. L. Fernandes; M. Fertl; E. C. Finn; J. A. Formaggio; D. Furse; A. M. Jones; J. N. Kofron; B. H. LaRoque; M. Leber; E. L. McBride; M. L. Miller; P. Mohanmurthy; B. Monreal; N. S. Oblath; R. G. H. Robertson; L. J Rosenberg; G. Rybka; D. Rysewyk; M. G. Sternberg; J. R. Tedeschi; T. Thummler; B. A. VanDevender; N. L. Woods

    2015-05-01T23:59:59.000Z

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  16. Classical Radiation Reaction in Particle-In-Cell Simulations

    E-Print Network [OSTI]

    Vranic, Marija; Fonseca, Ricardo A; Silva, Luis O

    2015-01-01T23:59:59.000Z

    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. The Landau and Lifshitz reduced model is chosen for implementatio...

  17. Electromagnetic Scattering by Spheres of Topological Insulators

    E-Print Network [OSTI]

    Ge, Lixin; Zi, Jian

    2015-01-01T23:59:59.000Z

    The electromagnetic scattering properties of topological insulator (TI) spheres are systematically studied in this paper. Unconventional backward scattering caused by the topological magneto-electric (TME) effect of TIs are found in both Rayleigh and Mie scattering regimes. This enhanced backward scattering can be achieved by introducing an impedance-matched background which can suppress the bulk scattering. For the cross-polarized scattering coefficients, interesting antiresonances are found in the Mie scattering regime, wherein the cross-polarized electromagnetic fields induced by the TME effect are trapped inside TI spheres. In the Rayleigh limit, the quantized TME effect of TIs can be determined by measuring the electric-field components of scattered waves in the far field.

  18. Fluidic electrodynamics: Approach to electromagnetic propulsion

    SciTech Connect (OSTI)

    Martins, Alexandre A.; Pinheiro, Mario J. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.92.43 (Portugal); Department of Physics and Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.93.22 (Portugal)

    2009-03-16T23:59:59.000Z

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  19. Electromagnetic Pulse from Final Gravitational Stellar Collapse

    E-Print Network [OSTI]

    P. D. Morley; Ivan Schmidt

    2002-01-30T23:59:59.000Z

    We employ an effective gravitational stellar final collapse model which contains the relevant physics involved in this complex phenomena: spherical radical infall in the Schwarzschild metric of the homogeneous core of an advanced star, giant magnetic dipole moment, magnetohydrodynamic material response and realistic equations of state (EOS). The electromagnetic pulse is computed both for medium size cores undergoing hydrodynamic bounce and large size cores undergoing black hole formation. We clearly show that there must exist two classes of neutron stars, separated by maximum allowable masses: those that collapsed as solitary stars (dynamical mass limit) and those that collapsed in binary systems allowing mass accretion (static neutron star mass). Our results show that the electromagnetic pulse spectrum associated with black hole formation is a universal signature, independent of the nuclear EOS. Our results also predict that there must exist black holes whose masses are less than the static neutron star stability limit.

  20. Physics of intense, high energy radiation effects.

    SciTech Connect (OSTI)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01T23:59:59.000Z

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the continuum calculations and the experiments.

  1. Broadband impedance-matched electromagnetic structured ferrite composite in the megahertz range

    SciTech Connect (OSTI)

    Parke, L.; Hibbins, A. P.; Sambles, J. R. [Electromagnetic and Acoustic Materials Group, Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, Devon EX4 4QL (United Kingdom); Youngs, I. J. [DSTL, Salisbury, Wiltshire SP4 0JQ (United Kingdom)

    2014-06-02T23:59:59.000Z

    A high refractive-index structured ferrite composite is designed to experimentally demonstrate broadband impedance matching to free-space. It consists of an array of ferrite cubes that are anisotropically spaced, thereby allowing for independent control of the effective complex permeability and permittivity. Despite having a refractive index of 9.5, the array gives less than 1% reflection and over 90% transmission of normally incident radiation up to 70?MHz for one of the orthogonal linear polarisations lying in a symmetry plane of the array. This result presents a route to the design of MHz-frequency ferrite composites with bespoke electromagnetic parameters for antenna miniaturisation.

  2. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect (OSTI)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-08-31T23:59:59.000Z

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  3. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  4. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, R.J.

    1994-06-07T23:59:59.000Z

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  5. Electromagnetic Dark Energy and Gravitoelectrodynamics of Superconductors

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2007-10-29T23:59:59.000Z

    It is shown that Beck and Mackey electromagnetic model of dark energy in superconductors can account for the non-classical inertial properties of superconductors, which have been conjectured by the author to explain the Cooper pair's mass excess reported by Cabrera and Tate. A new Einstein-Planck regime for gravitation in condensed matter is proposed as a natural scale to host the gravitoelectrodynamic properties of superconductors.

  6. Energy conservation for a radiating charge in classical electrodynamics

    E-Print Network [OSTI]

    Singal, Ashok K

    2014-01-01T23:59:59.000Z

    It is shown that the well-known disparity in classical electrodynamics between the power radiated in electromagnetic fields and the power-loss, as calculated from the radiation reaction on a charge undergoing a non-uniform motion, is successfully resolved when a proper distinction is made between quantities expressed in terms of a "real time" and those expressed in terms of a retarded time. It is shown that the expression for the real-time radiative power loss from a charged particle is somewhat different from the familiar Larmor's formula, or in a relativistic case, from Li\\'{e}nard's formula.

  7. DEF: The Physical Basis of Electromagnetic Propulsion

    E-Print Network [OSTI]

    Pinheiro, Mario J

    2015-01-01T23:59:59.000Z

    The very existence of the physical vacuum provides a framework to propose a general mechanism for propelling bodies through an agency of electromagnetic fields, that seat in that medium. When two sub-systems of a general closed device interact via nonlocal and retarded electromagnetic pulses, it is easily shown that they give a nonzero force, and that only tend to comply with the action-to-reaction force in the limit of instantaneous interactions. The arrangement of sub-systems provide a handy way to optimize the unbalanced EM force with the concept of impedance matching. The general properties of the differential electromagnetic force (DEF) are the following: i) it is proportional to the square of the intensity and to the angular wave frequency $\\omega$; ii) to the space between the sub-systems (although in a non-linear manner); iii) it is inversely proportional to the speed of interaction; iv) when the two sub-systems are out-of-phase, DEF is null. The approach is of interest to practical engineering princi...

  8. Electromagnetic Compatibility in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

    1999-08-29T23:59:59.000Z

    Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

  9. Optical waves in crystal propagation and control of laser radiation

    SciTech Connect (OSTI)

    Yariv, A.; Yeh, P.

    1983-01-01T23:59:59.000Z

    As a text for a course in electro-optics for electrical engineering and applied physics students, it presents the propagation of laser radiation in various optical media and instructs in the analysis and design of electro-optical devices. The content of the book presupposes an introduction to Maxwell's equations in an intermediate course in electricity and magnetism as well as some mathematical background in Fourier integrals, matrix algebra, and differential equations. Contents, abridged: Electromagnetic fields. Propagation of laser beams. Jones calculus and its application to birefringent optical systems. Electromagnetic propagation in periodic media. Electro-optic devices. Acousto-optics. Indexes.

  10. RADIATIVE HEATING OF THE SOLAR CORONA

    SciTech Connect (OSTI)

    Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

    2011-10-20T23:59:59.000Z

    We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

  11. Perfect sub-wavelength metamaterial fishnet-like film absorbers for THz applications

    SciTech Connect (OSTI)

    Shchegolov, Dmitry [Los Alamos National Laboratory; Azad, Abul K [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Smirnova, Evgenya I [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We present two designs of robust, easy to manufacture meta material-based films of sub-wavelength thickness capable of full absorption of the incident terahertz (THz) radiation at certain frequencies. Both designs can be either made polarization sensitive, or have 90{sup o} rotation symmetry, which works equally well for waves of any polarization provided the incident angle is zero. All our designs work for a wide range of angles of incidence, and even if the films are optimized for normal incidence the absorption remains greater than 99% for angles up to {approx}35{sup o} in the TE and {approx}65{sup o} in the TM case. In the first design the maximum absorption frequency shifts considerably with angle, and in the second design the maximum absorption frequency remains almost the same at any angle. Theory, simulation data, and recent experimental results are all in a good agreement, and will be reported in the presentation. Having a low heat capacity these absorbers combined with thermo detectors can be utilized for precise frequency-selective detection of THz radiation.

  12. High power Cherenkov radiation from a relativistic particle rotating around a dielectric ball

    E-Print Network [OSTI]

    L. Sh. Grigoryan; H. F. Khachatryan; S. R. Arzumanyan; M. L. Grigoryan

    2005-12-09T23:59:59.000Z

    Some characteristic features in the radiation from a relativistic electron uniformly rotating along an equatorial orbit around a dielectric ball have been studied. It was shown that at some harmonics, in case of weak absorption of radiation in the ball material, the electron may generate radiation field quanta exceeding in several dozens of times those generated by electron rotating in a continuous, infinite and transparent medium having the same real part of permittivity as the ball material. The rise of high power radiation is due to the fact that electromagnetic oscillations of Cherenkov radiation induced along the trajectory of particle are partially locked inside the ball and superimposed in nondestructive way.

  13. Equations of a Moving Mirror and the Electromagnetic Field

    E-Print Network [OSTI]

    Luis Octavio Castaños; Ricardo Weder

    2014-10-28T23:59:59.000Z

    We consider a slab of a material that is linear, isotropic, non-magnetizable, ohmic, and electrically neutral when it is at rest. The slab interacts with the electromagnetic field through radiation pressure. Using a relativistic treatment, we deduce the exact equations governing the dynamics of the field and of the slab, as well as, approximate equations to first order in the velocity and the acceleration of the slab. As a consequence of the motion of the slab, the field must satisfy a wave equation with damping and slowly varying coefficients plus terms that are small when the time-scale of the evolution of the mirror is much smaller than that of the field. Moreover, the dynamics of the mirror involve a time-dependent mass arising from the interaction with the field and it is related to the effective mass of mechanical oscillators used in optomechanics. By the same reason, the mirror is subject to a velocity dependent force which is related to the much sought cooling of mechanical oscillators in optomechanics.

  14. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOE Patents [OSTI]

    Worstell, William A. (Framingham, MA)

    1997-01-01T23:59:59.000Z

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

  15. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOE Patents [OSTI]

    Worstell, W.A.

    1997-02-04T23:59:59.000Z

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

  16. Apparatus for generating coherent infrared energy of selected wavelength

    DOE Patents [OSTI]

    Stevens, Charles G. (Danville, CA)

    1985-01-01T23:59:59.000Z

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  17. Soliton-radiation coupling in the parametrically driven, damped nonlinear Schrödinger equation

    E-Print Network [OSTI]

    V. S. Shchesnovich; I. V. Barashenkov

    2001-11-14T23:59:59.000Z

    We use the Riemann-Hilbert problem to study the interaction of the soliton with radiation in the parametrically driven, damped nonlinear Schr\\"odinger equation. The analysis is reduced to the study of a finite-dimensional dynamical system for the amplitude and phase of the soliton and the complex amplitude of the long-wavelength radiation. In contrast to previously utilised Inverse Scattering-based perturbation techniques, our approach is valid for arbitrarily large driving strengths and damping coefficients. We show that, contrary to suggestions made in literature, the complexity observed in the soliton's dynamics cannot be accounted for just by its coupling to the long-wavelength radiation.

  18. Astro2010 Decadal Survey Whitepaper: Coordinated Science in the Gravitational and Electromagnetic Skies

    E-Print Network [OSTI]

    Joshua S. Bloom; Daniel E. Holz; Scott A. Hughes; Kristen Menou; Allan Adams; Scott F. Anderson; Andy Becker; Geoffrey C. Bower; Niel Brandt; Bethany Cobb; Kem Cook; Alessandra Corsi; Stefano Covino; Derek Fox; Andrew Fruchter; Chris Fryer; Jonathan Grindlay; Dieter Hartmann; Zoltan Haiman; Bence Kocsis; Lynne Jones; Abraham Loeb; Szabolcs Marka; Brian Metzger; Ehud Nakar; Samaya Nissanke; Daniel A. Perley; Tsvi Piran; Dovi Poznanski; Tom Prince; Jeremy Schnittman; Alicia Soderberg; Michael Strauss; Peter S. Shawhan; David H. Shoemaker; Jonathan Sievers; Christopher Stubbs; Gianpiero Tagliaferri; Pietro Ubertini; Przemyslaw Wozniak

    2009-02-10T23:59:59.000Z

    It is widely expected that the coming decade will witness the first direct detection of gravitational waves (GWs). The ground-based LIGO and Virgo GW observatories are being upgraded to advanced sensitivity, and are expected to observe a significant binary merger rate. The launch of The Laser Interferometer Space Antenna (LISA) would extend the GW window to low frequencies, opening new vistas on dynamical processes involving massive (M >~ 10^5 M_Sun) black holes. GW events are likely to be accompanied by electromagnetic (EM) counterparts and, since information carried electromagnetically is complementary to that carried gravitationally, a great deal can be learned about an event and its environment if it becomes possible to measure both forms of radiation in concert. Measurements of this kind will mark the dawn of trans-spectral astrophysics, bridging two distinct spectral bands of information. The aim of this whitepaper is to articulate future directions in both theory and observation that are likely to impact broad astrophysical inquiries of general interest. What will EM observations reflect on the nature and diversity of GW sources? Can GW sources be exploited as complementary probes of cosmology? What cross-facility coordination will expand the science returns of gravitational and electromagnetic observations?

  19. Time-Multiplexed Measurements of Nonclassical Light at Telecom Wavelengths

    E-Print Network [OSTI]

    G. Harder; C. Silberhorn; J. Rehacek; Z. Hradil; L. Motka; B. Stoklasa; L. L. Sanchez-Soto

    2014-06-13T23:59:59.000Z

    We report the experimental reconstruction of the statistical properties of an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecom wavelengths, with almost perfect photon-number correlations. We used a photon-number-resolving time-multiplexed detector based on a fiber-optical setup and a pair of avalanche photodiodes. By resorting to a germane data-pattern tomography, we assess the properties of the nonclassical light states states with unprecedented precision.

  20. Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors

    E-Print Network [OSTI]

    Heath, Robert M; Drysdale, Timothy D; Miki, Shigehito; Giannini, Vincenzo; Maier, Stefan A; Hadfield, Robert H

    2015-01-01T23:59:59.000Z

    Superconducting nanowire single photon detectors are rapidly emerging as a key infrared photon-counting technology. Two front-side-coupled silver dipole nanoantennas, simulated to have resonances at 1480 nm and 1525 nm, were fabricated in a two-step process. An enhancement of 50% to 130% in the system detection efficiency was observed when illuminating the antennas. This offers a pathway to increasing absorption into superconducting nanowires, creating larger active areas, and achieving more efficient detection at longer wavelengths.

  1. Upconverting device for enhanced recogntion of certain wavelengths of light

    DOE Patents [OSTI]

    Kross, Brian; McKIsson, John (Jack) E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zorn, Carl

    2013-05-21T23:59:59.000Z

    An upconverting device for enhanced recognition of selected wavelengths is provided. The device comprises a transparent light transmitter in combination with a plurality of upconverting nanoparticles. The device may a lens in eyewear or alternatively a transparent panel such as a window in an instrument or machine. In use the upconverting device is positioned between a light source and the eye(s) of the user of the upconverting device.

  2. Fluid dynamic issues in continuous wave short wavelength chemical lasers

    SciTech Connect (OSTI)

    Mikatarian, R.R.; Jumper, E.J.; Woolhiser, C.

    1988-01-01T23:59:59.000Z

    This paper addresses fluid dynamic issues of concern in the design and development of Continuous Wave (CW) Short Wavelength Chemical Lasers (SWCLs). Short Wavelength Chemical Laser technology is in its research stage and SWCL concepts are in their evolving mode. Researchers are presently addressing candidate chemical systems and activation concepts. Since these lasers will be flowing systems, it is necessary to discuss both the probable fluid dynamics issues, because of the inherent complexities fluid dynamicist can support this activity. In addition to addressing the SWCL fluid dynamic issues, this paper will review past fluid dynamic activities in high energy lasers and discuss additional research still required. This paper will also address the various levels of fluid dynamic modeling and how these models can be applied in studying the fluid dynamics of Short Wavelength Chemical Lasers. Where it is felt that specific fluid methodologies are not available, but are required in order to conduct specific analyses, they will be defined. 34 refs., 6 figs., 1 tab.

  3. HOT ELECTROMAGNETIC OUTFLOWS. II. JET BREAKOUT

    SciTech Connect (OSTI)

    Russo, Matthew [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2013-08-20T23:59:59.000Z

    We consider the interaction between radiation, matter, and a magnetic field in a compact, relativistic jet. The entrained matter accelerates outward as the jet breaks out of a star or other confining medium. In some circumstances, such as gamma-ray bursts (GRBs), the magnetization of the jet is greatly reduced by an advected radiation field while the jet is optically thick to scattering. Where magnetic flux surfaces diverge rapidly, a strong outward Lorentz force develops and radiation and matter begin to decouple. The increase in magnetization is coupled to a rapid growth in Lorentz factor. We take two approaches to this problem. The first examines the flow outside the fast magnetosonic critical surface, and calculates the flow speed and the angular distribution of the radiation field over a range of scattering depths. The second considers the flow structure on both sides of the critical surface in the optically thin regime, using a relaxation method. In both approaches, we find how the terminal Lorentz factor and radial profile of the outflow depend on the radiation intensity and optical depth at breakout. The effect of bulk Compton scattering on the radiation spectrum is calculated by a Monte Carlo method, while neglecting the effects of internal dissipation. The peak of the scattered spectrum sits near the seed peak if radiation pressure dominates the acceleration, but is pushed to a higher frequency if the Lorentz force dominates. The unscattered seed radiation can form a distinct, low-frequency component of the spectrum, especially if the magnetic Poynting flux dominates.

  4. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  5. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  6. On the magnitude of the energy flow inherent in zero-point radiation

    E-Print Network [OSTI]

    Rafael Alvargonzalez

    2004-02-17T23:59:59.000Z

    The spectrum of zero-point radiation is relativistically invariant and its spectral density function is therefore inversely proportional to the cubes of its wavelengths. For its energy to be finite, there must exist a minimum wavelength, $q_\\lambda$. The measurements of the apparent attraction between two uncharged conductor plates, placed in a vacuum at a temperature close to absolute zero, made by Sparnaay in 1958 allow us to deduce that the energy flow of the zero-point radiation which comes of or into an area $(q_\\lambda)^2$, corresponds with the emission of one photon of wavelength $q_\\lambda$ per $q_\\tau$ $(q_\\tau=q_\\lambda/c)$, plus one photon of wavelength $2q_\\lambda$ per $2^3q_\\tau$, etc., up to one photon of wavelength $nq_\\lambda$ per $n^3q_\\tau$. This energy flow is enormous, but Sparnaay's experiments implied only photons whose wavelengths were greater than $5\\times10^{-5}$ cm, and zero-point radiation may include only photons with wavelengths greater than $xq_\\lambda$, being $x$ an integer, perhaps very great.

  7. Gravitational Radiation

    E-Print Network [OSTI]

    Bernard F Schutz

    2000-03-16T23:59:59.000Z

    Gravity is one of the fundamental forces of Nature, and it is the dominant force in most astronomical systems. In common with all other phenomena, gravity must obey the principles of special relativity. In particular, gravitational forces must not be transmitted or communicated faster than light. This means that when the gravitational field of an object changes, the changes ripple outwards through space and take a finite time to reach other objects. These ripples are called gravitational radiation or gravitational waves. This article gives a brief introduction to the physics of gravitational radiation, including technical material suitable for non-specialist scientists.

  8. Electromagnetically-Induced Frame-Dragging around Astrophysical Objects

    E-Print Network [OSTI]

    Ruiz, Andrés F Gutiérrez

    2015-01-01T23:59:59.000Z

    Frame dragging (Lense-Thirring effect) is generally associated with rotating astrophysical objects. However, it can also be generated by electromagnetic fields if electric and magnetic fields are simultaneously present. In most models of astrophysical objects, macroscopic charge neutrality is assumed and the entire electromagnetic field is characterized in terms of a magnetic dipole component. Hence, the purely electromagnetic contribution to the frame dragging vanishes. However, strange stars may posses independent electric dipole and neutron stars independent electric quadrupole moments that may lead to the presence of purely electromagnetic contributions to the frame dragging. Moreover, recent observations have shown that in stars with strong electromagnetic fields, the magnetic quadrupole may have a significant contribution to the dynamics of stellar processes. As an attempt to characterized and quantify the effect of electromagnetic frame-dragging in this kind of astrophysical objects, an analytic soluti...

  9. Fundamental physics on natures of the macroscopic vacuum under high intense electromagnetic fields with accelerators

    E-Print Network [OSTI]

    Kensuke Homma

    2009-11-30T23:59:59.000Z

    High intense electromagnetic fields can be unique probes to study natures of macroscopic vacua by themselves. Combining accelerators with the intense field can provide more fruitful probes which can neither be achieved by only intense fields nor only high energy accelerators. We will overview the natures of vacua which can be accessible via intense laser-laser and intense laser-electron interactions. In the case of the laser-laser interaction, we propose how to observe nonlinear QED effects and effects of new fields like light scalar and pseudo scalar fields which may contribute to a macroscopic nature of our universe such as dark energy. In the case of the laser-electron interaction, in addition to nonlinear QED effects, we can further discuss the nature of accelerating field in the vacuum where we can access physics related with event horizons such as Hawking-Unruh radiations. We will introduce a recent experimental trial to search for this kind of odd radiations.

  10. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass...

  11. Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...

    Open Energy Info (EERE)

    Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

  12. MA598: Modeling and Computation in Optics and Electromagnetics

    E-Print Network [OSTI]

    2010-08-24T23:59:59.000Z

    MA598: Modeling and Computation in Optics and Electromagnetics. Instructor: Peijun Li, office: Math 440, phone: 49-40846, e-mail: lipeijun@math.purdue.edu.

  13. Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Activity: Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area (Colorado School of Mines and Imperial College London, 2011) Exploration Activity Details Location Neal...

  14. MA692: Modeling and Computation in Optics and Electromagnetics

    E-Print Network [OSTI]

    2012-08-14T23:59:59.000Z

    MA692: Modeling and Computation in Optics and Electromagnetics. Instructor: Peijun Li, office: Math 440, phone: 49-40846, e-mail: lipeijun@math.purdue.edu.

  15. Electromagnetic Soundings At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    of this study was to obtain a more complete model of the geologic structure and hydrology of Kilauea's east rift zone Notes Electromagnetic transient soundings were conducted...

  16. 6.013 Electromagnetics and Applications, Fall 2002

    E-Print Network [OSTI]

    Staelin, David H.

    Electromagnetic phenomena are explored in modern applications including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, ...

  17. Analysis Of Factors Affecting Natural Source Slf Electromagnetic...

    Open Energy Info (EERE)

    At Geothermal Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Analysis Of Factors Affecting Natural Source Slf Electromagnetic...

  18. Electromagnetic scattering and induction models for spheroidal geometries

    E-Print Network [OSTI]

    Barrowes, Benjamin E., 1973-

    2004-01-01T23:59:59.000Z

    Electromagnetic scattering from a medium containing randomly distributed discrete dielectric spheroidal inclusions is studied. Also, the broadband magnetoquasistatic solution for the induced magnetic field from a conducting ...

  19. 6.641 Electromagnetic Fields, Forces, and Motion, Spring 2003

    E-Print Network [OSTI]

    Zahn, Markus, 1946-

    Electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Electromagnetic forces, force densities, and stress tensors, including magnetization ...

  20. Time-Domain Electromagnetics At Kilauea Southwest Rift And South...

    Open Energy Info (EERE)

    Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea...

  1. Novel resonance-assisted electromagnetic-transport phenomena

    E-Print Network [OSTI]

    Kurs, André B

    2011-01-01T23:59:59.000Z

    We first demonstrate theoretically and experimentally that electromagnetic resonators with high quality factors (Q) can be used to transfer power efficiently over distances substantially larger than the characteristic ...

  2. Electromagnetic Evidence For An Ancient Avalanche Caldera Rim...

    Open Energy Info (EERE)

    Merapi, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electromagnetic Evidence For An Ancient Avalanche Caldera Rim On The South...

  3. Vlf Electromagnetic Investigations Of The Crater And Central...

    Open Energy Info (EERE)

    Helens, Washington Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Vlf Electromagnetic Investigations Of The Crater And Central Dome Of Mount...

  4. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  5. Generation of terahertz radiation from a low-density plasma slab irradiated by a laser pulse

    SciTech Connect (OSTI)

    Frolov, A. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2010-04-15T23:59:59.000Z

    The generation of terahertz electromagnetic radiation when a laser pulse propagates through a low-density plasma slab is considered. It is shown that terahertz waves are excited because of the growth of a weakly damped, antisymmetric leaking mode of the plasma slab. The spectral, angular, and energy parameters of the terahertz radiation are investigated, as well as the spatiotemporal structure of the emitted waves. It is demonstrated that terahertz electromagnetic wave fields are generated most efficiently when the pulse length is comparable to the slab thickness.

  6. Artificial Retina Project: Electromagnetic and Thermal Effects

    SciTech Connect (OSTI)

    Lazzi, Gianluca

    2014-08-29T23:59:59.000Z

    This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

  7. Electromagnetic Profiling Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic Profiling Techniques Jump to:

  8. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic Profiling Techniques Jump

  9. Early detection of critical material degradation by means of electromagnetic multi-parametric NDE

    SciTech Connect (OSTI)

    Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Altpeter, Iris; Dobmann, Gerd [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); Seiler, Georg; Herrmann, Hans-Georg; Boller, Christian [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken, Germany and Saarland University, Chair of NDT and Quality Assurance, Campus E3 1, 66123 Saarbrücken (Germany)

    2014-02-18T23:59:59.000Z

    With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.

  10. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser...

  11. Radiative and Auger decay data for modelling nickel K lines

    E-Print Network [OSTI]

    P. Palmeri; P. Quinet; C. Mendoza; M. A. Bautista; J. Garcia; M. C. Witthoeft; T. R. Kallman

    2008-06-06T23:59:59.000Z

    Radiative and Auger decay data have been calculated for modelling the K lines in ions of the nickel isonuclear sequence, from Ni$^+$ up to Ni$^{27+}$. Level energies, transition wavelengths, radiative transition probabilities, and radiative and Auger widths have been determined using Cowan's Hartree--Fock with Relativistic corrections (HFR) method. Auger widths for the third-row ions (Ni$^+$--Ni$^{10+}$) have been computed using single-configuration average (SCA) compact formulae. Results are compared with data sets computed with the AUTOSTRUCTURE and MCDF atomic structure codes and with available experimental and theoretical values, mainly in highly ionized ions and in the solid state.

  12. Spatiotemporal focusing dynamics in plasmas at X-ray wavelength

    SciTech Connect (OSTI)

    Sharma, A., E-mail: a-physics2001@yahoo.com; Tibai, Z. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary)] [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Hebling, J. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary) [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Szentagothai Research Centre, University of Pecs, Pecs-7624 (Hungary); Mishra, S. K. [Institute for Plasma Research, Gandhinagar (India)] [Institute for Plasma Research, Gandhinagar (India)

    2014-03-15T23:59:59.000Z

    Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

  13. Sub-wavelength position measurements with running wave driving fields

    E-Print Network [OSTI]

    J. Evers; S. Qamar

    2009-01-29T23:59:59.000Z

    A scheme for sub-wavelength position measurements of quantum particles is discussed, which operates with running-wave laser fields as opposed to standing wave fields proposed in previous setups. The position is encoded in the phase of the applied fields rather than in the spatially modulated intensity of a standing wave. Therefore, disadvantages of standing wave schemes such as cases where the atom remains undetected since it is at a node of the standing wave field are avoided. Reversing the directions of parts of the driving laser fields allows to switch between different magnification levels, and thus to optimize the localization.

  14. Dual wavelength laser damage testing for high energy lasers.

    SciTech Connect (OSTI)

    Atherton, Briggs W.; Rambo, Patrick K.; Schwarz, Jens; Kimmel, Mark W.

    2010-05-01T23:59:59.000Z

    As high energy laser systems evolve towards higher energies, fundamental material properties such as the laser-induced damage threshold (LIDT) of the optics limit the overall system performance. The Z-Backlighter Laser Facility at Sandia National Laboratories uses a pair of such kiljoule-class Nd:Phosphate Glass lasers for x-ray radiography of high energy density physics events on the Z-Accelerator. These two systems, the Z-Beamlet system operating at 527nm/ 1ns and the Z-Petawatt system operating at 1054nm/ 0.5ps, can be combined for some experimental applications. In these scenarios, dichroic beam combining optics and subsequent dual wavelength high reflectors will see a high fluence from combined simultaneous laser exposure and may even see lingering effects when used for pump-probe configurations. Only recently have researchers begun to explore such concerns, looking at individual and simultaneous exposures of optics to 1064 and third harmonic 355nm light from Nd:YAG [1]. However, to our knowledge, measurements of simultaneous and delayed dual wavelength damage thresholds on such optics have not been performed for exposure to 1054nm and its second harmonic light, especially when the pulses are of disparate pulse duration. The Z-Backlighter Facility has an instrumented damage tester setup to examine the issues of laser-induced damage thresholds in a variety of such situations [2] . Using this damage tester, we have measured the LIDT of dual wavelength high reflectors at 1054nm/0.5ps and 532nm/7ns, separately and spatially combined, both co-temporal and delayed, with single and multiple exposures. We found that the LIDT of the sample at 1054nm/0.5ps can be significantly lowered, from 1.32J/cm{sup 2} damage fluence with 1054/0.5ps only to 1.05 J/cm{sup 2} with the simultaneous presence of 532nm/7ns laser light at a fluence of 8.1 J/cm{sup 2}. This reduction of LIDT of the sample at 1054nm/0.5ps continues as the fluence of 532nm/7ns laser light simultaneously present increases. The reduction of LIDT does not occur when the 2 pulses are temporally separated. This paper will also present dual wavelength LIDT results of commercial dichroic beam-combining optics simultaneously exposed with laser light at 1054nm/2.5ns and 532nm/7ns.

  15. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy

    SciTech Connect (OSTI)

    Cai, Weiwei; Kaminski, Clemens F., E-mail: cfk23@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA (United Kingdom)

    2014-04-14T23:59:59.000Z

    We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.

  16. Electromagnetic fields: Biological and clinical aspects

    SciTech Connect (OSTI)

    Tabrah, F.L.; Batkin, S. (Department of Physiology, University of Hawaii School of Medicine, Honolulu (USA))

    1991-03-01T23:59:59.000Z

    Our entire biosphere is immersed in a sea of man-made electromagnetic fields (EMF). Occupational and public health data suggest that these fields may be a health hazard, possibly involving cancer and fetal loss. This paper reviews the history and pertinent physics of electromagnetic fields and presents evidence from the authors' work, and that of others, of biological interaction with living systems. Epidemiological data suggesting EMF hazards are reviewed including a discussion of possible risks associated with Hawaii's Lualualei transmitter site, TV and FM antennas in high-density population areas, fields surrounding electric power transmission and computer terminals, and the plan to route a major highway through the near-field of an operating Omega signal-source. In the face of current public fear and controversial research reports about long-term EMF exposure, suggestions are presented for public policy about these local sources of concern, as well as for the EMF risks common to any similarly developed areas. 30 refs.

  17. VOLUME 80, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 23 MARCH 1998 Tunable Radiation Source through Upshifting without Ionization

    E-Print Network [OSTI]

    electric field is converted into radiation by rapidly changing the number of free carriers. In a gaseousVOLUME 80, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 23 MARCH 1998 Tunable Radiation for generating electromagnetic wakes of infrared radiation by a short laser pulse, propagating through

  18. New rest wavelength determinations for 7 mid-infrared fine structure lines by ISO-SWS

    E-Print Network [OSTI]

    H. Feuchtgruber; D. Lutz; D. A. Beintema

    2001-05-15T23:59:59.000Z

    Observations of the planetary nebulae NGC6302, NGC6543 and NGC7027 by the Short Wavelength Spectrometer (SWS) on board the Infrared Space Observatory (ISO) have been used to determine rest wavelengths of spectral lines. We report on improved accuracies for wavelengths of 7 mid-infrared ionic fine structure lines.

  19. Variable-Period Undulators For Synchrotron Radiation

    DOE Patents [OSTI]

    Shenoy, Gopal (Naperville, IL); Lewellen, John (Plainfield, IL); Shu, Deming (Darien, IL); Vinokurov, Nikolai (Novosibirsk, RU)

    2005-02-22T23:59:59.000Z

    A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high-energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

  20. Spectrum of the radiation from electric charges and from dipoles which free infall into a black hole

    E-Print Network [OSTI]

    A. A. Shatskiy; I. D. Novikov; L. N. Lipatova

    2013-03-30T23:59:59.000Z

    The free fall of electric charges and dipoles, radial and freely falling into the Schwarzschild black hole event horizon, was considered. Inverse effect of electromagnetic fields on the black hole is neglected. Dipole was considered as a point particle, so the deformation associated with exposure by tidal forces are neglected. According to the theorem, "the lack of hair" of black holes, multipole magnetic fields must be fully emitted by multipole fall into a black hole. The spectrum of electromagnetic radiation power for these multipoles (monopole and dipole) was found. Differences were found in the spectra for different orientations of the falling dipole. A general method has been developed to find radiated electromagnetic multipole fields for the free falling multipoles into a black hole (including higher order multipoles - quadrupoles, etc.). The electromagnetic spectrum can be compared with observational data from stellar mass and smaller black holes.

  1. Progress In Electromagnetics Research B, Vol. 37, 205235, 2012 DERIVATION OF HOMOGENEOUS PERMITTIVITY OF

    E-Print Network [OSTI]

    Koledintseva, Marina Y.

    for engineering electromagnetic absorbing composite materials, for example, containing carbon fibers. The causal PERMITTIVITY OF COMPOSITE MATERIALS WITH ALIGNED CYLINDRI- CAL INCLUSIONS FOR CAUSAL ELECTROMAGNETIC Debye representation is important for incorporation of a composite material in numerical electromagnetic

  2. Guiding of an electromagnetic pulse in a plasma immersed in combined wiggler and axial magnetic fields

    E-Print Network [OSTI]

    Hur, Min Sup

    2009-01-01T23:59:59.000Z

    813 Guiding of an electromagnetic pulse in a plasma immersedGuiding of an electromagnetic pulse in a plasma immersed inof guiding an electromagnetic pulse. The scheme consists of

  3. Electromagnetic space-time crystals. II. Fractal computational approach

    E-Print Network [OSTI]

    G. N. Borzdov

    2014-10-20T23:59:59.000Z

    A fractal approach to numerical analysis of electromagnetic space-time crystals, created by three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency, is presented. Finite models of electromagnetic crystals are introduced, which make possible to obtain various approximate solutions of the Dirac equation. A criterion for evaluating accuracy of these approximate solutions is suggested.

  4. Electromagnetic Wellbore Heating C. Sean Bohun, The Pennsylvania State University,

    E-Print Network [OSTI]

    Bohun, C. Sean

    Electromagnetic Wellbore Heating C. Sean Bohun, The Pennsylvania State University, Bruce McGee, Mc Workshop, June 2000. 1 Introduction In this paper we derive a simple model that describes the recovery of petroleum fluids from an oil reservoir by the method of electromagnetic heating. By its very nature

  5. Electromagnetic actuator to reduce vibration sources Thibaut Chailloux*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in an FE- Tuned Magnetic Equivalent Circuit of an Electromagnetic Relay, Sixdenier F., Raulet M.-A., MarionElectromagnetic actuator to reduce vibration sources Thibaut Chailloux* , L. Morel* , F. Sixdenier In order to improve passenger comfort, a reduction of vibration sources in vehicles is being considered

  6. Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic Pulse Propagating to plasma physics and particle accelerators. The interaction physics of fields with particles has also been, Colchester CO4 3SQ, U.K. Abstract. The motion of a charged particle driven by an electromagnetic pulse

  7. Time-spatial drift of decelerating electromagnetic pulses

    E-Print Network [OSTI]

    Nerukh, Dmitry

    Time-spatial drift of decelerating electromagnetic pulses Alexander G. Nerukh1* and Dmitry A dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time

  8. Dependence of Turing pattern wavelength on diffusion rate

    SciTech Connect (OSTI)

    Ouyang, Q. (Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)); Li, R.; Li, G. (Department of Chemistry, The Tsinghua University, Beijing 10008 (China)); Swinney, H.L. (Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States))

    1995-02-08T23:59:59.000Z

    The relation between the diffusion coefficient of reactants and the wavelength of Turing patterns is examined in experiments on the chlorite--iodide--malonic acid (CIMA) reaction in gel media. The diffusion coefficients in polyacrylamide and agarose gels are varied by varying the gel densities. The diffusion coefficient [ital D] of NaCl is found to vary from 0.5[times]10[sup [minus]5] to 1.8[times]10[sup [minus]5] cm[sup 2]/s for the gel conditions considered. The CIMA reactants are assumed to have diffusion coefficients that are directly proportional to that of NaCl. The wavelength [lambda] of the observed hexagonal patterns (0.13--0.28 mm) varies in accord with the predicted relation for Turing patterns, [lambda][similar to][ital D][sup 1/2]. Moreover, the predicted relationship to a characteristic period of oscillation [tau], [lambda]=(2[pi][tau][ital D])[sup 1/2], is supported by measurements of [tau] just beyond a Hopf bifurcation in a stirred flow reactor.

  9. Position sensitive detection of neutrons in high radiation background field

    SciTech Connect (OSTI)

    Vavrik, D., E-mail: vavrik@itam.cas.cz [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, Prague (Czech Republic); Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic); Jakubek, J.; Pospisil, S. [Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic)] [Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9 (Czech Republic); Vacik, J. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, 250 68 Prague, Czech Republic (Czech Republic)] [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, 250 68 Prague, Czech Republic (Czech Republic)

    2014-01-15T23:59:59.000Z

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high ? and e{sup ?} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 ?m{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup ?4}.

  10. Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals and Conductive

    E-Print Network [OSTI]

    Kepler, Grace Martinelli

    Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals of a pulsed planar electromagnetic wave of a dielectric slab with a supraconductive backing. Previous work

  11. Large Dynamic Range Electromagnetic FieldLarge Dynamic Range Electromagnetic Field Sensor based on Domain Inverted Electro-Optic

    E-Print Network [OSTI]

    Texas at Austin, University of

    Large Dynamic Range Electromagnetic FieldLarge Dynamic Range Electromagnetic Field Sensor based on Domain Inverted Electro-Optic Polymer Directional CouplerPolymer Directional Coupler Alan X. Wang Ray T. Chen Omega Optics Inc Austin TXOmega Optics Inc., Austin, TX -1- #12;Application of Electric Field

  12. Efficient Coupling of Thermal Electron Bernstein Waves to the Ordinary Electromagnetic Mode on the National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    G. Taylor; P.C. Efthimion; B.P. LeBlanc; M.D. Carter; J.B. Caughman; J.B. Wilgen; J. Preinhaelter; R.W. Harvey; S.A. Sabbagh

    2005-02-02T23:59:59.000Z

    Efficient coupling of thermal electron Bernstein waves (EBW) to ordinary mode (Omode) electromagnetic radiation has been measured in plasmas heated by energetic neutral beams and high harmonic fast waves in the National Spherical Torus Experiment (NSTX) [M. Ono, S. Kaye, M. Peng, et al., Proceedings 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol.3, p. 1135]. The EBW to electromagnetic mode coupling efficiency was measured to be 0.8 {+-} 0.2, compared to a numerical EBW modeling prediction of 0.65. The observation of efficient EBW coupling to O-mode, in relatively good agreement with numerical modeling, is a necessary prerequisite for implementing a proposed high power EBW current drive system on NSTX.

  13. Tracing the geometry around a massive, axisymmetric body to measure, through gravitational waves, its mass moments and electromagnetic moments

    E-Print Network [OSTI]

    T. P. Sotiriou; T. A. Apostolatos

    2004-10-25T23:59:59.000Z

    The geometry around a rotating massive body, which carries charge and electrical currents, could be described by its multipole moments (mass moments, mass-current moments, electric moments, and magnetic moments). When a small body is orbiting this massive body, it will move on geodesics, at least for a time interval that is short with respect to the characteristic time of the binary due to gravitational radiation. By monitoring the waves emitted by the small body we are actually tracing the geometry of the central object, and hence, in principle, we can infer all its multipole moments. This paper is a generalization of previous similar results by Ryan. The fact that the electromagnetic moments of spacetime can be measured demonstrates that one can obtain information about the electromagnetic field purely from gravitational wave analysis. Additionally, these measurements could be used as a test of the no-hair theorem for black holes.

  14. Control of emission wavelength for InGaAs/GaAs quantum wells and laser structures on their basis by means of proton irradiation

    SciTech Connect (OSTI)

    Akhlestina, S. A.; Vasil'ev, V. K.; Vikhrova, O. V., E-mail: vikhrova@nifti.unn.ru; Danilov, Yu. A.; Zvonkov, B. N.; Nekorkin, S. M. [Lobachevsky Nizhni Novgorod State University, Physicotechnical Research Institute (Russian Federation)

    2010-11-15T23:59:59.000Z

    Features of controlling the wavelength of emission from laser heterostructures with strained InGaAs/GaAs quantum wells by irradiation with medium-energy (with the energy as high as 150 keV) protons are studied. It is established that irradiation with H{sup +} ions and subsequent thermal annealing at a temperature of 700 deg. C make it possible to decrease the wavelength of emission from quantum wells. As the dose of ions is increased from 10{sup 13} to 10{sup 16} cm{sup -2}, the magnitude of change in the wavelength increases to 20 nm. Starting with a dose of 10{sup 15} cm{sup -2}, a significant decrease in the intensity of emission is observed. The optimum dose of H{sup +} ions (6 x 10{sup 14} cm{sup -2}) and annealing temperature (700 deg. C) for modifying the InGaAs/GaAs/InGaP laser structures are determined; it is shown that, in this case, one can obtain a shift of {approx}(8-10) nm for the wavelength of laser radiation with low losses in intensity with the quality of the surface of laser structures retained. The observed 'blue' shift is caused by implantation-stimulated processes of intermixing of the In and Ga atoms at the InGaAs/GaAs interface.

  15. Electromagnetic matrix elements for negative parity nucleons

    E-Print Network [OSTI]

    Benjamin Owen; Waseem Kamleh; Derek Leinweber; Selim Mahbub; Benjamin Menadue

    2014-12-15T23:59:59.000Z

    Here we present preliminary results for the evaluation of the electromagnetic form factors for the lowest-lying negative-parity, spin-$\\frac{1}{2}$ nucleons, namely the $S_{11}(1535)$ and $S_{11}(1650)$, through the use of the variational method. We find that the characteristics of the electric form factor, $G_{E}$, are similar between these states, however significant differences are observed between the quark-sector contributions to the magnetic form factor, $G_{M}$. Within simple constituent quark models, these states are understood to be admixtures of $s=\\frac{1}{2}$ and $s=\\frac{3}{2}$ states coupled to orbital angular momentum $\\ell = 1$. Our results reveal a qualitative difference in the manner in which the singly-represented quark sector contributes to these baryon magnetic form factors.

  16. Theory of Dipole Induced Electromagnetic Transparency

    E-Print Network [OSTI]

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric

    2015-01-01T23:59:59.000Z

    A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...

  17. Dissipative electromagnetic solitary waves in collisional plasmas

    SciTech Connect (OSTI)

    Borhanian, Jafar [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P.O.Box 179, Ardabil (Iran, Islamic Republic of)

    2012-08-15T23:59:59.000Z

    The propagation of linearly polarized electromagnetic (EM) waves in a collisional plasma is studied using multiple scale perturbation technique in a weakly nonlinear regime. A complex linear dispersion relation and a complex group velocity are obtained for EM waves propagating in a plasma and their dependence on system parameters is investigated. It is shown that the amplitude of EM pulse is governed by an envelope equation similar to a cubic complex Ginzburg-Landau equation. A traveling bright solitary wave solution for envelope equation is found, its existence condition in parameter space is explored and variation of its profile with system parameters is manipulated. Monitoring temporal evolution of traveling solitary wave solution provides more insight into the nature of this solution and ensures that depending on the parameters of the system, solitary wave solution may behave like a stationary soliton or may exhibit the behavior of a breathing soliton.

  18. Systems and methods for detecting nuclear radiation in the presence of backgrounds

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-06-21T23:59:59.000Z

    Systems and methods for the simultaneous detection and identification of radiation species, including neutrons, gammas/x-rays and minimum ionizing particles (MIPs). A plurality of rectangular and/or triangularly shaped radiation sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material. A wavelength-shifting fiber can then be located within a central hole of each extruded scintillator, wherein the wavelength-shifting fiber absorbs scintillation light and re-emits the light at a longer wavelength, thereby piping the light to a photodetector whose response to the light indicates the presence of radiation The resulting method and system can simultaneously detect neutrons, gamma rays, x-rays and cosmic rays (MIPs) and identify each.

  19. Radio Wave 'Messengers' of Periodic Gravitational Radiation and the Problem of Gravitationally Induced Nonlinearity in Electrodynamic Systems

    E-Print Network [OSTI]

    A. B. Balakin; Z. G. Murzakhanov; G. V. Kisun'ko

    2005-11-10T23:59:59.000Z

    We discuss a gravitationally induced nonlinearity in hierarchic systems. We consider the generation of extremely low-frequency radio waves with a frequency of the periodic gravitational radiation; the generation is due to an induced nonlinear self-action of electromagnetic radiation in the vicinity of the gravitational-radiation source. These radio waves are a fundamentally new type of response of an electrodynamic system to gravitational radiation. That is why we here use an unconventional term: radio-wave messengers of periodic gravitational radiation.

  20. Technical note Piezo-controlled intracavity wavelength selector for the

    E-Print Network [OSTI]

    Peale, Robert E.

    -frequency rotation. Such a system may ®nd practical use in emissions moni- toring and detection of explosives, illicit drugs, or chemical warfare agents. A possible fundamental science application is laser was of smaller diameter (4 mm) than the laser crystal to allow output of radiation. The lamellar grating type [2

  1. A new radiation stripline ICRF antenna design for EAST Tokamak

    SciTech Connect (OSTI)

    Qin, C. M.; Zhao, Y. P.; Wan, B. N.; Li, J.; Zhang, X. J.; Yang, Q. X.; Yuan, S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Braun, F. [Max-Planck Institute for Plasma Physics, D-85748, Garching (Germany); Notedame, J.-M. [Max-Planck Institute for Plasma Physics, D-85748, Garching, Germany and University of Gent (Belgium); Kasahara, H. [National Institute for Fusion Science, Toki (Japan); Collaboration: ICRF Team on EAST

    2014-02-12T23:59:59.000Z

    A new type of toroidal long Radiation Stripline Antenna (RSA) is presented, which can effectively improve antenna radiation, leading in reduction of max voltage on transmission line and decrease of the sensitivity to ELM's of the ICRF system at some frequencies. Based on the new concept, a 4-straps RSA is proposed for EAST device. Using 3-D computing simulator code (HFSS), RF current distribution, S-parameters and electromagnetic field distribution on and near the RSA ICRF antenna are analyzed and compared with present ICRF antenna on EAST.

  2. Various Interpretations of the Stored and the Radiated Energy Density

    E-Print Network [OSTI]

    Capek, Miloslav

    2015-01-01T23:59:59.000Z

    Three contradictory but state-of-the-art concepts for defining and evaluating stored electromagnetic energy are treated in this communication, and are collated with the widely accepted definition of stored energy, which is the total energy minus the radiated energy. All three concepts are compared, and the results are discussed on an example of a dominant spherical mode, which is known to yield dissimilar results for the concepts dealt with here. It is shown that various definitions of stored energy density immanently imply diverse meanings of the term "radiation".

  3. Equipment level fallout radiation-effects approach. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-02-10T23:59:59.000Z

    National Security Decision Directive (NSDD) 97 and Executive Order (EO) 12472 call for the ability to maintain National Security Emergency Preparedness (NSEP) communication capabilities in times of national disaster, which includes a nuclear attack. The Office of the Manager, National Communications System (OMNCS) sponsors the Electromagnetic Pulse (EMP) Mitigation Program to evaluate and, where possible, mitigate the effects of the nuclear attack. Fallout radiation has been identified as an environment that may effect the performance of the regional and national telecommunication system. This report presents the investigations in the network-level fallout radiation methodology used to determine the effects of this environment. Alternative techniques are presented to improve the methodology.

  4. THE ALGOL TRIPLE SYSTEM SPATIALLY RESOLVED AT OPTICAL WAVELENGTHS

    SciTech Connect (OSTI)

    Zavala, R. T.; Hutter, D. J. [U.S. Naval Observatory, Flagstaff Station, 10391 W. Naval Obs. Rd., Flagstaff, AZ 86001 (United States); Hummel, C. A. [European Organization for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany); Boboltz, D. A.; Ojha, R. [U.S. Naval Observatory, 3450 Massachusetts Ave. NW, Washington DC 20392 (United States); Shaffer, D. B. [Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ 86001 (United States); Tycner, C. [Department of Physics, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Richards, M. T., E-mail: bzavala@nofs.navy.mi, E-mail: djh@nofs.navy.mi, E-mail: chummel@eso.or, E-mail: dboboltz@usno.navy.mi, E-mail: rojha@usno.navy.mi, E-mail: shaffer@alumni.caltech.ed, E-mail: c.tycner@cmich.ed, E-mail: mrichards@astro.psu.ed [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 19104 (United States)

    2010-05-20T23:59:59.000Z

    Interacting binaries typically have separations in the milliarcsecond regime, and hence it has been challenging to resolve them at any wavelength. However, recent advances in optical interferometry have improved our ability to discern the components in these systems and have now enabled the direct determination of physical parameters. We used the Navy Prototype Optical Interferometer to produce for the first time images resolving all three components in the well-known Algol triple system. Specifically, we have separated the tertiary component from the binary and simultaneously resolved the eclipsing binary pair, which represents the nearest and brightest eclipsing binary in the sky. We present revised orbital elements for the triple system, and we have rectified the 180{sup 0} ambiguity in the position angle of Algol C. Our directly determined magnitude differences and masses for this triple star system are consistent with earlier light curve modeling results.

  5. Selective radiative cooling with MgO and/or LiF layers

    DOE Patents [OSTI]

    Berdahl, P.H.

    1984-09-14T23:59:59.000Z

    A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

  6. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5 nm wavelength

    SciTech Connect (OSTI)

    Hau-Riege, S; London, R A; Bionta, R M; McKernan, M A; Baker, S L; Krzywinski, J; Sobierajski, R; Nietubyc, R; Pelka, J B; Jurek, M; Klinger, D; Juha, L; Chalupsky, J; Cihelka, J; Hajkova, V; Koptyaev, S; Velyhan, A; Krasa, J; Kuba, J; Tiedtke, K; Toleikis, S; Tschentscher, T; Wabnitz, H; Bergh, M; Caleman, C; Sokolowski-Tinten, K; Stojanovic, N; Zastrau, U; Tronnier, A; Meyer-ter-Vehn, J

    2007-12-03T23:59:59.000Z

    We exposed samples of B4C, amorphous C, chemical-vapor-deposition (CVD)-diamond C, Si, and SiC to single 25 fs-long pulses of 32.5 nm free-electron-laser radiation at fluences of up to 2.2 J/cm{sup 2}. The samples were chosen as candidate materials for x-ray free electron laser (XFEL) optics. We found that the threshold for surface-damage is on the order of the fluence required for thermal melting. For larger fluences, the crater depths correspond to temperatures on the order of the critical temperature, suggesting that the craters are formed by two-phase vaporization [1]. XFELs have the promise of producing extremely high-intensity ultrashort pulses of coherent, monochromatic radiation in the 1 to 10 keV regime. The expected high output fluence and short pulse duration pose significant challenges to the optical components, including radiation damage. It has not been possible to obtain direct experimental verification of the expected damage thresholds since appropriate x-ray sources are not yet available. FLASH has allowed us to study the interaction of high-fluence short-duration photon pulses with materials at the shortest wavelength possible to date. With these experiments, we have come closer to the extreme conditions expected in XFEL-matter interaction scenarios than previously possible.

  7. Radiation correction to astrophysical fusion reactions and the electron screening problem

    E-Print Network [OSTI]

    K. Hagino; A. B. Balantekin

    2002-08-19T23:59:59.000Z

    We discuss the effect of electromagnetic environment on laboratory measurements of the nuclear fusion reactions of astrophysical interest. The radiation field is eliminated using the path integral formalism in order to obtain the influence functional, which we evaluate in the semi-classical approximation. We show that enhancement of the tunneling probability due to the radiation correction is extremely small and does not resolve the longstanding problem that the observed electron screening effect is significantly larger than theoretical predictions.

  8. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOE Patents [OSTI]

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14T23:59:59.000Z

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  9. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOE Patents [OSTI]

    Dawson, John M. (Pacific Palisades, CA); Mori, Warren B. (Hermosa Beach, CA); Lai, Chih-Hsiang (So. Pasadena, CA); Katsouleas, Thomas C. (Malibu, CA)

    1998-01-01T23:59:59.000Z

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  10. Radiation Damage of F8 Lead Glass with 20 MeV Electrons

    E-Print Network [OSTI]

    Schaefer, B D; McChesney, P; Shepherd, M R; Frye, J M

    2011-01-01T23:59:59.000Z

    Using a 20 MeV linear accelerator, we investigate the effects of electromagnetic radiation on the optical transparency of F8 lead glass. Specifically, we measure the change in attenuation length as a function of radiation dose. Comparing our results to similar work that utilized a proton beam, we conclude that F8 lead glass is more susceptible to proton damage than electron damage.

  11. Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System

    E-Print Network [OSTI]

    Fitzmaurice, Matthew Blake 1988-

    2012-11-06T23:59:59.000Z

    , weather, and time of day. 6 Gamma rays are electromagnetic radiation emitted by excited nuclei in order for them to reach the ground state after decaying. Once emitted, these particles mainly interact with matter in three ways: photoelectric effect... and measured density were then used to define the MCNP material card for concrete. Pulse height tallies were used to determine the total gamma ray count rate in each of the four gamma detectors in the RPM. 5 CHAPTER II BACKGROUND II.A. Radiation...

  12. Einstein's coefficients and the wave-particle duality in the theory of thermal radiation

    E-Print Network [OSTI]

    Fedor V. Prigara

    2005-01-19T23:59:59.000Z

    It is shown that the concept of elementary resonator in the theory of thermal radiation implies the indivisible connection between particles (photons) and electromagnetic waves. This wave-particle duality covers both the Wien and Rayleigh-Jeans regions of spectrum.

  13. On the grounding of spin effects in theory of synchrotron radiation

    E-Print Network [OSTI]

    V. A. Bordovitsyn; A. N. Myagkii

    2001-02-21T23:59:59.000Z

    The problem of the uniqueness in the introduction of spin operators in the synchrotron radiation theory is discussed. For this purpose we give the invariant spin projections on the basis of the spin projections in the rest frame. The spin equations are used to construct the integrals of motion in the presence of the external electromagnetic field.

  14. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22T23:59:59.000Z

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  15. Nonlinear Landau damping of transverse electromagnetic waves in dusty plasmas

    SciTech Connect (OSTI)

    Tsintsadze, N. L. [E. Andronikashvili Institute of Physics, Tbilisi 0171 (Georgia); Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Chaudhary, Rozina [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan)

    2009-04-15T23:59:59.000Z

    High-frequency transverse electromagnetic waves in a collisionless isotropic dusty plasma damp via nonlinear Landau damping. Taking into account the latter we have obtained a generalized set of Zakharov equations with local and nonlocal terms. Then from this coupled set of Zakharov equations a kinetic nonlinear Schroedinger equation with local and nonlocal nonlinearities is derived for special cases. It is shown that the modulation of the amplitude of the electromagnetic waves leads to the modulation instability through the nonlinear Landau damping term. The maximum growth rate is obtained for the special case when the group velocity of electromagnetic waves is close to the dust acoustic velocity.

  16. Electromagnetic energy dispersion in a 5D universe

    SciTech Connect (OSTI)

    Hartnett, John G. [School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley 6009 WA Australia (Australia)

    2010-06-15T23:59:59.000Z

    Electromagnetism is analyzed in a 5D expanding universe. Compared to the usual 4D description of electrodynamics it can be viewed as adding effective charge and current densities to the universe that are static in time. These lead to effective polarization and magnetization of the vacuum, which is most significant at high redshift. Electromagnetic waves propagate but group and phase velocities are dispersive. This introduces a new energy scale to the cosmos. And as a result electromagnetic waves propagate with superluminal speeds but no energy is transmitted faster than the canonical speed of light c.

  17. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01T23:59:59.000Z

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  18. Influence of the pump wavelength on the parameters of lasing of complex organic compounds in the gaseous phase

    SciTech Connect (OSTI)

    Gruzinskii, V.V.; Danilova, V.I.; Degtyarenko, K.M.; Kopylova, T.N.

    1984-01-01T23:59:59.000Z

    Lasing was observed in pentane-stabilized vapors of 1,4-di(2-(5-phenyloxazolyl))benzene (POPOP) and 1,4-di(benzoxazol-2'-yl)benzene (BOPBO) pumped by KrF* excimer laser radiation (lambda/sub p/ = 248 nm). An investigation was made of the dependences of the threshold pump power density W/sub p.th/ on the pentane pressure, on temperature, and on the vapor pressure of the lasing substance at pump wavelengths lambda/sub p/ = 248, 308, 337, and 350 nm. In the case of BOPBO the minimum threshold power density was W/sub p.th/ = 250 kW/cm/sup 2/.

  19. Composition and apparatus for detecting gamma radiation

    DOE Patents [OSTI]

    Hofstetter, K.J.

    1994-08-09T23:59:59.000Z

    A gamma radiation detector and a radioluminescent composition for use therein. The detector includes a radioluminescent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO[sub 4]) or cerussite (PbCO[sub 3]) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes. 3 figs.

  20. Coherent Radiation Effects in the LCLS Undulator

    SciTech Connect (OSTI)

    Reiche, S.; /UCLA; Huang, Z.; /SLAC

    2010-12-14T23:59:59.000Z

    For X-ray Free-Electron Lasers such as LCLS and TESLA FEL, a change in the electron energy while amplifying the FEL radiation can shift the resonance condition out of the bandwidth of the FEL. The largest sources of energy loss is the emission of incoherent undulator radiation. Because the loss per electron depends only on the undulator parameters and the beam energy, which are fixed for a given resonant wavelength, the average energy loss can be compensated for by a fixed taper of the undulator. Coherent radiation has a strong enhancement proportional to the number of electrons in the bunch for frequencies comparable to or longer than the bunch dimension. If the emitted coherent energy becomes comparable to that of the incoherent emission, it has to be included in the taper as well. However, the coherent loss depends on the bunch charge and the applied compression scheme and a change of these parameters would require a change of the taper. This imposes a limitation on the practical operation of Free-Electron Lasers, where the taper can only be adjusted manually. In this presentation we analyze the coherent emission of undulator radiation and transition undulator radiation for LCLS, and estimate whether the resulting energy losses are significant for the operation of LCLS.

  1. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26T23:59:59.000Z

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  2. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Kaplan, Selig N. (El Cerrito, CA); Perez-Mendez, Victor (Berkeley, CA)

    1992-01-01T23:59:59.000Z

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  3. environmental management radiation protection

    E-Print Network [OSTI]

    Entekhabi, Dara

    EHS environmental management biosafety radiation protection industrial hygiene safety Working: Biosafety, Environmental Management, Industrial Hygiene, Radiation Protection and Safety. Each specialized Management Program, Industrial Hygiene, Radiation Protection Program, and the Safety Program. (http

  4. DETECTORS FOR RADIATION DOSIMETRY

    E-Print Network [OSTI]

    Perez-Mendez, V.

    2010-01-01T23:59:59.000Z

    J. Price, "Nuclear Radiation Detection" (2nd ed. , New York:4) G. F. Knoll, "Radiation Detection and Measurement" (NewSons, Inc. from "Radiation Detection and Measurement," G. F.

  5. Low-cost electromagnetic tagging : design and implementation

    E-Print Network [OSTI]

    Fletcher, Richard R. (Richard Ribon)

    2002-01-01T23:59:59.000Z

    Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic ...

  6. Electromagnetic Extraction and Annihilation of Antiprotons for Spacecraft Propulsion

    E-Print Network [OSTI]

    . Zayas, Raymond J. Sedwick May, 2008 SSL # 3-08 #12;#12;Electromagnetic Extraction and Annihilation of Antiprotons for Spacecraft Propulsion Daniel A. Zayas, Raymond J. Sedwick May, 2008 SSL # 3-08 This work

  7. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators

    E-Print Network [OSTI]

    Kohen, Stephen Michael, 1980-

    2004-01-01T23:59:59.000Z

    Finite-element numerical modeling and analysis of electromagnetic waveguides and resonators used in terahertz (THz) quantum cascade lasers (QCLs) is presented. Simulations and analysis of two types were performed: ...

  8. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon

    E-Print Network [OSTI]

    Gao, Hongjun

    , electrically conducting polymer composites have gained popularity recently because of their light weight (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI) of a composite material depends on many factors, including the filler's intrinsic conductivity, dielectric

  9. Design Optimization of electromagnetic actuator by genetic algorithm

    E-Print Network [OSTI]

    ELBEZ

    2008-02-26T23:59:59.000Z

    condition in the design or in the optimization of electromagnetic ... propose a new approach to optimize linear actuator. This new .... derivative of the stored magnetic energy with respect ..... H. Poorzahedy “Hybrid meta-heuristic algorithms.

  10. A scalable electro-magnetic communication system for underwater swarms

    E-Print Network [OSTI]

    Zimmer, Uwe

    A scalable electro-magnetic communication system for underwater swarms Felix Schill 1 Uwe R. Zimmer for communication is small compared to propulsion requirements. Communication of state information can there- fore

  11. Fast dynamic force computation for electrostatic and electromagnetic conductors 

    E-Print Network [OSTI]

    Koteeswaran, Prabhavathi

    2005-02-17T23:59:59.000Z

    This thesis presents an improved method for dynamic force computation applicable to both electrostatic and electromagnetic conductors with complex 3D geometries. During the transient simulation of electrostatic actuated MEMS, the positions...

  12. Development of in situ, at-wavelength metrology for soft x-ray nano-focusing

    SciTech Connect (OSTI)

    Yuan, Sheng Sam; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory Y.; Warwick, Tony; Padmore, Howard A.

    2010-09-19T23:59:59.000Z

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. We describe here details of the metrology beamline endstation, the at-wavelength tests, and an original alignment method that have already allowed us to precisely set a bendable KB mirror to achieve a FWHM focused spot size of ~;;120 nm, at 1-nm soft x-ray wavelength.

  13. Sandia National Laboratories: Electromagnetics: Main Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandianPrograms:Co-ops: Go About Mission

  14. Network-level fallout radiation effects assessment. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    National Security calls for the ability to maintain communication capabilities in times of national disaster, which could include a nuclear attack. Nuclear detonation has two basic by-products for which telecommunication equipments are susceptible to damage. These are electromagnetic pulse (EMP) and fallout radiation. The purposes of the EMP Mitigation Program are to analyze and to lessen the effects of EMP and fallout radiation on national telecommunications resources. Fallout radiation occurs after the initial intense high-frequency EMP, and is the subject of this analysis. Fallout radiation is the residual radiation that remains in the atmosphere after a nuclear blast, and which can be carried by weather conditions to locations far from the detonation point. This analysis focuses on the effects of fallout radiation on the telecommunications network of the American Telephone and Telegraph Co. (AT and T). This assessment of AT and T-network's communications-capabilities uses a network-level approach to assess fallout-radiation effects on the network's performance. The approach used was developed for assessing network-level EMP effects on Public Switched Network communication capabilities. Details are given on how EMP assessments utilize this method. Equipment-level fallout-radiation survivability data is also required.

  15. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1987-01-01T23:59:59.000Z

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  16. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01T23:59:59.000Z

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  17. Electromagnetic anti-jam telemetry tool

    DOE Patents [OSTI]

    Ganesan, Harini (Sugar Land, TX); Mayzenberg, Nataliya (Missouri City, TX)

    2008-02-12T23:59:59.000Z

    A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.

  18. Nucleon Structure Studies with Electromagnetic Probes

    SciTech Connect (OSTI)

    Vineyard, Michael F.

    2011-03-31T23:59:59.000Z

    Summarized in this report is the progress achieved during the period from March 1, 2008 to June 14, 2009 under contract number DE-FG02-03ER41252. This is the final technical report under this contract. The experimental work described here is part of the electromagnetic nuclear physics program of the CEBAF Large Acceptance Spectrometer (CLAS) Collaboration at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) that published 17 journal articles during the period of this report. One of these journal articles reported on the results of precise measurements of the neutron magnetic form factor. I was a spokesperson on this experiment and the publication of these results is the culmination of years of effort by a small subset of the CLAS Collaboration. As usual, undergraduate students were involved in all aspects of this work. Three Union College students participated in this program during the window of this report and one presented a paper on his work at the 2009 National Conference on Undergraduate Research (NCUR22). In this report, I discuss recent progress on the measurements of the neutron magnetic form factor and describe my service work for the CLAS Collaboration.

  19. Binary power multiplier for electromagnetic energy

    DOE Patents [OSTI]

    Farkas, Zoltan D. (203 Leland Ave., Menlo Park, CA 94025)

    1988-01-01T23:59:59.000Z

    A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

  20. Calibrating Accelerometers Using an Electromagnetic Launcher

    SciTech Connect (OSTI)

    Erik Timpson

    2012-05-13T23:59:59.000Z

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  1. Electromagnetic Studies of Mesons, Nucleons, and Nuclei

    SciTech Connect (OSTI)

    Baker, Oliver K.

    2013-08-20T23:59:59.000Z

    Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

  2. Design of high temperature high speed electromagnetic axial thrust bearing

    E-Print Network [OSTI]

    Mohiuddin, Mohammad Waqar

    2002-01-01T23:59:59.000Z

    DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2002 Major Subject: Mechanical Engineering DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to Texas A&M University in partial fulfillment...

  3. The universal C*-algebra of the electromagnetic field

    E-Print Network [OSTI]

    Buchholz, Detlev; Ruzzi, Giuseppe; Vasselli, Ezio

    2015-01-01T23:59:59.000Z

    A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of this field such as Maxwell's equations, Poincar\\'e covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.

  4. Rydberg Atoms Ionisation by Microwave Field and Electromagnetic Pulses

    E-Print Network [OSTI]

    B. Kaulakys; G. Vilutis

    1995-04-10T23:59:59.000Z

    A simple theory of the Rydberg atoms ionisation by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionisation of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionisation theory.

  5. Fast dynamic force computation for electrostatic and electromagnetic conductors

    E-Print Network [OSTI]

    Koteeswaran, Prabhavathi

    2005-02-17T23:59:59.000Z

    FAST DYNAMIC FORCE COMPUTATION FOR ELECTROSTATIC AND ELECTROMAGNETIC CONDUCTORS AThesis by PRABHAVATHI KOTEESWARAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2004 Major Subject: Computer Engineering FAST DYNAMIC FORCE COMPUTATION FOR ELECTROSTATIC AND ELECTROMAGNETIC CONDUCTORS AThesis by PRABHAVATHI KOTEESWARAN Submitted to Texas A&M University in partial fulfillment...

  6. Magic wavelengths for the $5s-18s$ transition in rubidium

    E-Print Network [OSTI]

    E. A. Goldschmidt; D. G. Norris; S. B. Koller; R. Wyllie; R. C. Brown; J. V. Porto; U. I. Safronova; M. S. Safronova

    2015-03-10T23:59:59.000Z

    Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition. This is an important tool for implementing quantum gates and other quantum information protocols with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the $5s-18s$ transition of rubidium, and compare the calculation to experiment by measuring the light shift for atoms held in an optical dipole trap at a range of wavelengths near a calculated magic value.

  7. Coherence properties of the radiation from FLASH

    E-Print Network [OSTI]

    Schneidmiller, E A

    2015-01-01T23:59:59.000Z

    FLASH is the first free electron laser user facility operating in the vacuum ultraviolet and soft x-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper we present an analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach maximum close to the FEL saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that non-azimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.

  8. Study of photon detection efficiency and position resolution of BESIII electromagnetic calorimeter

    E-Print Network [OSTI]

    Prasad, Vindhyawasini; Ji, Xiaobin; Li, Weidong; Liu, Huaimin; Lou, Xinchou

    2015-01-01T23:59:59.000Z

    We study the photon detection efficiency and position resolution of the electromagnetic calorimeter (EMC) of the BESIII experiment. The control sample of the initial-state-radiation (ISR) process of $e^+e^-\\rightarrow \\gamma \\mu^+\\mu^-$ is used at $J/\\psi$ and $\\psi(3770)$ resonances for the EMC calibration and photon detection efficiency study. Photon detection efficiency is defined as the predicted photon, obtained by performing a kinematic fit with two muon tracks, matched with real photons in the EMC. The spatial resolution of the EMC is defined as the separation in polar ($\\theta$) and azimuthal ($\\phi$) angles between charged track and associated cluster centroid on the front face of the EMC crystals.

  9. Study of photon detection efficiency and position resolution of BESIII electromagnetic calorimeter

    E-Print Network [OSTI]

    Vindhyawasini Prasad; Chunxiu Liu; Xiaobin Ji; Weidong Li; Huaimin Liu; Xinchou Lou

    2015-04-29T23:59:59.000Z

    We study the photon detection efficiency and position resolution of the electromagnetic calorimeter (EMC) of the BESIII experiment. The control sample of the initial-state-radiation (ISR) process of $e^+e^-\\rightarrow \\gamma \\mu^+\\mu^-$ is used at $J/\\psi$ and $\\psi(3770)$ resonances for the EMC calibration and photon detection efficiency study. Photon detection efficiency is defined as the predicted photon, obtained by performing a kinematic fit with two muon tracks, matched with real photons in the EMC. The spatial resolution of the EMC is defined as the separation in polar ($\\theta$) and azimuthal ($\\phi$) angles between charged track and associated cluster centroid on the front face of the EMC crystals.

  10. Electromagnetic time reversal algorithms and source localization in lossy dielectric media

    E-Print Network [OSTI]

    Abdul Wahab; Amer Rasheed; Tasawar Hayat; Rab Nawaz

    2014-09-16T23:59:59.000Z

    The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied. A time reversal algorithm is proposed to localize a source density from loss-less wave-field measurements. Further, in order to recover source densities in a lossy medium, we first build attenuation operators thereby relating loss-less waves with lossy ones. Then based on asymptotic expansions of attenuation operators with respect to attenuation parameter, we propose two time reversal strategies for localization. The losses in electromagnetic wave propagation are incorporated using the Debye's complex permittivity, which is well-adopted for low frequencies (radio and microwave) associated with polarization in dielectrics.

  11. Courses on Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation The following is an incomplete list of courses on Synchrotron Radiation. For additional courses, check lightsources.org. XAFS School The APS XAFS School...

  12. Solar radiation resource assessment

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  13. Radiation Control (Virginia)

    Broader source: Energy.gov [DOE]

    The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

  14. Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials

    SciTech Connect (OSTI)

    Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu [Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Computer and Communication, Hunan University, Changsha 410082 (China)

    2010-02-15T23:59:59.000Z

    We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.

  15. Nuclear electromagnetic pulse and the electric power system

    SciTech Connect (OSTI)

    Legro, J.R.; Reed, T.J.

    1985-01-01T23:59:59.000Z

    A single, high-altitude nuclear detonation over the continental United States can expose large geographic areas to transient, electromagnetic pulse (EMP). The initial electromagnetic fields produced by this event have been defined as high-altitude electromagnetic pulse (HEMP). Later-time, low frequency fields have been defined as magnetohydrodynamic-electromagnetic pulse (MHD-EMP). Nuclear detonations at, or near the surface of the earth can also produce transient EMP. These electromagnetic phenomena have been defined as source region electromagnetic pulse (SREMP). The Division of Electric Energy Systems (EES) of the United States Department of Energy (DOE) has formulated and implemented a Program Plan to assess the possible effects of the above nuclear EMP on civilian electric power systems. This unclassified research effort is under the technical leadership of the Oak Ridge National Laboratory. This paper presents a brief perspective of EMP phenomenology and important interaction issues for power systems based on research performed by Westinghouse Advanced Systems Technology as a principal subcontractor in the research effort.

  16. Multi-wavelength identification of high-energy sources

    E-Print Network [OSTI]

    Mignani, R P

    2009-01-01T23:59:59.000Z

    The nature of most of the ~300 high-energy gamma-ray sources discovered by the EGRET instrument aboard the Gamma-ray Observatory (GRO) between 1991 and 1999 is one of the greatest enigmas in high-energy astrophysics. While about half of the extragalactic sources have been optically identified with Active Galactic Nuclei (AGN), only a meagre 10% of the galactic sources have a reliable identification. This low success rate has mainly to be ascribed to the local crowding of potential optical counterparts and to the large gamma-ray error boxes (of the order of one degree in radius) which prevented a straightforward optical identification. Indeed, a multi-wavelength identification strategy, based on a systematic coverage of the gamma-ray error boxes, has been the only do-able approach. The situation is now greatly improving thanks to the observations performed by the Fermi Gamma-ray Space Telescope which, thanks to the LAT instrument, provides a factor of 50 improvement in sensitivity and a factor of 10 improvemen...

  17. Wavelength-encoded optical psychrometer for relative humidity measurement

    SciTech Connect (OSTI)

    Montanini, Roberto [Department of Industrial Chemistry and Materials Engineering, University of Messina, I-98166 Messina (Italy)

    2007-02-15T23:59:59.000Z

    In this article an optical psychrometer, in which temperature measurements are performed by means of two fiber Bragg grating sensors used as dry-bulb and wet-bulb thermometers, is introduced. The adopted design exploits both the high accuracy of psychrometric-based relative humidity measurements with acknowledged advantages of wavelength-encoded fiber optic sensing. Important metrological issues that have been addressed in the experimental work include calibration of the fiber Bragg grating temperature sensors, evaluation of response time, sensitivity, hysteresis, linearity, and accuracy. The calibration results give confidence that, with the current experimental setup, measurement of temperature can be done with an uncertainty of {+-}0.2 deg. C and a resolution of 0.1 deg. C. A detailed uncertainty analysis is also presented in the article to investigate the effects produced by different sources of error on the combined standard uncertainty u{sub c}(U) of the relative humidity measurement, which has been estimated to be roughly within {+-}2% in the range close to saturation.

  18. Photo deposition of metal with far uv radiation

    SciTech Connect (OSTI)

    Blum, S.E.; Brown, K.H.

    1984-05-29T23:59:59.000Z

    A method for depositing a refractory metal onto a substrate is described wherein a carbonyl compound vapor of the metal in the vicinity of or on the substrate is photodecomposed by ultraviolet radiation of wavelengths less than 200 nm. This causes the release of atoms of the metal, which then condense onto the substrate. In an example, a tungsten layer is photodeposited by this method onto a GaAs semiconductor layer to form a Schottky barrier diode.

  19. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells

    SciTech Connect (OSTI)

    Bazin, Alexandre; Monnier, Paul; Beaudoin, Grégoire; Sagnes, Isabelle; Raj, Rama [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France)] [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France); Lenglé, Kevin; Gay, Mathilde; Bramerie, Laurent [Université Européenne de Bretagne (UEB), 5 Boulevard Laënnec, 35000 Rennes (France) [Université Européenne de Bretagne (UEB), 5 Boulevard Laënnec, 35000 Rennes (France); CNRS-Foton Laboratory (UMR 6082), Enssat, BP 80518, 22305 Lannion Cedex (France); Braive, Rémy; Raineri, Fabrice, E-mail: fabrice.raineri@lpn.cnrs.fr [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France) [Laboratoire de Photonique et de Nanostructures (CNRS UPR20), Route de Nozay, Marcoussis 91460 (France); Université Paris Diderot, Sorbonne Paris Cité, 75207 Paris Cedex 13 (France)

    2014-01-06T23:59:59.000Z

    Ultrafast switching with low energies is demonstrated using InP photonic crystal nanocavities embedding InGaAs surface quantum wells heterogeneously integrated to a silicon on insulator waveguide circuitry. Thanks to the engineered enhancement of surface non radiative recombination of carriers, switching time is obtained to be as fast as 10?ps. These hybrid nanostructures are shown to be capable of achieving systems level performance by demonstrating error free wavelength conversion at 10 Gbit/s with 6 mW switching powers.

  20. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    SciTech Connect (OSTI)

    Fu, Tairan, E-mail: trfu@mail.tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China) [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Beijing 100084 (China); Liu, Jiangfan; Duan, Minghao; Zong, Anzhou [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)] [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2014-04-15T23:59:59.000Z

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.