Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

I. What is electromagnetic radiation and the electromagnetic spectrum?  

E-Print Network (OSTI)

i­1 I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X effects on matter. This "stuff" is called electromagnetic radiation, because it travels (radiates) and has electrical and magnetic effects. Electromagnetic radiation is the means for many of our interactions

Sitko, Michael L.

2

Electromagnetic Radiation REFERENCE: Remote Sensing of  

E-Print Network (OSTI)

1 CHAPTER 2: Electromagnetic Radiation Principles REFERENCE: Remote Sensing of the Environment John;2 Electromagnetic Energy Interactions Energy recorded by remote sensing systems undergoes fundamental interactions, creating convectional currents in the atmosphere. c) Electromagnetic energy in the form of electromagnetic

Gilbes, Fernando

3

Electromagnetic Radiation in Accelerated Systems  

Science Journals Connector (OSTI)

A generally covariant set of electromagnetic field equations and associated constitutive relations is developed to deal with electromagnetic radiation in arbitrarily moving media. The equations are sufficiently general to include dispersive as well as nonisotropic media. Several special cases are investigated to illustrate the method and to demonstrate the consistency of the formulation.

J. L. Anderson and J. W. Ryon

1969-05-25T23:59:59.000Z

4

Compton Sources of Electromagnetic Radiation  

SciTech Connect

When a relativistic electron beam interacts with a high-field laser beam, intense and highly collimated electromagnetic radiation will be generated through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens-of-MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review article, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to date, and the prospects of radiation sources of this general type. Due to the possibilities of producing hard electromagnetic radiation in a device that is small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future.

Geoffrey Krafft,Gerd Priebe

2011-01-01T23:59:59.000Z

5

Source of coherent short wavelength radiation  

DOE Patents (OSTI)

An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

Villa, Francesco (Alameda, CA)

1990-01-01T23:59:59.000Z

6

Electricity and short wavelength radiation generator  

DOE Patents (OSTI)

Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.

George, E.V.

1985-08-26T23:59:59.000Z

7

Electromagnetic and nuclear radiation detector using micromechanical sensors  

DOE Patents (OSTI)

Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

8

Name of the Presentation Fundamental Properties of Electromagnetic RadiationFundamental Properties of Electromagnetic Radiation  

E-Print Network (OSTI)

a continuous spectrum of energy from gamma rays to radio waves. The visible portion of the spectrum may to radio waves. The visible portion of the spectrum may be measured using wavelength (measured between the Sun and the Earth. Electromagnetic Spectrum Electromagnetic Spectrum The Sun produces

9

Scattering by an electromagnetic radiation field  

E-Print Network (OSTI)

Motion of test particles in the gravitational field associated with an electromagnetic plane wave is investigated. The interaction with the radiation field is modeled by a force term {\\it \\`a la} Poynting-Robertson entering the equations of motion given by the 4-momentum density of radiation observed in the particle's rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit analytical solutions are obtained. Scattering of fields by the electromagnetic wave, i.e., scalar (spin 0), massless spin $\\frac12$ and electromagnetic (spin 1) fields, is studied too.

Donato Bini; Andrea Geralico

2014-08-21T23:59:59.000Z

10

Acceleration and Classical Electromagnetic Radiation  

E-Print Network (OSTI)

Classical radiation from an accelerated charge is reviewed along with the reciprocal topic of accelerated observers detecting radiation from a static charge. This review commemerates Bahram Mashhoon's 60th birthday.

E. N. Glass

2008-01-09T23:59:59.000Z

11

Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells  

E-Print Network (OSTI)

Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Sciences Division, Lawrence Berkeley National Laboratory July 23, 2013 Abstract Light trapping in solar the surface of the solar cell, where n is the material refractive index. This ray-optics absorption

California at Irvine, University of

12

Detecting excess ionizing radiation by electromagnetic breakdown of air  

Science Journals Connector (OSTI)

A scheme is proposed for detecting a concealed source of ionizing radiation by observing the occurrence of breakdown in atmospheric air by an electromagnetic wave whose electric field surpasses the breakdown field in a limited volume. The volume is chosen to be smaller than the reciprocal of the naturally occurring concentration of free electrons. The pulse duration of the electromagnetic wave must exceed the avalanchebreakdown time (10–200 ns) and could profitably be as long as the statistical lag time in ambient air (typically microseconds). Candidate pulsed electromagnetic sources over a wavelength range 3 ? mm > ? > 10.6 ? ? m are evaluated. Suitable candidate sources are found to be a 670 GHz gyrotron oscillator with 200 kW 10 ? ? s output pulses and a Transversely Excited Atmospheric-Pressure (TEA) CO 2 laser with 30 MW 100 ns output pulses. A system based on 670 GHz gyrotron would have superior sensitivity. A system based on the TEA CO 2 laser could have a longer range > 100 ? m .

Victor L. Granatstein; Gregory S. Nusinovich

2010-01-01T23:59:59.000Z

13

Detecting excess ionizing radiation by electromagnetic breakdown of air  

SciTech Connect

A scheme is proposed for detecting a concealed source of ionizing radiation by observing the occurrence of breakdown in atmospheric air by an electromagnetic wave whose electric field surpasses the breakdown field in a limited volume. The volume is chosen to be smaller than the reciprocal of the naturally occurring concentration of free electrons. The pulse duration of the electromagnetic wave must exceed the avalanche breakdown time (10-200 ns) and could profitably be as long as the statistical lag time in ambient air (typically, microseconds). Candidate pulsed electromagnetic sources over a wavelength range, 3 mm>{lambda}>10.6 {mu}m, are evaluated. Suitable candidate sources are found to be a 670 GHz gyrotron oscillator with 200 kW, 10 {mu}s output pulses and a Transversely Excited Atmospheric-Pressure (TEA) CO{sub 2} laser with 30 MW, 100 ns output pulses. A system based on 670 GHz gyrotron would have superior sensitivity. A system based on the TEA CO{sub 2} laser could have a longer range >100 m.

Granatstein, Victor L.; Nusinovich, Gregory S. [Center for Applied Electromagnetics, Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

2010-09-15T23:59:59.000Z

14

Frequency spectrum analysis of electromagnetic waves radiated by electrical discharges  

Science Journals Connector (OSTI)

In this study, we analyzed the frequency spectrum of the electromagnetic waves radiated by an electric discharge as a basic method for developing an on-line diagnostic technique for power equipment installed inside closed-switchboards. In order to simulate ... Keywords: closed-switchboard, electromagnetic shielding room, electromagnetic wave, frequency spectrum, local discharge, series arc discharge

Hyeon-Kyu Cha; Sun-Jae Kim; Dae-Won Park; Gyung-Suk Kil

2011-03-01T23:59:59.000Z

15

Calicivirus Inactivation by Nonionizing (253.7-Nanometer-Wavelength [UV]) and Ionizing (Gamma) Radiation  

Science Journals Connector (OSTI)

...7-nm-wavelength [UV]) radiation, inactivation by ionizing (gamma) radiation was studied as a process...constituents on inactivation by radiation. MATERIALS AND METHODS Viruses...Shoji Corporation, Tokyo, Japan) was propagated in MDCK...

Ana Maria de Roda Husman; Paul Bijkerk; Willemijn Lodder; Harold van den Berg; Walter Pribil; Alexander Cabaj; Peter Gehringer; Regina Sommer; Erwin Duizer

2004-09-01T23:59:59.000Z

16

Electromagnetic Radiations as a Fluid Flow  

E-Print Network (OSTI)

We combine Maxwell's equations with Eulers's equation, related to a velocity field of an immaterial fluid, where the density of mass is replaced by a charge density. We come out with a differential system able to describe a relevant quantity of electromagnetic phenomena, ranging from classical dipole waves to solitary wave-packets with compact support. The clue is the construction of an energy tensor summing up both the electromagnetic stress and a suitable mass tensor. With this right-hand side, explicit solutions of the full Einstein's equation are computed for a wide class of wave phenomena. Since our electromagnetic waves may behave and interact exactly as a material fluid, they can create vortex structures. We then explicitly analyze some vortex ring configurations and examine the possibility to build a model for the electron.

Daniele Funaro

2009-11-25T23:59:59.000Z

17

Inferring black hole charge from backscattered electromagnetic radiation  

E-Print Network (OSTI)

We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.

Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira

2014-09-16T23:59:59.000Z

18

Influence of Absorbers on the Electromagnetic Radiation  

E-Print Network (OSTI)

The phenomenon of the electromagnetic absorption by arbitrarily distributed discrete absorbers is analyzed from the photon point of view. It is shown that apart from the decrease in the intensity of the signal the net effect of absorption includes a relative increase in the photon bunching.

Budko, Neil V

2007-01-01T23:59:59.000Z

19

Influence of Absorbers on the Electromagnetic Radiation  

E-Print Network (OSTI)

The phenomenon of the electromagnetic absorption by arbitrarily distributed discrete absorbers is analyzed from the photon point of view. It is shown that apart from the decrease in the intensity of the signal the net effect of absorption includes a relative increase in the photon bunching.

Neil V. Budko

2007-12-05T23:59:59.000Z

20

Third Law of Thermodynamics and Electromagnetic Zero-Point Radiation  

Science Journals Connector (OSTI)

It is pointed out that the third law of thermodynamics, which has been verified experimentally for systems with electromagnetic interactions, is not part of traditional classical theory, and indeed is violated by hypothetical systems, such as an ideal gas, which exhibit equipartition of energy. In the context of quantum theory, the law may be understood from the description of thermodynamic systems as quantum systems having discrete energy levels. Along the same lines as a recent derivation of the blackbody radiation spectrum from classical theory involving classical electromagnetic zero-point radiation, it is shown that the third law holds in classical theory for all thermodynamic systems which interact (no matter how weakly) with electromagnetic radiation.

Timothy H. Boyer

1970-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Study on technology of electromagnetic radiation of sensitive index to forecast the coal and gas hazards  

Science Journals Connector (OSTI)

Hazard forecast of coal and gas outburst was an important step of comprehensive outburst-prevention measures. Aiming at the manifestation of disaster threatens such as the gas outburst to mine safety, this paper explained the forecasting principles of electromagnetic radiation to coal and gas outburst, by the electromagnetic radiation theory of coal rock damage; it studied the characteristics and rules of electromagnetic radiation during the deformation and fracture process of loaded coal rocks, and confirmed forecast sensitive indexes of electromagnetic radiation as well as its critical values by signals of electromagnetic radiation. By applying EMR monitoring technology in the field, outburst prediction and forecast tests to the characteristics of electromagnetic radiation during the driving process was taken, and figured out the hazard prediction values by using forecast methods of static and dynamic trend.

Yuliang Wu; Wen Li

2010-01-01T23:59:59.000Z

22

Electromagnetic radiation in a time-varying background medium  

E-Print Network (OSTI)

Analytical solutions are presented for the electromagnetic radiation by an arbitrary pulsed source into a homogeneous time-varying background medium. In the constant-impedance case an explicit radiation formula is obtained for the synchronous permittivity and permeability described by any positive function of time. As might be expected, such a medium introduces significant spectral shifts and spatio-temporal modulation, which are analized here for the linear and exponential time-variations of the medium parameters. In the varying-impedance case the solution is obtained for the fourth-order polynomial time-dependence of the permittivity. In addition to the spectral shifts and modulation this spatially homogeneous medium scatters the field introducing causal echoes at the receiver location.

Budko, Neil V

2009-01-01T23:59:59.000Z

23

Red shift in spectra of galaxies as a consequence of gravitational radiation of the same level as electromagnetic  

E-Print Network (OSTI)

In elaboration of the results presented earlier the red shift is also regarded in this investigation as a widening of electromagnetic radiation spectra, determined by the existence of gravitational radiation of a banded spectrum of the same level as electromagnetic.

S. I. Fisenko; I. S. Fisenko

2010-01-07T23:59:59.000Z

24

Monte Carlo Simulation of Electromagnetic Interactions of Radiation with Liquid Water in  

E-Print Network (OSTI)

; nevertheless the concept of dose is not adequate to estimate the radiation effects when microscopic entitiesMonte Carlo Simulation of Electromagnetic Interactions of Radiation with Liquid Water. They address a physics domain relevant to the simulation of radiation effects in biological systems, where

Paris-Sud XI, Université de

25

Radiation and Propagation of SLF/ELF Electromagnetic Waves of Space Borne Transmitter  

Science Journals Connector (OSTI)

In Chap. 7, we will summarize our recent works on the radiation of an electric dipole in infinite anisotropic plasma and the electromagnetic field on the sea surface generated by the space borne transmitter in SLF

Prof. Weiyan Pan; Dr. Kai Li

2014-01-01T23:59:59.000Z

26

Electromagnetic dipole radiation of oscillating D-branes  

Science Journals Connector (OSTI)

I emphasize analogy between Dp-branes in string theories and solitons in gauge theories comparing their common properties and showing differences. In string theory we do not have the full set of equations which define the theory in all orders of coupling constant as it was in gauge theories, nevertheless such solutions have been found as solutions of low energy superstring effective action carrying the RR charges. The existence of dynamical RR charged extended objects in string theory has been deduced also by considering string theory with mixed boundary conditions, when type II closed superstring theory is enriched by open strings with Neumann boundary conditions on p + 1 directions and Dirichlet conditions on the remaining 9-p transverse directions. We will show that for certain excitations of the string/D3-brane system Neumann boundary conditions emerge from the Born-Infeld dynamics. Here the excitations which are coming down the string with a polarization along a direction parallel to the brane are almost completely reflected just as in the case of all-normal Dirichlet excitations considered by Callan and Maldacena, but now the end of the string moves freely on the 3-brane realizing Polchinski's open string Neumann boundary condition dynamically. In the low energy limit ? ? 0, i.e. for wavelengths much larger than the string scale only a small fraction ? ?4 of the energy escapes in the form of dipole radiation. The physical interpretation is that a string attached to the 3-brane manifests itself as an electric charge, and waves on the string cause the end point of the string to freely oscillate and produce e.m. dipole radiation in the asymptotic outer region. The magnitude of emitted power is in fact exactly equal to the one given by Thomson formula in electrodynamics.

G.K. Savvidy

2000-01-01T23:59:59.000Z

27

Ground-state cooling of a trapped ion using long-wavelength radiation  

E-Print Network (OSTI)

We demonstrate ground-state cooling of a trapped ion using long-wavelength radiation. This is a powerful tool for the implementation of quantum operations, where long-wavelength radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $\\overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)\\%. After preparing in the vibrational Fock state $\\left|n=0\\right\\rangle$, we implement sideband Rabi oscillations which last for more than 10 ms, demonstrating the long coherence time of our system. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

Weidt, S; Webster, S C; Standing, E D; Rodriguez, A; Webb, A E; Lekitsch, B; Hensinger, W K

2015-01-01T23:59:59.000Z

28

Ground-state cooling of a trapped ion using long-wavelength radiation  

E-Print Network (OSTI)

We demonstrate ground-state cooling of a trapped ion using long-wavelength radiation. This is a powerful tool for the implementation of quantum operations, where long-wavelength radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $\\overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)\\%. After preparing in the vibrational Fock state $\\left|n=0\\right\\rangle$, we implement sideband Rabi oscillations which last for more than 10 ms, demonstrating the long coherence time of our system. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

S. Weidt; J. Randall; S. C. Webster; E. D. Standing; A. Rodriguez; A. E. Webb; B. Lekitsch; W. K. Hensinger

2015-01-07T23:59:59.000Z

29

IR Spectroscopy Spectroscopy: Branch of science in which light or other electromagnetic radiation  

E-Print Network (OSTI)

is resolved into its component wavelengths to produce spectra, which are graphs of intensity vs. wavelength or frequency of radiation. Current usage broadens this definition to include some methods that don't involve the energy difference of 2 quantum levels of the sample of matter. hE = IR Spectroscopy Tool for examining

Sherrill, David

30

Direct detection of black holes via electromagnetic radiation  

Science Journals Connector (OSTI)

......operating in orbit is the X-ray Multi-mirror Mission (XMM-Newton). It has...emitted by a BH as a function of the Schwarzschild radius (r s) for the wavelengths...emitted by a BH as a function of the Schwarzschild radius (r s) for the wavelengths......

J. L. G. Sobrinho; P. Augusto

2014-01-01T23:59:59.000Z

31

Multipole radiation in a collisonless gas coupled to electromagnetism or scalar gravitation  

E-Print Network (OSTI)

We consider the relativistic Vlasov-Maxwell and Vlasov-Nordstr\\"om systems which describe large particle ensembles interacting by either electromagnetic fields or a relativistic scalar gravity model. For both systems we derive a radiation formula analogous to the Einstein quadrupole formula in general relativity.

Sebastian Bauer; Markus Kunze; Gerhard Rein; Alan D. Rendall

2005-08-29T23:59:59.000Z

32

A 50-MeV mm-wave electron linear accelerator system for production of tunable short wavelength synchrotron radiation  

SciTech Connect

The Advanced Photon Source (APS) at Argonne in collaboration with the University of Illinois at Chicago and the University of Wisconsin at Madison is developing a new millimeter wavelength, 50-MeV electron linear accelerator system for production of coherent tunable wavelength synchrotron radiation. Modern micromachining techniques based on deep etch x-ray lithography, LIGA (Lithografie, Galvanoformung, Abformung), capable of producing high-aspect ratio structures are being considered for the fabrication of the accelerating components.

Nassiri, A.; Kustom, R.L.; Mills, F.E.; Kang, Y.W.; Matthews, P.J.; Grudzien, D.; Song, J.; Horan, D. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.; Feinerman, A.D.; Willke, T.L. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.]|[Univ. of Illinois, Chicago, IL (United States). Dept. of Electrical Engineering and Computer Science; Henke, H. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.]|[Technische Univ., Berlin (Germany). Inst. fuer Theoretische Electrotechnik

1993-12-31T23:59:59.000Z

33

Novel electromagnetic radiation in Left-Handed materials  

E-Print Network (OSTI)

In this thesis, Cerenkov radiation of a moving charged particle inside a Left-Handed material (LHM) is studied through both theory and numerical simulations. A LHM is a material whose permittivity and permeability have ...

Lu, Jie, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

34

Electromagnetic radiation from a plasma slab during the development of Weibel instability  

SciTech Connect

Electromagnetic radiation from an anisotropic plasma slab formed by ionization of matter in the field of a high-power femtosecond pulse is studied. It is shown that the growth of initial field perturbations in the course of Weibel instability is accompanied by the generation of nonmonochromatic radiation with a characteristic frequency on the order of the instability growth rate. It is found that perturbations with characteristic scale lengths less than or on the order of the ratio of the speed of light to the Langmuir frequency are excited and radiated most efficiently, provided that the slab is thicker than this ratio.

Vagin, K. Yu.; Romanov, A. Yu.; Uryupin, S. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2012-01-15T23:59:59.000Z

35

Apparatuses and method for converting electromagnetic radiation to direct current  

DOE Patents (OSTI)

An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

Kotter, Dale K; Novack, Steven D

2014-09-30T23:59:59.000Z

36

Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields  

SciTech Connect

Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

2009-11-30T23:59:59.000Z

37

Enhanced radiation of an invisible array of sources through a sub-wavelength metal-strip grating and applications  

Science Journals Connector (OSTI)

We experimentally demonstrate dramatically increased radiation from an “invisible” source placed next to a sub-wavelength metal strip grating. The invisible source is a novel highly reactive array of antennas excited by a common feed which weakly radiates in the far-zone. The metal grating used is sub-wavelength and non-resonant which typically attenuates the overall radiation of a nearby source especially in the transverse electric polarization. However we show that such a grating screen with proper dimensions placed next to the “invisible” source can in fact significantly enhance the radiated field strength far beyond the free space radiation of this “invisible” radiator by an order of magnitude. This radiation enhancement is facilitated through the conversion of evanescent waves of the specially designed reactive source into propagating waves and its level is inversely related to the source-grating distance. The physical phenomenon is shown in simulations and measurements at microwaves. This novel radiation enhancement effect is shown to have potential applications in various areas such as proximity sensing detection and measurement of distance.

M. Memarian

2013-01-01T23:59:59.000Z

38

The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications  

E-Print Network (OSTI)

We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection...

Revalski, Mitchell; Wickramasinghe, Thulsi

2015-01-01T23:59:59.000Z

39

Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor  

DOE Patents (OSTI)

A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

Datskos, Panagiotis G. (Knoxville, TN); Rajic, Slobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN)

2002-01-01T23:59:59.000Z

40

The measurement and verification of parameters of pulse electromagnetic radiation generated by a large-radius ring current  

Science Journals Connector (OSTI)

Experimental and analytic studies of the generation and propagation of electromagnetic radiation due to repetitive current pulses of a nanosecond duration (peak power to 1 MW, current slew rate of 3.5 A/ns) ar...

V. M. Fedorov; E. F. Lebedev; V. E. Ostashev; V. P. Tarakanov…

2000-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications  

E-Print Network (OSTI)

We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.

Mitchell Revalski; Will Rhodes; Thulsi Wickramasinghe

2015-02-03T23:59:59.000Z

42

"Millikan oil drops" as quantum transducers between electromagnetic and gravitational radiation  

E-Print Network (OSTI)

Pairs of Planck-mass-scale drops of superfluid helium coated by electrons (i.e., "Millikan oil drops"), when levitated in the presence of strong magnetic fields and at low temperatures, can be efficient quantum transducers between electromagnetic (EM) and gravitational (GR) radiation. A Hertz-like experiment, in which EM waves are converted at the source into GR waves, and then back-converted at the receiver from GR waves back into EM waves, should be practical to perform. This would open up observations of the gravity-wave analog of the Cosmic Microwave Background from the extremely early Big Bang, and also communications directly through the interior of the Earth.

Raymond Y. Chiao

2007-02-19T23:59:59.000Z

43

Quantum Electrodynamics. III. The Electromagnetic Properties of the Electron—Radiative Corrections to Scattering  

Science Journals Connector (OSTI)

The discussion of vacuum polarization in the previous paper of this series was confined to that produced by the field of a prescribed current distribution. We now consider the induction of current in the vacuum by an electron, which is a dynamical system and an entity indistinguishable from the particles associated with vacuum fluctuations. The additional current thus attributed to an electron implies an alteration in its electromagnetic properties which will be revealed by scattering in a Coulomb field and by energy level displacements. This paper is concerned with the computation of the second-order corrections to the current operator and the application to electron scattering. Radiative corrections to energy levels will be treated in the next paper of the series. Following a canonical transformation which effectively renormalizes the electron mass, the correction to the current operator produced by the coupling with the electromagnetic field is developed in a power series, of which first- and second-order terms are retained. One thus obtains second-order modifications in the current operator which are of the same general nature as the previously treated vacuum polarization current, save for a contribution that has the form of a dipole current. The latter implies a fractional increase of ?2? in the spin magnetic moment of the electron. The only flaw in the second-order current correction is a logarithmic divergence attributable to an infra-red catastrophe. It is remarked that, in the presence of an external field, the first-order current correction will introduce a compensating divergence. Thus, the second-order corrections to particle electromagnetic properties cannot be completely stated without regard for the manner of exhibiting them by an external field. Accordingly, we consider in the second section the interaction of three systems, the matter field, the electromagnetic field, and a given current distribution. It is shown that this situation can be described in terms of an external potential coupled to the current operator, as modified by the interaction with the vacuum electromagnetic field. Application is made to the scattering of an electron by an external field, in which the latter is regarded as a small perturbation. It is found convenient to calculate the total rate at which collisions occur and then identify the cross sections for individual events. The correction to the cross section for radiationless scattering is determined by the second-order correction to the current operator, while scattering that is accompanied by single quantum emission is a consequence of the first-order current correction. The final object of calculation is the differential cross section for scattering through a given angle with a prescribed maximum energy loss, which is completely free of divergences. Detailed evaluations are given in two situations, the essentially elastic scattering of an electron, in which only a small fraction of the kinetic energy is radiated, and the scattering of a slowly moving electron with unrestricted energy loss. The Appendix is devoted to an alternative treatment of the polarization of the vacuum by an external field. The conditions imposed on the induced current by the charge conservation and gauge invariance requirements are examined. It is found that the fulfillment of these formal properties requires the vanishing of an integral that is not absolutely convergent, but naturally vanishes for reasons of symmetry. This null integral is then used to simplify the expression for the induced current in such a manner that direct calculation yields a gauge invariant result. The induced current contains a logarithmically divergent multiple of the external current, which implies that a non-vanishing total charge, proportional to the external charge, is induced in the vacuum. The apparent contradiction with charge conservation is resolved by showing that a compensating charge escapes to infinity. Finally, the expression for the electromagnetic mass of the electron is treated with the methods developed in t

Julian Schwinger

1949-09-15T23:59:59.000Z

44

Generation of electromagnetic radiation based on nanotubes under a constant electric field and an electromagnetic wave field  

SciTech Connect

The possible generation of radiation in the millimeter range based on nanotubes by an alternating (rapidly oscillating) electric field under a constant (or nonstationary) electric field is studied. Radiation enhancement is based on a periodic dependence of the current in nanotubes in such electric fields. The results of a mathematical simulation are presented.

Sadykov, N. R., E-mail: sadykov@rambler.ru; Scorkin, N. A. [South Ural State University (Russian Federation)

2012-02-15T23:59:59.000Z

45

Beams of electromagnetic radiation carrying angular momentum: The Riemann-Silberstein vector and the classical-quantum correspondence  

E-Print Network (OSTI)

All beams of electromagnetic radiation are made of photons. Therefore, it is important to find a precise relationship between the classical properties of the beam and the quantum characteristics of the photons that make a particular beam. It is shown that this relationship is best expressed in terms of the Riemann-Silberstein vector -- a complex combination of the electric and magnetic field vectors -- that plays the role of the photon wave function. The Whittaker representation of this vector in terms of a single complex function satisfying the wave equation greatly simplifies the analysis. Bessel beams, exact Laguerre-Gauss beams, and other related beams of electromagnetic radiation can be described in a unified fashion. The appropriate photon quantum numbers for these beams are identified. Special emphasis is put on the angular momentum of a single photon and its connection with the angular momentum of the beam.

Iwo Bialynicki-Birula; Zofia Bialynicka-Birula

2006-01-12T23:59:59.000Z

46

A Topological Structure in the Set of Classical Free Radiation Electromagnetic Fields  

E-Print Network (OSTI)

The aim of this work is to proceed with the development of a model of topological electromagnetism in empty space, proposed by one of us some time ago and based on the existence of a topological structure associated with the radiation fields in standard Maxwell's theory. This structure consists in pairs of complex scalar fields, say $\\phi$ and $\\theta$, that can be interpreted as maps $\\phi,\\theta: S^3\\mapsto S^2$, the level lines of which are orthogonal to one another, where $S^3$ is the compactified physical 3-space $R^3$, with only one point at infinity, and $S^2$ is the 2-sphere identified with the complete complex plane. These maps were discovered and studied in 1931 by the German mathematician H. Hopf, who showed that the set of all of them can be ordered in homotopy classes, labeled by the so called Hopf index, equal to $\\gamma=\\pm 1,\\,\\pm 2,\\,\\cdots ,\\, \\pm k,...$ but without $\\gamma=0$. In the model presented here and at the level of the scalars $\\phi$ and $\\theta$, the equations of motion are highly nonlinear; however there is a transformation of variables that converts exactly these equations (not by truncation!) into the linear Maxwell's ones for the magnetic and electric fields $\\B$ and $\\E$.

A. F. Ranada; A. Tiemblo

2014-07-29T23:59:59.000Z

47

Solar Radiation, its Measurement and Application in Solar Energy Utilization Programme  

Science Journals Connector (OSTI)

The electromagnetic radiation emitted by the sun, covers a very large range of wavelengths, from radiowaves through the visible to X-rays and gamma rays. But 99 percent of this energy is contained in the region 0...

A. Mani

1987-01-01T23:59:59.000Z

48

The Radiated Energy Budget of Chromospheric Plasma in a Major Solar Flare Deduced From Multi-Wavelength Observations  

E-Print Network (OSTI)

This paper presents measurements of the energy radiated by the lower solar atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare (SOL2011-02-15T01:56) in response to an injection of energy assumed to be in the form of nonthermal electrons. Hard X-ray observations from RHESSI were used to track the evolution of the parameters of the nonthermal electron distribution to reveal the total power contained in flare accelerated electrons. By integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be $>2\\times10^{31}$ erg. The response of the lower solar atmosphere was measured in the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304\\AA\\ and H I (Ly$\\alpha$) at 1216\\AA\\ by SDO/EVE, the UV continua at 1600\\AA\\ and 1700\\AA\\ by SDO/AIA, and the WL continuum at 4504\\AA, 5550\\AA, and 6684\\AA, along with the Ca II H line at 3968\\AA\\ using Hinode/SOT. The summed energy detected by these in...

Milligan, Ryan O; Dennis, Brian R; Hudson, Hugh S; Fletcher, Lyndsay; Allred, Joel C; Chamberlin, Phillip C; Ireland, Jack; Mathioudakis, Mihalis; Keenan, Francis P

2014-01-01T23:59:59.000Z

49

On the theory of the relativistic motion of a charged particle in the field of intense electromagnetic radiation  

SciTech Connect

Averaged relativistic equations of motion of a charged particle in the field of intense electromagnetic radiation have been obtained in the geometrical optics approximation using the Bogoliubov method. Constraints are determined under which these equations are valid. Oscillating additions to the smoothed dynamical variables of the particle have been found; they are reduced to known expressions in the case of the circularly and linearly polarized plane waves. It has been shown that the expressions for the averaged relativistic force in both cases contain new additional small terms weakening its action. The known difference between the expressions for the ponderomotive force in the cases of circularly and linearly polarized waves has been confirmed.

Milant'ev, V. P., E-mail: vmilantiev@sci.pfu.edu.ru; Castillo, A. J., E-mail: vmilant@mail.ru [Peoples' Friendship University of Russia (Russian Federation)

2013-04-15T23:59:59.000Z

50

Effect of electromagnetic radiation on an array of weakly interacting carbon nanotubes in the presence of nanosecond pulses  

SciTech Connect

For metallic 'zigzag'-type carbon nanotubes, the dependence of a nonlinear current on an ac electric field with an inclined-leading-edge width of {Delta}T = 3 Multiplication-Sign 10{sup -11} s and wavelength of {lambda} Almost-Equal-To 1 mm is studied. It is theoretically and numerically shown that the surface current is almost independent of the nanotube radius. In the case of semiconductor zigzag-type nanotubes, the radiation of a two-frequency CO{sub 2} laser with a constant amplitude is considered as an ac electric field. The dependence on the relaxation time in the Boltzmann kinetic equation is studied. The optimal conditions for terahertz-radiation generation are achieved when the relaxation time is 40 fs. It is numerically found that the amplified radiation amplitude behaves as beats.

Sadykov, N. R., E-mail: n.r.sadykov@rambler.ru; Scorkin, N. A.; Akhljustina, E. A. [Snezhinsk Physics and Technology Institute of the National Research Nuclear University 'MEPhI' (Russian Federation)] [Snezhinsk Physics and Technology Institute of the National Research Nuclear University 'MEPhI' (Russian Federation)

2013-09-15T23:59:59.000Z

51

Generation of Watt-Level Mid-Infrared Radiation by Wavelength-Conversion of an Eye-Safe Fiber Source  

Science Journals Connector (OSTI)

We obtained pulse average power in excess of 1W (at pulse repetition rate ~100 kHz) in the 3.8-4micron wavelength range by pumping a periodically-poled lithium niobate optical...

Di Teodoro, Fabio; Desmoulins, Sebastien

52

Thermal and non-thermal radiation of rotating polarizable particle moving in an equilibrium background of electromagnetic radiation  

E-Print Network (OSTI)

A theory of thermal and nonthermal radiation in a vacuum background of arbitrary temperature generated by relativistic polarizable particle with spin is proposed. When the particle rotates, radiation is produced by vacuum fluctuations even in the case of zero temperature of the system. In the ultrarelativistic case, the spectral-angular intensity of radiation is concentrated along the velocity of the particle. At finite temperatures of particle and vacuum, the particle temperature (in its rest frame) rather quickly acquires an equilibrium magnitude depending on the velocities of rotation and uniform motion and the background temperature. This equilibrium temperature determines the intensity of radiation. The dynamical slowing down takes a very long time until the kinetic energy of uniform motion and rotation is converted into radiation.

A. A. Kyasov; G. V Dedkov

2014-09-17T23:59:59.000Z

53

Backscattering of gyrotron radiation and short-wavelength turbulence during electron cyclotron resonance plasma heating in the L-2M stellarator  

SciTech Connect

Backscattering of gyrotron radiation ({theta} = {pi}) by short-wavelength density fluctuations (k{sub Up-Tack} = 30 cm{sup -1}) in the plasma of the L-2M stellarator was studied under conditions of electron cyclotron resonance (ECR) plasma heating at the second harmonic of the electron gyrofrequency (75 GHz). The scattering of the O-wave emerging due to the splitting of the linearly polarized gyrotron radiation into the X- and O-waves was analyzed. The signal obtained after homodyne detection of scattered radiation is a result of interference of the reference signal, the quasi-steady component, and the fast oscillating component. The coefficients of reflection of the quasi-steady component, R{sub =}{sup 2}(Y), and fast oscillating component, R{sub {approx}}{sup 2}(Y), of scattered radiation are estimated. The growth of the R{sub {approx}}{sup 2}(Y) coefficient from 3.7 Multiplication-Sign 10{sup -4} to 5.2 Multiplication-Sign 10{sup -4} with increasing ECR heating power from 190 to 430 kW is found to correlate with the decrease in the energy lifetime from 1.9 to 1.46 ms. The relative density of short-wavelength fluctuations is estimated to be Left-Pointing-Angle-Bracket n{sub {approx}}{sup 2} Right-Pointing-Angle-Bracket / Left-Pointing-Angle-Bracket n{sub e}{sup 2} Right-Pointing-Angle-Bracket = 3 Multiplication-Sign 10{sup -7}. It is shown that the frequencies of short-wavelength fluctuations are in the range 10-150 kHz. The recorded short-wavelength fluctuations can be interpreted as structural turbulence, the energy of which comprises {approx}10% of the total fluctuations energy. Simulations of transport processes show that neoclassical heat fluxes are much smaller than anomalous ones. It is suggested that short-wavelength turbulence plays a decisive role in the anomalous heat transport.

Batanov, G. M.; Borzosekov, V. D., E-mail: tinborz@gmail.com; Kovrizhnykh, L. M.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

2013-06-15T23:59:59.000Z

54

Experimental methodology for non-thermal effects of electromagnetic radiation on biologics  

E-Print Network (OSTI)

Appropriate equipment is needed for research on the effects of radio-frequency radiation from radio-frequency identification (RF-ID) systems on biological materials. In the present study, a complete test system comprising ...

Cox, Felicia C. A. I

2006-01-01T23:59:59.000Z

55

Electromagnetic wave propagation in a random distribution of C{sub 60} molecules  

SciTech Connect

Propagation of electromagnetic waves in a random distribution of C{sub 60} molecules are investigated, within the framework of the classical electrodynamics. Electronic excitations over the each C{sub 60} molecule surface are modeled by a spherical layer of electron gas represented by two interacting fluids, which takes into account the different nature of the ? and ? electrons. It is found that the present medium supports four modes of electromagnetic waves, where they can be divided into two groups: one group with shorter wavelength than the light waves of the same frequency and the other with longer wavelength than the free-space radiation.

Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

2014-10-15T23:59:59.000Z

56

Generalization of the Atkinson-Wilcox Theorem and the Development of a Novel Scaled Boundary Finite Element Formulation for the Numerical Simulation of Electromagnetic Radiation  

E-Print Network (OSTI)

The Scaled Boundary Finite Element Method is a novel semi-analytical method jointly developed by Chongmin Song and John P Wolf to solve problems in elastodynamics and allied problems in civil engineering. This novel method has been recently reformulated for the following categories of problems in electromagnetics: (1) Determination of Eigen values of metallic cavity structures, 2) Full wave analysis of Shielded micro-strip transmission line structures, and Very Large Scale Integrated Circuit (VLSI) interconnects, and 3) Full wave analysis of periodic structures. In this paper, a novel Scaled Boundary Finite Element formulation is developed for the numerical simulation of the time harmonic electromagnetic radiation in free space from metallic structures of arbitrary shape. The development of the novel formulation necessitates the generalization of the familiar Atkinson-Wilcox radiation series expansion so as to be applicable for arbitrary boundary circumscribing the source of radiation.

Rajan, V S P

2006-01-01T23:59:59.000Z

57

Impulsive cylindrical gravitational wave: one possible radiative form emitted from cosmic strings and corresponding electromagnetic response  

E-Print Network (OSTI)

The cosmic strings(CSs) may be one important source of gravitational waves(GWs), and it has been intensively studied due to its special properties such as the cylindrical symmetry. The CSs would generate not only usual continuous GW, but also impulsive GW that brings more concentrated energy and consists of different GW components broadly covering low-, intermediate- and high-frequency bands simultaneously. These features might underlie interesting electromagnetic(EM) response to these GWs generated by the CSs. In this paper, with novel results and effects, we firstly calculate the analytical solutions of perturbed EM fields caused by interaction between impulsive cylindrical GWs (would be one of possible forms emitted from CSs) and background celestial high magnetic fields or widespread cosmological background magnetic fields, by using rigorous Einstein - Rosen metric. Results show: perturbed EM fields are also in the impulsive form accordant to the GW pulse, and asymptotic behaviors of the perturbed EM fields are fully consistent with the asymptotic behaviors of the energy density, energy flux density and Riemann curvature tensor of corresponding impulsive cylindrical GWs. The analytical solutions naturally give rise to the accumulation effect which is proportional to the term of distance^1/2, and based on it, we for the first time predict potentially observable effects in region of the Earth caused by the EM response to GWs from the CSs.

H. Wen; F. Y. Li; Z. Y. Fang; A. Beckwith

2014-05-04T23:59:59.000Z

58

Electromagnetic Dipole Radiation Fields, Shear-Free Congruences and Complex Center of Charge World Lines  

E-Print Network (OSTI)

We show that for asymptotically vanishing Maxwell fields in Minkowski space with non-vanishing total charge, one can find a unique geometric structure, a null direction field, at null infinity. From this structure a unique complex analytic world-line in complex Minkowski space that can be found and then identified as the complex center of charge. By ''sitting'' - in an imaginary sense, on this world-line both the (intrinsic) electric and magnetic dipole moments vanish. The (intrinsic) magnetic dipole moment is (in some sense) obtained from the `distance' the complex the world line is from the real space (times the charge). This point of view unifies the asymptotic treatment of the dipole moments For electromagnetic fields with vanishing magnetic dipole moments the world line is real and defines the real (ordinary center of charge). We illustrate these ideas with the Lienard-Wiechert Maxwell field. In the conclusion we discuss its generalization to general relativity where the complex center of charge world-line has its analogue in a complex center of mass allowing a definition of the spin and orbital angular momentum - the analogues of the magnetic and electric dipole moments.

Carlos N. Kozameh; Ezra T. Newman

2005-04-20T23:59:59.000Z

59

The Dosimetric Impact of Prostate Rotations During Electromagnetically Guided External-Beam Radiation Therapy  

SciTech Connect

Purpose: To study the impact of daily rotations and translations of the prostate on dosimetric coverage during radiation therapy (RT). Methods and Materials: Real-time tracking data for 26 patients were obtained during RT. Intensity modulated radiation therapy plans meeting RTOG 0126 dosimetric criteria were created with 0-, 2-, 3-, and 5-mm planning target volume (PTV) margins. Daily translations and rotations were used to reconstruct prostate delivered dose from the planned dose. D{sub 95} and V{sub 79} were computed from the delivered dose to evaluate target coverage and the adequacy of PTV margins. Prostate equivalent rotation is a new metric introduced in this study to quantify prostate rotations by accounting for prostate shape and length of rotational lever arm. Results: Large variations in prostate delivered dose were seen among patients. Adequate target coverage was met in 39%, 65%, and 84% of the patients for plans with 2-, 3-, and 5-mm PTV margins, respectively. Although no correlations between prostate delivered dose and daily rotations were seen, the data showed a clear correlation with prostate equivalent rotation. Conclusions: Prostate rotations during RT could cause significant underdosing even if daily translations were managed. These rotations should be managed with rotational tolerances based on prostate equivalent rotations.

Amro, Hanan, E-mail: hanan.amro@gmail.com [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Hamstra, Daniel A.; Mcshan, Daniel L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Sandler, Howard [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California (United States)] [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California (United States); Vineberg, Karen; Hadley, Scott; Litzenberg, Dale [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

2013-01-01T23:59:59.000Z

60

Tunability enhanced electromagnetic wiggler  

DOE Patents (OSTI)

The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

Schlueter, R.D.; Deis, G.A.

1992-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Toward a Diurnal Climatology of Cold-Season Turbulence Statistics in Continental Stratocumulus as Observed by the Atmospheric Radiation Millimeter- Wavelength Cloud Radars  

SciTech Connect

Numerous observational studies of marine stratocumulus have demonstrated a pronounced diurnal cycle. At night, longwave flux divergence at the top of the cloud drives negatively buoyant eddies that tend to keep the boundary layer well mixed. During the day, solar absorption by the cloud tends to reduce the turbulent intensity and often decouples the planetary boundary layer (PBL) into cloud- and sub-cloud circulations. The delicate balance between turbulent intensity, entrainment, and fluxes dictates cloud geometry and persistence, which can significantly impact the shortwave radiation budget. Millimeter-wavelength cloud radars (MMCRs) have been used to study the turbulent structure of boundary layer stratocumulus (e.g. Frisch et al. 1995; Kollias and Albrecht 2000). Analysis is confined to nondrizzling or lightly drizzling cloud systems for which precipitation contamination is negligible. Under such assumptions the Doppler velocity field becomes a proxy for vertical velocity. Prior research has mainly consisted of a few case studies of specific cloud systems using radar scan strategies optimized for this particular cloud type. The MMCR operating at the Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility is broadly configured to be able to detect many different cloud types over a broad range of reflectivities and altitudes, so it is not specifically optimized for PBL clouds. Being in more-or-less continuous operation since the end of 1996, it does, however, have the advantage of long data coverage, which suggests that statistically significant measures of the diurnal cycle of turbulence should be attainable. This abstract summarizes the first few steps toward this goal, using 7 months of cold season MMCR data.

Mechem, D.B.; Kogan, Y.L.; Childers, M.E.; Donner, K.M.

2005-03-18T23:59:59.000Z

62

STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE  

E-Print Network (OSTI)

STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE IONOSPHERIC.S.A. Abstract. A high frequency electromagnetic pump wave transmitted into the ionospheric plasma from the ground can stimulate electromagnetic radiation with frequencies around that of the ionospher- ically

63

Operation Castle. Project 7. 1. Electromagnetic radiation calibration, Pacific )roving ground. Report for March-May 1954  

SciTech Connect

A total of 17 stations, one close-in (320 km from Bikini and 23 km from Eniwetok) and the balance at distances, were operated for the electromagnetic experimental effort. Seventy-four sets of data were obtained from a possible total of 102. Of the remaining 28 sets, no data were obtained because equipment was not in operation, records were not readable, the alert notifications were not received, signals were not discernible, or equipment malfunctioned.

Olseon, M.H.

1984-08-31T23:59:59.000Z

64

Black Hole Thermodynamics and Electromagnetism  

E-Print Network (OSTI)

We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

Burra G. Sidharth

2005-07-15T23:59:59.000Z

65

Electromagnetic radiation from positive-energy bound electrons in the Coulomb field of a nucleus at rest in a strong uniform magnetic field  

SciTech Connect

A classical analysis is presented of the electromagnetic radiation emitted by positive-energy electrons performing bound motion in the Coulomb field of a nucleus at rest in a strong uniform magnetic field. Bounded trajectories exist and span a wide range of velocity directions near the nucleus (compared to free trajectories with similar energies) when the electron Larmor radius is smaller than the distance at which the electron-nucleus Coulomb interaction energy is equal to the mechanical energy of an electron. The required conditions occur in magnetic white dwarf photospheres and have been achieved in experiments on production of antihydrogen. Under these conditions, the radiant power per unit volume emitted by positive-energy bound electrons is much higher than the analogous characteristic of bremsstrahlung (in particular, in thermal equilibrium) at frequencies that are below the electron cyclotron frequency but higher than the inverse transit time through the interaction region in a close collision in the absence of a magnetic field. The quantum energy discreteness of positive-energy bound states restricts the radiation from an ensemble of bound electrons (e.g., in thermal equilibrium) to nonoverlapping spectral lines, while continuum radiative transfer is dominated by linearly polarized bremsstrahlung.

Arsenyev, S. A.; Koryagin, S. A., E-mail: koryagin@appl.sci-nnov.ru [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

2012-06-15T23:59:59.000Z

66

22.105 Electromagnetic Interactions, Fall 1998  

E-Print Network (OSTI)

Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic ...

Hutchinson, I. H. (Ian H.)

67

Experimental study of the effect of electromagnetic microwave radiation on parts made of high-energy polymer materials  

Science Journals Connector (OSTI)

Results of experimental measurements of Young’s modulus, burning rate, and specific heat of condensed high-energy polymer compositions (solid propellants) subjected to microwave radiation are reported. Experim...

L. L. Khimenko; A. P. Rybakov; N. A. Rybakov…

2014-07-01T23:59:59.000Z

68

Electromagnetic Field Theory  

E-Print Network (OSTI)

physicists around the world and from WWW `hit' statistics it seems that the book serves as a frequently used formulation of classical electrodynamics, force, momentum and energy of the electromagnetic field, radiation and scope to make it useful in higher university education anywhere in the world, it was produced within

Hart, Gus

69

Electromagnetic Wave Dynamics in  

E-Print Network (OSTI)

possibilities for strong localization of electromagnetic radiation in a dense and ultracold atomic gas sample an ultracold atomic rubidium gas sample, showing the coherent backscattering cone. The angular width of electrical excita- tion of condensed samples.3 Ongoing experimental and theoretical research directed toward

70

The emission of electromagnetic radiation from a quantum system interacting with an external noise: A general result  

E-Print Network (OSTI)

We compute the spectrum of emitted radiation by a generic quantum system interacting with an external classic noise. Our motivation is to understand this phenomenon within the framework of collapse models. However the computation is general and applies practically to any situation where a quantum system interacts with a noise. The computation is carried out at a perturbative level. This poses problems concerning the correct way of performing the analysis, as repeatedly discussed in the literature. We will clarify also this issue.

S. Donadi; A. Bassi

2014-08-12T23:59:59.000Z

71

Electromagnetic Theory 1 /56 Electromagnetic Theory  

E-Print Network (OSTI)

Electromagnetic Theory 1 /56 Electromagnetic Theory Summary: · Maxwell's equations · EM Potentials · Equations of motion of particles in electromagnetic fields · Green's functions · Lienard-Weichert potentials · Spectral distribution of electromagnetic energy from an arbitrarily moving charge #12;Electromagnetic

Bicknell, Geoff

72

Electromagnetic Geometry  

E-Print Network (OSTI)

We show that Maxwell's electromagnetism can be mapped into the Born-Infeld theory in a curved space-time, which depends only on the electromagnetic field in a specific way. This map is valid for any value of the two lorentz invariants $F$ and $G$ confirming that we have included all possible solutions of Maxwell's equations. Our result seems to show that specifying the dynamics and the space-time structure of a given theory can be viewed merely as a choice of representation to describe the physical system.

M. Novello; F. T. Falciano; E. Goulart

2011-11-08T23:59:59.000Z

73

Electromagnetics, 26:335, 2006 Copyright Taylor & Francis Group, LLC  

E-Print Network (OSTI)

Electromagnetics, 26:3­35, 2006 Copyright © Taylor & Francis Group, LLC ISSN: 0272-6343 print/1532 the statistical properties of the impedance (Z) and scattering (S) matrices of open electromagnetic cavities. Introduction The problem of the coupling of electromagnetic radiation in and out of structures is a general one

Anlage, Steven

74

Electromagnetic Reciprocity.  

SciTech Connect

A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.

Aldridge, David F.

2014-11-01T23:59:59.000Z

75

Polarization-independent optical wavelength filter for channel dropping applications  

DOE Patents (OSTI)

The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.

Deri, Robert J. (Pleasanton, CA); Patterson, Frank (Livermore, CA)

1996-01-01T23:59:59.000Z

76

Short wavelength laser  

DOE Patents (OSTI)

A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

Hagelstein, P.L.

1984-06-25T23:59:59.000Z

77

Space-time Curvature of Classical Electromagnetism  

E-Print Network (OSTI)

The space-time curvature carried by electromagnetic fields is discovered and a new unification of geometry and electromagnetism is found. Curvature is invariant under charge reversal symmetry. Electromagnetic field equations are examined with De Rham co homology theory. Radiative electromagnetic fields must be exact and co exact to preclude unobserved massless topological charges. Weyl's conformal tensor, here called ``the gravitational field'', is decomposed into a divergence-free non-local piece with support everywhere and a local piece with the same support as the matter. By tuning a local gravitational field to a Maxwell field the electromagnetic field's local gravitational field is discovered. This gravitational field carries the electromagnetic field's polarization or phase information, unlike Maxwell's stress-energy tensor. The unification assumes Einstein's equations and derives Maxwell's equations from curvature assumptions. Gravity forbids magnetic monopoles! This unification is stronger than the Einstein-Maxwell equations alone, as those equations must produce the electromagnetic field's local gravitational field and not just any conformal tensor. Charged black holes are examples. Curvature of radiative null electromagnetic fields is characterized.

R. W. M. Woodside

2004-10-08T23:59:59.000Z

78

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

79

Systematic wavelength selection for improved multivariate spectral analysis  

DOE Patents (OSTI)

Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

Thomas, Edward V. (2828 Georgia NE., Albuquerque, NM 87110); Robinson, Mark R. (1603 Solano NE., Albuquerque, NM 87110); Haaland, David M. (809 Richmond Dr. SE., Albuquerque, NM 87106)

1995-01-01T23:59:59.000Z

80

Short wavelength laser  

DOE Patents (OSTI)

A short wavelength laser (28) is provided that is driven by conventional-laser pulses (30, 31). A multiplicity of panels (32), mounted on substrates (34), are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path (42). When the panels (32) are illuminated by the conventional-laser pulses (30, 31), single pass EUV or soft x-ray laser pulses (44, 46) are produced.

Hagelstein, Peter L. (Livermore, CA)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Deformable mirror for short wavelength applications  

DOE Patents (OSTI)

A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

Chapman, Henry N. (2417 Kilkare Rd., Sunol, CA 94586); Sweeney, Donald W. (5020 Canyon Crest Dr., San Ramon, CA 94583)

1999-01-01T23:59:59.000Z

82

Optical Detection in Ultrafast Short Wavelength Science  

SciTech Connect

A new approach to coherent detection of ionising radiation is briefly motivated and recounted. The approach involves optical scattering of coherent light fields by colour centres in transparent solids. It has significant potential for diffractive imaging applications that require high detection dynamic range from pulsed high brilliance short wavelength sources. It also motivates new incarnations of Bragg's X-ray microscope for pump-probe studies of ultrafast molecular structure-dynamics.

Fullagar, Wilfred K.; Hall, Chris J. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia); Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria, 3010 (Australia)

2010-06-23T23:59:59.000Z

83

Coherence techniques at extreme ultraviolet wavelengths  

SciTech Connect

The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

Chang, Chang

2002-10-01T23:59:59.000Z

84

Multiple wavelength X-ray monochromators  

DOE Patents (OSTI)

An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

Steinmeyer, P.A.

1992-11-17T23:59:59.000Z

85

Wavelength meter having elliptical wedge  

DOE Patents (OSTI)

A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

Hackel, Richard P. (Livermore, CA); Feldman, Mark (Livermore, CA)

1992-01-01T23:59:59.000Z

86

Wavelength meter having elliptical wedge  

DOE Patents (OSTI)

A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

Hackel, R.P.; Feldman, M.

1992-12-01T23:59:59.000Z

87

Pigments which reflect infrared radiation from fire  

DOE Patents (OSTI)

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

Berdahl, Paul H. (Oakland, CA)

1998-01-01T23:59:59.000Z

88

Pigments which reflect infrared radiation from fire  

DOE Patents (OSTI)

Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

Berdahl, P.H.

1998-09-22T23:59:59.000Z

89

Electromagnetic partner of the gravitational signal during accretion onto black holes  

E-Print Network (OSTI)

We investigate the generation of electromagnetic and gravitational radiation in the vicinity of a perturbed Schwarzschild black hole. The gravitational perturbations and the electromagnetic field are studied by solving the Teukolsky master equation with sources, which we take to be locally charged, radially infalling, matter. Our results show that, in addition to the gravitational wave generated as the matter falls into the black hole, there is also a burst of electromagnetic radiation. This electromagnetic field has a characteristic set of quasinormal frequencies, and the gravitational radiation has the quasinormal frequencies of a Schwarzschild black hole. This scenario allows us to compare the gravitational and electromagnetic signals that are generated by a common source.

Juan Carlos Degollado; Victor Gualajara; Claudia Moreno; Darío Núñez

2014-10-21T23:59:59.000Z

90

Electromagnetic Wave Transmission Through a Subwavelength Nano-hole in a Two-dimensional Plasmonic Layer  

E-Print Network (OSTI)

An integral equation is formulated to describe electromagnetic wave transmission through a sub-wavelength nano-hole in a thin plasmonic sheet in terms of the dyadic Green's function for the associated Helmholtz problem. Taking the subwavelength radius of the nano-hole to be the smallest length of the system, we have obtained an exact solution of the integral equation for the dyadic Green's function analytically and in closed form. This dyadic Green's function is then employed in the numerical analysis of electromagnetic wave transmission through the nano-hole for normal incidence of the incoming wave train. The electromagnetic transmission involves two distinct contributions, one emanating from the nano-hole and the other is directly transmitted through the thin plasmonic layer itself (which would not occur in the case of a perfect metal screen). The transmitted radiation exhibits interference fringes in the vicinity of the nano-hole, and they tend to flatten as a function of increasing lateral separation fro...

Horing, Norman J M; Gumbs, Godfrey

2014-01-01T23:59:59.000Z

91

Fast quantum dot single photon source triggered at telecommunications wavelength  

E-Print Network (OSTI)

We demonstrate a quantum dot single photon source at 900 nm triggered at 300 MHz by a continuous wave telecommunications wavelength laser followed by an electro-optic modulator. The quantum dot is excited by on-chip-generated second harmonic radiation, resonantly enhanced by a GaAs photonic crystal cavity surrounding the InAs quantum dot. Our result suggests a path toward the realization of telecommunications-wavelength-compatible quantum dot single photon sources with speeds exceeding 1 GHz.

Kelley Rivoire; Sonia Buckley; Arka Majumdar; Hyochul Kim; Pierre Petroff; Jelena Vuckovic

2010-12-01T23:59:59.000Z

92

Electromagnetic properties of neutrinos  

E-Print Network (OSTI)

A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

Carlo Giunti; Alexander Studenikin

2010-06-08T23:59:59.000Z

93

Transient electromagnetic interference in substations  

SciTech Connect

Electromagnetic interference levels on sensitive electronic equipment are quantified experimentally and theoretically in air and gas insulated substations of different voltages. Measurement techniques for recording interference voltages and currents and electric and magnetic fields are reviewed and actual interference data are summarized. Conducted and radiated interference coupling mechanisms and levels in substation control wiring are described using both measurement results and electromagnetic models validated against measurements. The nominal maximum field and control wire interference levels expected in the switchyard and inside the control house from switching operations, faults, and an average lightning strike are estimated using high frequency transient coupling models. Comparisons with standards are made and recommendations given concerning equipment shielding and surge protection.

Wiggins, C.M.; Thomas, D.E.; Nickel, F.S.; Salas, T.M. (BDM International, Inc., Albuquerque, NM (United States)); Wright, S.E. (Electric Power Research Inst., Palo Alto, CA (United States))

1994-10-01T23:59:59.000Z

94

Electromagnetic Measurements at RHIC  

E-Print Network (OSTI)

Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study University of Tokyo #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki 2 Prologue · EM probe and where they are produced; #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki

Hamagaki, Hideki

95

Electromagnetic Measurements at RHIC  

E-Print Network (OSTI)

Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study Graduate School of Science the University of Tokyo #12;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki Hamagaki 3 Prologue ­ scope of EM measurements · EM

Hamagaki, Hideki

96

Fast Convergence Algorithm for Earthquake Prediction Using Electromagnetic Fields Excited by SLF/ELF Horizontal Magnetic Dipole and Schumann Resonance  

Science Journals Connector (OSTI)

In order to estimate where the electromagnetic radiation associated with the seismic activity comes from, the propagation characteristics of the SLF/ELF electromagnetic waves on the ground should ... algorithm. A...

Yuan-xin Wang; Zhen-wei Zhao; Zhen-sen Wu…

2014-07-01T23:59:59.000Z

97

On the Phenomenology of Tachyon Radiation  

E-Print Network (OSTI)

We present a brief overview of the different kinds of electromagnetic radiations expected to come from (or to be induced by) space-like sources (tachyons). New domains of radiation are here considered; and the possibility of experimental observation of tachyons via electromagnetic radiation is discussed.

Ron Folman; Erasmo Recami

1995-08-30T23:59:59.000Z

98

Characteristics of electromagnetic interference generated during discharge of Mylar samples  

SciTech Connect

This paper discusses the measurements of the electromagnetic interference (EMI) generated during discharges of Mylar samples. The two components of EMI, the conducted emission and the radiated emission, are characterized by the replacement current and the radiated RF spectrum respectively. The measured radiated RF spectra reveal important information on the source of the electromagnetic radiation. The possible sources are the replacement current pulse and the discharged generated plasma. The scaling of the amplitudes of the EMI, as a function of the area of the test sample, is also discussed.

Leung, P.L.

1984-12-01T23:59:59.000Z

99

"Light" or the Electromagnetic spectrum www.nasa.gov  

E-Print Network (OSTI)

(absorbed then emitted light) · About the solar atmosphere · About comet tails · About our galaxy · About#12;"Light" or the Electromagnetic spectrum www.nasa.gov #12;Diffraction and Light · When passed through a prism or grating, light is separated into its component wavelengths · This looks like a rainbow

Mojzsis, Stephen J.

100

Electromagnetic structure of pion  

SciTech Connect

In this work, we analyze the electromagnetic structure of the pion, an elementary particle composed by a quark-antiquark bound state, by considering the calculation of its electromagnetic radius and its electromagnetic form factor in low and intermediate energy range. Such observables are determined by means of a theoretical model that takes into account the constituent quark and antiquark of the pion, in the formalism of the light-front field theory. In particular, it is considered a nonsymmetrical vertex for such a model, in which we have calculated the electromagnetic form factor of the pion in an optimized way, by varying its regulator mass, so that we can obtain the best value for the pion electromagnetic radius when compared with the experimental one. The theoretical calculations are also compared with the most recent experimental data involving the pion electromagnetic form factor and the results show very good agreement.

Mello, Clayton S.; Cruz Filho, Jose P.; Da Silva, Edson O.; El-Bennich, Bruno; De Melo, J. P.; Filho, Victo S. [Laboratorio de Fisica Teorica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, Sao Paulo (Brazil)

2013-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Unbalanced electromagnetic forces  

E-Print Network (OSTI)

) . I :, jazdz g (Member) (Member) August 1974 -" ~ 5:. -. 62 ABSTRACT Unbalanced Electromagnetic Forces (August 1974) Craig Martin Hansen, B. S. , Texas A&M University Directed by: Dr. Attilio J. Giaroia Electromagnetic forces from moving... be deduced from the history of the development of an under- standing of electromagnetic forces. This is a relatively short history (starting in the late 1800's) filled with misunderstandings and pre]udices. This history can be divided into two eras: non...

Hansen, Craig Martin

2012-06-07T23:59:59.000Z

102

Meson electromagnetic form factors  

E-Print Network (OSTI)

The electromagnetic structure of the pseudoscalar meson nonet is completely described by the sophisticated Unitary&Analytic model, respecting all known theoretical properties of the corresponding form factors.

Stanislav Dubnicka; Anna Z. Dubnickova

2012-10-23T23:59:59.000Z

103

Electromagnetic probes of the QGP  

E-Print Network (OSTI)

We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow $v_2$ of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleus-nucleus collisions can be employed to shed some more light on the origin of the photon $v_2$ "puzzle". While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

E. L. Bratkovskaya; O. Linnyk; W. Cassing

2014-09-15T23:59:59.000Z

104

Progress In Electromagnetics Research, PIER 74, 119, 2007 ANALYSIS OF INTERACTION BETWEEN A  

E-Print Network (OSTI)

partially re-radiates, and partially dissipates within the FR body, eventually producing heat. Both re-radiated energy and heat loss in the FR depend on coupling between the FR and the electromagnetic field picks out energy from electromagnetic field at the ferromagnetic resonance. Thus the typical linewidth

Koledintseva, Marina Y.

105

Modulation compression for short wavelength harmonic generation  

E-Print Network (OSTI)

Wavelength Harmonic Generation Ji Qiang Lawrence Berkeleyform a basis for fourth generation light source. Currently,e?ciency was proposed for generation of short wavelength

Qiang, J.

2010-01-01T23:59:59.000Z

106

Nonlocal Electromagnetic Response of Graphene Nanostructures  

E-Print Network (OSTI)

Nonlocal electromagnetic effects of graphene arise from its naturally dispersive dielectric response. We present semi-analytical solutions of nonlocal Maxwell's equations for graphene nano-ribbons array with features around 100 nm, where we found prominent departures from its local response. Interestingly, the nonlocal corrections are stronger for light polarization parallel to the ribbons, which manifests as additional broadening of the Drude peak. For the perpendicular polarization case, nonlocal effects lead to blue-shifts of the plasmon peaks. These manifestations provide a physical measure of nonlocal effects, and we quantify their dependence on ribbon width, doping and wavelength.

Fallahi, Arya; Tamagnone, Michele; Perruisseau-Carrier, Julien

2014-01-01T23:59:59.000Z

107

Inter-network regions of the Sun at millimetre wavelengths  

E-Print Network (OSTI)

The continuum intensity at wavelengths around 1 mm provides an excellent way to probe the solar chromosphere. Future high-resolution millimetre arrays, such as the Atacama Large Millimeter Array (ALMA), will thus produce valuable input for the ongoing controversy on the thermal structure and the dynamics of this layer. Synthetic brightness temperature maps are calculated on basis of three-dimensional radiation (magneto-)hydrodynamic (MHD) simulations. While the millimetre continuum at 0.3mm originates mainly from the upper photosphere, the longer wavelengths considered here map the low and middle chromosphere. The effective formation height increases generally with wavelength and also from disk-centre towards the solar limb. The average intensity contribution functions are usually rather broad and in some cases they are even double-peaked as there are contributions from hot shock waves and cool post-shock regions in the model chromosphere. Taking into account the deviations from ionisation equilibrium for hydrogen gives a less strong variation of the electron density and with it of the optical depth. The result is a narrower formation height range. The average brightness temperature increases with wavelength and towards the limb. The relative contrast depends on wavelength in the same way as the average intensity but decreases towards the limb. The dependence of the brightness temperature distribution on wavelength and disk-position can be explained with the differences in formation height and the variation of temperature fluctuations with height in the model atmospheres.

S. Wedemeyer-Boehm; H. -G. Ludwig; M. Steffen; J. Leenaarts; B. Freytag

2007-05-16T23:59:59.000Z

108

Critical wavelength for river meandering  

Science Journals Connector (OSTI)

A fully nonlinear modal analysis identifies a critical centerline wave number qc for river meandering that separates long-wavelength bends, which grow to cutoff, from short-wavelength bends, which decay. Exact, numerical, and approximate analytical results for qc rely on the Ikeda, Parker, and Sawai [J. Fluid Mech. 112, 363 (1981)] model, supplemented by dynamical equations that govern the river migration and length. Predictions also include upvalley bend migration at long times and a peak in lateral migration rates at intermediate times. Experimental tests are suggested.

Boyd F. Edwards and Duane H. Smith

2001-03-28T23:59:59.000Z

109

Laser beat wave excitation of terahertz radiation in a plasma slab  

SciTech Connect

Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasma boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ?10{sup 17?}W/cm{sup 2} at 1??m, one obtains the THz intensity ?1?GW/cm{sup 2} at 3 THz radiation frequency.

Chauhan, Santosh; Parashar, Jetendra, E-mail: j.p.parashar@gmail.com [Department of Applied Physics, Samrat Ashok Technological Institute, Vidisha 464001, Madhya Pradesh (India)

2014-10-15T23:59:59.000Z

110

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 1, JANUARY 2009 129 Very-Low-Frequency Electromagnetic Field  

E-Print Network (OSTI)

, Walter J. Varhue, and Stephen Titcomb, Senior Member, IEEE Abstract--Naturally occurring electromagnetic and difficult to detect under normal conditions. These naturally occurring VLF electromagnetic events. This electronic system can be used to monitor VLF electromagnetic radiation in residential and occupational

Motai, Yuichi

111

Solid colloidal optical wavelength filter  

DOE Patents (OSTI)

A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

Alvarez, Joseph L. (Boulder, CO)

1992-01-01T23:59:59.000Z

112

Electromagnetic or other directed energy pulse launcher  

DOE Patents (OSTI)

The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

Ziolkowski, Richard W. (Livermore, CA)

1990-01-01T23:59:59.000Z

113

Purely electromagnetic spacetimes  

E-Print Network (OSTI)

Electrovacuum solutions devoid of usual mass sources are classified in the case of one, two and three commuting Killing vectors. Three branches of solutions exist. Electromagnetically induced mass terms appear in some of them.

B. V. Ivanov

2007-12-15T23:59:59.000Z

114

Graded pitch electromagnetic pump for thin strip metal casting systems  

DOE Patents (OSTI)

A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

Kuznetsov, S.B.

1986-04-01T23:59:59.000Z

115

Electromagnetic rotational actuation.  

SciTech Connect

There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

Hogan, Alexander Lee

2010-08-01T23:59:59.000Z

116

A three wavelength scheme to optimize hohlraum coupling on the National Ignition Facility  

SciTech Connect

By using three tunable wavelengths on different cones of laser beams on the National Ignition Facility, numerical simulations show that the energy transfer between beams can be tuned to redistribute the energy within the cones of beams most prone to backscatter instabilities. These radiative hydrodynamics and laser-plasma interaction simulations have been tested against large scale hohlraum experiments with two tunable wavelengths, and reproduce the hohlraum energetics and symmetry. Using a third wavelength provides a greater level of control of the laser energy distribution and coupling in the hohlraum, and could significantly reduce stimulated Raman scattering losses and increase the hohlraum radiation drive while maintaining a good implosion symmetry.

Michel, P; Divol, L; Town, R; Rosen, M

2010-12-16T23:59:59.000Z

117

EMG #121471 Electromagnetics, 25:679693, 2005  

E-Print Network (OSTI)

. Keywords electromagnetic compatibility, electromagnetic interference, aperture, cou- pling, finite compatibility (EMC) and electromagnetic interference (EMI) requirements, it is crucial to quantify

Ramahi, Omar

118

Electromagnetic Siegert states for periodic dielectric structures  

E-Print Network (OSTI)

The formalism of Siegert states to describe the resonant scattering in quantum theory is extended to the resonant scattering of electromagnetic waves on periodic dielectric arrays. The excitation of electromagnetic Siegert states by an incident wave packet and their decay is studied. The formalism is applied to develop a theory of coupled electromagnetic resonances arising in the electromagnetic scattering problem for two such arrays separated by a distance 2h (or, generally, when the physical properties of the scattering array depend on a real coupling parameter h). Analytic properties of Siegert states as functions of the coupling parameter h are established by the Regular Perturbation Theorem which is an extension the Kato-Rellich theorem to the present case. By means of this theorem, it is proved that if the scattering structure admits a bound state in the radiation continuum at a certain value of the coupling parameter h, then there always exist regions within the structure in which the near field can be amplified as much as desired by adjusting the value of h. This establishes a rather general mechanism to control and amplify optical nonlinear effects in periodically structured planar structures possessing a nonlinear dielectric susceptibility.

Friends R. Ndangali; Sergei V. Shabanov

2011-08-09T23:59:59.000Z

119

Electromagnetic Interference from the ILC Beams  

SciTech Connect

Electromagnetic interference is an emerging problem of the future. This investigation analyzed the data collected from airborne radiation waves that caused electronic devices to fail. This investigation was set up at SLAC in End Station A and the data collected from the electromagnetic waves were received from antennas. In order to calibrate the antennas it required a signal generator to transmit the signals to the antenna and a digital oscilloscope to receive the radiation waves from the other antenna. The signal generator that was used was only able to generate signals between 1 and 1.45 GHz; therefore, the calibrations were not able to be completed. Instead, excel was used to create a curve fitting for the attenuation factors that were already factory calibrated. The function from the curve fitting was then used to extend the calibrations on the biconical and yagi antennas. A fast Fourier Transform was then ran in Matlab on the radiation waves received by the oscilloscope; in addition, the attenuation factors were calculated into the program to show the actual amplitudes of these radiation waves. For future research, the antennas will be manually calibrated and the results will be reanalyzed.

Brown, LaVonda N.; /Norfolk State U. /SLAC

2007-11-07T23:59:59.000Z

120

3. ELECTROMAGNETIC COMPATIBILITY Abstract --The electromagnetic interference between the  

E-Print Network (OSTI)

walls and tubes) and with strong EMI (Electromagnetic Interference). So it is ideal to use the power

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Televisions, Video Privacy, and Powerline Electromagnetic Interference  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv Safe Use Guidelines, Electromagnetic Interference, and FCC Warning . . . . . . . . . . . . .v

Matsuoka, Yoky

122

Electromagnetically Induced Flows Michiel de Reus  

E-Print Network (OSTI)

Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 2013 () Electromagnetically Conclusion and future research () Electromagnetically Induced Flows 2 / 56 #12;1 Introduction 2 Maxwell Navier Stokes equations 5 Simulations 6 Conclusion and future research () Electromagnetically Induced

Vuik, Kees

123

8.07 Electromagnetism II, Fall 2005  

E-Print Network (OSTI)

This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of ...

Bertschinger, Edmund

124

Twisted electromagnetic beams Swedish Institute of Space Physics and Uppsala University  

E-Print Network (OSTI)

Twisted electromagnetic beams Swedish Institute of Space Physics and Uppsala University of freedom for the radiation. Electromagnetic beams that carry OAM appear twisted. The twist can be used more information than with regular beams. Even single photons can carry a twist, in addition

125

Measurement and analysis of electromagnetic fields from trams, trains and hybrid cars  

Science Journals Connector (OSTI)

......optical radiation and electric and magnetic fields...Electromagnetic Fields in Automobiles (1996) Goteborg...study, measurements of electric and magnetic fields...few of the measured electric and magnetic field strengths...Non-U.S. Gov't | Automobiles Electromagnetic Fields......

Malka N. Halgamuge; Chathurika D. Abeyrathne; Priyan Mendis

2010-10-01T23:59:59.000Z

126

Electromagnetism and Gravitation  

E-Print Network (OSTI)

The classical concept of "mass density" is not fundamental to the quantum theory of matter. Therefore, mass density cannot be the source of gravitation. Here, we treat electromagnetic energy, momentum, and stress as its source. The resulting theory predicts that the gravitational potential near any charged elementary particle is many orders of magnitude greater than the Newtonian value.

Kenneth Dalton

1997-03-10T23:59:59.000Z

127

Electromagnetic pulsar spindown  

E-Print Network (OSTI)

We evaluate the result of the recent pioneering numerical simulations in Spitkovsky~2006 on the spindown of an oblique relativistic magnetic dipole rotator. Our discussion is based on our experience from two idealized cases, that of an aligned dipole rotator, and that of an oblique split-monopole rotator. We conclude that the issue of electromagnetic pulsar spindown may not have been resolved yet.

I. Contopoulos

2007-01-10T23:59:59.000Z

128

K -> pi pi Phenomenology in the Presence of Electromagnetism  

E-Print Network (OSTI)

We describe the influence of electromagnetism on the phenomenology of K -> pi pi decays. This is required because the present data were analyzed without inclusion of electromagnetic radiative corrections, and hence contain several ambiguities and uncertainties which we describe in detail. Our presentation includes a full description of the infrared effects needed for a new experimental analysis. It also describes the general treatment of final state interaction phases, needed because Watson's theorem is no longer valid in the presence of electromagnetism. The phase of the isospin-two amplitude A_2 may be modified by 50% -> 100%. We provide a tentative analysis using present data in order to illustrate the sensitivity to electromagnetic effects, and also discuss how the standard treatment of epsilon'/epsilon is modified.

Vincenzo Cirigliano; John F. Donoghue; Eugene Golowich

2000-08-28T23:59:59.000Z

129

Computational Electronics and Electromagnetics  

SciTech Connect

The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

DeFord, J.F.

1993-03-01T23:59:59.000Z

130

Electromagnetic source localization with finite set of frequency measurements  

E-Print Network (OSTI)

A phase conjugation algorithm for localizing an extended radiating electromagnetic source from boundary measurements of the electric field is presented. Measurements are taken over a finite number of frequencies. The artifacts related to the finite frequency data are tackled with $l_1-$regularization blended with the fast iterative shrinkage-thresholding algorithm with backtracking of Beck & Teboulle.

Abdul Wahab; Amer Rasheed; Rab Nawaz; Saman Anjum

2014-09-16T23:59:59.000Z

131

Banded electromagnetic stator core  

DOE Patents (OSTI)

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

1996-01-01T23:59:59.000Z

132

Banded electromagnetic stator core  

DOE Patents (OSTI)

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

1994-01-01T23:59:59.000Z

133

Gravitation and Electromagnetism  

E-Print Network (OSTI)

The realms of gravitation, belonging to Classical Physics, and Electromagnetism, belonging to the Theory of the Electron and Quantum Mechanics have remained apart as two separate pillars, inspite of a century of effort by Physicists to reconcile them. In this paper it is argued that if we extend ideas of Classical spacetime to include in addition to non integrability non commutavity also, then such a reconcilation is possible.

B. G. Sidharth

2001-06-16T23:59:59.000Z

134

Fractional Electromagnetic Waves  

E-Print Network (OSTI)

In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

J. F. Gómez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Guía

2011-08-31T23:59:59.000Z

135

Quaternion Gravi-Electromagnetism  

E-Print Network (OSTI)

Defining the generalized charge, potential, current and generalized fields as complex quantities where real and imaginary parts represent gravitation and electromagnetism respectively, corresponding field equation, equation of motion and other quantum equations are derived in manifestly covariant manner. It has been shown that the field equations are invariant under Lorentz as well as duality transformations. It has been shown that the quaternionic formulation presented here remains invariant under quaternion transformations.

A. S. Rawat; O. P. S. Negi

2011-07-05T23:59:59.000Z

136

Banded electromagnetic stator core  

DOE Patents (OSTI)

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

1996-06-11T23:59:59.000Z

137

Banded electromagnetic stator core  

DOE Patents (OSTI)

A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

1994-04-05T23:59:59.000Z

138

Coherent hybrid electromagnetic field imaging  

DOE Patents (OSTI)

An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)

2008-08-26T23:59:59.000Z

139

Wavelength-doubling optical parametric oscillator  

DOE Patents (OSTI)

A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

Armstrong, Darrell J. (Albuquerque, NM); Smith, Arlee V. (Albuquerque, NM)

2007-07-24T23:59:59.000Z

140

Electromagnetic probes of the QGP  

E-Print Network (OSTI)

We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow $v_2$ of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleus-nucleus collisions can be employed to shed some more light on the origin of the photon $v_2$ "puzzle". While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high...

Bratkovskaya, E L; Cassing, W

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Selective radiative cooling with MgO and/or LiF layers  

DOE Patents (OSTI)

A material for a wavelength-selective radiative cooling system, the material comprising an infrared-reflective substrate coated with magnesium oxide and/or lithium fluoride in a polycrystalline form. The material is non-absorptive for short wavelengths, absorptive from 8 to 13 microns, and reflective at longer wavelengths. The infrared-reflective substrate inhibits absorption at wavelengths shorter than 8 microns, and the magnesium oxide and/or lithium fluoride layers reflect radiation at wavelengths longer than 13 microns.

Berdahl, Paul H. (Oakland, CA)

1986-01-01T23:59:59.000Z

142

ELECTROMAGNETIC COMPATIBILITY AND RENEWABLE POWER FOR IMPLANTABLE NEUROSTIMULATORS  

E-Print Network (OSTI)

J, Bakker P: Electromagnetic interference from radiomaking electromagnetic interference neurostimulator functioninclude electromagnetic interference and battery failure. In

Pantchenko, Oxana S.

2012-01-01T23:59:59.000Z

143

Electromagnetic analysis of nanostructure dispersion in polymer matrices  

E-Print Network (OSTI)

P. R. , “Enhanced electromagnetic interference shielding40] Chung D. D. L. “Electromagnetic Interference Shieldingreinforcement, electromagnetic interference shielding, etc.

Pfeifer, Steven Charles; Pfeifer, Steven Charles

2012-01-01T23:59:59.000Z

144

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since  

E-Print Network (OSTI)

Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields

Rutledge, Steven

145

Radiation, Matter and Energy What is light?  

E-Print Network (OSTI)

Radiation, Matter and Energy #12;What is light? #12;Light is an electromagnetic wave #12;Light the visible spectrum, blue light has higher energy than red light Within the electromagnetic spectrum, X-rays have the highest energy, followed by UV, visible light, IR, and radio Remember: Light is just one form

Shirley, Yancy

146

Electromagnetic induction in accelerated conductors  

Science Journals Connector (OSTI)

Boundary conditions are derived for the interfaces of a conductor moving across an external magnetic field in an ambient medium (vacuum or nonconductor), which consider the emission of electromagnetic waves from the conductor surface as a result of electromagnetic induction. These boundary conditions are applied to the initial-boundary-value problem for the electromagnetic induction in a conducting slab, which is accelerated across a homogeneous magnetic field to a nonrelativistic velocity. Fourier-series solutions are presented for the transient electromagnetic fields in the moving conductor and the discontinuous electromagnetic waves in the ambient space. It is shown that the transient electromagnetic fields inside and outside the conductor are due to two mechanisms, i.e., "velocity induction" (ordinary induction) and "acceleration induction" [dv?(t)dt?0?]. The latter result cannot be explained by means of the Lorentz transformation, which is valid only for constant conductor velocities (inertial frames).

H. E. Wilhelm

1982-06-01T23:59:59.000Z

147

Torsion and the Electromagnetic Field  

E-Print Network (OSTI)

In the framework of the teleparallel equivalent of general relativity, we study the dynamics of a gravitationally coupled electromagnetic field. It is shown that the electromagnetic field is able not only to couple to torsion, but also, through its energy-momentum tensor, to produce torsion. Furthermore, it is shown that the coupling of the electromagnetic field with torsion preserves the local gauge invariance of Maxwell's theory.

V. C. de Andrade; J. G. Pereira

1999-01-11T23:59:59.000Z

148

Electromagnetic field and cosmic censorship  

E-Print Network (OSTI)

We construct a gedanken experiment in which an extremal Kerr black hole interacts with a test electromagnetic field. Using Teukolsky's solutions for electromagnetic perturbations in Kerr spacetime, and the conservation laws imposed by the energy momentum tensor of the electromagnetic field and the Killing vectors of the spacetime, we prove that this interaction cannot convert the black hole into a naked singularity, thus cosmic censorship conjecture is not violated in this case.

Koray Düzta?

2014-04-09T23:59:59.000Z

149

Dangerous electromagnetic fields?  

NLE Websites -- All DOE Office Websites (Extended Search)

Dangerous electromagnetic fields? Dangerous electromagnetic fields? Name: Tommy T Joseph Location: N/A Country: N/A Date: N/A Question: Why are electromagnetic fields supposedly dangerous? Replies: I assume you are asking about power line frequency (60 Hz) fields, since they have been in the news lately. No one knows for sure that they are dangerous. There have been a few studies which seem to show an association between how close homes are to power lines, and the incidence of childhood cancer (mostly leukemia) in children living (or who have lived) in those homes. Other similar studies have not found such an association. In all the studies which have found an association, none has actually measured the fields. Studies which actually have measured the fields find no association. There is no known mechanism for 60 Hz fields to cause cancer. Furthermore, the classic "dose-response relationship," that is, the greater the dose, the greater the response, does not seem to work here. Many laboratory studies have found that 60 Hz fields have an effect on organisms under certain conditions, but none of the observed effects can be convincingly related to a hazard. The bottom line is, no one knows for sure. It is important to realize that it is impossible to prove that anything is completely safe. My personal opinion is that, if there is a risk, it must be very small, or it wouldn't be so hard to prove. I can supply some good unbiased references if you are interested.

150

Electromagnetism on Anisotropic Fractals  

E-Print Network (OSTI)

We derive basic equations of electromagnetic fields in fractal media which are specified by three indepedent fractal dimensions {\\alpha}_{i} in the respective directions x_{i} (i=1,2,3) of the Cartesian space in which the fractal is embedded. To grasp the generally anisotropic structure of a fractal, we employ the product measure, so that the global forms of governing equations may be cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving the {\\alpha}_{i}'s. First, a formulation based on product measures is shown to satisfy the four basic identities of vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Amp\\`ere laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.

Martin Ostoja-Starzewski

2011-06-08T23:59:59.000Z

151

Electromagnetic Field Quantization in Time-Dependent Dielectric Media  

E-Print Network (OSTI)

We present a Gupta-Bleuler quantization scheme for the electromagnetic field in time-dependent dielectric media. Starting from the Maxwell equations, a generalization of the Lorentz gauge condition adapted to time varying dielectrics is derived. Using this gauge, a Gupta-Bleuler approach to quantize all polarizations of the radiation field and the corresponding constraint condition are introduced. This new approach is different from the quantized electromagnetic field in vacuum in the sense that here the contributions of unphysical photons cannot be thoroughly eliminated, which further lead to a surface charge density. Finally, a discussion of potential experimental tests and possible implication is also made.

Xiao-Min Bei; Zhong-Zhu Liu

2011-04-18T23:59:59.000Z

152

Electromagnetic Probes in PHENIX  

E-Print Network (OSTI)

Electromagnetic probes are arguably the most universal tools to study the different physics processes in high energy hadron and heavy ion collisions. In this paper we summarize recent measurements of real and virtual direct photons at central rapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions. We also discuss the impact of the results and the constraints they put on theoretical models. At the end we report on the immediate as well as on the mid-term future of photon measurements at RHIC.

Gabor David

2006-09-21T23:59:59.000Z

153

Gravitation and electromagnetism  

E-Print Network (OSTI)

Maxwell's equations comprise both electromagnetic and gravitational fields. The transverse part of the vector potential belongs to magnetism, the longitudinal one is concerned with gravitation. The Coulomb gauge indicates that longitudinal components of the fields propagate instantaneously. The delta-function singularity of the field of the divergence of the vector potential, referred to as the dilatation center, represents an elementary agent of gravitation. Viewing a particle as a source or a scattering center of the point dilatation, the Newton's gravitation law can be reproduced.

V. P. Dmitriyev

2002-07-23T23:59:59.000Z

154

Electromagnetic pump stator coil  

DOE Patents (OSTI)

An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

Fanning, A.W.; Dahl, L.R.

1996-06-25T23:59:59.000Z

155

Optical wavelength modulation in free electron lasers  

SciTech Connect

An attribute of the free electron laser (FEL) is the continuous tunability of the optical wavelength by modulation of the electron beam energy. The variation of the wavelength and power of the optical beam is studied as a function of FEL operating parameters. These results will be applied to the Stanford SCA FEL and Boeing FEL.

Mabe, R.M.; Wong, R.K.; Colson, W.B. [Naval Postgraduate School, Monterey, CA (United States)

1995-12-31T23:59:59.000Z

156

The Intense Radiation Gas  

E-Print Network (OSTI)

We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

M. Marklund; P. K. Shukla; B. Eliasson

2005-03-08T23:59:59.000Z

157

Electromagnetic fuel injector  

SciTech Connect

This patent describes an electromagnetic fuel injector for an internal combustion engine having a valve axis and including a housing, a flat armature connected to a movable valve element arranged to cooperate with a valve seat, spring means for exerting a force in an axial direction on the armature, and electromagnetic means for exerting a force in an opposite direction on the armature when electrically energized. The improvement comprises: the spring means being a helical coil spring disposed in substantially coaxial alignment with the valve axis and having an end in compressive engagement with the armature, the final coil which includes the end of the coil spring being inclined axially outward at an angle relative to a plane normal to the axis of the spring so as to apply to the armature a greater axial spring force to one side of the valve axis than the other thereby to effect pivoting of the armature about a pivot, the pivot being determined by the location of the end of the coil spring.

Gieseking, J.H.

1987-04-28T23:59:59.000Z

158

Electromagnetic neutrino: a short review  

E-Print Network (OSTI)

A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.

Alexander I. Studenikin

2014-11-09T23:59:59.000Z

159

Airborne electromagnetic surveys as a reconnaissance technique...  

Open Energy Info (EERE)

Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Abstract INPUT airborne electromagnetic (AEM) surveys were conducted during 1979 in five...

160

Optical amplification at the 1. 31 wavelength  

DOE Patents (OSTI)

An optical amplifier operating at the 1.31 [mu]m wavelength for use in such applications as telecommunications, cable television, and computer systems is described. An optical fiber or other waveguide device is doped with both Tm[sup 3+] and Pr[sup 3+] ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm[sup 3+] ions to the Pr[sup 3+] ions, causing the Pr[sup 3+] ions to amplify at a wavelength of 1.31. 1 figure.

Cockroft, N.J.

1994-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Infrared Radiation Filament And Metnod Of Manufacture  

DOE Patents (OSTI)

An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.

Johnson, Edward A. (Bedford, MA)

1998-11-17T23:59:59.000Z

162

Electromagnetically induced invisibility cloaking  

E-Print Network (OSTI)

Invisibility cloaking imposes strict conditions on the refractive index profiles of cloaking media that must be satisfied to successfully hide an object. The first experimental demonstrations of cloaking used artificial metamaterials to respond to this challenge. In this work we show how a much simpler technique of electromagnetically induced transparency can be used to achieve a partial, {\\it carpet} cloaking at optical frequencies in atomic vapours or solids. To generate a desired combination of low absorption with strong modifications of the refractive index, we use chiral media with an induced magneto-electrical cross-coupling. We demonstrate that high-contrast positive refractive indices can be attained by fine tuning the material with a gradient magnetic field and calculate the parameters required to construct a carpet cloak.

Darran F. Milne; Natalia Korolkova

2012-06-18T23:59:59.000Z

163

E-Print Network 3.0 - aerial radiation monitoring Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and by convective fluid flows. The Sun as a Star Star-birth Clouds... ) Electromagnetic Interference (communications failure) Radiation Overdose (astronaut health hazard)...

164

An electromagnetic perpetuum mobile?  

E-Print Network (OSTI)

A charge moving freely in orbit around the Earth radiates according to Larmor's formula. If the path is closed, it would constitute a perpetuum mobile. The solution to this energy paradox is found in an article by C. M. DeWitt and B. DeWitt from 1964. The main point is that the equation of motion of a radiating charge is modified in curved spacetime. In the present article we explain the physics behind this modification, and use the generalized equation to solve the perpetuum mobile paradox.

Øyvind Grøn; Sigurd Kirkevold Næss

2008-06-03T23:59:59.000Z

165

LED Emission through Sub-Wavelength Apertures  

Science Journals Connector (OSTI)

A gold film with a hexagonal array of sub-wavelength apertures has been fabricated onto the emitting surface of a semiconductor light emitting diode. Interaction of the light with...

Harries, Michael D; Summers, Huw D

166

Radiative muon capture  

Science Journals Connector (OSTI)

It is shown by relating the transition amplitude of radiative muon capture to that of radiative pion capture, that the transition amplitude of radiative muon capture proposed recently by Hwang and Primakoff differs from the others mainly by Low's counter terms. Despite the fact that the "original" transition amplitude does not violate seriously the conservation of the hadronic electromagnetic current, Low's counter terms, as introduced via Low's prescription to secure the presence of small conservation-of-hadronic-electromagnetic-current-breaking terms, are confirmed to be of numerical importance. Further, it is found in the "elementary-particle" treatment of radiative muon capture that the uncertainty arising from the nuclear structure can be reduced to become negligible. Therefore, an exclusive radiative muon capture experiment can in principle differentiate the Hwang-Primakoff theory from the others and yet provide a comprehensive test of partial conservation of axial-vector current.RADIOACTIVITY Theories of radiative muon capture, linearity hypothesis versus Low's prescription; nuclear structure and PCAC.

W -Y. P. Hwang

1980-07-01T23:59:59.000Z

167

Coherence in Spontaneous Radiation Processes  

Science Journals Connector (OSTI)

By considering a radiating gas as a single quantum-mechanical system, energy levels corresponding to certain correlations between individual molecules are described. Spontaneous emission of radiation in a transition between two such levels leads to the emission of coherent radiation. The discussion is limited first to a gas of dimension small compared with a wavelength. Spontaneous radiation rates and natural line breadths are calculated. For a gas of large extent the effect of photon recoil momentum on coherence is calculated. The effect of a radiation pulse in exciting "super-radiant" states is discussed. The angular correlation between successive photons spontaneously emitted by a gas initially in thermal equilibrium is calculated.

R. H. Dicke

1954-01-01T23:59:59.000Z

168

PHYSICS 416. Electromagnetism. Lecturer: Tim Gorringe.  

E-Print Network (OSTI)

PHYSICS 416. Electromagnetism. Lecturer: Tim Gorringe. Office: CP 273. Phone: 257-8740. Textbook: Electromagnetic Fields, R. Wangsness, 2nd Ed. Web page www.pa.uky.edu/gorringe/phy416/index.html Class hours: MWF-semester sequence on electromagnetic theory. 1 416/417 Course Objectives. The electromagnetic field binds electrons

MacAdam, Keith

169

PHYSICS 417. Electromagnetism. Lecturer: Tim Gorringe.  

E-Print Network (OSTI)

PHYSICS 417. Electromagnetism. Lecturer: Tim Gorringe. Office: CP273. Phone: 257-8740. Textbook: Electromagnetic Fields, R. Wangsness, 2nd Ed. Web page www.pa.uky.edu/gorringe/phy417/index.html Class hours: MWF-semester sequence on electromagnetic theory. 1 Course Objectives. The electromagnetic field binds electrons

MacAdam, Keith

170

Intermediate wavelength magnetic anomalies over ocean basins  

SciTech Connect

We have examined three very long magnetic field profiles taken over ocean basins for the presence of intermediate wavelength magnetic anomalies. One profile was from the Atlantic Ocean in the Transatlantic Geotraverse area, one ran along latitude 35/sup 0/S in the SE Pacific, and one ran along 150/sup 0/W in the Pacific. All three profiles show the presence of intermediate wavelength (65--1500 km) magnetic anomalies generated in the crust or upper mantle. The analysis of magnetic field power spectra shows that the core field becomes unimportant at about a wavelength of 1500 km. Sea floor spreading anomalies should produce a maximum in power at about a wavelength of 65 km. Between these two wavelengths there should be a minimum in power which is not seen on observed records. Inverting the anomalous field to obtain some idea of the magnetization necessary to explain these intermediate wavelength magnetic anomalies shows that values of magnetization in excess of 1 A m/sup -1/ are needed if the magnetized layer is as thick as the ocean crust. Alternatively, rather large thicknesses of upper mantle material with lower intensities of magnetization need to be used. The reason why such magnetization variations exist is not known. It can be shown that upward continuation of the magnetic anomaly signature to an altitude of 350 km (about the perihelion altitude of MAGSAT) will produce anomalies up to 10 nT in amplitude. These should be capable of being seen by MAGSAT, and thus allow us to determine the spatial arrangement of the intermediate wavelength anomalies and hence, hopefully, a clue as to their origin.

Harrison, C.G.A.; Carle, H.M.

1981-12-10T23:59:59.000Z

171

NISTHB 150-11 Electromagnetic  

E-Print Network (OSTI)

Programs Dennis Camell Electromagnetics Division Physical Measurement Laboratory http://dx.doi.org/10 of the NVLAP term, logo, and symbol. #12;NIST Handbook 150-11:2013 iii Contents Foreword ............................................................................................................................1 1.1 Scope of handbook

172

Electromagnetic Signals from Bacterial DNA  

E-Print Network (OSTI)

Chemical reactions can be induced at a distance due to the propagation of electromagnetic signals during intermediate chemical stages. Although is is well known at optical frequencies, e.g. photosynthetic reactions, electromagnetic signals hold true for muck lower frequencies. In E. coli bacteria such electromagnetic signals can be generated by electric transitions between energy levels describing electrons moving around DNA loops. The electromagnetic signals between different bacteria within a community is a "wireless" version of intercellular communication found in bacterial communities connected by "nanowires". The wireless broadcasts can in principle be of both the AM and FM variety due to the magnetic flux periodicity in electron energy spectra in bacterial DNA orbital motions.

A. Widom; J. Swain; Y. N. Srivastava; S. Sivasubramanian

2012-02-09T23:59:59.000Z

173

Exact solution to the Landau-Lifshitz equation in a constant electromagnetic field  

E-Print Network (OSTI)

We are interested in the motion of a classical charge acted upon an external constant electromagnetic field where the back reaction of the particle's own field is taken into account. The Landau-Lifshitz approximation to the Lorentz-Abraham-Dirac equation is solved exactly and in closed form. It is shown that the ultrarelativistic limit of the Landau-Lifshitz equation for a radiating charge is the equation for eigenvalues and eigenvectors of the external electromagnetic field tensor.

Yurij Yaremko

2014-12-04T23:59:59.000Z

174

Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide  

Science Journals Connector (OSTI)

A three-level EIT (electromagnetically induced transparency) vapor is used to manipulate the transparency and absorption properties of the probe light in a waveguide. The most remarkable feature of the present scheme is such that the optical responses resulting from both electromagnetically induced transparency and large spontaneous emission enhancement are very sensitive to the frequency detunings of the probe light as well as to the small changes of the waveguide dimension. The potential applications of the dimension- and dispersion-sensitive EIT responses are discussed, and the sensitivity limits of some waveguide-based sensors, including electric absorption modulator, optical switch, wavelength sensor, and sensitive magnetometer, are analyzed.

Jian Qi Shen and Sailing He

2006-12-28T23:59:59.000Z

175

Electromagnetically driven peristaltic pump  

DOE Patents (OSTI)

An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

Marshall, Douglas W. (Blackfoot, ID)

2000-01-01T23:59:59.000Z

176

Electromagnetic Calorimeter for HADES  

E-Print Network (OSTI)

We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron rejection, resulting from simulations based on the test measurements, is better than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.

W. Czyzycki; E. Epple; L. Fabbietti; M. Golubeva; F. Guber; A. Ivashkin; M. Kajetanowicz; A. Krasa; F. Krizek; A. Kugler; K. Lapidus; E. Lisowski; J. Pietraszko; A. Reshetin; P. Salabura; Y. Sobolev; J. Stanislav; P. Tlusty; T. Torrieri; M. Traxler

2011-11-28T23:59:59.000Z

177

Electromagnetic Calorimeter for HADES  

E-Print Network (OSTI)

We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV....

Czyzycki, W; Fabbietti, L; Golubeva, M; Guber, F; Ivashkin, A; Kajetanowicz, M; Krasa, A; Krizek, F; Kugler, A; Lapidus, K; Lisowski, E; Pietraszko, J; Reshetin, A; Salabura, P; Sobolev, Y; Stanislav, J; Tlusty, P; Torrieri, T; Traxler, M

2011-01-01T23:59:59.000Z

178

2nd conference on Intense field- Short Wavelength Atomic and...  

NLE Websites -- All DOE Office Websites (Extended Search)

nd conference on Intense field- Short Wavelength Atomic and Molecular Processes - ISWAMP2 2nd conference on Intense field- Short Wavelength Atomic and Molecular Processes - ISWAMP2...

179

Workshop on NEUtron WAVElength Dependent Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

NEUtron WAVElength Dependent Imaging NEUtron WAVElength Dependent Imaging (NEUWAVE-4) Workshop October 2 - 5, 2011 Spallation Neutron Source * Oak Ridge National Laboratory * Gatlinburg, TN, USA About the Workshop Workshop Agenda Contact Information Important Dates NEUWAVE-4 Program Registration Lodging Social Events Tourist Information Organizing Committee Program Committee Workshop Flyer filler About the Workshop The Oak Ridge National Laboratory's Neutron Sciences Directorate and Energy & Environmental Sciences Directorate are pleased to host the 4th Workshop on NEUtron WAVElength Dependent Imaging (NEUWAVE-4). This meeting discusses the latest development in energy selective imaging techniques, applications and existing and future instrumentation. This meeting follows the successful meeting held in Garching, Germany (April 2008,) Abingdon, UK (June 2009,) and Hokkaido University (June 2010.)

180

Radio Wavelength Observatories within the Exploration Architecture  

E-Print Network (OSTI)

Observations at radio wavelengths address key problems in astrophysics, astrobiology, and lunar structure including the first light in the Universe (the Epoch of Reionization), the presence of magnetic fields around extrasolar planets, particle acceleration mechanisms, and the structure of the lunar ionosphere. Moreover, achieving the performance needed to address these scientific questions demands observations at wavelengths longer than those that penetrate the Earth's ionosphere, observations in extremely "radio quiet" locations such as the Moon's far side, or both. We describe a series of lunar-based radio wavelength interferometers of increasing capability. The Radio Observatory for Lunar Sortie Science (ROLSS) is an array designed to be deployed during the first lunar sorties (or even before via robotic rovers) and addressing particle acceleration and the lunar ionosphere. Future arrays would be larger, more capable, and deployed as experience is gained in working on the lunar surface.

J. Lazio; R. J. Macdowall; J. Burns; L. Demaio; D. L. Jones; K. W. Weiler

2007-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Excitation wavelength dependence of water-window line emissions from boron-nitride laser-produced plasmas  

SciTech Connect

We investigated the effects of laser excitation wavelength on water-window emission lines of laser-produced boron-nitride plasmas. Plasmas are produced by focusing 1064 nm and harmonically generated 532 and 266 nm radiation from a Nd:YAG laser on BN target in vacuum. Soft x-ray emission lines in the water-window region are recorded using a grazing-incidence spectrograph. Filtered photodiodes are used to obtain complementary data for water-window emission intensity and angular dependence. Spectral emission intensity changes in nitrogen Ly-{alpha} and He-{alpha} are used to show how laser wavelength affects emission. Our results show that the relative intensity of spectral lines is laser wavelength dependent, with the ratio of Ly-{alpha} to He-{alpha} emission intensity decreasing as laser wavelength is shortened. Filtered photodiode measurements of angular dependence showed that 266 and 532 nm laser wavelengths produce uniform emission.

Crank, M.; Harilal, S. S.; Hassan, S. M.; Hassanein, A. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2012-02-01T23:59:59.000Z

182

Perturbative Roughness Corrections to Electromagnetic Casimir Energies  

E-Print Network (OSTI)

Perturbative corrections to the Casimir free energy due to macroscopic roughness of dielectric interfaces are obtained in the framework of an effective low-energy field theory. It describes the interaction of electromagnetic fields with materials whose plasma frequency $\\omega_p$ determines the low-energy scale. The na\\"ive perturbative expansion of the single-interface scattering matrix in the variance of the profile is sensitive to short wavelength components of the roughness correlation function. We introduce generalized counter terms that subtract and correct these high-momentum contributions to the loop expansion. To leading order the counter terms are determined by the phenomenological plasmon model. The latter is found to be consistent with the low-energy description. The proximity force approximation is recovered in the limit of long correlation length and gives the upper limit for the roughness correction to the Casimir force. The renormalized low-energy theory is insensitive to the high-momentum behavior of the roughness correlation function. Predictions of the improved theory are compared with those of the unrenormalized model and with experiment. The Casimir interaction of interfaces with low levels of roughness is found to be well reproduced by that of flat parallel plates with the measured reflection coefficients at a distance that is slightly less than the mean separation of the rough surfaces.

Hua Yao Wu; Martin Schaden

2014-02-11T23:59:59.000Z

183

Method for microbeam radiation therapy  

DOE Patents (OSTI)

A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

1994-08-16T23:59:59.000Z

184

The Long Wavelength Array (LWA) URSI --Ottawa  

E-Print Network (OSTI)

Inst. & State U. N. Kassim, U.S. Naval Research Laboratory G. Taylor, University of New Mexico Lee J Rickard, University of New Mexico #12;The Long Wavelength Array (LWA) An LWA Station State of New Mexico cosmic rays Supernova remnants & Galactic evolution Pulsars Solar Science & Space Weather Radio

Ellingson, Steven W.

185

Definition: Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Ground Electromagnetic Techniques Jump to: navigation, search Dictionary.png Ground Electromagnetic Techniques Ground electromagnetic techniques measure electromagnetic fields in order to determine subsurface electrical resistivity with the earth surface as the observation point.[1] View on Wikipedia Wikipedia Definition The electromagnetic force is one of the four fundamental interactions in nature, the other three being the strong interaction, the weak interaction, and gravitation. This force is described by electromagnetic fields, and has innumerable physical instances including the interaction of electrically charged particles and the interaction of uncharged magnetic force fields with electrical conductors. The word

186

Trapping of electrons in troughs of self generated electromagnetic standing waves in a bounded plasma column  

SciTech Connect

Observations and measurements are reported on electron trapping in troughs of self-generated electromagnetic standing waves in a bounded plasma column confined in a minimum-B field. The boundaries are smaller than the free space wavelength of the waves. Earlier work of researchers primarily focused upon electron localization effects induced by purely electrostatic perturbation. We demonstrate the possibility in the presence of electromagnetic standing waves generated in the bounded plasma column. The electron trapping is verified with electrostatic measurements of the plasma floating potential, electromagnetic measurements of the wave field profile, and optical intensity measurements of Argon ionic line at 488?nm. The experimental results show a reasonably good agreement with predictions of a Monte Carlo simulation code that takes into account all kinematical and dynamical effects in the plasma in the presence of bounded waves and external fields.

Bhattacharjee, Sudeep; Sahu, Debaprasad; Pandey, Shail; Chatterjee, Sanghomitro [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Dey, Indranuj [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan)] [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga Kouen 6-1, Kasuga City 816-8580 (Japan); Roy Chowdhury, Krishanu [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)] [Max Planck Institute for the Physics of Complex System, Dresden 01187 (Germany)

2014-01-15T23:59:59.000Z

187

Nonlocal homogenization theory in metamaterials: effective electromagnetic spatial dispersion and artificial chirality  

E-Print Network (OSTI)

We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with non-magnetic inclusions in the long wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that medium effective permittivity tensor and the first and second order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly-varying fields each satysifing electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achi...

Ciattoni, Alessandro

2015-01-01T23:59:59.000Z

188

Perfectly Reflectionless Omnidirectional Electromagnetic Absorber  

E-Print Network (OSTI)

We demonstrate the existence of metamaterial blueprints describing, and fundamental limitations concerning, perfectly reflectionless omnidirectional electromagnetic absorbers (PR-OEMA). Previous attempts to define PR-OEMA blueprints have led to active (gain), rather than passive, media. We explain this fact and unveil new, distinct limitations of true PR-OEMA devices including the appearance of an "electromagnetic horizon" on physical solutions. As practical alternatives, we introduce two new OEMA blueprints. While these two blueprints do not correspond to reflectionless media, they are effective in absorbing incident waves in a manner robust to incident wave diversity.

Sainath, Kamalesh

2014-01-01T23:59:59.000Z

189

All-optical Wavelength Conversion in Aluminum Gallium Arsenide at Telecommunications Wavelengths.  

E-Print Network (OSTI)

??This thesis aims at both developing highly nonlinear Aluminum Gallium Arsenide waveguides(AlGaAs) and demonstrating all-optical wavelength conversion via cross-phase modulation in AlGaAs waveguides at telecommunications… (more)

Ng, Wing-Chau

2011-01-01T23:59:59.000Z

190

Self-Duality in Nonlinear Electromagnetism  

E-Print Network (OSTI)

We discuss duality invariant interactions between electromagnetic fields and matter. The case of scalar fields is treated in some detail.

Mary K. Gaillard; Bruno Zumino

1997-05-28T23:59:59.000Z

191

Electromagnetic design considerations for fast acting controllers  

SciTech Connect

Electromagnetic design considerations for fast acting controllers in a power system is introduced and defined. A distinction is made in relation to the more commonly understood system control design necessary for damping electromechanical oscillations using stability programs and eigenanalysis. Electromagnetic eigenanalysis tools have limited availability and are consequently rarely used. Electromagnetic transients programs (emtp) on the other hand are widely used and a procedure for undertaking electromagnetic control design of fast acting controllers in a power system using emtp is presented.

Woodford, D.A. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)

1996-07-01T23:59:59.000Z

192

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 2, APRIL 2013 395 Electromagnetic Interference Analysis of  

E-Print Network (OSTI)

to electromagnetic interference (EMI) is becoming a critical aspect of signal integrity analysis. For mod- eling in high-speed packages [2]. As a result, effi- cient and accurate electromagnetic interference (EMIIEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 2, APRIL 2013 395 Electromagnetic

Roy, Sourajeet

193

Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course  

E-Print Network (OSTI)

1 Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course Allen unification of electric and magnetic fields predicting electromagnetic wave phenomena which Nobel Laureate: "Of what relevance is the study of electromagnetics to our modern society?" The goal of this unit

Taflove, Allen

194

WAVELENGTH CALIBRATION OF THE HAMILTON ECHELLE SPECTROGRAPH  

SciTech Connect

We present the wavelength calibration of the Hamilton Echelle Spectrograph at Lick Observatory. The main problem with the calibration of this spectrograph arises from the fact that thorium lines are absent in the spectrum of the presumed ThAr hollow-cathode lamp now under operation; numerous unknown strong lines, which have been identified as titanium lines, are present in the spectrum. We estimate the temperature of the lamp's gas which permits us to calculate the intensities of the lines and to select a large number of relevant Ti I and Ti II lines. The resulting titanium line list for the Lick hollow-cathode lamp is presented. The wavelength calibration using this line list was made with an accuracy of about 0.006 Å.

Pakhomov, Yu. V. [Institute of Astronomy, Russian Academy of Sciences, Moscow (Russian Federation); Zhao, G., E-mail: pakhomov@inasan.ru [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2013-10-01T23:59:59.000Z

195

About EffectiveŽ Height of the Aerosol Atmosphere in Visible and IR Wavelength Range  

NLE Websites -- All DOE Office Websites (Extended Search)

"Effective" Height of the Aerosol Atmosphere in "Effective" Height of the Aerosol Atmosphere in Visible and IR Wavelength Range V. N. Uzhegov, D. M. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, and S. M. Sakerin Institute of Atmospheric Optics Tomsk, Russia Introduction Aerosol component of the atmosphere is one of the important factors affecting the radiation budget of the space - atmosphere - underlying surface system in visible and infrared (IR) wavelength ranges. It is extremely important to take into account the contribution of this component into the extinction of solar radiation under cloudless sky conditions. Sometimes it is important to know not only the total value of the aerosol component of extinction, but also to have the possibility to estimate the "effective" height of

196

Invisibility & Control of Electromagnetic fields  

E-Print Network (OSTI)

Invisibility & Control of Electromagnetic fields JB Pendry The Blackett Laboratory, Imperial to make something invisible Science 312 1780-2 (2006), JB Pendry, D Schurig, and DR Smith 1. define a region that is to be invisible 2. surround it with an optical medium that can bend light 3. design

van Tiggelen, Bart

197

Engineering Sciences 151 Electromagnetic Communication  

E-Print Network (OSTI)

Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 1 Fall Term 1998, Audio frequency spectrum analyzer Tektronix, Model 2230, 100MHz Dual-channel storage oscilloscope generator Hewlett-Packard, Model 200CD, Wide range audio oscillator General Radio, Model 1398-A, Pulse

Jones, R. Victor

198

The Particle Adventure | How do we detect what's happening? | Wavelength  

NLE Websites -- All DOE Office Websites (Extended Search)

Wavelength and resolution explained Wavelength and resolution explained Wavelength and resolution explained Things with long wavelengths are analogous to the basketball in the cave story because neither can provide too much detail about what they hit. Things with short wavelengths are like the marbles in that they can provide you with fairly detailed information about what they hit. The shorter the probe's wavelength is, the more information you can get about the target. A good example of the wavelength vs. resolution issue is a swimming pool. If you have a swimming pool with waves which are 1 meter apart (a 1 meter wavelength) and push a stick into the water, the pool's waves just pass around the stick because the 1 meter wavelength means that the pool's waves won't be affected by such a tiny target.

199

611: Electromagnetic Theory Problem Sheet 5  

E-Print Network (OSTI)

611: Electromagnetic Theory Problem Sheet 5 (1a) The Null Energy Condition on an energy = (k, 0, 0, k), show that the energy-momentum tensor Tµ = 1 4 Fµ F - 1 4µ F F (1) for electromagnetism if the equality kµ k Tµ = 0 is attained. (2) Show that the energy-momentum tensor for electromagnetism can

Pope, Christopher

200

Electromagnetic Interrogation of Dielectric Materials 1  

E-Print Network (OSTI)

Electromagnetic Interrogation of Dielectric Materials 1 H.T. Banks M.W. Buksas Center for Research grant P200A40730. #12; Abstract We investigate time domain based electromagnetic inverse problems electromagnetic phenomenon. For our purposes, we categorize the materials and the models employed to describe them

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Course Outline Physics 433: Electromagnetism II  

E-Print Network (OSTI)

Course Outline Physics 433: Electromagnetism II Spring 2014 Prof. Keun Hyuk "Ken" Ahn 483 Tiernan of this course is on the elementary concepts of electromagnetic fields. Upon completion of the course, students are expected to be capable of using the Maxwell equations to calculate simple electromagnetic problems, ranging

202

611: Electromagnetic Theory Problem Sheet 5  

E-Print Network (OSTI)

611: Electromagnetic Theory Problem Sheet 5 (1a) Show that the energy-momentum tensor for the electromagnetic field is tracefree, i.e. Tµ µ = 0. What would happen, in a spacetime dimension d = 4? (Assume) Show that the energy-momentum tensor for the electromagnetic field can be written as Tµ = 1 8 (Fµ F

Pope, Christopher

203

Electromagnetic Corrections in Staggered Chiral Perturbation Theory  

E-Print Network (OSTI)

Electromagnetic Corrections in Staggered Chiral Perturbation Theory C. Bernard and E.D. Freeland perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can-lat]17Nov2010 #12;Electromagnetic Corrections in Staggered Chiral Perturbation Theory E.D. Freeland 1

Bernard, Claude

204

Physics 4: Introductory Physics Electromagnetism and Light  

E-Print Network (OSTI)

Physics 4: Introductory Physics Electromagnetism and Light Professor Jeffrey D. Richman Department: Electromagnetism and Light Welcome to Physics 4! What is your goal in life? If it is to become an engineer or to pursue a career in science, this is a key class for you. Understanding electromagnetism and light

Fygenson, Deborah Kuchnir

205

611: Electromagnetic Theory Problem Sheet 5  

E-Print Network (OSTI)

611: Electromagnetic Theory Problem Sheet 5 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave

Pope, Christopher

206

611: Electromagnetic Theory Problem Sheet 6  

E-Print Network (OSTI)

611: Electromagnetic Theory Problem Sheet 6 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave

Pope, Christopher

207

Electromagnetics from Simulation to Optimal Design  

E-Print Network (OSTI)

1 Electromagnetics from Simulation to Optimal Design Christian Hafner Laboratory for Electromagnetic Fields and Microwave Electronics (IFH) ETH Zurich (Switzerland) Lab: http://www.ifh.ee.ethz.ch COG 23, 2013 #12;2 IFH courses · Advanced engineering electromagnetics (Leuchtmann, start spring 2014

Lang, Annika

208

Semiconductor radiation detector  

DOE Patents (OSTI)

A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

Bell, Zane W. (Oak Ridge, TN); Burger, Arnold (Knoxville, TN)

2010-03-30T23:59:59.000Z

209

Characterization of the coherent noise, electromagnetic compatibility and electromagnetic interference of the ATLAS EM calorimeter Front End Board  

E-Print Network (OSTI)

Characterization of the coherent noise, electromagnetic compatibility and electromagnetic interference of the ATLAS EM calorimeter Front End Board

Chase, B E; Lanni, F; Makowiecki, D S; Radeka, V; Rescia, S; Takai, H; Bán, J; Parsons, J; Sippach, W

1999-01-01T23:59:59.000Z

210

Wavelength meter having single mode fiber optics multiplexed inputs  

DOE Patents (OSTI)

A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

Hackel, R.P.; Paris, R.D.; Feldman, M.

1993-02-23T23:59:59.000Z

211

Wavelength meter having single mode fiber optics multiplexed inputs  

DOE Patents (OSTI)

A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

1993-01-01T23:59:59.000Z

212

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

213

Definition: Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search Dictionary.png Electromagnetic Profiling Techniques Electromagnetic profiling techniques map lateral variations in subsurface resistivity.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic) to measure the physical properties of rocks, and in particular, to detect

214

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques (Redirected from Electromagnetic Sounding Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

215

Strong permanent magnet-assisted electromagnetic undulator  

DOE Patents (OSTI)

This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

Halbach, Klaus (Berkeley, CA)

1988-01-01T23:59:59.000Z

216

Questions and Answers - Which jobs use electromagnets?  

NLE Websites -- All DOE Office Websites (Extended Search)

does adding coils to anelectromagnet make it stronger? does adding coils to an<br>electromagnet make it stronger? Previous Question (Why does adding coils to an electromagnet make it stronger?) Questions and Answers Main Index Next Question (Why is a non-permanent, but long lasting, magnet called a permanent magnet?) Why is a non-permanent, but long lasting,magnet called a permanent magnet? Which jobs use electromagnets? In today's world almost all jobs other than a goat herder use some type of electromagnet. They are everywhere. Electric motors are a type of electromagnet. Cars have dozens of electromagnets that move things or generate electricity. There are all sorts of interesting applications for larger electromagnets. The most obvious and biggest example is electricity. There are some interesting applications like dumping shredded garbage

217

Definition: Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Techniques Electromagnetic Techniques The objective of electromagnetic (EM) techniques is to image the electrical resistivity structure of the subsurface through the measurement of naturally- or artificially-generated electromagnetic fields.[1] View on Wikipedia Wikipedia Definition The electromagnetic force is one of the four fundamental interactions in nature, the other three being the strong interaction, the weak interaction, and gravitation. This force is described by electromagnetic fields, and has innumerable physical instances including the interaction of electrically charged particles and the interaction of uncharged magnetic force fields with electrical conductors. The word electromagnetism is a compound form of two Greek terms, ἢλεκτρον, ēlektron, "amber", and μαγνήτης, magnētēs, "magnet". The science

218

Some Wave Equations for Electromagnetism and Gravitation  

E-Print Network (OSTI)

The paper studies the inferences of wave equations for electromagnetic fields when there are gravitational fields at the same time. In the description with the algebra of octonions, the inferences of wave equations are identical with that in conventional electromagnetic theory with vector terminology. By means of the octonion exponential function, we can draw out that the electromagnetic waves are transverse waves in a vacuum, and rephrase the law of reflection, Snell's law, Fresnel formula, and total internal reflection etc. The study claims that the theoretical results of wave equations for electromagnetic strength keep unchanged in the case for coexistence of gravitational and electromagnetic fields. Meanwhile the electric and magnetic components of electromagnetic waves can not be determined simultaneously in electromagnetic fields.

Zi-Hua Weng

2010-08-11T23:59:59.000Z

219

Broadband carbon monoxide laser system operating in the wavelength range of 2.5 - 8.3 {mu}m  

SciTech Connect

A two-cascade frequency conversion of CO-laser radiation is demonstrated in a single sample of a nonlinear ZnGeP{sub 2} crystal. The crystal is pumped by a repetitively pulsed cryogenic lowpressure CO laser operating on {approx}150 vibration - rotational transitions in the wavelength range 5.0 - 7.5 {mu}m, which corresponds to the frequency range of a half octave. In the first conversion cascade, generation of second harmonic and sum frequencies of various pairs of CO-laser radiation give {approx}350 emission lines in the wavelength range 2.5 - 3.7 {mu}m. In the second cascade, by mixing the radiation converted in the first cascade with the residual radiation of the CO laser we have obtained {approx}90 lines in the range 4.3 - 5.0 {mu}m and more than 80 lines in the range 7.5 - 8.3 {mu}m. Thus, using a single sample of the nonlinear ZnGeP{sub 2} crystal pumped by the radiation of a single CO laser we have produced a source of broadband (more than one and a half octaves) laser radiation, simultaneously operating at {approx}670 lines in the wavelength range 2.5 - 8.3 {mu}m. (lasers)

Andreev, Yu M; Ionin, Andrei A; Kinyaevsky, I O; Klimachev, Yu M; Kozlov, A Yu; Kotkov, A A; Lanskii, G V; Shaiduko, A V

2013-02-28T23:59:59.000Z

220

Fast Wavelength Tuning of External Cavity Quantum Cascade Lasers  

Science Journals Connector (OSTI)

We present a fast wavelength tuning of a Littrow-type EC-QCL. This configuration allows for coarse broadband and high resolution mode-hop-free wavelength scanning at >1kHz rates....

Tsai, Tracy R; Wysocki, Gerard

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

222

Dark Energy, Gravitation and Electromagnetism  

E-Print Network (OSTI)

In the context of the fact that the existence of dark energy causing the accelerated expansion of the universe has been confirmed by the WMAP and the Sloan Digital Sky Survey, we re-examine gravitation itself, starting with the formulation of Sakharov and show that it is possible to obtain gravitation in terms of the electromagnetic charge of elementary particles, once the ZPF and its effects at the Compton scale are taken into account.

B. G. Sidharth

2004-01-08T23:59:59.000Z

223

Laminated electromagnetic pump stator core  

DOE Patents (OSTI)

A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

Fanning, A.W.

1995-08-08T23:59:59.000Z

224

Shielding effectiveness against electromagnetic interference  

SciTech Connect

The use of metal-filled and metal-coated plastics and other modified dielectric materials to replace metals for enclosures has created a need to test these materials for their electromagnetic interference (EMI) shielding effectiveness (SE). Shielding effectiveness involves a variety of electromagnetic environments, and useful data can be obtained from tests that carefully limit the environment to that of a plane wave. Such an environment can be created in a circular or rectangular transmission line. Two such transmission line test fixtures, which hold samples of the material to be tested, have been developed. The fixtures described in this report are the National Bureau of Standards (NBS) coaxial transverse electromagnetic (TEM) cell, and a dual TEM cell constructed at ORNL from a design suggested by the NBS. The NBS coaxial fixture is an improved version of the device recommended by the American Society for Testing and Materials (ASTM). The problems associated with measuring SE are well described in the literature. The two methods described here are the result of years of work to establish procedures and instrumentation that will produce acceptable data.

Googe, J.M.; Hess, R.A.

1987-10-01T23:59:59.000Z

225

Digital Frequency Domain Multiplexer for mm-Wavelength Telescopes  

SciTech Connect

An FPGA based digital signal processing (DSP) system for biasing and reading out multiplexed bolometric detectors for mm-wavelength telescopes is presented. This readout system is being deployed for balloon-borne and ground based cosmology experiments with the primary goal of measuring the signature of inflation with the Cosmic Microwave Background Radiation. The system consists of analog superconducting electronics running at 250 mK and 4 K, coupled to digital room temperature backend electronics described here. The digital electronics perform the real time functionality with DSP algorithms implemented in firmware. A soft embedded processor provides all of the slow housekeeping control and communications. Each board in the system synthesizes multi-frequency combs of 8 to 32 carriers in the MHz band to bias the detectors. After the carriers have been modulated with the sky-signal by the detectors, the same boards digitize the comb directly. The carriers are mixed down to base-band and low pass filtered. The signal bandwidth of 0.050Hz-100 Hz places extreme requirements on stability and requires powerful filtering techniques to recover the sky-signal from the MHz carriers.

Spieler, Helmuth G; Dobbs, Matt; Bissonnette, Eric; Spieler, Helmuth G.

2007-07-23T23:59:59.000Z

226

Electromagnetic wave scattering by Schwarzschild black holes  

E-Print Network (OSTI)

We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

2009-05-20T23:59:59.000Z

227

Electromagnetic interactions at RHIC and LHC  

E-Print Network (OSTI)

At LHC energies the Lorentz factor will be 3400 for the Pb + Pb collisions and the electromagnetic interactions will play important roles. Cross sections for the electromagnetic particle productions are very large and can not be ignored for the lifetimes of the beams and background. In this article, we are going to study some of the electromagnetic processes at RHIC and LHC and show the cross section calculations of the electron-positron pair production with the giant dipole resonance of the ions.

M. C. Guclu

2008-11-15T23:59:59.000Z

228

Category:Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electromagnetic Sounding Techniques page? For detailed information on Electromagnetic Sounding Techniques, click here. Category:Electromagnetic Sounding Techniques Add.png Add a new Electromagnetic Sounding Techniques Technique Subcategories This category has only the following subcategory. M [×] Magnetotelluric Techniques‎ 1 pages Pages in category "Electromagnetic Sounding Techniques" The following 2 pages are in this category, out of 2 total. M Magnetotelluric Techniques T Time-Domain Electromagnetics Retrieved from "http://en.openei.org/w/index.php?title=Category:Electromagnetic_Sounding_Techniques&oldid=689837"

229

Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior |  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior Published Middle East Asia Reservior Reviiew, 2006 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior Citation Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior [Internet]. 2006. Middle East Asia Reservior Reviiew. [cited 2013/10/22]. Available from: http://www.slb.com/~/media/Files/resources/mearr/num7/illuminating_reservoir.pdf Retrieved from

230

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

231

Time-Domain Electromagnetics | Open Energy Information  

Open Energy Info (EERE)

Time-Domain Electromagnetics Time-Domain Electromagnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Time-Domain Electromagnetics Details Activities (10) Areas (10) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Detection of rock units or geological features with contrasting apparent resistivity. Stratigraphic/Structural: Structural information may be inferred from TDEM data. Hydrological: Hydrological information such as depth to groundwater table may be determined. Thermal: Extent of hydrothermal alteration mineralogy may be inferred. Cost Information

232

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

233

MagLab - Making an Electromagnet Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

theyre basically a wire conducting electric current, which in turn generates a magnetic field. Magnetism and electricity are very closely related phenomena. Electromagnets...

234

Coherence in Classical Electromagnetism and Quantum Optics.  

E-Print Network (OSTI)

??This thesis is a study of coherence theory in light in classical electromagnetism and quantum optics. %The coherence is quantified Specifically two quantities are studied:… (more)

Mevik, Hanne-Torill

2009-01-01T23:59:59.000Z

235

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

236

Electromagnetic Energy Velocity in Slow Light  

Science Journals Connector (OSTI)

Group and electromagnetic energy velocities in structural and material slow light are compared. They are equal for structural slow light; the enhancement of linear and nonlinear...

Santagiustina, Marco

237

Response of radio frequency superconducting quantum interference devices to electromagnetic interference  

SciTech Connect

A number of applications of high-temperature superconductor radio frequency superconducting quantum interference devices (rf SQUIDs) require a certain immunity of these sensors against electromagnetic interference (EMI). We have investigated effects of electromagnetic radiation in the high-frequency and ultrahigh-frequency range on various types of rf SQUIDs. It has been found that EMI of sufficient field strength reduces the voltage versus flux transfer function, and thus increases the flux noise of the SQUIDs. SQUIDs with a wire wound tank circuit coil have been found to be more sensitive to EMI than SQUIDs integrated into a superconducting microstrip resonator. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Mueck, M.; Dechert, J.; Gail, J.; Kreutzbruck, M.; Schoene, S.; Weidl, R. [Institut fuer Angewandte Physik, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)] [Institut fuer Angewandte Physik, Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

1995-09-01T23:59:59.000Z

238

Studies of solid liner stability in electromagnetic implosions  

SciTech Connect

The authors have conducted a series of experiments involving electromagnetic implosion of solid aluminum liners on the Pegasus II capacitor bank. These experiments consisted of liners on which single wavelength perturbations had been cut into the outer surface. Typical liner thickness was 400 mm and the usual material was the 1100 aluminum alloy. This alloy is relatively soft with a high conductivity. Recently comparisons have been made with harder but more resistive alloys. The sinusoidal perturbations ranged in amplitude between 10--100 mm and their wavelength between 0.5 and 2.0 mm. Radiographs of the imploding liners showed that the initial perturbations grew to amplitudes of 2000--4000 mm before completely rupturing and injecting flux into the region interior to the liner. Throughout the growth of the perturbations, there was virtually no coupling to other wavelengths. Even after liner disruption, the series of disk-like structures that resulted remained at the same scale length until impact with a center conductor. Two-dimensional MHD simulations of these experiments with the high conductivity Al-1100 alloy have yielded consistently good agreement, both qualitatively and quantitatively. Because the magnetic diffusion time in this alloy is comparable to or longer than the growth time, they find that the dynamics can be approximated by theories of Rayleigh-Taylor instability for which strength has been included. Recently, the authors have conducted two experiments with other aluminum alloys. These alloys have a significantly higher tensile yield strength than the 1100 alloy, but also somewhat high resistivity. Because the magnetic diffusion, ohmic heating, and loss of strength all occur on shorter times than does the growth, the forces acting on the liner are more distributed throughout the liner thickness than on the previous experiments. Qualitatively different features have been observed in the radiographs of these experiments. Two-dimensional MHD simulations and analysis will be presented of both sets of experiments and interpretations of the effect of conductivity on liner stability will be given.

Atchison, W.L.; Faehl, R.J.; Rienovsky, R.E.; Morgan, D. [Los Alamos National Lab., NM (United States)

1998-12-31T23:59:59.000Z

239

Electromagnetic weak turbulence theory revisited  

SciTech Connect

The statistical mechanical reformulation of weak turbulence theory for unmagnetized plasmas including fully electromagnetic effects was carried out by Yoon [Phys. Plasmas 13, 022302 (2006)]. However, the wave kinetic equation for the transverse wave ignores the nonlinear three-wave interaction that involves two transverse waves and a Langmuir wave, the incoherent analogue of the so-called Raman scattering process, which may account for the third and higher-harmonic plasma emissions. The present paper extends the previous formalism by including such a term.

Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); Ziebell, L. F. [Instituto de Fisica, UFRGS, Porto Alegre, RS (Brazil); Gaelzer, R.; Pavan, J. [Instituto de Fisica e Matematica, UFPel, Pelotas, RS (Brazil)

2012-10-15T23:59:59.000Z

240

Electromagnetic Spectrum of Radium D  

Science Journals Connector (OSTI)

The electromagnetic spectrum of RaD has been studied by the proportional counter spectrometry technique. The work of the Curie Laboratory on the gamma-ray spectrum has been generally confirmed. However, the presumed K x-ray lines are of much lower intensity and occur at a lower energy than previously reported. The L x-ray intensity is 22 per hundred disintegrations, indicating 0.63 conversion per disintegration and a conversion coefficient of 18.3 for the principal gamma-ray.

P. E. Damon and R. R. Edwards

1953-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Relativistic approach to electromagnetic imaging  

E-Print Network (OSTI)

A novel imaging principle based on the interaction of electromagnetic waves with a beam of relativistic electrons is proposed. Wave-particle interaction is assumed to take place in a small spatial domain, so that each electron is only briefly accelerated by the incident field. In the one-dimensional case the spatial distribution of the source density can be directly observed in the temporal spectrum of the scattered field. Whereas, in the two-dimensional case the relation between the source and the spectrum is shown to be approximately the Radon transform.

Budko, N

2004-01-01T23:59:59.000Z

242

Relativistic approach to electromagnetic imaging  

E-Print Network (OSTI)

A novel imaging principle based on the interaction of electromagnetic waves with a beam of relativistic electrons is proposed. Wave-particle interaction is assumed to take place in a small spatial domain, so that each electron is only briefly accelerated by the incident field. In the one-dimensional case the spatial distribution of the source density can be directly observed in the temporal spectrum of the scattered field. Whereas, in the two-dimensional case the relation between the source and the spectrum is shown to be approximately the Radon transform.

Neil Budko

2004-03-11T23:59:59.000Z

243

Electromagnetic effects on transportation systems  

SciTech Connect

Electronic and electrical system protection design can be used to eliminate deleterious effects from lightning, electromagnetic interference, and electrostatic discharges. Evaluation of conventional lightning protection systems using advanced computational modeling in conjunction with rocket-triggered lightning tests suggests that currently used lightning protection system design rules are inadequate and that significant improvements in best practices used for electronic and electrical system protection designs are possible. A case study of lightning induced upset and failure of a railway signal and control system is sketched.

Morris, M.E.; Dinallo, M.A.

1996-05-01T23:59:59.000Z

244

Quantum modulation against electromagnetic interference  

E-Print Network (OSTI)

Periodic signals in electrical and electronic equipment can cause interference in nearby devices. Randomized modulation of those signals spreads their energy through the frequency spectrum and can help to mitigate electromagnetic interference problems. The inherently random nature of quantum phenomena makes them a good control signal. I present a quantum modulation method based on the random statistics of quantum light. The paper describes pulse width modulation schemes where a Poissonian light source acts as a random control that spreads the energy of the potential interfering signals. I give an example application for switching-mode power supplies and comment the further possibilities of the method.

Juan Carlos Garcia-Escartin

2014-11-26T23:59:59.000Z

245

Aharonov-Bohm radiation  

SciTech Connect

A solenoid oscillating in vacuum will pair produce charged particles due to the Aharonov-Bohm (AB) interaction. We calculate the radiation pattern and power emitted for charged scalar particles. We extend the solenoid analysis to cosmic strings and find enhanced radiation from cusps and kinks on loops. We argue by analogy with the electromagnetic AB interaction that cosmic strings should emit photons due to the gravitational AB interaction of fields in the conical spacetime of a cosmic string. We calculate the emission from a kink and find that it is of similar order as emission from a cusp, but kinks are vastly more numerous than cusps and may provide a more interesting observational signature.

Jones-Smith, Katherine; Mathur, Harsh [CERCA, Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079 (United States); Vachaspati, Tanmay [CERCA, Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079 (United States); Institute for Advanced Study, Princeton, New Jersey 08540 (United States)

2010-02-15T23:59:59.000Z

246

Electromagnetics  

Science Journals Connector (OSTI)

... , Ampere, Neumann, Riemann, Weber and Lorenz, and their successors, Voight, Lienard, Schwarzschild and Ritz, based on action at a distance between discrete charges and the assumption ... discarded the concepts of electric and magnetic fields, and takes his stand on the Lidnard-Schwarzschild force formula, which appears to be eqxiivalent to the simple vector formula given by ...

C. V. DRYSDALE

1939-07-15T23:59:59.000Z

247

Thermodynamics of Radiative Emission Processes  

Science Journals Connector (OSTI)

A basic assumption implicit in the application of thermodynamics to the electromagnetic field is that the laws of thermodynamics are locally valid for radiative emission and absorption processes. This means that a certain minimum amount of entropy must be created by the radiative process itself. It is shown, by considering the extreme case in which the spontaneous emission of a natural spectral line is the only process taking place, that this assumption is correct, and that its validity is essentially a consequence of the uncertainty principle as expressed by the reciprocal relationship between natural line breadth and lifetime.

M. A. Weinstein

1960-07-15T23:59:59.000Z

248

Alpha Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

249

Radiation: Radiation Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

250

ALMA observations of alpha Centauri: First detection of main-sequence stars at 3mm wavelength  

E-Print Network (OSTI)

The precise mechanisms that provide the non-radiative energy for heating the chromosphere and the corona of the Sun and those of other stars constitute an active field of research. By studying stellar chromospheres one aims at identifying the relevant physical processes. Defining the permittable extent of the parameter space can also serve as a template for the Sun-as-a-star. Earlier observations with Herschel and APEX have revealed the temperature minimum of alpha Cen, but these were unable to spatially resolve the binary into individual components. With the data reported here, we aim at remedying this shortcoming. Furthermore, these earlier data were limited to the wavelength region between 100 and 870mu. In the present context, we intend to extend the spectral mapping to longer wavelengths, where the contrast between stellar photospheric and chromospheric emission becomes increasingly evident. ALMA is particularly suited to point sources, such as unresolved stars. ALMA provides the means to achieve our obj...

Liseau, R; Bayo, A; Bertone, E; Black, J H; del Burgo, C; Chavez, M; Danchi, W; De la Luz, V; Eiroa, C; Ertel, S; Fridlund, M C W; Justtanont, K; Krivov, A; Marshall, J P; Mora, A; Montesinos, B; Nyman, L -A; Olofsson, G; Sanz-Forcada, J; Thebault, P; White, G J

2014-01-01T23:59:59.000Z

251

Category:Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Electromagnetic Techniques page? For detailed information on Ground Electromagnetic Techniques, click here. Category:Ground Electromagnetic Techniques Add.png Add a new Ground Electromagnetic Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. E [×] Electromagnetic Profiling Techniques‎ 1 pages [+] Electromagnetic Sounding Techniques‎ (1 categories) 2 pages Pages in category "Ground Electromagnetic Techniques" The following 2 pages are in this category, out of 2 total. E Electromagnetic Profiling Techniques Electromagnetic Sounding Techniques Retrieved from "http://en.openei.org/w/index.php?title=Category:Ground_Electromagnetic_Techniques&oldid=689834"

252

Electromagnetic Inverse Problems Involving Distributions of Dielectric Mechanisms and Parameters  

E-Print Network (OSTI)

Electromagnetic Inverse Problems Involving Distributions of Dielectric Mechanisms and Parameters H University, Raleigh, NC 27695-8205 August 17, 2005 Abstract We consider electromagnetic interrogation, uniform, log-normal, and log-Bi-Gaussian distributions. Keywords: Electromagnetic interrogation

253

Regularity and approximation of systems arising in electromagnetic interrogation of  

E-Print Network (OSTI)

Regularity and approximation of systems arising in electromagnetic interrogation of dielectric describes the electromagnetic interrogation of dielectric materials. We address the well describing the electromagnetic in- terrogation of dielectric materials. Let E and H be the intensities

254

Electromagnetic bubbles: subcycle near-femtosecond  

E-Print Network (OSTI)

-femtosecond or even sub- femtosecond) subcycle (nonoscillating) electromagnetic solitons [EM bubbles (EMB's)] in a gas electromagnetic pulses of a nonoscillating nature, i.e., subcycle (almost unipolar) half-cycle pulses (HCP) and stron- ger (up to 1016 W/cm2 ) pulses. One of these principles is based on stimulated cascade Raman

Kaplan, Alexander

255

The Covariant Description of Electromagnetically Polarizable Media  

E-Print Network (OSTI)

The form of the phenomenological stress-energy-momentum tensor for the electromagnetic field in a class of inhomogeneous, anisotropic magneto-electric media is calculated from first principles, leading to a coherent understanding of the phenomenological stresses and energy-momentum exchanges induced by electromagnetic interactions with such matter in terms of a fully relativistic covariant variational framework.

T. Dereli; J. Gratus; R. W. Tucker

2006-10-26T23:59:59.000Z

256

Optimization Material Distribution methodology: Some electromagnetic examples  

E-Print Network (OSTI)

730 1 Optimization Material Distribution methodology: Some electromagnetic examples P. Boissoles, H. Ben Ahmed, M. Pierre, B. Multon Abstract--In this paper, a new approach towards Optimization Material to be highly adaptive to various kinds of electromagnetic actuator optimization approaches. Several optimal

Paris-Sud XI, Université de

257

Electromagnetic corrections to light hadron masses  

E-Print Network (OSTI)

At the precision reached in current lattice QCD calculations, electromagnetic effects are becoming numerically relevant. We will present preliminary results for electromagnetic corrections to light hadron masses, based on simulations in which a $\\mathrm{U}(1)$ degree of freedom is superimposed on $N_f=2+1$ QCD configurations from the BMW collaboration.

A. Portelli; S. Dürr; Z. Fodor; J. Frison; C. Hoelbling; S. D. Katz; S. Krieg; T. Kurth; L. Lellouch; T. Lippert; K. K. Szabó; A. Ramos

2011-01-12T23:59:59.000Z

258

Novel Nanotechnology for a Fine Plasmon Wavelength Tuning  

Science Journals Connector (OSTI)

Control of silver nanoparticles characteristics using a dedicated nano-clusters source and wavelength tuning of Plasmon resonance generated by small nanoparticles using different...

Najjar, Rita; Boutami, Salim; Cayron, Cyril; Muffato, Viviane; Kean, Alistair; Saranu, Srinivas; Santbergen, Rudi; Quesnel, Etienne

259

Long-wavelength density turbulence in the TFTR tokamak  

Science Journals Connector (OSTI)

Long-wavelength (k??itokamak plasma with auxiliary heating. Density fluctuations of n?/n>0.5% exist for k?tokamaks.

R. J. Fonck; G. Cosby; R. D. Durst; S. F. Paul; N. Bretz; S. Scott; E. Synakowski; G. Taylor

1993-06-14T23:59:59.000Z

260

Active wavelength control of an external cavity quantum cascade laser  

Science Journals Connector (OSTI)

Semiconductor lasers are increasingly popular as components of high...1]. Quantum Cascade Lasers (QCLs) are particularly attractive semiconductor lasers, since their operating wavelengths in the mid...2...]. For ...

T. Tsai; G. Wysocki

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NIF sets records for target shots, wavelength changes | National...  

National Nuclear Security Administration (NNSA)

month. Changing the laser wavelength by a few angstroms in different cones of laser beams enables researchers to adjust the amount of energy reaching different areas of the...

262

Noninvasive valve monitor using alternating electromagnetic field  

DOE Patents (OSTI)

One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

Eissenberg, David M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Casada, Donald A. (Knoxville, TN)

1993-01-01T23:59:59.000Z

263

Electromagnetic field with constraints and Papapetrou equation  

E-Print Network (OSTI)

It is shown that geometric optical description of electromagnetic wave with account of its polarization in curved space-time can be obtained straightforwardly from the classical variational principle for electromagnetic field. For this end the entire functional space of electromagnetic fields must be reduced to its subspace of locally plane monochromatic waves. We have formulated the constraints under which the entire functional space of electromagnetic fields reduces to its subspace of locally plane monochromatic waves. These constraints introduce variables of another kind which specify a field of local frames associated to the wave and contain some congruence of null-curves. The Lagrangian for constrained electromagnetic field contains variables of two kinds, namely, a congruence of null-curves and the field itself. This yields two kinds of Euler-Lagrange equations. Equations of first kind are trivial due to the constraints imposed. Variation of the curves yields the Papapetrou equations for a classical massless particle with helicity 1.

Z. Ya. Turakulov; A. T. Muminov

2006-01-12T23:59:59.000Z

264

Gauge Fields, Sources, and Electromagnetic Masses  

Science Journals Connector (OSTI)

The hypothesis of strong-interaction gauge fields, with non-Abelian gauge invariance broken only by the 1- particle mass terms, gives a natural source theory setting for the introduction of electromagnetic effects. The electromagnetic potential vector appears as a compensating field in the mass terms of the neutral 1- particles. The resulting electromagnetic self-action is used to discuss mass displacements. The pion electro-magnetic mass is computed in a number of ways—by direct calculation of various processes and by chiral methods, in two variants. The relationship of these approaches is established. A phenomenological modification of the chiral evaluation gives perfect agreement with the observed value. It is found, however, that the (m?m?)2 terms, which are neglected in this method, are not very small. Baryon electromagnetic mass splittings are described by a simple adaptation of gross mass-spectrum empirics. Agreement with the data is excellent.

Julian Schwinger

1968-01-25T23:59:59.000Z

265

Category:Time-Domain Electromagnetics | Open Energy Information  

Open Energy Info (EERE)

category "Time-Domain Electromagnetics" This category contains only the following page. T Time-Domain Electromagnetics Retrieved from "http:en.openei.orgw...

266

Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon  

E-Print Network (OSTI)

Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites Ning (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI

Gao, Hongjun

267

Project no. 516369 Electromagnetic compatibility between rolling stock and  

E-Print Network (OSTI)

to anything in that environment. Electromagnetic interference (EMI): Degradation of the performance compatibility EMI Electromagnetic interference ETSI European Telecommunications Standards Institute FM Frequency

Paris-Sud XI, Université de

268

Electromagnetic Interference in Wireless Communications: Behavioral-Level Simulation  

E-Print Network (OSTI)

Electromagnetic Interference in Wireless Communications: Behavioral-Level Simulation Approach in electromagnetic interference (EMI) modeling and simulation for modern and future wireless communication systems

Loyka, Sergey

269

Chapter 4: Electrical and Electromagnetic Methods | Open Energy...  

Open Energy Info (EERE)

Electrical and Electromagnetic Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Chapter 4: Electrical and Electromagnetic Methods Author NA...

270

Highly accurate Michelson type wavelength meter that uses a rubidium stabilized 1560 nm diode laser as a wavelength reference  

SciTech Connect

We investigated the accuracy limitation of a wavelength meter installed in a vacuum chamber to enable us to develop a highly accurate meter based on a Michelson interferometer in 1550 nm optical communication bands. We found that an error of parts per million order could not be avoided using famous wavelength compensation equations. Chromatic dispersion of the refractive index in air can almost be disregarded when a 1560 nm wavelength produced by a rubidium (Rb) stabilized distributed feedback (DFB) diode laser is used as a reference wavelength. We describe a novel dual-wavelength self-calibration scheme that maintains high accuracy of the wavelength meter. The method uses the fundamental and second-harmonic wavelengths of an Rb-stabilized DFB diode laser. Consequently, a highly accurate Michelson type wavelength meter with an absolute accuracy of 5x10{sup -8} (10 MHz, 0.08 pm) over a wide wavelength range including optical communication bands was achieved without the need for a vacuum chamber.

Masuda, Shin; Kanoh, Eiji; Irisawa, Akiyoshi; Niki, Shoji

2009-08-01T23:59:59.000Z

271

Radiation of a neutral polarizable particle moving uniformly through a thermal radiation field  

E-Print Network (OSTI)

We discuss the properties of thermal electromagnetic radiation produced by a neutral polarizable nanoparticle moving with an arbitrary relativistic velocity in a heated vacuum background with a fixed temperature. We show that the particle in its own rest frame acquires the radiation temperature of vacuum, multiplied by a velocity-dependent factor, and then emits thermal photons predominantly in the forward direction. The intensity of radiation proves to be much higher than for the particle at rest. For metal particles with high energy, the ratio of emitted and absorbed radiation power is proportional to the Lorentz-factor squared.

G. V. Dedkov; A. A. Kyasov

2014-06-25T23:59:59.000Z

272

Multi-wavelength surface emitting quantum cascade laser based on equivalent phase shift  

SciTech Connect

A novel surface emitting distributed feedback quantum cascade laser emitting around ????4.6??m is demonstrated by employing an equivalent phase shift (EPS) of quarter-wave (?/4). The EPS is fabricated through extending one sampling period by 50% in the center of a sampled Bragg grating. Single-lobed far-field radiation pattern with a low divergence angle of about 0.6°?×?16.8° is obtained. Selective single-mode lasing with a mean side mode suppression ratio above 20?dB and wavelength coverage range of 72?nm is achieved simultaneously on a single wafer only by changing the sampling period.

Zhang, J. C., E-mail: zhangjinchuan@semi.ac.cn; Liu, F. Q., E-mail: fqliu@semi.ac.cn; Yao, D. Y.; Wang, L. J.; Yan, F. L.; Liu, J. Q.; Wang, Z. G. [Institute of Semiconductors, Key Laboratory of Semiconductor Materials Science, Chinese Academy of Sciences, Beijing, 100083, People’s Republic of China and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083 (China)

2014-01-21T23:59:59.000Z

273

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 49, NO. 3, AUGUST 2007 661 Novel Planar Electromagnetic Bandgap Structures  

E-Print Network (OSTI)

. A novel concept of using these EBG structures for electromagnetic interference reduction is also, the power/ground noise creates significant and new challenges for electromagnetic interference

Ramahi, Omar

274

Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report  

SciTech Connect

A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

2009-09-01T23:59:59.000Z

275

Synchrotron Radiation at Radio Frequencies from Cosmic Ray Air Showers  

E-Print Network (OSTI)

We review some of the properties of extensive cosmic ray air showers and describe a simple model of the radio-frequency radiation generated by shower electrons and positrons as they bend in the Earth's magnetic field. We perform simulations by calculating the trajectory and radiation of a few thousand charged shower particles. The results are then transformed to predict the strength and polarization of the electromagnetic radiation emitted by the whole shower.

Denis A. Suprun; Peter W. Gorham; Jonathan L. Rosner

2003-06-06T23:59:59.000Z

276

Synchrotron Radiation at Radio Frequencies from Cosmic Ray Air Showers  

E-Print Network (OSTI)

We review some of the properties of extensive cosmic ray air showers and describe a simple model of the radio-frequency radiation generated by shower electrons and positrons as they bend in the Earth's magnetic field. We perform simulations by calculating the trajectory and radiation of a few thousand charged shower particles. The results are then transformed to predict the strength and polarization of the electromagnetic radiation emitted by the whole shower.

Suprun, D A; Rosner, Jonathan L; Suprun, Denis A.; Gorham, Peter W.; Rosner, Jonathan L.

2003-01-01T23:59:59.000Z

277

Counting energy packets in the electromagnetic wave  

E-Print Network (OSTI)

We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

Stefan Popescu; Bernhard Rothenstein

2007-05-18T23:59:59.000Z

278

Spinors and pre-metric electromagnetism  

E-Print Network (OSTI)

The basic concepts of the formulation of Maxwellian electromagnetism in the absence of a Minkowski scalar product on spacetime are summarized, with particular emphasis on the way that the electromagnetic constitutive law on the space of bivectors over spacetime supplants the role of the Minkowski scalar product on spacetime itself. The complex geometry of the space of bivectors is summarized, with the intent of showing how an isomorphic copy of the Lorentz group appears in that context. The use of complex 3-spinors to represent electromagnetic fields is then discussed, as well as the expansion of scope that the more general complex projective geometry of the space of bivectors suggests.

David Delphenich

2005-12-22T23:59:59.000Z

279

On the Axioms of Topological Electromagnetism  

E-Print Network (OSTI)

The axioms of topological electromagnetism are refined by the introduction of the de Rham homology of k-vector fields on orientable manifolds and the use of Poincare duality in place of Hodge duality. The central problem of defining the electromagnetic constitutive law is elaborated upon in the linear and nonlinear cases. The manner by which the spacetime metric might follow from the constitutive law is examined in the linear case. The possibility that the intersection form of the spacetime manifold might play a role in defining a topological basis for the constitutive law is explored. The manner by which wave motion might follow from the electromagnetic structure is also discussed.

D. H. Delphenich

2003-12-14T23:59:59.000Z

280

Electromagnetic Properties for Arbitrary Spin Particles: Part 1 $-$ Electromagnetic Current and Multipole Decomposition  

E-Print Network (OSTI)

In a set of two papers, we propose to study an old-standing problem, namely the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and $Q^2=0$ should be conserved non-trivially by the electromagnetic interaction, we are able to derive \\emph{all} the natural electromagnetic moments for a pointlike particle of \\emph{any} spin. In this first paper, we propose a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments. Finally, by considering the Breit frame, we relate the covariant vertex functions to multipole form factors.

Cédric Lorcé

2009-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Airborne Electromagnetic Survey | Open Energy Information  

Open Energy Info (EERE)

Airborne Electromagnetic Survey Airborne Electromagnetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Airborne Electromagnetic Survey Details Activities (2) Areas (2) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: provide data on rock type and mineral content Stratigraphic/Structural: Hydrological: can be used to detect changes in density of fluids and indicate if there is salt water intrusion Thermal: Cost Information Low-End Estimate (USD): 48.274,827 centUSD 0.0483 kUSD 4.827e-5 MUSD 4.827e-8 TUSD / mile Median Estimate (USD): 317.3831,738 centUSD 0.317 kUSD

282

27 contribution to weak electromagnetic decays  

Science Journals Connector (OSTI)

We notice that the assumption of octet dominance of the Cabibbo weak Hamiltonian is not required to explain the weak electromagnetic decays. In order to explain large asymmetry parameter ?(?+?p?) we consider ?7 contribution to the parity-violating Hamiltonian.

Ramesh C. Verma and M. P. Khanna

1978-12-01T23:59:59.000Z

283

Electromagnetic Detection of a Perfect Invisibility Cloak  

E-Print Network (OSTI)

A perfect invisibility cloak is commonly believed to be undetectable from electromagnetic (EM) detection because it is equivalent to a curved but empty EM space created from coordinate transformation. Based on the intrinsic ...

Zhang, Baile

284

Electrical, electromagnetic, and magnetotelluric methods | Open Energy  

Open Energy Info (EERE)

Electrical, electromagnetic, and magnetotelluric methods Electrical, electromagnetic, and magnetotelluric methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical, electromagnetic, and magnetotelluric methods Abstract Application of electrical methods began with Robert W. Fox's 1830 observation of self potentials associated with copper vein deposits in Cornwall. Conrad Schlumberger introduced the direct current equal potential line resistivity method in 1912. Harry W. Conklin received the first patents on the electromagnetic (EM) method in 1917. From these beginnings, the history of the development of the resistivity induced-polarization (IP), magnetotelluric and EM methods are traced to the present time. It is of interest to note that application of electrical methods flourished from

285

Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel  

SciTech Connect

Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

Sati, Priti; Tripathi, V. K. [Indian Institute of Technology, Hauz Khas, Delhi 110054 (India)

2012-12-15T23:59:59.000Z

286

Characterization of electromagnetic transients in power substations  

E-Print Network (OSTI)

CHARACTERIZATION OF ELECTROMAGNETIC TRANSIENTS IN POWER SUBSTATIONS A Thesis by WILLIAM CHESTER CiOERS, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1980 Major Subject: Electrical Engineering CHARACTERIZATION OF ELECTROMAGNETIC TRANSIENTS IN POWER SUBSTATIONS A Thesis by WILLIAM CHESTER GOERS, JR. Approved as to style and content by: Dr. B. Don Russell (Chairman of Committee...

Goers, William Chester

2012-06-07T23:59:59.000Z

287

Singular Modes of the Electromagnetic Field  

E-Print Network (OSTI)

We show that the mode corresponding to the point of essential spectrum of the electromagnetic scattering operator is a vector-valued distribution representing the square root of the three-dimensional Dirac's delta function. An explicit expression for this singular mode in terms of the Weyl sequence is provided and analyzed. An essential resonance thus leads to a perfect localization (confinement) of the electromagnetic field, which in practice, however, may result in complete absorption.

Neil V. Budko; Alexander B. Samokhin

2006-06-15T23:59:59.000Z

288

Singular Modes of the Electromagnetic Field  

E-Print Network (OSTI)

We show that the mode corresponding to the point of essential spectrum of the electromagnetic scattering operator is a vector-valued distribution representing the square root of the three-dimensional Dirac's delta function. An explicit expression for this singular mode in terms of the Weyl sequence is provided and analyzed. An essential resonance thus leads to a perfect localization (confinement) of the electromagnetic field, which in practice, however, may result in complete absorption.

Budko, N V; Budko, Neil V.; Samokhin, Alexander B.

2006-01-01T23:59:59.000Z

289

Electromagnetic Beams Overpass the Black Hole Horizon  

E-Print Network (OSTI)

We show that the electromagnetic excitations of the Kerr black hole have very strong back reaction on metric. In particular, the electromagnetic excitations aligned with the Kerr congruence form the light-like beams which overcome horizon, forming the holes in it, which allows matter to escape interior. So, there is no information lost inside the black hole. This effect is based exclusively on the analyticity of the algebraically special solutions.

Alexander Burinskii

2008-06-16T23:59:59.000Z

290

Electromagnetic Corrections in Staggered Chiral Perturbation Theory  

E-Print Network (OSTI)

To reduce errors in light-quark mass determinations, it is now necessary to consider electromagnetic contributions to light-meson masses. Calculations using staggered quarks and quenched photons are currently underway. Suitably-extended chiral perturbation theory is necessary to extrapolate the lattice data to the physical limit. Here we give (preliminary) results for light-meson masses using staggered chiral perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can improve quark-mass calculations.

C. Bernard; E. D. Freeland

2010-11-17T23:59:59.000Z

291

Electromagnetic and spin polarisabilities in lattice QCD  

E-Print Network (OSTI)

We discuss the extraction of the electromagnetic and spin polarisabilities of nucleons from lattice QCD. We show that the external field method can be used to measure all the electromagnetic and spin polarisabilities including those of charged particles. We then turn to the extrapolations required to connect such calculations to experiment in the context of chiral perturbation theory, finding a strong dependence on the lattice volume and quark masses.

W. Detmold; B. C. Tiburzi; A. Walker-Loud

2006-10-02T23:59:59.000Z

292

Quantum Illumination at the Microwave Wavelengths  

E-Print Network (OSTI)

Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally-occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

Shabir Barzanjeh; Saikat Guha; Christian Weedbrook; David Vitali; Jeffrey H. Shapiro; Stefano Pirandola

2015-01-31T23:59:59.000Z

293

Composite scintillators for detection of ionizing radiation  

DOE Patents (OSTI)

Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

Dai, Sheng (Knoxville, TN) [Knoxville, TN; Stephan, Andrew Curtis (Knoxville, TN) [Knoxville, TN; Brown, Suree S. (Knoxville, TN) [Knoxville, TN; Wallace, Steven A. (Knoxville, TN) [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

2010-12-28T23:59:59.000Z

294

Elec Eng 2FH3 Electromagnetics I COURSE NUMBER & TITLE: Elec Eng 2FH3 Electromagnetics I  

E-Print Network (OSTI)

Elec Eng 2FH3 ­ Electromagnetics I COURSE NUMBER & TITLE: Elec Eng 2FH3 ­ Electromagnetics I field 6. Inductance 7. Faraday's law CALENDAR DESCRIPTION: Electromagnetics Part I is an introduction into engineering electromagnetics. It covers the mathematical foundations such as selected topics of vector

Haykin, Simon

295

Electromagnetic Heating Methods for Heavy Oil Reservoirs  

SciTech Connect

The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations.

Sahni, A.; Kumar, M.; Knapp, R.B.

2000-05-01T23:59:59.000Z

296

Effect of graphene on plasmonic metasurfaces at infrared wavelengths  

SciTech Connect

Significant enhancement of infrared transmittance by the presence of a graphene layer on a plasmonic metasurface (PLM) has been demonstrated. PLMs with different configurations were fabricated, and their transmittance with and without graphene was compared. Selective enhancement by graphene occurred at the plasmon resonance wavelength. The degree of enhancement was found to depend on the width of the gap between the periodic metal regions in the PLM. A maximum enhancement of ?210% was achieved at a wavelength of 10 ?m. The ability to achieve such a drastic increase in transmittance at the plasmon resonant wavelength is expected to lead to improvements in the performance of energy collecting devices and optical sensors.

Ogawa, Shinpei, E-mail: Ogawa.Shimpei@eb.MitsubishiElectric.co.jp; Fujisawa, Daisuke; Ueno, Masashi [Advanced Technology R and D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661 (Japan)] [Advanced Technology R and D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki, Hyogo 661-8661 (Japan)

2013-11-15T23:59:59.000Z

297

Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction  

E-Print Network (OSTI)

Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction demonstrate that a beam of x-ray radiation can be generated by simply focusing a single high- intensity laser spectral range) [6]. Laser-driven K x-ray sources [7­9] radiate subnanometer wavelength radiation

Umstadter, Donald

298

Electromagnetic cascades and cascade nucleosynthesis in the early Universe  

Science Journals Connector (OSTI)

We describe a calculation of electromagnetic cascading in radiation and matter in the early Universe initiated by the decay of massive particles or by some other process. We have used a combination of Monte Carlo and numerical techniques which enables us to use exact cross sections, where known, for all the relevant processes. In cascades initiated after the epoch of big bang nucleosynthesis ? rays in the cascades will photodisintegrate He4, producing He3 and deuterium. Using the observed He3 and deuterium abundances we are able to place constraints on the cascade energy deposition as a function of cosmic time. In the case of the decay of massive primordial particles we place limits on the density of massive primordial particles as a function of their mean decay time, and on the expected intensity of decay neutrinos.

R. J. Protheroe; T. Stanev; V. S. Berezinsky

1995-04-15T23:59:59.000Z

299

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

300

LOCAL RADIATION MAGNETOHYDRODYNAMIC INSTABILITIES IN MAGNETICALLY STRATIFIED MEDIA  

SciTech Connect

We study local radiation magnetohydrodynamic instabilities in static, optically thick, vertically stratified media with constant flux mean opacity. We include the effects of vertical gradients in a horizontal background magnetic field. Assuming rapid radiative diffusion, we use the zero gas pressure limit as an entry point for investigating the coupling between the photon bubble instability and the Parker instability. Apart from factors that depend on wavenumber orientation, the Parker instability exists for wavelengths longer than a characteristic wavelength {lambda}{sub tran}, while photon bubbles exist for wavelengths shorter than {lambda}{sub tran}. The growth rate in the Parker regime is independent of the orientation of the horizontal component of the wavenumber when radiative diffusion is rapid, but the range of Parker-like wavenumbers is extended if there exists strong horizontal shear between field lines (i.e., horizontal wavenumber perpendicular to the magnetic field). Finite gas pressure introduces an additional short-wavelength limit to the Parker-like behavior, and also limits the growth rate of the photon bubble instability to a constant value at short wavelengths. We also consider the effects of differential rotation with accretion disk applications in mind. Our results may explain why photon bubbles have not yet been observed in recent stratified shearing box accretion disk simulations. Photon bubbles may physically exist in simulations with high radiation to gas pressure ratios, but higher spatial resolution will be needed to resolve the asymptotically growing unstable wavelengths.

Tao, Ted; Blaes, Omer [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

2011-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Radiative Heat Transfer between Neighboring Particles  

E-Print Network (OSTI)

The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

Alejandro Manjavacas; F. Javier Garcia de Abajo

2012-01-26T23:59:59.000Z

302

Danger radiations  

ScienceCinema (OSTI)

Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

None

2011-04-25T23:59:59.000Z

303

Smith-Purcell radiation on a surface wave  

E-Print Network (OSTI)

We consider the radiation from an electron in flight over a surface wave of an arbitrary profile excited in a plane interface. For an electron bunch the conditions are specified under which the overall radiation essentially exceeds the incoherent part. It is shown that the radiation from the bunch with asymmetric density distribution of electrons in the longitudinal direction is partially coherent for waves with wavelengths much shorter than the characteristic longitudinal size of the bunch.

A. A. Saharian

2010-10-11T23:59:59.000Z

304

Smith-Purcell radiation on a surface wave  

E-Print Network (OSTI)

We consider the radiation from an electron in flight over a surface wave of an arbitrary profile excited in a plane interface. For an electron bunch the conditions are specified under which the overall radiation essentially exceeds the incoherent part. It is shown that the radiation from the bunch with asymmetric density distribution of electrons in the longitudinal direction is partially coherent for waves with wavelengths much shorter than the characteristic longitudinal size of the bunch.

Saharian, A A

2010-01-01T23:59:59.000Z

305

Electrical, electromagnetic and structural characteristics of carbon nanotube-polymer nanocomposites  

E-Print Network (OSTI)

Composites for Electromagnetic Interference Shielding. NanoY. Ma, et al. Electromagnetic Interference (EMI) Shieldingof Bonn). Chung DDL. Electromagnetic interference shielding

Park, Sung-Hoon

2009-01-01T23:59:59.000Z

306

Discussion on the Mechanism of Electromigration from the Perspective of Electromagnetism  

E-Print Network (OSTI)

from the Perspective of Electromagnetism PENG ZHOU 1,3 andthe perspective of electromagnetism, rather than from thecharge, electromigration, electromagnetism INTRODUCTION

Zhou, Peng; Johnson, William C.

2010-01-01T23:59:59.000Z

307

Gauge Symmetry and Gravito-Electromagnetism  

E-Print Network (OSTI)

A tensor description of perturbative Einsteinian gravity about an arbitrary background spacetime is developed. By analogy with the covariant laws of electromagnetism in spacetime, gravito-electromagnetic potentials and fields are defined to emulate electromagnetic gauge transformations under substitutions belonging to the gauge symmetry group of perturbative gravitation. These definitions have the advantage that on a flat background, with the aid of a covariantly constant timelike vector field, a subset of the linearised gravitational field equations can be written in a form that is fully analogous to Maxwell's equations (without awkward factors of 4 and extraneous tensor fields). It is shown how the remaining equations in the perturbed gravitational system restrict the time dependence of solutions to these equations and thereby prohibit the existence of propagating vector fields. The induced gravito-electromagnetic Lorentz force on a test particle is evaluated in terms of these fields together with the torque on a small gyroscope. It is concluded that the analogy of perturbative gravity to Maxwell's description of electromagnetism can be valuable for (quasi-)stationary gravitational phenomena but that the analogy has its limitations.

Simon J. Clark; Robin W. Tucker

2000-03-31T23:59:59.000Z

308

Electromagnetic Isotope Separation Lab (EMIS) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic Isotope Separation Lab Electromagnetic Isotope Separation Lab May 30, 2013 ORNL established the Stable Isotope Enrichment Laboratory (SIEL) as part of a project funded by the DOE Office of Science, Nuclear Physics Program to develop a modernized electromagnetic isotope separator (EMIS), optimized for separation of a wide range of stable isotopes. The SIEL is located in the Building 6010 Shield Test Station, space formerly allocated to the Oak Ridge Electron Linear Accelerator, on the main campus of ORNL. ORNL staff have designed and built a nominal 10 mA ion current EMIS (sum of all isotopes at the collector) in the SIEL. This EMIS is currently being tested to determine basic performance metrics such as throughput and enrichment factor per pass. This EMIS unit and space will be used to

309

Complex geometry and pre-metric electromagnetism  

E-Print Network (OSTI)

The intimate link between complex geometry and the problem of the pre-metric formulation of electromagnetism is explored. In particular, the relationship between 3+1 decompositions of R4 and the decompositions of the vector space of bivectors over R4 into real and imaginary subspaces relative to a choice of complex structure is emphasized. The role of the various scalar products on the space of bivectors that are defined in terms of a volume element on R4 and a complex structure on the space of bivectors that makes it C-linear isomorphic to C3 is discussed in the context of formulation of a theory of electromagnetism in which the Lorentzian metric on spacetime follows as a consequence of the existence of electromagnetic waves, not a prior assumption.

D. H. Delphenich

2004-12-10T23:59:59.000Z

310

Merging electromagnetism with space-time metric  

E-Print Network (OSTI)

In the present work, it is shown that the electromagnetism may be directly associated to the four-dimensional space-time geometry. The starting point is an analysis of the geodesic equation of general relativity where it is verified that it contains implicitly the effects of the Coulomb and the Lorentz forces. Consequently, some components of the metric tensor are identified with the components of the four-vector electromagnetic potential. Then, it is constructed a low-field equation for the electromagnetism in the same structure of the Einstein field equations for the gravitation, relating the curvature of space-time to sources of charge and current density. In this framework, all the Maxwell equations are implicit. A proof of consistency with the framework of quantum mechanics is shown.

C. A. Duarte

2014-03-10T23:59:59.000Z

311

Electromagnetic Waves in the De Sitter Space  

E-Print Network (OSTI)

5-Dimensional wave equation for a massive particle of spin 1 in the background of de Sitter space-time model is solved in static coordinates. The spherical 5-dimensional vectors $A_{a}, a= 1,...,5$ of three types, $j,j+1, j-1$ are constructed. In massless case they give electromagnetic wave solutions, obeying the Lorentz condition. 5-form of equations in massless case is used to produce recipe to build electromagnetic wave solutions of the types $\\Pi, E,M$; the first is trivial and can be removed by a gauge ransformation. The recipe is specified to produce spherical $\\Pi, E, M$ solutions in static coordinates.

V. S. Otchik; V. M. Red'kov

2010-01-24T23:59:59.000Z

312

Scanning evanescent electro-magnetic microscope  

DOE Patents (OSTI)

A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

2001-01-01T23:59:59.000Z

313

Phenomenology of the Deuteron Electromagnetic Form Factors  

E-Print Network (OSTI)

A rigorous extraction of the deuteron charge form factors from tensor polarization data in elastic electron-deuteron scattering, at given values of the 4-momentum transfer, is presented. Then the world data for elastic electron-deuteron scattering is used to parameterize, in three different ways, the three electromagnetic form factors of the deuteron in the 4-momentum transfer range 0-7 fm^-1. This procedure is made possible with the advent of recent polarization measurements. The parameterizations allow a phenomenological characterization of the deuteron electromagnetic structure. They can be used to remove ambiguities in the form factors extraction from future polarization data.

TheJLAB t20 collaboration; D. Abbott

2000-02-25T23:59:59.000Z

314

Duality in Off-Shell Electromagnetism  

E-Print Network (OSTI)

In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five dimensional U(1) gauge theory associated with Stueckelberg-Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five dimensional theory prevents a natural generalization of the Dirac monopole, since the theory is not symmetric under duality transformations. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.

Martin Land

2006-03-21T23:59:59.000Z

315

Electromagnetic waves, gravitational coupling and duality analysis  

E-Print Network (OSTI)

In this letter we introduce a particular solution for parallel electric and magnetic fields, in a gravitational background, which satisfy free-wave equations and the phenomenology suggested by astrophysical plasma physics. These free-wave equations are computed such that the electric field does not induce the magnetic field and vice-versa. In a gravitational field, we analyze the Maxwell equations and the corresponding electromagnetic waves. A continuity equation is presented. A commutative and noncommutative analysis of the electromagnetic duality is described.

E. M. C. Abreu; C. Pinheiro; S. A. Diniz; F. C. Khanna

2005-10-27T23:59:59.000Z

316

Electromagnetic Observables in Few-Nucleon Systems  

E-Print Network (OSTI)

The electromagnetic probe is a very valuable tool to study the dynamics of few nucleons. It can be very helpful in shedding light on the not yet fully understood three-nucleon forces. We present an update on the theoretical studies of electromagnetic induced reactions, such as photo-disintegration and electron scattering off 4He. We will show that they potentially represent a tool to discriminate among three-nucleon forces. Then, we will discuss the charge radius and the nuclear electric polarizability of the 6He halo nucleus.

Sonia Bacca

2012-10-10T23:59:59.000Z

317

Normal-incidence Sb/B{sub 4}C multilayer mirrors for the 80 A < {lambda} < 120 A wavelength range  

SciTech Connect

Periodic and aperiodic Sb/B4C multilayer structures have been theoretically calculated and synthesised for the first time for the application in soft X-ray optics in the 80 A < {lambda} < 120 A range. The reflection spectra of the periodic multilayer mirrors are measured using synchrotron radiation and laser plasma-generated radiation. The experimental spectra are theoretically interpreted with the inclusion of transition layers and substrate roughness. The density of antimony layers is supposedly {rho}{sub (Sb)} = 6.0 g cm{sup -3}, and the thickness of transition layers (if any) in the Sb/B4C multilayer structures does not exceed 10 A. A peak reflectivity of 19 % is attained at a wavelength of 85 A. An aperiodic mirror optimised for maximum uniform reflectivity in the 100 - 120 A range is tested employing the laser plasma radiation source. (x-ray optics)

Vishnyakov, E A; Voronov, D L; Gullikson, E M; Kondratenko, V V; Kopylets, I A; Luginin, M S; Pirozhkov, A S; Ragozin, Evgenii N; Shatokhin, A N

2013-07-31T23:59:59.000Z

318

Flashlamp radiation recycling for enhanced pumping efficiency and reduced thermal load  

DOE Patents (OSTI)

A method for recycling laser flashlamp radiation in selected wavelength ranges to decrease thermal loading of the solid state laser matrix while substantially maintaining the pumping efficiency of the flashlamp.

Jancaitis, Kenneth S. (Pleasant Hill, CA); Powell, Howard T. (Livermore, CA)

1989-01-01T23:59:59.000Z

319

Category:Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electromagnetic Profiling Techniques page? For detailed information on Electromagnetic Profiling Techniques, click here. Category:Electromagnetic Profiling Techniques Add.png Add a new Electromagnetic Profiling Techniques Technique Pages in category "Electromagnetic Profiling Techniques" This category contains only the following page. F Frequency-Domain Electromagnetic Survey Retrieved from "http://en.openei.org/w/index.php?title=Category:Electromagnetic_Profiling_Techniques&oldid=689835"

320

On the gravitational fields created by the electromagnetic waves  

E-Print Network (OSTI)

We show that the Maxwell equations describing an electromagnetic wave are a mathematical consequence of the Einstein equations for the same wave. This fact is significant for the problem of the Einsteinian metrics corresponding to the electromagnetic waves.

A. Loinger; T. Marsico

2011-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electromagnetic Light in Medium of Polarized Atoms $^3$He  

E-Print Network (OSTI)

First, it is predicted that polarized atoms $^3$He increase a value of speed electromagnetic waves. This reasoning implies that the velocity of electromagnetic waves into gas consisting of polarized atoms $^3$He is rather than one in vacuum.

V. N. Minasyan

2009-04-01T23:59:59.000Z

322

Analysis of a spinning polygon wavelength swept laser  

E-Print Network (OSTI)

It has been known for quite some time that spinning polygon, and similar, swept lasers used in OCT favor the short to long wavelength sweep direction because of four wave mixing in the gain medium. Here we have reformulated the problem in the time domain and show experimentally and through numerical simulation that these lasers are pulsed. The emitted pulses modulate the gain medium refractive index to red shift the light. Instead of new wavelengths being built up slowly from spontaneous emission, each pulse hops to a longer wavelength by nonlinear means, tracking the tunable filter. This allows high speed, low noise tuning in the blue to red direction. Based on this model, we make the first coherence length calculations for a swept source.

Johnson, Bart; Kuznetsov, Mark; Goldberg, Brian D; Whitney, Peter; Flanders, Dale C

2015-01-01T23:59:59.000Z

323

High speed infrared radiation thermometer, system, and method  

DOE Patents (OSTI)

The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

Markham, James R. (Middlefield, CT)

2002-01-01T23:59:59.000Z

324

Electromagnetic proton cyclotron instability: heating of cool magnetospheric helium ions  

Science Journals Connector (OSTI)

The electromagnetic proton cyclotron anisotropy instability is excited if the hot...T ? h /T \\mid\\mid ...

S. Peter Gary; Lin Yin; Dan Winske

1996-01-01T23:59:59.000Z

325

E-Print Network 3.0 - axisymmetric electromagnetic resonators...  

NLE Websites -- All DOE Office Websites (Extended Search)

-Lab Northwest Electromagnetics & Acoustics Research Outline Introduction to Terahertz ... Source: La Rosa, Andres H. - Department of Physics, Portland State...

326

Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths  

SciTech Connect

Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40?nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

2014-03-03T23:59:59.000Z

327

K Series X-Ray Wavelengths in Rare Earth Elements  

Science Journals Connector (OSTI)

The K-series x-rays in ten rare earth elements have been studied with a two-meter-radius bent-quartz-crystal spectrograph. The 3.7-Mev proton beam of the A-48 accelerator (UCRL, Livermore) was used to produce the atomic excitations. The wavelengths obtained for the K?1, K?2, K?3, and K?1 lines are compared with previous wavelength measurements. Two weaker transitions, K?5 and KOIIOIII, were also observed and the energies are compared with energies obtained from tables of known atomic energy levels.

E. L. Chupp, J. W. M. Du Mond, F. J. Gordon, R. C. Jopson, and Hans Mark

1958-11-15T23:59:59.000Z

328

Quantum Electromagnetic Fluctuations in Inhomogeneous Dielectric Media  

E-Print Network (OSTI)

A new mathematical and computational technique for calculating quantum vacuum expectation values of energy and momentum densities associated with electromagnetic fields in bounded domains containing inhomogeneous media is discussed. This technique is illustrated by calculating the mode contributions to the difference in the vacuum force expectation between opposite ends of an inhomogeneous dielectric non-dispersive medium confined to a perfectly conducting rigid box.

Shin-itiro Goto; Robin W. Tucker; Timothy J. Walton

2011-07-07T23:59:59.000Z

329

Localization of intense electromagnetic waves in plasmas  

Science Journals Connector (OSTI)

...1992; Kuehl Zhang 1993; Sudan et al. 1997; Saxena et al...and where is the electron thermal speed, and T eh is the temperature...electromagnetic soliton will reflect thermal electrons that are travelling...0031-8949/23/5A/004 . Sudan, R.N , Y.S Dimant, and...

2008-01-01T23:59:59.000Z

330

Line geometry and electromagnetism I: basic structures  

E-Print Network (OSTI)

Some key notions of line geometry are recalled, along with their application to mechanics. It is then shown that most of the basic structures that one introduces in the pre-metric formulation of electromagnetism can be interpreted directly in terms of corresponding concepts in line geometry. The results are summarized in a table.

D. H. Delphenich

2013-09-11T23:59:59.000Z

331

Electromagnetic Composites at the Compton Scale  

E-Print Network (OSTI)

A new class of electromagnetic composite particles is proposed. The composites are very small (the Compton scale), potentially long-lived, would have unique interactions with atomic and nuclear systems, and, if they exist, could explain a number of otherwise anomalous and conflicting observations in diverse research areas.

Frederick J. Mayer; John R. Reitz

2011-09-10T23:59:59.000Z

332

Electromagnetic field of a charge intersecting a cold plasma boundary in a waveguide  

SciTech Connect

We analyze the electromagnetic field of a charge crossing a boundary between a vacuum and cold plasma in a waveguide. We obtain exact expressions for the field components and the spectral density of the transition radiation. With the steepest descent technique, we investigate the field components. We show that the electromagnetic field has a different structure in a vacuum than in cold plasma. We also develop an algorithm for the computation of the field based on a certain transformation of the integration path. The behavior of the field depending on distance and time and the spectral density depending on frequency are explored for different charge velocities. Some important physical effects are noted. A considerable increase and concentration of the field near the wave front in the plasma is observed for the case of ultrarelativistic particles. In the plasma, the mode envelopes and spectral density show zero points when the charge velocity is within certain limits.

Alekhina, Tatiana Yu.; Tyukhtin, Andrey V. [Radiophysics Department of St. Petersburg University, 1 Ulyanovskaya, St. Petersburg 198504 (Russian Federation)

2011-06-15T23:59:59.000Z

333

Electromagnetic characterization of PCB cards for mobile phones  

E-Print Network (OSTI)

Electromagnetic characterization of PCB cards for mobile phones Ali Jazzar(*), Edith Clavel state, more the price linked to the EMC (Electromagnetic Compatibility) requirements is important .Thus the electromagnetic perturbations inside and outside the structure. The required CAD tool to achieve this modeling

Boyer, Edmond

334

Electromagnetic measurements of duodenal digesta flow in cannulated sheep  

E-Print Network (OSTI)

Electromagnetic measurements of duodenal digesta flow in cannulated sheep C. PONCET, M. IVAN M of duodenal digesta flow were made in sheep implanted with an electromagnetic flowmeter probe on the ascending to frequent oscillation of the digesta. It was concluded that accurate quantitative electromagnetic

Paris-Sud XI, Université de

335

Electromagnetic Waves Propagation in 3D Plasma Configurations  

E-Print Network (OSTI)

Electromagnetic Waves Propagation in 3D Plasma Configurations Pavel Popovich, W. Anthony Cooper such method is based on heating the plasma by electromagnetic waves with various frequencies. Wave behaviour that allows to simulate mode-conversion effects. The wave equation is formulated in terms of electromagnetic

336

Electromagnetic actuator to reduce vibration sources Thibaut Chailloux*  

E-Print Network (OSTI)

Electromagnetic actuator to reduce vibration sources Thibaut Chailloux* , L. Morel* , F. Sixdenier), hydraulic or pneumatic actuators, electromagnetic actuators [1], piezoelectric actuators. As part of a study to compensate a vibration on an aircraft engine for which an electromagnetic actuator was recommended. (The

Paris-Sud XI, Université de

337

Interactive visual intervention planning in particle accelerator environments with ionizing radiation  

E-Print Network (OSTI)

Radiation is omnipresent. It has many interesting applications: in medicine, where it allows curing and diagnosing patients; in communication, where modern communication systems make use of electromagnetic radiation; and in science, where it is used to discover the structure of materials; to name a few. Physically, radiation is a process in which particles or waves travel through any kind of material, usually air. Radiation can be very energetic, in which case it can break the atoms of ordinary matter (ionization). If this is the case, radiation is called ionizing. It is known that ionizing radiation can be far more harmful to living beings than non-ionizing radiation. In this dissertation, we are concerned with ionizing radiation. Naturally occurring ionizing radiation in the form of radioactivity is a most natural phenomenon. Almost everything is radioactive: there is radiation emerging from the soil, it is in the air, and the whole planet is constantly undergoing streams of energetic cosmic radiation. Sinc...

Fabry, Thomas

338

Reduction of radiation damage and other benefits of short wavelengths for macromolecular crystallography data collection  

Science Journals Connector (OSTI)

X-ray photons with energy higher than usual improve both the number and the quality of diffraction data from a given macromolecular crystal.

Fourme, R.

2012-06-12T23:59:59.000Z

339

X-Ray Diffraction from Calcite for Wave-Lengths 1.5 to 5 Angstroms  

Science Journals Connector (OSTI)

Theoretical expressions for the coefficient of reflection, percent reflection, and width of the line to be expected from the second crystal of a double spectrometer in the (1, -1) position, based on Darwin's theory of reflection from a perfect crystal, as modified by Prins, are evaluated for calcite for six lines in the region 1.54 to 5A. This region includes, at 3.06A, the critical absorption limit of calcium. With a specially designed double-crystal spectrometer, these properties of the rocking curve from the second crystal for ten wave-lengths, copper K? radiation and nine spectrum lines selected from the uranium M series, are experimentally measured and these results compared with the calculated values. The agreement between the observed and calculated rocking curve widths is excellent throughout the entire region and gives no evidence of mosaic structure in the crystals. The calculated values of percent reflection are consistently above those observed by some 16 percent. Good agreement is obtained for the values of the coefficient of reflection for wave-lengths shorter than 4A including those close to and on either side of the calcium absorption limit. No correction for temperature motion of the atoms has been attempted, but it seems possible that such a correction would give very satisfactory agreement between theory and experiment, showing that calcite surfaces may be obtained for which there is no evidence of mosaic structure from the diffraction of x-rays.

Lyman G. Parratt

1932-09-01T23:59:59.000Z

340

Radiation Characteristics of Tunable Graphennas in the Terahertz Band  

E-Print Network (OSTI)

, KTH Royal Institute of Technology, 16640 Kista, Sweden 5Department of Electrical Engineering in size have been predicted to radiate electromagnetic waves at the terahertz band. In this work frequencies, in the optical range. Due to the expectedly very limited power of nanosystems, the low mobility

Politècnica de Catalunya, Universitat

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Simultaneous measurements of super-radiance at multiple wavelengths from helium excited states: (I) Experiment  

E-Print Network (OSTI)

In this paper, we report the results of measurements of the intensities and delays of super-radiance decays from excited helium atoms at multiple wavelengths. The experiment was performed using extreme ultraviolet radiation produced by the free electron laser at the SPring-8 Compact SASE Source test accelerator facility as an excitation source. We observed super-radiant transitions on the $1s3p \\to 1s2s$ ($\\lambda=$502 nm), $1s3d \\to 1s2p$ ($\\lambda=$668 nm), and $1s3s \\to 1s2p$ ($\\lambda=$728 nm) transitions. The pulse energy of each transition and its delay time were measured as a function of the target helium gas density. Several interesting features of the data, some of which appear to contradict with the predictions of the simple two-level super-radiance theory, are pointed out.

Nakajima, Kyo; Iwayama, Hiroshi; Kuma, Susumu; Miyamoto, Yuki; Nagasono, Mitsuru; Ohae, Chiaki; Togashi, Tadashi; Yabashi, Makina; Shigemasa, Eiji; Sasao, Noboru

2014-01-01T23:59:59.000Z

342

Hydrodynamic construction of the electromagnetic field  

E-Print Network (OSTI)

We present an alternative Eulerian hydrodynamic model for the electromagnetic field in which the discrete vector indices in Maxwell\\s equations are replaced by continuous angular freedoms, and develop the corresponding Lagrangian picture in which the fluid particles have rotational and translational freedoms. This enables us to extend to the electromagnetic field the exact method of state construction proposed previously for spin 0 systems, in which the time-dependent wavefunction is computed from a single-valued continuum of deterministic trajectories where two spacetime points are linked by at most a single orbit. The deduction of Maxwell\\s equations from continuum mechanics is achieved by generalizing the spin 0 theory to a general Riemannian manifold from which the electromagnetic construction is extracted as a special case. In particular, the flat-space Maxwell equations are represented as a curved-space Schr\\"odinger equation for a massive system. The Lorentz covariance of the Eulerian field theory is obtained from the non-covariant Lagrangian-coordinate model as a kind of collective effect. The method makes manifest the electromagnetic analogue of the quantum potential that is tacit in Maxwell\\s equations. This implies a novel definition of the \\classical limit\\ of Maxwell\\s equations that differs from geometrical optics. It is shown that Maxwell\\s equations may be obtained by canonical quantization of the classical model. Using the classical trajectories a novel expression is derived for the propagator of the electromagnetic field in the Eulerian picture. The trajectory and propagator methods of solution are illustrated for the case of a light wave.

Peter Holland

2014-10-03T23:59:59.000Z

343

Definition: Solar radiation | Open Energy Information  

Open Energy Info (EERE)

radiation radiation Jump to: navigation, search Dictionary.png Solar radiation Electromagnetic energy emitted from the sun.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Solar radiant energy impinging on the earth in any given region or area. Also Known As Solar energy, Solar resource Related Terms Solar energy, Solar cell, Photovoltaics, PV array, PV module, Passive solar, Passive solar heating, energy, bioenergy References ↑ http://www.eere.energy.gov/basics/renewable_energy/solar_resources.html ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#S ↑ http://rredc.nrel.gov/solar/glossary/gloss_s.html Retrieved f LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rom "http://en.openei.org/w/index.php?title=Definition:Solar_radiation&oldid=502602"

344

Non-planckian equilibrium radiation of plasma-like media  

SciTech Connect

Consideration of equilibrium radiation of plasma-like media shows that the spectral distribution of such radiation differs from that of Planckian equilibrium radiation (blackbody radiation). The physical reason for this difference consists in the impossibility of propagation of photons with the dispersion law {omega} = ck in systems of charged particles. The thermodynamics of equilibrium electromagnetic radiation in plasma is also considered. It is shown that the difference of the thermodynamic properties of such radiation from those of Planckian radiation is characterized by the parameter a = h{Omega}{sub p}/T. This difference is especially pronounced in plasma media in which a {>=} 1. Applications of the results obtained to plasmas of metals (first of all, liquid metals in which charged particles have no distant order) and to the plasma model of the early Universe are discussed.

Triger, S. A.; Khomkin, A. L. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

2010-12-15T23:59:59.000Z

345

Tunnel junction multiple wavelength light-emitting diodes  

DOE Patents (OSTI)

A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

Olson, J.M.; Kurtz, S.R.

1992-11-24T23:59:59.000Z

346

Wavelength-dependent scattering in spectroscopic optical coherence tomography  

E-Print Network (OSTI)

Wavelength-dependent scattering in spectroscopic optical coherence tomography Chenyang Xu, P. Scott of light scattering spectroscopy (LSS) and the spatial localization of optical coherence tomography (OCT.4500) Optical coherence tomography; (290.0290) Scattering; (300.0300) Spectroscopy References and links 1. A

Bhargava, Rohit

347

Visual Wavelength Discrimination by the Loggerhead Turtle, Caretta caretta  

E-Print Network (OSTI)

Visual Wavelength Discrimination by the Loggerhead Turtle, Caretta caretta MORGAN YOUNG1 MICHAEL Marine Laboratory, Beaufort, North Carolina 28516 Abstract. Marine turtles are visual animals, yet we was to determine whether log- gerhead turtles could discriminate between objects on the basis of color. We used

Milton, Sarah

348

Plasma Radiation  

Science Journals Connector (OSTI)

... JUST over ten years ago the first book on plasma physics as a subject in its own right appeared; in a gradually swelling stream ... been surprisingly few monographs. One topic which has had scant coverage in any form is plasma radiation (except for spectral-line radiation which has been dealt with very fully in ...

T. J. M. BOYD

1967-07-01T23:59:59.000Z

349

Definition: Time-Domain Electromagnetics | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Time-Domain Electromagnetics Jump to: navigation, search Dictionary.png Time-Domain Electromagnetics Time-domain electromagnetic (TDEM) surveys are active-source soundings which provide information about the electrical structure of the shallow subsurface.[1] View on Wikipedia Wikipedia Definition Transient electromagnetics, (also time-domain electromagnetics / TDEM), is a geophysical exploration technique in which electric and magnetic fields are induced by transient pulses of electric current and the subsequent decay response measured. TEM / TDEM methods are generally able to determine subsurface electrical properties, but are also sensitive to subsurface magnetic properties in applications like UXO detection and

350

A strong permanent magnet-assisted electromagnetic undulator  

DOE Patents (OSTI)

This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

Halbach, K.

1987-01-30T23:59:59.000Z

351

Development of absorber coupled TES polarimeter at millimeter wavelengths.  

SciTech Connect

We report an absorber coupled TES bolometric polarimeter, consisting of an absorptive metal grid and a Mo/Au bi-layer TES on a suspended silicon nitride membrane disk. The electromagnetic design of the polarization sensitive absorbers, the heat transport modeling of the detector, the thermal response of the TES, and the micro-fabrication processes are presented. We also report the results of laboratory tests of a single pixel prototype detector, and compare with theoretical expectations.

Wang, G.; Yefremenko, V.; Novosad, V.; Bleem, L.; Chang, C.; McMahon, J.; Datesman, A.; Pearson, J.; Divan, R.; Downes, T.; Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

2009-06-01T23:59:59.000Z

352

Resonant electromagnetic emission from intrinsic Josephson-junction stacks with laterally modulated Josephson critical current.  

SciTech Connect

Intrinsic Josephson-junction stacks realized in mesas fabricated out of high-temperature superconductors may be used as sources of coherent electromagnetic radiation in the terahertz range. The major challenge is to synchronize Josephson oscillations in all junctions in the stack to get significant radiation out of the crystal edge parallel to the c axis. We suggest a simple way to solve this problem via artificially prepared lateral modulation of the Josephson critical current identical in all junctions. In such a stack, phase oscillations excite the in-phase Fiske mode when the Josephson frequency matches the Fiske-resonance frequency which is set by the stack lateral size. The powerful, almost standing electromagnetic wave is excited inside the crystal in the resonance. This wave is homogeneous across the layers, meaning that the oscillations are synchronized in all junctions in the stack. We evaluate behavior of the I-V characteristics and radiated power near the resonance for arbitrary modulation and find exact solutions for several special cases corresponding to symmetric and asymmetric modulations of the critical current.

Koshelev, A. E.; Bulaevskii, L. N.; Materials Science Division; LANL

2008-01-01T23:59:59.000Z

353

Particle dynamics and deviation effects in the field of a strong electromagnetic wave  

E-Print Network (OSTI)

Some strong field effects on test particle motion associated with the propagation of a plane electromagnetic wave in the exact theory of general relativity are investigated. Two different profiles of the associated radiation flux are considered in comparison, corresponding to either constant or oscillating electric and magnetic fields with respect to a natural family of observers. These are the most common situations to be experimentally explored, and have a well known counterpart in the flat spacetime limit. The resulting line elements are determined by a single metric function, which turns out to be expressed in terms of standard trigonometric functions in the case of a constant radiation flux, and in terms of special functions in the case of oscillating flux, leading to different features of test particle motion. The world line deviation between both uncharged and charged particles on different spacetime trajectories due to the combined effect of gravitational and electromagnetic forces is studied. The interaction of charged particles with the background radiation field is also discussed through a general relativistic description of the inverse Compton effect. Motion as well as deviation effects on particles endowed with spin are studied too. Special situations may occur in which the direction of the spin vector change during the interaction, leading to obsevables effects like spin-flip.

Donato Bini; Andrea Geralico; Maria Haney; Antonello Ortolan

2014-08-23T23:59:59.000Z

354

Analysis Of Factors Affecting Natural Source Slf Electromagnetic  

Open Energy Info (EERE)

Factors Affecting Natural Source Slf Electromagnetic Factors Affecting Natural Source Slf Electromagnetic Exploration At Geothermal Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Factors Affecting Natural Source Slf Electromagnetic Exploration At Geothermal Wells Details Activities (0) Areas (0) Regions (0) Abstract: The Super Low Frequency (SLF) electromagnetic exploration was performed by using a nature source SLF electromagnetic detector at two geothermal wells in Peking University. The data of the SLF electromagnetic exploration at well JR-119 and JR-168 were obtained with the observation of continued five days and four times per day at well JR-119 and of one day at well JR-168. Based on these data, the influencing factors of the SI-F electromagnetic exploration were analyzed, which included the relationship

355

Smith-Purcell Radiation from Rough Surfaces  

E-Print Network (OSTI)

Radiation of a charged particle moving parallel to a inhomogeneous surface is considered. Within a single formalism periodic and random gratings are examined. For the periodically inhomogeneous surface we derive new expressions for the dispersion relation and the spectral-angular intensity. In particular, for a given observation direction two wavelengths are emitted instead of one wavelength of the standard Smith-Purcell effect. For a rough surface we show that the main contribution to the radiation intensity is given by surface polaritons induced on the interface between two media. These polaritons are multiply scattered on the roughness of surface and convert into real photons. The spectral-angular intensity is calculated and its dependence on different parameters is revealed.

Gevorkian, Zh S

2010-01-01T23:59:59.000Z

356

Fluidic electrodynamics: Approach to electromagnetic propulsion  

SciTech Connect

We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

Martins, Alexandre A.; Pinheiro, Mario J. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.92.43 (Portugal); Department of Physics and Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.93.22 (Portugal)

2009-03-16T23:59:59.000Z

357

Electromagnetic angular momentum and quantum mechanics  

Science Journals Connector (OSTI)

A quick way of arriving at the Dirac quantization condition between electric and magnetic charges is to require that the electromagnetic field angular momentum of a Thomson dipole (a magnetic monopole and an electric charge) equal some integer multiple of the fundamental unit of quantum mechanical angular momentum ?/2. Applying this same type of argument to the electromagnetic field angular momentum carried by a magnetic dipole–electric charge system leads to an infinite number of different quantization conditions and an apparent incompatibility between quantum mechanics and the dipole–charge system. However a more careful analysis shows that the particle plus field angular momentum of this system does satisfy the standard angular momentum commutation relationships and is therefore a good quantum mechanical angular momentum. This emphasizes that caution must be taken when applying such semiclassical quantization arguments. Finally a possible connection between this dipole–charge field angular momentum and the nucleon spin crisis is given.

D. Singleton

1998-01-01T23:59:59.000Z

358

A Connection between Gravitation and Electromagnetism  

E-Print Network (OSTI)

It is argued that there is a connection between the fundamental forces of electromagnetism and gravitation. This connection occurs because of: 1) the fundamental significance of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) the reliance of the general theory of relativity upon the special theory of relativity locally in spacetime. The connection between the fundamental forces of electromagnetism and gravitation follows immediately from these two points. A brief review is provided of: 1) the role of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) certain fundamental concepts of the general theory, including its reliance on the special theory locally.

D. M. Snyder

2000-02-16T23:59:59.000Z

359

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

360

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Quantum states in rotating electromagnetic fields  

E-Print Network (OSTI)

We describe a new class of exact square integrable solutions of the Pauli and Dirac equation in rotating electromagnetic fields. Solutions obtained by putting equations in the stationary form with help of a coordinate transformation corresponding to the transition into a rotating frame. The transformation is assumed to be Galilean one however a non-Galilean transformation is of particular interest for such solutions. Obtained solutions, especially of Dirac's equation, are valid for arbitrary values of parameters and may be tested experimentally.

B. V. Gisin

2010-11-11T23:59:59.000Z

362

Electromagnetic couplings of elementary vector particles  

E-Print Network (OSTI)

On the basis of the three fundamental principles of (i) Poincar\\'{e} symmetry of space time, (ii) electromagnetic gauge symmetry, and (iii) unitarity, we construct an universal Lagrangian for the electromagnetic interactions of elementary vector particles, i.e., massive spin-1 particles transforming in the /1/2,1/2) representation space of the Homogeneous Lorentz Group (HLG). We make the point that the first two symmetries alone do not fix the electromagnetic couplings uniquely but solely prescribe a general Lagrangian depending on two free parameters, here denoted by \\xi and g. The first one defines the electric-dipole and the magnetic-quadrupole moments of the vector particle, while the second determines its magnetic-dipole and electric-quadrupole moments. In order to fix the parameters one needs an additional physical input suited for the implementation of the third principle. As such, one chooses Compton scattering off a vector target and requires the cross section to respect the unitarity bounds in the high energy limit. In result, we obtain the universal g=2, and \\xi=0 values which completely characterize the electromagnetic couplings of the considered elementary vector field at tree level. The nature of this vector particle, Abelian versus non-Abelian, does not affect this structure. Merely, a partition of the g=2 value into non-Abelian, g_{na}, and Abelian, g_{a}=2-g_{na}, contributions occurs for non-Abelian fields with the size of g_{na} being determined by the specific non-Abelian group appearing in the theory of interest, be it the Standard Model or any other theory.

M. Napsuciale; S. Rodriguez; E. G. Delgado-Acosta; M. Kirchbach

2007-11-27T23:59:59.000Z

363

Velocity damper for electromagnetically levitated materials  

DOE Patents (OSTI)

A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

Fox, R.J.

1994-06-07T23:59:59.000Z

364

Resonant second harmonic generation of a Gaussian electromagnetic beam in a collisional magnetoplasma  

SciTech Connect

Second harmonic generation of a right circularly polarized Gaussian electromagnetic beam in a magnetized plasma is investigated. The beam causes Ohmic heating of electrons and subsequent redistribution of the plasma, leading to self-defocusing. The radial density gradient, in conjunction with the oscillatory electron velocity, produces density oscillation at the wave frequency. The density oscillation beats with the oscillatory velocity to produce second harmonic current density, giving rise to resonant second harmonic radiation when the wave frequency is one-third of electron cyclotron frequency. The second harmonic field has azimuthal dependence as exp(i{theta}). The self-defocusing causes a reduction in the efficiency of harmonic generation.

Kaur, Sukhdeep; Sharma, A. K. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Salih, Hyder A. [Department of Applied Sciences, University of Baghdad, Baghdad (Iraq)

2009-04-15T23:59:59.000Z

365

Electromagnetic Structure and Reactions of Few-Nucleon Systems in $?$EFT  

E-Print Network (OSTI)

We summarize our recent work dealing with the construction of the nucleon-nucleon potential and associated electromagnetic currents up to one loop in chiral effective field theory ($\\chi$EFT). The magnetic dipole operators derived from these currents are then used in hybrid calculations of static properties and low-energy radiative capture processes in few-body nuclei. A preliminary set of results are presented for the magnetic moments of the deuteron and trinucleons and thermal neutron captures on $p$, $d$, and $^3$He.

L. Girlanda; S. Pastore; R. Schiavilla; M. Viviani

2009-12-14T23:59:59.000Z

366

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

367

The electromagnetic model of Gamma Ray Bursts  

E-Print Network (OSTI)

I describe electromagnetic model of gamma ray bursts and contrast its main properties and predictions with hydrodynamic fireball model and its magnetohydrodynamical extension. The electromagnetic model assumes that rotational energy of a relativistic, stellar-mass central source (black-hole--accretion disk system or fast rotating neutron star) is converted into magnetic energy through unipolar dynamo mechanism, propagated to large distances in a form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated directly into emitting particles through current-driven instabilities. Thus, there is no conversion back and forth between internal and bulk energies as in the case of fireball model. Collimating effects of magnetic hoop stresses lead to strongly non-spherical expansion and formation of jets. Long and short GRBs may develop in a qualitatively similar way, except that in case of long bursts ejecta expansion has a relatively short, non-relativistic, strongly dissipative stage inside the star. Electromagnetic and fireball models (as well as strongly and weakly magnetized fireballs) lead to different early afterglow dynamics, before deceleration time. Finally, I discuss the models in view of latest observational data in the Swift era.

Maxim Lyutikov

2005-12-13T23:59:59.000Z

368

Three dimensional imaging detector employing wavelength-shifting optical fibers  

DOE Patents (OSTI)

A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

Worstell, William A. (Framingham, MA)

1997-01-01T23:59:59.000Z

369

Three dimensional imaging detector employing wavelength-shifting optical fibers  

DOE Patents (OSTI)

A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

Worstell, W.A.

1997-02-04T23:59:59.000Z

370

Sound radiation measurement with nearfield holography  

Science Journals Connector (OSTI)

With holography an entire 3D wave field can be reconstructed from data obtained on a single 2D surface. Such high information content has made holography a powerful research tool and useful extensions from its original optical domain to other wave fields such as sound have naturally been pursued. However it has usually been assumed that the resolution of a holographicreconstruction is limited by the wavelength of the radiation; this limitation severely diminishes the usefulness of holography for sound fields when the wavelengths are many times larger than the objects to be imaged. We have developed a new technique called nearfield holography which eliminates the wavelength resolution limit and in addition permits a determination of: (1) the complete sound pressure and particle velocity fields produced by the source; (2) the mode of vibration of the surfaces of the source; (3) the vector intensity field (showing flow of acoustic energy) around the source; (4) the farfield directivity pattern; (5) the total power radiated into a half?space. A particularly interesting application of nearfield holography occurs in the study of sound radiation from musical instruments. [Work supported by ONR.

J. D. Maynard; E. G. Williams

1982-01-01T23:59:59.000Z

371

Oscillation signature from multi-wavelength analysis on solar chromosphere  

SciTech Connect

In this work, we investigate how the solar chromosphere responds to the photospheric dynamics by using tomography study, implementing multiwavelength analysis observations obtained from Dutch Open Telescope. By using high resolution, high-quality, simultaneous image sequences of multi-wavelength data, we try to obtain the oscillation signature that might play important role on chromospheric dynamic by using H-alpha (H?) as primary diagnostic tool.

Mumpuni, Emanuel Sungging, E-mail: nggieng@students.itb.ac.id [Department of Astronomy, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 and Space Science Center, National Institute of Aeronautics and Space, Junjunan 133, Bandung 40173 (Indonesia); Herdiwijaya, Dhani [Department of Astronomy, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung 40132 (Indonesia); Djamal, Mitra [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung 40132 (Indonesia)

2014-03-24T23:59:59.000Z

372

Dual wavelength emission from a terahertz quantum cascade laser  

SciTech Connect

We describe a heterogeneous THz quantum cascade laser that is composed of two different active region designs. This device emits simultaneously at around 2.5 THz and 2.9 THz with a certain frequency tunability by applied current. We also investigate the spectral gain in the structure by THz time-domain spectroscopy and correlate the gain spectral bandwidth with the alignment and wavelength emission behaviour of the two stack device.

Freeman, Joshua R.; Brewer, Anthony; Marshall, Owen P.; Beere, Harvey E.; Ritchie, David A. [Semiconductor Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Madeo, Julien; Dhillon, Sukhdeep; Jukam, Nathan; Oustinov, Dimitri; Tignon, Jerome [Laboratoire Pierre Aigrain, Ecole Normale Suprieure, UMR 8551 CNRS, UPMC Univ. Paris 6 75005 Paris (France)

2011-12-23T23:59:59.000Z

373

The dynamics of interacting nonlinearities governing long wavelength driftwave turbulence  

SciTech Connect

Because of the ubiquitous nature of turbulence and the vast array of different systems which have turbulent solutions, the study of turbulence is an area of active research. Much present day understanding of turbulence is rooted in the well established properties of homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for approximate analytic solutions. This work examines a group of turbulent systems with marked differences from Navier-Stokes turbulence, and attempts to quantify some of their properties. This group of systems represents a variety of drift wave fluctuations believed to be of fundamental importance in laboratory fusion devices. From extensive simulation of simple local fluid models of long wavelength drift wave turbulence in tokamaks, a reasonably complete picture of the basic properties of spectral transfer and saturation has emerged. These studies indicate that many conventional notions concerning directions of cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of saturation are not valid for moderate to long wavelengths. In particular, spectral energy transfer at long wavelengths is dominated by the E {times} B nonlinearity, which carries energy to short scale in a manner that is highly nonlocal and anisotropic. In marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is efficiently passed between modes separated by the entire spectrum range in a correlation time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the standard dual cascade applies in this subrange, it is found that finite spectrum size can produce cascades that are reverse directed and are nonconservative in enstrophy and energy similarity ranges. In regions where both nonlinearities are important, cross-coupling between the nolinearities gives rise to large no frequency shifts as well as changes in the spectral dynamics.

Newman, D.E.

1993-09-01T23:59:59.000Z

374

Single electron detection and spectroscopy via relativistic cyclotron radiation  

E-Print Network (OSTI)

It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

D. M. Asner; R. F. Bradley; L. de Viveiros; P. J. Doe; J. L. Fernandes; M. Fertl; E. C. Finn; J. A. Formaggio; D. Furse; A. M. Jones; J. N. Kofron; B. H. LaRoque; M. Leber; E. L. McBride; M. L. Miller; P. Mohanmurthy; B. Monreal; N. S. Oblath; R. G. H. Robertson; L. J Rosenberg; G. Rybka; D. Rysewyk; M. G. Sternberg; J. R. Tedeschi; T. Thummler; B. A. VanDevender; N. L. Woods

2014-08-22T23:59:59.000Z

375

Single electron detection and spectroscopy via relativistic cyclotron radiation  

E-Print Network (OSTI)

It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta sp...

Asner, D M; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thummler, T; VanDevender, B A; Woods, N L

2014-01-01T23:59:59.000Z

376

Appendix G. Radiation Appendix G. Radiation  

E-Print Network (OSTI)

-made sources. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation of radiation and its effects on the environment and biological systems. Radiation comes from natural and humanAppendix G. Radiation #12;#12;Appendix G. Radiation This appendix presents basic facts about

Pennycook, Steve

377

Environmental Effects on TPB Wavelength-Shifting Coatings  

E-Print Network (OSTI)

The scintillation detection systems of liquid argon time projection chambers (LArTPCs) require wavelength shifters to detect the 128 nm scintillation light produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent material that can shift this light to a wavelength of 425 nm, lending itself well to use in these detectors. We can coat the glass of photomultiplier tubes (PMTs) with TPB or place TPB-coated plates in front of the PMTs. In this paper, we investigate the degradation of a chemical TPB coating in a laboratory or factory environment to assess the viability of long-term TPB film storage prior to its initial installation in an LArTPC. We present evidence for severe degradation due to common fluorescent lights and ambient sunlight in laboratories, with potential losses at the 40% level in the first day and eventual losses at the 80% level after a month of exposure. We determine the degradation is due to wavelengths in the UV spectrum, and we demonstrate mitigating methods for retrofitting lab and factory environments.

C. S. Chiu; C. Ignarra; L. Bugel; H. Chen; J. M. Conrad; B. J. P. Jones; T. Katori; I. Moult

2012-04-25T23:59:59.000Z

378

Effect of nonlinear optical three-wave interaction on the lasing parameters of a dual-wavelength vertical-external-cavity surface-emitting laser  

SciTech Connect

The influence of nonlinear optical interaction in a semiconductor dual-wavelength vertical-external-cavity surface-emitting laser on the main parameters of dual-wavelength radiation and lasing in the long-wavelength part of the mid-IR range, obtained in this laser as a result of nonlinear wave mixing, is investigated. An increase in the pump power leads to saturation of the short-wavelength lasing intensity and to a more rapid rise in the long-wavelength lasing intensity in comparison with the linear increase in lasing intensity in these regions in the absence of nonlinear interaction. Under the conditions of nonlinear interaction, the carrier concentration in the active layers is not stabilised near the lasing threshold but changes with an increase in the pump intensity and provides the corresponding gain in the laser active region, thus maintaining steadystate lasing. Some ways for modifying the laser active region in order to obtain the most efficient lasing in the mid-IR range are proposed. (nonlinear optical phenomena)

Morozov, M Yu; Morozov, Yu A [Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov (Russian Federation); Krasnikova, I V [Yu A Gagarin Saratov State Technical University, Saratov (Russian Federation)

2013-09-30T23:59:59.000Z

379

RADIATIVE HEATING OF THE SOLAR CORONA  

SciTech Connect

We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10{sup -21} to 4.0 x 10{sup -20} W, as compared with non-loop radiative loss rates of {approx}1 x 10{sup -20} W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

Moran, Thomas G., E-mail: moran@grace.nascom.nasa.gov [Physics Department, Catholic University of America, 200 Hannan Hall, Washington, DC 20064 (United States) and NASA/GSFC, Code 671, Greenbelt, MD 20771 (United States)

2011-10-20T23:59:59.000Z

380

HOT ELECTROMAGNETIC OUTFLOWS. II. JET BREAKOUT  

SciTech Connect

We consider the interaction between radiation, matter, and a magnetic field in a compact, relativistic jet. The entrained matter accelerates outward as the jet breaks out of a star or other confining medium. In some circumstances, such as gamma-ray bursts (GRBs), the magnetization of the jet is greatly reduced by an advected radiation field while the jet is optically thick to scattering. Where magnetic flux surfaces diverge rapidly, a strong outward Lorentz force develops and radiation and matter begin to decouple. The increase in magnetization is coupled to a rapid growth in Lorentz factor. We take two approaches to this problem. The first examines the flow outside the fast magnetosonic critical surface, and calculates the flow speed and the angular distribution of the radiation field over a range of scattering depths. The second considers the flow structure on both sides of the critical surface in the optically thin regime, using a relaxation method. In both approaches, we find how the terminal Lorentz factor and radial profile of the outflow depend on the radiation intensity and optical depth at breakout. The effect of bulk Compton scattering on the radiation spectrum is calculated by a Monte Carlo method, while neglecting the effects of internal dissipation. The peak of the scattered spectrum sits near the seed peak if radiation pressure dominates the acceleration, but is pushed to a higher frequency if the Lorentz force dominates. The unscattered seed radiation can form a distinct, low-frequency component of the spectrum, especially if the magnetic Poynting flux dominates.

Russo, Matthew [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

2013-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Definition: Frequency-Domain Electromagnetic Survey | Open Energy  

Open Energy Info (EERE)

Electromagnetic Survey Electromagnetic Survey Jump to: navigation, search Dictionary.png Frequency-Domain Electromagnetic Survey Frequency-domain electromagnetic techniques are continuous wave field methods which enable the mapping of the electrical conductivity of the subsurface through electromagnetic induction.[1] Also Known As Controlled-Source EM References ↑ http://library.seg.org/doi/pdf/10.1190/1.1441531 Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Frequency-Domain_Electromagnetic_Survey&oldid=591411" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

382

Definition: Frequency-Domain Electromagnetics Survey | Open Energy  

Open Energy Info (EERE)

Frequency-Domain Electromagnetics Survey Frequency-Domain Electromagnetics Survey Jump to: navigation, search Dictionary.png Frequency-Domain Electromagnetics Survey Frequency-domain electromagnetic techniques are continuous wave field methods which enable the mapping of the electrical conductivity of the subsurface through electromagnetic induction.[1] View on Wikipedia Wikipedia Definition Electromagnetic induction is the production of a potential difference (voltage) across a conductor when it is exposed to a varying magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831 though it may have been anticipated by the work of Francesco Zantedeschi in 1829. Around 1830 to 1832, Joseph Henry made a similar discovery, but did not publish his findings until later. Faraday's

383

The Doppler Effect in the Molecular Scattering of Radiation  

Science Journals Connector (OSTI)

... the irregular alterations in the wave-length of the scattered radiation produced (in accordance with Doppler's principle) by the thermal movements of the molecules. There is one interesting feature ... ) by the thermal movements of the molecules. There is one interesting feature of the Doppler ...

C. V. RAMAN

1919-05-01T23:59:59.000Z

384

Fundamental physics on natures of the macroscopic vacuum under high intense electromagnetic fields with accelerators  

E-Print Network (OSTI)

High intense electromagnetic fields can be unique probes to study natures of macroscopic vacua by themselves. Combining accelerators with the intense field can provide more fruitful probes which can neither be achieved by only intense fields nor only high energy accelerators. We will overview the natures of vacua which can be accessible via intense laser-laser and intense laser-electron interactions. In the case of the laser-laser interaction, we propose how to observe nonlinear QED effects and effects of new fields like light scalar and pseudo scalar fields which may contribute to a macroscopic nature of our universe such as dark energy. In the case of the laser-electron interaction, in addition to nonlinear QED effects, we can further discuss the nature of accelerating field in the vacuum where we can access physics related with event horizons such as Hawking-Unruh radiations. We will introduce a recent experimental trial to search for this kind of odd radiations.

Kensuke Homma

2009-11-30T23:59:59.000Z

385

Assessing the benefits of DCT compressive sensing for computational electromagnetics  

E-Print Network (OSTI)

Computational electromagnetic problems are becoming exceedingly complex and traditional computation methods are simply no longer good enough for our technologically advancing world. Compressive sensing theory states that ...

D'Ambrosio, Kristie (Kristie L.)

2011-01-01T23:59:59.000Z

386

6.013 Electromagnetics and Applications, Fall 2002  

E-Print Network (OSTI)

Electromagnetic phenomena are explored in modern applications including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, ...

Staelin, David H.

387

6.641 Electromagnetic Fields, Forces, and Motion, Spring 2003  

E-Print Network (OSTI)

Electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Electromagnetic forces, force densities, and stress tensors, including magnetization ...

Zahn, Markus, 1946-

388

Overview Of Electromagnetic Methods Applied In Active Volcanic...  

Open Energy Info (EERE)

areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations...

389

Magnetohydrodynamic power generation, electromagnetic pumps, heat pipes, and thermionic convertors  

SciTech Connect

The basic principles of operation, components, and design of MHD generators, electromagnetic pumps, heat pipes and thermionic converters are described. 66 references. (WHK)

Pierson, E.S.; Bonyhady, K.A.; Dunn, P.F.; Nathenson, R.D.; Uherka, K.L.

1984-01-01T23:59:59.000Z

390

Binary high-frequency-carrier diffractive optical elements: electromagnetic theory  

Science Journals Connector (OSTI)

Using rigorous electromagnetic diffraction theory, we evaluate the potential performance and the limitations of coding diffractive optical elements in the form of a...

Noponen, Eero; Turunen, Jari

1994-01-01T23:59:59.000Z

391

Analysis Of Factors Affecting Natural Source Slf Electromagnetic...  

Open Energy Info (EERE)

relationship between the sensor orientation and the received artificial electromagnetic interference, influence of weather conditions on the data quality and so on. The results...

392

Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...  

Open Energy Info (EERE)

Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

393

Electromagnetically induced transparency controlled by a microwave field  

E-Print Network (OSTI)

interferences in electromagnetically induced transparency. A simple theoretical model and a numerical simulation have been developed to explain the observed experimental results....

Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Welch, George R.; Hemmer, Philip R.; Scully, Marlan O.

2009-01-01T23:59:59.000Z

394

Electromagnetic wave scattering by small perfectly conducting particles and applications  

E-Print Network (OSTI)

A formula for the electromagnetic (EM) field in the medium, in which many small perfectly conducting particles of an arbitrary shape are distributed, is derived.

Alexander G. Ramm

2014-02-13T23:59:59.000Z

395

Electromagnetic wave scattering by many conducting small particles  

E-Print Network (OSTI)

A rigorous theory of electromagnetic (EM) wave scattering by small perfectly conducting particles is developed. The limiting case when the number of particles tends to infinity is discussed.

A. G. Ramm

2008-04-21T23:59:59.000Z

396

Unification of Gravity and Electromagnetism II A Geometric Theory  

E-Print Network (OSTI)

It is shown that unification of gravity and electromagnetism can be achieved using an affine non-symmetric connection $\\Gamma^\\lambda_{\\mu\

Partha Ghose

2014-08-05T23:59:59.000Z

397

Time-Domain Electromagnetics At Glass Mountain Area (Cumming...  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain...

398

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 44, NO. 4, NOVEMBER 2002 495 A New Nonlinear Model of EMI-Induced  

E-Print Network (OSTI)

predictions. Index Terms--Demodulation, electromagnetic compatibility (EMC), electromagnetic interference (EMI are useful in the sizing of electromagnetic interference (EMI) filtering structures. Usually, RFI distortion

399

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 55, NO. 5, OCTOBER 2013 883 Characterization of Changes in LDO  

E-Print Network (OSTI)

sensitive to electromagnetic interference (EMI) coupled onto the power supply, with concomitant output--Ageing, electromagnetic compatibility (EMC), electromagnetic interference (EMI), immunity drift, low dropout (LDO) voltage

Paris-Sud XI, Université de

400

On the Classical Radiation of Accelerated Electrons  

Science Journals Connector (OSTI)

This paper is concerned with the properties of the radiation from a high energy accelerated electron, as recently observed in the General Electric synchrotron. An elementary derivation of the total rate of radiation is first presented, based on Larmor's formula for a slowly moving electron, and arguments of relativistic invariance. We then construct an expression for the instantaneous power radiated by an electron moving along an arbitrary, prescribed path. By casting this result into various forms, one obtains the angular distribution, the spectral distribution, or the combined angular and spectral distributions of the radiation. The method is based on an examination of the rate at which the electron irreversibly transfers energy to the electromagnetic field, as determined by half the difference of retarded and advanced electric field intensities. Formulas are obtained for an arbitrary charge-current distribution and then specialized to a point charge. The total radiated power and its angular distribution are obtained for an arbitrary trajectory. It is found that the direction of motion is a strongly preferred direction of emission at high energies. The spectral distribution of the radiation depends upon the detailed motion over a time interval large compared to the period of the radiation. However, the narrow cone of radiation generated by an energetic electron indicates that only a small part of the trajectory is effective in producing radiation observed in a given direction, which also implies that very high frequencies are emitted. Accordingly, we evaluate the spectral and angular distributions of the high frequency radiation by an energetic electron, in their dependence upon the parameters characterizing the instantaneous orbit. The average spectral distribution, as observed in the synchrotron measurements, is obtained by averaging the electron energy over an acceleration cycle. The entire spectrum emitted by an electron moving with constant speed in a circular path is also discussed. Finally, it is observed that quantum effects will modify the classical results here obtained only at extraordinarily large energies.

Julian Schwinger

1949-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Radiation receiver  

DOE Patents (OSTI)

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

402

Physics with the ALICE Electromagnetic Calorimeter  

E-Print Network (OSTI)

I will present physics measurements which are achievable in the ALICE experiment at the LHC through the inclusion of a new electromagnetic calorimeter. I will focus on jet measurements in proton proton and heavy ion collisions. Detailed simulations have been performed on jet reconstruction, jet triggering, heavy flavor jet reconstruction through electron identification, gamma-jet reconstruction and the measurements of identified hadrons and resonances in jets. I will show the physics capabilities which are made possible through the combination of calorimeter information with the other detector components in ALICE.

Rene Bellwied; for the ALICE Collaboration

2009-07-17T23:59:59.000Z

403

Generalized Terminal Modeling of Electromagnetic Interference  

SciTech Connect

Terminal models have been used for various applications. In this paper, a three-terminal model is proposed for electromagnetic-interference (EMI) characterization. The model starts with a power electronic system at a particular operating condition and creates a unique linearized equivalent circuit. Impedances and current/voltage sources define the noise throughout the entire EMI frequency spectrum. All parameters needed to create the model are clearly defined to ensure convergence and maximize accuracy. In addition, the accuracy of the model is confirmed up to 100 MHz for a dc-dc boost converter using both simulation and experimental validation.

Baisden, Andrew Carson [IEEE Industrial Applications Society; Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL

2010-01-01T23:59:59.000Z

404

Survey of nucleon electromagnetic form factors  

SciTech Connect

There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has been greatly improved by performing double polarization experiments, in compar- ison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at MIT-Bates, MAMI, and JLab. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed.

Perdrisat, Charles F. [William and Mary College; Punjabi, Vina A. [Norfolk State U.

2011-09-20T23:59:59.000Z

405

Artificial Retina Project: Electromagnetic and Thermal Effects  

SciTech Connect

This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

Lazzi, Gianluca

2014-08-29T23:59:59.000Z

406

Electromagnetically induced grating with maximal atomic coherence  

SciTech Connect

We describe theoretically an atomic diffraction grating that combines an electromagnetically induced grating with a coherence grating in a double-{Lambda} atomic system. With the atom in a condition of maximal coherence between its lower levels, the combined gratings simultaneously diffract both the incident probe beam as well as the signal beam generated through four-wave mixing. A special feature of the atomic grating is that it will diffract any beam resonantly tuned to any excited state of the atom accessible by a dipole transition from its ground state.

Carvalho, Silvania A.; Araujo, Luis E. E. de [Instituto de Fisica ''Gleb Wataghin'', Universidade Estadual de Campinas, Campinas-SP, 13083-859 Sao Paulo (Brazil)

2011-10-15T23:59:59.000Z

407

Electromagnetic studies of nucleon and nuclear structure  

SciTech Connect

Important objectives of the group are the study of subatomic structure through experimental measurements and the interpretation of the data through modeling. The common theme that unifies the studies of strong interactions and hadronic systems is the effort to determine the electromagnetic response as completely as possible. The general approach is coincidence detection of exclusive final states and determination of the dependence on the spin variables using polarized beams and targets and outgoing nucleon polarimetry. Direct reaction and giant resonance studies of electron quasi-elastic scattering on {sup 12}C and {sup 16}O are reported, as well as work on nuclear structure models and instrumentation development.

Heisenberg, J.H.; Calarco, J.R.; Hersman, F.W.; Dawson, J.F.

1993-06-01T23:59:59.000Z

408

Electromagnetic wave scattering by small bodies  

E-Print Network (OSTI)

A reduction of the Maxwell's system to a Fredholm second-kind integral equation with weakly singular kernel is given for electromagnetic (EM) wave scattering by one and many small bodies. This equation is solved asymptotically as the characteristic size of the bodies tends to zero. The technique developed is used for solving the many-body EM wave scattering problem by rigorously reducing it to solving linear algebraic systems, completely bypassing the usage of integral equations. An equation is derived for the effective field in the medium, in which many small particles are embedded. A method for creating a desired refraction coefficient is outlined.

A. G. Ramm

2008-04-21T23:59:59.000Z

409

Electromagnetic wave scattering by many small particles  

E-Print Network (OSTI)

Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a "smart" material by embedding many small particles in a given region is formulated.

A. G. Ramm

2006-08-18T23:59:59.000Z

410

Electromagnetic Dipole Strength in Transitional Nuclei  

E-Print Network (OSTI)

Electromagnetic dipole absorption cross-sections of transitional nuclei with large-amplitude shape fluctuations are calculated in a microscopic way by introducing the concept of Instantaneous Shape Sampling. The concept bases on the slow shape dynamics as compared to the fast dipole vibrations. The elctromagnetic dipole strength is calculated by means of RPA for the instantaneous shapes, the probability of which is obtained by means of IBA. Very good agreement with the experimental absorption cross sections near the nucleon emission threshold is obtained.

S. Q. Zhang; I. Bentley; S. Brant; F. Dönau; S. Frauendorf; B. Kämpfer; R. Schwengner; A. Wagner

2008-08-19T23:59:59.000Z

411

Electromagnetic corrections to pseudoscalar decay constants  

E-Print Network (OSTI)

The effects of electromagnetic interactions on pseudoscalar decay constants are investigated. Using a compact QED and QCD action we are able to resolve differences of about 0.1 MeV. We obtain the preliminary results f_pi^0-f_pi^+/- =0.09(3) MeV and f_D^0-f_D^+/- =0.79(11) MeV for light and charmed pseudoscalar decay constants on a N_f=2 nonperturbatively improved Sheikholeslami-Wohlert ensemble.

Benjamin Glaessle; Gunnar S. Bali

2011-11-16T23:59:59.000Z

412

Electromagnetic wormholes and virtual magnetic monopoles  

E-Print Network (OSTI)

We describe new configurations of electromagnetic (EM) material parameters, the electric permittivity $\\epsilon$ and magnetic permeability $\\mu$, that allow one to construct from metamaterials objects that function as invisible tunnels. These allow EM wave propagation between two points, but the tunnels and the regions they enclose are not detectable to EM observations. Such devices function as wormholes with respect to Maxwell's equations and effectively change the topology of space vis-a-vis EM wave propagation. We suggest several applications, including devices behaving as virtual magnetic monopoles.

Allan Greenleaf; Yaroslav Kurylev; Matti Lassas; Gunther Uhlmann

2007-03-20T23:59:59.000Z

413

Electromagnetic Properties of the Early Universe  

E-Print Network (OSTI)

Detailed physical processes of magnetic field generation from density fluctuations in the pre-recombination era are studied. Solving Maxwell equations and the generalized Ohm's law, the evolutions of the net charge density, the electric current and the electromagnetic field are solved. Unlike most of previous works, we treat electrons and photons as separate components under the assumption of tight coupling. We find that generation of the magnetic field due to density fluctuations takes place only from the second order of both perturbation theory and the tight coupling approximation.

Keitaro Takahashi; Kiyotomo Ichiki; Naoshi Sugiyama

2008-05-29T23:59:59.000Z

414

Effects of Laser Energy and Wavelength on the Analysis of LiFePO4...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser Assisted Atom Probe Tomography. Effects of Laser Energy and Wavelength on the Analysis of LiFePO4 Using Laser...

415

Multi-Color Laser Spectroscopy with a Dual-Wavelength Quantum Cascade Laser  

Science Journals Connector (OSTI)

A new concept of multi-color spectroscopy based on a dual-wavelength QCL is presented. The latter emits at two distinct wavelengths (5.26 and 6.25 µm), featuring simultaneous...

Jágerská, Jana; Jouy, Pierre; Tuzson, Béla; Looser, Herbert; Hugi, Andreas; Mangold, Markus; Soltic, Patrik; Emmenegger, Lukas; Faist, Jérôme

416

Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples  

Science Journals Connector (OSTI)

We present a simultaneous dual-wavelength phase-imaging digital holographic technique demonstrated on porous coal samples. The use of two wavelengths enables us to increase the axial...

Khmaladze, Alexander; Restrepo-Martínez, Alejandro; Kim, Myung; Castañeda, Roman; Blandón, Astrid

2008-01-01T23:59:59.000Z

417

Long-Distance FBG Sensor System Using High-Speed Swept-Wavelength Light Source  

Science Journals Connector (OSTI)

A long-distance FBG sensor system using a power controlled high-speed swept-wavelength light source is proposed and demonstrated. This system can measure FBGs reflection wavelengths...

Saitoh, Takanori; Nakamura, Kenichi; Takahashi, Yoshifumi; Iida, Hiroyuki; Iki, Yoshimitsu; Miyagi, Koichiro

418

Early detection of critical material degradation by means of electromagnetic multi-parametric NDE  

SciTech Connect

With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.

Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Altpeter, Iris; Dobmann, Gerd [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); Seiler, Georg; Herrmann, Hans-Georg; Boller, Christian [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken, Germany and Saarland University, Chair of NDT and Quality Assurance, Campus E3 1, 66123 Saarbrücken (Germany)

2014-02-18T23:59:59.000Z

419

Reflective optical imaging system for extreme ultraviolet wavelengths  

SciTech Connect

This invention is comprised of a projection reflection optical system having two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have aspherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 {mu}m, and preferably less than 100 {mu}m. An image resolution of features less than 0.05--0.1 {mu}m, is obtained over a large area field; i.e., 25.4 mm {times} 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

Viswanathan, V.K.; Newnam, B.E.

1991-12-31T23:59:59.000Z

420

Spatiotemporal focusing dynamics in plasmas at X-ray wavelength  

SciTech Connect

Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

Sharma, A., E-mail: a-physics2001@yahoo.com; Tibai, Z. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary)] [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Hebling, J. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary) [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Szentagothai Research Centre, University of Pecs, Pecs-7624 (Hungary); Mishra, S. K. [Institute for Plasma Research, Gandhinagar (India)] [Institute for Plasma Research, Gandhinagar (India)

2014-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy  

SciTech Connect

We propose a multiplexed absorption tomography technique, which uses calibration-free wavelength modulation spectroscopy with tunable semiconductor lasers for the simultaneous imaging of temperature and species concentration in harsh combustion environments. Compared with the commonly used direct absorption spectroscopy (DAS) counterpart, the present variant enjoys better signal-to-noise ratios and requires no baseline fitting, a particularly desirable feature for high-pressure applications, where adjacent absorption features overlap and interfere severely. We present proof-of-concept numerical demonstrations of the technique using realistic phantom models of harsh combustion environments and prove that the proposed techniques outperform currently available tomography techniques based on DAS.

Cai, Weiwei; Kaminski, Clemens F., E-mail: cfk23@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA (United Kingdom)

2014-04-14T23:59:59.000Z

422

Broadband laser diode emitting at 1. 28. mu. m wavelength  

SciTech Connect

This letter presents a broadband laser diode (LD) emitting at the 1.28 ..mu..m wavelength fabricated by introducing an absorption region (300 ..mu..m long) into a conventional 600-..mu..m-long InGaAsP laser diode. The LD operates by the pulsed modulation of a high peak current whose repetition rate and duty cycle are respectively 200 kHz and 5%. The typical output power and the spectral width of the LD are 3.8 mW and 58 A, and the measured coherence length is 210 ..mu..m.

Takada, K.; Noda, J.

1985-10-15T23:59:59.000Z

423

Dynamic Multi-Wavelength GPON (DMW-GPON) Protocol A. Gliwan, P. Kourtessis, J. M. Senior  

E-Print Network (OSTI)

Dynamic Multi-Wavelength GPON (DMW-GPON) Protocol A. Gliwan, P. Kourtessis, J. M. Senior Science (GPON) upstream map frame format enhancement has been developed to support dynamic multi wavelength (DMW the supported wavelengths. OPNET modelling of the performance characteristics of the DMW-GPON Fibre

Haddadi, Hamed

424

Broadband precision wavelength meter based on a stepping FabryProt interferometer  

E-Print Network (OSTI)

Broadband precision wavelength meter based on a stepping Fabry­Pérot interferometer T. J. Scholl. INTRODUCTION Wavelength meters based on Michelson or Fizeau inter- ferometers have long been the standard a more general laser wavelength meter in which the FP ring pattern was employed to compare

Rehse, Steven J.

425

Steven Weinberg, Weak Interactions, and Electromagnetic Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Steven Weinberg and Steven Weinberg and Weak and Electromagnetic Interactions Resources with Additional Information Steven Weinberg Courtesy Dr. Steven Weinberg Steven "Weinberg is a professor of physics and astronomy at UT [The University of Texas] Austin and is founding director of the Theory Group in the College of Natural Sciences. [He is] well known for his development of a field theory that unifies the electromagnetic and weak nuclear forces, and for other major contributions to physics and cosmology ... Weinberg's work has been honored with numerous prizes, including the Nobel Prize in Physics in 1979 and the National Medal of Science in 1991. Weinberg is the author of the prize-winning book The First Three Minutes: A Modern View of the Origin of the Universe (which has been translated into 22 foreign languages) as well as Gravitation and Cosmology, The Discovery of Subatomic Particles, Dreams of a Final Theory and The Quantum Theory of Fields. ... Weinberg was the recipient of the Scientist as Poet prize from Rockefeller University for "extraordinary achievements in conveying - with passionate clarity - the ideas, history, explanatory power and aesthetic dimensions of fundamental physics." The citation mentioned two of Weinberg's books.

426

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. However, not all pipelines can be inspected with current systems that move inside the pipeline propelled by the product flow. Inspection platforms that crawl slowly inside a pipeline are being developed to maneuver past the physical barriers that limit inspection. Battelle is building innovative electromagnetic sensors for pipeline crawlers. The various sensor types will assess a wide range of pipeline anomalies including corrosion, mechanical damage, cracking and seam weld defects. An implementation of two electromagnetic sensors were designed and tested. A pulsed eddy current system that uses sensors to measure the decay of induced eddy currents to establish the wall thickness has excellent potential. The results of experiments are comparable with magnetic flux leakage detecting 10% metal loss steps following a monotonic increase in signal strength. A rotating permanent remote field eddy current exciter was designed and built to produce strong signal levels at the receiver and reduce power consumption. Midway through the development of each technology, both sensor systems have produced results that warrant further development.

J. Bruce Nestleroth

2004-05-01T23:59:59.000Z

427

Immunizing digital systems against electromagnetic interference  

SciTech Connect

This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant`s electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1993-02-01T23:59:59.000Z

428

Immunizing digital systems against electromagnetic interference  

SciTech Connect

This paper discusses the development of the technical basis for acceptance criteria applicable to the immunization of digital systems against electromagnetic interference (EMI). The work is sponsored by the US Nuclear Regulatory Commission and stems from the safety-related issues that need to be addressed as a result of the application of digital instrumentation and control systems in nuclear power plants. Designers of digital circuits are incorporating increasingly higher clock frequencies and lower logic level voltages, thereby leading to potentially greater susceptibility of spurious interference being misinterpreted as legitimate logic. Development of the technical basis for acceptance criteria to apply to these digital systems centers around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant's electronic and electromechanical systems. First, good EMC design and installation practices are needed to control the emissions from interference sources and thereby their impact on other nearby circuits and systems. Secondly, a test and evaluation program is needed to outline the EMI tests to be performed, the associated test methods to be followed, and adequate test limits to ensure that the circuit or system under test meets the recommended guidelines. Test and evaluation should be followed by periodic maintenance to assess whether the recommended EMI control practices continue to be adhered to as part of the routine operation of the nuclear power plant. By following these steps, the probability of encountering safety-related instrumentation problems associated with EMI will be greatly reduced.

Ewing, P.D.; Korsah, K. (Oak Ridge National Lab., TN (United States)); Antonescu, C. (Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research)

1993-01-01T23:59:59.000Z

429

Radiation Protection Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

430

Simulation and Modeling Techniques for Signal Integrity and Electromagnetic Interference on High Frequency Electronic Systems.  

E-Print Network (OSTI)

Simulation and Modeling Techniques for Signal Integrity and Electromagnetic Interference on High and Modeling Techniques for Signal Integrity and Electromagnetic Interference on High Frequency Electronic Integrity and Electromagnetic Interference on High Frequency Electronic Systems. by Luca Daniel Doctor

Daniel, Luca

431

Fast Electromagnetic Interference Analysis of Distributed Networks using Longitudinal Partitioning Based Waveform Relaxation  

E-Print Network (OSTI)

Fast Electromagnetic Interference Analysis of Distributed Networks using Longitudinal Partitioning -- In this paper, a waveform relaxation algorithm for the fast electromagnetic interference analysis of distributed is provided to demonstrate the validity of the proposed algorithm. Index Terms -- Electromagnetic interference

Roy, Sourajeet

432

PERGAMON Carbon 39 (2001) 279285 Electromagnetic interference shielding effectiveness of carbon  

E-Print Network (OSTI)

PERGAMON Carbon 39 (2001) 279­285 Review Electromagnetic interference shielding effectiveness materials for electromagnetic interference (EMI) shielding are reviewed. They include composite materials-structural and structural composites, colloi- dal graphite, as well as EMI gasket materials. Electromagnetic interference

Chung, Deborah D.L.

433

Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites  

E-Print Network (OSTI)

Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer electromagnetic interference (EMI) shielding material with shielding effectiveness 124 dB, low surface impedance interference shielding 1. Introduction Electromagnetic interference (EMI) shielding is receiv- ing increasing

Chung, Deborah D.L.

434

The Particle Adventure | How do we detect what's happening? | Wavelength -  

NLE Websites -- All DOE Office Websites (Extended Search)

detect what's happening? > detect what's happening? > Wavelength - The cave Wavelength - The cave A Cave Pretend that you are unlucky enough to fall into a cave without a flashlight. A Basketball However, you are lucky enough to have a bucket of glow-in-the-dark basketballs. Suddenly, you hear a snuffling sound. Is it a blood-thirsty bear, or merely your friends playing a practical joke on you? To find out, you desperately toss the basketballs in the direction of the snuffling sound, and memorize where the basketballs hit. Thus, you rapidly figure out the following outline of the being in front of you: Yikes! Since your basketballs are so big, when they bounce off the thing in front of you, all you can learn about its shape is that it is wide and tall. A Tennis ball Fortunately, you ALSO brought a bag of glow-in-the-dark tennis balls. You toss these in the direction of the snuffling, and are rewarded with the following image:

435

Electromagnetic models of the lightning return stroke Yoshihiro Baba1  

E-Print Network (OSTI)

Electromagnetic models of the lightning return stroke Yoshihiro Baba1 and Vladimir A. Rakov2] Lightning return-stroke models are needed for specifying the source in studying the production of transient-called engineering models, electromagnetic return-stroke models allow a self-consistent full-wave solution for both

Florida, University of

436

Electromagnetic Interference (EMI) Resisting Analog Integrated Circuit Design Tutorial  

E-Print Network (OSTI)

ELECTROMAGNETIC INTERFERENCE (EMI) RESISTING ANALOG INTEGRATED CIRCUIT DESIGN TUTORIAL A Thesis by JINGJING YU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2012 Major Subject: Electrical Engineering ELECTROMAGNETIC INTERFERENCE (EMI) RESISTING ANALOG INTEGRATED CIRCUIT DESIGN TUTORIAL A Thesis by JINGJING YU Submitted to the Office...

Yu, Jingjing

2012-10-19T23:59:59.000Z

437

Electromagnetic torque analysis of a DFIG for wind turbines  

Science Journals Connector (OSTI)

Electromagnetic torque of doubly fed induction generator (DFIG) is a consequence of the rotor and stator supply. The stator voltage has a fixed amount and frequency. The rotor voltage of the DFIG as a part of a wind turbine has a variable amount and ... Keywords: DFIG, electromagnetic torque, renewable energy, wind turbine

Jurica Smajo; Dinko Vukadinovic

2008-05-01T23:59:59.000Z

438

On Generating Gravity Waves with Matter and Electromagnetic Waves  

E-Print Network (OSTI)

If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.

C. Barrabes; P. A. Hogan

2008-04-05T23:59:59.000Z

439

Material Surface Design to Counter Electromagnetic Interrogation of Targets  

E-Print Network (OSTI)

Material Surface Design to Counter Electromagnetic Interrogation of Targets H.T. Banks, K. Ito, G and ferromagnetic layers coat- ing a conducting object to provide an attenuation capability against electro. Fresnel's law for the reflectance index is extended to the electromagnetic propagation in anisotropic

440

Line geometry and electromagnetism III: groups of transformations  

E-Print Network (OSTI)

The role of linear and projective groups of transformations in line geometry and electromagnetism is examined in accordance with Klein's Erlanger Programm for geometries. The group of collineations of real projective space is chosen as the most general group, and reductions to some of its various subgroups are then detailed according to their relevance to electromagnetic fields, and especially wave-like ones.

D. H. Delphenich

2014-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electromagnetic space-time crystals. II. Fractal computational approach  

E-Print Network (OSTI)

A fractal approach to numerical analysis of electromagnetic space-time crystals, created by three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency, is presented. Finite models of electromagnetic crystals are introduced, which make possible to obtain various approximate solutions of the Dirac equation. A criterion for evaluating accuracy of these approximate solutions is suggested.

G. N. Borzdov

2014-10-20T23:59:59.000Z

442

Electromagnetic Field Creation During EWPT Nucleation With Lepton Currents  

E-Print Network (OSTI)

We include the electromagnetic currents from fermion degrees of freedom in the equations of motion for electroweak MSSM with a right-handed Stop that we have recently investigated. It is found that near the surface of the bubble walls there are important effects on the electromagnetic fields produced during bubble nucleation.

Leonard S. Kisslinger; Sameer Walawalkar; Ernest M. Henley; Mikkel B. Johnson

2005-10-11T23:59:59.000Z

443

Electromagnetic field at Finite Temperature: A first order approach  

E-Print Network (OSTI)

In this work we study the electromagnetic field at Finite Temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

R. Casana; B. M. Pimentel; J. S. Valverde

2007-02-04T23:59:59.000Z

444

Variable-Period Undulators for Synchrotron Radiation  

SciTech Connect

A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

2005-02-22T23:59:59.000Z

445

Radiation protection: Natural radiation risks  

Science Journals Connector (OSTI)

... radiation to which humans are exposed consists of four components - cosmic, gamma, internal, radon. The relative contribution that each makes to the sum is shown in the chart. ... but exposure of the whole body to terrestrial gamma rays and of the lungs to radon daughters are influenced by the nature and location of housing. Gamma rays are emitted ...

M. C. O'Riordan

1983-11-17T23:59:59.000Z

446

Airborne Electromagnetic Survey At Raft River Geothermal Area (1979) | Open  

Open Energy Info (EERE)

Electromagnetic Survey At Raft River Electromagnetic Survey At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Airborne Electromagnetic Survey Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis To show that AEM methods can be useful in exploration for and defining geothermal systems Notes Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. References Christopherson, K.R.; Long, C.L.; Hoover, D.B. (1 September 1980) Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Retrieved from "http://en.openei.org/w/index.php?title=Airborne_Electromagnetic_Survey_At_Raft_River_Geothermal_Area_(1979)&oldid=510231

447

Electromagnetic field with induced massive term: Case with scalar field  

E-Print Network (OSTI)

We consider an interacting system of massless scalar and electromagnetic field, with the Lagrangian explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced nonzero rest-mass. This system of interacting fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.

Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha

2010-04-21T23:59:59.000Z

448

Electromagnetic Mass Models in General Theory of Relativity  

E-Print Network (OSTI)

"Electromagnetic mass" where gravitational mass and other physical quantities originate from the electromagnetic field alone has a century long distinguished history. In the introductory chapter we have divided this history into three broad categories -- classical, quantum mechanical and general relativistic. Each of the categories has been described at a length to get the detailed picture of the physical background. Recent developments on Repulsive Electromagnetic Mass Models are of special interest in this introductory part of the thesis. In this context we have also stated motivation of our work. In the subsequent chapters we have presented our results and their physical significances. It is concluded that the electromagnetic mass models which are the sources of purely electromagnetic origin ``have not only heuristic flavor associated with the conjecture of Lorentz but even a physics having unconventional yet novel features characterizing their own contributions independent of the rest of the physics".

Sumana Bhadra

2007-10-30T23:59:59.000Z

449

Electromagnetic field with induced massive term: Case with spinor field  

E-Print Network (OSTI)

We consider an interacting system of spinor and electromagnetic field, explicitly depending on the electromagnetic potentials, i.e., interaction with broken gauge invariance. The Lagrangian for interaction is chosen in such a way that the electromagnetic field equation acquires an additional term, which in some cases is proportional to the vector potential of the electromagnetic field. This equation can be interpreted as the equation of motion of photon with induced non-trivial rest-mass. This system of interacting spinor and scalar fields is considered within the scope of Bianchi type-I (BI) cosmological model. It is shown that, as a result of interaction the electromagnetic field vanishes at $t \\to \\infty$ and the isotropization process of the expansion takes place.

Yu. P. Rybakov; G. N. Shikin; Yu. A. Popov; Bijan Saha

2010-08-12T23:59:59.000Z

450

Laser Action at High k-Space Values in Anti-Correlated Multi-Wavelength Quantum Cascade Lasers  

Science Journals Connector (OSTI)

A two-wavelength Quantum Cascade laser is reported in which one wavelength lases between subband states high in the k-space. Laser action at the two wavelengths is strongly...

Menzel, Stefan; Franz, Kale J; Wasserman, Daniel; Hoffman, Anthony J; Cockburn, John W; Gmachl, Claire F

451

E-Print Network 3.0 - ac electromagnetic field Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics (time permitting). 12;The Nature of Electromagnetism Electric and magnetic fields... that are coupled; they are then referred to as an electromagnetic field....

452

E-Print Network 3.0 - active electromagnetic interference Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

electromagnetic interference Search Powered by Explorit Topic List Advanced Search Sample search results for: active electromagnetic interference Page: << < 1 2 3 4 5 > >> 1...

453

Medium Voltage Overhead Power-line Broadband Communications; Transmission Capacity and Electromagnetic Interference  

E-Print Network (OSTI)

and Electromagnetic Interference P. Amirshahi and M. Kavehrad (FIEEE) The Pennsylvania State University, Department distribution networks for broadband power-line communications applications. Electromagnetic interference

Kavehrad, Mohsen

454

1. Shielding against Electromagnetic Interference With telecommunication networks connecting wireless devices around the globe, there  

E-Print Network (OSTI)

#12;1. Shielding against Electromagnetic Interference With telecommunication networks connecting electromagnetic interference (EMI) across the airwaves. These communication networks are ubiquitous and dynamic

Rincon-Mora, Gabriel A.

455

Coherence Momentum in Second-Order Vectorial Coherence Theory of Stationary Electromagnetic Fields  

Science Journals Connector (OSTI)

In analog to the electromagnetic momentum, we introduce vector and tensor densities to the general coherence theory of vector electromagnetic fields, and present new conservation...

Wang, Wei; Takeda, Mitsuo

456

Coherence Momentum in Second-Order Vectorial Coherence Theory of Stationary Electromagnetic Fields  

Science Journals Connector (OSTI)

In analog to the electromagnetic momentum, we introduce vector and tensor densities to the general coherence theory of vector electromagnetic fields, and present new conservation laws...

Wang, Wei; Takeda, Mitsuo

457

Phase-shifting point-diffraction interferometry at EUV wavelengths  

SciTech Connect

A novel phase-shifting point-diffraction interferometer (PS/PDI) operating at the Advanced Light Source (ALS) is being used to perform wavefront-measuring metrology at 13.4-nm wavelength to characterize aberrations in a multilayer-coated 10x Schwarzschild objective designed for extreme ultraviolet (EUV) projection lithography experiments. To achieve 0.1-micron critical dimension pattern transfer with EUV projection lithography at 13.4-nm wavelength, nearly diffraction-limited all-reflective multilayer-coated optical systems with 0.1 numerical aperture are required. The EUV wavefront, determined by the mirror surfaces and the reflective multilayer coatings, is measurable only at the operational wavelength of the system. The authors goal is to measure the EUV wavefront to an accuracy of 0.01 waves rms (0.13 nm). The PS/PDI is a type of point-diffraction interferometer, modified for significantly improved throughput and phase-shifting capability. The interferometer design utilizes a grating beamsplitter and pinhole spatial filters in the object and image planes of the optical system under test. The 10x-reduction Schwarzschild objective, with image-side numerical aperture of 0.08, is illuminated by a sub-micron pinhole in the object plane. A coarse, 20-micron pitch grating placed between the illumination pinhole and the Schwarzschild system serves a dual role as a small-angle beam-splitter and a phase-shifting element. The first-order diffracted beam from the grating is spatially filtered in the image plane of the Schwarzschild with a sub-100-nm pinhole and becomes the `D reference` wave in the interferometer. The zero-order beam is the `test` wave, and it passes unobstructed through a 4.5-{mu}m window in the image plane. The test and reference beams are separated by several microns in the image plane to minimize beam overlap. The interference fringes are recorded with a CCD detector placed about 12 cm from the Schwarzschild image plane.

Goldberg, K.A.; Tejnil, E.; Sang Lee [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

1997-04-01T23:59:59.000Z

458

Tracing the geometry around a massive, axisymmetric body to measure, through gravitational waves, its mass moments and electromagnetic moments  

E-Print Network (OSTI)

The geometry around a rotating massive body, which carries charge and electrical currents, could be described by its multipole moments (mass moments, mass-current moments, electric moments, and magnetic moments). When a small body is orbiting this massive body, it will move on geodesics, at least for a time interval that is short with respect to the characteristic time of the binary due to gravitational radiation. By monitoring the waves emitted by the small body we are actually tracing the geometry of the central object, and hence, in principle, we can infer all its multipole moments. This paper is a generalization of previous similar results by Ryan. The fact that the electromagnetic moments of spacetime can be measured demonstrates that one can obtain information about the electromagnetic field purely from gravitational wave analysis. Additionally, these measurements could be used as a test of the no-hair theorem for black holes.

T. P. Sotiriou; T. A. Apostolatos

2004-10-25T23:59:59.000Z

459

Identification of LAMBDA-like systems in Er{sup 3+}:Y{sub 2}SiO{sub 5} and observation of electromagnetically induced transparency  

SciTech Connect

Electromagnetically induced transparency (EIT) is reported in a solid-state material doped with erbium ions. In this paper we introduce the spectroscopic investigations we have conducted in order to identify the adequate LAMBDA-like three-level systems in Er{sup 3+}:Y{sub 2}SiO{sub 5} crystal, relevant for the demonstration of EIT. These results pave the way for nonlinear and quantum optics applications based on EIT at the telecom wavelength around 1.5 mum.

Baldit, E.; Bencheikh, K.; Monnier, P.; Briaudeau, S.; Levenson, J. A.; Crozatier, V.; Lorgere, I.; Bretenaker, F.; Le Goueet, J. L.; Guillot-Noeel, O.; Goldner, Ph. [Laboratoire de Photonique et de Nanstructures, CNRS-UPR 20, 91460 Marcoussis (France); Laboratoire Aime Cotton, CNRS-UPR 3321, University Paris-Sud, Bat. 505, 91405 Orsay Cedex (France); Laboratoire de Chimie de la Matiere Condensee de Paris, CNRS-UMR 7574, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

2010-04-01T23:59:59.000Z

460

Electromagnetic waves with nonlinear dispersion law  

E-Print Network (OSTI)

Last year physicists in Europe have measured the velocity of the neutrinos particles. They found the neutrinos moving faster than the speed of light in vacuum. This result means that Einstein's relativity principle and its consequences in modern physics need a global additional renovation. In present paper the part of this problem is considered in terms of basic Maxwell's method only. By means of introduction a diffusion like displacement current the new super wave equation was derived, which permits of its solution be described the electromagnetic waves moving some faster than the conventional speed of light in vacuum especially in a gamma ray of a very short wave length region. The unique properties of these waves are that they undergo nonlinear dispersion law, uppermost limit of which is restricted. Discussion of further experimental problems and a number of estimations are given for the macro physic super wave equations also.

Pavel Mednis

2012-02-08T23:59:59.000Z

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Emergent cosmological constant from colliding electromagnetic waves  

E-Print Network (OSTI)

In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

M. Halilsoy; S. Habib Mazharimousavi; O. Gurtug

2014-10-15T23:59:59.000Z

462

Theory of Dipole Induced Electromagnetic Transparency  

E-Print Network (OSTI)

A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...

Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric

2015-01-01T23:59:59.000Z

463

Electromagnetic matrix elements for negative parity nucleons  

E-Print Network (OSTI)

Here we present preliminary results for the evaluation of the electromagnetic form factors for the lowest-lying negative-parity, spin-$\\frac{1}{2}$ nucleons, namely the $S_{11}(1535)$ and $S_{11}(1650)$, through the use of the variational method. We find that the characteristics of the electric form factor, $G_{E}$, are similar between these states, however significant differences are observed between the quark-sector contributions to the magnetic form factor, $G_{M}$. Within simple constituent quark models, these states are understood to be admixtures of $s=\\frac{1}{2}$ and $s=\\frac{3}{2}$ states coupled to orbital angular momentum $\\ell = 1$. Our results reveal a qualitative difference in the manner in which the singly-represented quark sector contributes to these baryon magnetic form factors.

Benjamin Owen; Waseem Kamleh; Derek Leinweber; Selim Mahbub; Benjamin Menadue

2014-12-15T23:59:59.000Z

464

Electromagnetic mass difference on the lattice  

E-Print Network (OSTI)

We calculate electromagnetic mass difference of mesons using a method proposed by Duncan {\\it et al}. The RG-improved gauge action and the non-compact Abelian gauge action are employed to generate configurations. Quark propagators in the range of $m_{PS}/m_{V}=0.76-0.51$ are obtained with the meanfield-improved clover quark action. Chiral and continuum extrapolations are performed and the results are compared with experiments. Finite size effects are also examined. Quark masses are extracted from the measured spectrum. Our preliminary values for light quark masses are $m_{u}^{\\bar{MS}}(\\mu =2 {GeV}) = 3.03(19)$ MeV, $m_{d}^{\\bar{MS}}(\\mu = 2 {GeV}) = 4.44(28)$ MeV, $m_{s}^{\\bar{MS}}(\\mu = 2 {GeV}) = 99.2(52)$ MeV.

Yusuke Namekawa; Yoshio Kikukawa

2005-09-24T23:59:59.000Z

465

The AzTEC mm-wavelength camera  

Science Journals Connector (OSTI)

......GRT), provides the thermal sink to the bolometer...the optical axis under thermal contraction. The weakest...layers of multilayer insulation (MLI). The inner...paint to absorb stray thermal radiation. The cryostat...list of JCMT optical specifications may be found on the......

G. W. Wilson; J. E. Austermann; T. A. Perera; K. S. Scott; P. A. R. Ade; J. J. Bock; J. Glenn; S. R. Golwala; S. Kim; Y. Kang; D. Lydon; P. D. Mauskopf; C. R. Predmore; C. M. Roberts; K. Souccar; M. S. Yun

2008-05-11T23:59:59.000Z

466

Spectral irradiance model for tungsten halogen lamps in 340-850 nm wavelength range  

SciTech Connect

We have developed a physical model for the spectral irradiance of 1 kW tungsten halogen incandescent lamps for the wavelength range 340-850 nm. The model consists of the Planck's radiation law, published values for the emissivity of tungsten, and a residual spectral correction function taking into account unknown factors of the lamp. The correction function was determined by measuring the spectra of a 1000 W, quartz-halogen, tungsten coiled filament (FEL) lamp at different temperatures. The new model was tested with lamps of types FEL and 1000 W, 120 V quartz halogen (DXW). Comparisons with measurements of two national standards laboratories indicate that the model can account for the spectral irradiance values of lamps with an agreement better than 1% throughout the spectral region studied. We further demonstrate that the spectral irradiance of a lamp can be predicted with an expanded uncertainty of 2.6% if the color temperature and illuminance values for the lamp are known with expanded uncertainties of 20 K and 2%, respectively. In addition, it is suggested that the spectral irradiance may be derived from resistance measurements of the filament with lamp on and off.

Ojanen, Maija; Kaerhae, Petri; Ikonen, Erkki

2010-02-10T23:59:59.000Z

467

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

J. Bruce Nestleroth

2004-11-05T23:59:59.000Z

468

Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source  

Science Journals Connector (OSTI)

This paper reports on a technique to improve the coherence length of a high-speed wavelength swept laser. The wavelength swept laser comprises a pigtailed semiconductor optical...

Chong, Changho; Suzuki, Takuya; Morosawa, Atsushi; Sakai, Tooru

2008-01-01T23:59:59.000Z

469

Low Frequency Measurement of the Spectrum of the Cosmic Background Radiation  

DOE R&D Accomplishments (OSTI)

We have made measurements of the cosmic background radiation spectrum at 5 wavelengths (0.33, 0.9, 3, 6.3, and 12 cm) using radiometers with wavelength-scaled corrugated horn antennas having very low sidelobes. A single large-mouth (0.7 m diameter) liquid-helium-cooled absolute reference load was used for all five radiometers. The results of the observations are consistent with previous measurements and represent a significant improvement in accuracy.

Smoot, G. F.; De Amici, G.; Friedman, S. D.; Witebsky, C.; Mandolesi, N.; Partridge, R. B.; Sironi, G.; Danese, L.; De Zotti, G.

1983-06-00T23:59:59.000Z

470

Radiating gravastars  

SciTech Connect

Considering a Vaidya exterior spacetime, we study dynamical models of prototype gravastars, made of an infinitely thin spherical shell of a perfect fluid with the equation of state p = ?, enclosing an interior de Sitter spacetime. We show explicitly that the final output can be a black hole, an unstable gravastar, a stable gravastar or a 'bounded excursion' gravastar, depending on how the mass of the shell evolves in time, the cosmological constant and the initial position of the dynamical shell. This work presents, for the first time in the literature, a gravastar that emits radiation.

Chan, R. [Coordenação de Astronomia e Astrofísica, Observatório Nacional, Rua General José Cristino, 77, São Cristóvão 20921-400, Rio de Janeiro, RJ (Brazil); Silva, M.F.A. da [Departamento de Física Teórica, Instituto de Física, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã 20550-900, Rio de Janeiro - RJ (Brazil); Rocha, Jaime F. Villas da [Instituto de Biociências, Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur 458, Urca, CEP 22290-240, Rio de Janeiro, RJ (Brazil); Wang, Anzhong, E-mail: chan@on.br, E-mail: mfasnic@gmail.com, E-mail: jfvroch@pq.cnpq.br, E-mail: anzhong_wang@baylor.edu [GCAP-CASPER, Department of Physics, Baylor University, Waco, TX 76798 (United States)

2011-10-01T23:59:59.000Z

471

Probing the XYZ states through radiative decays  

Science Journals Connector (OSTI)

In this work, we adopt the spin rearrangement scheme in the heavy quark limit and extensively investigate three classes of the radiative decays: M?(bb¯)+?, (bb¯)?M+?, M?M?+? corresponding to the electromagnetic transitions between one molecular (resonant) state and bottomonium, one bottomonium and molecular (resonant) state, and two molecular (resonant) states, respectively. We also extend the same formalism to study the radiative decays of the molecular (resonant) states with hidden charm. We derive some model-independent ratios when the initial or final states belong to the same spin-flavor multiplet. Future experimental measurement of these ratios will test the molecular picture and explore the underlying structures of the XYZ states.

Li Ma; Zhi-Feng Sun; Xiao-Hai Liu; Wei-Zhen Deng; Xiang Liu; Shi-Lin Zhu

2014-08-26T23:59:59.000Z

472

An approach to electromagnetism from the general relativity  

E-Print Network (OSTI)

Classical gravitation is so similar to the electrostatic that the possible unification has been investigated for many years. Although electromagnetism is formulated successfully by quantum field theory, this paper proposes a simple approach to describe the electromagnetism from the macroscopic perspective of general relativity. The hypothesis is based on two charged particles that cause disturbance energy sufficient to disrupt the space-time and explain approximately Maxwell's equations. Therefore, with such this simple idea, we suggest the possibility that the geometric relationship between electromagnetism and gravitation is not yet fully exhausted.

Robert Monjo i Agut

2013-12-02T23:59:59.000Z

473

A Full Review of the Theory of Electromagnetism  

E-Print Network (OSTI)

We will provide detailed arguments showing that the set of Maxwell equations, and the corresponding wave equations, do not properly describe the evolution of electromagnetic wave-fronts. We propose a nonlinear corrected version that is proven to be far more appropriate for the modellization of electromagnetic phenomena. The suitability of this approach will soon be evident to the reader, through a sequence of astonishing congruences, making the model as elegant as Maxwell's, but with increased chances of development. Actually, the new set of equations will allow us to explain many open questions, and find links between electromagnetism and other theories that have been searched for a long time, or not even imagined.

D. Funaro

2005-05-09T23:59:59.000Z

474

Theory of electromagnetic fluctuations for magnetized multi-species plasmas  

SciTech Connect

Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

Navarro, Roberto E., E-mail: roberto.navarro@ug.uchile.cl; Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime [Departamento de Física, Universidad de Concepción, Concepción 4070386 (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington, D. C. 20064 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro de Estudios Interdisciplinarios Básicos y Aplicados en Complejidad, CEIBA complejidad, Bogotá (Colombia)

2014-09-15T23:59:59.000Z

475

A new radiation stripline ICRF antenna design for EAST Tokamak  

SciTech Connect

A new type of toroidal long Radiation Stripline Antenna (RSA) is presented, which can effectively improve antenna radiation, leading in reduction of max voltage on transmission line and decrease of the sensitivity to ELM's of the ICRF system at some frequencies. Based on the new concept, a 4-straps RSA is proposed for EAST device. Using 3-D computing simulator code (HFSS), RF current distribution, S-parameters and electromagnetic field distribution on and near the RSA ICRF antenna are analyzed and compared with present ICRF antenna on EAST.

Qin, C. M.; Zhao, Y. P.; Wan, B. N.; Li, J.; Zhang, X. J.; Yang, Q. X.; Yuan, S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Braun, F. [Max-Planck Institute for Plasma Physics, D-85748, Garching (Germany); Notedame, J.-M. [Max-Planck Institute for Plasma Physics, D-85748, Garching, Germany and University of Gent (Belgium); Kasahara, H. [National Institute for Fusion Science, Toki (Japan); Collaboration: ICRF Team on EAST

2014-02-12T23:59:59.000Z

476

Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front  

DOE Patents (OSTI)

Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

Dawson, John M. (Pacific Palisades, CA); Mori, Warren B. (Hermosa Beach, CA); Lai, Chih-Hsiang (So. Pasadena, CA); Katsouleas, Thomas C. (Malibu, CA)

1998-01-01T23:59:59.000Z

477

Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front  

DOE Patents (OSTI)

Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

1998-07-14T23:59:59.000Z

478

Natural and Radiation Carcinogenesis in Man. III. Radiation Carcinogenesis  

Science Journals Connector (OSTI)

...mice. NATURAL AND RADIATION CARCINOGENESIS IN MAN. 3. RADIATION CARCINOGENESIS. | Journal Article | Japan Neoplasms etiology Neoplasms, Radiation-Induced Radiation Genetics | JAPAN NEOPLASM ETIOLOGY NEOPLASMS, RADIATION-INDUCED RADIATION...

1965-01-01T23:59:59.000Z

479

Impact Behavior and Radiation Performance of a Structurally Integrated Antenna Array Conformed Around Cylindrical Bodies  

E-Print Network (OSTI)

the loads in addition to radiating or receiving electromagnetic energy [1-3]. In the present paper, one a microstrip antenna is embedded, as shown in Fig. 1(a). Sandwich construction involves two relatively dense. The presence of the core moves the facesheets away from the neutral axis, enhancing the bending resistance

Tentzeris, Manos

480

Asymmetric radiative damping of low shear toroidal Alfvn eigenmodes R. M. Nyqvist and S. E. Sharapov  

E-Print Network (OSTI)

by the American Institute of Physics. Related Articles Influence of electromagnetic radiation on the power balance, Sweden 2 EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB, United Kingdom of toroidicity-induced Alfven eigenmodes (TAEs) in tokamaks, caused by coupling to the kinetic Alfven wave (KAW

Note: This page contains sample records for the topic "wavelength electromagnetic radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The role of higher-order modes on the electromagnetic whistler-cyclotron wave fluctuations of thermal and non-thermal plasmas  

SciTech Connect

Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the ?{sub e} increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron–proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States)] [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States) [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington DC, District of Columbia 20064 (United States); Navarro, Roberto [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile)] [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Araneda, Jaime A. [Departamento de Física, Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas, Casilla 160-C, Concepción (Chile)] [Departamento de Física, Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas, Casilla 160-C, Concepción (Chile)

2014-01-15T23:59:59.000Z

482

ON THE INFLUENCE OF THE GEOMETRY ON SKIN EFFECT IN ELECTROMAGNETISM  

E-Print Network (OSTI)

ON THE INFLUENCE OF THE GEOMETRY ON SKIN EFFECT IN ELECTROMAGNETISM GABRIEL CALOZ, MONIQUE DAUGE, ERWAN FAOU, VICTOR P´ERON ABSTRACT. We consider the equations of electromagnetism set on a domain made in electromagnetism. This effect describes the rapid decay of electromagnetic fields with depth inside a metallic

Dauge, Monique

483

Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band  

E-Print Network (OSTI)

graphene-based electronics have opened the door to electromagnetic communications in the nanoscale. In this

Josep Miquel Jornet; Ian F. Akyildiz

2010-01-01T23:59:59.000Z

484

Programmable two-port polarization independent electro-optically tunable wavelength filter in lithium niobate  

E-Print Network (OSTI)

?) conditions????????????????.. 21 10 Simulated PCE as a function of detuning wavelength, with N=1440 periods at 1530nm wavelength????????????.. 23 11 Polarization converter sections in series.??????????????. 24 12 Electrodes structure of previous EOTFs... the power conversion efficiency (PCE) as 23 2 1 2 22 2 1 22 2 ? PCE B(L) sin[(??) L] (??) == + + (45) where L is length of the polarization conversion region. The calculated PCE as a function of detuning wavelength ?? with a total number of periods N...

Ping, Yang

2009-05-15T23:59:59.000Z

485

Development of in situ, at-wavelength metrology for soft x-ray nano-focusing  

SciTech Connect

At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. We describe here details of the metrology beamline endstation, the at-wavelength tests, and an original alignment method that have already allowed us to precisely set a bendable KB mirror to achieve a FWHM focused spot size of ~;;120 nm, at 1-nm soft x-ray wavelength.

Yuan, Sheng Sam; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory Y.; Warwick, Tony; Padmore, Howard A.

2010-09-19T23:59:59.000Z

486

Frequency-Domain Electromagnetic Survey | Open Energy Information  

Open Energy Info (EERE)

Frequency-Domain Electromagnetic Survey Frequency-Domain Electromagnetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Frequency-Domain Electromagnetic Survey Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Profiling Techniques Information Provided by Technique Lithology: Detection of high-conductivity bodies in the subsurface. Stratigraphic/Structural: Hydrological: Thermal: Detection of the presence of a thermal anomaly through its resistivity signature. Cost Information Low-End Estimate (USD): 2,928.38292,838 centUSD 2.928 kUSD 0.00293 MUSD 2.92838e-6 TUSD / mile Median Estimate (USD): 4,505.20450,520 centUSD

487

Interpretation of electromagnetic soundings in the Raft River geothermal  

Open Energy Info (EERE)

Interpretation of electromagnetic soundings in the Raft River geothermal Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: An electromagnetic (EM) controlled source survey was conducted in the Raft River Valley, near Malta, Idaho. The purpose of the survey was: to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); to present an example of the EM sounding data and interpretations using a previously developed inversion program; and (3) to

488

Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of  

Open Energy Info (EERE)

Of Electromagnetic Methods Applied In Active Volcanic Areas Of Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States Details Activities (7) Areas (2) Regions (0) Abstract: A better understanding of active volcanic areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations by governmental, industrial, and academic agencies include (but are not limited to) mapping of the Cascades. Long Valley/Mono area, the Jemez volcanic field, Yellowstone Park, and an area in Colorado. For one example - Mt. Konocti in the Mayacamas Mountains, California - gravity,

489

Airborne electromagnetic surveys as a reconnaissance technique for  

Open Energy Info (EERE)

electromagnetic surveys as a reconnaissance technique for electromagnetic surveys as a reconnaissance technique for geothermal exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Details Activities (1) Areas (1) Regions (0) Abstract: INPUT airborne electromagnetic (AEM) surveys were conducted during 1979 in five Known Geothermal Resource Areas (KGRA's). AEM work has not been significantly utilized in the past for geothermal purposes because it was thought that a shallow exploration technique would not be effective. Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. INPUT responses in the form of

490

Electromagnetic Soundings At Raft River Geothermal Area (1977) | Open  

Open Energy Info (EERE)

Electromagnetic Soundings At Raft River Geothermal Area (1977) Electromagnetic Soundings At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Electromagnetic Sounding Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis The purpose of the survey was: (1) to field test U.S. Geological Survey extra-low-frequency (ELF) equipment using a grounded wire source and receiver loop configuration (which is designed to measure the vertical magnetic field (Hz) at the loop center for various frequencies); (2) to present an example of the EM sounding data and interpretations using a

491

Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) |  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Haleakala Volcano Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) Exploration Activity Details Location Haleakala Volcano Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Controlled-source electromagnetic soundings were found to be substantially more successful in the southwest rift than either the Schlumberger or the self-potential studies. This was largely due to the ability of time-domain methods to penetrate high-resistivity surface layers and thus to define lower-resistivity sections at depth. The results of this sounding study, which was conducted at elevations ranging from 75 to 497 m a.s.l., generally indicated moderate- to lowresistivity (6 - 7 ohm.m) sections to depths of 1 km on the lower rift zone and higher resistivities (12-16

492

E-Print Network 3.0 - applied computational electromagnetics...  

NLE Websites -- All DOE Office Websites (Extended Search)

and the optimal combination of electromagnets and permanent magnets, while reducing magnet system lifecycle costs... the NLC 24 hours per day, 7 days a week for 9 months a year....

493

Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model  

SciTech Connect

We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

Gilberto Ramalho, Kazuo Tsushima

2011-09-01T23:59:59.000Z

494

Focusing of Electromagnetic Waves S.H. Wiersma  

E-Print Network (OSTI)

Focusing of Electromagnetic Waves by S.H. Wiersma #12;#12;VRIJE UNIVERSITEIT Focusing Sjoerd Haije Wiersma geboren te Haarlemmermeer #12;Promotor: prof. dr. D. Lenstra Copromotor: dr. T

Visser, Taco D.

495

Lines of Circular Polarization in Electromagnetic Wave Fields  

Science Journals Connector (OSTI)

8 October 1983 research-article Lines of Circular Polarization in Electromagnetic Wave Fields J...free space possesses, in general, two families of singular lines ( lines) on which the transverse field is circularly polarized. The...

1983-01-01T23:59:59.000Z

496

A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration  

Open Energy Info (EERE)

Evaluation Of Electromagnetic Methods In Geothermal Exploration Evaluation Of Electromagnetic Methods In Geothermal Exploration - L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration - L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): Unknown Published: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996 Document Number: Unavailable DOI: 10.1016/S0148-9062(97)87449-9 Source: View Original Journal Article Retrieved from "http://en.openei.org/w/index.php?title=A_Numerical_Evaluation_Of_Electromagnetic_Methods_In_Geothermal_Exploration_-_L_Pellerin,_J_M_Johnston_%26_G_W_Hohmann,_Geophysics,_61(1),_1996,_Pp_121-130&oldid=3883

497

Low Audio-frequency Electromagnetic Signals of Natural Origin  

Science Journals Connector (OSTI)

... a year ago, we undertook a programme of measurement of natural electromagnetic signals in the audio-frequency range 25-130 cycles/sec, with the view of gathering evidence concerning their ...

R. E. HOLZER; O. E. DEAL

1956-03-17T23:59:59.000Z

498

Plastic Identification Sensor with Five Wavelength Laser Diodes Used in Recycling Robot  

Science Journals Connector (OSTI)

Plastic identification is a key technology for recycling. Six different types of plastics are identified by a sensor with five wavelengths lasers. The new plastic recycling robots,...

Kawata, Satoshi; Inada, Koji; Hirao, Tadaetsu; Fujita, Toshihiro; Aubuchon, Roger

499

Calibration-free wavelength modulation spectroscopy applications from combustion to medical science  

Science Journals Connector (OSTI)

Calibration-free wavelength modulation spectroscopy was employed for measuring temperature and H2O concentration in combustion environments with a near-infrared DFB-laser,...

Qu, Zhechao; Schmidt, Florian

500

Protein crystallography with spallation neutrons: collecting and processing wavelength-resolved Laue protein data  

Science Journals Connector (OSTI)

Methods for collecting and processing wavelength-resolved Laue data at the protein crystallography station at Los Alamos Neutron Science Center have been developed.

Langan, P.

2004-03-17T23:59:59.000Z