National Library of Energy BETA

Sample records for wavelength electromagnetic radiation

  1. Electromagnetic radiation by gravitating bodies

    E-Print Network [OSTI]

    Iwo Bialynicki-Birula; Zofia Bialynicka-Birula

    2008-05-06

    Gravitating bodies in motion, regardless of their constitution, always produce electromagnetic radiation in the form of photon pairs. This phenomenon is an analog of the radiation caused by the motion of dielectric (or magnetic) bodies. It is a member of a wide class of phenomena named dynamical Casimir effects, and it may be viewed as the squeezing of the electromagnetic vacuum. Production of photon pairs is a purely quantum-mechanical effect. Unfortunately, as we show, the emitted radiation is extremely weak as compared to radiation produced by other mechanisms.

  2. Anisotropic conducting films for electromagnetic radiation applications

    DOE Patents [OSTI]

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  3. Electricity and short wavelength radiation generator

    DOE Patents [OSTI]

    George, E.V.

    1985-08-26

    Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.

  4. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  5. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  6. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  7. Testing black hole candidates with electromagnetic radiation

    E-Print Network [OSTI]

    Bambi, Cosimo

    2015-01-01

    Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but there is currently no direct observational evidence that the spacetime geometry around these objects is described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. In this paper, I review the state of the art of this research field, describing the possible approaches to test the Kerr metric with current and future observational facilities and discussing current constraints.

  8. Electromagnetic Radiation Hardness of Diamond Detectors

    E-Print Network [OSTI]

    T. Behnke; M. Doucet; N. Ghodbane; A. Imhof; C. Martinez; W. Zeuner

    2001-08-22

    The behavior of artificially grown CVD diamond films under intense electromagnetic radiation has been studied. The properties of irradiated diamond samples have been investigated using the method of thermally stimulated current and by studying their charge collection properties. Diamonds have been found to remain unaffected after doses of 6.8 MGy of 10 keV photons and 10 MGy of MeV-range photons. This observation makes diamond an attractive detector material for a calorimeter in the very forward region of the proposed TESLA detector.

  9. Coherent THz electromagnetic radiation emission as a shock wave...

    Office of Scientific and Technical Information (OSTI)

    Coherent THz electromagnetic radiation emission as a shock wave diagnostic and probe of ultrafast phase transformations Citation Details In-Document Search Title: Coherent THz...

  10. Electromagnetic Radiation REFERENCE: Remote Sensing of

    E-Print Network [OSTI]

    Gilbes, Fernando

    ;2 Electromagnetic Energy Interactions Energy recorded by remote sensing systems undergoes fundamental interactions that should be understood to properly interpret the remotely sensed data. For example, if the energy being nanosecond (10-9 s). The electromagnetic wave consists of two fluctuating fields--one electric and the other

  11. Use of Dynamical Undulator Mechanism to Produce Short Wavelength Radiation in Volume FEL (VFEL)

    E-Print Network [OSTI]

    V. G. Baryshevsky; K. G. Batrakov

    2002-09-06

    VFEL lasing in system with dynamical undulator is described. In this system radiation of long wavelength creates the undulator for lasing on shorter wavelength. Two diffraction gratings with different spatial periods form VFEL resonator. The grating with longer period pumps the resonator with long wavelength radiation to provide necessary amplitude of undulator field. The grating with shorter period makes mode selection for short wavelength radiation. Lasing of such a system in terahertz frequency range is discussed.

  12. Thesis Proposal Electromagnetic Ion Cyclotron (EMIC) Waves for Radiation Belt

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Thesis Proposal Electromagnetic Ion Cyclotron (EMIC) Waves for Radiation Belt Remediation particles of the Van Allen belts coming from cosmic rays, solar storms, high altitude nuclear explosions regions, as well as an obstacle to exploration and development of space technologies. The "Radiation Belt

  13. Electromagnetic Radiations as a Fluid Flow

    E-Print Network [OSTI]

    Daniele Funaro

    2009-11-25

    We combine Maxwell's equations with Eulers's equation, related to a velocity field of an immaterial fluid, where the density of mass is replaced by a charge density. We come out with a differential system able to describe a relevant quantity of electromagnetic phenomena, ranging from classical dipole waves to solitary wave-packets with compact support. The clue is the construction of an energy tensor summing up both the electromagnetic stress and a suitable mass tensor. With this right-hand side, explicit solutions of the full Einstein's equation are computed for a wide class of wave phenomena. Since our electromagnetic waves may behave and interact exactly as a material fluid, they can create vortex structures. We then explicitly analyze some vortex ring configurations and examine the possibility to build a model for the electron.

  14. Inferring black hole charge from backscattered electromagnetic radiation

    E-Print Network [OSTI]

    Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira

    2014-09-16

    We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.

  15. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    SciTech Connect (OSTI)

    Ziebell, L. F.; Yoon, P. H.; Simőes, F. J. R.; Pavan, J.; Gaelzer, R.; Instituto de Física e Matemática, UFPel, Pelotas, Rio Grande do Sul

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  16. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    DOE Patents [OSTI]

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  17. Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    E-Print Network [OSTI]

    California at Irvine, University of

    the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength limit of 4n2 50. Introduction Texturing of solar cell surfaces allows for absorption enhancement, owing

  18. An estimate of the error caused by the elongation of the wavelength in a focused beam in free-space electromagnetic parameters measurement

    SciTech Connect (OSTI)

    Zhang, Yunpeng; Li, En Guo, Gaofeng; Xu, Jiadi; Wang, Chao

    2014-09-15

    A pair of spot-focusing horn lens antenna is the key component in a free-space measurement system. The electromagnetic constitutive parameters of a planar sample are determined using transmitted and reflected electromagnetic beams. These parameters are obtained from the measured scattering parameters by the microwave network analyzer, thickness of the sample, and wavelength of a focused beam on the sample. Free-space techniques introduced by most papers consider the focused wavelength as the free-space wavelength. But in fact, the incident wave projected by a lens into the sample approximates a Gaussian beam, thus, there has an elongation of the wavelength in the focused beam and this elongation should be taken into consideration in dielectric and magnetic measurement. In this paper, elongation of the wavelength has been analyzed and measured. Measurement results show that the focused wavelength in the vicinity of the focus has an elongation of 1%–5% relative to the free-space wavelength. Elongation's influence on the measurement result of the permittivity and permeability has been investigated. Numerical analyses show that the elongation of the focused wavelength can cause the increase of the measured value of the permeability relative to traditionally measured value, but for the permittivity, it is affected by several parameters and may increase or decrease relative to traditionally measured value.

  19. Ground-state cooling of a trapped ion using long-wavelength radiation

    E-Print Network [OSTI]

    Weidt, S; Webster, S C; Standing, E D; Rodriguez, A; Webb, A E; Lekitsch, B; Hensinger, W K

    2015-01-01

    We demonstrate ground-state cooling of a trapped ion using long-wavelength radiation. This is a powerful tool for the implementation of quantum operations, where long-wavelength radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $\\overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)\\%. After preparing in the vibrational Fock state $\\left|n=0\\right\\rangle$, we implement sideband Rabi oscillations which last for more than 10 ms, demonstrating the long coherence time of our system. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

  20. Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation

    E-Print Network [OSTI]

    K. Lake; S. Weidt; J. Randall; E. Standing; S. C. Webster; W. K. Hensinger

    2014-11-13

    Applying a magnetic field gradient to a trapped ion allows long-wavelength microwave radiation to produce a mechanical force on the ion's motion when internal transitions are driven. We demonstrate such a coupling using a single trapped \\Yb{171}~ion, and use it to produce entanglement between the spin and motional state, an essential step towards using such a field gradient to implement multi-qubit operations.

  1. Electromagnetic Radiation in Hot QCD Matter: Rates, Electric Conductivity, Flavor Susceptibility and Diffusion

    E-Print Network [OSTI]

    Chang-Hwan Lee; Ismail Zahed

    2014-03-07

    We discuss the general features of the electromagnetic radiation from a thermal hadronic gas as constrained by chiral symmetry. The medium effects on the electromagnetic spectral functions and the partial restoration of chiral symmetry are quantified in terms of the pion densities. The results are compared with the electromagnetic radiation from a strongly interacting quark-gluon plasma in terms of the leading gluon condensate operators. We use the spectral functions as constrained by the emission rates to estimate the electric conductivity, the light flavor susceptibility and diffusion constant across the transition from the correlated hadronic gas to a strongly interacting quark-gluon plasma.

  2. Method and device for predicting wavelength dependent radiation influences in thermal systems

    DOE Patents [OSTI]

    Kee, Robert J. (864 Lucille St., Livermore, CA 94550); Ting, Aili (7329 Stonedale Dr., Pleasanton, CA 94558)

    1996-01-01

    A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.

  3. Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation J. Randall,1,2

    E-Print Network [OSTI]

    Hensinger, Winfried

    Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation S. Weidt,1 J. Randall,1,2 S June 2015) We demonstrate ground-state cooling of a trapped ion using radio-frequency (rf) radiation after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After

  4. Communications system using a mirror kept in outer space by electromagnetic radiation pressure

    DOE Patents [OSTI]

    Csonka, Paul L. (Eugene, OR)

    1981-01-01

    A method and system are described for transmitting electromagnetic radiation by using a communications mirror located between about 100 kilometers and about 200 kilometers above ground. The communications mirror is kept aloft above the atmosphere by the pressure of the electromagnetic radiation which it reflects, and which is beamed at the communications mirror by a suitably constructed transmitting antenna on the ground. The communications mirror will reflect communications, such as radio, radar, or television waves up to about 1,100 kilometers away when the communications mirror is located at a height of about 100 kilometers.

  5. Device for conversion of electromagnetic radiation into electrical current

    DOE Patents [OSTI]

    Blakeslee, A.E.; Mitchell, K.W.

    1980-03-25

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  6. Device for conversion of electromagnetic radiation into electrical current

    DOE Patents [OSTI]

    Blakeslee, A. Eugene (Golden, CO); Mitchell, Kim W. (Indian Hill, CO)

    1981-01-01

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  7. Modulational and filamentational instabilities of two electromagnetic pulses in a radiation background

    E-Print Network [OSTI]

    M. Marklund; P. K. Shukla; G. Brodin; L. Stenflo

    2004-10-21

    The nonlinear interaction, due to quantum electrodynamical (QED) effects, between two electromagnetic pulses and a radiation gas is investigated. It is found that the governing equations admit both modulational and filamentational instabilities. The instability growth rates are derived, and the results are discussed.

  8. Novel electromagnetic radiation in Left-Handed materials

    E-Print Network [OSTI]

    Lu, Jie, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    In this thesis, Cerenkov radiation of a moving charged particle inside a Left-Handed material (LHM) is studied through both theory and numerical simulations. A LHM is a material whose permittivity and permeability have ...

  9. Effect of laser radiation absorption in water and blood on the optimal wavelength for endovenous obliteration of varicose veins

    SciTech Connect (OSTI)

    Zhilin, K M; Minaev, V P [IRE-Polyus Research and Technology Association, Fryazino, Moscow Region (Russian Federation); Sokolov, Aleksandr L [Medical Rehabilitation Centre, Federal Agency for Health Care and Social Development, Moscow (Russian Federation)

    2009-08-31

    This work examines laser radiation absorption in water and blood at the wavelengths that are used in endovenous laser treatment (EVLT): 0.81-1.06, 1.32, 1.47, 1.5 and 1.56 {mu}m. It is shown that the best EVLT conditions are ensured by 1.56-{mu}m radiation. Analysis of published data suggests that even higher EVLT efficacy may be achieved at wavelengths of 1.68 and 1.7 {mu}m. (laser medicine)

  10. Radiative Reactions and Coherence Modeling in the High Altitude Electromagnetic Pulse

    E-Print Network [OSTI]

    Charles N. Vittitoe; Mario Rabinowitz

    2003-06-03

    A high altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10^4 V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self field effect. The Compton electron interaction with the self generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self generated electric field accounts for the energy flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  11. Electromagnetic radiation from a plasma slab during the development of Weibel instability

    SciTech Connect (OSTI)

    Vagin, K. Yu.; Romanov, A. Yu.; Uryupin, S. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2012-01-15

    Electromagnetic radiation from an anisotropic plasma slab formed by ionization of matter in the field of a high-power femtosecond pulse is studied. It is shown that the growth of initial field perturbations in the course of Weibel instability is accompanied by the generation of nonmonochromatic radiation with a characteristic frequency on the order of the instability growth rate. It is found that perturbations with characteristic scale lengths less than or on the order of the ratio of the speed of light to the Langmuir frequency are excited and radiated most efficiently, provided that the slab is thicker than this ratio.

  12. Understanding Electromagnetic Radiation from an Accelerated William E. Baylis

    E-Print Network [OSTI]

    Department, University of Windsor, Windsor, Ontario, Canada N9B 3P4 Abstract In spite of its importance is still a source of wonder if not bewilderment. The con- ceptual understanding of how radiation at the retarded time. The electric part of the boosted Coulomb field of a positive charge always points away from

  13. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOE Patents [OSTI]

    Bell, Zane W. (Oak Ridge, TN)

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  14. Apparatuses and method for converting electromagnetic radiation to direct current

    DOE Patents [OSTI]

    Kotter, Dale K; Novack, Steven D

    2014-09-30

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  15. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  16. Radiation, Matter and Energy What is light?

    E-Print Network [OSTI]

    Shirley, Yancy

    Radiation, Matter and Energy #12;What is light? #12;Light is an electromagnetic wave #12;Light is an electromagnetic wave #12;#12;Light is also a particle Photons: "pieces" of light, each with precise wavelength the visible spectrum, blue light has higher energy than red light Within the electromagnetic spectrum, X

  17. Gravitational Hertz experiment with electromagnetic radiation in a strong magnetic field

    E-Print Network [OSTI]

    N. I. Kolosnitsyn; V. N. Rudenko

    2015-04-24

    Brief review of principal ideas in respect of the high frequency gravitational radiation generated and detected in the laboratory condition is presented. Interaction of electro-magnetic and gravitational waves into a strong magnetic field is considered as a more promising variant of the laboratory GW-Hertz experiment. The formulae of the direct and inverse Gertsenshtein-Zeldovich effect are derived. Numerical estimates are given and a discussion of a possibility of observation of these effects in a lab is carried out.

  18. Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor

    DOE Patents [OSTI]

    Datskos, Panagiotis G. (Knoxville, TN); Rajic, Slobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN)

    2002-01-01

    A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

  19. Asymptotic Electromagnetic Fields in Models of Quantum-Mechanical Matter Interacting with the Quantized Radiation Field

    E-Print Network [OSTI]

    J. Froehlich; M. Griesemer; B. Schlein

    2000-09-27

    In models of (non-relativistic and pseudo-relativistic) electrons interacting with static nuclei and with the (ultraviolet-cutoff) quantized radiation field, the existence of asymptotic electromagnetic fields is established. Our results yield some mathematically rigorous understanding of Rayleigh scattering and of the phenomenon of relaxation of isolated atoms to their ground states. Our proofs are based on propagation estimates for electrons inspired by similar estimates known from $N$-body scattering theory.

  20. The Emission of Electromagnetic Radiation from Charges Accelerated by Gravitational Waves and its Astrophysical Implications

    E-Print Network [OSTI]

    Mitchell Revalski; Will Rhodes; Thulsi Wickramasinghe

    2015-02-03

    We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.

  1. Amplification of electromagnetic radiation by a nonequilibrium plasma unstable against the development of Weibel instability

    SciTech Connect (OSTI)

    Vagin, K. Yu.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.r [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2010-10-15

    The reflection of an electromagnetic pulse by a nonequilibrium plasma in which the development of Weibel instability is possible has been studied. An exponentially strong amplification of the reflected signal at the stage of instability development has been found to be possible. The amplification maximum takes place at a radiation frequency comparable to the instability growth rate. A nonequilibrium plasma is shown to be a generator of radiation even after the switch-off of the incident pulse. The described effect of amplification of the reflected signal points, in particular, to a new possibility in mastering the terahertz frequency band.

  2. Effect of Electromagnetic Pulse Transverse Inhomogeneity on the Ion Acceleration by Radiation Pressure

    E-Print Network [OSTI]

    Lezhnin, K V; Beskin, V S; Kando, M; Esirkepov, T Zh; Bulanov, S V

    2014-01-01

    In the ion acceleration by radiation pressure a transverse inhomogeneity of the electromagnetic pulse results in the displacement of the irradiated target in the off-axis direction limiting achievable ion energy. This effect is described analytically within the framework of the thin foil target model and with the particle-in-cell simulations showing that the maximum energy of accelerated ions decreases while the displacement from the axis of the target initial position increases. The results obtained can be applied for optimization of the ion acceleration by the laser radiation pressure with the mass limited targets.

  3. General description of electromagnetic radiation processes based on instantaneous charge acceleration in ''endpoints''

    SciTech Connect (OSTI)

    James, Clancy W.; Falcke, Heino; Huege, Tim; Ludwig, Marianne

    2011-11-15

    We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation - the 'endpoint formulation' - combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or 'endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent 'bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

  4. Radiative reactions and coherence modeling in the high-altitude electromagnetic pulse

    SciTech Connect (OSTI)

    Vittitoe, C.N.; Rabinowitz, M.

    1988-03-15

    A high-altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10/sup 4/ V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self-field effect. The Compton electron interaction with the self-generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self-generated electric field accounts for the energy-flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  5. "Millikan oil drops" as quantum transducers between electromagnetic and gravitational radiation

    E-Print Network [OSTI]

    Raymond Y. Chiao

    2007-02-25

    Pairs of Planck-mass-scale drops of superfluid helium coated by electrons (i.e., "Millikan oil drops"), when levitated in the presence of strong magnetic fields and at low temperatures, can be efficient quantum transducers between electromagnetic (EM) and gravitational (GR) radiation. A Hertz-like experiment, in which EM waves are converted at the source into GR waves, and then back-converted at the receiver from GR waves back into EM waves, should be practical to perform. This would open up observations of the gravity-wave analog of the Cosmic Microwave Background from the extremely early Big Bang, and also communications directly through the interior of the Earth.

  6. Reflection of electromagnetic radiation from plasma with an anisotropic electron velocity distribution

    SciTech Connect (OSTI)

    Vagin, K. Yu., E-mail: vagin@sci.lebedev.ru; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-08-15

    The reflection of a test electromagnetic pulse from the plasma formed as a result of tunnel ionization of atoms in the field of a circularly polarized high-power radiation pulse is analyzed using the kinetic approach to describe electron motion. It is shown that the reflected pulse is significantly amplified due to the development of Weibel instability. The amplification efficiency is determined by the maximum value of the instability growth rate, which depends on the degree of anisotropy of the photoelectron distribution function.

  7. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOE Patents [OSTI]

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  8. Nonlinear Electromagnetic Quasinormal Modes and Hawking Radiation of A Regular Black Hole with Magnetic Charge

    E-Print Network [OSTI]

    Jin Li; Kai Lin; Nan Yang

    2015-03-24

    Based on a regular exact black hole (BH) from nonlinear electrodynamics (NED) coupled to General Relativity, we investigate its stability of such BH through the Quasinormal Modes (QNMs) of electromagnetic (EM) field perturbation and its thermodynamics through Hawking radiation. In perturbation theory, we can deduce the effective potential from nonlinear EM field. The comparison of potential function between regular and RN BHs could predict their similar QNMs. The QNMs frequencies tell us the effect of magnetic charge $q$, overtone $n$, angular momentum number $l$ on the dynamic evolution of NLED EM field. Furthermore we also discuss the cases near extreme condition of such magnetically charged regular BH. The corresponding QNMs spectrum illuminates some special properties in the near-extreme cases. For the thermodynamics, we employ Hamilton-Jacobi method to calculate the near-horizon Hawking temperature of the regular BH and reveal the relationship between classical parameters of black hole and its quantum effect.

  9. On the spontaneous emission of electromagnetic radiation in the CSL model

    SciTech Connect (OSTI)

    Donadi, Sandro; Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste ; Deckert, Dirk-André; Bassi, Angelo; Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste

    2014-01-15

    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in Adler (2013) the formula for the emission rate, to first perturbative order, contains two terms: one is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In Adler (2013) it was shown that the unphysical term disappears when the noise is confined to a bounded region and the final particle’s state is a wave packet. Here we investigate the origin of this unphysical term and why it vanishes according to the previous prescription. We will see that perturbation theory is formally not valid in the large time limit since the effect of the noise accumulates continuously in time. Therefore either one performs an exact calculation (or at least in some way includes higher order terms) as we do here, or one finds a way to make a perturbative calculation meaningful, e.g., by confining the system as in Adler (2013). -- Highlights: •We compute the electromagnetic radiation emission in collapse models. •Under only the dipole approximation, the equations of motion are solved exactly. •The electromagnetic interaction must be treated exactly. •In order to obtain the correct emission rate the particle must be bounded.

  10. Ground-state cooling of a trapped ion using long-wavelength radiation

    E-Print Network [OSTI]

    S. Weidt; J. Randall; S. C. Webster; E. D. Standing; A. Rodriguez; A. E. Webb; B. Lekitsch; W. K. Hensinger

    2015-06-04

    We demonstrate ground-state cooling of a trapped ion using radio-frequency (RF) radiation. This is a powerful tool for the implementation of quantum operations, where RF or microwave radiation instead of lasers is used for motional quantum state engineering. We measure a mean phonon number of $\\overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)\\%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the n=0 and n=1 Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.

  11. Thin layer imaging process for microlithography using radiation at strongly attenuated wavelengths

    DOE Patents [OSTI]

    Wheeler, David R.

    2004-01-06

    A method for patterning of resist surfaces which is particularly advantageous for systems having low photon flux and highly energetic, strongly attenuated radiation. A thin imaging layer is created with uniform silicon distribution in a bilayer format. An image is formed by exposing selected regions of the silylated imaging layer to radiation. The radiation incident upon the silyliated resist material results in acid generation which either catalyzes cleavage of Si--O bonds to produce moieties that are volatile enough to be driven off in a post exposure bake step or produces a resist material where the exposed portions of the imaging layer are soluble in a basic solution, thereby desilylating the exposed areas of the imaging layer. The process is self limiting due to the limited quantity of silyl groups within each region of the pattern. Following the post exposure bake step, an etching step, generally an oxygen plasma etch, removes the resist material from the de-silylated areas of the imaging layer.

  12. Influence of electromagnetic radiation on the power balance in a radiofrequency microdischarge with a hollow needle electrode

    SciTech Connect (OSTI)

    Despax, B.; Pascal, O.; Gherardi, N.; Naude, N.; Belinger, A.; Pitchford, L. C.

    2012-10-01

    This study is focused on the power deposition in microplasma jet discharges generated by application of radiofrequency (RF) excitation to a hollow needle electrode. The plasma jet is initiated at atmospheric pressure in open air with a flow of helium through the electrode. We show that in this configuration, a significant part of the injected power is dissipated in electromagnetic radiation. Many recent works have demonstrated the potential of either cold plasma jets or of RF radiation for applications in medicine, and therefore a source that produces both a cold plasma jet and RF radiation could be of interest.

  13. Neutral interstellar hydrogen in the inner heliosphere under influence of wavelength-dependent solar radiation pressure

    E-Print Network [OSTI]

    S. Tarnopolski; M. Bzowski

    2008-04-21

    We study the influence of the non-flat shape of the solar Lyman-alpha line on the distribution of neutral interstellar hydrogen in the inner heliosphere and assess importance of this effect for interpretation of heliospheric in situ measurements. Based on available data, construct a model of evolution of the solar Lyman-alpha line profile with solar activity. Modify an existing test-particle code calculating distribution of neutral interstellar hydrogen in the inner heliosphere to take into account the dependence of radiation pressure on radial velocity. Discrepancies between the classical and Doppler models appear at ~ 5 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates density everywhere except a ~ 60 deg cone around the downwind direction, where a density deficit appears. The magnitude of discrepancies depends appreciably on the phase of solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~ 1 AU, as those planned for IBEX, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degree, which, when unaccounted for, would bring an error of a few degrees and a few km/s in determination of the bulk velocity vector at the termination shock. The Doppler correction is appreciable for in situ observations of neutral H populations and their derivatives performed a few AU from the Sun.

  14. Photo-degradation of PADC by UV radiation at various wavelengths K.C.C. Tse, F.M.F. Ng, K.N. Yu*

    E-Print Network [OSTI]

    Yu, Peter K.N.

    Photo-degradation of PADC by UV radiation at various wavelengths K.C.C. Tse, F.M.F. Ng, K.N. Yu diglycol carbonate; CR-39; Solid-state nuclear track detector; Ultraviolet; Photo-degradation 1, and there is limited information on the chemical properties of photo-oxida- tion. For example, Tidjani [2,3] found

  15. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    E-Print Network [OSTI]

    Huang, Yi

    The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength ...

  16. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    DOE Patents [OSTI]

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  17. Comparison of electromagnetic and gravitational radiation; what we can learn about each from the other

    E-Print Network [OSTI]

    Richard H. Price; John W. Belcher; David A. Nichols

    2012-12-19

    We compare the nature of electromagnetic fields and of gravitational fields in linearized general relativity. We carry out this comparison both mathematically and visually. In particular the "lines of force" visualizations of electromagnetism are contrasted with the recently introduced tendex/vortex eigenline technique for visualizing gravitational fields. Specific solutions, visualizations, and comparisons are given for an oscillating point quadrupole source. Among the similarities illustrated are the quasistatic nature of the near fields, the transverse 1/r nature of the far fields, and the interesting intermediate field structures connecting these two limiting forms. Among the differences illustrated are the meaning of field line motion, and of the flow of energy.

  18. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    SciTech Connect (OSTI)

    Astapenko, V. A., E-mail: astval@mail.ru [Moscow Institute of Physics and Technology (Russian Federation)

    2011-02-15

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of 'elastic' scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  19. Tailoring single-cycle electromagnetic pulses in the 2-9 THz frequency range using DAST/SiO2 multilayer structures pumped at Ti:sapphire wavelength

    E-Print Network [OSTI]

    Stepanov, Andrei G; Bonacina, Luigi; Wolf, Jean-Pierre; Hauri, Christoph P

    2014-01-01

    We present a numerical parametric study of single-cycle electromagnetic pulse generation in a DAST/SiO2 multilayer structure via collinear optical rectification of 800 nm femtosecond laser pulses. It is shown that modifications of the thicknesses of the DAST and SiO2 layers allow tuning of the average frequency of the generated THz pulses in the frequency range from 3 to 6 THz. The laser-to-THz energy conversion efficiency in the proposed structures is compared with that in a bulk DAST crystal and a quasi-phase-matching periodically poled DAST crystal and shows significant enhancement.

  20. VOLUME 87, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 17 DECEMBER 2001 Ion-Trap Quantum Logic Using Long-Wavelength Radiation

    E-Print Network [OSTI]

    Wunderlich, Christof

    radiation in the radiofrequency or microwave regime. DOI: 10.1103/PhysRevLett.87.257904 PACS numbers: 03 Logic Using Long-Wavelength Radiation Florian Mintert1 and Christof Wunderlich2,* 1 I. Institut fĂĽr radiation; the atom with mass m is trapped in a harmonic potential characterized by angular frequency vl

  1. Electromagnetic Wave Dynamics in

    E-Print Network [OSTI]

    Kaiser, Robin

    Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases Robin Kaiser and Mark D. Havey Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases #12;39 E xperimental developments permit in the transport proper- ties of electromagnetic radiation in strongly scattering random media. Even in weakly

  2. Experimental methodology for non-thermal effects of electromagnetic radiation on biologics

    E-Print Network [OSTI]

    Cox, Felicia C. A. I

    2006-01-01

    Appropriate equipment is needed for research on the effects of radio-frequency radiation from radio-frequency identification (RF-ID) systems on biological materials. In the present study, a complete test system comprising ...

  3. Electromagnetic wave propagation in a random distribution of C{sub 60} molecules

    SciTech Connect (OSTI)

    Moradi, Afshin

    2014-10-15

    Propagation of electromagnetic waves in a random distribution of C{sub 60} molecules are investigated, within the framework of the classical electrodynamics. Electronic excitations over the each C{sub 60} molecule surface are modeled by a spherical layer of electron gas represented by two interacting fluids, which takes into account the different nature of the ? and ? electrons. It is found that the present medium supports four modes of electromagnetic waves, where they can be divided into two groups: one group with shorter wavelength than the light waves of the same frequency and the other with longer wavelength than the free-space radiation.

  4. Electromagnetic radiation due to naked singularity formation in self-similar gravitational collapse

    SciTech Connect (OSTI)

    Mitsuda, Eiji; Yoshino, Hirotaka; Tomimatsu, Akira

    2005-04-15

    Dynamical evolution of test fields in background geometry with a naked singularity is an important problem relevant to the Cauchy horizon instability and the observational signatures different from black hole formation. In this paper we study electromagnetic perturbations generated by a given current distribution in collapsing matter under a spherically symmetric self-similar background. Using the Green's function method, we construct the formula to evaluate the outgoing energy flux observed at the future null infinity. The contributions from 'quasinormal' modes of the self-similar system as well as 'high-frequency' waves are clarified. We find a characteristic power-law time evolution of the outgoing energy flux which appears just before naked singularity formation and give the criteria as to whether or not the outgoing energy flux diverges at the future Cauchy horizon.

  5. Electromagnetic radiation due to naked singularity formation in self-similar gravitational collapse

    E-Print Network [OSTI]

    Eiji Mitsuda; Hirotaka Yoshino; Akira Tomimatsu

    2005-05-10

    Dynamical evolution of test fields in background geometry with a naked singularity is an important problem relevant to the Cauchy horizon instability and the observational signatures different from black hole formation. In this paper we study electromagnetic perturbations generated by a given current distribution in collapsing matter under a spherically symmetric self-similar background. Using the Green's function method, we construct the formula to evaluate the outgoing energy flux observed at the future null infinity. The contributions from "quasi-normal" modes of the self-similar system as well as "high-frequency" waves are clarified. We find a characteristic power-law time evolution of the outgoing energy flux which appears just before naked singularity formation, and give the criteria as to whether or not the outgoing energy flux diverges at the future Cauchy horizon.

  6. Second order equation of motion for electromagnetic radiation back-reaction

    E-Print Network [OSTI]

    Tamás Matolcsi; Tamás Fülöp; Mihály Weiner

    2014-10-26

    We take the viewpoint that the physically acceptable solutions of the Lorentz-Dirac equation for radiation back-reaction are actually determined by a second order equation of motion in such a way that the self-force can be given as a function of spacetime location and velocity. This self-force function turns out to be determined by a first order partial differential equation. In view of possible practical difficulty in solving that partial differential equation, we propose two iteration methods, too, for obtaining the self-force function. For two example systems, the second order equation of motion is obtained exactly in the nonrelativistic regime via each of the three methods, and the three results are found to coincide. We reveal that, for both systems, back-reaction induces a damping proportional to velocity and, in addition, it decreases the effect of the external force.

  7. Tunability enhanced electromagnetic wiggler

    DOE Patents [OSTI]

    Schlueter, Ross D. (Albany, CA); Deis, Gary A. (Livermore, CA)

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  8. Tunability enhanced electromagnetic wiggler

    DOE Patents [OSTI]

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  9. Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure

    E-Print Network [OSTI]

    S. Tarnopolski; M. Bzowski

    2008-12-04

    With the plethora of detailed results from heliospheric missions and at the advent of the first mission dedicated IBEX, we have entered the era of precision heliospheric studies. Interpretation of these data require precision modeling, with second-order effects quantitatively taken into account. We study the influence of the non-flat shape of the solar Ly-alpha line on the distribution of neutral interstellar H in the inner heliosphere. Based on available data, we (i) construct a model of evolution for the solar Ly-alpha line profile with solar activity, (ii) modify an existing test-particle code used to calculate the distribution of neutral interstellar H in the inner heliosphere so that it takes the dependence of radiation pressure on radial velocity into account, and (iii) compare the results of the old and new version. Discrepancies between the classical and Doppler models appear between ~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates the density everywhere except for a ~60-degr cone around the downwind direction, where a density deficit appears. The magnitude of the discrepancies appreciably depends on the phase of the solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~1 AU, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degrees, respectively, which, when unaccounted for, would introduce an error of a few km/s and degrees in determination of the magnitude and direction of the bulk velocity vector at the termination shock.

  10. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect (OSTI)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  11. Method of lightening radiation darkened optical elements

    DOE Patents [OSTI]

    Reich, Frederich R. (Richland, WA); Schwankoff, Albert R. (W. Richland, WA)

    1980-01-01

    A method of lightening a radiation-darkened optical element in wich visible optical energy or electromagnetic radiation having a wavelength in the range of from about 2000 to about 20,000 angstroms is directed into the radiation-darkened optical element; the method may be used to lighten radiation-darkened optical element in-situ during the use of the optical element to transmit data by electronically separating the optical energy from the optical output by frequency filtering, data cooling, or interlacing the optic energy between data intervals.

  12. Detection of electromagnetic waves using MEMS antennas

    SciTech Connect (OSTI)

    Lavrik, Nickolay V [ORNL] [ORNL; Tobin, [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Bowland, Landon T [ORNL] [ORNL

    2011-01-01

    We describe the design, fabrication and characterization of simple micromechanical structures that are capable of sensing static electric time varying electromagnetic fields. Time varying electric field sensing is usually achieved using an electromagnetic antenna and a receiver. However, these antenna-based approaches do not exhibit high sensitivity over a broad frequency (or wavelength) range. An important aspect of the present work is that, in contrast to traditional antennas, the dimensions of these micromechanical oscillators can be much smaller than the wavelength of the electromagnetic wave. We characterized the fabricated micromechanical oscillators by measuring their responses to time varying electric and electromagnetic fields.

  13. STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE

    E-Print Network [OSTI]

    STIMULATED ELECTROMAGNETIC EMISSIONS BY HIGH-FREQUENCY ELECTROMAGNETIC PUMPING OF THE IONOSPHERIC.S.A. Abstract. A high frequency electromagnetic pump wave transmitted into the ionospheric plasma from the ground can stimulate electromagnetic radiation with frequencies around that of the ionospher- ically

  14. Operation Castle. Project 7. 1. Electromagnetic radiation calibration, Pacific )roving ground. Report for March-May 1954

    SciTech Connect (OSTI)

    Olseon, M.H.

    1984-08-31

    A total of 17 stations, one close-in (320 km from Bikini and 23 km from Eniwetok) and the balance at distances, were operated for the electromagnetic experimental effort. Seventy-four sets of data were obtained from a possible total of 102. Of the remaining 28 sets, no data were obtained because equipment was not in operation, records were not readable, the alert notifications were not received, signals were not discernible, or equipment malfunctioned.

  15. Black Hole Thermodynamics and Electromagnetism

    E-Print Network [OSTI]

    Burra G. Sidharth

    2005-07-15

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

  16. A Challenge to Control Gravity via Applying Electromagnetic Low-Frequency Radiation - Theory and Proposed Model Experiments

    E-Print Network [OSTI]

    Julius Vanko; Miroslav Sukenik; Jozef Sima

    2007-05-29

    Including Vaidya metric into the model of Expansive Nondecelerative Universe allows to localize the energy of gravitational field. A term of effective gravitational range is introduced and classic Newton potential is substituted for Yukawa-type potential. It allows to allocate a typical frequency value to each gravitational field. Derived theoretical conclusions led us to investigate the effect of electromagnetic field with a precisely predetermined frequency and intensity on iron. We believe that under certain circumstances a decrease in iron gravitational mass should be observed. Two model experiments verifying the theoretical conclusions are proposed.

  17. 22.105 Electromagnetic Interactions, Fall 1998

    E-Print Network [OSTI]

    Hutchinson, I. H. (Ian H.)

    Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic ...

  18. Localization of fremions in rotating electromagnetic fields

    E-Print Network [OSTI]

    B. V. Gisin

    2015-06-15

    Parameters of localization are defined in the lab and rotating frame for solutions of the Dirac equation in the field of a traveling circularly polarized electromagnetic wave and constant magnetic field. The radius of localization is of the order of the electromagnetic wavelength and lesser.

  19. Electromagnetic Theory 1 /56 Electromagnetic Theory

    E-Print Network [OSTI]

    Bicknell, Geoff

    Electromagnetic Theory 1 /56 Electromagnetic Theory Summary: · Maxwell's equations · EM Potentials · Equations of motion of particles in electromagnetic fields · Green's functions · Lienard-Weichert potentials · Spectral distribution of electromagnetic energy from an arbitrarily moving charge #12;Electromagnetic

  20. The visible spectrum stretching from red to violet is only a small part of the electromagnetic spectrum.The whole spectrum extends from the shortest wavelength gamma rays to the

    E-Print Network [OSTI]

    ) size of a wavelength common name of wave 103 102 101 1 10­1 10­2 10­3 10­4 10­5 10­6 10­7 10­8 10­9 10 rays stadium house cricket ball full stop cell bacteria virus protein water molecule collided. In the infrared,the warm dust clouds where new stars are forming show up as the brightest parts

  1. The emission of electromagnetic radiation from a quantum system interacting with an external noise: A general result

    E-Print Network [OSTI]

    S. Donadi; A. Bassi

    2015-01-29

    We compute the spectrum of emitted radiation by a generic quantum system interacting with an external classic noise. Our motivation is to understand this phenomenon within the framework of collapse models. However the computation is general and applies practically to any situation where a quantum system interacts with a noise. The computation is carried out at a perturbative level. This poses problems concerning the correct way of performing the analysis, as repeatedly discussed in the literature. We will clarify also this issue.

  2. Short wavelength ion temperature gradient turbulence

    SciTech Connect (OSTI)

    Chowdhury, J.; Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar (India); Brunner, S.; Lapillonne, X.; Villard, L. [CRPP, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Jenko, F. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr. 2, D-85748 Garching (Germany)

    2012-10-15

    The ion temperature gradient (ITG) mode in the high wavenumber regime (k{sub y}{rho}{sub s}>1), referred to as short wavelength ion temperature gradient mode (SWITG) is studied using the nonlinear gyrokinetic electromagnetic code GENE. It is shown that, although the SWITG mode may be linearly more unstable than the standard long wavelength (k{sub y}{rho}{sub s}<1) ITG mode, nonlinearly its contribution to the total thermal ion heat transport is found to be low. We interpret this as resulting from an increased zonal flow shearing effect on the SWITG mode suppression.

  3. Electromagnetic fasteners

    DOE Patents [OSTI]

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  4. Electromagnetic fasteners

    DOE Patents [OSTI]

    Crane, Randolph W. (Idaho Falls, ID); Marts, Donna J. (Idaho Falls, ID)

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  5. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsAlyssa...

  6. Electromagnetic Geometry

    E-Print Network [OSTI]

    M. Novello; F. T. Falciano; E. Goulart

    2011-11-08

    We show that Maxwell's electromagnetism can be mapped into the Born-Infeld theory in a curved space-time, which depends only on the electromagnetic field in a specific way. This map is valid for any value of the two lorentz invariants $F$ and $G$ confirming that we have included all possible solutions of Maxwell's equations. Our result seems to show that specifying the dynamics and the space-time structure of a given theory can be viewed merely as a choice of representation to describe the physical system.

  7. An electromagnetic analog of gravitational wave memory

    E-Print Network [OSTI]

    Lydia Bieri; David Garfinkle

    2013-09-10

    We present an electromagnetic analog of gravitational wave memory. That is, we consider what change has occurred to a detector of electromagnetic radiation after the wave has passed. Rather than a distortion in the detector, as occurs in the gravitational wave case, we find a residual velocity (a "kick") to the charges in the detector. In analogy with the two types of gravitational wave memory ("ordinary" and "nonlinear") we find two types of electromagnetic kick.

  8. Advances in non-planar electromagnetic prototyping

    E-Print Network [OSTI]

    Ehrenberg, Isaac M

    2013-01-01

    The advent of metamaterials has introduced new ways to manipulate how electromagnetic waves reflect, refract and radiate in systems where the range of available material properties now includes negative permittivity, ...

  9. Use of layer strains in strained-layer superlattices to make devices for operation in new wavelength ranges, E. G. , InAsSb at 8 to 12. mu. m. [InAs/sub 1-x/Sb/sub x/

    DOE Patents [OSTI]

    Osbourn, G.C.

    1983-10-06

    An intrinsic semiconductor electro-optical device comprises a p-n junction intrinsically responsive, when cooled, to electromagnetic radiation in the wavelength range of 8 to 12 ..mu..m. This radiation responsive p-n junction comprises a strained-layer superlattice (SLS) of alternating layers of two different III-V semiconductors. The lattice constants of the two semiconductors are mismatched, whereby a total strain is imposed on each pair of alternating semiconductor layers in the SLS structure, the proportion of the total strain which acts on each layer of the pair being proportional to the ratio of the layer thicknesses of each layer in the pair.

  10. Polarization-independent optical wavelength filter for channel dropping applications

    DOE Patents [OSTI]

    Deri, R.J.; Patterson, F.

    1996-05-07

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required. 14 figs.

  11. Polarization-independent optical wavelength filter for channel dropping applications

    DOE Patents [OSTI]

    Deri, Robert J. (Pleasanton, CA); Patterson, Frank (Livermore, CA)

    1996-01-01

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.

  12. Electromagnetics, 26:335, 2006 Copyright Taylor & Francis Group, LLC

    E-Print Network [OSTI]

    Anlage, Steven

    Electromagnetics, 26:3­35, 2006 Copyright © Taylor & Francis Group, LLC ISSN: 0272-6343 print/1532 the statistical properties of the impedance (Z) and scattering (S) matrices of open electromagnetic cavities. Introduction The problem of the coupling of electromagnetic radiation in and out of structures is a general one

  13. Electromagnetic Reciprocity.

    SciTech Connect (OSTI)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.

  14. Systematic wavelength selection for improved multivariate spectral analysis

    DOE Patents [OSTI]

    Thomas, Edward V. (2828 Georgia NE., Albuquerque, NM 87110); Robinson, Mark R. (1603 Solano NE., Albuquerque, NM 87110); Haaland, David M. (809 Richmond Dr. SE., Albuquerque, NM 87106)

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  15. Space-time Curvature of Classical Electromagnetism

    E-Print Network [OSTI]

    R. W. M. Woodside

    2004-10-08

    The space-time curvature carried by electromagnetic fields is discovered and a new unification of geometry and electromagnetism is found. Curvature is invariant under charge reversal symmetry. Electromagnetic field equations are examined with De Rham co homology theory. Radiative electromagnetic fields must be exact and co exact to preclude unobserved massless topological charges. Weyl's conformal tensor, here called ``the gravitational field'', is decomposed into a divergence-free non-local piece with support everywhere and a local piece with the same support as the matter. By tuning a local gravitational field to a Maxwell field the electromagnetic field's local gravitational field is discovered. This gravitational field carries the electromagnetic field's polarization or phase information, unlike Maxwell's stress-energy tensor. The unification assumes Einstein's equations and derives Maxwell's equations from curvature assumptions. Gravity forbids magnetic monopoles! This unification is stronger than the Einstein-Maxwell equations alone, as those equations must produce the electromagnetic field's local gravitational field and not just any conformal tensor. Charged black holes are examples. Curvature of radiative null electromagnetic fields is characterized.

  16. Hot spot generation in energetic materials created by long-wavelength...

    Office of Scientific and Technical Information (OSTI)

    Hot spot generation in energetic materials created by long-wavelength infrared radiation Citation Details In-Document Search Title: Hot spot generation in energetic materials...

  17. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  18. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, Peter A. (Arvada, CO)

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

  19. Abstract--In this paper, we study the limitations imposed by the laws of electromagnetism on achievable MIMO channel

    E-Print Network [OSTI]

    Loyka, Sergey

    Abstract-- In this paper, we study the limitations imposed by the laws of electromagnetism electromagnetic wave combined with Nyquist sampling theorem in the spatial domain, we show that the laws of electromagnetism limit the minimum antenna spacing to half a wavelength, /2 , (in the case of 1-D antenna apertures

  20. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  1. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  2. The Impact of Solar Particle Events on Radiation Risk for Human Explorers of Mars

    E-Print Network [OSTI]

    Gorguinpour, Camron Saul

    2010-01-01

    of Radiation Interaction and Matter and Detection. Worldof Radiation Interaction and Matter and Detection. WorldDetection Efficiency of Charged Particles and Electromagnetic radiation

  3. Electromagnetic partner of the gravitational signal during accretion onto black holes

    E-Print Network [OSTI]

    Juan Carlos Degollado; Victor Gualajara; Claudia Moreno; Darío Núńez

    2014-10-21

    We investigate the generation of electromagnetic and gravitational radiation in the vicinity of a perturbed Schwarzschild black hole. The gravitational perturbations and the electromagnetic field are studied by solving the Teukolsky master equation with sources, which we take to be locally charged, radially infalling, matter. Our results show that, in addition to the gravitational wave generated as the matter falls into the black hole, there is also a burst of electromagnetic radiation. This electromagnetic field has a characteristic set of quasinormal frequencies, and the gravitational radiation has the quasinormal frequencies of a Schwarzschild black hole. This scenario allows us to compare the gravitational and electromagnetic signals that are generated by a common source.

  4. On the estimation of the electromagnetic, elastodynamic and piezoelectric properties of homogenized composite materials 

    E-Print Network [OSTI]

    Duncan, Andrew J.

    2009-01-01

    The work in this thesis concerns the estimation of the electromagnetic, elastodynamic and piezoelectric properties of homogenized composite materials (HCMs). A composite may be considered homogeneous if wavelengths are ...

  5. 22.51 Interaction of Radiation with Matter, Spring 2003

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    Basic principles of interaction of electromagnetic radiation, thermal neutrons, and charged particles with matter. Introduces classical electrodynamics, quantum theory of radiation, time-dependent perturbation theory, ...

  6. Electromagnetic properties of neutrinos

    E-Print Network [OSTI]

    Carlo Giunti; Alexander Studenikin

    2010-06-08

    A short review on electromagnetic properties of neutrinos is presented. In spite of many efforts in the theoretical and experimental studies of neutrino electromagnetic properties, they still remain one of the main puzzles related to neutrinos.

  7. Investigation of electromagnetic welding

    E-Print Network [OSTI]

    Pressl, Daniel G. (Daniel Gerd)

    2009-01-01

    We propose several methodologies to study and optimize the electromagnetic process for Electromagnetic Forming (EMF) and Welding (EMW), thereby lowering the necessary process energy up to a factor of three and lengthening ...

  8. The electromagnetic spike solutions

    E-Print Network [OSTI]

    Ernesto Nungesser; Woei Chet Lim

    2013-09-28

    The aim of this paper is to use the existing relation between polarized electromagnetic Gowdy spacetimes and vacuum Gowdy spacetimes to find explicit solutions for electromagnetic spikes by a procedure which has been developed by one of the authors for gravitational spikes. We present new inhomogeneous solutions which we call the EME and MEM electromagnetic spike solutions.

  9. Electromagnetic Abdulaziz Hanif

    E-Print Network [OSTI]

    Masoudi, Husain M.

    Electromagnetic Propulsion Abdulaziz Hanif Electrical Engineering Department King Fahd University of spacecraft, which would be jolted through space by electromagnets, could take us farther than any of these other methods. When cooled to extremely low temperatures, electromagnets demonstrate an unusual behavior

  10. Electromagnetic Measurements at RHIC

    E-Print Network [OSTI]

    Hamagaki, Hideki

    Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study University of Tokyo #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki 2 Prologue · EM probe and where they are produced; #12;2/10/2005 "Electromagnetic measurements at RHIC"@ICPAQGP 05 Hideki Hamagaki

  11. Electromagnetic Measurements at RHIC

    E-Print Network [OSTI]

    Hamagaki, Hideki

    Electromagnetic Measurements at RHIC Hideki Hamagaki Center for Nuclear Study Graduate School of Science the University of Tokyo #12;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki;2006/06/29 "Electromagnetic measurements at RHIC"@ATHIC 2006 Hideki Hamagaki 3 Prologue ­ scope of EM measurements · EM

  12. Detection of electromagnetic waves using charged MEMS structures

    SciTech Connect (OSTI)

    Datskos, Panos G [ORNL; Lavrik, Nickolay V [ORNL; Tobin, Jacob D [ORNL; Bowland, Landon T [ORNL

    2012-01-01

    We describe micromechanical structures that are capable of sensing both electrostatic fields and electromagnetic fields over a wide frequency range. Typically, sensing of electromagnetic waves is achieved with electrically conducting antennas, which despite the many advantages do not exhibit high sensitivity over a broad frequency range. An important aspect of our present work is that, in contrast to traditional antennas, the dimensions of micromechanical oscillators sensitive to electromagnetic waves can be much smaller than the wavelength. We characterized the micromechanical oscillators and measured responses to electric fields and estimated the performance limits by evaluating the signal-to-noise ratio theoretically and experimentally.

  13. Method for radiation detection and measurement

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1993-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength.

  14. 8.07 Electromagnetism II, Fall 2002

    E-Print Network [OSTI]

    Zwiebach, Barton

    Survey of basic electromagnetic phenomena: electrostatics, magnetostatics; electromagnetic properties of matter. Time-dependent electromagnetic fields and Maxwell's equations. Electromagnetic waves, emission, absorption, ...

  15. Interactions between Electromagnetic Fields and Biological Tissues: Questions, Some Answers and Future Trends.

    E-Print Network [OSTI]

    Poignard, Clair

    , the governments have imposed some limitations to the authorized radiated fields by the power systems. It has been a more acceptable limit to these radiated fields. On the other hand, electromagnetic fields are used is obtained by submitting locally the patient to a radiofrequency (RF) electromagnetic field. The focalization

  16. Modulation compression for short wavelength harmonic generation

    E-Print Network [OSTI]

    Qiang, J.

    2010-01-01

    Wavelength Harmonic Generation Ji Qiang Lawrence Berkeleyform a basis for fourth generation light source. Currently,e?ciency was proposed for generation of short wavelength

  17. NISTHB 150-11 Electromagnetic

    E-Print Network [OSTI]

    NISTHB 150-11 NVLAP Electromagnetic Compatibility and Telecommunications Bethany Hackett Bradley. #12;NISTHB 150-11 NVLAP Electromagnetic Compatibility and Telecommunications Bethany Hackett Bradley Programs Dennis Camell Electromagnetics Division Physical Measurement Laboratory http://dx.doi.org/10

  18. Electro-optical SLS devices for operating at new wavelength ranges

    DOE Patents [OSTI]

    Osbourn, Gordon C. (Albuquerque, NM)

    1986-01-01

    An intrinsic semiconductor electro-optical device includes a p-n junction intrinsically responsive, when cooled, to electromagnetic radiation in the wavelength range of 8-12 um. The junction consists of a strained-layer superlattice of alternating layers of two different III-V semiconductors having mismatched lattice constants when in bulk form. A first set of layers is either InAs.sub.1-x Sb.sub.x (where x is aobut 0.5 to 0.7) or In.sub.1-x Ga.sub.x As.sub.1-y Sb.sub.y (where x and y are chosen such that the bulk bandgap of the resulting layer is about the same as the minimum bandgap in the In.sub.1-x Ga.sub.x As.sub.1-y Sb.sub.y family). The second set of layers has a lattice constant larger than the lattice constant of the layers in the first set.

  19. Near-field thermal electromagnetic transport

    E-Print Network [OSTI]

    Edalatpour, Sheila

    2015-01-01

    A general near-field thermal electromagnetic transport formalism that is independent of the size, shape and number of heat sources is derived. The formalism is based on fluctuational electrodynamics, where fluctuating currents due to thermal agitation are added into Maxwell's curl equations, and is thus valid for heat sources in local thermodynamic equilibrium. Using a volume integral formulation, it is shown that the proposed formalism is a generalization of the classical electromagnetic scattering framework in which thermal emission is implicitly assumed to be negligible. The near-field thermal electromagnetic transport formalism is afterwards applied to a problem involving three spheres exchanging thermal radiation, where all multipolar interactions are taken into account. Using the thermal discrete dipole approximation, it is shown that depending on the dielectric function, the presence of a third sphere slightly affects the spatial distribution of power absorbed compared to the two-sphere case. The forma...

  20. Inter-network regions of the Sun at millimetre wavelengths

    E-Print Network [OSTI]

    S. Wedemeyer-Boehm; H. -G. Ludwig; M. Steffen; J. Leenaarts; B. Freytag

    2007-05-18

    The continuum intensity at wavelengths around 1 mm provides an excellent way to probe the solar chromosphere. Future high-resolution millimetre arrays, such as the Atacama Large Millimeter Array (ALMA), will thus produce valuable input for the ongoing controversy on the thermal structure and the dynamics of this layer. Synthetic brightness temperature maps are calculated on basis of three-dimensional radiation (magneto-)hydrodynamic (MHD) simulations. While the millimetre continuum at 0.3mm originates mainly from the upper photosphere, the longer wavelengths considered here map the low and middle chromosphere. The effective formation height increases generally with wavelength and also from disk-centre towards the solar limb. The average intensity contribution functions are usually rather broad and in some cases they are even double-peaked as there are contributions from hot shock waves and cool post-shock regions in the model chromosphere. Taking into account the deviations from ionisation equilibrium for hydrogen gives a less strong variation of the electron density and with it of the optical depth. The result is a narrower formation height range. The average brightness temperature increases with wavelength and towards the limb. The relative contrast depends on wavelength in the same way as the average intensity but decreases towards the limb. The dependence of the brightness temperature distribution on wavelength and disk-position can be explained with the differences in formation height and the variation of temperature fluctuations with height in the model atmospheres.

  1. Apparatus And Methods For Launching And Receiving A Broad Wavelength Range Source

    DOE Patents [OSTI]

    Von Drasek, William A. (Oak Forest, IL); Sonnenfroh, David (North Andover, MA); Allen, Mark G. (Boston, MA); Stafford-Evans, Joy (Andover, MA)

    2006-02-28

    An apparatus and method for simultaneous detection of N gas species through laser radiation attenuation techniques is disclosed. Each of the N species has a spectral absorption band. N laser sources operate at a wavelength ?N in a spectral absorption band separated by the cutoff wavelength for single-mode transmission. Each laser source corresponds to a gas species and transmits radiation through an optical fiber constructed and arranged to provide single-mode transmission with minimal power loss.

  2. Laser beat wave excitation of terahertz radiation in a plasma slab

    SciTech Connect (OSTI)

    Chauhan, Santosh; Parashar, Jetendra

    2014-10-15

    Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasma boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ?10{sup 17?}W/cm{sup 2} at 1??m, one obtains the THz intensity ?1?GW/cm{sup 2} at 3 THz radiation frequency.

  3. Detection of electromagnetic radiation using micromechanical...

    Office of Scientific and Technical Information (OSTI)

    Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for pages...

  4. Detection of electromagnetic radiation using micromechanical multiple

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnectlaser-solid interactionCrystalDesigning(Journal Article) |quantum

  5. Detection of electromagnetic radiation using micromechanical multiple

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnectlaser-solid interactionCrystalDesigning(Journal Article)

  6. Electromagnetic or other directed energy pulse launcher

    DOE Patents [OSTI]

    Ziolkowski, Richard W. (Livermore, CA)

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  7. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, Stephen B. (Pittsburgh, PA)

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  8. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  9. Microslots : scalable electromagnetic instrumentation

    E-Print Network [OSTI]

    Maguire, Yael G., 1975-

    2004-01-01

    This thesis explores spin manipulation, fabrication techniques and boundary conditions of electromagnetism to bridge the macroscopic and microscopic worlds of biology, chemistry and electronics. This work is centered around ...

  10. Purely electromagnetic spacetimes

    E-Print Network [OSTI]

    B. V. Ivanov

    2007-12-15

    Electrovacuum solutions devoid of usual mass sources are classified in the case of one, two and three commuting Killing vectors. Three branches of solutions exist. Electromagnetically induced mass terms appear in some of them.

  11. Electromagnetic rotational actuation.

    SciTech Connect (OSTI)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  12. Cosmological Surveys at Submillimetre Wavelengths

    E-Print Network [OSTI]

    David H. Hughes

    2000-03-28

    One of the major goals of observational cosmology is to acquire empirical data that has the diagnostic power to develop the theoretical modelling of the high-redshift universe, ultimately leading to an accurate understanding of the processes by which galaxies and clusters form and subsequently evolve. New bolometer arrays operating on the world's largest submillimetre telescopes now offer a unique view of the high-redshift universe through unbiassed surveys with unprecedented sensitivity. For brevity, except when there is a need to be more specific, the FIR to millimetre wavelength regime (100um 1, and determine their contribution to the submm extragalactic background. The field of observational cosmology will be revolutionized during the course of the next 10 years due to the variety of powerful new ground-based, airborne and satellite facilities, particularly those operating at FIR to millimetre wavelengths. This review summarises the results from the recent blank-field submm surveys, and describes the future observations that will provide accurate source-counts over wider ranges of wavelength and flux-density, constrain the spectral energy distributions of the submm-selected galaxies and accurately constrain the redshift distribution and submm luminosity function by removing the current ambiguities in the optical, IR and radio counterparts.

  13. Solar Radiation and Asteroidal Motion

    E-Print Network [OSTI]

    Jozef Klacka

    2000-09-07

    Effects of solar wind and solar electromagnetic radiation on motion of asteroids are discussed. The results complete the statements presented in Vokrouhlick\\'{y} and Milani (2000). As for the effect of electromagnetic radiation, the complete equation of motion is presented to the first order in $v/c$ -- the shape of asteroid (spherical body is explicitly presented) and surface distribution of albedo should be taken into account. Optical quantities must be calculated in proper frame of reference.

  14. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Schertz, William W. (Batavia, IL)

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  15. Passive-solar directional-radiating cooling system

    DOE Patents [OSTI]

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  16. Appendix G. Radiation Appendix G. Radiation

    E-Print Network [OSTI]

    Pennycook, Steve

    energy, is energy in the form of waves or particles moving through space. Visi- ble light, heat, radio in the form of electromagnetic waves. Examples include gamma rays, ultraviolet light, and radio waves waves, and alpha particles are examples of radiation. When people feel warmth from sunlight

  17. On Storage Rings for Short Wavelength FELs

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2010-01-01

    for a hypothetical 144 m long storage ring optimized for FELin the Proceedings On Storage Rings for Short WavelengthLBL-28483 ESG Note-92 ON STORAGE RINGS FOR SHORT WAVELENGTH

  18. Light Transmission through Sub-Wavelength Apertures

    E-Print Network [OSTI]

    Visser, Taco D.

    Light Transmission through Sub-Wavelength Apertures #12;#12;VRIJE UNIVERSITEIT Light Transmission Transmission through a Single Sub-wavelength Slit 59 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 The configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3 Transmission

  19. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory FellowsStationarytdheinrWaterWavelength

  20. Electromagnetic Siegert states for periodic dielectric structures

    E-Print Network [OSTI]

    Friends R. Ndangali; Sergei V. Shabanov

    2011-08-09

    The formalism of Siegert states to describe the resonant scattering in quantum theory is extended to the resonant scattering of electromagnetic waves on periodic dielectric arrays. The excitation of electromagnetic Siegert states by an incident wave packet and their decay is studied. The formalism is applied to develop a theory of coupled electromagnetic resonances arising in the electromagnetic scattering problem for two such arrays separated by a distance 2h (or, generally, when the physical properties of the scattering array depend on a real coupling parameter h). Analytic properties of Siegert states as functions of the coupling parameter h are established by the Regular Perturbation Theorem which is an extension the Kato-Rellich theorem to the present case. By means of this theorem, it is proved that if the scattering structure admits a bound state in the radiation continuum at a certain value of the coupling parameter h, then there always exist regions within the structure in which the near field can be amplified as much as desired by adjusting the value of h. This establishes a rather general mechanism to control and amplify optical nonlinear effects in periodically structured planar structures possessing a nonlinear dielectric susceptibility.

  1. Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program. II: Wavelength Parallelization

    E-Print Network [OSTI]

    E. Baron; Peter H. Hauschildt

    1997-09-24

    We describe an important addition to the parallel implementation of our generalized NLTE stellar atmosphere and radiative transfer computer program PHOENIX. In a previous paper in this series we described data and task parallel algorithms we have developed for radiative transfer, spectral line opacity, and NLTE opacity and rate calculations. These algorithms divided the work spatially or by spectral lines, that is distributing the radial zones, individual spectral lines, or characteristic rays among different processors and employ, in addition task parallelism for logically independent functions (such as atomic and molecular line opacities). For finite, monotonic velocity fields, the radiative transfer equation is an initial value problem in wavelength, and hence each wavelength point depends upon the previous one. However, for sophisticated NLTE models of both static and moving atmospheres needed to accurately describe, e.g., novae and supernovae, the number of wavelength points is very large (200,000--300,000) and hence parallelization over wavelength can lead both to considerable speedup in calculation time and the ability to make use of the aggregate memory available on massively parallel supercomputers. Here, we describe an implementation of a pipelined design for the wavelength parallelization of PHOENIX, where the necessary data from the processor working on a previous wavelength point is sent to the processor working on the succeeding wavelength point as soon as it is known. Our implementation uses a MIMD design based on a relatively small number of standard MPI library calls and is fully portable between serial and parallel computers.

  2. Electromagnetically Induced Flows Michiel de Reus

    E-Print Network [OSTI]

    Vuik, Kees

    Electromagnetically Induced Flows in Water Michiel de Reus 8 maart 2013 () Electromagnetically Conclusion and future research () Electromagnetically Induced Flows 2 / 56 #12;1 Introduction 2 Maxwell Navier Stokes equations 5 Simulations 6 Conclusion and future research () Electromagnetically Induced

  3. 8.07 Electromagnetism II, Fall 2005

    E-Print Network [OSTI]

    Bertschinger, Edmund

    This course is the second in a series on Electromagnetism beginning with Electromagnetism I (8.02 or 8.022). It is a survey of basic electromagnetic phenomena: electrostatics; magnetostatics; electromagnetic properties of ...

  4. Electromagnetism and Gravitation

    E-Print Network [OSTI]

    Kenneth Dalton

    1997-03-10

    The classical concept of "mass density" is not fundamental to the quantum theory of matter. Therefore, mass density cannot be the source of gravitation. Here, we treat electromagnetic energy, momentum, and stress as its source. The resulting theory predicts that the gravitational potential near any charged elementary particle is many orders of magnitude greater than the Newtonian value.

  5. Electromagnetic pulsar spindown

    E-Print Network [OSTI]

    I. Contopoulos

    2007-01-10

    We evaluate the result of the recent pioneering numerical simulations in Spitkovsky~2006 on the spindown of an oblique relativistic magnetic dipole rotator. Our discussion is based on our experience from two idealized cases, that of an aligned dipole rotator, and that of an oblique split-monopole rotator. We conclude that the issue of electromagnetic pulsar spindown may not have been resolved yet.

  6. Laser under ultrastrong electromagnetic interaction with matter

    E-Print Network [OSTI]

    Motoaki Bamba; Tetsuo Ogawa

    2015-05-18

    The conventional picture of the light amplification by stimulated emission of radiation (laser) is broken under the ultrastrong interaction between the electromagnetic fields and matter, and distinct dynamics of the electric field and of the magnetic one make the "laser" qualitatively different from the conventional laser, which has been described simply without the distinction. The "laser" in the ultrastrong regime can show a rich variety of behaviors with spontaneous appearance of coherence. We found that the "laser" generally accompanies odd-order harmonics of the electromagnetic fields both inside and outside the cavity and a synchronization with an oscillation of atomic population. A bistability is also demonstrated in a simple model under two-level and single-mode approximations.

  7. Electromagnetic Interrogation Techniques Damage Detection

    E-Print Network [OSTI]

    Electromagnetic Interrogation Techniques for Damage Detection H. T. Banks and M. L. Joyner Center.P. Winfree Nasa Langley Research Center Hampton, VA Plenary Lecture, Electromagnetic Nondestructive Evaluation 2001 (ENDE 2001), Kobe, Japan, May 18-19, 20001 #12;Electromagnetic Interrogation Techniques

  8. Electromagnetic structure of light nuclei

    E-Print Network [OSTI]

    Saori Pastore

    2015-08-28

    The present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A $\\le$ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  9. Electromagnetic Interrogation Techniques Damage Detection

    E-Print Network [OSTI]

    Electromagnetic Interrogation Techniques for Damage Detection H. T. Banks #3; and M. L. Joyner Wincheski and W.P. Winfree Nasa Langley Research Center Hampton, VA #3; Plenary Lecture, Electromagnetic Nondestructive Evaluation 2001 (ENDE 2001), Kobe, Japan, May 18­19, 20001 #12; Electromagnetic Interrogation

  10. K -> pi pi Phenomenology in the Presence of Electromagnetism

    E-Print Network [OSTI]

    Vincenzo Cirigliano; John F. Donoghue; Eugene Golowich

    2000-08-28

    We describe the influence of electromagnetism on the phenomenology of K -> pi pi decays. This is required because the present data were analyzed without inclusion of electromagnetic radiative corrections, and hence contain several ambiguities and uncertainties which we describe in detail. Our presentation includes a full description of the infrared effects needed for a new experimental analysis. It also describes the general treatment of final state interaction phases, needed because Watson's theorem is no longer valid in the presence of electromagnetism. The phase of the isospin-two amplitude A_2 may be modified by 50% -> 100%. We provide a tentative analysis using present data in order to illustrate the sensitivity to electromagnetic effects, and also discuss how the standard treatment of epsilon'/epsilon is modified.

  11. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    E-Print Network [OSTI]

    Fawley, William

    2010-01-01

    FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTEDrest frame), the red-shifted FEL radiation and blue-shiftedper- mit direct study of FEL problems for which the eikonal

  12. Short wavelength limits of current shot noise suppression

    SciTech Connect (OSTI)

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  13. Wavelength-resonant surface-emitting semiconductor laser

    DOE Patents [OSTI]

    Brueck, Steven R. J. (Albuquerque, NM); Schaus, Christian F. (Albuquerque, NM); Osinski, Marek A. (Albuquerque, NM); McInerney, John G. (Cedar Crest, NM); Raja, M. Yasin A. (Albuquerque, NM); Brennan, Thomas M. (Albuquerque, NM); Hammons, Burrell E. (Tijeras, NM)

    1989-01-01

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  14. Semiconductor light source with electrically tunable emission wavelength

    DOE Patents [OSTI]

    Belenky, Gregory (Port Jefferson, NY); Bruno, John D. (Bowie, MD); Kisin, Mikhail V. (Centereach, NY); Luryi, Serge (Setauket, NY); Shterengas, Leon (Centereach, NY); Suchalkin, Sergey (Centereach, NY); Tober, Richard L. (Elkridge, MD)

    2011-01-25

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  15. Electromagnetic source localization with finite set of frequency measurements

    E-Print Network [OSTI]

    Abdul Wahab; Amer Rasheed; Rab Nawaz; Saman Anjum

    2014-09-16

    A phase conjugation algorithm for localizing an extended radiating electromagnetic source from boundary measurements of the electric field is presented. Measurements are taken over a finite number of frequencies. The artifacts related to the finite frequency data are tackled with $l_1-$regularization blended with the fast iterative shrinkage-thresholding algorithm with backtracking of Beck & Teboulle.

  16. Active absorption of electromagnetic pulses in a cavity

    E-Print Network [OSTI]

    Horsley, S A R; Tyc, T; Philbin, T G

    2014-01-01

    We show that a pulse of electromagnetic radiation launched into a cavity can be completely absorbed into an infinitesimal region of space, provided one has a high degree of control over the current flowing through this region. We work out explicit examples of this effect in a cubic cavity and a cylindrical one, and experimentally demonstrate the effect in the microwave regime.

  17. Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation

    E-Print Network [OSTI]

    Asner, D.?M.

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Although first derived in 1904, cyclotron radiation from a single electron orbiting in a magnetic field has never been observed ...

  18. Quasi light fields: Extending the light field to coherent radiation

    E-Print Network [OSTI]

    Accardi, Anthony J.

    Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of ...

  19. Electromagnetically Induced Entanglement

    E-Print Network [OSTI]

    Xihua Yang; Min Xiao

    2015-05-18

    We present a novel quantum phenomenon named electromagnetically induced entanglement in the conventional Lambda-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the pump and probe fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing.

  20. Wavelength-doubling optical parametric oscillator

    DOE Patents [OSTI]

    Armstrong, Darrell J. (Albuquerque, NM); Smith, Arlee V. (Albuquerque, NM)

    2007-07-24

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  1. Impact of surface inhomogeneity on solar radiative transfer under overcast conditions

    E-Print Network [OSTI]

    Zeng, Ning

    by radiative transfer models founded on the classical electromagnetic and quantum mechanics theories. While the fundamentals of radiative transfer theories are well-established, radiative transfer models used to describe

  2. Gravitation and Electromagnetism

    E-Print Network [OSTI]

    B. G. Sidharth

    2001-06-16

    The realms of gravitation, belonging to Classical Physics, and Electromagnetism, belonging to the Theory of the Electron and Quantum Mechanics have remained apart as two separate pillars, inspite of a century of effort by Physicists to reconcile them. In this paper it is argued that if we extend ideas of Classical spacetime to include in addition to non integrability non commutavity also, then such a reconcilation is possible.

  3. Quaternion Gravi-Electromagnetism

    E-Print Network [OSTI]

    A. S. Rawat; O. P. S. Negi

    2011-07-05

    Defining the generalized charge, potential, current and generalized fields as complex quantities where real and imaginary parts represent gravitation and electromagnetism respectively, corresponding field equation, equation of motion and other quantum equations are derived in manifestly covariant manner. It has been shown that the field equations are invariant under Lorentz as well as duality transformations. It has been shown that the quaternionic formulation presented here remains invariant under quaternion transformations.

  4. Fractional Electromagnetic Waves

    E-Print Network [OSTI]

    J. F. Gómez; J. J. Rosales; J. J. Bernal; V. I. Tkach; M. Guía

    2011-08-31

    In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.

  5. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  6. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  7. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  8. The electromagnetic dark sector

    E-Print Network [OSTI]

    Jose Beltran Jimenez; Antonio L. Maroto

    2010-02-12

    We consider electromagnetic field quantization in an expanding universe. We find that the covariant (Gupta-Bleuler) method exhibits certain difficulties when trying to impose the quantum Lorenz condition on cosmological scales. We thus explore the possibility of consistently quantizing without imposing such a condition. In this case there are three physical states, which are the two transverse polarizations of the massless photon and a new massless scalar mode coming from the temporal and longitudinal components of the electromagnetic field. An explicit example in de Sitter space-time shows that it is still possible to eliminate the negative norm state and to ensure the positivity of the energy in this theory. The new state is decoupled from the conserved electromagnetic currents, but is non-conformally coupled to gravity and therefore can be excited from vacuum fluctuations by the expanding background. The cosmological evolution ensures that the new state modifies Maxwell's equations in a totally negligible way on sub-Hubble scales. However, on cosmological scales it can give rise to a non-negligible energy density which could explain in a natural way the present phase of accelerated expansion of the universe.

  9. Method for increased sensitivity of radiation detection and measurement

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1994-01-01

    Dose of radiation to which a body of crystalline material has been exposed is measured by exposing the body to optical radiation at a first wavelength, which is greater than about 540 nm, and measuring optical energy emitted from the body by luminescence at a second wavelength, which is longer than the first wavelength. Reduced background is accomplished by more thorough annealing and enhanced radiation induced luminescence is obtained by treating the crystalline material to coalesce primary damage centers into secondary damage centers.

  10. Coherent hybrid electromagnetic field imaging

    DOE Patents [OSTI]

    Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  11. Building a first order wave equation for the electromagnetic field: new perspectives on Dirac's equation

    E-Print Network [OSTI]

    Celso de Araujo Duarte

    2015-10-15

    Traditionally, the electromagnetic theory dictates the well-known second order differential equation for the components of the scalar and the vector potentials, or in other words, for the four-vector electromagnetic potential $\\phi^{\\mu}$. But the second order is not obligatory at least with respect to the electromagnetic radiation fields: actually, a heuristic first order differential equation can be constructed to describe the electromagnetic radiation, supported on the phenomenology of its electric and magnetic fields. Due to a formal similarity, such an equation suggests a direct comparative analysis with Dirac's equation for half spin fermions, conducting to the finding that the Dirac's spinor field $\\Psi$ for massive or massless fermions is equivalent to a set of two potential-like four vector fields $\\psi^{\\mu}$ and $\\chi^{\\mu}$. Under this point of view, striking similarities with the electromagnetic theory emerge with a category of "pseudo electric'' and "pseudo magnetic'' vector fermionic fields.

  12. Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors

    SciTech Connect (OSTI)

    Dale K. Kotter; Steven D. Novack

    2010-02-01

    DRAFT For Submittal to Journal of Solar Energy - Rev 10.1 ---SOL-08-1091 SOLAR Nantenna Electromagnetic Collectors Dale K. Kotter Idaho National Laboratory Steven D. Novack Idaho National Laboratory W. Dennis Slafer MicroContinuum, Inc. Patrick Pinhero University of Missouri ABSTRACT The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target mid-infrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling of radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers, including: 1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements; 2) selection of materials with proper THz properties; and 3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents, and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV devices.

  13. PMT signal increase using a wavelength shifting paint

    E-Print Network [OSTI]

    K. Allada; Ch. Hurlbut; L. Ou; B. Schmookler; A. Shahinyan; B. Wojtsekhowski

    2015-02-06

    We report a 1.65 times increase of the PMT signal and a simple procedure of application of a new wavelength shifting (WLS) paint for PMTs with non-UV-transparent windows. Samples of four different WLS paints, made from hydrocarbon polymers and organic fluors, were tested on a 5-inch PMT (ET 9390KB) using Cherenkov radiation produced in fused silica disks by $^{106}$Ru electrons on a `table-top' setup. The best performing paint was employed on two different types of 5-inch PMTs (ET 9390KB and XP4572B), installed in atmospheric pressure CO$_2$ gas Cherenkov detectors, and tested using GeV electrons.

  14. Properties of electrons scattered on a strong plane electromagnetic wave with a linear polarization: classical treatment

    E-Print Network [OSTI]

    Bogdanov, O V

    2014-01-01

    The relations among the components of the exit momenta of ultrarelativistic electrons scattered on a strong electromagnetic wave of a low (optical) frequency and linear polarization are established using the exact solutions to the equations of motion with radiation reaction included (the Landau-Lifshitz equation). It is found that the momentum components of the electrons traversed the electromagnetic wave depend weakly on the initial values of the momenta. These electrons are mostly scattered at the small angles to the direction of propagation of the electromagnetic wave. The maximum Lorentz factor of the electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and is independent of the initial momenta. The momentum component parallel to the electric field strength vector of the electromagnetic wave is determined only by the diameter of the laser beam measured in the units of the classical electron radius. As for the reflected electrons, they for the most part l...

  15. Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since

    E-Print Network [OSTI]

    Rutledge, Steven

    Electromagnetic WavesElectromagnetic Waves In this chapter we will review selected properties of electromagnetic waves since radar involves the transmission, propagation and scattering of EM waves by various is the electrostatic force between two point charges. #12;Electromagnetic WavesElectromagnetic Waves Electric fields

  16. Semiconductor laser with multiple lasing wavelengths

    DOE Patents [OSTI]

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-07-29

    A new class of multi-terminal vertical-cavity semiconductor laser components has been developed. These multi-terminal laser components can be switched, either electrically or optically, between distinct lasing wavelengths, or can be made to lase simultaneously at multiple wavelengths.

  17. Plasma confinement by circularly polarized electromagnetic field in toroidal geometry

    SciTech Connect (OSTI)

    Svidzinski, Vladimir A. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); and Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2007-10-15

    A novel plasma confinement concept based on plasma confinement by electromagnetic pressure of circularly polarized electromagnetic fields is proposed. Practical implementation of this concept in a toroidal device is suggested. In this concept the confining field frequency is in the lower range such that the size of the device is much smaller than the vacuum wavelength. Most of the previous radio-frequency (rf) confinement concepts of unmagnetized plasma were related to confinement in rf cavities which operated at high frequency for which the size of the cavity is comparable to the wavelength. Operation at lower frequencies simplifies rf design, reduces Ohmic losses in the conducting walls and probably makes application of superconductors for wall materials more feasible. It is demonstrated that circular (or nearly circular) polarization of the electromagnetic field is required for confinement from both the equilibrium and stability considerations. Numerical analysis of plasma confinement for magnetohydrodynamic plasma model in two-dimensional toroidal geometry is performed. Within this model plasma is confined by the applied rf fields and its equilibrium is stable. Technically feasible compact and medium size toroidal plasma confinement devices based on this concept are proposed. Application of this approach to the fusion reactor requires use of superconducting materials for the toroidal shell to reduce the Ohmic losses. Further theoretical and experimental studies are required for a more reliable conclusion about the attractiveness of this plasma confinement concept.

  18. BER Performance in Wavelength Packet Switched WDM systems during Nano-second Wavelength Switching Events

    E-Print Network [OSTI]

    Murphy, John

    . This effect may ultimately influence the design of WDM wavelength packet- switched networks employing transmitter, as the overall design of the wavelength packet-switched WDM networks will be heavily dependent-mode suppression ratio (SMSR), the output power, and the speed at which the device can switch from one wavelength

  19. Vibration Harvesting using Electromagnetic Transduction

    E-Print Network [OSTI]

    Waterbury, Andrew

    2011-01-01

    Puers, “Harvesting Energy from Vibrations by a Micromachinedsignal processing using vibration-based power generation,”electromagnetic generator for vibration energy harvesting,”

  20. Electromagnetism on Anisotropic Fractals

    E-Print Network [OSTI]

    Martin Ostoja-Starzewski

    2011-06-08

    We derive basic equations of electromagnetic fields in fractal media which are specified by three indepedent fractal dimensions {\\alpha}_{i} in the respective directions x_{i} (i=1,2,3) of the Cartesian space in which the fractal is embedded. To grasp the generally anisotropic structure of a fractal, we employ the product measure, so that the global forms of governing equations may be cast in forms involving conventional (integer-order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving the {\\alpha}_{i}'s. First, a formulation based on product measures is shown to satisfy the four basic identities of vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Amp\\`ere laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.

  1. Gravitation and electromagnetism

    E-Print Network [OSTI]

    V. P. Dmitriyev

    2002-07-23

    Maxwell's equations comprise both electromagnetic and gravitational fields. The transverse part of the vector potential belongs to magnetism, the longitudinal one is concerned with gravitation. The Coulomb gauge indicates that longitudinal components of the fields propagate instantaneously. The delta-function singularity of the field of the divergence of the vector potential, referred to as the dilatation center, represents an elementary agent of gravitation. Viewing a particle as a source or a scattering center of the point dilatation, the Newton's gravitation law can be reproduced.

  2. Electromagnetic Probes in PHENIX

    E-Print Network [OSTI]

    Gabor David

    2006-09-21

    Electromagnetic probes are arguably the most universal tools to study the different physics processes in high energy hadron and heavy ion collisions. In this paper we summarize recent measurements of real and virtual direct photons at central rapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions. We also discuss the impact of the results and the constraints they put on theoretical models. At the end we report on the immediate as well as on the mid-term future of photon measurements at RHIC.

  3. Electromagnetic Field Quantization in Time-Dependent Dielectric Media

    E-Print Network [OSTI]

    Xiao-Min Bei; Zhong-Zhu Liu

    2011-04-18

    We present a Gupta-Bleuler quantization scheme for the electromagnetic field in time-dependent dielectric media. Starting from the Maxwell equations, a generalization of the Lorentz gauge condition adapted to time varying dielectrics is derived. Using this gauge, a Gupta-Bleuler approach to quantize all polarizations of the radiation field and the corresponding constraint condition are introduced. This new approach is different from the quantized electromagnetic field in vacuum in the sense that here the contributions of unphysical photons cannot be thoroughly eliminated, which further lead to a surface charge density. Finally, a discussion of potential experimental tests and possible implication is also made.

  4. Evaluation of methodologies for estimating vulnerability to electromagnetic pulse effects

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    High-altitude electromagnetic pulse (EMP) is an electromagnetic radiation of very short rise time, large amplitude, and brief duration that follows a nuclear explosion above the atmosphere. The area over which a single EMP event is experienced can be very great if the explosion if high enough and large enough. Several such nuclear explosions might render unprotected electronic equipment and systems inoperative over an area as large as the continental United States. Damage may occur when high currents and voltages, driven by EMP, reach vital internal circuits. It is therefore essential to protect the systems and to form some idea of how well they will withstand EMP.

  5. A threshold type Cerenkov radiation detector 

    E-Print Network [OSTI]

    Winningham, John David

    1965-01-01

    it if is positively charged. Thus, as the particle passes through the medium, each elemental region along the track will receive a brief electromagnetic pulse. Since the polarization field is spherically symmetrical about the particle there will be no resultant... along each element of the track, each element then radiating a brief electromagnetic pulse. The radiation will be spread over a wide band of frequencies Fig. I. 1 The polarization produced in a dielectric by the passage of a charged particle (a...

  6. RADIATION RESEARCH 169, 2837 (2008) 0033-7587/08 $15.00

    E-Print Network [OSTI]

    Jerby, Eli

    2008-01-01

    Peripheral Blood Lymphocytes to Radiofrequency Electromagnetic Fields for 72 Hours. Radiat. Res. 169, 2828 RADIATION RESEARCH 169, 28­37 (2008) 0033-7587/08 $15.00 2008 by Radiation Research Society. All In Vitro Exposure of Human Peripheral Blood Lymphocytes to Radiofrequency Electromagnetic Fields for 72

  7. Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings

    SciTech Connect (OSTI)

    Tan, Wei; Sun, Yong; Chen, Hong; Wang, Zhi-Guo

    2014-03-03

    A hybrid coupling model containing both near- and far-field couplings is developed for radiating two-resonator structures. We demonstrate that the near- and far-field couplings make distinguished contributions to electromagnetic responses. Compared to the classical electromagnetically induced transparency configurations, the presence of far-field coupling provides more flexibility in tuning lineshapes. Planar metamaterials composed of metal wires are designed based on this model, and various electromagnetic responses are experimentally observed.

  8. Optical amplification at the 1. 31 wavelength

    DOE Patents [OSTI]

    Cockroft, N.J.

    1994-02-15

    An optical amplifier operating at the 1.31 [mu]m wavelength for use in such applications as telecommunications, cable television, and computer systems is described. An optical fiber or other waveguide device is doped with both Tm[sup 3+] and Pr[sup 3+] ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm[sup 3+] ions to the Pr[sup 3+] ions, causing the Pr[sup 3+] ions to amplify at a wavelength of 1.31. 1 figure.

  9. Image Formation by Incoherent and Coherent Transition Radiation from Flat and Rough Surfaces

    SciTech Connect (OSTI)

    Stupakov, Gennady; /SLAC

    2012-03-01

    In this paper we derive equations for the image formation of transverse profile of a relativistic beam obtained by means of optical transition radiation (OTR) from flat and rough metal surfaces. The motivation behind this study lies in the desire to suppress coherent transition radiation (COTR) observed in experiments at modern free electron lasers. The physical mechanism behind the problem of COTR is that the OTR is predominantly radiated at small angles of order of 1/{gamma} where {gamma} is the relativistic factor of the beam. This means that the transverse formation size of the image is of order of {bar {lambda}}{gamma} where {bar {lambda}} = {lambda}/2{pi} with {lambda} the radiation wavelength. For relativistic beams this can be comparable or even exceed the transverse size of the beam, which would mean that the image of the beam has very little to do with its transverse profile. It is fortuitous, however, that the incoherent image is formed by adding radiation energy of electrons and results in the transverse formation size being of order of {bar {lambda}}/{theta}{sub a}, with {theta}{sub a} is the aperture angle of the optical system. The COTR image, in contrast, is formed by adding electromagnetic field of electrons, and leads to the formation size {bar {lambda}}{gamma}. In situations when the COTR intensity exceeds that of OTR the COTR imaging makes the diagnostic incapable of measuring the beam profile.

  10. Electromagnetic neutrino: a short review

    E-Print Network [OSTI]

    Alexander I. Studenikin

    2014-11-09

    A short review on selected issues related to the problem of neutrino electromagnetic properties is given. After a flash look at the theoretical basis of neutrino electromagnetic form factors, constraints on neutrino magnetic moments and electric millicharge from terrestrial experiments and astrophysical observations are discussed. We also focus on some recent studies of the problem and on perspectives.

  11. Infrared Radiation Filament And Metnod Of Manufacture

    DOE Patents [OSTI]

    Johnson, Edward A. (Bedford, MA)

    1998-11-17

    An improved IR radiation source is provided by the invention. A radiation filament has a textured surface produced by seeded ion bombardment of a metal foil which is cut to a serpentine shape and mounted in a windowed housing. Specific ion bombardment texturing techniques tune the surface to maximize emissions in the desired wavelength range and to limit emissions outside that narrow range, particularly at longer wavelengths. A combination of filament surface texture, thickness, material, shape and power circuit feedback control produce wavelength controlled and efficient radiation at much lower power requirements than devices of the prior art.

  12. Measurements of short wavelength VLF bursts in the auroral ionosphere: A case for electromagnetic mode conversion?

    E-Print Network [OSTI]

    California at Berkeley, University of

    electric field measurements from dipole antennas and an onboard burst memory system. The observation the local lower hybrid frequency (flh) up to the electron plasma or cyclotron frequencies heating in the auroral ionosphere. Vago et al. [1992] and Labelle et al. [1986] have measured Trans

  13. A New Candidate Active Antenna Design for the Long Wavelength Array

    E-Print Network [OSTI]

    Ellingson, Steven W.

    blade design in the LWA project. The fork antenna is a simpler design than the big blade, and could cost blade, is a dipole-like structure, but it is a simpler design. The radiating elements on the big blade1 A New Candidate Active Antenna Design for the Long Wavelength Array Nagini Paravastu (ASEE

  14. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 58, NO. 1, JANUARY 2009 129 Very-Low-Frequency Electromagnetic Field

    E-Print Network [OSTI]

    Motai, Yuichi

    and difficult to detect under normal conditions. These naturally occurring VLF electromagnetic events) analog recorder output. Index Terms--Biological effects, electromagnetic field (EMF), gaussmeter, very field (EMF) radiation [1], [2] is a continuing con- cern of scientists and engineers. Our environment

  15. Thermal radiation, radiation force and dynamics of a polarizable particle

    E-Print Network [OSTI]

    G. V. Dedkov; A. A. Kyasov

    2015-08-26

    We discuss basic expressions and interrelations between various physical quantities describing the fluctuation-electromagnetic interaction of a small polarizable particle during relativistic motion relative to the blackbody radiation, namely tangential radiation force, rate of heating, intensity of thermal radiation/absorption, the change of the rest mass of a particle, and acceleration. We obtain an explicit formula for the frictional force acting on the particle in its rest frame and discuss its connection with the particle acceleration and the tangential force given in the reference frame of background radiation. The criticism of our previous results in recent paper by A. I. Volokitin (Phys. Rev. A81, 2015, 032505) is refuted.

  16. A novel variable-distance antenna test range and high spatial resolution corroboration of the inverse square law for 433.5 MHz radiation

    E-Print Network [OSTI]

    de Haën, Christoph; Erhardt, Matthias

    2015-01-01

    A novel, low-budget, open-air, slant-geometry antenna test range for UHF radiation is presented. It was designed primarily to facilitate variation of the distance between emitter and receiver antennas, but has also the potential for adaptation to simultaneous variation of distance and receiver antenna orientation. In support of the validity of the range the inverse square law for 433.5 MHz radiation between two naked half-wave dipole antennas was tested with high spatial resolution from close to the far field limit outward to 46 wavelengths. Sine amplitude input voltage at the receiver antenna varied with the distance to the power -0.9970 +/- 0.0051 (R^2 = 0.992), thus corroborating the inverse square law for transmission power at the lowest frequency for which thus far data have been published. Keywords: inverse square law; dipole antenna; test facility; electromagnetic propagation; UHF measurements; distance dependence.

  17. Dual-wavelength InP quantum dot lasers

    SciTech Connect (OSTI)

    Shutts, S.; Smowton, P. M.; Krysa, A. B.

    2014-06-16

    We have demonstrated a two-section dual-wavelength diode laser incorporating distributed Bragg reflectors, with a peak-wavelength separation of 62.5?nm at 300?K. Each lasing wavelength has a different temperature dependence, providing a difference-tuning of 0.11?nm/K. We discuss the mechanisms governing the light output of the two competing modes and explain how the short wavelength can be relatively insensitive to output changes at the longer wavelength. Starting from an initial condition when the output at both wavelengths are equal, a 500% increase in the long wavelength output causes the short wavelength output to fall by only 6%.

  18. Nuclear electromagnetic charge and current operators in Chiral EFT

    SciTech Connect (OSTI)

    Girlanda, Luca; Marcucci, Laura Elisa; Pastore, Saori; Piarulli, Maria; Schiavilla, Rocco; Viviani, Michele

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  19. Technical Design Report for PANDA Electromagnetic Calorimeter (EMC)

    E-Print Network [OSTI]

    PANDA Collaboration; W. Erni; I. Keshelashvili; B. Krusche; M. Steinacher; Y. Heng; Z. Liu; H. Liu; X. Shen; O. Wang; H. Xu; J. Becker; F. Feldbauer; F. -H. Heinsius; T. Held; H. Koch; B. Kopf; M. Pelizaeus; T. Schroeder; M. Steinke; U. Wiedner; J. Zhong; A. Bianconi; M. Bragadireanu; D. Pantea; A. Tudorache; V. Tudorache; M. De Napoli; F. Giacoppo; G. Raciti; E. Rapisarda; C. Sfienti; E. Bialkowski; A. Budzanowski; B. Czech; M. Kistryn; S. Kliczewski; A. Kozela; P. Kulessa; K. Pysz; W. Schaefer; R. Siudak; A. Szczurek; W. Czy. zycki; M. Domagala; M. Hawryluk; E. Lisowski; F. Lisowski; L. Wojnar; D. Gil; P. Hawranek; B. Kamys; St. Kistryn; K. Korcyl; W. Krzemien; A. Magiera; P. Moskal; Z. Rudy; P. Salabura; J. Smyrski; A. Wronska; M. Al-Turany; I. Augustin; H. Deppe; H. Flemming; J. Gerl; K. Goetzen; R. Hohler; D. Lehmann; B. Lewandowski; J. Luehning; F. Maas; D. Mishra; H. Orth; K. Peters; T. Saito; G. Schepers; C. J. Schmidt; L. Schmitt; C. Schwarz; B. Voss; P. Wieczorek; A. Wilms; K. -T. Brinkmann; H. Freiesleben; R. Jaekel; R. Kliemt; T. Wuerschig; H. -G. Zaunick; V. M. Abazov; G. Alexeev; A. Arefiev; V. I. Astakhov; M. Yu. Barabanov; B. V. Batyunya; Yu. I. Davydov; V. Kh. Dodokhov; A. A. Efremov; A. G. Fedunov; A. A. Feshchenko; A. S. Galoyan; S. Grigoryan; A. Karmokov; E. K. Koshurnikov; V. Ch. Kudaev; V. I. Lobanov; Yu. Yu. Lobanov; A. F. Makarov; L. V. Malinina; V. L. Malyshev; G. A. Mustafaev; A. Olshevski; M. A. . Pasyuk; E. A. Perevalova; A. A. Piskun; T. A. Pocheptsov; G. Pontecorvo; V. K. Rodionov; Yu. N. Rogov; R. A. Salmin; A. G. Samartsev; M. G. Sapozhnikov; A. Shabratova; G. S. Shabratova; A. N. Skachkova; N. B. Skachkov; E. A. Strokovsky; M. K. Suleimanov; R. Sh. Teshev; V. V. Tokmenin; V. V. Uzhinsky; A. S. Vodopianov; S. A. Zaporozhets; N. I. Zhuravlev; A. G. Zorin; D. Branford; K. Foehl; D. Glazier; D. Watts; P. Woods; W. Eyrich; A. Lehmann; A. Teufel; S. Dobbs; Z. Metreveli; K. Seth; B. Tann; A. Tomaradze; D. Bettoni; V. Carassiti; A. Cecchi; P. Dalpiaz; E. Fioravanti; I. Garzia; M. Negrini; M. Savri`e; G. Stancari; B. Dulach; P. Gianotti; C. Guaraldo; V. Lucherini; E. Pace; A. Bersani; M. Macri; M. Marinelli; R. F. Parodi; I. Brodski; W. Doering; P. Drexler; M. Dueren; Z. Gagyi-Palffy; A. Hayrapetyan; M. Kotulla; W. Kuehn; S. Lange; M. Liu; V. Metag; M. Nanova; R. Novotny; C. Salz; J. Schneider; P. Schoenmeier; R. Schubert; S. Spataro; H. Stenzel; C. Strackbein; M. Thiel; U. Thoering; S. Yang; T. Clarkson; E. Cowie; E. Downie; G. Hill; M. Hoek; D. Ireland; R. Kaiser; T. Keri; I. Lehmann; K. Livingston; S. Lumsden; D. MacGregor; B. McKinnon; M. Murray; D. Protopopescu; G. Rosner; B. Seitz; G. Yang; M. Babai; A. K. Biegun; A. Bubak; E. Guliyev; V. S. Jothi; M. Kavatsyuk; H. Loehner; J. Messchendorp; H. Smit; J. C. van der Weele; F. Garcia; D. -O. Riska; M. Buescher; R. Dosdall; R. Dzhygadlo; A. Gillitzer; D. Grunwald; V. Jha; G. Kemmerling; H. Kleines; A. Lehrach; R. Maier; M. Mertens; H. Ohm; D. Prasuhn; T. Randriamalala; J. Ritman; M. Roeder; T. Stockmanns; P. Wintz; P. Wuestner; J. Kisiel; S. Li; Z. Li; Z. Sun; H. Xu; S. Fissum; K. Hansen; L. Isaksson; M. Lundin; B. Schroeder; P. Achenbach; M. C. Mora Espi; J. Pochodzalla; S. Sanchez; A. Sanchez-Lorente; V. I. Dormenev; A. A. Fedorov; M. V. Korzhik; O. V. Missevitch; V. Balanutsa; V. Chernetsky; A. Demekhin; A. Dolgolenko; P. Fedorets; A. Gerasimov; V. Goryachev; A. Boukharov; O. Malyshev; I. Marishev; A. Semenov; C. Hoeppner; B. Ketzer; I. Konorov; A. Mann; S. Neubert; S. Paul; Q. Weitzel; A. Khoukaz; T. Rausmann; A. Taeschner; J. Wessels; R. Varma; E. Baldin; K. Kotov; S. Peleganchuk; Yu. Tikhonov; J. Boucher; T. Hennino; R. Kunne; S. Ong; J. Pouthas; B. Ramstein; P. Rosier; M. Sudol; J. Van de Wiele; T. Zerguerras; K. Dmowski; R. Korzeniewski; D. Przemyslaw; B. Slowinski; G. Boca; A. Braghieri; S. Costanza; A. Fontana; P. Genova; L. Lavezzi; P. Montagna; A. Rotondi; N. I. Belikov; A. M. Davidenko; A. A. Derevschikov; Y. M. Goncharenko; V. N. Grishin; V. A. Kachanov; D. A. Konstantinov; V. A. Kormilitsin; V. I. Kravtsov; Y. A. Matulenko; Y. M. Melnik; A. P. Meschanin; N. G. Minaev; V. V. Mochalov; D. A. Morozov; L. V. Nogach; S. B. Nurushev; A. V. Ryazantsev; P. A. Semenov; L. F. Soloviev; A. V. Uzunian; A. N. Vasiliev; A. E. Yakutin; T. Baeck; B. Cederwall; C. Bargholtz; L. Geren; P. E. Tegner; S. Belostotski; G. Gavrilov; A. Itzotov; A. Kisselev; P. Kravchenko; S. Manaenkov; O. Miklukho; Y. Naryshkin; D. Veretennikov; V. Vikhrov; A. Zhadanov; L. Fava; D. Panzieri; D. Alberto; A. Amoroso; E. Botta; T. Bressani; S. Bufalino; M. P. Bussa; L. Busso; F. De Mori; M. Destefanis; L. Ferrero; A. Grasso; M. Greco; T. Kugathasan; M. Maggiora; S. Marcello; G. Serbanut; S. Sosio; R. Bertini; D. Calvo; S. Coli; P. De Remigis; A. Feliciello; A. Filippi; G. Giraudo; G. Mazza; A. Rivetti

    2008-10-07

    This document presents the technical layout and the envisaged performance of the Electromagnetic Calorimeter (EMC) for the PANDA target spectrometer. The EMC has been designed to meet the physics goals of the PANDA experiment, which is being developed for the Facility for Antiproton and Ion Research (FAIR) at Darmstadt, Germany. The performance figures are based on extensive prototype tests and radiation hardness studies. The document shows that the EMC is ready for construction up to the front-end electronics interface.

  20. Electromagnetic neutrinos in terrestrial experiments and astrophysics

    E-Print Network [OSTI]

    Carlo Giunti; Konstantin A. Kouzakov; Yu-Feng Li; Alexey V. Lokhov; Alexander I. Studenikin; Shun Zhou

    2015-06-17

    An overview of neutrino electromagnetic properties, which open a door to the new physics beyond the Standard Model, is given. The effects of neutrino electromagnetic interactions both in terrestrial experiments and in astrophysical environments are discussed. The experimental bounds on neutrino electromagnetic characteristics are summarized. Future astrophysical probes of electromagnetic neutrinos are outlined.

  1. Electromagnetic Signals from Bacterial DNA

    E-Print Network [OSTI]

    A. Widom; J. Swain; Y. N. Srivastava; S. Sivasubramanian

    2012-02-09

    Chemical reactions can be induced at a distance due to the propagation of electromagnetic signals during intermediate chemical stages. Although is is well known at optical frequencies, e.g. photosynthetic reactions, electromagnetic signals hold true for muck lower frequencies. In E. coli bacteria such electromagnetic signals can be generated by electric transitions between energy levels describing electrons moving around DNA loops. The electromagnetic signals between different bacteria within a community is a "wireless" version of intercellular communication found in bacterial communities connected by "nanowires". The wireless broadcasts can in principle be of both the AM and FM variety due to the magnetic flux periodicity in electron energy spectra in bacterial DNA orbital motions.

  2. Study of Electromagnetically Induced Transparency using long-lived Singlet States

    E-Print Network [OSTI]

    Soumya Singha Roy; T. S. Mahesh

    2011-03-17

    The long-lived singlet states are useful to study a variety of interesting quantum phenomena. In this work we study electromagnetically induced transparency using a two-qubit system. The singlet state acts as a `dark state' which does not absorb a probe radiation in the presence of a control radiation. Further we demonstrate that the simultaneous irradiation of probe and control radiations acts as a dynamical decoupling preserving the singlet state at higher correlation for longer durations.

  3. Exact solution to the Landau-Lifshitz equation in a constant electromagnetic field

    E-Print Network [OSTI]

    Yurij Yaremko

    2014-12-04

    We are interested in the motion of a classical charge acted upon an external constant electromagnetic field where the back reaction of the particle's own field is taken into account. The Landau-Lifshitz approximation to the Lorentz-Abraham-Dirac equation is solved exactly and in closed form. It is shown that the ultrarelativistic limit of the Landau-Lifshitz equation for a radiating charge is the equation for eigenvalues and eigenvectors of the external electromagnetic field tensor.

  4. Electromagnetic Calorimeter for HADES

    E-Print Network [OSTI]

    W. Czyzycki; E. Epple; L. Fabbietti; M. Golubeva; F. Guber; A. Ivashkin; M. Kajetanowicz; A. Krasa; F. Krizek; A. Kugler; K. Lapidus; E. Lisowski; J. Pietraszko; A. Reshetin; P. Salabura; Y. Sobolev; J. Stanislav; P. Tlusty; T. Torrieri; M. Traxler

    2011-11-28

    We propose to build the Electromagnetic calorimeter for the HADES di-lepton spectrometer. It will enable to measure the data on neutral meson production from nucleus-nucleus collisions, which are essential for interpretation of dilepton data, but are unknown in the energy range of planned experiments (2-10 GeV per nucleon). The calorimeter will improve the electron-hadron separation, and will be used for detection of photons from strange resonances in elementary and HI reactions. Detailed description of the detector layout, the support structure, the electronic readout and its performance studied via Monte Carlo simulations and series of dedicated test experiments is presented. The device will cover the total area of about 8 m^2 at polar angles between 12 and 45 degrees with almost full azimuthal coverage. The photon and electron energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV]) which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron rejection, resulting from simulations based on the test measurements, is better than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.

  5. Performance test of wavelength-shifting acrylic plastic Cherenkov detector

    E-Print Network [OSTI]

    B. Beckford; A. de la Puente; Y. Fuji; K. Futatsukawa; O. Hashimoto; M. Kaneta; H. Kanda; K. Maeda; A. Matsumura; S. N. Nakamura; J. Reinhold; L. Tang; K. Tsukada

    2013-05-22

    The collection efficiency for Cherenkov light incident on a wavelength shifting plate (WLS) has been determined during a beam test at the Proton Synchrotron facility located in the National Laboratory for High Energy Physics (KEK), Tsukuba, Japan. The experiment was conducted in order to determine the detector's response to photoelectrons converted from photons produced by a fused silica radiator; this allows for an approximation of the detector's quality. The yield of the photoelectrons produced through internally generated Cherenkov light as well as light incident from the radiator was measured as a function of the momentum of the incident hadron beam. The yield is proportional to sin$^2$$\\theta_c$, where $\\theta_{c}$ is the opening angle of the Cherenkov light created. Based on estimations and results from similarly conducted tests, where the collection efficiency was roughly 39%, the experimental result was expected to be around 40% for internally produced light from the WLS. The results of the experiment determined the photon collection response efficiency of the WLS to be roughly 62% for photons created in a fused silica radiator and 41% for light created in the WLS.

  6. Radio Wavelength Observatories within the Exploration Architecture

    E-Print Network [OSTI]

    J. Lazio; R. J. Macdowall; J. Burns; L. Demaio; D. L. Jones; K. W. Weiler

    2007-01-26

    Observations at radio wavelengths address key problems in astrophysics, astrobiology, and lunar structure including the first light in the Universe (the Epoch of Reionization), the presence of magnetic fields around extrasolar planets, particle acceleration mechanisms, and the structure of the lunar ionosphere. Moreover, achieving the performance needed to address these scientific questions demands observations at wavelengths longer than those that penetrate the Earth's ionosphere, observations in extremely "radio quiet" locations such as the Moon's far side, or both. We describe a series of lunar-based radio wavelength interferometers of increasing capability. The Radio Observatory for Lunar Sortie Science (ROLSS) is an array designed to be deployed during the first lunar sorties (or even before via robotic rovers) and addressing particle acceleration and the lunar ionosphere. Future arrays would be larger, more capable, and deployed as experience is gained in working on the lunar surface.

  7. Device for wavelength-selective imaging

    DOE Patents [OSTI]

    Frangioni, John V. (Wayland, MA)

    2010-09-14

    An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.

  8. Scattering of an ultrashort electromagnetic pulse in a plasma

    SciTech Connect (OSTI)

    Astapenko, V. A. [Moscow Institute of Physics and Technology (Russian Federation)

    2011-11-15

    An analytic approach is developed to describing how ultrashort electromagnetic pulses with a duration of one period or less at the carrier frequency are scattered in a plasma. Formulas are derived to calculate and analyze the angular and spectral probabilities of radiation scattering via two possible mechanisms-Compton and transition radiation channels-throughout the entire pulse. Numerical simulations were carried out for a Gaussian pulse. The effect of the phase of the carrier frequency relative to the pulse envelope on the scattering parameters is investigated.

  9. Appendix G. Radiation Appendix G. Radiation G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    , radio waves, and alpha particles are examples of radiation. When people feel warmth from sunlight in the form of electromagnetic waves. Examples include gamma rays, ultraviolet light, and radio waves, or radiant energy, is energy in the form of waves or particles moving through space. Visi- ble light, heat

  10. Appendix F. Radiation Appendix F. Radiation F-3

    E-Print Network [OSTI]

    Pennycook, Steve

    energy, is energy in the form of waves or particles moving through space. Visi- ble light, heat, radio in the form of electromagnetic waves. Examples include gamma rays, ultraviolet light, and radio waves waves, and alpha particles are examples of radiation. When people feel warmth from sunlight

  11. Evaluation of wavelength shifters for spectral separation of barium fluoride emissions

    SciTech Connect (OSTI)

    DeVol, T.A. [Michigan Univ., Ann Arbor, MI (United States)

    1993-10-01

    BaF{sub 2} has the advantage over other scintillators, when comparing radiation hardness, scintillation decay time, and fast scintillation yield. Since the fast BaF{sub 2} emissions have peak wavelengths of 220, 195, and 170 nm, a wavelength shifter (WLS) is needed. Organic fluors were evaluated as WLS components. Results indicate that spectral separation using WLS is possible, but not to the extent desired; other techniques must be used also. Alternative scintillators, such as CeF{sub 3}, should be investigated.

  12. Electromagnetic calorimeter for the Heavy Photon Search Experiment at Jefferson Lab

    SciTech Connect (OSTI)

    Buchanan, Emma

    2014-11-01

    The Heavy Photon Search Experiment (HPS) seeks to detect a hypothesised hidden sector boson, the A', predicted to be produced in dark matter decay or annihilation. Theories suggest that the A' couples weakly to electric charge through kinetic mixing, allowing it, as a result, to decay to Standard Matter (SM) lepton pair, which may explain the electron and positron excess recently observed in cosmic rays. Measuring the lepton pair decay of the A' could lead to indirect detection of dark matter. The HPS experiment is a fixed target experiment that will utilize the electron beam produced at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The detector set-up includes a silicon vertex tracker (SVT) and an Electromagnetic Calorimeter (ECal). The ECal will provide the trigger and detect e+e- pairs and its construction and testing forms the focus of this thesis. The ECal consists of 442 PbWO4} tapered crystals with a length 16cm and a 1.6x1.6cm^2 cross-section, stacked into a rectangular array and are coupled to Large Area APDs and corresponding pre-amplifiers. Supplementary to the ECal is a Light Monitoring System (LMS) consisting of bi-coloured LEDs that will monitor changes in APD gain and crystal transparency due to radiation damage. Before construction of the ECal each of the components were required to be individually tested to determine a number of different characteristics. Irradiation tests were performed on PbWO4 ECal crystals and, as a comparison, one grown by a different manufacturer to determine their radiation hardness. A technique for annealing the radiation damage by optical bleaching, which involves injecting light of various wavelengths into the crystal, was tested using the blue LED from the LMS as a potential candidate. The light yield dependence on temperature was also measured for one of the PbWO4 crystal types. Each APD was individually tested to determine if they functioned correctly and within the requirements of the experiment, then arranged into groups of similar gain at chosen applied voltages, for connection to High Voltage (HV) supplies. Each bi-coloured LED was also tested to determine if they functioned within the specifications of the experiment; including their signal quality at high frequency and their radiation hardness. The HPS crystals were recycled from a previous Jefferson Lab detector, the Inner Calorimeter from CLAS, which needed to be dismantled and reconditioned using various removal and cleaning techniques. The HPS ECal was then constructed in a new formation using a combination of different gluing and construction techniques, and initial functionality tests were performed.

  13. Clear sky atmosphere at cm-wavelengths from climatology data

    E-Print Network [OSTI]

    Lew, Bartosz

    2015-01-01

    We utilise ground-based, balloon-born and satellite climatology data to reconstruct site and season-dependent vertical profiles of precipitable water vapour (PWV). We use these profiles to numerically solve radiative transfer through the atmosphere, and derive atmospheric brightness temperature ($T_{\\rm atm}$) and optical depth ($\\tau$) at the centimetre wavelengths. We validate the reconstruction by comparing the model column PWV, with photometric measurements of PWV, performed in the clear sky conditions towards the Sun. Based on the measurements, we devise a selection criteria to filter the climatology data to match the PWV levels to the expectations of the clear sky conditions. We apply the reconstruction to the location of the Polish 32-metre radio telescope, and characterise $T_{\\rm atm}$ and $\\tau$ year-round, at selected frequencies. We also derive the zenith distance dependence for these parameters, and discuss shortcomings of using planar, single-layer, and optically thin atmospheric model approxima...

  14. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  15. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, Daniel N. (Sound Beach, NY); Dilmanian, F. Avraham (Yaphank, NY); Spanne, Per O. (Shoreham, NY)

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  16. Two-wavelength spatial-heterodyne holography

    DOE Patents [OSTI]

    Hanson, Gregory R. (Clinton, TN); Bingham, Philip R. (Knoxville, TN); Simpson, John T. (Knoxville, TN); Karnowski, Thomas P. (Knoxville, TN); Voelkl, Edgar (Austin, TX)

    2007-12-25

    Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.

  17. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  18. ECE 444: Antennas and Radiation Pre-requisites

    E-Print Network [OSTI]

    Schumacher, Russ

    effect in good conductors - Can analyze lossless and lossy transmission lines with different terminations Electromagnetic Field Energy and Radiation - Can apply Poynting's theorem to discuss power balance - Can use retarded electromagnetic potentials to find electric and magnetic fields due to high

  19. Objects of maximum electromagnetic chirality

    E-Print Network [OSTI]

    Fernandez-Corbaton, Ivan

    2015-01-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.

  20. Method and apparatus for generating high power laser pulses in the two to six micron wavelength range

    DOE Patents [OSTI]

    MacPherson, D.C.; Nelson, L.D.; O`Brien, M.J.

    1996-12-10

    Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength. 30 figs.

  1. On radiation due to homogeneously accelerating sources

    E-Print Network [OSTI]

    Kalinov, D

    2015-01-01

    The core of this work is an old and broadly discussed problem of the electromagnetic radiation in the case of the hyperbolic motion. We prove that the radiation is non-zero in the lab (Minkowski) frame. Further, we attempt to understand this subject better by using co-moving non-inertial frames of reference, investigating other types of uniformly accelerated motion and, finally, using scalar waves instead of point-like particles as sources of radiation.

  2. Ab initio Calculation of the np ? dy Radiative Capture Process

    E-Print Network [OSTI]

    Beane, Silas R.

    Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture process np ? d?, and the photo-disintegration processes ?[superscript ...

  3. Black-Body Radiation Of Noncommutative Gauge Fields

    E-Print Network [OSTI]

    A. H. Fatollahi; M. Hajirahimi

    2006-11-21

    The black-body radiation is considered in a theory with noncommutative electromagnetic fields; that is noncommutativity is introduced in field space, rather than in real space. A direct implication of the result on Cosmic Microwave Background map is argued.

  4. Magic wavelengths in the alkaline earth ions

    E-Print Network [OSTI]

    Kaur, Jasmeet; Arora, Bindiya; Sahoo, B K

    2015-01-01

    We present magic wavelengths for the $nS$ - $nP_{1/2,3/2}$ and $nS$ - $mD_{3/2,5/2}$ transitions, with the respective ground and first excited $D$ states principal quantum numbers $n$ and $m$, in the Mg$^+$, Ca$^+$, Sr$^+$ and Ba$^+$ alkaline earth ions for linearly polarized lights by plotting dynamic polarizatbilities of the $nS$, $nP_{1/2,3/2}$ and $mD_{3/2,5/2}$ states of the ions. These dynamic polarizabilities are evaluated by employing a relativistic all-order perturbative method and their accuracies are ratified by comparing their static values with the available high precision experimental or other theoretical results. Moreover, some of the magic wavelengths identified by us in Ca$^+$ concurs with the recent measurements reported in [{\\bf Phys. Rev. Lett. 114, 223001 (2015)}]. Knowledge of these magic wavelengths are propitious to carry out many proposed high precision measurements trapping the above ions in the electric fields with the corresponding frequencies.

  5. Vacuum fluctuations and radiation reaction in radiative processes of entangled states

    E-Print Network [OSTI]

    Menezes, G

    2015-01-01

    We investigate radiative processes of inertial two-level atoms in an entangled state interacting with a quantum electromagnetic field. We assume a dipole interaction between the atoms. The main intention is to identify and to analyze quantitatively the distinct contributions of vacuum fluctuations and radiation reaction to the decay rate of the entangled state.

  6. Electromagnetic formation flight dipole solution planning

    E-Print Network [OSTI]

    Schweighart, Samuel A. (Samuel Adam), 1977-

    2005-01-01

    Electromagnetic Formation Flight (EMFF) describes the concept of using electromagnets (coupled with reaction wheels) to provide all of the necessary forces and torques needed to maintain a satellite's relative position and ...

  7. Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles

    E-Print Network [OSTI]

    Hanson, George

    in radiofrequency-terahertz heating of nanoparticles G. W. Hanson,1,a) R. C. Monreal,2 and S. P. Apell3 1 Department on the absorption of electromagnetic radiation by metallic nanoparticles in the radio and far infrared frequency by which nonmagnetic metallic nanoparticles can absorb low frequency radiation, including both classical

  8. Self-Duality in Nonlinear Electromagnetism

    E-Print Network [OSTI]

    Mary K. Gaillard; Bruno Zumino

    1997-05-28

    We discuss duality invariant interactions between electromagnetic fields and matter. The case of scalar fields is treated in some detail.

  9. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, Richard P. (Livermore, CA); Paris, Robert D. (San Ramon, CA); Feldman, Mark (Pleasanton, CA)

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  10. Wavelength meter having single mode fiber optics multiplexed inputs

    DOE Patents [OSTI]

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  11. Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course

    E-Print Network [OSTI]

    Taflove, Allen

    1 Why Study Electromagnetics: The First Unit in an Undergraduate Electromagnetics Course Allen unification of electric and magnetic fields predicting electromagnetic wave phenomena which Nobel Laureate: "Of what relevance is the study of electromagnetics to our modern society?" The goal of this unit

  12. EE335 Electromagnetic Theory II Text: Fundamentals of Applied Electromagnetics 5e

    E-Print Network [OSTI]

    Kaiser, Todd J.

    EE335 Electromagnetic Theory II Text: Fundamentals of Applied Electromagnetics 5e Author: Fawwaz T://www.coe.montana.edu/ee/tjkaiser/EE335/ Office Hours: M 9am, W 10am Prerequisites: EE334 Electromagnetic Theory I or permission from: Exam 1 100 Exam 2 100 Exam 3 100 Term paper 100 Homework 100 Final Exam 200 #12;EE 335 Electromagnetic

  13. Electromagnetic Corrections in Staggered Chiral Perturbation Theory

    E-Print Network [OSTI]

    Bernard, Claude

    Electromagnetic Corrections in Staggered Chiral Perturbation Theory C. Bernard and E.D. Freeland perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can-lat]17Nov2010 #12;Electromagnetic Corrections in Staggered Chiral Perturbation Theory E.D. Freeland 1

  14. 611: Electromagnetic Theory Problem Sheet 6

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 6 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave

  15. Electromagnetic Formation Flight of Satellite Arrays

    E-Print Network [OSTI]

    Electromagnetic Formation Flight of Satellite Arrays Daniel W. Kwon and David W. Miller February 2005 SSL # 2-05 #12;#12;Electromagnetic Formation Flight of Satellite Arrays By DANIEL W. KWON S;#12;Electromagnetic Formation Flight of Satellite Arrays by DANIEL W. KWON Submitted to the Department of Aeronautics

  16. 611: Electromagnetic Theory Problem Sheet 5

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 5 (1a) The Null Energy Condition on an energy = (k, 0, 0, k), show that the energy-momentum tensor Tµ = 1 4 Fµ F - 1 4µ F F (1) for electromagnetism if the equality kµ k Tµ = 0 is attained. (2) Show that the energy-momentum tensor for electromagnetism can

  17. 611: Electromagnetic Theory Problem Sheet 7

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 7 (1) Consider the non-relativistic motion of a particle momentum of the particle about the centre of the force at r = 0.) (2a) Consider an electromagnetic wave the energy density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic

  18. 611: Electromagnetic Theory Problem Sheet 6

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 6 (1) A small test particle (mass m and positive charge q of the orbit. (2a) Consider an electromagnetic wave for which the electric field is given by E = E0 sin t (sin in (2a) and (2b) for an electromagnetic wave for which the electric field is E = E0 cos z (cos t, - sin

  19. 611: Electromagnetic Theory Problem Sheet 5

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 5 (1) Consider the expression for the electric field due · dS over a spherical surface that encloses the moving charge. (2a) Consider an electromagnetic wave density and the Poynting vector. (2c) Repeat the steps in (2a) and (2b) for an electromagnetic wave

  20. 611: Electromagnetic Theory Problem Sheet 5

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 5 (1a) Show that the energy-momentum tensor for the electromagnetic field is tracefree, i.e. Tµ µ = 0. What would happen, in a spacetime dimension d = 4? (Assume) Show that the energy-momentum tensor for the electromagnetic field can be written as Tµ = 1 8 (Fµ F

  1. Electromagnetic Interrogation of Dielectric Materials 1

    E-Print Network [OSTI]

    Electromagnetic Interrogation of Dielectric Materials 1 H.T. Banks M.W. Buksas Center for Research grant P200A40730. #12; Abstract We investigate time domain based electromagnetic inverse problems electromagnetic phenomenon. For our purposes, we categorize the materials and the models employed to describe them

  2. Electromagnetic Field Theory Fall 2014 Course Outline

    E-Print Network [OSTI]

    Haimovich, Alexander

    ECE 620 Electromagnetic Field Theory Fall 2014 Course Outline Instructor: Dr. Gerald Whitman Text of electromagnetic phenomena that vary sinusoidally in time. Course Learning Outcome: Students will learn fundamental knowledge of ac electromagnetic theory, which is needed for a broad spectrum of electrical engineering

  3. Solar/Electromagnetic Energy Harvesting and Wireless

    E-Print Network [OSTI]

    Tentzeris, Manos

    INVITED P A P E R Solar/Electromagnetic Energy Harvesting and Wireless Power Transmission This paper reviews numerous existing efforts and solutions in the field of solar and electromagnetic energy of solar/electromagnetic energy harvest- ing and wireless power transmission. More specifically, the paper

  4. Efficient regime of electromagnetic emission in a plasma with counterstreaming electron beams

    SciTech Connect (OSTI)

    Timofeev, I. V.; Annenkov, V. V. [Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2014-08-15

    Efficiency of electromagnetic emission produced in a magnetized plasma with counterstreaming electron beams was investigated using both the linear kinetic theory and particle-in-cell simulations. We calculated the growth rate of the beam-plasma instability taking into account both kinetic and relativistic effects and showed that there exists a regime in which transversely propagating electromagnetic waves can be generated by the coupling of the most unstable oblique beam-driven modes. It was confirmed by numerical simulations that such a tune-up of system parameters for a specific nonlinear process can lead to a substantial increase in electromagnetic emission efficiency. It was found that electromagnetic radiation emerging from the plasma in such a regime is generated near the harmonics of the pump frequency that is determined by the typical eigenfrequency of the beam-driven modes. It was also shown that the peak emission power can reach 5% of the maximal power lost by beam electrons.

  5. Semiconductor radiation detector

    DOE Patents [OSTI]

    Bell, Zane W. (Oak Ridge, TN); Burger, Arnold (Knoxville, TN)

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  6. Transition from thermal to turbulent equilibrium with a resulting electromagnetic spectrum

    SciTech Connect (OSTI)

    Ziebell, L. F.; Yoon, P. H.; School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 ; Gaelzer, R.; Instituto de Física e Matemática, UFPel, Pelotas, RS ; Pavan, J.

    2014-01-15

    A recent paper [Ziebell et al., Phys. Plasmas 21, 010701 (2014)] discusses a new type of radiation emission process for plasmas in a state of quasi-equilibrium between the particles and enhanced Langmuir turbulence. Such a system may be an example of the so-called “turbulent quasi-equilibrium.” In the present paper, it is shown on the basis of electromagnetic weak turbulence theory that an initial thermal equilibrium state (i.e., only electrostatic fluctuations and Maxwellian particle distributions) transitions toward the turbulent quasi-equilibrium state with enhanced electromagnetic radiation spectrum, thus demonstrating that the turbulent quasi-equilibrium discussed in the above paper correctly describes the weakly turbulent plasma dynamically interacting with electromagnetic fluctuations, while maintaining a dynamical steady-state in the average sense.

  7. Scattering of particles by radiation fields: a comparative analysis

    E-Print Network [OSTI]

    Donato Bini; Andrea Geralico; Maria Haney; Robert T. Jantzen

    2014-08-22

    The features of the scattering of massive neutral particles propagating in the field of a gravitational plane wave are compared with those characterizing their interaction with an electromagnetic radiation field. The motion is geodesic in the former case, whereas in the case of an electromagnetic pulse it is accelerated by the radiation field filling the associated spacetime region. The interaction with the radiation field is modeled by a force term entering the equations of motion proportional to the 4-momentum density of radiation observed in the particle's rest frame. The corresponding classical scattering cross sections are evaluated too.

  8. Strong permanent magnet-assisted electromagnetic undulator

    DOE Patents [OSTI]

    Halbach, Klaus (Berkeley, CA)

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  9. Two wavelength division multiplexing WAN trials

    SciTech Connect (OSTI)

    Lennon, W.J.; Thombley, R.L.

    1995-01-20

    Lawrence Livermore National Laboratory, as a super-user, supercomputer, and super-application site, is anticipating the future bandwidth and protocol requirements necessary to connect to other such sites as well as to connect to remote-sited control centers and experiments. In this paper the authors discuss their vision of the future of Wide Area Networking, describe the plans for a wavelength division multiplexed link connecting Livermore with the University of California at Berkeley and describe plans for a transparent, {approx} 10 Gb/s ring around San Francisco Bay.

  10. Fabrication and characterization of narrow channel fused fiber wavelength division multiplexing couplers

    E-Print Network [OSTI]

    Orazi, Richard Joseph

    2007-01-01

    electromagnetic environment monitoring,” NCCOSC TR-1646 (electromagnetic environment monitoring using semiconductorelectromagnetic environment monitoring,” Proc. DoD Photonics

  11. Some Wave Equations for Electromagnetism and Gravitation

    E-Print Network [OSTI]

    Zi-Hua Weng

    2010-08-11

    The paper studies the inferences of wave equations for electromagnetic fields when there are gravitational fields at the same time. In the description with the algebra of octonions, the inferences of wave equations are identical with that in conventional electromagnetic theory with vector terminology. By means of the octonion exponential function, we can draw out that the electromagnetic waves are transverse waves in a vacuum, and rephrase the law of reflection, Snell's law, Fresnel formula, and total internal reflection etc. The study claims that the theoretical results of wave equations for electromagnetic strength keep unchanged in the case for coexistence of gravitational and electromagnetic fields. Meanwhile the electric and magnetic components of electromagnetic waves can not be determined simultaneously in electromagnetic fields.

  12. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    SciTech Connect (OSTI)

    Liangping, Wang; Mo, Li; Juanjuan, Han; Ning, Guo [Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Key State Laboratory of Simulation and Effect for Intense Pulse Radiation, Xi'an 710024 (China); Jian, Wu [Xi'an Jiaotong University, Xi'an 710049 (China); Aici, Qiu [Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Xi'an Jiaotong University, Xi'an 710049 (China)

    2014-06-15

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100?ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. The kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 ? in about 10–20?ns.

  13. Cosmic Electromagnetic Fields due to Perturbations in the Gravitational Field

    E-Print Network [OSTI]

    Bishop Mongwane; Peter K. S. Dunsby; Bob Osano

    2012-10-21

    We use non-linear gauge-invariant perturbation theory to study the interaction of an inflation produced seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime. We compare the effects of this coupling under the assumptions of poor conductivity, infinite conductivity and the case where the electric field is sourced via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic (MHD) regime, thus generalizing, improving on and correcting previous results. We solve our equations for long wavelength limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic field variables, showing where the modes cross the horizon. We find that the rotation of the electric field dominates the power spectrum on small scales, in agreement with previous arguments.

  14. Time domain electromagnetic metal detectors

    SciTech Connect (OSTI)

    Hoekstra, P.

    1996-04-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.

  15. Electromagnetism Tutorial (Tutorial de Eletromagnetismo)

    E-Print Network [OSTI]

    Dantas, Christine C

    2009-01-01

    The present tutorial aims at covering the fundamentals of electromagnetism, in a condensed and clear manner. Some solved and proposed exercises have been included. The reader is assumed to have knowledge of basic electricity, partial derivatives and multiple integrals. ----- O presente tutorial visa cobrir os fundamentos do eletromagnetismo, de forma condensada e clara. Alguns exercicios resolvidos e propostos foram incluidos. Assume-se conhecimento de eletricidade basica, derivadas parciais e integrais multiplas.

  16. Dark Energy, Gravitation and Electromagnetism

    E-Print Network [OSTI]

    B. G. Sidharth

    2004-01-08

    In the context of the fact that the existence of dark energy causing the accelerated expansion of the universe has been confirmed by the WMAP and the Sloan Digital Sky Survey, we re-examine gravitation itself, starting with the formulation of Sakharov and show that it is possible to obtain gravitation in terms of the electromagnetic charge of elementary particles, once the ZPF and its effects at the Compton scale are taken into account.

  17. Laminated electromagnetic pump stator core

    DOE Patents [OSTI]

    Fanning, A.W.

    1995-08-08

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  18. The nature of electromagnetic energy

    E-Print Network [OSTI]

    Jerrold Franklin

    2012-05-29

    The nature of the electromagnetic (EM) energy for general charge and current distributions is analyzed. There are two well known forms for calculating EM energy as the integral over all space of either the electromagnetic fields: $u_{\\bf EB}=({\\bf E\\bcdot D+B\\bcdot H})/8\\pi$, or the electromagnetic potentials and charge-current densities: $u_{\\rho{\\bf A}}=1/2(\\rho\\phi+{\\bf j\\bcdot A})$. We discuss the appropriate use of each of these forms in calculating the total EM energy and the EM energy within a limited volume. We conclude that only the form $u_{\\bf EB}$ can be considered as a suitable EM energy density, while either form can be integrated to find the total EM energy. However, bounding surface integrals (if they don't vanish) must be included when using the $u_{\\bf EB}$ form. Including these surface integrals resolves some seeming paradoxes in the energy of electric or magnetic dipoles in uniform fields

  19. Electromagnetic Probes at RHIC-II

    E-Print Network [OSTI]

    G. David; R. Rapp; Z. Xu

    2008-04-25

    We summarize how future measurements of electromagnetic (e.m.) probes at the Relativistic Heavy Ion Collider (RHIC), in connection with theoretical analysis, can advance our understanding of strongly interacting matter at high energy densities and temperatures. After a brief survey of the important role that e.m. probes data have played at the Super Proton Synchrotron (SPS, CERN) and RHIC to date, we identify key physics objectives and observables that remain to be addressed to characterize the (strongly interacting) Quark-Gluon Plasma (sQGP) and associated transition properties at RHIC. These include medium modifications of vector mesons via low-mass dileptons, a temperature measurement of the hot phases via continuum radiation, as well as gamma-gamma correlations to characterize early source sizes. We outline strategies to establish microscopic matter and transition properties such as the number of degrees of freedom in the sQGP, the origin of the hadron masses and manifestations of chiral symmetry restoration, which will require accompanying but rather well-defined advances in theory. Increased experimental precision, order of magnitude higher statistics than currently achievable, as well as a detailed scan of colliding species and energies are then mandatory to achieve sufficient discrimination power in theoretical interpretations. This increased precision can be achieved with hardware upgrades to the large RHIC detectors (PHENIX and STAR) along with at least a factor of ten as increase in luminosity over the next few years as envisioned for RHIC-II.

  20. Electromagnetic Effects in SDF Explosions

    SciTech Connect (OSTI)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise between optimizing the combustion performance and keeping the number of elementary charges low. Further tests in a barometric bomb calorimeter of 21.2 l volume were performed with four types of aluminum. The mass fraction burned in this case appeared to depend on the morphology of the aluminum particles. Flake aluminum exhibited a better performance than granulated aluminum with particle sizes ranging from below 25 {micro}m to 125 {micro}m for the coarsest material. In addition, a feasibility study on electro-magnetic effects from SDF charges detonated in a tunnel has been performed. A method was developed to measure the local, unsteady electro-conductivity in the detonation/combustion products cloud. This method proved to yield reproducible results. A variety of methods were tested with regard to probing electro-magnetic pulses from the detonation of SDF charges. The results showed little reproducibility and were small compared to the effect from pulsed high voltage discharges of comparatively small energy (around 32 J). Thus either no significant electromagnetic pulse is generated in our small-scale tests or the tested techniques have to be discarded as too insensitive or too limited in bandwidth to detect possibly very high frequency electro-magnetic disturbances.

  1. Localized Wave Representations of Acoustic and Electromagnetic Radiation

    E-Print Network [OSTI]

    Ziolkowski, Richard W.

    W- 7405-ENG-48. R. W. Ziolkowski is with the Department of Electrical and Computer Engineering, The University of Arizona, Tucson, AZ 85721. I. M. Besieris is with the Bradley Department of Electrical is with the Department of Engineering Physics and Mathematics, Faculty of Engineering, Cairo University, Giza, Egypt

  2. Measurement of Electromagnetic Radiation Emitted during Rapid Intramolecular Electron Transfer

    E-Print Network [OSTI]

    , photosynthesis, artificial photosynthesis, redox chemistry, photography, xerog- raphy, and other processes all

  3. Coherent THz electromagnetic radiation emission as a shock wave diagnostic

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (TechnicalTransmission,TextitSciTechinRequirementsorModeling

  4. Coherent THz electromagnetic radiation emission as a shock wave diagnostic

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing Bacteria (TechnicalTransmission,TextitSciTechinRequirementsorModelingand probe of

  5. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    SciTech Connect (OSTI)

    Henry Hao-Chuan Kang

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  6. At-wavelength Optical Metrology Development at the ALS

    SciTech Connect (OSTI)

    Yuan, Sheng Sam; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Smith, Brian V.; Domning, Edward E.; McKinney, Wayne R.; Warwick, Tony

    2010-07-19

    Nano-focusing and brightness preservation for ever brighter synchrotron radiation and free electron laser beamlines require surface slope tolerances of x-ray optics on the order of 100 nrad. While the accuracy of fabrication and ex situ metrology of x-ray mirrors has improved over time, beamline in situ performance of the optics is often limited by application specific factors such as x-ray beam heat loading, temperature drift, alignment, vibration, etc. In the present work, we discuss the recent results from the Advanced Light Source developing high accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad accuracy surface slope measurements with reflecting x-ray optics. The techniques will ultimately allow closed-loop feedback systems to be implemented for x-ray nano-focusing. In addition, we present a dedicated metrology beamline endstation, applicable to a wide range of in situ metrology and test experiments. The design and performance of a bendable Kirkpatrick-Baez (KB) mirror with active temperature stabilization will also be presented. The mirror is currently used to study, refine, and optimize in situ mirror alignment, bending and metrology methods essential for nano-focusing application.

  7. Electromagnetic wave scattering by Schwarzschild black holes

    E-Print Network [OSTI]

    Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

    2009-05-20

    We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

  8. 611: Electromagnetic Theory Problem Sheet 4

    E-Print Network [OSTI]

    Pope, Christopher

    611: Electromagnetic Theory Problem Sheet 4 (1a) The angular momentum 3-vector L is defined by Li) Prove from the above that for the electromagnetic field, L = 1 4 r × (E × B) d3 x (b) Prove that dR dt = P E where R is the centre of mass of the electromagnetic field, defined by R Wd3x = rWd3x

  9. Electromagnetic interactions at RHIC and LHC

    E-Print Network [OSTI]

    M. C. Guclu

    2008-11-15

    At LHC energies the Lorentz factor will be 3400 for the Pb + Pb collisions and the electromagnetic interactions will play important roles. Cross sections for the electromagnetic particle productions are very large and can not be ignored for the lifetimes of the beams and background. In this article, we are going to study some of the electromagnetic processes at RHIC and LHC and show the cross section calculations of the electron-positron pair production with the giant dipole resonance of the ions.

  10. Thin sheet casting with electromagnetic pressurization

    DOE Patents [OSTI]

    Walk, Steven R. (Winterport, ME); Slepian, R. Michael (Pittsburgh, PA); Nathenson, Richard D. (Pittsburgh, PA); Williams, Robert S. (Fairfield, OH)

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  11. Sandia National Laboratories: Electromagnetics: Main Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORIES Electromagnetics (EM) is the study of the nature and interaction of static and dynamic electric and magnetic fields. Telecommunications, navigational guidance,...

  12. Study of nucleon resonances with electromagnetic interactions

    E-Print Network [OSTI]

    T. -S. H. Lee; L. C. Smith

    2006-11-10

    Recent developments in using electromagnetic meson production reactions to study the structure of nucleon resonances are reviewed. Possible future works are discussed.

  13. 6.630 Electromagnetic Theory, Fall 2002

    E-Print Network [OSTI]

    Kong, Jin Au, 1942-

    6.630 is an introductory subject on electromagnetics, emphasizing fundamental concepts and applications of Maxwell equations. Topics covered include: polarization, dipole antennas, wireless communications, forces and energy, ...

  14. Electromagnetic properties of massive neutrinos

    SciTech Connect (OSTI)

    Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

    2013-10-15

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  15. Quantum modulation against electromagnetic interference

    E-Print Network [OSTI]

    Juan Carlos Garcia-Escartin

    2014-11-26

    Periodic signals in electrical and electronic equipment can cause interference in nearby devices. Randomized modulation of those signals spreads their energy through the frequency spectrum and can help to mitigate electromagnetic interference problems. The inherently random nature of quantum phenomena makes them a good control signal. I present a quantum modulation method based on the random statistics of quantum light. The paper describes pulse width modulation schemes where a Poissonian light source acts as a random control that spreads the energy of the potential interfering signals. I give an example application for switching-mode power supplies and comment the further possibilities of the method.

  16. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  17. Alternative measurements of the fermion g-factor in the field of a traveling circularly polarized electromagnetic wave

    E-Print Network [OSTI]

    B. V. Gisin

    2015-08-20

    The field of a traveling circularly polarized electromagnetic wave and a constant magnetic field localizes fermions perpendicularly to propagation of the wave in the cross section of the order of the wavelength. Unusual exact solutions of the Dirac equation correspond to this localization. Except to routine use of thin fermion beams it can be suitable for alternative measurements of the g - factor. Details and peculiarities of the solutions in application to the measurements are considered in the paper.

  18. 466 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Electromagnetic Pulses Produced by

    E-Print Network [OSTI]

    Florida, University of

    discharge, lightning electromagnetic (EM) pulse, trav- eling wave, wave reflections. I. INTRODUCTION466 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Electromagnetic Pulses Produced by Bouncing-Wave-Type Lightning Discharges Amitabh Nag, Member, IEEE, and Vladimir A

  19. Progress In Electromagnetics Research, Vol. 114, 317332, 2011 PULSED BEAM EXPANSION OF ELECTROMAGNETIC

    E-Print Network [OSTI]

    Melamed, Timor

    Progress In Electromagnetics Research, Vol. 114, 317­332, 2011 PULSED BEAM EXPANSION-based pulsed-beams expansion of planar aperture time- dependent electromagnetic fields. The propagating field-beam waveobjects over the frame spectral lattice. Explicit asymptotic expressions for the electromagnetic pulsed

  20. Coherent Radio Pulses From GEANT Generated Electromagnetic Showers In Ice

    E-Print Network [OSTI]

    Soebur Razzaque; Surujhdeo Seunarine; David Z. Besson; Douglas W. McKay; John P. Ralston; David Seckel

    2002-02-25

    Radio Cherenkov radiation is arguably the most efficient mechanism for detecting showers from ultra-high energy particles of 1 PeV and above. Showers occuring in Antarctic ice should be detectable at distances up to 1 km. We report on electromagnetic shower development in ice using a GEANT Monte Carlo simulation. We have studied energy deposition by shower particles and determined shower parameters for several different media, finding agreement with published results where available. We also report on radio pulse emission from the charged particles in the shower, focusing on coherent emission at the Cherenkov angle. Previous work has focused on frequencies in the 100 MHz to 1 GHz range. Surprisingly, we find that the coherence regime extends up to tens of Ghz. This may have substantial impact on future radio-based neutrino detection experiments as well as any test beam experiment which seeks to measure coherent Cherenkov radiation from an electromagnetic shower. Our study is particularly important for the RICE experiment at the South Pole.

  1. Quasi light fields: extending the light field to coherent radiation

    E-Print Network [OSTI]

    Wornell, Gregory W.

    Quasi light fields: extending the light field to coherent radiation Anthony Accardi1,2 and Gregory light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field

  2. Kinetic theory of the electron bounce instability in two dimensional current sheets—Full electromagnetic treatment

    SciTech Connect (OSTI)

    Tur, A.; Fruit, G.; Louarn, P.

    2014-03-15

    In the general context of understanding the possible destabilization of a current sheet with applications to magnetospheric substorms or solar flares, a kinetic model is proposed for studying the resonant interaction between electromagnetic fluctuations and trapped bouncing electrons in a 2D current sheet. Tur et al. [A. Tur et al., Phys. Plasmas 17, 102905 (2010)] and Fruit et al. [G. Fruit et al., Phys. Plasmas 20, 022113 (2013)] already used this model to investigate the possibilities of electrostatic instabilities. Here, the model is completed for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period. The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasineutrality condition and the Ampere's law for the current density. It is found that for mildly strechted current, undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet half thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in ??=?B{sub z}/B{sub lobes}, the mode becomes explosive with typical growth rate of a few tens of seconds. The free energy contained in the bouncing motion of the electrons may trigger an electromagnetic instability able to disrupt the cross-tail current in a few seconds. This new instability–electromagnetic electron-bounce instability–may explain fast and global scale destabilization of current sheets as required to describe substorm phenomena.

  3. Visible-wavelength semiconductor lasers and arrays

    DOE Patents [OSTI]

    Schneider, Jr., Richard P. (Albuquerque, NM); Crawford, Mary H. (Albuquerque, NM)

    1996-01-01

    A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

  4. Short wavelength topography on the inner-core boundary

    E-Print Network [OSTI]

    Cao, A.; Masson, Y.; Romanowicz, B.

    2006-01-01

    Short wavelength topography on the inner-core boundary Aimin94720 Constraining the topography of the inner-core boundaryindicates the presence of topography at the inner- core

  5. Electromagnetic Eavesdropping Risks of Flat-Panel Displays

    E-Print Network [OSTI]

    Kuhn, Markus

    Electromagnetic Eavesdropping Risks of Flat-Panel Displays Markus G. Kuhn University of Cambridge/ Abstract. Electromagnetic eavesdropping of computer displays ­ first demonstrated to the general public shielded against such compromising electromagnetic emanations. The exact "TEMPEST" emis- sion limits

  6. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA); Hegland, Joel E. (Pullman, WA); Jones, Scott C. (Pullman, WA)

    1991-01-01

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission.

  7. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  8. Electromagnetic corrections to light hadron masses

    E-Print Network [OSTI]

    A. Portelli; S. Dürr; Z. Fodor; J. Frison; C. Hoelbling; S. D. Katz; S. Krieg; T. Kurth; L. Lellouch; T. Lippert; K. K. Szabó; A. Ramos

    2011-01-12

    At the precision reached in current lattice QCD calculations, electromagnetic effects are becoming numerically relevant. We will present preliminary results for electromagnetic corrections to light hadron masses, based on simulations in which a $\\mathrm{U}(1)$ degree of freedom is superimposed on $N_f=2+1$ QCD configurations from the BMW collaboration.

  9. Narrow field electromagnetic sensor system and method

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  10. Narrow field electromagnetic sensor system and method

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  11. Ultimate Energy Densities for Electromagnetic Pulses

    E-Print Network [OSTI]

    Mankei Tsang

    2008-03-06

    The ultimate electric and magnetic energy densities that can be attained by bandlimited electromagnetic pulses in free space are calculated using an ab initio quantized treatment, and the quantum states of electromagnetic fields that achieve the ultimate energy densities are derived. The ultimate energy densities also provide an experimentally accessible metric for the degree of localization of polychromatic photons.

  12. The sensitivity of children to electromagnetic fields

    E-Print Network [OSTI]

    Kheifets, Leeka; Repacholi, M; Saunders, R; van Deventer, E

    2005-01-01

    International Commission on Non-ionizing Radiation Protection.International Commission on Non-Ionizing Radiation Protection.

  13. Noninvasive valve monitor using alternating electromagnetic field

    DOE Patents [OSTI]

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  14. Noninvasive valve monitor using alternating electromagnetic field

    DOE Patents [OSTI]

    Eissenberg, David M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Casada, Donald A. (Knoxville, TN)

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  15. Electromagnetic field with constraints and Papapetrou equation

    E-Print Network [OSTI]

    Z. Ya. Turakulov; A. T. Muminov

    2006-01-12

    It is shown that geometric optical description of electromagnetic wave with account of its polarization in curved space-time can be obtained straightforwardly from the classical variational principle for electromagnetic field. For this end the entire functional space of electromagnetic fields must be reduced to its subspace of locally plane monochromatic waves. We have formulated the constraints under which the entire functional space of electromagnetic fields reduces to its subspace of locally plane monochromatic waves. These constraints introduce variables of another kind which specify a field of local frames associated to the wave and contain some congruence of null-curves. The Lagrangian for constrained electromagnetic field contains variables of two kinds, namely, a congruence of null-curves and the field itself. This yields two kinds of Euler-Lagrange equations. Equations of first kind are trivial due to the constraints imposed. Variation of the curves yields the Papapetrou equations for a classical massless particle with helicity 1.

  16. Slow-light plasmonic metamaterial based on dressed-state analog of electromagnetically-induced transparency

    E-Print Network [OSTI]

    Raza, Sřren

    2015-01-01

    We consider a simple configuration for realizing one-dimensional slow-light metamaterials with large bandwidth-delay products using stub-shaped Fabry-Perot resonators as building blocks. Each metaatom gives rise to large group indices due to a classical analog of the dressed-state picture of electromagnetically-induced transparency. By connecting up to eight metaatoms, we find bandwidth-delay products over unity and group indices approaching 100. Our approach is quite general and can be applied to any type of Fabry-Perot resonators and tuned to different operating wavelengths.

  17. A New Course for Fall 1999 Quarter (Physics 409) Synchrotron Radiation and

    E-Print Network [OSTI]

    A New Course for Fall 1999 Quarter (Physics 409) Synchrotron Radiation and Free Electron Lasers Instructor: Kwang-Je Kim (kwangje@aps.anl.gov) Synchrotron radiation is the electromagnetic radiation emitted for basic and applied studies of physical and biological systems. A number of major research institutions

  18. Wavelength modulation spectroscopy using novel mechanical light chopper blade designs

    E-Print Network [OSTI]

    Ghosh, Sandip

    Wavelength modulation spectroscopy using novel mechanical light chopper blade designs Jayeeta 23 May 2005; published online 21 July 2005 We describe two mechanical light chopper blade designs wavelength for positive grating orders. Our two designs, the alternating double-slot blade and the vertical

  19. Design of Wavelength Converting Switches for Optical Burst Switching

    E-Print Network [OSTI]

    Design of Wavelength Converting Switches for Optical Burst Switching Jeyashankher Ramamirtham, Jonathan Turner Abstract-- Optical Burst Switching (OBS) is an experi- mental network technology. In this paper, we study two designs for wavelength converting switches that are suitable for use in optical

  20. The wavelength dependence of seeing Robert W.Boyd*

    E-Print Network [OSTI]

    Boyd, Robert W.

    wave- length. The wavelength dependence of seeing effects has been a long-standing problem. Fried1. A systematic study of the wavelength de- pendence of this effect was conducted using the 1.5 m McMath solar device to take pictures of the solar limb at 10,umforsubsequent comparisonwith visi- ble

  1. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  2. Optical transition radiation in presence of acoustic waves

    E-Print Network [OSTI]

    A. R. Mkrtchyan; V. V. Parazian; A. A. Saharian

    2010-10-14

    Transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic wave.

  3. Electromagnetic material changes for remote detection and monitoring: a feasibility study: Progress report

    SciTech Connect (OSTI)

    McCloy, John S.; Jordan, David V.; Kelly, James F.; McMakin, Douglas L.; Johnson, Bradley R.; Campbell, Luke W.

    2009-09-01

    A new concept for radiation detection is proposed, allowing a decoupling of the sensing medium and the readout. An electromagnetic material, such as a magnetic ceramic ferrite, is placed near a source to be tracked such as a shipping container. The electromagnetic material changes its properties, in this case its magnetic permeability, as a function of radiation. This change is evident as a change in reflection frequency and magnitude when probed using a microwave/millimeter-wave source. This brief report discusses modeling of radiation interaction of various candidate materials using a radiation detector modeling code Geant4, system design considerations for the remote readout, and some theory of the material interaction physics. The theory of radiation change in doped magnetic insulator ferrites such as yttrium iron garnet (YIG) seems well founded based on literature documentation of the photomagnetic effect. The literature also suggests sensitivity of permittivity to neutrons in some ferroelectrics. Research to date indicates that experimental demonstration of these effects in the context of radiation detection is warranted.

  4. An electromagnetic black hole made of metamaterials

    E-Print Network [OSTI]

    Qiang Cheng; Tie Jun Cui; Wei Xiang Jiang; Ben Geng Cai

    2010-04-30

    Traditionally, a black hole is a region of space with huge gravitational field, which absorbs everything hitting it. In history, the black hole was first discussed by Laplace under the Newton mechanics, whose event horizon radius is the same as the Schwarzschild's solution of the Einstein's vacuum field equations. If all those objects having such an event horizon radius but different gravitational fields are called as black holes, then one can simulate certain properties of the black holes using electromagnetic fields and metamaterials due to the similar propagation behaviours of electromagnetic waves in curved space and in inhomogeneous metamaterials. In a recent theoretical work by Narimanov and Kildishev, an optical black hole has been proposed based on metamaterials, in which the theoretical analysis and numerical simulations showed that all electromagnetic waves hitting it are trapped and absorbed. Here we report the first experimental demonstration of such an electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields and the event horizon corresponding to the device boundary. It is shown that the absorption rate can reach 99% in the microwave frequencies. We expect that the electromagnetic black hole could be used as the thermal emitting source and to harvest the solar light.

  5. Survey of ambient electromagnetic and radio-frequency interference levels in nuclear power plants

    SciTech Connect (OSTI)

    Kercel, S.W.; Moore, M.R.; Blakeman, E.D.; Ewing, P.D.; Wood, R.T.

    1996-11-01

    This document reports the results of a survey of ambient electromagnetic conditions in representative nuclear power plants. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research engaged the Oak Ridge National Laboratory (ORNL) to perform these measurements to characterize the electromagnetic interference (EMI) and radio-frequency interference (RFI) levels that can be expected in nuclear power plant environments. This survey is the first of its kind, being based on long-term unattended observations. The data presented in this report were measured at eight different nuclear units and required 14 months to collect. A representative sampling of power plant conditions (reactor type, operating mode, site location) monitored over extended observation periods (up to 5 weeks) were selected to more completely determine the characteristic electromagnetic environment for nuclear power plants. Radiated electric fields were measured over the frequency range of 5 MHz to 8 GHz. Radiated magnetic fields and conducted EMI events were measured over the frequency range of 305 Hz to 5 MHz. Highest strength observations of the electromagnetic ambient environment across all measurement conditions at each site provide frequency-dependent profiles for EMI/RFI levels in nuclear power plants.

  6. Efficient weakly-radiative wireless energy transfer: An EIT-like approach

    E-Print Network [OSTI]

    Hamam, Rafif E.

    Inspired by a quantum interference phenomenon known in the atomic physics community as electromagnetically induced transparency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme between two ...

  7. Comparison of absolute spectral irradiance responsivity measurement techniques using wavelength-tunable lasers

    SciTech Connect (OSTI)

    Ahtee, Ville; Brown, Steven W.; Larason, Thomas C.; Lykke, Keith R.; Ikonen, Erkki; Noorma, Mart

    2007-07-10

    Independent methods for measuring the absolute spectral irradiance responsivity of detectors have been compared between the calibration facilities at two national metrology institutes, the Helsinki University of Technology (TKK), Finland, and the National Institute of Standards and Technology (NIST). The emphasis is on the comparison of two different techniques for generating a uniform irradiance at a reference plane using wavelength-tunable lasers. At TKK's Laser Scanning Facility (LSF) the irradiance is generated by raster scanning a single collimated laser beam, while at the NIST facility for Spectral Irradiance and Radiance Responsivity Calibrations with Uniform Sources (SIRCUS), lasers are introduced into integrating spheres to generate a uniform irradiance at a reference plane. The laser-based irradiance responsivity results are compared to a traditional lamp-monochromator-based irradiance responsivity calibration obtained at the NIST Spectral Comparator Facility (SCF). A narrowband filter radiometer with a24 nm bandwidth and an effective band-center wavelength of 801 nm was used as the artifact. The results of the comparison between the different facilities, reported for the first time in the near-infrared wavelength range, demonstrate agreement at the uncertainty level of less than 0.1%. This result has significant implications in radiation thermometry and in photometry as well as in radiometry.

  8. Alternative expression for the electromagnetic Lagrangian

    E-Print Network [OSTI]

    Saldanha, Pablo L

    2015-01-01

    We propose an alternative expression for the Lagrangian density that governs the interaction of a charged particle with external electromagnetic fields. The proposed Lagrangian is written in terms of the local superposition of the particle fields with the applied electromagnetic fields, not in terms of the particle charge and of the electromagnetic potentials as is usual. The total Lagrangian for a set of charged particles assumes a simple elegant form with the alternative formulation, giving an aesthetic support for it. The proposed Lagrangian is equivalent to the traditional one in their domain of validity and provides an interesting description of the Aharonov-Bohm effect.

  9. Spinors and pre-metric electromagnetism

    E-Print Network [OSTI]

    David Delphenich

    2005-12-22

    The basic concepts of the formulation of Maxwellian electromagnetism in the absence of a Minkowski scalar product on spacetime are summarized, with particular emphasis on the way that the electromagnetic constitutive law on the space of bivectors over spacetime supplants the role of the Minkowski scalar product on spacetime itself. The complex geometry of the space of bivectors is summarized, with the intent of showing how an isomorphic copy of the Lorentz group appears in that context. The use of complex 3-spinors to represent electromagnetic fields is then discussed, as well as the expansion of scope that the more general complex projective geometry of the space of bivectors suggests.

  10. On the Axioms of Topological Electromagnetism

    E-Print Network [OSTI]

    D. H. Delphenich

    2003-12-14

    The axioms of topological electromagnetism are refined by the introduction of the de Rham homology of k-vector fields on orientable manifolds and the use of Poincare duality in place of Hodge duality. The central problem of defining the electromagnetic constitutive law is elaborated upon in the linear and nonlinear cases. The manner by which the spacetime metric might follow from the constitutive law is examined in the linear case. The possibility that the intersection form of the spacetime manifold might play a role in defining a topological basis for the constitutive law is explored. The manner by which wave motion might follow from the electromagnetic structure is also discussed.

  11. Counting energy packets in the electromagnetic wave

    E-Print Network [OSTI]

    Stefan Popescu; Bernhard Rothenstein

    2007-05-18

    We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

  12. Electromagnetic Properties for Arbitrary Spin Particles: Part 1 $-$ Electromagnetic Current and Multipole Decomposition

    E-Print Network [OSTI]

    Cédric Lorcé

    2009-01-27

    In a set of two papers, we propose to study an old-standing problem, namely the electromagnetic interaction for particles of arbitrary spin. Based on the assumption that light-cone helicity at tree level and $Q^2=0$ should be conserved non-trivially by the electromagnetic interaction, we are able to derive \\emph{all} the natural electromagnetic moments for a pointlike particle of \\emph{any} spin. In this first paper, we propose a transparent decomposition of the electromagnetic current in terms of covariant vertex functions. We also define in a general way the electromagnetic multipole form factors, and show their relation with the electromagnetic moments. Finally, by considering the Breit frame, we relate the covariant vertex functions to multipole form factors.

  13. Composite scintillators for detection of ionizing radiation

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN) [Knoxville, TN; Stephan, Andrew Curtis (Knoxville, TN) [Knoxville, TN; Brown, Suree S. (Knoxville, TN) [Knoxville, TN; Wallace, Steven A. (Knoxville, TN) [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  14. Optical amplification at the 1.31 wavelength

    DOE Patents [OSTI]

    Cockroft, Nigel J. (Los Alamos, NM)

    1994-01-01

    An optical amplifier operating at the 1.31 .mu.m wavelength for use in such applications as telecommunications, cable television, and computer systems. An optical fiber or other waveguide device is doped with both Tm.sup.3+ and Pr.sup.3+ ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm.sup.3+ ions to the Pr.sup.3+ ions, causing the Pr.sup.3+ ions to amplify at a wavelength of 1.31

  15. Electromagnetic Side Channels of an FPGA Implementation of AES

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Electromagnetic Side Channels of an FPGA Implementation of AES Vincent Carlier, Hervâ??e Chabanne processed. Another side channel is the one that exploits the Electromagnetic (EM) emanations. Indeed references. In [QS01, GMO01], Simple Electromagnetic Analysis (SEMA) and Di#erential Electromagnetic Analysis

  16. Electromagnetic Side Channels of an FPGA Implementation of AES

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Electromagnetic Side Channels of an FPGA Implementation of AES Vincent Carlier, Herv´e Chabanne processed. Another side channel is the one that exploits the Electromagnetic (EM) emanations. Indeed references. In [QS01, GMO01], Simple Electromagnetic Analysis (SEMA) and Differential Electromagnetic

  17. Dr. S. Cruz-Pol, INEL 4152-Electromagnetics

    E-Print Network [OSTI]

    Cruz-Pol, Sandra L.

    Electromagnetics was born! Ř This is the principle of motors, hydro-electric generators and transformers operationDr. S. Cruz-Pol, INEL 4152- Electromagnetics Electrical Engineering, UPRM 1 Electromagnetic JdlH Cruz-Pol, Electromagnetics UPRM Would magnetism would produce electricity? Ř Eleven years later

  18. ECE 1228 Electromagnetics Theory Instructor Name: Mo Mojahedi

    E-Print Network [OSTI]

    Mojahedi, Mohammad

    ECE 1228 Electromagnetics Theory Instructor Name: Mo Mojahedi Office Location: Room SF2001D Tel: 416-978-0908 Email: mojahedi@waves.utoronto.ca Course Name and number: Electromagnetics Theory, ECE in Electromagnetics and Photonics. It revisits and expands some of the more fundamental electromagnetic laws

  19. Selective radiative heating of nanostructures using hyperbolic metamaterials

    SciTech Connect (OSTI)

    Ding, Ding; Minnich, Austin J

    2015-01-01

    Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

  20. Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator

    DOE Patents [OSTI]

    Cockeram, Brian Vern

    2004-01-27

    Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.

  1. Thermal radiation and blackbody radiation drag of a large-sized perfectly black particle moving with relativistic velocity

    E-Print Network [OSTI]

    Kyasov, A A

    2015-01-01

    We have developed a self-consistent description of the radiation heat transfer and dynamics of large perfectly black spherical bodies with sizes much greater than the characteristic wavelength of radiation moving in a photon gas with relativistic velocity. The results can be important in astrophysics.

  2. Least-squares methods for computational electromagnetics 

    E-Print Network [OSTI]

    Kolev, Tzanio Valentinov

    2004-11-15

    The modeling of electromagnetic phenomena described by the Maxwell's equations is of critical importance in many practical applications. The numerical simulation of these equations is challenging and much more involved than initially believed...

  3. Dynamic programming applied to electromagnetic satellite actuation

    E-Print Network [OSTI]

    Eslinger, Gregory John

    2013-01-01

    Electromagnetic formation flight (EMFF) is an enabling technology for a number of space mission architectures. While much work has been done for EMFF control for large separation distances, little work has been done for ...

  4. The classical geometrization of the electromagnetism

    E-Print Network [OSTI]

    Celso de Araujo Duarte

    2015-08-13

    Following the line of the history, if by one side the electromagnetic theory was consolidated on the 19th century, the emergence of the special and the general relativity theories on the 20th century opened possibilities of further developments, with the search for the unification of the gravitation and the electromagnetism on a single unified theory. Some attempts to the geometrization of the electromagnetism emerged in this context, where these first models resided strictly on a classical basis. Posteriorly, they were followed by more complete and embracing quantum field theories. The present work reconsiders the classical viewpoint, with the purpose of showing that at first order of approximation the electromagnetism constitutes a geometric structure aside other phenomena as gravitation, and that magnetic monopoles do not exist at least up to this order of approximation. Even though being limited, the model is consistent and offers the possibility of an experimental test of validity.

  5. ECGR3142 Electromagnetic Devices Course Description

    E-Print Network [OSTI]

    Nasipuri, Asis

    in transformers and electrical machines; Generation of induced voltages; Electromechanical torque development, measurements of transformer parameters, transformer parameters. Basic principles of electric machines: forcesECGR3142 Electromagnetic Devices Course Description Principles of operation and basic design

  6. Electromagnetic Characterization of MIMO Communication Systems

    E-Print Network [OSTI]

    Heath Jr., - Robert W.

    Electromagnetic Characterization of MIMO Communication Systems Kapil R. Dandekar, Sumant Kawale) wireless communication links [1, 2]. Systems with MIMO communication links use multiple antenna arrays, one generation mobile cellular systems [9]. The theoretical capabilities of MIMO communication links have been

  7. Marine Electromagnetic Methods for Gas Hydrate Characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen A

    2008-01-01

    data: an electromagnetic survey at Hydrate Ridge, Oregon made possible by funding from Exxon MobilExxon Mobil and from GERD, Japan to study gas hydrates. We only had 3 days of data

  8. Marine electromagnetic methods for gas hydrate characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen Andrea

    2008-01-01

    data: an electromagnetic survey at Hydrate Ridge, Oregon made possible by funding from Exxon MobilExxon Mobil and from GERD, Japan to study gas hydrates. We only had 3 days of data

  9. Electromagnetism in terms of quantum measurements

    E-Print Network [OSTI]

    Andreas Andersson

    2015-09-16

    We consider the question whether electromagnetism can be derived from quantum physics of measurements. It turns out that this is possible, both for quantum and classical electromagnetism, if we use more recent innovations such as smearing of observables and simultaneous measurability. In this way we justify the use of von Neumann-type measurement models for physical processes. We apply operational quantum measurement theory to gain insight in fundamental aspects of quantum physics. Interactions of von Neumann type make the Heisenberg evolution of observables describable using explicit operator deformations. In this way one can obtain quantized electromagnetism as a measurement of a system by another. The relevant deformations (Rieffel deformations) have a mathematically well-defined "classical" limit which is indeed classical electromagnetism for our choice of interaction.

  10. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect (OSTI)

    Sati, Priti; Tripathi, V. K.

    2012-12-15

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  11. Testing Loop Quantum Gravity and Electromagnetic Dark Energy in Superconductors

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2009-08-06

    In 1989 Cabrera and Tate reported an anomalous excess of mass of the Cooper pairs in rotating thin Niobium rings. So far, this experimental result never received a proper theoretical explanation in the context of superconductor's physics. In the present work we argue that what Cabrera and Tate interpreted as an anomalous excess of mass can also be associated with a deviation from the classical gravitomagnetic Larmor theorem due to the presence of dark energy in the superconductor, as well as with the discrete structure of the area of the superconducting Niobium ring as predicted by Loop Quantum Gravity. From Cabrera and Tate measurements we deduce that the quantization of spacetime in superconducting circular rings occurs at the Planck-Einstein scale $l_{PE} = (\\hbar G/c^3 \\Lambda)^{1/4}\\sim 3.77\\times 10 ^{-5} m$, instead of the Planck scale $l_{P} =(\\hbar G / c^3)^{1/2}=1.61 \\times 10 ^{-35} m$, with an Immirzi parameter which depends on the specific critical temperature of the superconducting material and on the area of the ring. The stephan-Boltzmann law for quantized areas delimited by superconducting rings is predicted, and an experimental concept based on the electromagnetic black-body radiation emitted by this surfaces, is proposed to test loop quantum gravity and electromagnetic dark energy in superconductors.

  12. Electromagnetic Corrections in Staggered Chiral Perturbation Theory

    E-Print Network [OSTI]

    C. Bernard; E. D. Freeland

    2010-11-17

    To reduce errors in light-quark mass determinations, it is now necessary to consider electromagnetic contributions to light-meson masses. Calculations using staggered quarks and quenched photons are currently underway. Suitably-extended chiral perturbation theory is necessary to extrapolate the lattice data to the physical limit. Here we give (preliminary) results for light-meson masses using staggered chiral perturbation theory including electromagnetism, and discuss the extent to which quenched-photon simulations can improve quark-mass calculations.

  13. Electromagnetic Modelling of Superconducting Sensor Designs

    E-Print Network [OSTI]

    Gerra, Guido

    OF MATERIALS SCIENCE AND METALLURGY Electromagnetic Modelling of Superconducting Sensor Designs Guido Gerra Clare Hall, University of Cambridge 1 Preface The present dissertation has been submitted for the degree of Master... in the current circulating in it to the magnetic field the SQUID is subjected to. This possibility arises from the dynamics of electromagnetic fields in superconductors combined with the Josephson effect, and appropriate coupling schemes can be used to measure...

  14. Electromagnetic and spin polarisabilities in lattice QCD

    E-Print Network [OSTI]

    W. Detmold; B. C. Tiburzi; A. Walker-Loud

    2006-10-02

    We discuss the extraction of the electromagnetic and spin polarisabilities of nucleons from lattice QCD. We show that the external field method can be used to measure all the electromagnetic and spin polarisabilities including those of charged particles. We then turn to the extrapolations required to connect such calculations to experiment in the context of chiral perturbation theory, finding a strong dependence on the lattice volume and quark masses.

  15. Electromagnetic Transport From Microtearing Mode Turbulence

    SciTech Connect (OSTI)

    Guttenfelder, W; Kaye, S M; Nevins, W M; Wang, E; Bell, R E; Hammett, G W; LeBlanc, B P; Mikkelsen, D R

    2011-03-23

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  16. Electromagnetic pulse (EMP), Part I: Effects on field medical equipment

    SciTech Connect (OSTI)

    Vandre, R.H.; Klebers, J.; Tesche, F.M.; Blanchard, J.P. (Walter Reed Army Medical Center, Washington, DC (United States))

    1993-04-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation has the potential to cover an area as large as the continental United States with damaging levels of EMP radiation. In this study, two of seven items of medical equipment were damaged by an EMP simulator. Computer circuit analysis of 17 different items showed that 11 of the 17 items would be damaged by current surges on the power cords, while two would be damaged by current surges on external leads. This research showed that a field commander can expect approximately 65% of his electronic medical equipment to be damaged by a single nuclear detonation as far as 2,200 km away.

  17. Digital Frequency Domain Multiplexer for mm-Wavelength Telescopes

    E-Print Network [OSTI]

    Dobbs, Matt

    2008-01-01

    for Large Scale Bolometer Arrays”, Monterey Far-IR, Sub-mmand mm Detector Technology Workshop proceedings, 2002, pp.Domain Multiplexer for mm-Wavelength Telescopes Matt Dobbs,

  18. 2nd conference on Intense field- Short Wavelength Atomic and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nd conference on Intense field- Short Wavelength Atomic and Molecular Processes - ISWAMP2 http:iswamp2.jlu.edu.cn July 20-22, 2013; Xi'an, China...

  19. Environmental effects on TPB wavelength-shifting coatings

    E-Print Network [OSTI]

    Chiu, C. S.

    The scintillation detection systems of liquid argon time projection chambers (LArTPCs) require wavelength shifters to detect the 128 nm scintillation light produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent ...

  20. LOCAL RADIATION MAGNETOHYDRODYNAMIC INSTABILITIES IN MAGNETICALLY STRATIFIED MEDIA

    SciTech Connect (OSTI)

    Tao, Ted; Blaes, Omer

    2011-11-20

    We study local radiation magnetohydrodynamic instabilities in static, optically thick, vertically stratified media with constant flux mean opacity. We include the effects of vertical gradients in a horizontal background magnetic field. Assuming rapid radiative diffusion, we use the zero gas pressure limit as an entry point for investigating the coupling between the photon bubble instability and the Parker instability. Apart from factors that depend on wavenumber orientation, the Parker instability exists for wavelengths longer than a characteristic wavelength {lambda}{sub tran}, while photon bubbles exist for wavelengths shorter than {lambda}{sub tran}. The growth rate in the Parker regime is independent of the orientation of the horizontal component of the wavenumber when radiative diffusion is rapid, but the range of Parker-like wavenumbers is extended if there exists strong horizontal shear between field lines (i.e., horizontal wavenumber perpendicular to the magnetic field). Finite gas pressure introduces an additional short-wavelength limit to the Parker-like behavior, and also limits the growth rate of the photon bubble instability to a constant value at short wavelengths. We also consider the effects of differential rotation with accretion disk applications in mind. Our results may explain why photon bubbles have not yet been observed in recent stratified shearing box accretion disk simulations. Photon bubbles may physically exist in simulations with high radiation to gas pressure ratios, but higher spatial resolution will be needed to resolve the asymptotically growing unstable wavelengths.

  1. Stability of Wavelengths and Spatiotemporal Intermittency in Coupled Map Lattices

    E-Print Network [OSTI]

    A. Lambert; R. Lima

    1994-08-01

    In relation to spatiotemporal intermittency, as it can be observed in coupled map lattices, we study the stability of different wavelengths in competition. Introducing a two dimensional map, we compare its dynamics with the one of the whole lattice. We conclude a good agreement between the two. The reduced model also allows to introduce an order parameter which combines the diffusion parameter and the spatial wavelength under consideration.

  2. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions ŕ prendre ( p.ex. film badge), comment mesurer les radiations etc.

  3. Smith-Purcell radiation on a surface wave

    E-Print Network [OSTI]

    A. A. Saharian

    2010-10-11

    We consider the radiation from an electron in flight over a surface wave of an arbitrary profile excited in a plane interface. For an electron bunch the conditions are specified under which the overall radiation essentially exceeds the incoherent part. It is shown that the radiation from the bunch with asymmetric density distribution of electrons in the longitudinal direction is partially coherent for waves with wavelengths much shorter than the characteristic longitudinal size of the bunch.

  4. Radiative Heat Transfer between Neighboring Particles

    E-Print Network [OSTI]

    Alejandro Manjavacas; F. Javier Garcia de Abajo

    2012-01-26

    The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

  5. Tangential force, Frictional Torque and Heating Rate of a Small Neutral Rotating Particle Moving through the Equilibrium Background Radiation

    E-Print Network [OSTI]

    G. V. Dedkov; A. A. Kyasov

    2013-02-04

    For the first time, based on the fluctuation-electromagnetic theory, we have calculated the drug force, the radiation heat flux and the frictional torque on a small rotating particle moving at a relativistic velocity through the equilibrium background radiation (photon gas). The particle and background radiation are characterized by different temperatures corresponding to the local thermodynamic equilibrium in their own reference frames.

  6. Discussion on the Mechanism of Electromigration from the Perspective of Electromagnetism

    E-Print Network [OSTI]

    Zhou, Peng; Johnson, William C.

    2010-01-01

    from the Perspective of Electromagnetism PENG ZHOU 1,3 andthe perspective of electromagnetism, rather than from thecharge, electromigration, electromagnetism INTRODUCTION

  7. RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA

    SciTech Connect (OSTI)

    Tanaka, Masaomi [National Astronomical Observatory of Japan, Mitaka, Tokyo (Japan); Hotokezaka, Kenta, E-mail: masaomi.tanaka@nao.ac.jp, E-mail: hotoke@tap.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto (Japan)

    2013-10-01

    Mergers of binary neutron stars (NSs) are among the most promising gravitational wave (GW) sources. Next generation GW detectors are expected to detect signals from NS mergers within about 200 Mpc. The detection of electromagnetic wave (EM) counterparts is crucial to understanding the nature of GW sources. Among the possible EM emission from the NS merger, emission powered by radioactive r-process nuclei is one of the best targets for follow-up observations. However, predictions so far have not taken into account detailed r-process element abundances in the ejecta. We perform for the first time radiative transfer simulations of the NS merger ejecta including all the r-process elements from Ga to U. We show that the opacity of the NS merger ejecta is about ? = 10 cm{sup 2} g{sup –1}, which is higher than that of Fe-rich Type Ia supernova ejecta by a factor of ?100. As a result, the emission is fainter and lasts longer than previously expected. The spectra are almost featureless due to the high expansion velocity and bound-bound transitions of many different r-process elements. We demonstrate that the emission is brighter for a higher mass ratio of the two NSs and a softer equation of state adopted in the merger simulations. Because of the red color of the emission, follow-up observations in red optical and near-infrared (NIR) wavelengths will be the most efficient. At 200 Mpc, the expected brightness of the emission is i = 22-25 AB mag, z = 21-23 AB mag, and 21-24 AB mag in the NIR JHK bands. Thus, observations with wide-field 4 m- and 8 m-class optical telescopes and wide-field NIR space telescopes are necessary. We also argue that the emission powered by radioactive energy can be detected in the afterglow of nearby short gamma-ray bursts.

  8. Massless Dirac Fermions in Electromagnetic Field

    E-Print Network [OSTI]

    Ahmed Jellal; Abderrahim El Mouhafid; Mohammed Daoud

    2012-02-12

    We study the relations between massless Dirac fermions in an electromagnetic field and atoms in quantum optics. After getting the solutions of the energy spectrum, we show that it is possible to reproduce the 2D Dirac Hamiltonian, with all its quantum relativistic effects, in a controllable system as a single trapped ion through the Jaynes--Cummings and anti-Jaynes--Cummings models. Also we show that under certain conditions the evolution of the Dirac Hamiltonian provides us with Rashba spin-orbit and linear Dresselhaus couplings. Considering the multimode multiphoton Jaynes-Cummings model interacting with N modes of electromagnetic field prepared in general pure quantum states, we analyze the Rabi oscillation. Evaluating time evolution of the Dirac position operator, we determine the Zitterbewegung frequency and the corresponding oscillating term as function of the electromagnetic field.

  9. Complex geometry and pre-metric electromagnetism

    E-Print Network [OSTI]

    D. H. Delphenich

    2004-12-10

    The intimate link between complex geometry and the problem of the pre-metric formulation of electromagnetism is explored. In particular, the relationship between 3+1 decompositions of R4 and the decompositions of the vector space of bivectors over R4 into real and imaginary subspaces relative to a choice of complex structure is emphasized. The role of the various scalar products on the space of bivectors that are defined in terms of a volume element on R4 and a complex structure on the space of bivectors that makes it C-linear isomorphic to C3 is discussed in the context of formulation of a theory of electromagnetism in which the Lorentzian metric on spacetime follows as a consequence of the existence of electromagnetic waves, not a prior assumption.

  10. Wavelength calibration of the JWST-MIRI medium resolution spectrometer

    E-Print Network [OSTI]

    Martinez-Galarza, J R; Hernan-Caballero, A; Azzollini, R; Glasse, A; Kendrew, S; Brandl, B; Lahuis, F

    2010-01-01

    We present the wavelength and spectral resolution characterisation of the Integral Field Unit (IFU) Medium Resolution Spectrometer for the Mid-InfraRed Instrument (MIRI), to fly onboard the James Webb Space Telescope in 2014. We use data collected using the Verification Model of the instrument and develop an empirical method to calibrate properties such as wavelength range and resolving power in a portion of the spectrometer's full spectral range (5-28 microns). We test our results against optical models to verify the system requirements and combine them with a study of the fringing pattern in the instrument's detector to provide a more accurate calibration. We show that MIRI's IFU spectrometer will be able to produce spectra with a resolving power above R=2800 in the wavelength range 6.46-7.70 microns, and that the unresolved spectral lines are well fitted by a Gaussian profile.

  11. Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths

    E-Print Network [OSTI]

    Monreal, P; Sánchez, E; Parra, F I; Bustos, A; Könies, A; Kleiber, R; Görler, T

    2015-01-01

    In the linear collisionless limit, a zonal potential perturbation in a toroidal plasma relaxes, in general, to a non-zero residual value. Expressions for the residual value in tokamak and stellarator geometries, and for arbitrary wavelengths, are derived. These expressions involve averages over the lowest order particle trajectories, that typically cannot be evaluated analytically. In this work, an efficient numerical method for the evaluation of such expressions is reported. It is shown that this method is faster than direct gyrokinetic simulations. Calculations of the residual value in stellarators are provided for much shorter wavelengths than previously available in the literature. Electrons must be treated kinetically in stellarators because, unlike in tokamaks, kinetic electrons modify the residual value even at long wavelengths. This effect, that had already been predicted theoretically, is confirmed by gyrokinetic simulations.

  12. Nano structural anodes for radiation detectors

    DOE Patents [OSTI]

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  13. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Anhui, CN); Schultz, Peter G. (La Jolla, CA); Wei, Tao (Sunnyvale, CA)

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  14. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  15. Electromagnetic waves, gravitational coupling and duality analysis

    E-Print Network [OSTI]

    E. M. C. Abreu; C. Pinheiro; S. A. Diniz; F. C. Khanna

    2005-10-27

    In this letter we introduce a particular solution for parallel electric and magnetic fields, in a gravitational background, which satisfy free-wave equations and the phenomenology suggested by astrophysical plasma physics. These free-wave equations are computed such that the electric field does not induce the magnetic field and vice-versa. In a gravitational field, we analyze the Maxwell equations and the corresponding electromagnetic waves. A continuity equation is presented. A commutative and noncommutative analysis of the electromagnetic duality is described.

  16. Electromagnetic Observables in Few-Nucleon Systems

    E-Print Network [OSTI]

    Sonia Bacca

    2012-10-10

    The electromagnetic probe is a very valuable tool to study the dynamics of few nucleons. It can be very helpful in shedding light on the not yet fully understood three-nucleon forces. We present an update on the theoretical studies of electromagnetic induced reactions, such as photo-disintegration and electron scattering off 4He. We will show that they potentially represent a tool to discriminate among three-nucleon forces. Then, we will discuss the charge radius and the nuclear electric polarizability of the 6He halo nucleus.

  17. Duality in Off-Shell Electromagnetism

    E-Print Network [OSTI]

    Martin Land

    2006-03-21

    In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five dimensional U(1) gauge theory associated with Stueckelberg-Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five dimensional theory prevents a natural generalization of the Dirac monopole, since the theory is not symmetric under duality transformations. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.

  18. Bioelectromagnetic effects of the electromagnetic pulse (EMP)

    SciTech Connect (OSTI)

    Patrick, E.L.; Vault, W.L.

    1990-03-01

    The public has expressed concern about the biological effects and hazards of non-ionizing electromagnetic fields produced by the electro-magnetic pulse (EMP) simulators that simulate the EMP emanating from a high-altitude nuclear explosion. This paper provides a summary of the bioelectromagnetic effects literature up through the present, describes current occupational standards for workers exposed to the EMP environment, and discusses the use of medical surveillance as it relates to the potential human health hazards associated with exposure to the EMP environment.

  19. Forces in electromagnetic field and gravitational field

    E-Print Network [OSTI]

    Zihua Weng

    2011-03-31

    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in the interplanetary space between the sun and the earth.

  20. Effects of Pulsed Low Frequency Electromagnetic Fields on Water Characterized by Light Scattering Techniques: Role of Bubbles

    E-Print Network [OSTI]

    Vallée, P; Legrand, L; Mentré, P; Monod, M O; Thomas, Y; Vall\\'{e}e, Philippe; Lafait, Jacques; Legrand, Laurent; Mentr\\'{e}, Pascale; Monod, Marie-Odile; Thomas, Yol\\`{e}ne

    2005-01-01

    Well-characterized purified water was exposed for 6 h to pulsed low-frequency weak electromagnetic fields. After various time periods, nondegassed and degassed water samples were analyzed by static light scattering. Just after electromagnetic exposure (day 0), a reduction of over 20% in the maximum light scattering intensity at 488 nm wavelength in both nondegassed and degassed samples was observed. By contrast, on day 12 the difference was observed only in nondegassed water samples. The latter effect was attributed to the different geometries of the containers combined with the basic origin of the whole phenomenon due to gas bubbles present in water. By the use of dynamic light scattering, the bubble mean diameter was estimated to be around 300 nm. Our results suggest that the electromagnetic exposure acts on gas nanobubbles present in water and emphasizes the role of the gas/liquid interface. The possibility that exposure to electromagnetic fields disturbs the ionic double-layer that contributes to bubble s...

  1. High speed infrared radiation thermometer, system, and method

    DOE Patents [OSTI]

    Markham, James R. (Middlefield, CT)

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  2. Diffusive radiation in Langmuir turbulence produced by jet shocks

    E-Print Network [OSTI]

    Fleishman, Gregory D

    2007-01-01

    Anisotropic distributions of charged particles including two-stream distributions give rise to generation of either stochastic electric fields (in the form of Langmuir waves, Buneman instability) or random quasi-static magnetic fields (Weibel and filamentation instabilities) or both. These two-stream instabilities are known to play a key role in collisionless shock formation, shock-shock interactions, and shock-induced electromagnetic emission. This paper applies the general non-perturbative stochastic theory of radiation to study electromagnetic emission produced by relativistic particles, which random walk in the stochastic electric fields of the Langmuir waves. This analysis takes into account the cumulative effect of uncorrelated Langmuir waves on the radiating particle trajectory giving rise to angular diffusion of the particle, which eventually modifies the corresponding radiation spectra. We demonstrate that the radiative process considered is probably relevant for emission produced in various kinds of...

  3. OMEGA: a short-wavelength laser for fusion experiments

    SciTech Connect (OSTI)

    Soures, J.M.; Hutchison, R.J.; Jacobs, S.D.; Lund, L.D.; McCrory, R.L.; Richardson, M.C.

    1983-01-01

    The OMEGA, Nd:glass laser facility was constructed for the purpose of investigating the feasibility of direct-drive laser fusion. With 24 beams producing a total energy of 4 kJ or a peak power of 12 TW, OMEGA is capable of nearly uniform illumination of spherical targets. Six of the OMEGA beams have recently been converted to short-wavelength operation (351 nm). In this paper, we discuss details of the system design and performance, with particular emphasis on the frequency-conversion system and multi-wavelength diagnostic system.

  4. Unidirectional and Wavelength Selective Photonic Sphere-Array Nanoantennas

    E-Print Network [OSTI]

    Liu, Yang G; Sha, Wei E I; Chew, Weng Cho

    2015-01-01

    We design a photonic sphere-array nanoantenna (NA) exhibiting both strong directionality and wavelength selectivity. Although the geometric configuration of the photonic NA resembles a plasmonic Yagi-Uda NA, it has different working principles, and most importantly, reduces the inherent metallic loss from plasmonic elements. For any selected optical wavelength, a sharp Fano-resonance by the reflector is tunable to overlap spectrally with a wider dipole resonance by the sphere-chain director leading to the high directionality. The work provides design principles for directional and selective photonic NAs, which is particularly useful for photon detection and spontaneous emission manipulation.

  5. Physical and computer modeling of military earth grounding practices in a HEMP (high-altitude electromagnetic pulse) environment. Technical memo

    SciTech Connect (OSTI)

    Cuneo, A.A. Jr.; Loftus, J.J.; Perala, R.A.

    1983-06-01

    Military grounding practices compatible with hardening electronic systems to high-altitude electromagnetic pulse (HEMP) illumination are considered. This study concerns the grounding practices outlined in MIL-STD-188-124, Common Long-Haul/Tactical Communications Systems. Three standard grounding schemes and one new scheme were chosen for study at a 10:1 scale, illuminated by a 59-V/m peak simulated HEMP. There were several significant results: (a) The theoretical technique in general agrees to within a factor of three with the experimental results, (b) The type end of earth ground system does not appear to be important, and (c) Intrasite transients tend to be dominated by electromagnetic coupling to completed conductive loops. When the loop is broken, the transient is characterized by the half-wavelength resonance of the conductor. Grounding paths which do not form part of the loop do not contribute significantly to the transient in the loop.

  6. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    E-Print Network [OSTI]

    M. Sweany; A. Bernstein; S. Dazeley; J. Dunmore; J. Felde; R. Svoboda; M. Tripathi

    2011-10-14

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $\\pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $\\pm$ 0.03 for Carbostyril-124, and 1.20 $\\pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modeled, resulting in a simulated gain within 9% of the experimental gain at 1 ppm concentration. Finally, we report an increase in neutron detection performance of a large-scale (3.5 kL) gadolinium-doped water Cherenkov detector at a 4-Methylumbelliferone concentration of 1 ppm.

  7. Electromagnetic Light in Medium of Polarized Atoms $^3$He

    E-Print Network [OSTI]

    V. N. Minasyan

    2009-04-01

    First, it is predicted that polarized atoms $^3$He increase a value of speed electromagnetic waves. This reasoning implies that the velocity of electromagnetic waves into gas consisting of polarized atoms $^3$He is rather than one in vacuum.

  8. Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered

    E-Print Network [OSTI]

    Oughstun, Kurt

    Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered Biological Media- cally rigorous, physically correct description of the propagation of pulsed electromagnetic fields pulses through multilayered biological media consisting of three biological tissue layers rep- resenting

  9. Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz

    E-Print Network [OSTI]

    Yavuz, Deniz

    Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz Department pulses inside an atomic medium using electromag- netically induced transparency. Extending the suggestion.65. k Over the last decade, counterintuitive optical effects using electromagnetically induced

  10. Mathematical Methods for Electromagnetic and Optical Waves1

    E-Print Network [OSTI]

    Lu, Ya Yan

    Mathematical Methods for Electromagnetic and Optical Waves1 Ya Yan Lu Department of Mathematics . . . . . . . . . . . . . . . . . . . . . . 5 1.6 The energy law of electromagnetic field . . . . . . . . . . . . . . . . . . . . . 7 2.5 Pulse propagation and temporal solitons . . . . . . . . . . . . . . . . . . . . . 70 2 #12;Chapter 1

  11. The Eyjafjallajkull volcanic system, Iceland: insights from electromagnetic measurements

    E-Print Network [OSTI]

    Jones, Alan G.

    The Eyjafjallajökull volcanic system, Iceland: insights from electromagnetic measurements Journal; Iceland Geosurvey, Vilhjálmsson, Arnar; Iceland Geosurvey, Keywords: Magnetotellurics system, Iceland: insights from1 electromagnetic measurements2 Marion P. Miensopust1,2, , Alan G. Jones1

  12. Passive electromagnetic damping device for motion control of building structures

    E-Print Network [OSTI]

    Palomera-Arias, Rogelio, 1972-

    2005-01-01

    The research presented in this thesis develops a new device for the passive control of motion in building structures: an electromagnetic damper. The electromagnetic damper is a self-excited device that provides a reaction ...

  13. Multi-wavelength constraints on cosmic-ray leptons in the Galaxy

    E-Print Network [OSTI]

    Orlando, E; Moskalenko, I V; Dickinson, C; Digel, S; Jaffe, T R; Jóhannesson, G; Leahy, J P; Porter, T A; Vidal, M

    2015-01-01

    Cosmic rays (CRs) interact with the gas, the radiation field and the magnetic field in the Milky Way, producing diffuse emission from radio to gamma rays. Observations of this diffuse emission and comparison with detailed predictions are powerful tools to unveil the CR properties and to study CR propagation. We present various GALPROP CR propagation scenarios based on current CR measurements. The predicted synchrotron emission is compared to radio surveys, and synchrotron temperature maps from WMAP and Planck, while the predicted interstellar gamma-ray emission is compared to Fermi-LAT observations. We show how multi-wavelength observations of the Galactic diffuse emission can be used to help constrain the CR lepton spectrum and propagation. Finally we discuss how radio and microwave data could be used in understanding the diffuse Galactic gamma-ray emission observed with Fermi-LAT, especially at low energies.

  14. First Lasing of Volume FEL (VFEL) at Wavelength Range $?\\sim $ 4-6 mm

    E-Print Network [OSTI]

    V. Baryshevsky; K. Batrakov; A. Gurinovich; I. Ilienko; A. Lobko; V. Moroz; P. Sofronov; V. Stolyarsky

    2001-07-18

    First lasing of volume free electron laser (VFEL) is described. The generating system consists of two metal diffraction grating with different spatial periods. The first grating creates the conditions for Smith Purcell emission mechanism. The second grating provides the distributed feedback for emitted wave. The length of diffraction grating is 10 cm. Electron beam pulse with a time duration $\\tau \\sim$ 10 ms has a sinusoidal form with the amplitude varied from 1 to ~10 kV. The measured microwave power reached the value of about 3-4 W in mm wavelength range. The generation stops at threshold current value. When the current tends to the threshold value, the region of generation tends to a narrow band near to 5 kV. At higher current values the radiation appears in electron energy range 5 - 7.5 KeV.

  15. High detectivity short-wavelength II-VI quantum cascade detector

    SciTech Connect (OSTI)

    Ravikumar, Arvind P. Gmachl, Claire F.; Garcia, Thor A.; Tamargo, Maria C.; Jesus, Joel De

    2014-08-11

    We report on the experimental demonstration of a ZnCdSe/ZnCdMgSe-based short-wavelength photovoltaic Quantum Cascade Detector (QCD). The QCD operates in two spectral bands centered around 2.6??m and 3.6??m. Calibrated blackbody measurements yield a peak responsivity of 0.1?mA/W or 2400?V/W at 80?K, and a corresponding 300?K background radiation limited infrared performance detectivity (BLIP) of ?2.5?×?10{sup 10?}cm ?Hz/W. Comparison of background illuminated and dark current-voltage measurements demonstrates a BLIP temperature of 200?K. The device differential resistance-area product, decreases from about 10{sup 6} ? cm{sup 2} at 80?K to about 8000 ? cm{sup 2} at 300?K, indicative of the ultra-low Johnson noise in the detectors.

  16. RADIATION MONITORING

    E-Print Network [OSTI]

    Thomas, R.H.

    2010-01-01

    Radiation Exposure due to a Boiling Water Reactor Plume fromIN THE VICINITY OF A BOILING WATER REACTOR EXPOSURE RATE

  17. Transition Radiation from the Neutrino-Photon Interaction in Matter

    E-Print Network [OSTI]

    Juan Carlos D'Olivo; José Antonio Loza

    2012-02-22

    We show that, because of their effective electromagnetic interaction in matter, transition radiation is emitted whenever neutrinos goes across the boundary between two media with different indices of refraction. This effect occurs in the context of the standard model and does not depend on any exotic neutrino property. We examine such a phenomena and compare it with the transition radiation of a neutrino endowed with an intrinsic dipole moment.

  18. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless Charging...

  19. Waveguide-based Ultrasonic and Far-field Electromagnetic Sensors...

    Broader source: Energy.gov (indexed) [DOE]

    ultrasonic and farfield electromagnetic sensors to measure key Enhanced Geothermal Systems (EGS) reservoir parameters, including directional temperature, pressure,...

  20. Asymmetric radiative damping of low shear toroidal Alfvn eigenmodes R. M. Nyqvist and S. E. Sharapov

    E-Print Network [OSTI]

    Asymmetric radiative damping of low shear toroidal Alfvén eigenmodes R. M. Nyqvist and S. E by the American Institute of Physics. Related Articles Influence of electromagnetic radiation on the power balance in a radiofrequency microdischarge with a hollow needle electrode Appl. Phys. Lett. 101, 144104 (2012) Plasma

  1. Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone

    E-Print Network [OSTI]

    Yakovlev, Vadim

    Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone Shawn M (electromagnetic and thermal) modeling to cover practically valuable scenarios of hybrid (heat radiation is applied to the process of hybrid heating of cylindrical samples of limestone in Ceralink's MAT TM kiln

  2. Electromagnetic Composites at the Compton Scale

    E-Print Network [OSTI]

    Frederick J. Mayer; John R. Reitz

    2011-09-10

    A new class of electromagnetic composite particles is proposed. The composites are very small (the Compton scale), potentially long-lived, would have unique interactions with atomic and nuclear systems, and, if they exist, could explain a number of otherwise anomalous and conflicting observations in diverse research areas.

  3. Theory of electromagnetic reactions in light nuclei

    E-Print Network [OSTI]

    Tianrui Xu; Mirko Miorelli; Sonia Bacca; Gaute Hagen

    2015-09-11

    We briefly review the theory for electromagnetic reactions in light nuclei based on the coupled-cluster formulation of the Lorentz integral transform method. Results on photodisintegration reactions of 22O and 40Ca are reported on and preliminary calculations on the Coulomb sum rule for 4He are discussed.

  4. Televisions, Video Privacy, and Powerline Electromagnetic Interference

    E-Print Network [OSTI]

    Washington at Seattle, University of

    that the power supplies of modern TVs produce discernible electromagnetic interference (EMI) signatures. For example, utility (power) companies are seeking to deploy smart meters that measure fine-grained power on servers or to redistribute to lists, requires prior specific permission and/or a fee. CCS'11, October 17

  5. Theory of electromagnetic reactions in light nuclei

    E-Print Network [OSTI]

    Xu, Tianrui; Bacca, Sonia; Hagen, Gaute

    2015-01-01

    We briefly review the theory for electromagnetic reactions in light nuclei based on the coupled-cluster formulation of the Lorentz integral transform method. Results on photodisintegration reactions of 22O and 40Ca are reported on and preliminary calculations on the Coulomb sum rule for 4He are discussed.

  6. Line geometry and electromagnetism I: basic structures

    E-Print Network [OSTI]

    D. H. Delphenich

    2013-09-11

    Some key notions of line geometry are recalled, along with their application to mechanics. It is then shown that most of the basic structures that one introduces in the pre-metric formulation of electromagnetism can be interpreted directly in terms of corresponding concepts in line geometry. The results are summarized in a table.

  7. Structural composites with integrated electromagnetic functionality

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    , such as wires, into polymer-based or ceramic-based composites. In addition to desired structural properties of composites based on the integration of artificial plasmon media into polymer matrixes. Such composites canStructural composites with integrated electromagnetic functionality Syrus C. Nemat-Nasser, Alireza

  8. Electromagnetics from Simulation to Optimal Design

    E-Print Network [OSTI]

    Grohs, Philipp

    for Electromagnetic Fields and Microwave Electronics (IFH) ETH Zurich (Switzerland) Lab: http://www.ifh.ee.ethz.ch COG, anti-reflective coatings, enhanced solar cells... · Optical nano structures: waveguides, photonic crystals, plasmonics, optical antennas and sensors... · Microwave and mm wave technology: antennas, radar

  9. Slave Electromagnetic studies Alan G. Jones1

    E-Print Network [OSTI]

    Jones, Alan G.

    and Jessica Spratt1,5 1 Geological Survey of Canada, 615 Booth St., Ottawa, Ontario, K1A 0E9, Canada. Email-probing electromagnetic surveys, using the nautral-source magnetotelluric (MT) technique, have recently been carried out. The former ensured low resistance ground contact for electric field measurements, and the latter avoided

  10. Electromagnetic field of a charge intersecting a cold plasma boundary in a waveguide

    SciTech Connect (OSTI)

    Alekhina, Tatiana Yu.; Tyukhtin, Andrey V.

    2011-06-15

    We analyze the electromagnetic field of a charge crossing a boundary between a vacuum and cold plasma in a waveguide. We obtain exact expressions for the field components and the spectral density of the transition radiation. With the steepest descent technique, we investigate the field components. We show that the electromagnetic field has a different structure in a vacuum than in cold plasma. We also develop an algorithm for the computation of the field based on a certain transformation of the integration path. The behavior of the field depending on distance and time and the spectral density depending on frequency are explored for different charge velocities. Some important physical effects are noted. A considerable increase and concentration of the field near the wave front in the plasma is observed for the case of ultrarelativistic particles. In the plasma, the mode envelopes and spectral density show zero points when the charge velocity is within certain limits.

  11. Electromagnetic Pulse (EMP) survey of the Louisiana State Emergency Operating Center, Baton Rouge, Louisiana

    SciTech Connect (OSTI)

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1989-08-01

    The purpose of this report is to develop an engineering design package to protect the federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high-altitude electromagnetic pulses (HEMP). This report refers to the Louisiana State Emergency Operating Center (EOC) in Baton Rouge, Louisiana. This report addresses electromagnetic pulse (EMP) effects only, and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe conditions. The threatening environment will therefore be limited to HEMP situations. 76 figs., 2 tabs.

  12. Discussion on the Mechanism of Electromigration from the Perspective of Electromagnetism

    E-Print Network [OSTI]

    Zhou, Peng; Johnson, William C.

    2010-01-01

    FUNDAMENTALS OF ELECTROMAGNETISM In the latter half of the 19th century, Maxwell summarized the electromagnetic theory

  13. IEEE INFOCOM 2002 1 Design of Wavelength Converting Switches for

    E-Print Network [OSTI]

    Turner, Jonathan S.

    IEEE INFOCOM 2002 1 Design of Wavelength Converting Switches for Optical Burst Switching Jeyashankher Ramamirtham, Jonathan Turner Abstract-- Optical Burst Switching (OBS) is an experi- mental network- tronic control. In this paper, we study two designs for wave- length converting switches

  14. Metallic transmission screen for sub-wavelength focusing

    E-Print Network [OSTI]

    an approach to designing a general transmission func- tion T(x), which converts an arbitrary electric fieldMetallic transmission screen for sub-wavelength focusing A.M.H. Wong, C.D. Sarris and G.V. Eleftheriades A simple metallic transmission screen is proposed that is capable of focusing an incident plane

  15. Resonator design for a visible wavelength free-electron laser (*)

    SciTech Connect (OSTI)

    Bhowmik, A.; Lordi, N. . Rocketdyne Div.); Ben-Zvi, I.; Gallardo, J. )

    1990-01-01

    Design requirements for a visible wavelength free-electron laser being developed at the Accelerator Test Facility at Brookhaven National Laboratory are presented along with predictions of laser performance from 3-D numerical simulations. The design and construction of the optical resonator, its alignment and control systems are also described. 15 refs., 8 figs., 4 tabs.

  16. Magic wavelength for the hydrogen 1S-2S transition

    E-Print Network [OSTI]

    Kawasaki, Akio

    The magic wavelength for an optical lattice for hydrogen atoms that cancels the lowest order ac Stark shift of the 1S-2S transition is calculated to be 513 nm. The magnitudes of the ac Stark shift ?E = ?119 Hz/(kW/cm[superscript ...

  17. Anomalous loss in blue-green wavelength discrimination with very

    E-Print Network [OSTI]

    Foster, David H.

    Anomalous loss in blue-green wavelength discrimination with very brief monochromatic stimuli to yield non-uniform increases in discrimination thresholds in the blue-green region of the spectrum that the effect was not attributable to the reduced energy of the short flash. One of the most significant

  18. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO)

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  19. Stellar Surface Convection, Line Asymmetries, and Wavelength Shifts

    E-Print Network [OSTI]

    dark spots. Sunspots, however, occupy only a very small fraction of the surface and (being dark granules and dark intergranular lanes. Granules correlate with local blueshifts (rising motion surface, a net wavelength shift results from the statistical bias of a larger photon contribution from

  20. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  1. Magic Wavelength for Hydrogen 1S-2S Transition

    E-Print Network [OSTI]

    Kawasaki, Akio

    2015-01-01

    The magic wavelength for an optical lattice for hydrogen atoms that cancels the first order AC Stark shift of 1S-2S transition is calculated to be 513 nm. The amount of AC Stark shift $ \\Delta E = -1.19$ kHz/(10kW/cm$^2$) and the slope $d\\Delta E/d \

  2. Blocking Analysis of Multifiber Wavelength-Routed Networks

    E-Print Network [OSTI]

    Jue, Jason P.

    will result in lower cost compared to networks with a single fiber per link and a large number of wavelengths. One reason for their attractiveness is that multifiber networks help to lower the blocking caused], an innovative reduced load approx- imation scheme with state-dependent arrival rate is developed for blocking

  3. Wavelength tunability of ion-bombardment-induced ripples on sapphire

    SciTech Connect (OSTI)

    Zhou Hua; Wang Yiping; Zhou Lan; Headrick, Randall L.; Oezcan, Ahmet S.; Wang Yiyi; Oezaydin, Goezde; Ludwig, Karl F. Jr.; Siddons, D. Peter [Department of Physics, University of Vermont, Burlington, Vermont 05405 (United States); Department of Physics, Boston University, Massachusetts 02215 (United States); National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2007-04-15

    A study of ripple formation on sapphire surfaces by 300-2000 eV Ar{sup +} ion bombardment is presented. Surface characterization by in-situ synchrotron grazing incidence small angle x-ray scattering and ex-situ atomic force microscopy is performed in order to study the wavelength of ripples formed on sapphire (0001) surfaces. We find that the wavelength can be varied over a remarkably wide range--nearly two orders of magnitude--by changing the ion incidence angle. Within the linear theory regime, the ion induced viscous flow smoothing mechanism explains the general trends of the ripple wavelength at low temperature and incidence angles larger than 30 deg. . In this model, relaxation is confined to a few nm thick damaged surface layer. The behavior at high temperature suggests relaxation by surface diffusion. However, strong smoothing is inferred from the observed ripple wavelength near normal incidence, which is not consistent with either surface diffusion or viscous flow relaxation.

  4. IMAGES OF GRADUAL MILLIMETER EMISSION AND MULTI--WAVELENGTH

    E-Print Network [OSTI]

    White, Stephen

    SOLAR FLARE Adriana V. R. Silva \\Lambda Solar Astronomy 264­33, Caltech, Pasadena, CA 91125 R. P. Lin--rays and at microwave frequencies, followed by a gradual decay phase. The gradual phase was also detected at 86 GHz: a footpoint and a loop top source. Nonthermal emissions at microwave and hard X--ray wavelengths are analyzed

  5. Electromagnetic guided waves on linear arrays of spheres

    E-Print Network [OSTI]

    Electromagnetic guided waves on linear arrays of spheres C M Linton, V Zalipaev, and I Thompson electromagnetic waves propagating along one-dimensional arrays of dielec- tric spheres are studied. The quasi. There have been previous studies of electromagnetic surface waves guided by periodic arrays, but these have

  6. ELECTROMAGNETIC IMAGES OF THE TINTINA FAULT (NORTHERN CANADIAN CORDILLERA)

    E-Print Network [OSTI]

    Jones, Alan G.

    ELECTROMAGNETIC IMAGES OF THE TINTINA FAULT (NORTHERN CANADIAN CORDILLERA) Juanjo Ledo1 , Alan G to obtain a crustal scale electromagnetic image of the fault. A short, higher station density profile-dimensional (2- D) electromagnetic behavior of the fault. Distortion decomposition of the responses corroborated

  7. ECE 203 Spring 2012 Engineering Electromagnetics Waves (3)

    E-Print Network [OSTI]

    Gilchrist, James F.

    ). Additional Advanced Textbooks: Fundamentals 1. J. A. Kong, Electromagnetic Wave Theory, EMW (2002). 2. C. Cheng, Fundamental of Engineering Electromagnetics, Prentice Hall (2003). Nice and concise treatment of elementary EM theory. 3. N. Rao, Elements of Engineering Electromagnetics, Prentice Hall (2005). About

  8. 14:332:382 Electromagnetic Fields Spring 2012

    E-Print Network [OSTI]

    Jiang, Wei

    . Edminister, Schaum's outline of theory and problems of electromagnetics, McGraw- Hill; 2 edition (1994) ISBN://sakai.rutgers.edu. Overall Educational Objective: This course provides an introduction to electromagnetic theory and principles. Electromagnetics provides the fundamental basis for many subfields of electrical and computer

  9. ECE 202 Fall 2006 Introduction to Engineering Electromagnetics (3)

    E-Print Network [OSTI]

    Gilchrist, James F.

    Textbooks: Fundamentals 1. J. A. Kong, Electromagnetic Wave Theory, EMW (2002). 2. C. Balanis, Advanced, Fundamental of Engineering Electromagnetics, Prentice Hall (2003). Nice and concise treatment of elementary EM theory. 2. N. Rao, Elements of Engineering Electromagnetics, Prentice Hall (2005). About the same level

  10. Matched slow pulses using double electromagnetically induced transparency

    E-Print Network [OSTI]

    Lvovsky, Alexander

    Matched slow pulses using double electromagnetically induced transparency Andrew MacRae,* Geoff, 2008 We implement double electromagnetically induced transparency (DEIT) in rubidium vapor using Optical Society of America OCIS codes: 270.1670, 270.5585, 190.5530. Electromagnetically induced

  11. Cosmological electromagnetic fields due to gravitational wave perturbations Mattias Marklund*

    E-Print Network [OSTI]

    Dunsby, Peter

    show that this coupling leads to an initial pulse of electromagnetic waves whose width and amplitude to produce a pulse of gravitationally induced electromagnetic waves. In particular, because of the differentCosmological electromagnetic fields due to gravitational wave perturbations Mattias Marklund

  12. Hydrodynamic construction of the electromagnetic field

    E-Print Network [OSTI]

    Peter Holland

    2014-10-03

    We present an alternative Eulerian hydrodynamic model for the electromagnetic field in which the discrete vector indices in Maxwell\\s equations are replaced by continuous angular freedoms, and develop the corresponding Lagrangian picture in which the fluid particles have rotational and translational freedoms. This enables us to extend to the electromagnetic field the exact method of state construction proposed previously for spin 0 systems, in which the time-dependent wavefunction is computed from a single-valued continuum of deterministic trajectories where two spacetime points are linked by at most a single orbit. The deduction of Maxwell\\s equations from continuum mechanics is achieved by generalizing the spin 0 theory to a general Riemannian manifold from which the electromagnetic construction is extracted as a special case. In particular, the flat-space Maxwell equations are represented as a curved-space Schr\\"odinger equation for a massive system. The Lorentz covariance of the Eulerian field theory is obtained from the non-covariant Lagrangian-coordinate model as a kind of collective effect. The method makes manifest the electromagnetic analogue of the quantum potential that is tacit in Maxwell\\s equations. This implies a novel definition of the \\classical limit\\ of Maxwell\\s equations that differs from geometrical optics. It is shown that Maxwell\\s equations may be obtained by canonical quantization of the classical model. Using the classical trajectories a novel expression is derived for the propagator of the electromagnetic field in the Eulerian picture. The trajectory and propagator methods of solution are illustrated for the case of a light wave.

  13. Solar Impulsive Energetic Electron Events

    E-Print Network [OSTI]

    Wang, Linghua

    2009-01-01

    Radiations in the 4-6 Metre Radio Wave-Length Band, Nature,electromagnetic spectrum, from radio waves to X-rays and ?-generate electromagnetic radio waves near the local plasma

  14. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  15. 532 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Lightning Electromagnetic Field Coupling to

    E-Print Network [OSTI]

    Florida, University of

    of both the incident lightning electromagnetic pulse (LEMP) and the effects of coupling of this field- mental validation using: 1) reduced-scale setups with LEMP and nuclear electromagnetic pulse (NEMP532 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Lightning

  16. The Spectrum of Electromagnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory

    E-Print Network [OSTI]

    Denitsa R. Staicova; Plamen P. Fiziev

    2011-01-23

    We give a new theoretical basis for examination of the presence of the Kerr black hole (KBH) or the Kerr naked singularity (KNS) in the central engine of different astrophysical objects around which astrophysical jets are typically formed: X-ray binary systems, gamma ray bursts (GRBs), active galactic nuclei (AGN), etc. Our method is based on the study of the exact solutions of the Teukolsky master equation for electromagnetic perturbations of the Kerr metric. By imposing original boundary conditions on the solutions so that they describe a collimated electromagnetic outflow, we obtain the spectra of possible {\\em primary jets} of radiation, introduced here for the first time. The theoretical spectra of primary electromagnetic jets are calculated numerically. Our main result is a detailed description of the qualitative change of the behavior of primary electromagnetic jet frequencies under the transition from the KBH to the KNS, considered here as a bifurcation of the Kerr metric. We show that quite surprisingly the novel spectra describe linearly stable primary electromagnetic jets from both the KBH and the KNS. Numerical investigation of the dependence of these primary jet spectra on the rotation of the Kerr metric is presented and discussed.

  17. A strong permanent magnet-assisted electromagnetic undulator

    DOE Patents [OSTI]

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  18. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    SciTech Connect (OSTI)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2012-11-15

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  19. About consistence between pi N Delta spin-3/2 gauge couplings and electromagnetic gauge invariance

    E-Print Network [OSTI]

    D. Badagnani; C. Barbero; A. Mariano

    2015-03-05

    We analyze the consistence between the recently proposed "spin 3/2 gauge" interaction for the Delta resonance with nucleons and pions, and the fundamental electromagnetic gauge invariance in any radiative amplitude. Chiral symmetric pion-derivative pi N Delta couplings can be substituted through a linear transformation to get Delta-derivative ones, which have the property of decoupling the 1/2 field components of the Delta propagator. Nevertheless, the electromagnetic gauge invariance introduced through minimal substitution in all derivatives, can only be fulfilled at a given order n without destroying the spin 3/2 one by dropping n+1 order terms within an effective field theory (EFT) framework with a defined power counting. In addition, we show that the Ward identity for the gamma Delta gamma vertex cannot be fulfilled with a trimmed 3/2 propagator, which should be necessary in order to keep the spin 3/2 gauge symmetry in the radiative case for the gamma Delta gamma amplitude. Finally, it is shown that radiative corrections of the spin 3/2 gauge strong vertexes at one loop, reintroduce the conventional interaction.

  20. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  1. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  2. GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 8, PAGES 1281-1284, APRIL 15, 1998 ELF Radiation Produced by Electrical Currents in

    E-Print Network [OSTI]

    Cummer, Steven A.

    . Introduction Luminous high altitude glows referred to as sprites pro- vide dramatic evidence of electrodynamic et al., 1995; Roussel-Dupr´e and Gurevich, 1996], and heating by lightning electromagnetic pulses [e) lightning discharges which strongly radiate electromagnetic energy in the ELF (

  3. Electromagnetic Heavy Lepton Pair Production in Relativistic Heavy-Ion Collisions

    E-Print Network [OSTI]

    Sengul, M Y; Mercan, O; Karakus, N G

    2015-01-01

    We calculate the cross sections of electromagnetic productions of muon and tauon pair productions from the ultra-relativistic heavy ion collisions. Since the Compton wavelengths of muon and tauon are comparable to the radius of the colliding ions, nuclear form factors play important roles for calculating the cross sections. Recent measurement [1] indicates that the neutrons are differently distributed from the protons therefore this affects the cross section of the heavy lepton pair production. In order to see the effects of the neutron distributions in the nucleus, we used analytical expression of the Fourier transforms of the Wood-Saxon distribution. Cross section calculations show that Wood-Saxon distribution function is more sensitive to the parameter R compare to the parameter a.

  4. Scattering of electromagnetic waves by small impedance particles of an arbitrary shape

    E-Print Network [OSTI]

    Ramm, Alexander G

    2015-01-01

    An explicit formula is derived for the electromagnetic (EM) field scattered by one small impedance particle $D$ of an arbitrary shape. If $a$ is the characteristic size of the particle, $\\lambda$ is the wavelength, $a> O(a^3)$ as $a\\to 0$ when $\\lambda$ is fixed and $\\zeta$ does not depend on $a$. Thus, $|E_{sc}|$ is much larger than the classical value $O(a^3)$ for the field scattered by a small particle. It is proved that the effective field in the medium, in which many small particles are embedded, has a limit as $a\\to 0$ and the number $M=M(a)$ of the particles tends to $\\infty$ at a suitable rate. Thislimit solves a linear integral equation. The refraction coefficient of the limiting medium is calculated analytically. This yields a recipe for creating materials with a desired refraction coefficient.

  5. Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface

    E-Print Network [OSTI]

    Kumar, Ravi; Chormaic, Síle Nic

    2015-01-01

    Ultrathin optical fibres integrated into cold atom setups are proving to be ideal building blocks for atom-photon hybrid quantum networks. Such optical nanofibres (ONF) can be used for the demonstration of nonlinear optics and quantum interference phenomena in atomic media. Here, we report on the observation of multilevel cascaded electromagnetically induced transparency (EIT) using an optical nanofibre to interface cold $^{87}$Rb atoms through the intense evanescent fields that can be achieved at ultralow probe and coupling powers. Both the probe (at 780 nm) and the coupling (at 776 nm) beams propagate through the nanofibre. The observed multipeak transparency spectra of the probe beam could offer a method for simultaneously slowing down multiple wavelengths in an optical nanofibre or for generating ONF-guided entangled beams, showing the potential of such an atom-nanofibre system for quantum information. We also demonstrate all-optical-switching in the all fibred system using the obtained EIT effect.

  6. Radio wave emissions due to gravitational radiation

    E-Print Network [OSTI]

    Mattias Marklund; Gert Brodin; Peter Dunsby

    2000-02-29

    We consider the interaction of a weak gravitational wave with electromagnetic fields in a thin plasma on a Minkowski background spacetime using the 1+3 orthonormal frame formalism. Because gravitational and electromagnetic waves satisfy the same dispersion relation, electromagnetic waves can be effectively generated as a result of this interaction. In the case of the interaction with a static magnetic field, the amplitude of the electromagnetic waves depends on the size of the excitation region in which the magnetic field is contained. It is argued that due to the presence of a plasma this process can also lead to the generation of higher harmonics of the original mode. Estimates are given for this effect in the case of a binary pulsar and a cold electron plasma. It is found that the emmited radiation will lie in the radio frequency band. We also speculate on the possible relevance of this process on situations in cosmology, in particular whether this could be used to constrain primordial magnetic fields.

  7. Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths

    SciTech Connect (OSTI)

    Pfenning, Andreas Hartmann, Fabian; Langer, Fabian; Höfling, Sven; Kamp, Martin; Worschech, Lukas

    2014-03-10

    An AlGaAs/GaAs double barrier resonant tunneling diode (RTD) with a nearby lattice-matched GaInNAs absorption layer was integrated into an optical cavity consisting of five and seven GaAs/AlAs layers to demonstrate cavity enhanced photodetection at the telecommunication wavelength 1.3??m. The samples were grown by molecular beam epitaxy and RTD-mesas with ring-shaped contacts were fabricated. Electrical and optical properties were investigated at room temperature. The detector shows maximum photocurrent for the optical resonance at a wavelength of 1.29??m. At resonance a high sensitivity of 3.1×10{sup 4} A/W and a response up to several pA per photon at room temperature were found.

  8. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOE Patents [OSTI]

    Worstell, W.A.

    1997-02-04

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

  9. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOE Patents [OSTI]

    Worstell, William A. (Framingham, MA)

    1997-01-01

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

  10. Apparatus for generating coherent infrared energy of selected wavelength

    DOE Patents [OSTI]

    Stevens, Charles G. (Danville, CA)

    1985-01-01

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  11. Nonlinear Electromagnetic Interactions in Energetic Materials

    E-Print Network [OSTI]

    Wood, M A; Moore, D S

    2015-01-01

    We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for non-ionizing identification of explosives. We use molecular dynamics simulations to compute such two-dimensional Raman spectra in the terahertz range for planar slabs made of PETN and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for stand-off explosive detection.

  12. A Connection between Gravitation and Electromagnetism

    E-Print Network [OSTI]

    D. M. Snyder

    2000-02-16

    It is argued that there is a connection between the fundamental forces of electromagnetism and gravitation. This connection occurs because of: 1) the fundamental significance of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) the reliance of the general theory of relativity upon the special theory of relativity locally in spacetime. The connection between the fundamental forces of electromagnetism and gravitation follows immediately from these two points. A brief review is provided of: 1) the role of the finite and invariant velocity of light in inertial reference frames in the special theory, and 2) certain fundamental concepts of the general theory, including its reliance on the special theory locally.

  13. Electromagnetic Pulse from Final Gravitational Stellar Collapse

    E-Print Network [OSTI]

    P. D. Morley; Ivan Schmidt

    2002-01-30

    We employ an effective gravitational stellar final collapse model which contains the relevant physics involved in this complex phenomena: spherical radical infall in the Schwarzschild metric of the homogeneous core of an advanced star, giant magnetic dipole moment, magnetohydrodynamic material response and realistic equations of state (EOS). The electromagnetic pulse is computed both for medium size cores undergoing hydrodynamic bounce and large size cores undergoing black hole formation. We clearly show that there must exist two classes of neutron stars, separated by maximum allowable masses: those that collapsed as solitary stars (dynamical mass limit) and those that collapsed in binary systems allowing mass accretion (static neutron star mass). Our results show that the electromagnetic pulse spectrum associated with black hole formation is a universal signature, independent of the nuclear EOS. Our results also predict that there must exist black holes whose masses are less than the static neutron star stability limit.

  14. Fluidic electrodynamics: Approach to electromagnetic propulsion

    SciTech Connect (OSTI)

    Martins, Alexandre A.; Pinheiro, Mario J. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.92.43 (Portugal); Department of Physics and Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.93.22 (Portugal)

    2009-03-16

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  15. Method for fabricating photovoltaic device having improved short wavelength photoresponse

    DOE Patents [OSTI]

    Catalano, Anthony W. (P.O. Box 557, Rushland, PA 18956)

    1989-07-04

    Amorphous p-i-n silicon photovoltaic cells with improved short wavelength photoresponse are fabricated with reduced p-dopant contamination at the p/i interface. Residual p-dopants are removed by flushing the deposition chamber with a gaseous mixture capable of reacting with excess doping contaminants prior to the deposition of the i-layer and subsequent to the deposition of the p-layer.

  16. Upconverting device for enhanced recogntion of certain wavelengths of light

    DOE Patents [OSTI]

    Kross, Brian; McKIsson, John (Jack) E; McKisson, John; Weisenberger, Andrew; Xi, Wenze; Zorn, Carl

    2013-05-21

    An upconverting device for enhanced recognition of selected wavelengths is provided. The device comprises a transparent light transmitter in combination with a plurality of upconverting nanoparticles. The device may a lens in eyewear or alternatively a transparent panel such as a window in an instrument or machine. In use the upconverting device is positioned between a light source and the eye(s) of the user of the upconverting device.

  17. Linear and nonlinear transmission of Fe{sup 2+}-doped ZnSe crystals at a wavelength of 2940 nm in the temperature range 20–220 °C

    SciTech Connect (OSTI)

    Il'ichev, N N; Pashinin, P P; Gulyamova, E S; Bufetova, G A; Shapkin, P V; Nasibov, A S

    2014-03-28

    The linear and nonlinear transmission of Fe{sup 2+}:ZnSe crystals is measured at a wavelength of 2940 nm in the temperature range 20 – 220 °C. It is found that, with increasing temperature from 20 °C to 150 – 220 °C, the transmission of Fe{sup 2+}:ZnSe crystals decreases in the case of incident radiation with an intensity of ?5.5 MW cm{sup -2} and increases in the case of radiation with an intensity of 28 kW cm{sup -2}. At a temperature of 220 °C, the linear transmission almost coincides with the nonlinear transmission. The transmission spectra of Fe{sup 2+}:ZnSe crystals at temperatures of 22 and 220 °C in the wavelength range 500 – 7000 nm are presented. (active media)

  18. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  19. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, R.J.

    1994-06-07

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  20. Electromagnetic Dark Energy and Gravitoelectrodynamics of Superconductors

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2007-10-29

    It is shown that Beck and Mackey electromagnetic model of dark energy in superconductors can account for the non-classical inertial properties of superconductors, which have been conjectured by the author to explain the Cooper pair's mass excess reported by Cabrera and Tate. A new Einstein-Planck regime for gravitation in condensed matter is proposed as a natural scale to host the gravitoelectrodynamic properties of superconductors.

  1. Environmental Effects on TPB Wavelength-Shifting Coatings

    E-Print Network [OSTI]

    C. S. Chiu; C. Ignarra; L. Bugel; H. Chen; J. M. Conrad; B. J. P. Jones; T. Katori; I. Moult

    2012-04-25

    The scintillation detection systems of liquid argon time projection chambers (LArTPCs) require wavelength shifters to detect the 128 nm scintillation light produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent material that can shift this light to a wavelength of 425 nm, lending itself well to use in these detectors. We can coat the glass of photomultiplier tubes (PMTs) with TPB or place TPB-coated plates in front of the PMTs. In this paper, we investigate the degradation of a chemical TPB coating in a laboratory or factory environment to assess the viability of long-term TPB film storage prior to its initial installation in an LArTPC. We present evidence for severe degradation due to common fluorescent lights and ambient sunlight in laboratories, with potential losses at the 40% level in the first day and eventual losses at the 80% level after a month of exposure. We determine the degradation is due to wavelengths in the UV spectrum, and we demonstrate mitigating methods for retrofitting lab and factory environments.

  2. Linear response to long wavelength fluctuations using curvature simulations

    E-Print Network [OSTI]

    Tobias Baldauf; Uroš Seljak; Leonardo Senatore; Matias Zaldarriaga

    2015-11-04

    We study the local response to long wavelength fluctuations in cosmological $N$-body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, most probably more precise, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naive derivation assuming a universal mass function by 18%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.

  3. Wavelength-encoded tomography based on optical temporal Fourier transform

    SciTech Connect (OSTI)

    Zhang, Chi; Wong, Kenneth K. Y.

    2014-09-01

    We propose and demonstrate a technique called wavelength-encoded tomography (WET) for non-invasive optical cross-sectional imaging, particularly beneficial in biological system. The WET utilizes time-lens to perform the optical Fourier transform, and the time-to-wavelength conversion generates a wavelength-encoded image of optical scattering from internal microstructures, analogous to the interferometery-based imaging such as optical coherence tomography. Optical Fourier transform, in principle, comes with twice as good axial resolution over the electrical Fourier transform, and will greatly simplify the digital signal processing after the data acquisition. As a proof-of-principle demonstration, a 150?-?m (ideally 36??m) resolution is achieved based on a 7.5-nm bandwidth swept-pump, using a conventional optical spectrum analyzer. This approach can potentially achieve up to 100-MHz or even higher frame rate with some proven ultrafast spectrum analyzer. We believe that this technique is innovative towards the next-generation ultrafast optical tomographic imaging application.

  4. SS 433: Results of a Recent Multi-wavelength Campaign

    E-Print Network [OSTI]

    Sandip K. Chakrabarti; B. G. Anandarao; S. Pal; Soumen Mondal; A. Nandi; A. Bhattacharyya; Samir Mandal; Ram Sagar; J. C. Pandey; A. Pati; S. K. Saha

    2005-01-14

    We conducted a multi-wavelength campaign in September-October, 2002, to observe SS 433. We used 45 meter sized 30 dishes of Giant Meter Radio Telescope (GMRT) for radio observation, 1.2 meter Physical Research Laboratory Infra-red telescope at Mt Abu for IR, 1 meter Telescope at the State Observatory, Nainital for Optical photometry, 2.3 meter optical telescope at the Vainu Bappu observatory for spectrum and Rossi X-ray Timing Explorer (RXTE) Target of Opportunity (TOO) observation for X-ray observations. We find sharp variations in intensity in time-scales of a few minutes in X-rays, IR and radio wavelengths. Differential photometry at the IR observation clearly indicated significant intrinsic variations in short time scales of minutes throughout the campaign. Combining results of these wavelengths, we find a signature of delay of about two days between IR and Radio. The X-ray spectrum yielded double Fe line profiles which corresponded to red and blue components of the relativistic jet. We also present the broadband spectrum averaged over the campaign duration.

  5. Electromagnetic Structure and Reactions of Few-Nucleon Systems in $?$EFT

    E-Print Network [OSTI]

    L. Girlanda; S. Pastore; R. Schiavilla; M. Viviani

    2009-12-14

    We summarize our recent work dealing with the construction of the nucleon-nucleon potential and associated electromagnetic currents up to one loop in chiral effective field theory ($\\chi$EFT). The magnetic dipole operators derived from these currents are then used in hybrid calculations of static properties and low-energy radiative capture processes in few-body nuclei. A preliminary set of results are presented for the magnetic moments of the deuteron and trinucleons and thermal neutron captures on $p$, $d$, and $^3$He.

  6. Resonant second harmonic generation of a Gaussian electromagnetic beam in a collisional magnetoplasma

    SciTech Connect (OSTI)

    Kaur, Sukhdeep; Sharma, A. K. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Salih, Hyder A. [Department of Applied Sciences, University of Baghdad, Baghdad (Iraq)

    2009-04-15

    Second harmonic generation of a right circularly polarized Gaussian electromagnetic beam in a magnetized plasma is investigated. The beam causes Ohmic heating of electrons and subsequent redistribution of the plasma, leading to self-defocusing. The radial density gradient, in conjunction with the oscillatory electron velocity, produces density oscillation at the wave frequency. The density oscillation beats with the oscillatory velocity to produce second harmonic current density, giving rise to resonant second harmonic radiation when the wave frequency is one-third of electron cyclotron frequency. The second harmonic field has azimuthal dependence as exp(i{theta}). The self-defocusing causes a reduction in the efficiency of harmonic generation.

  7. Comparison between electroglottography and electromagnetic glottography

    SciTech Connect (OSTI)

    Titze, Ingo R.; Story, Brad H.; Burnett, Gregory C.; Holzrichter, John F.; Ng, Lawrence C.; Lea, Wayne A.

    2000-01-01

    Newly developed glottographic sensors, utilizing high-frequency propagating electromagnetic waves, were compared to a well-established electroglottographic device. The comparison was made on four male subjects under different phonation conditions, including three levels of vocal fold adduction (normal, breathy, and pressed), three different registers (falsetto, chest, and fry), and two different pitches. Agreement between the sensors was always found for the glottal closure event, but for the general wave shape the agreement was better for falsetto and breathy voice than for pressed voice and vocal fry. Differences are attributed to the field patterns of the devices. Whereas the electroglottographic device can operate only in a conduction mode, the electromagnetic device can operate in either the forward scattering (diffraction) mode or in the backward scattering (reflection) mode. Results of our tests favor the diffraction mode because a more favorable angle imposed on receiving the scattered (reflected) signal did not improve the signal strength. Several observations are made on the uses of the electromagnetic sensors for operation without skin contact and possibly in an array configuration for improved spatial resolution within the glottis. (c) 2000 Acoustical Society of America.

  8. The electromagnetic model of Gamma Ray Bursts

    E-Print Network [OSTI]

    Maxim Lyutikov

    2005-12-13

    I describe electromagnetic model of gamma ray bursts and contrast its main properties and predictions with hydrodynamic fireball model and its magnetohydrodynamical extension. The electromagnetic model assumes that rotational energy of a relativistic, stellar-mass central source (black-hole--accretion disk system or fast rotating neutron star) is converted into magnetic energy through unipolar dynamo mechanism, propagated to large distances in a form of relativistic, subsonic, Poynting flux-dominated wind and is dissipated directly into emitting particles through current-driven instabilities. Thus, there is no conversion back and forth between internal and bulk energies as in the case of fireball model. Collimating effects of magnetic hoop stresses lead to strongly non-spherical expansion and formation of jets. Long and short GRBs may develop in a qualitatively similar way, except that in case of long bursts ejecta expansion has a relatively short, non-relativistic, strongly dissipative stage inside the star. Electromagnetic and fireball models (as well as strongly and weakly magnetized fireballs) lead to different early afterglow dynamics, before deceleration time. Finally, I discuss the models in view of latest observational data in the Swift era.

  9. Cosmological electromagnetic fields and dark energy

    E-Print Network [OSTI]

    Jose Beltran Jimenez; Antonio L. Maroto

    2009-02-18

    We show that the presence of a temporal electromagnetic field on cosmological scales generates an effective cosmological constant which can account for the accelerated expansion of the universe. Primordial electromagnetic quantum fluctuations produced during electroweak scale inflation could naturally explain the presence of this field and also the measured value of the dark energy density. The behavior of the electromagnetic field on cosmological scales is found to differ from the well studied short-distance behavior and, in fact, the presence of a non-vanishing cosmological constant could be signalling the breakdown of gauge invariance on cosmological scales. The theory is compatible with all the local gravity tests, and is free from classical or quantum instabilities. Thus we see that, not only the true nature of dark energy can be established without resorting to new physics, but also the value of the cosmological constant finds a natural explanation in the context of standard inflationary cosmology. This mechanism could be discriminated from a true cosmological constant by upcoming observations of CMB anisotropies and large scale structure.

  10. DEF: The Physical Basis of Electromagnetic Propulsion

    E-Print Network [OSTI]

    Pinheiro, Mario J

    2015-01-01

    The very existence of the physical vacuum provides a framework to propose a general mechanism for propelling bodies through an agency of electromagnetic fields, that seat in that medium. When two sub-systems of a general closed device interact via nonlocal and retarded electromagnetic pulses, it is easily shown that they give a nonzero force, and that only tend to comply with the action-to-reaction force in the limit of instantaneous interactions. The arrangement of sub-systems provide a handy way to optimize the unbalanced EM force with the concept of impedance matching. The general properties of the differential electromagnetic force (DEF) are the following: i) it is proportional to the square of the intensity and to the angular wave frequency $\\omega$; ii) to the space between the sub-systems (although in a non-linear manner); iii) it is inversely proportional to the speed of interaction; iv) when the two sub-systems are out-of-phase, DEF is null. The approach is of interest to practical engineering princi...

  11. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect (OSTI)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-08-31

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  12. Effects of radiation reaction in relativistic laser acceleration

    SciTech Connect (OSTI)

    Hadad, Y.; Labun, L.; Rafelski, J.; Elkina, N.; Klier, C.; Ruhl, H. [Departments of Physics and Mathematics, University of Arizona, Tucson, Arizona, 85721 (United States); Department fuer Physik der Ludwig-Maximillians-Universitaet, Theresienstrasse 37A, 80333 Muenchen (Germany)

    2010-11-01

    The goal of this paper is twofold: to explore the response of classical charges to electromagnetic force at the level of unity in natural units and to establish a criterion that determines physical parameters for which the related radiation-reaction effects are detectable. In pursuit of this goal, the Landau-Lifshitz equation is solved analytically for an arbitrary (transverse) electromagnetic pulse. A comparative study of the radiation emission of an electron in a linearly polarized pulse for the Landau-Lifshitz equation and for the Lorentz force equation reveals the radiation-reaction-dominated regime, in which radiation-reaction effects overcome the influence of the external fields. The case of a relativistic electron that is slowed down by a counterpropagating electromagnetic wave is studied in detail. We further show that when the electron experiences acceleration of order unity, the dynamics of the Lorentz force equation, the Landau-Lifshitz equation and the Lorentz-Abraham-Dirac equation all result in different radiation emission that could be distinguished in experiment. Finally, our analytic and numerical results are compared with those appearing in the literature.

  13. Single electron detection and spectroscopy via relativistic cyclotron radiation

    E-Print Network [OSTI]

    D. M. Asner; R. F. Bradley; L. de Viveiros; P. J. Doe; J. L. Fernandes; M. Fertl; E. C. Finn; J. A. Formaggio; D. Furse; A. M. Jones; J. N. Kofron; B. H. LaRoque; M. Leber; E. L. McBride; M. L. Miller; P. Mohanmurthy; B. Monreal; N. S. Oblath; R. G. H. Robertson; L. J Rosenberg; G. Rybka; D. Rysewyk; M. G. Sternberg; J. R. Tedeschi; T. Thummler; B. A. VanDevender; N. L. Woods

    2015-05-01

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  14. Classical Radiation Reaction in Particle-In-Cell Simulations

    E-Print Network [OSTI]

    Vranic, Marija; Fonseca, Ricardo A; Silva, Luis O

    2015-01-01

    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. The Landau and Lifshitz reduced model is chosen for implementatio...

  15. Astro2010 Decadal Survey Whitepaper: Coordinated Science in the Gravitational and Electromagnetic Skies

    E-Print Network [OSTI]

    Joshua S. Bloom; Daniel E. Holz; Scott A. Hughes; Kristen Menou; Allan Adams; Scott F. Anderson; Andy Becker; Geoffrey C. Bower; Niel Brandt; Bethany Cobb; Kem Cook; Alessandra Corsi; Stefano Covino; Derek Fox; Andrew Fruchter; Chris Fryer; Jonathan Grindlay; Dieter Hartmann; Zoltan Haiman; Bence Kocsis; Lynne Jones; Abraham Loeb; Szabolcs Marka; Brian Metzger; Ehud Nakar; Samaya Nissanke; Daniel A. Perley; Tsvi Piran; Dovi Poznanski; Tom Prince; Jeremy Schnittman; Alicia Soderberg; Michael Strauss; Peter S. Shawhan; David H. Shoemaker; Jonathan Sievers; Christopher Stubbs; Gianpiero Tagliaferri; Pietro Ubertini; Przemyslaw Wozniak

    2009-02-10

    It is widely expected that the coming decade will witness the first direct detection of gravitational waves (GWs). The ground-based LIGO and Virgo GW observatories are being upgraded to advanced sensitivity, and are expected to observe a significant binary merger rate. The launch of The Laser Interferometer Space Antenna (LISA) would extend the GW window to low frequencies, opening new vistas on dynamical processes involving massive (M >~ 10^5 M_Sun) black holes. GW events are likely to be accompanied by electromagnetic (EM) counterparts and, since information carried electromagnetically is complementary to that carried gravitationally, a great deal can be learned about an event and its environment if it becomes possible to measure both forms of radiation in concert. Measurements of this kind will mark the dawn of trans-spectral astrophysics, bridging two distinct spectral bands of information. The aim of this whitepaper is to articulate future directions in both theory and observation that are likely to impact broad astrophysical inquiries of general interest. What will EM observations reflect on the nature and diversity of GW sources? Can GW sources be exploited as complementary probes of cosmology? What cross-facility coordination will expand the science returns of gravitational and electromagnetic observations?

  16. Photophysics of O2 excited by tunable laser radiation around 193 nm B. L. G. Bakkera)

    E-Print Network [OSTI]

    Nijmegen, University of

    Photophysics of O2 excited by tunable laser radiation around 193 nm B. L. G. Bakkera) and D. H and the velocity map imaging technique. Angular and kinetic energy distributions of the product O ions and O(3 P2 by tunable radiation around 193 nm, a wavelength falling within the Schumann­Runge bands,1 the dominant

  17. Journal of Quantitative Spectroscopy & Radiative Transfer 93 (2005) 163173

    E-Print Network [OSTI]

    Xu, Xianfan

    2005-01-01

    to fabricate nano-structures, optical data storage to reach ultra-high storage density, heat assisted magnetic concentrated in the gap between the ridges, which provides the electric dipole-liked behavior. The optimal of radiation according to Huygens principle. If the aperture is large in size in comparison with wavelength

  18. Gauge Theory of the Gravitational-Electromagnetic Field

    E-Print Network [OSTI]

    Robert D. Bock

    2015-05-26

    We develop a gauge theory of the combined gravitational-electromagnetic field by expanding the Poincar\\'e group to include clock synchronization transformations. We show that the electromagnetic field can be interpreted as a local gauge theory of the synchrony group. According to this interpretation, the electromagnetic field equations possess nonlinear terms and electromagnetic gauge transformations acquire a space-time interpretation as local synchrony transformations. The free Lagrangian for the fields leads to the usual Einstein-Maxwell field equations with additional gravitational-electromagnetic coupling terms. The connection between the electromagnetic field and the invariance properties of the Lagrangian under clock synchronization transformations provides a strong theoretical argument in favor of the thesis of the conventionality of simultaneity. This suggests that clock synchronization invariance (or equivalently, invariance under transformations of the one-way speed of light) is a fundamental invariance principle of physics.

  19. Wavelength beam combining of quantum cascade laser arrays for remote sensing

    E-Print Network [OSTI]

    Sanchez-Rubio, Antonio

    Wavelength beam combining was used to co-propagate beams from 28 elements in a linear array of distributedfeedback quantum cascade lasers (DFB-QCLs). The overlap of the beams in the far-field is improved using wavelength ...

  20. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  1. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  2. Relativistic electromagnetic mass models in spherically symmetric spacetime

    E-Print Network [OSTI]

    S. K. Maurya; Y. K. Gupta; Saibal Ray; Vikram Chatterjee

    2015-07-04

    Under the static spherically symmetric Einstein-Maxwell spacetime of embedding class one we explore possibility of electromagnetic mass model where mass and other physical parameters have purely electromagnetic origin (Tiwari 1984, Gautreau 1985, Gron 1985). This work is in continuation of our earlier investigation (Maurya 2015a) where we developed an algorithm and found out three new solutions of electromagnetic mass models. In the present letter we consider different metric potentials $\

  3. Reflective optical imaging system for extreme ultraviolet wavelengths

    DOE Patents [OSTI]

    Viswanathan, V.K.; Newnam, B.E.

    1993-05-18

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  4. Reflective optical imaging system for extreme ultraviolet wavelengths

    DOE Patents [OSTI]

    Viswanathan, Vriddhachalam K. (Los Alamos, NM); Newnam, Brian E. (Los Alamos, NM)

    1993-01-01

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 .mu.m, and preferably less than 100 .mu.m. An image resolution of features less than 0.05-0.1 .mu.m, is obtained over a large area field; i.e., 25.4 mm .times.25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  5. Spatiotemporal focusing dynamics in plasmas at X-ray wavelength

    SciTech Connect (OSTI)

    Sharma, A., E-mail: a-physics2001@yahoo.com; Tibai, Z. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary)] [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Hebling, J. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary) [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Szentagothai Research Centre, University of Pecs, Pecs-7624 (Hungary); Mishra, S. K. [Institute for Plasma Research, Gandhinagar (India)] [Institute for Plasma Research, Gandhinagar (India)

    2014-03-15

    Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

  6. Electromechanical wavelength tuning of double-membrane photonic crystal cavities

    E-Print Network [OSTI]

    Midolo, L; Dundar, M A; Nötzel, R; Fiore, A

    2011-01-01

    We present a method for tuning the resonant wavelength of photonic crystal cavities (PCCs) around 1.55 um. Large tuning of the PCC mode is enabled by electromechanically controlling the separation between two parallel InGaAsP membranes. A fabrication method to avoid sticking between the membranes is discussed. Reversible red/blue shifting of the symmetric/anti-symmetric modes has been observed, which provides clear evidence of the electromechanical tuning, and a maximum shift of 10 nm with < 6 V applied bias has been obtained.

  7. Analysis Of Factors Affecting Natural Source Slf Electromagnetic...

    Open Energy Info (EERE)

    to the integrated axis of the artificial electromagnetic interference field, the noise is weakest. (3) Rain can exert great influence on the high frequency band of natural...

  8. Electromagnetically induced transparency controlled by a microwave field 

    E-Print Network [OSTI]

    Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Welch, George R.; Hemmer, Philip R.; Scully, Marlan O.

    2009-01-01

    interferences in electromagnetically induced transparency. A simple theoretical model and a numerical simulation have been developed to explain the observed experimental results....

  9. Electromagnetic wave scattering by many conducting small particles

    E-Print Network [OSTI]

    A. G. Ramm

    2008-04-21

    A rigorous theory of electromagnetic (EM) wave scattering by small perfectly conducting particles is developed. The limiting case when the number of particles tends to infinity is discussed.

  10. Unification of Gravity and Electromagnetism II A Geometric Theory

    E-Print Network [OSTI]

    Partha Ghose

    2015-02-11

    It is shown that unification of gravity and electromagnetism can be achieved using an affine non-symmetric connection $\\Gamma^\\lambda_{\\mu\

  11. Spherically symmetric electromagnetic mass models of embedding class one

    E-Print Network [OSTI]

    S. K. Maurya; Y. K. Gupta; Saibal Ray; Sourav Roy Chowdhury

    2015-05-30

    In this article we consider the static spherically symmetric spacetime metric of embedding class one. Specifically three new electromagnetic mass models are derived where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We have analyzed schematically all these three sets of solutions related to electromagnetic mass models by plotting graphs and shown that they can pass through all the physical tests performed by us. To validate these special type of solutions related to electromagnetic mass models a comparison has been done with that of compact stars and shown exclusively the feasibility of the models.

  12. Ground Electromagnetic Survey At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Exploration Basis This study was conducted to learn about and model the resistivity structures in the Puna area Notes An Electromagnetic transient sounding (time domain) survey...

  13. Time-Domain Electromagnetics At Kilauea Southwest Rift And South...

    Open Energy Info (EERE)

    Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes The...

  14. Time-Domain Electromagnetics At Mauna Loa Northeast Rift Area...

    Open Energy Info (EERE)

    Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes The...

  15. Time-Domain Electromagnetics At Hualalai Northwest Rift Area...

    Open Energy Info (EERE)

    Activity Details Location Hualalai Northwest Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Three...

  16. Interpretation of electromagnetic soundings in the Raft River...

    Open Energy Info (EERE)

    Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Interpretation of...

  17. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain...

  18. Electromagnetic form factors and the hypercentral constituent quark model

    SciTech Connect (OSTI)

    Sanctis, M. De; Giannini, M. M.; Santopinto, E.; Vassallo, A.

    2007-12-15

    We present new results concerning the electromagnetic form factors of the nucleon using a relativistic version of the hypercentral constituent quark model and a relativistic current.

  19. Novel resonance-assisted electromagnetic-transport phenomena

    E-Print Network [OSTI]

    Kurs, André B

    2011-01-01

    We first demonstrate theoretically and experimentally that electromagnetic resonators with high quality factors (Q) can be used to transfer power efficiently over distances substantially larger than the characteristic ...

  20. Electric And Electromagnetic Outline Of The Mount Somma-Vesuvius...

    Open Energy Info (EERE)

    Structural Setting Abstract We present and discuss the results of an integrated electrical and electromagnetic survey in the active volcanic area of Mount Somma-Vesuvius...

  1. ELECTROMAGNETIC CAVITIES AS ELECTROMECHANICAL TRANSDUCERS: THEORY AND EXPERIMENT

    E-Print Network [OSTI]

    ELECTROMAGNETIC CAVITIES AS ELECTROMECHANICAL TRANSDUCERS: THEORY AND EXPERIMENT Joaquim J. Barroso as electromechanical transducers in sonant mass gravitational wave antennas. Introduction · Theoretical

  2. 6.641 Electromagnetic Fields, Forces, and Motion, Spring 2003

    E-Print Network [OSTI]

    Zahn, Markus, 1946-

    Electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Electromagnetic forces, force densities, and stress tensors, including magnetization ...

  3. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ape035millerp.pdf More Documents & Publications Alnico and Ferrite Hybrid Excitation Electric Machines Motor Packaging with Consideration of Electromagnetic and Material...

  4. Iterative Electromagnetic Born Inversion Applied to Earth Conductivity Imaging

    E-Print Network [OSTI]

    Alumbaugh, D.L.

    1993-01-01

    variation due to steam flooding: a log study: Geophysics,electromagnetic induction for steam flooding monitoring, 62'as steam injection, in situ combustion,water flooding and

  5. 6.013 Electromagnetics and Applications, Fall 2002

    E-Print Network [OSTI]

    Staelin, David H.

    Electromagnetic phenomena are explored in modern applications including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, ...

  6. Time-Domain Electromagnetics At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Time-Domain Electromagnetics Activity Date 1978 - 1987 Usefulness useful...

  7. Time-Domain Electromagnetics At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea East Rift Geothermal Area (Skokan, 1974) Exploration Activity Details Location Kilauea East...

  8. Electromagnetic simulations of coaxial type HOM coupler

    SciTech Connect (OSTI)

    Genfa Wu; Haipeng Wang; Robert Rimmer; Charles Reece

    2005-07-10

    DESY-type coaxial high order mode (HOM) coupler was used in many superconducting cavities. The electric probe tip is located at the maximum B-field inside the coupler can. For continuous wave (CW) high current application, the heating of this tip can be severe to degrade the cavity performance. Electromagnetic (EM) simulation was done to estimate the tip heating. The geometric remedies and detuning effect were discussed. The effect to HOM external quality factor (Qext) was also estimated due to these remedies. The HOM probe tip heating power was provided for CEBAF 12-GeV cavities and AES injector cavities.

  9. Electromagnetic Dipole Strength in Transitional Nuclei

    E-Print Network [OSTI]

    S. Q. Zhang; I. Bentley; S. Brant; F. Dönau; S. Frauendorf; B. Kämpfer; R. Schwengner; A. Wagner

    2008-08-19

    Electromagnetic dipole absorption cross-sections of transitional nuclei with large-amplitude shape fluctuations are calculated in a microscopic way by introducing the concept of Instantaneous Shape Sampling. The concept bases on the slow shape dynamics as compared to the fast dipole vibrations. The elctromagnetic dipole strength is calculated by means of RPA for the instantaneous shapes, the probability of which is obtained by means of IBA. Very good agreement with the experimental absorption cross sections near the nucleon emission threshold is obtained.

  10. Electromagnetic wave scattering by many small particles

    E-Print Network [OSTI]

    A. G. Ramm

    2006-08-18

    Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a "smart" material by embedding many small particles in a given region is formulated.

  11. Electromagnetic wormholes and virtual magnetic monopoles

    E-Print Network [OSTI]

    Allan Greenleaf; Yaroslav Kurylev; Matti Lassas; Gunther Uhlmann

    2007-03-20

    We describe new configurations of electromagnetic (EM) material parameters, the electric permittivity $\\epsilon$ and magnetic permeability $\\mu$, that allow one to construct from metamaterials objects that function as invisible tunnels. These allow EM wave propagation between two points, but the tunnels and the regions they enclose are not detectable to EM observations. Such devices function as wormholes with respect to Maxwell's equations and effectively change the topology of space vis-a-vis EM wave propagation. We suggest several applications, including devices behaving as virtual magnetic monopoles.

  12. Electromagnetic Properties of the Early Universe

    E-Print Network [OSTI]

    Keitaro Takahashi; Kiyotomo Ichiki; Naoshi Sugiyama

    2008-05-29

    Detailed physical processes of magnetic field generation from density fluctuations in the pre-recombination era are studied. Solving Maxwell equations and the generalized Ohm's law, the evolutions of the net charge density, the electric current and the electromagnetic field are solved. Unlike most of previous works, we treat electrons and photons as separate components under the assumption of tight coupling. We find that generation of the magnetic field due to density fluctuations takes place only from the second order of both perturbation theory and the tight coupling approximation.

  13. Electromagnetic Media with no Dispersion Equation

    E-Print Network [OSTI]

    Ismo V. Lindell; Alberto Favaro

    2013-03-25

    It has been known through some examples that parameters of an electromagnetic medium can be so defined that there is no dispersion equation (Fresnel equation) to restrict the choice of the wave vector of a plane wave in such a medium, i.e., that the dispersion equation is satisfied identically for any wave vector. In the present paper, a more systematic study to define classes of media with no dispersion equation is attempted. The analysis makes use of coordinate-free four-dimensional formalism in terms of multivectors, multiforms and dyadics.

  14. Electromagnetic corrections to pseudoscalar decay constants

    E-Print Network [OSTI]

    Benjamin Glaessle; Gunnar S. Bali

    2011-11-16

    The effects of electromagnetic interactions on pseudoscalar decay constants are investigated. Using a compact QED and QCD action we are able to resolve differences of about 0.1 MeV. We obtain the preliminary results f_pi^0-f_pi^+/- =0.09(3) MeV and f_D^0-f_D^+/- =0.79(11) MeV for light and charmed pseudoscalar decay constants on a N_f=2 nonperturbatively improved Sheikholeslami-Wohlert ensemble.

  15. Physics with the ALICE Electromagnetic Calorimeter

    E-Print Network [OSTI]

    Rene Bellwied; for the ALICE Collaboration

    2009-07-17

    I will present physics measurements which are achievable in the ALICE experiment at the LHC through the inclusion of a new electromagnetic calorimeter. I will focus on jet measurements in proton proton and heavy ion collisions. Detailed simulations have been performed on jet reconstruction, jet triggering, heavy flavor jet reconstruction through electron identification, gamma-jet reconstruction and the measurements of identified hadrons and resonances in jets. I will show the physics capabilities which are made possible through the combination of calorimeter information with the other detector components in ALICE.

  16. Electromagnetic imaging of dynamic brain activity

    SciTech Connect (OSTI)

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  17. Chiral solitons in nuclei: Electromagnetic form factors

    E-Print Network [OSTI]

    Jason R. Smith; Gerald A. Miller

    2004-09-08

    We calculate the electromagnetic form factors of a bound proton. The Chiral Quark-Soliton model provides the quark and antiquark substructure of the proton, which is embedded in nuclear matter. This procedure yields significant modifications of the form factors in the nuclear environment. The sea quarks are almost completely unaffected, and serve to mitigate the valence quark effect. In particular, the ratio of the isoscalar electric to the isovector magnetic form factor decreases by 20% at Q^2=1 GeV^2 at nuclear density, and we do not see a strong enhancement of the magnetic moment.

  18. Artificial Retina Project: Electromagnetic and Thermal Effects

    SciTech Connect (OSTI)

    Lazzi, Gianluca

    2014-08-29

    This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

  19. Electromagnetic wave scattering by small bodies

    E-Print Network [OSTI]

    A. G. Ramm

    2008-04-21

    A reduction of the Maxwell's system to a Fredholm second-kind integral equation with weakly singular kernel is given for electromagnetic (EM) wave scattering by one and many small bodies. This equation is solved asymptotically as the characteristic size of the bodies tends to zero. The technique developed is used for solving the many-body EM wave scattering problem by rigorously reducing it to solving linear algebraic systems, completely bypassing the usage of integral equations. An equation is derived for the effective field in the medium, in which many small particles are embedded. A method for creating a desired refraction coefficient is outlined.

  20. Study of wavelength dependence of mode instability based on a semi-analytical model

    E-Print Network [OSTI]

    Tao, Rumao; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    We present theoretical study of wavelength dependence of mode instability (MI) in high power fiber lasers, which employs an improved semi-analytical theoretical model. The influence of pump / seed wavelength and photodarkening on threshold has been studied. The results indicate promising MI suppression through pumping or seeding at an appropriate wavelength. Small amounts of photodarkening can lead to significant impact on MI.