P wave velocity variations in the Coso region, California, derived...
for station elevation, weighted, and back-projected along their ray paths through models defined with layers of blocks. Slowness variations in the surface layer reflect...
Variation of seismic-wave velocities in westerly granite under stress
Al-Shaibani, Abdulaziz Muhareb
1994-01-01
Seismic-wave velocities in cracked rocks increase with stress. It is believed that, within less than half the rupture pressure, this velocity increase occurs due to the closure of cracks. Previous studies have shown that, ...
Walker, D. Greg
-11 3.5e-11 4e-11 4.5e-11 5e-11 400 500 600 700 800 900 1000 location(nm) temperature(K) wave location 15 20 25 0 2 4 6 8 10 12 numberdensity(a.u.) frequency (THz) Summary Model Simulation Results Context. - Seitz and Koehler (1956) solve Boltzmann transport equations Monte Carlo approach is used to· 90 100 3e
Temporal Velocity Variations beneath the Coso Geothermal Field...
Temporal Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to:...
Wave VelocityWave Velocity Diff t f ti l l itDifferent from particle velocity
Yoo, S. J. Ben
Wave VelocityWave Velocity v=/T =f Diff t f ti l l itDifferent from particle velocity Depends on the medium in which the wave travelsDepends on the medium in which the wave travels stringaonvelocity F v of Waves11-8. Types of Waves Transverse wave Longitudinal wave Liu UCD Phy1B 2014 37 #12;Sound Wave
Variational Principles for Water Waves
Boris Kolev; David H. Sattinger
2007-12-01
We describe the Hamiltonian structures, including the Poisson brackets and Hamiltonians, for free boundary problems for incompressible fluid flows with vorticity. The Hamiltonian structure is used to obtain variational principles for stationary gravity waves both for irrotational flows as well as flows with vorticity.
Crust and Upper Mantle P Wave Velocity Structure Beneath Valles...
Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera, New Mexico- Results from the Jemez Teleseismic Tomography Experiment Jump to: navigation, search OpenEI...
Wavefield Analysis of Rayleigh Waves for Near-Surface Shear-Wave Velocity
Zeng, Chong
2011-05-18
Shear (S)-wave velocity is a key property of near-surface materials and is the fundamental parameter for many environmental and engineering geophysical studies. Directly acquiring accurate S-wave velocities from a seismic shot gather is usually...
Migration velocity analysis for TI media in the presence of quadratic lateral velocity variation
Tsvankin, Ilya
of lateral heteroge- neity on image gathers obtained after prestack depth migration and found that quadratic that application of prestack depth migration (PSDM) with anisotropic MVA yields sig- nificantly improved imagesMigration velocity analysis for TI media in the presence of quadratic lateral velocity variation
Noninvasive electromechanical wave imaging and conduction velocity estimation in vivo
Konofagou, Elisa E.
Noninvasive electromechanical wave imaging and conduction velocity estimation in vivo Elisa University, New York, NY, USA E-mail: ek2191@columbia.edu Abstract-- Electromechanical imaging is a novel identify and separate the electromechanical waves from the hemodynamically induced waves and determine
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)
2010-03-16
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
On electromagnetic waves with a negative group velocity
Makarov, V. P.; Rukhadze, A. A.; Samokhin, A. A. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation)
2010-12-15
Recent publications devoted to the electrodynamics of media in which waves with a negative group velocity can exist are discussed. The properties of such waves have been studied from the beginning of the past century, and the most important results in this field were obtained by Soviet physicists in the 1940s-1950s. However, in most recent publications, this circumstance has not been taken into account.
Continuous subsurface velocity measurement with coda wave interferometry
Niu, Fenglin
. The experiment site is located 10 km west to the seismically very active Xiaojiang fault zone. An electric hammer was used as a source to generate highly repeatable seismic waves, which were recorded by 5 short is interpreted as the velocity response to the barometric pressure. A multivariate linear regression analysis
Photospheric Logarithmic Velocity Spirals as MHD Wave Generation Mechanisms
Mumford, S J
2015-01-01
High-resolution observations of the solar photosphere have identified a wide variety of spiralling motions in the plasma. These spirals vary in properties, but are observed to be abundant on the solar surface. In this work these spirals are studied for their potential as magnetohydrodynamic (MHD) wave generation mechanisms. The inter-granular lanes, where these spirals are commonly observed, are also regions where the magnetic field strength is higher than average. This combination of magnetic field and spiralling plasma is a recipe for the generation of Alfv\\'en waves and other MHD waves. This work employs numerical simulations of a self-similar magnetic flux tube embedded in a realistic, gravitationally stratified, solar atmosphere to study the effects of a single magnetic flux tube perturbed by a logarithmic velocity spiral driver. The expansion factor of the logarithmic spiral driver is varied, multiple simulations are run for a range of values of the expansion factor centred around observational data. Th...
Stress-wave velocity of wood-based panels: Effect of moisture,
Stress-wave velocity of wood-based panels: Effect of moisture, product type, and material direction Guangping Han Qinglin Wu Xiping Wang Abstract The effect of moisture on longitudinal stress-wave veloc- ity, particleboard, and southern pine lumber was evaluated. It was shown that the stress-wave velocity decreased
Geddes, Cameron Guy Robinson
conventional technology nonlinear plasma waves driven by intense laser pulses. A basic quantity of interest, hence, the above expres- sion for Eth does not apply. Low-energy particle beam-driven plasma waves alsoWarm wave breaking of nonlinear plasma waves with arbitrary phase velocities C. B. Schroeder, E
Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming
Daniel, R.G.; Boore, D.M.
1982-04-10
To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/d..delta... Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation.
Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.
2012-05-17
In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.
Three-dimensional P and S waves velocity structures of the Coso...
Three-dimensional P and S waves velocity structures of the Coso geothermal area, California, from microseismic travel time data Jump to: navigation, search OpenEI Reference...
Near-Surface Shear-Wave Velocity Measurements in Unlithified Sediment
Rickards, Benjamin Thomas
2011-05-31
Shear-wave (S-wave) velocity can be directly correlated to material stiff¬ness making it a valuable physical property that has found uses in construction, engineering, and envi-ronmental projects. This study compares three ...
Spectral Type and Radial Velocity Variations in Three SRC Variables
Moncrieff, Kathleen E; Short, C Ian; Bennett, Philip D; Balam, David D; Griffin, Roger F
2011-01-01
SRC variables are M supergiants, precursors to Type II supernovae, that vary in brightness with moderately regular periods of order 100-1000 days. Although identified as pulsating stars that obey their own period-luminosity relation, few have been examined in enough detail to follow the temperature and spectral changes that they undergo during their long cycles. The present study examines such changes for several SRC variables revealed by CCD spectra obtained at the Dominion Astrophysical Observatory (DAO) during 2005-2009, as well as by archival spectra from the DAO (and elsewhere) for some stars from the 1960s to 1980s, and Cambridge radial velocity spectrometer measures for Betelgeuse. Described here is our classification procedure and information on the spectral type and radial velocity changes in three of the stars. The results provide insights into the pulsation mechanism in M supergiants.
Variational Structure of Inverse Problems in Wave Propagation and Vibration
Variational Structure of Inverse Problems in Wave Propagation and Vibration James G. Berryman in wave propagation (traveltime tomography) and two examples in vibration (the plucked string and free.'' For vibrating systems, the apparently very complex behavior of an excited string, drumhead, or the Earth can
In-situ, high-frequency P-Wave velocity measurements within 1 m of the Earth’s surface
Baker, Gregory S.; Steeples, Don W.; Schmeissner, Chris M.
1999-03-01
Seismic P-wave velocities in near?surface materials can be much slower than the speed of sound waves in air (normally 335 m/s or 1100 ft/s). Difficulties often arise when measuring these low?velocity P-waves because of interference by the air wave...
Wave-induced velocities inside a model seagrass bed
Luhar, Mitul
Laboratory measurements reveal the flow structure within and above a model seagrass meadow (dynamically similar to Zostera marina) forced by progressive waves. Despite being driven by purely oscillatory flow, a mean current ...
OPTIMIZATION OF RUNNING STRATEGIES BASED ON ANAEROBIC ENERGY AND VARIATIONS OF VELOCITY
OPTIMIZATION OF RUNNING STRATEGIES BASED ON ANAEROBIC ENERGY AND VARIATIONS OF VELOCITY AMANDINE extend this analysis, based on the equation of motion and aerobic energy, to include a balance of anaerobic energy (or accumulated oxygen deficit) and an energy recreation term when the speed decreases. We
VARIATIONAL BOUSSINESQ MODEL FOR SIMULATION OF COASTAL WAVES AND TSUNAMIS
Al Hanbali, Ahmad
1 VARIATIONAL BOUSSINESQ MODEL FOR SIMULATION OF COASTAL WAVES AND TSUNAMIS DIDIT ADYTIA E. VAN different applications in this paper. One application deals with tsunami simulations, for which we show the phenomenon of tsunami waveguiding before the coast of Lampung in Indonesia. Another application deals
Noninvasive electromechanical wave imaging and conduction-relevant velocity estimation in vivo
Konofagou, Elisa E.
Noninvasive electromechanical wave imaging and conduction-relevant velocity estimation in vivo-correlation Displacement Electromechanical Left ventricle Myocardial Pacing a b s t r a c t Electromechanical wave imaging-type mice (n = 12) at high frame rates in order to take advantage of the transient electromechanical
Kelin Wang; Zexian Cao
2012-01-06
Non-dispersive wave packet for massless fermions is formulated on the basis of squeezed coherent states that are put in a form of common eigenfunction for the Hamiltonian and the helicity operator, starting from the Dirac equation. The wave packet thus constructed is demonstrated to propagate at a constant velocity as that of light. This explicit expression of wave packet for the massless fermions can facilitate theoretical analysis of problems where a wave packet is of formal significance. Furthermore, extensive wave packet may result in a superluminal velocity statistics if determined from the time-of-flight measurement, as recently done on muon neutrinos, when a threshold particle flux or energy transfer, which is eventually referred to the propagation of wave packet, to invoke a detection event is assumed.
Extensional wave attenuation and velocity in partially-saturated sand in the sonic frequency range
Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.
2002-06-17
Extensional wave attenuation and velocity measurements on a high permeability Monterey sand were performed over a range of gas saturations for imbibition and degassing conditions. These measurements were conducted using extensional wave pulse propagation and resonance over a 1 - 9 kHz frequency range for a hydrostatic confining pressure of 8.3 MPa. Analysis of the extensional wave data and the corresponding X-ray CT images of the gas saturation show strong attenuation resulting from the presence of the gas (QE dropped from 300 for the dry sand to 30 for the partially-saturated sand), with larger attenuation at a given saturation resulting from heterogeneous gas distributions. The extensional wave velocities are in agreement with Gassmann theory for the test with near-homogeneous gas saturation and with a patchy saturation model for the test with heterogeneous gas saturation. These results show that partially-saturated sands under moderate confining pressure can produce strong intrinsic attenuation for extensional waves.
Excitation of solitons by an external resonant wave with a slowly varying phase velocity
Aranson, I.; Meerson, B. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Tajima, Toshiki [Texas Univ., Austin, TX (United States)
1992-02-01
A novel mechanism is proposed for the excitation of solitons in nonlinear dispersive media. The mechanism employs an external pumping wave with a varying phase velocity, which provides a continuous resonant excitation of a nonlinear wave in the medium. Two different schemes of a continuous resonant growth (continuous phase-locking) of the induced nonlinear wave are suggested. The first of them requires a definite time dependence of the pumping wave phase velocity and is relatively sensitive to the initial wave phase. The second employs the dynamic autoresonance effect and is insensitive to the exact time dependence of the pumping wave phase velocity. It is demonstrated analytically and numerically, for a particular example of a driven Korteweg-de Vries (KdV) equation with periodic boundary conditions, that as the nonlinear wave grows, it transforms into a soliton, which continues growing and accelerating adiabatically. A fully nonlinear perturbation theory is developed for the driven KdV equation to follow the growing wave into the strongly nonlinear regime and describe the soliton formation.
Al-Hashimi, M.H. Wiese, U.-J.
2009-12-15
We consider wave packets of free particles with a general energy-momentum dispersion relation E(p). The spreading of the wave packet is determined by the velocity v={partial_derivative}{sub p}E. The position-velocity uncertainty relation {delta}x{delta}v{>=}1/2 |<{partial_derivative}{sub p}{sup 2}E>| is saturated by minimal uncertainty wave packets {phi}(p)=Aexp(-{alpha}E(p)+{beta}p). In addition to the standard minimal Gaussian wave packets corresponding to the non-relativistic dispersion relation E(p)=p{sup 2}/2m, analytic calculations are presented for the spreading of wave packets with minimal position-velocity uncertainty product for the lattice dispersion relation E(p)=-cos(pa)/ma{sup 2} as well as for the relativistic dispersion relation E(p)={radical}(p{sup 2}+m{sup 2}). The boost properties of moving relativistic wave packets as well as the propagation of wave packets in an expanding Universe are also discussed.
Non-Gaussian properties of second-order wave orbital velocity
Alberello, Alberto; Gramstad, Odin; Babanin, Alexander V; Toffoli, Alessandro
2015-01-01
A stochastic second-order wave model is applied to assess the statistical properties of wave orbital velocity in random sea states below the water surface. Directional spreading effects as well as the dependency of the water depth are investigated by means of a Monte-Carlo approach. Unlike for the surface elevation, sub-harmonics dominate the second-order contribution to orbital velocity. We show that a notable set-down occurs for the most energetic and steepest groups. This engenders a negative skewness in the temporal evolution of the orbital velocity. A substantial deviation of the upper and lower tails of the probability density function from the Gaussian distribution is noticed, velocities are faster below the wave trough and slower below the wave crest when compared with linear theory predictions. Second-order nonlinearity effects strengthen with reducing the water depth, while weaken with the broadening of the wave spectrum. The results are confirmed by laboratory data. Corresponding experiments have b...
Guido Ciraolo; Cristel Chandre; Ricardo Lima; Marco Pettini; Michel Vittot
2006-07-31
In this article we present an application of a method of control of Hamiltonian systems to the chaotic velocity diffusion of a cold electron beam interacting with electrostatic waves. We numerically show the efficiency and robustness of the additional small control term in restoring kinetic coherence of the injected electron beam.
Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia)
Snieder, Roel
Increase of shear wave velocity before the 1998 eruption of Merapi volcano (Indonesia) U. Wegler,1 of the edifice of Merapi volcano (Java, Indonesia) before its eruption in 1998 by analyzing multiply scattered eruption of Merapi volcano (Indonesia), Geophys. Res. Lett., 33, L09303, doi:10.1029/2006GL025928. 1
perovskite phase suggests slow longitudinal elastic-wave velocities propagating along the
Hansell, Dennis
perovskite phase suggests slow longitudinal elastic-wave velocities propagating along the [010] direction. In addition, it is also inferred that the post-perovskite phase forms a platy crystal habit) observed in the D region (1, 2) is possibly caused by the preferred orientation of the post-perovskite
Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E
2009-07-06
In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations in the western half of the study area (Eurasia and the Middle East) and (ii) identify well located seismic events with event-station paths isolated to individual tectonic provinces within the study area and collect broadband waveforms and source parameters for the selected events. The 1D models obtained from the joint inversion will then be combined with published geologic terrain maps to produce regionalized models for distinctive tectonic areas within the study area, and the models will be validated through full waveform modeling of well-located seismic events recorded at local and regional distances.
The relation between seismic P- and S-wave velocity dispersion in saturated rocks
Mavko, G. [Stanford Univ., CA (United States). Dept. of Geophysics] [Stanford Univ., CA (United States). Dept. of Geophysics; Jizba, D. [CSTJF, Pau (France)] [CSTJF, Pau (France)
1994-01-01
Seismic velocity dispersion in fluid-saturated rocks appears to be dominated by two mechanisms: the large scale mechanism modeled by Biot, and the local flow or squirt mechanism. The two mechanisms can be distinguished by the ratio of P- to S-wave dispersions, or more conveniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. The authors` formulation suggests that when local flow dominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Their examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.
Body Wave Tomography For Regional Scale Assessment Of Geothermal...
wave tomography are two of the primary methods for estimation of regional scale seismic velocity variations. Seismic velocity is affected by temperature and rock composition...
Kawakatsu, Hitoshi
Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi seismic noise. We applied this method to the recording of Hi-net tiltmeters in Japan at 679 stations from), Three-dimensional crustal S wave velocity structure in Japan using microseismic data recorded by Hi
Shen, Yang
P-wave velocity structure of the crust and uppermost mantle beneath Iceland from local earthquake and uppermost mantle beneath Iceland, the keys to understanding the magma plumbing system of the hotspot develop a three-dimensional P-wave velocity model of the Icelandic crust and uppermost mantle from
Extensional wave attenuation and velocity in partially saturated sand in the sonic frequency range
Liu, Z.; Rector, J.W.; Nihei, K.T.; Tomutsa, L.; Myer, L.R.; Nakagawa, S.
2001-08-10
Extensional wave attenuation and velocity measurements on a high permeability Monterey sand were performed over a range of gas saturations for imbibition and degassing conditions. These measurements were conducted using extensional wave pulse propagation and resonance over a 1-9 kHz frequency range for a hydrostatic confining pressure of 8.3 MPa. Analysis of the extensional wave data and the corresponding X-ray CT images of the gas saturation show strong attenuation resulting from the presence of the gas (Q{sub E} dropped from 300 for the dry sand to 30 for the partially-saturated sand), with larger attenuation at a given saturation resulting from heterogeneous gas distributions. The extensional wave velocities are in agreement with Gassmann theory for the test with near-homogeneous gas saturation and with a patchy saturation model for the test with heterogeneous gas saturation. These results show that partially-saturated sands under moderate confining pressure can produce strong intrinsic attenuation for extensional waves.
Piezooptic Coefficients and Acoustic Wave Velocities in Sn2P2S6 Crystals
O. Mys; I. Martynyuk-Lototska; A. Grabar; Yu. Vysochanskii; R. Vlokh
2007-06-28
Piezooptic coefficients of Sn2P2S6 crystals are experimentally determined for l=623.8 nm and T=293 K with the aid of interferometric technique. The components of the elastic stiffness tensor for these crystals are calculated on the basis of studies for the acoustic wave velocities. It is shown that acoustooptic figure of merit can achieve extremely high values for Sn2P2S6 crystals (M2 - 2x10-12s3/kg2).
Yao, H; Beghein, C; Van Der Hilst, RD
2008-01-01
M.N. , 2006. Constraining P-wave velocity variations in2005. High- resolution surface wave tomography from ambienterror (? v ) of the shear wave speed along five vertical
American Society for Testing and Materials. Philadelphia
2011-01-01
1.1 This practice covers a procedure for measuring the ultrasonic velocities in the outer wall of polyethylene storage tanks. An angle beam lateral longitudinal (LCR) wave is excited with wedges along a circumferential chord of the tank wall. A digital ultrasonic flaw detector is used with sending-receiving search units in through transmission mode. The observed velocity is temperature corrected and compared to the expected velocity for a new, unexposed sample of material which is the same as the material being evaluated. The difference between the observed and temperature corrected velocities determines the degree of UV exposure of the tank. 1.2 The practice is intended for application to the outer surfaces of the wall of polyethylene tanks. Degradation typically occurs in an outer layer approximately 3.2-mm (0.125-in.) thick. Since the technique does not interrogate the inside wall of the tank, wall thickness is not a consideration other than to be aware of possible guided (Lamb) wave effects or reflection...
Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E
2010-02-18
The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.
Steffen, Jason H
2015-01-01
Motivated by recent discussions, both in private and in the literature, we use a Monte Carlo simulation of planetary systems to investigate sources of bias in determining the mass-radius distribution of exoplanets for the two primary techniques used to measure planetary masses---Radial Velocities (RVs) and Transit Timing Variations (TTVs). We assert that mass measurements derived from these two methods are comparably reliable---as the physics underlying their respective signals is well understood. Nevertheless, their sensitivity to planet mass varies with the properties of the planets themselves. We find that for a given planet size, the RV method tends to find planets with higher mass while the sensitivity of TTVs is more uniform. This ``sensitivity bias'' implies that a complete census of TTV systems is likely to yield a more robust estimate of the mass-radius distribution provided there are not important physical differences between planets near and far from mean-motion resonance. We discuss differences in...
S wave velocity structure below central Mexico using highresolution surface wave tomography
Clayton, Robert W.
to the coast and found significant difference between the two paths in the period range of 5 to 35 s. [4 regions; they also show a wellresolved lowvelocity zone just below the active part of the Trans Mexican zone. This knowledge is also critical in understanding amplification of seismic waves as they propagate
P. N. Appleton; K. C. Xu; W. Reach; M. A. Dopita; Y. Gao; N. Lu; C. C. Popescu; J. W. Sulentic; R. J. Tuffs; M. S. Yun
2006-02-25
We present the discovery of strong mid-infrared emission lines of molecular hydrogen of apparently high velocity dispersion (~870 km/s) originating from a group-wide shock wave in Stephan's Quintet. These Spitzer Space Telescope observations reveal emission lines of molecular hydrogen and little else. this is the first time an almost pure H_2 line spectrum has been seen in an extragalactic object. Along with the absence of PAH features and very low excitation ionized gas tracers, the spectra resemble shocked gas seen in Galactic supernova remnants, but on a vast scale. The molecular emission extends over 24 kpc along the X-ray emitting shock-front, but has ten times the surface luminosity as the soft X-rays, and about one-third the surface luminosity of the IR continuum. We suggest that the powerful H_2 emission is generated by the shock wave caused when a high-velocity intruder galaxy collides with filaments of gas in the galaxy group. Our observations suggest a close connection between galaxy-scale shock-waves and strong broad H_2 emission lines, like those seen in the spectra of Ultraluminous Infrared Galaxies where high-speed collisions between galaxy disks are common.
Measurement of shear wave velocity of heavy oil De-hua Han, Jiajin Liu, University of Houston
1 Measurement of shear wave velocity of heavy oil De-hua Han, Jiajin Liu, University of Houston modulus and therefore no shear wave can propagate through fluids. But heavy oils have properties that are much complex than lighter oils. At low temperatures, heavy oils are extremely viscous and begin to act
Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.
2014-09-25
This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.
Inertial waves and mean velocity profiles in a rotating pipe and a circular annulus with axial flow
Yang, Yantao; Wu, J Z; Orlandi, Paolo
2015-01-01
In this paper we solve the inviscid inertial wave solutions in a circular pipe or annulus rotating constantly about its axis with moderate angular speed. The solutions are constructed by the so-called helical wave functions. We reveal that the mean velocity profiles must satisfy certain conditions to accommodate the inertial waves at the bulk region away from boundary. These conditions require the axial and azimuthal components of the mean velocity take the shapes of the zeroth and first order Bessel functions of the first kind, respectively. The theory is then verified by data obtained from direct numerical simulations for both rotating pipe and circular annulus, and excellent agreement is found between theory and numerical results. Large scale vortex clusters are found in the bulk region where the mean velocity profiles match the theoretical predictions. The success of the theory in rotating pipe, circular annulus, and streamwise rotating channel suggests that such inertial waves are quite common in wall bo...
West, Michael
respond to changes in the bulk modulus, shear modulus and density caused by the presence of water. WeFLUID-INDUCED CHANGES IN SHEAR VELOCITY FROM SURFACE WAVES Michael West and William Menke, Lamont transient ground water by detecting changes in seismic velocity. Compressional and shear wave velocities
MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE
PETERSON SW
2010-10-08
Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1, 2009 for 7 wells in the 200-PO-1 OU and Gable Gap regions (see Figure 3 and Figure 4); and March 22, 2010 and April 19, 2010 for 17 wells in the 200 East, The initial scope of survey work was planned for Wells 299-EI8-1, 699-2-E14, 699-12-18, 699-16-51, 699-42-30, 699-53-55B, 699-54-18D, and 699-84-34B. Well 299-E18-1 could not be entered due to bent casing (prevented removal of the pump), wells 699-12-18 and 699-42-30 could not be safely reached by the logging truck, Well 699-16-51 was decommissioned prior to survey start, Well 699-53-55B did not have its pump pulled, and Wells 699-2-EI4, 699-54-18D, and 699-84-34B are artesian and capped with an igloo structure. Table 1 provides a list of wells that were surveyed and Figure 1 through Figure 5 show the well locations relative to the Hanford Site.
Hansen, S; Gaherty, J; Schwartz, S; Rodgers, A; Al-Amri, A
2007-07-25
We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.
Red Algae Respond to Waves: Morphological and Mechanical Variation in Mastocarpus papillatus Along
Denny, Mark
Red Algae Respond to Waves: Morphological and Mechanical Variation in Mastocarpus papillatus Along Grove, California, 93950 Abstract. Intertidal algae are exposed to the potentially severe drag forces generated by crashing waves, and several species of brown algae respond, in part, by varying the strength
Diffractive Nonlinear Geometrical Optics for Variational Wave Equations and the Einstein Equations
Giuseppe Ali; John K. Hunter
2005-11-02
We derive an asymptotic solution of the vacuum Einstein equations that describes the propagation and diffraction of a localized, large-amplitude, rapidly-varying gravitational wave. We compare and contrast the resulting theory of strongly nonlinear geometrical optics for the Einstein equations with nonlinear geometrical optics theories for variational wave equations.
LONG-TERM VARIATION IN THE SUN'S ACTIVITY CAUSED BY MAGNETIC ROSSBY WAVES IN THE TACHOCLINE
Usoskin, Ilya G.
LONG-TERM VARIATION IN THE SUN'S ACTIVITY CAUSED BY MAGNETIC ROSSBY WAVES IN THE TACHOCLINE (10Be and 14C) on the Earth reveal the variation of the Suns magnetic activity over hundreds during the first half of this century. Key words: Sun: activity Sun: interior Sun: oscillations 1
The radial variation of HI velocity dispersions in dwarfs and spirals
Ianjamasimanana, R; Walter, Fabian; Heald, George H; Caldu-Primo, Anahi; Jarrett, Thomas H
2015-01-01
Gas velocity dispersions provide important diagnostics of the forces counteracting gravity to prevent collapse of the gas. We use the 21 cm line of neutral atomic hydrogen (HI) to study HI velocity dispersion and HI phases as a function of galaxy morphology in 22 galaxies from The HI Nearby Galaxy Survey (THINGS). We stack individual HI velocity profiles and decompose them into broad and narrow Gaussian components. We study the HI velocity dispersion and the HI surface density, as a function of radius. For spirals, the velocity dispersions of the narrow and broad components decline with radius and their radial profiles are well described by an exponential function. For dwarfs, however, the profiles are much flatter. The single Gaussian dispersion profiles are, in general, flatter than those of the narrow and broad components. In most cases, the dispersion profiles in the outer disks do not drop as fast as the star formation profiles, derived in the literature. This indicates the importance of other energy sou...
Joint migration velocity analysis of PP-and PS-waves for VTI media Pengfei Cai1
Tsvankin, Ilya
estimated, accurate depth images can be obtained by migrating the recorded PP and PS data. INTRODUCTION Prestack depth migration (PSDM) and reflection tomography in the migrated domain are widely used in PJoint migration velocity analysis of PP- and PS-waves for VTI media Pengfei Cai1 and Ilya Tsvankin2
Tsai, Victor C.
, it is not in others. Moreover, calculating the complete Green's functions for a specific case may take significantShort Note Green's Functions for Surface Waves in a Generic Velocity Structure by Victor C. Tsai displacement/stress eigenfunctions and Green's functions have been well established for many decades. However
Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.
2012-01-10
In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.
Anderson, M. L.; Nettles, M.; Larsen, T. B.; Hamilton, Gordon S.; Stearns, Leigh
2011-09-01
, marine-terminating outlet glaciers that drain the ice sheet. We use a validated model of meltwater input and GPS-derived surface velocities to quantify the sensitivity of glacier flow speed to changes in surface melt at Helheim Glacier during two summer...
Laboratory measurements of wave height variations and currents along a steep-sided channel
Way, Francis
2000-01-01
surface piercing wave gages. Particle velocities were measured at 49 positions with a side looking three-dimensional acoustic Doppler velocimeter. A spectral analysis was performed on each free surface time series to obtain H[m]?, as well as first...
Dual variational principles for nonlinear traveling waves in multifluid plasmas
Webb, G. M.; McKenzie, J. F.; Mace, R. L.; Ko, C. M.; Zank, G. P.
2007-08-15
A Hamiltonian description of nonlinear, obliquely propagating traveling waves in a charge neutral, electron-proton, multifluid plasma is developed. The governing equations are written as a dual spatial Hamiltonian system. In the first formulation, the Hamiltonian is identified with the longitudinal, x-momentum flux integral P{sub x}=const, in which the energy integral {epsilon}={epsilon}{sub 0} acts as a constraint, and the Hamiltonian evolution operator is d/dx, where x is the position coordinate in the wave frame. In the second Hamiltonian formulation, the Hamiltonian is proportional to the conserved energy integral {epsilon}, in which the momentum integral P{sub x}=const acts as a constraint, and the Hamiltonian evolution operator d/d{tau}=u{sub x}d/dx is the Lagrangian time derivative where u{sub x} is the x component of the electron and proton fluids. The analysis is facilitated by using the de Hoffman-Teller frame of magnetohydrodynamic shock theory to simplify the transverse electron and proton momentum equations. The system is exactly integrable in cases in which the total transverse momentum fluxes of the system are zero in the de Hoffman-Teller frame. The implications of this constraint for the Alfven Mach number of the traveling wave are discussed. The physical conditions for the formation of whistler oscillitons based on the whistler dispersion equation are discussed.
Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E
2008-11-11
Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.
A. D. Pataraya; T. A. Pataraya; B. M. Shergelashvili
2000-05-08
The behaviour of the toroidal and meridional components of the solar large-scale magnetic field and linear Alfven and Rossby waves during solar activity cycles and bi-annual time periods are theoretically investigated in this work. We consider the case of periodical velocity shear with bi-annual oscillation period . The large-scale magnetic field toroidal and meridional components are obtained as harmonic functions of the time. The sign reversal of these magnetic field components is studied. The numerical simulations show that, due to the velocity shear oscillations, the toroidal or meridional component of the large-scale magnetic field reverses its sign three times in one of the hemispheres (northern or southern) of the Sun, during the solar activity cycle 23. According to our results the appearance of velocity shear oscillations leads to the modulation of the magnetic field 22-year period oscillations by the bi-annual ones. The presented model is applicable for investigation of the magnetic field evolution at the base of convection zone as well as for understanding the magnetic field properties in the upper solar atmosphere. The excitement of the linear Rossby and Alfven waves in the shear layer at the base of the convection zone is also considered. The periodical impulsive growth is characteristic to the energy density of Alfven and Rossby waves and they propagate as localized in time powerful pulses. Such behavior of waves well explains mechanisms of the solar flare excitement and activity.
Michael Herrmann
2011-05-29
We study focussing discrete nonlinear Schr\\"{o}dinger equations and present a new variational existence proof for homoclinic standing waves (bright solitons). Our approach relies on the constrained maximization of an energy functional and provides the existence of two one-parameter families of waves with unimodal and even profile function for a wide class of nonlinearities. Finally, we illustrate our results by numerical simulations.
Snieder, Roel
Using coda wave interferometry for estimating the variation in source mechanism between double in orientation between the source mechanism of two identically located double couple sources can be estimated for joint relative location and focal mechanism determination using information from seismic coda recorded
P wave velocity variations in the Coso region, California, derived from
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | OpenWisconsin:NewOver CoreOxfordlocal earthquake travel
Coherent molecular transistor: Control through variation of the gate wave function
Ernzerhof, Matthias
2014-03-21
In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.
Inversion of OBC seismic data for P- and S-wave velocities.
Hall, Guy R
This thesis describes an new method for deriving a shared-earth velocity model for P-P ans P-SV reflections measured with ocean bottom cable (OBC) data. The data have the potential to reveal lithological and fluid ...
Page, John
the solid scatterers, and by ii tortuosity effects, where the wave energy is largely confined University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Received 4 June 1998 We study, both
One-Way Wave Propagators For Velocity Analysis On Curvilinear Coordinates
Budkick, Scott
2008-01-01
Due to present computational limitations, migration by the one-way wave equation remains an integral tool in seismic exploration. For the realistic interpretation of common image point gathers, it is necessary that migration ...
, 1997) provisions (Building Seismic Safety Council [BSSC], 1998) sites are categorized for shaking-wave velocity measure- ments in the basin to be able to assess the success of alter- native NEHRP classification. Ambient seismic noise (vehicle traffic, etc.) excited Rayleigh waves in urban alluvium, eliminating
Azimuthally Anisotropic 3D Velocity Continuation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Burnett, William; Fomel, Sergey
2011-01-01
We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore »the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less
Thermal structure of continental upper mantle inferred from S-wave velocity and surface heat ow
Snieder, Roel
; geothermal gradient 1. Introduction Oceanic lithosphere is continuously recycled by mantle convection geotherms differ most at depths of 60^120 km with variations of up to 900³C. Below 230 km, differences do not exceed 300³C. These geotherms agree well with one-dimensional conductive geotherms for the observed range
Wang, Hongjuan; Gong, Jiancun; Wu, Ning; Lin, Jun
2015-01-01
We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock forward of the rope, which then produces the type II radio burst. The expansion of the fast shock, which is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast s...
Sermeus, J.; Glorieux, C.; Sinha, R.; Vereecken, P. M.; Vanstreels, K.
2014-07-14
MnO{sub 2} is a material of interest in the development of high energy-density batteries, specifically as a coating material for internal 3D structures, thus ensuring rapid energy deployment. Its electrochemical properties have been mapped extensively, but there are, to the best of the authors' knowledge, no records of the elastic properties of thin film MnO{sub 2}. Impulsive stimulated thermal scattering (ISTS), also known as the heterodyne diffraction or transient grating technique, was used to determine the Young's modulus (E) and porosity (?) of a 500?nm thick MnO{sub 2} coating on a Si(001) substrate. ISTS is an all optical method that is able to excite and detect surface acoustic waves (SAWs) on opaque samples. From the measured SAW velocity dispersion, the Young's modulus and porosity were determined to be E?=?25?±?1?GPa and ?=42±1%, respectively. These values were confirmed by independent techniques and determined by a most-squares analysis of the carefully fitted SAW velocity dispersion. This study demonstrates the ability of the presented technique to determine the elastic parameters of a thin, porous film on an anisotropic substrate.
Lyakhovsky, Vladimir
1987-01-01
-elastic isotropic models (Zaichenko et al. 1984; Schukin 1984). Interpretation of seismic results based on the Hooke in seismic zones implies that the traditional interpretation of geophysical investigations basedGeophys. J. R. astr. SOC.(1987) 91,429437 On the relation between seismic wave velocity and stress
Gustafsson, Torgny
2011 Waves - 1 STANDING WAVES ON A STRING The objectives of the experiment are: · To show that standing waves can be set up on a string. · To determine the velocity of a standing wave. · To understand of waves. A #12;2011 Waves - 2 A standing wave is caused by superposing two similar (same frequency
Michael Herrmann
2010-02-08
We study heteroclinic standing waves (dark solitons) in discrete nonlinear Schr\\"{o}dinger equations with defocussing nonlinearity. Our main result is a quite elementary existence proof for waves with monotone and odd profile, and relies on minimizing an appropriately defined energy functional. We also study the continuum limit and the numerical approximation of standing waves.
Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.
2014-11-20
We develop a model for stochastic acceleration of electrons in solar flares. As in several previous models, the electrons are accelerated by turbulent fast magnetosonic waves ({sup f}ast waves{sup )} via transit-time-damping (TTD) interactions. (In TTD interactions, fast waves act like moving magnetic mirrors that push the electrons parallel or anti-parallel to the magnetic field). We also include the effects of Coulomb collisions and the waves' parallel electric fields. Unlike previous models, our model is two-dimensional in both momentum space and wavenumber space and takes into account the anisotropy of the wave power spectrum F{sub k} and electron distribution function f {sub e}. We use weak turbulence theory and quasilinear theory to obtain a set of equations that describes the coupled evolution of F{sub k} and f {sub e}. We solve these equations numerically and find that the electron distribution function develops a power-law-like non-thermal tail within a restricted range of energies E in (E {sub nt}, E {sub max}). We obtain approximate analytic expressions for E {sub nt} and E {sub max}, which describe how these minimum and maximum energies depend upon parameters such as the electron number density and the rate at which fast-wave energy is injected into the acceleration region at large scales. We contrast our results with previous studies that assume that F{sub k} and f {sub e} are isotropic, and we compare one of our numerical calculations with the time-dependent hard-X-ray spectrum observed during the 1980 June 27 flare. In our numerical calculations, the electron energy spectra are softer (steeper) than in models with isotropic F{sub k} and f {sub e} and closer to the values inferred from observations of solar flares.
Bains, A. S.; Gill, T. S.; Tribeche, Mouloud
2011-02-15
The modulational instability (MI) of ion-acoustic waves (IAWs) in a two-component plasma is investigated in the context of the nonextensive statistics proposed by Tsallis [J. Stat. Phys. 52, 479 (1988)]. Using the reductive perturbation method, the nonlinear Schroedinger equation (NLSE) which governs the MI of the IAWs is obtained. The presence of the nonextensive electron distribution is shown to influence the MI of the waves. Three different ranges of the nonextensive q-parameter are considered and in each case the MI sets in under different conditions. Furthermore, the effects of the q-parameter on the growth rate of MI are discussed in detail.
Sato, Yuki
to the initial onset of a single vortex motion. We place a flow tube in one arm of a matter wave interferometer and directly monitor the order-parameter phase difference across the tube's ends. When a vortex initially quantum interference device to probe the initial onset of the motion of a single vortex line driven
P and S wave velocity and VP///VS in the wake of the Yellowstone hot spot
Humphreys, Eugene
magmatism occurred at the eastern Snake River Plain $610 m.y. B.P. Data are teleseismic P and S travel time. The dominant structure is a zone which extends beneath the Snake River Plain to a depth of $190 km that is high to density. Specifically, we infer that the low-velocity mantle beneath the Snake River Plain is partially
Hall, Maclin S. (Marietta, GA); Jackson, Theodore G. (Atlanta, GA); Knerr, Christopher (Lawrenceville, GA)
1998-02-17
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.
Hall, M.S.; Jackson, T.G.; Knerr, C.
1998-02-17
An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.
Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection
Wood, C.B.
1992-12-15
A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.
The various manifestations of collisionless dissipation in wave propagation
Benisti, Didier; Morice, Olivier; Gremillet, Laurent
2012-06-15
The propagation of an electrostatic wave packet inside a collisionless and initially Maxwellian plasma is always dissipative because of the irreversible acceleration of the electrons by the wave. Then, in the linear regime, the wave packet is Landau damped, so that in the reference frame moving at the group velocity, the wave amplitude decays exponentially with time. In the nonlinear regime, once phase mixing has occurred and when the electron motion is nearly adiabatic, the damping rate is strongly reduced compared to the Landau one, so that the wave amplitude remains nearly constant along the characteristics. Yet, we show here that the electrons are still globally accelerated by the wave packet, and in one dimension, this leads to a non local amplitude dependence of the group velocity. As a result, a freely propagating wave packet would shrink, and therefore, so would its total energy. In more than one dimension, not only does the magnitude of the group velocity nonlinearly vary, but also its direction. In the weakly nonlinear regime, when the collisionless damping rate is still significant compared to its linear value, the group velocity is directed towards the outside of the wave packet and tends to increase its transverse extent, while the opposite is true once the wave is essentially undamped. The impact of the nonlinear variation of the group velocity on the transverse size of the wave packet is quantified, and compared to that induced by the self-focussing due to wave front bowing.
Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)
1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution
Rogue Wave Modes for the Long WaveShort Wave Resonance Model Kwok Wing CHOW
Rogue Wave Modes for the Long WaveShort Wave Resonance Model Kwok Wing CHOW 1Ã , Hiu Ning CHAN 1 online June 11, 2013) The long waveshort wave resonance model arises physically when the phase velocity of a long wave matches the group velocity of a short wave. It is a system of nonlinear evolution equations
Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements
Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan
2009-08-15
In this work an alumina-zirconia ceramic composites have been prepared with {alpha}-Al{sub 2}O{sub 3} contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest {alpha}-Al{sub 2}O{sub 3} content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Denton, R. E.; Jordanova, V. K.; Fraser, B. J.
2014-10-01
We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore »L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less
Denton, R. E.; Jordanova, V. K.; Fraser, B. J.
2014-10-01
We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell from L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.
Rogue Wave Modes for the Long Wave-Short Wave Resonance Kwok Wing CHOW*(1)
of a long wave matches the group velocity of a short wave. Significant interactions and energy transfer can1 Rogue Wave Modes for the Long Wave-Short Wave Resonance Model Kwok Wing CHOW*(1) , Hiu Ning CHAN.45.Yv; 47.35.Fg ABSTRACT The long wave-short wave resonance model arises physically when the phase
'ITENUATiON AND VELOCITY OF BEREA SANDSTONE MEASURED IN THE FREQUENCY DOMAIN T. J. Shank!and1 Institutde.Usingmeasurementsinthefrequencydomainwe havemeasuredqualityfactorQandtraveltimesofdirectand side-reflectedelasticwavesin a 1.8mlongsampleofBerea sandstoneDVM. Possibletravelpathsinadditiontodirecttransmissioninclude sidewall reflectionsandsurfacewaves. 391 #12;392 Shanklandetal.:AttenuationandVelocityofSandstone
Dissipative electromagnetic solitary waves in collisional plasmas
Borhanian, Jafar [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P.O.Box 179, Ardabil (Iran, Islamic Republic of)
2012-08-15
The propagation of linearly polarized electromagnetic (EM) waves in a collisional plasma is studied using multiple scale perturbation technique in a weakly nonlinear regime. A complex linear dispersion relation and a complex group velocity are obtained for EM waves propagating in a plasma and their dependence on system parameters is investigated. It is shown that the amplitude of EM pulse is governed by an envelope equation similar to a cubic complex Ginzburg-Landau equation. A traveling bright solitary wave solution for envelope equation is found, its existence condition in parameter space is explored and variation of its profile with system parameters is manipulated. Monitoring temporal evolution of traveling solitary wave solution provides more insight into the nature of this solution and ensures that depending on the parameters of the system, solitary wave solution may behave like a stationary soliton or may exhibit the behavior of a breathing soliton.
Stress Wave Source Characterization: Impact, Fracture, and Sliding Friction
McLaskey, Gregory Christofer
2011-01-01
717-725. Graff, K. (1975). Wave Motion in Elastic Solids (and deterioration on stress wave velocities in concrete,Greenspan, M. (1981) Surface-wave displacement: absolute
WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA
Cary, John R.
2012-01-01
case, the electrons have negative wave energy for 2w ne w wave energy for 2w .w > 0 nl Hence, unstable waves with negative phase velocity,
Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones
2014-08-01
A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .
Local Energy Velocity of Classical Fields
I. V. Drozdov; A. A. Stahlhofen
2007-04-19
It is proposed to apply a recently developed concept of local wave velocities to the dynamical field characteristics, especially for the canonical field energy density. It is shown that local energy velocities can be derived from the lagrangian directly. The local velocities of zero- and first- order for energy propagation has been obtained for special cases of scalar and vector fields. Some important special cases of these results are discussed.
Effect of gas velocity on the weakly nonlinear instability of a planar viscous sheet
Yang, Li-Jun, E-mail: yanglijun@buaa.edu.cn; Chen, Pi-Min; Wang, Chen [School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)
2014-07-15
A weakly nonlinear spatial instability of a two-dimensional planar viscous sheet for sinuous disturbances in a co-flowing inviscid gas stream is investigated theoretically, with an emphasis on the effect of the surrounding gas velocity. The solutions of the second-order interface disturbances are derived and the wave deformation has been computed. The results indicate that the second-order surface disturbance of the fundamental sinuous mode is varicose, which causes the thinning and the subsequent breakup of the liquid sheet. The nonlinear behaviors of the planar sheet are quite sensitive to variations in gas-to-liquid velocity ratio. The deviation of the velocity ratio from the value of unity leads to a larger growth rate, a larger second-order initial amplitude, and a shorter breakup length, and therefore enhances the instability. The growth rates predicted by the present nonlinear analysis according to the shortest breakup length are generally smaller than the linear predictions and can better conform to the experimental measures of Barreras et al. [“Linear instability analysis of the viscous longitudinal perturbation on an air-blasted liquid sheets,” Atomization Sprays 11, 139 (2001)]. Furthermore, the wave deformations of the most unstable disturbances are presented. The nonlinear instability of the planar sheet for a fixed velocity difference is performed. An equal increase of the gas and liquid velocity reduces the spatial growth rate and increases the breakup length, but generally has no influences on the second-order initial amplitude and the wavelength of the disturbance.
Particle and Wave: Developing the Quantum Wave Accompanying a Classical Particle
C. L. Herzenberg
2008-12-04
The relationship between classical and quantum mechanics is explored in an intuitive manner by the exercise of constructing a wave in association with a classical particle. Using special relativity, the time coordinate in the frame of reference of a moving particle is expressed in terms of the coordinates in the laboratory frame of reference in order to provide an initial spatiotemporal function to work from in initiating the development of a quantum wave. When temporal periodicity is ascribed to the particle, a provisional spatiotemporal function for a particle travelling at constant velocity manifests itself as an running wave characterized by parameters associated with the moving particle. A wave description for bidirectional motion is generated based on an average time coordinate for a combination of oppositely directed elementary running waves, and the resulting spatiotemporal function exhibits wave behavior characteristic of a standing wave. Ascribing directional orientation to the intrinsic periodicity of the particle introduces directional sub-states; variations in the relative number of sub-states as a function of angle in combined states lead to spatially varying magnitudes for the associated waves. Further analysis leads to full mathematical expression for all waves representing free particle motion. A generalization for particles subject to force fields enables us to develop a governing differential equation identical in form to the Schroedinger equation.
Xing, Z; Beghein, C
2015-01-01
from measurements of surface wave phase velocity anomalies,boundary from surface wave dispersion data, J. Geophys.radially anisotropic surface wave tomography, J. Geophys.
Recent Advances in Wave Travel Time Based Methodology for Structural Health Monitoring
Southern California, University of
identify wave velocity profiles of vertically propagating shear and torsional waves through the building monitoring, seismic interferometry, wave travel time 1. INTRODUCTION The ability to monitor the health
Penetration of lower hybrid current drive waves in tokamaks
Horton, W. [The University of Texas at Austin, Austin, Texas 78712 (United States) [The University of Texas at Austin, Austin, Texas 78712 (United States); Aix-Marseille University, 58, Bd Charles Livon, 13284 Marseille (France); Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X. [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France)] [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France)
2013-11-15
Lower hybrid (LH) ray propagation in toroidal plasma is shown to be controlled by combination of the azimuthal spectrum launched by the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the drift wave fluctuations. The width of the poloidal and radial radio frequency wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the drift waves. The electron temperature gradient (ETG) spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and phase velocities. ETG turbulence is also driven by the radial gradient of the electron current profile giving rise to an anomalous viscosity spreading the LH driven plasma currents. The LH wave scattering is derived from a Fokker-Planck equation for the distribution of the ray trajectories with diffusivities derived from the drift wave fluctuations. The condition for chaotic diffusion for the rays is derived. The evolution of the poloidal and radial mode number spectrum of the lower hybrid waves are both on the antenna spectrum and the spectrum of the drift waves. Antennas launching higher poloidal mode number spectra drive off-axis current density profiles producing negative central shear [RS] plasmas with improved thermal confinement from ETG transport. Core plasma current drive requires antennas with low azimuthal mode spectra peaked at m = 0 azimuthal mode numbers.
Wave Mechanics and the Fifth Dimension
Paul S. Wesson; James M. Overduin
2013-01-28
Replacing 4D Minkowski space by 5D canonical space leads to a clearer derivation of the main features of wave mechanics, including the wave function and the velocity of de Broglie waves. Recent tests of wave-particle duality could be adapted to investigate whether de Broglie waves are basically 4D or 5D in nature.
IWA : an analysis program for isentropic wave measurements.
Ao, Tommy
2009-02-01
IWA (Isentropic Wave Analysis) is a program for analyzing velocity profiles of isentropic compression experiments. IWA applies incremental impedance matching correction to measured velocity profiles to obtain in-situ particle velocity profiles for Lagrangian wave analysis. From the in-situ velocity profiles, material properties such as wave velocities, stress, strain, strain rate, and strength are calculated. The program can be run in any current version of MATLAB (2008a or later) or as a Windows XP executable.
Pyrotechnic deflagration velocity and permeability
Begeal, D R; Stanton, P L
1982-01-01
Particle size, porosity, and permeability of the reactive material have long been considered to be important factors in propellant burning rates and the deflagration-to-detonation transition in explosives. It is reasonable to assume that these same parameters will also affect the deflagration velocity of pyrotechnics. This report describes an experimental program that addresses the permeability of porous solids (particulate beds), in terms of particle size and porosity, and the relationship between permeability and the behavior of pyrotechnics and explosives. The experimental techniques used to acquire permeability data and to characterize the pyrotechnic burning are discussed. Preliminary data have been obtained on the burning characteristics of titanium hydride/potassium perchlorate (THKP) and boron/calcium chromate (BCCR). With THKP, the velocity of a pressure wave (from hot product gases) in the unburned region shows unsteady behavior which is related to the initial porosity or permeability. Simultaneous measurements with pressure gauges and ion gauges reveal that the pressure wave precedes the burn front. Steady burning of BCCR was observed with pressure gauge diagnostics and with a microwave interferometry technique.
Multipole seismoelectric logging while drilling (LWD) for acoustic velocity measurements
Zhu, Zhenya
2012-01-01
In seismoelectric well logging, an acoustic wave propagates along a borehole and induces electrical signals along the borehole wall. The apparent velocities of these seismoelectric signals are equal to the formation ...
Seismic velocity and Q anisotropy in fractured poroelastic media
The energy-velocity vector ve of the qP and qSV waves is ..... A., On the spatial variability of parameters of the unsaturated hydraulic conductivity, Water Res.
Extreme wave impinging and overtopping
Ryu, Yong Uk
2009-06-02
This investigates the velocity fields of a plunging breaking wave impinging on a structure through measurements in a two-dimensional wave tank. As the wave breaks and overtops the structure, so-called green water is generated. The flow becomes multi...
11. Acoustic waves and shocks 11.1 Acoustic waves of low amplitude
Pohl, Martin Karl Wilhelm
11. Acoustic waves and shocks 11.1 Acoustic waves of low amplitude Let us consider an adiabatic (or velocity of sound waves is constant. Does that still hold for sound waves of finite amplitude? Equation 11. This is the result of the non-linear nature of the hydrodynamical equations. On should note that wave damping, e
Universality of the de Broglie-Einstein velocity equation
Yusuf Z. Umul
2007-12-06
The de Broglie-Einstein velocity equation is derived for a relativistic particle by using the energy and momentum relations in terms of wave and matter properties. It is shown that the velocity equation is independent from the relativistic effects and is valid also for the non-relativistic case. The results of this property is discussed.
Edinburgh, University of
the overburden using vertical seismic profiles (VSPs) (Horne and MacBeth, 1997) and in the labora- Published for attenuation in the upper crust at seismic frequencies is intracrack fluid flow. In cracked media period of the workshop on Azimuthal Variations in Seismic Signature (held in conjunction with the 1997
Evidence for wave heating of the quiet-sun corona
Hahn, M.; Savin, D. W.
2014-11-10
We have measured the energy and dissipation of Alfvénic waves in the quiet Sun. A magnetic field model was used to infer the location and orientation of the magnetic field lines along which the waves are expected to travel. The waves were measured using spectral lines to infer the wave amplitude. The waves cause a non-thermal broadening of the spectral lines, which can be expressed as a non-thermal velocity v {sub nt}. By combining the spectroscopic measurements with this magnetic field model, we were able to trace the variation of v {sub nt} along the magnetic field. At each footpoint of the quiet-Sun loops, we find that waves inject an energy flux in the range of 1.3-5.5 × 10{sup 5} erg cm{sup –2} s{sup –1}. At the minimum of this range, this amounts to more than 80% of the energy needed to heat the quiet Sun. We also find that these waves are dissipated over a region centered on the top of the loops. The position along the loop where the damping begins is strongly correlated with the length of the loop, implying that the damping mechanism depends on the global loop properties rather than on local collisional dissipation.
DIFFUSING ACOUSTIC WAVE TRANSPORT AND SPECTROSCOPY
Page, John
1 Chapter DIFFUSING ACOUSTIC WAVE TRANSPORT AND SPECTROSCOPY J.H. PAGE, M.L. COWAN Dept. of Physics waves, multiple scattering, energy velocity, Diffusing Acoustic Wave Spectroscopy. Abstract the diffusive transport of ultrasonic waves, and then describe a new ultrasonic technique, Diffusing Acoustic
Directed Relativistic Blast Wave
Andrei Gruzinov
2007-04-23
A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativistic blast wave. This universality might be of interest for the astrophysics of gamma-ray burst afterglows.
Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion
Pasyanos, M E
2008-05-15
The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.
Chiral Heat Wave and wave mixing in chiral media
Chernodub, M N
2015-01-01
We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective excitation associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This excitation, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. We find that the coupled waves - which are coherent fluctuations of the vector, axial and energy currents - have generally different velocities compared to the velocities of the individual waves. We also demonstrate that rotating chiral systems subjected to external magnetic field possess non-propagating metastable thermal excitations, the Dense Hot Spots.
in the vicinity of Mie resonances as a result of the temporary storage of wave energy inside the scatterer [4 R3T 2N2 2 Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay
Modified definition of group velocity and electromagnetic energy conservation equation
Changbiao Wang
2015-05-11
The classical definition of group velocity has two flaws: (a) the group velocity can be greater than the phase velocity and break Fermat's principle in a non-dispersive, lossless, non-conducting, anisotropic uniform medium; (b) the definition is not consistent with the principle of relativity for a plane wave in a moving isotropic uniform medium. To remove the flaws, a modified definition is proposed. A criterion is set up to identify the justification of group velocity definition. A "superluminal power flow" is constructed to show that the electromagnetic energy conservation equation cannot uniquely define the power flow if the principle of Fermat is not taken into account.
Hietala, Vincent M. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)
1993-01-01
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
Hietala, V.M.; Vawter, G.A.
1993-12-14
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.
J X Zheng-Johansson; P-I Johansson
2006-08-27
The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity $v$, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed $c$ between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength ${\\mit\\Lambda}_d$$=(\\frac{v}{c}){\\mit\\Lambda}$ and phase velocity $c^2/v+v$ which resembles directly L. de Broglie's hypothetic phase wave. This phase wave in terms of transporting the particle mass at the speed $v$ and angular frequency ${\\mit\\Omega}_d=2\\pi v /{\\mit\\Lambda}_d$, with ${\\mit\\Lambda}_d$ and ${\\mit\\Omega}_d$ obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase) wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schr\\"odinger equation of an identical system.
H. Essen
2004-01-28
This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.
Velocity pump reaction turbine
House, Palmer A. (Walnut Creek, CA)
1984-01-01
An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.
Velocity pump reaction turbine
House, Palmer A. (Walnut Creek, CA)
1982-01-01
An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.
Marsh, S.P.
1988-03-08
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.
Marsh, S.P.
1987-03-12
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.
Tracking deep mantle reservoirs with ultra-low velocity zones Allen K. McNamara a,
Rhoads, James
Tracking deep mantle reservoirs with ultra-low velocity zones Allen K. McNamara a, , Edward J, that directly overlies the core-mantle boundary (CMB). These regions have been dubbed Ultra-Low Velocity Zones. Introduction For over 15 yrs seismologists have mapped regions of ultra-low P- and S-wave velocities
California at San Diego, University of
Wave-Particle Interactions in Electron Acoustic Waves in Pure Ion Plasmas F. Anderegg, C. F waves (EAW) with a phase velocity less than twice the plasma thermal velocity are observed on pure ion excitation the EAW is more frequency variable than typical Langmuir waves, and at large excitations resonance
Kinematics of extreme waves in deep water John Grue*, Didier Clamond, Morten Huseby, Atle Jensen
Clamond, Didier
Kinematics of extreme waves in deep water John Grue*, Didier Clamond, Morten Huseby, Atle Jensen fluid velocity, e ffiffiffiffi g=k p is then defined. Deep water waves with a fluid velocity up to 75 2004 Abstract The velocity profiles under crest of a total of 62 different steep wave events in deep
Seismic velocity estimation from time migration
Cameron, Maria Kourkina
2007-01-01
Seismic images . . . . . . . . . . . . . . . . .Algorithms producing the seismic velocities from thethe Dix velocities and the true seismic velocities in 2D . .
Sych, Robert
2015-01-01
The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission variability. Dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, investigates the oscillation frequency transformation depending on the wave energy is shown. The initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks are discussed. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves. A short review of theoretical models of sunspot oscillations is provided.
Texas at Austin, University of
Multicomponent seismic data, combining P-wave and converted P-to-SV wave (C-wave) wavefields (fast and slow) with differing polarization. The 4C, 3D ocean-bottom cable (OBC) multicomponent seismic objectives were to evaluate seismic attributes, such as VP/VS velocity ratios and Poisson's ratio derived
MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY SDO IN ACTIVE REGION FUNNELS
Ofman, L.; Liu, W.; Title, A.; Aschwanden, M.
2011-10-20
Recently, quasi-periodic, rapidly propagating waves have been observed in extreme ultraviolet by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) instrument in about 10 flare/coronal mass ejection (CME) events thus far. A typical example is the 2010 August 1 C3.2 flare/CME event that exhibited arc-shaped wave trains propagating in an active region (AR) magnetic funnel with {approx}5% intensity variations at speeds in the range of 1000-2000 km s{sup -1}. The fast temporal cadence and high sensitivity of AIA enabled the detection of these waves. We identify them as fast magnetosonic waves driven quasi-periodically at the base of the flaring region and develop a three-dimensional MHD model of the event. For the initial state we utilize the dipole magnetic field to model the AR and include gravitationally stratified density at coronal temperature. At the coronal base of the AR, we excite the fast magnetosonic wave by periodic velocity pulsations in the photospheric plane confined to a funnel of magnetic field lines. The excited fast magnetosonic waves have similar amplitude, wavelength, and propagation speeds as the observed wave trains. Based on the simulation results, we discuss the possible excitation mechanism of the waves, their dynamical properties, and the use of the observations for coronal MHD seismology.
Temporal Velocity Variations beneath the Coso Geothermal Field Observed
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation JumpSet RenewableFuelStandard Jump to:using Seismic
Propagation and dispersion of transverse wave trains in magnetic flux tubes
Oliver, R.; Terradas, J.; Ruderman, M. S.
2014-07-01
The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ? 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup –1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.
Radial disk heating by more than one spiral density wave
I. Minchev; A. C. Quillen
2005-10-28
We consider a differentially rotating, 2D stellar disk perturbed by two steady state spiral density waves moving at different patterns speeds. Our investigation is based on direct numerical integration of initially circular test-particle orbits. We examine a range of spiral strengths and spiral speeds and show that stars in this time dependent gravitational field can be heated (their random motions increased). This is particularly noticeable in the simultaneous propagation of a 2-armed spiral density wave near the corotation resonance (CR), and a weak 4-armed one near the inner and outer 4:1 Lindblad resonances. In simulations with 2 spiral waves moving at different pattern speeds we find: (1) the variance of the radial velocity, sigma_R^2, exceeds the sum of the variances measured from simulations with each individual pattern; (2) sigma_R^2 can grow with time throughout the entire simulation; (3) sigma_R^2 is increased over a wider range of radii compared to that seen with one spiral pattern; (4) particles diffuse radially in real space whereas they don't when only one spiral density wave is present. Near the CR with the stronger, 2-armed pattern, test particles are observed to migrate radially. These effects take place at or near resonances of both spirals so we interpret them as the result of stochastic motions. This provides a possible new mechanism for increasing the stellar velocity dispersion in galactic disks. If multiple spiral patterns are present in the Galaxy we predict that there should be large variations in the stellar velocity dispersion as a function of radius.
Disk heating by more than one spiral density wave
I. Minchev; A. C. Quillen
2005-11-01
We consider a differentially rotating, 2D stellar disk perturbed by two steady state spiral density waves moving at different patterns speeds. Our investigation is based on direct numerical integration of initially circular test-particle orbits. We examine a range of spiral strengths and spiral speeds and show that stars in this time dependent gravitational field can be heated (their random motions increased).This is particularly noticeable in the simultaneous propagation of a 2-armed spiral density wave near the corotation resonance (CR), and a weak 4-armed one near the inner and outer 4:1 Lindblad resonances. In simulations with 2 spiral waves moving at different pattern speeds we find: (1) the variance of the radial velocity, sigma_R^2, exceeds the sum of the variances measured from simulations with each individual pattern; (2) sigma_R^2 can grow with time throughout the entire simulation; (3) sigma_R^2 is increased over a wider range of radii compared to that seen with one spiral pattern; (4) particles diffuse radially in real space whereas they don't when only one spiral density wave is present. Near the CR with the stronger, 2-armed pattern, test particles are observed to migrate radially. These effects take place at or near resonances of both spirals so we interpret them as the result of stochastic motions. This provides a possible new mechanism for increasing the stellar velocity dispersion in galactic disks. If multiple spiral patterns are present in the Galaxy we predict that there should be large variations in the stellar velocity dispersion as a function of radius.
Discrimination of porosity and fluid saturation using seismic velocity analysis
Berryman, James G. (Danville, CA)
2001-01-01
The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.
Dark Matter Velocity Spectroscopy
Eric G. Speckhard; Kenny C. Y. Ng; John F. Beacom; Ranjan Laha
2015-07-31
Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will reach the required 0.1% level. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.
Dispersion relations for acoustic waves in heterogeneous multi-layered structures contacting with
Turova, Varvara
Dispersion relations for acoustic waves in heterogeneous multi-layered structures contacting application for the computation of the velocity of acoustic waves excited in complicated multi: Multi-layered structures, Surface acoustic waves, Dispersion relations, Homogenization, Biosensor
Resonance Van Hove Singularities in Wave Kinetics
Shi, Yi-Kang
2015-01-01
Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space $D=(N-2)d$ ($d$ physical space dimension, $N$ the number of waves in resonance) and the degree ...
Zou, Jun
1995-01-01
. Simultaneous measurements of the particle velocities under the crest, the wave elevation at the energy concentrated location, the wave elevation on the cylinder surface, dynamic pressure distribution and impact force were performed to study the relationships...
White light velocity interferometer
Erskine, D.J.
1999-06-08
The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.
Apparent cross-field superslow propagation of magnetohydrodynamic waves in solar plasmas
Kaneko, T; Soler, R; Terradas, J; Van Doorsselaere, T; Yokoyama, T; Wright, A N
2015-01-01
In this paper we show that the phase mixing of continuum Alfv\\'{e}n waves and/or continuum slow waves in magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to phase mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfv\\'{e}n and slow spectra in 2D Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation across the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfv\\'{e}n waves and continuum slow waves that naturally live on those structures and phase mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfv\\'{e}n/slow frequency across the magnetic surfaces and is ...
Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas
Tishchenko, V N; Shaikhislamov, I F
2014-02-28
We investigate the merging mechanism for the waves produced by a pulsating cosmic plasma source. A model with a separate background/source description is used in our calculations. The mechanism was shown to operate both for strong and weak source – background interactions. We revealed the effect of merging of individual Alfven waves into a narrow low-frequency wave, whose amplitude is maximal for a plasma expansion velocity equal to 0.5 – 1 of the Alfven Mach number. This wave is followed along the field by a narrow low-frequency magnetosonic wave, which contains the bulk of source energy. For low expansion velocities the wave contains background and source particles, but for high velocities it contains only the background particles. The wave lengths are much greater than their transverse dimension. (letters)
Nonlinear three-wave interaction in marine sediments
Pushkina, N I
2015-01-01
Nonlinear interaction of three acoustic waves in a sandy sediment is studied in the frequency range where there is a considerable wave velocity dispersion. The possibility of an experimental observation of the generation of a sound wave by two pump waves propagating at an angle to each other is estimated.
Nonlinear three-wave interaction in marine sediments
N. I. Pushkina
2015-03-18
Nonlinear interaction of three acoustic waves in a sandy sediment is studied in the frequency range where there is a considerable wave velocity dispersion. The possibility of an experimental observation of the generation of a sound wave by two pump waves propagating at an angle to each other is estimated.
An electromagnetic analog of gravitational wave memory
Lydia Bieri; David Garfinkle
2013-09-10
We present an electromagnetic analog of gravitational wave memory. That is, we consider what change has occurred to a detector of electromagnetic radiation after the wave has passed. Rather than a distortion in the detector, as occurs in the gravitational wave case, we find a residual velocity (a "kick") to the charges in the detector. In analogy with the two types of gravitational wave memory ("ordinary" and "nonlinear") we find two types of electromagnetic kick.
Stratified Steady Periodic Water Waves
Samuel Walsh
2009-02-11
This paper considers two-dimensional stratified water waves propagating under the force of gravity over an impermeable flat bed and with a free surface. We prove the existence of a global continuum of classical solutions that are periodic and traveling. These waves, moreover, can exhibit large density variation, speed and amplitude.
Unitaxial constant velocity microactuator
McIntyre, Timothy J. (Knoxville, TN)
1994-01-01
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.
Unitaxial constant velocity microactuator
McIntyre, T.J.
1994-06-07
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.
Thermoplastic waves in magnetars
Beloborodov, Andrei M
2014-01-01
Magnetar activity is generated by shear motions of the neutron star surface, which relieve internal magnetic stresses. An analogy with earthquakes and faults is problematic, as the crust is permeated by strong magnetic fields, which greatly constrain crustal displacements. We describe a new deformation mechanism that is specific to strongly magnetized neutron stars. The magnetically stressed crust begins to move because of a thermoplastic instability, which launches a wave that shears the crust and burns its magnetic energy. The propagating wave front resembles the deflagration front in combustion physics. We describe the conditions for the instability, the front structure and velocity, and discuss implications for observed magnetar activity.
Critical regimes of internal gravity wave generation
Vitaly V. Bulatov; Yuriy V. Vladimirov; Vasily A. Vakorin
2005-11-27
The problem of constructing an asymptotic representation of the solution of the internal gravity wave field exited by a source moving at a velocity close to the maximum group velocity of the individual wave mode is considered. For the critical regimes of individual mode generation the asymptotic representation of the solution obtained is expressed in terms of a zero-order Macdonald function. The results of numerical calculations based on the exact and asymptotic formulas are given.
Teodor Burghelea; Victor Steinberg
2001-04-21
The onset of the {\\em wave resistance}, via generation of capillary gravity waves, of a small object moving with velocity $V$, is investigated experimentally. Due to the existence of a minimum phase velocity $V_c$ for surface waves, the problem is similar to the generation of rotons in superfluid helium near their minimum. In both cases waves or rotons are produced at $V>V_c$ due to {\\em Cherenkov radiation}. We find that the transition to the wave drag state is continuous: in the vicinity of the bifurcation the wave resistance force is proportional to $\\sqrt{V-V_c}$ for various fluids.
M. Carcione, F. Cavallini, Simulation of waves in porn-viscoelastic rocks Saturated by immiscible ?uids. Numerical evidence ofa second slow wave,]. Comput.
Pore fluid effects on seismic velocity in anisotropic rocks
Mukerji, T.; Mavko, G. (Stanford Univ., CA (United States). Dept. of Geophysics)
1994-02-01
A simple new technique predicts the high- and low-frequency saturated velocities in anisotropic rocks entirely in terms of measurable dry rock properties without the need for idealized crack geometries. Measurements of dry velocity versus pressure and porosity versus pressure contain all of the necessary information for predicting the frequency-dependent effects of fluid saturation. Furthermore, these measurements automatically incorporate all pore interaction, so there is no limitation to low crack density. The velocities are found to depend on five key interrelated variables: frequency, the distribution of compliant crack-like porosity, the intrinsic or noncrack anisotropy, fluid viscosity and compressibility, and effective pressure. The sensitivity of velocities to saturation is generally greater at high frequencies than low frequencies. The magnitude of the differences from dry to saturated and from low frequency to high frequency is determined by the compliant or crack-like porosity. Predictions of saturated velocities based on dry data for sandstone and granite show that compressional velocities generally increase with saturation and with frequency. However, the degree of compressional wave anisotropy may either increase or decrease upon saturation depending on the crack distribution, the effective pressure, and the frequency at which the measurements are made. Shear-wave velocities can either increase or decrease with saturation, and the degree of anisotropy depends on the microstructure, pressure, and frequency. Consequently great care must be taken when interpreting observed velocity anisotropy for measurements at low frequencies, typical of in situ observations, will generally be different from those at high frequencies, typical of the laboratory.
Development of a thermoacoustic travelling-wave refrigerator
Paris-Sud XI, Université de
mean pressure. By that way, conduction losses on the cold heat exchanger are minimized. However to an acoustic wave. Thereby, gas particle pressure and velocity oscillate around a mean value. According of a travelling-wave, acoustic pressure and velocity are in phase inducing a Stirling type cycle. Over an acoustic
Kirchhoff prestack depth migration in velocity models with and without rotation of the tensor of
Cerveny, Vlastislav
Kirchhoff prestack depth migration in velocity models with and without rotation of the tensor-mail: bucha@seis.karlov.mff.cuni.cz Summary We use the Kirchhoff prestack depth migration to calculate is limited to P-waves. Keywords 3-D Kirchhoff prestack depth migration, anisotropic velocity model, rotation
Inversion Of Travel Time For Velocity
Willis, M.E.
1983-01-01
Common source velocities and borehole compensated (BC) estimates have been used to obtain formation velocity estimates from full waveform acoustic
Numerical Simulation of Fault Zone Guided Waves: Accuracy and 3-D Effects
Ben-Zion, Yehuda
seismic velocity. When sources are located in or close to these low-velocity zones, guided seismic head for seismic fault zone head and trapped waves. Fault zone head waves propagate along material discontinuity Pure and Applied Geophysics #12;traveling inside low velocity fault zone layers with dispersive
Chemical Wave Packet Propagation, Reflection, and Spreading Lingfa Yang and Irving R. Epstein*
Epstein, Irving R.
or away from an initiating perturbation, are found in a reaction-diffusion model with a finite wave. The phase velocity, group velocity, and spreading velocity calculated by linear stability analysis packets in reaction-diffusion systems are rarely seen, even though wave packets have been intensively
Converted wave imaging in anisotropic media using sea-floor seismic data
Mancini, Fabio
velocity ratio is derived conventionally by event matching in the P-wave and converted wave stacks. I present an attempt to use well-log derived velocity ratios to avoid this interpretative step. The velocity ratio derived from 4C seismic data is about 30...
High Order Hybrid Numerical Simulations of Two Dimensional Detonation Waves
Cai, Wei
reaction time U1 = t + ux + vy contravariant velocity U2 = t + ux + vy contravariant velocity a0 = local. The detonation waves are assumed to un- dergo an irreversible, unimolecular reaction A B. Several cases T = temperature T = v u U = conservative variables in curvilinear (, ) coordinates 2 #12;u = flow x- velocity u
Velocity oscillations in the outer heliosphere: A signature of pickup ion temperature variability?
Richardson, John
unusual long-wavelength, low- frequency velocity oscillations in the solar wind with periods of $2.3 daysÃ?1 and characteristic length scales that range from 0.5 to 1 AU. The amplitudes of the waves these waves are seen can be attributed to their unusually long wavelength, since the only sources capable
A Bragg grating on LiNbO? waveguide for velocity-matching of electrooptic modulators
Wang, Ruiyu
2001-01-01
An experimental study of the fabrication of a surface grating in a TiO? film on a LiNbO? substrate is described. Such a grating can be used to achieve velocity-matching between an optical wave and a RF signal in a slow-wave modulator structure. A 1...
Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach
Shen, Yang
Imaging seismic velocity structure beneath the Iceland hot spot: A finite frequency approach Shu and S wave speeds extending from shallow mantle to 400 km depth beneath Iceland. In reality, seismic waves anomaly beneath Iceland and its geodynamic implications. We developed a tomographic method that utilizes
Seismic Velocity Inversion with Genetic Algorithms Sushil J. Louis Qinxue Chen
Louis, Sushil J.
Seismic Velocity Inversion with Genetic Algorithms Sushil J. Louis Qinxue Chen Genetic Adaptivesurface models from seismic traveltime data. Given a subsurface model, the physics of wave propagation through refractive media can be used to compute travel times for seismic waves. How ever, in practice, we have
Longshore sediment transport rate calculated incorporating wave orbital velocity fluctuations
Smith, Ernest Ray
2006-10-30
Laboratory experiments were performed to study and improve longshore sediment transport rate predictions. Measured total longshore transport in the laboratory was approximately three times greater for plunging breakers ...
Fermi velocity renormalization and dynamical gap generation in graphene
C. Popovici; C. S. Fischer; L. von Smekal
2015-01-12
We study the renormalization of the Fermi velocity by the long-range Coulomb interactions between the charge carriers in the Dirac-cone approximation for the effective low-energy description of the electronic excitations in graphene at half filling. Solving the coupled system of Dyson-Schwinger equations for the dressing functions in the corresponding fermion propagator with various approximations for the particle-hole polarization we observe that Fermi velocity renormalization effects generally lead to a considerable increase of the critical coupling for dynamical gap generation and charge-density wave formation at the semimetal-insulator transition.
Geometric phases of water waves
Francesco Fedele
2014-08-08
Recently, Banner et al. (2014) highlighted a new fundamental property of open ocean wave groups, the so-called crest slowdown. For linear narrowband waves, this is related to the geometric and dynamical phase velocities $U_d$ and $U_g$ associated with the parallel transport through the principal fiber bundle of the wave motion with $\\mathit{U}(1)$ symmetry. The theoretical predictions are shown to be in fair agreement with ocean field observations, from which the average crest speed $c=U_d+U_g$ with $c/U_d\\approx0.8$ and $U_{g}/U_d\\approx-0.2$.
Acoustic Kappa-Density Fluctuation Waves in Suprathermal Kappa Function Fluids
Michael R. Collier; Aaron Roberts; Adolfo Vinas
2007-10-20
We describe a new wave mode similar to the acoustic wave in which both density and velocity fluctuate. Unlike the acoustic wave in which the underlying distribution is Maxwellian, this new wave mode occurs when the underlying distribution is a suprathermal kappa function and involves fluctuations in the power law index, kappa. This wave mode always propagates faster than the acoustic wave with an equivalent effective temperature and becomes the acoustic wave in the Maxwellian limit as kappa goes to infinity.
Velocity and attenuation in partially molten rocks
Mavko, G.M.
1980-10-10
Interpretation of seismic velocity and attenuation in partially molten rocks has been limited, with few exceptions, to models that assume the melt to be distributed either as spheres or as thin films. However, other melt phase geometries, such as interconnected tubes along grain edges, might equally well account for seismic observations if there is a much larger fraction of melt. Seismic velocity and attenuation are estimated in rocks in which the melt phase has the tube geometry, and the results are compared with results expected for the more familiar film model under similar conditions. For a given melt fraction, tubes are found to give moduli intermediate between moduli for rigid spherical inclusions and compliant films. For example, in polycrystalline olivine at 20 kbar the model predicts a decrease in V/sub s/ of 10% and a decrease in V/sub p/ of 5% at 0.05 melt fraction, without considering inelastic relaxation. Shear attenuation appears to be dominated by viscous flow of melt between the tubes and/or films. For olivine the tube model predicts the increment of relaxation due to melt, ..delta mu../..mu.., to be 0.01 at 0.05 melt fraction. Relaxation of the bulk modulus is dominated by flow between melt pockets of different shape, heat flow, and solid-melt phase change. If melt is present, considerable bulk attenuation is expected, although the relaxation may be observable only at long periods, outside the seismic body wave band.
MACCS2/Deposition Velocity Workshop
Office of Energy Efficiency and Renewable Energy (EERE)
The Department of Energy’s Chief of Nuclear Safety hosted a MACCS2/Deposition Velocity Workshop on June 5-6, 2012, in Germantown, Maryland. Approximately 70 participants attended. The purpose of...
Trapping and Frequency Variability in Electron Acoustic Waves
California at San Diego, University of
Trapping and Frequency Variability in Electron Acoustic Waves C.F. Driscoll, F. Anderegg, D 92093 USA Abstract. Electron Acoustic Waves (EAWs) with a phase velocity less than twice the plasma. Keywords: add some here PACS: 52.27.Jt, 52.35.Fp, 52.35.Sb Electron Acoustic Waves (EAWs) are the low
Diffusing acoustic wave spectroscopy M. L. Cowan,1
Page, John
Diffusing acoustic wave spectroscopy M. L. Cowan,1 I. P. Jones,1, * J. H. Page,1,2, and D. A. Weitz called diffusing acoustic wave spec- troscopy DAWS . In this technique, the motion of the scatterers e the particle velocity correlation function. Potential appli- cations of diffusing acoustic wave spectroscopy
Development of an acoustic wave sensor for biological
Turova, Varvara
-Jacobi equation can be rewritten as or Application to the propagation of surface acoustic waves Velocity contour . Comparison with the eikonal equation yields the condition Acoustic waves in anisotropic crystals obeyMotivation Development of an acoustic wave sensor for biological and medical applications
Inwardly Rotating Spiral Waves in a Reaction-Diffusion System
Epstein, Irving R.
in an autocatalytic reaction. The local curvature near the open wave ends is high, making the velocity of the endInwardly Rotating Spiral Waves in a Reaction-Diffusion System Vladimir K. Vanag and Irving R in the spatially extended Belousov-Zhabotinsky (BZ) reaction. Since then, rotating spirals and target waves have
Parametric Modulation of Dynamo Waves
Kitchatinov, Leonid
2015-01-01
Long-term variations of solar activity, including the Grand minima, are believed to result from temporal variations of dynamo parameters. The simplest approximation of dynamo waves is applied to show that cyclic variations of the parameters can lead to an exponential growth or decay of magnetic oscillations depending on the variations frequency. There is no parametric resonance in a dynamo, however: the selective sensitivity to distinct frequencies, characteristic of resonant phenomena, is absent. A qualitative explanation for this finding is suggested. Nonlinear analysis of dynamo-waves reveals the hysteresis phenomenon found earlier in more advanced models. However, the simplified model allows a computation of a sufficiently large number of dynamo-cycles for constructing the distribution function of their amplitudes to reproduce qualitatively two modes of solar activity inferred recently from cosmogenic isotope content in natural archives.
Velocity requirements for causality violation
Giovanni Modanese
2015-01-18
We re-examine the "Regge-Tolman paradox" with reference to some recent experimental results. It is straightforward to find a formula for the velocity v of the moving system required to produce causality violation. This formula typically yields a velocity very close to the speed of light (for instance, v/c > 0.97 for X-shaped microwaves), which raises some doubts about the real physical observability of the violations. We then compute the velocity requirement introducing a delay between the reception of the primary signal and the emission of the secondary. It turns out that in principle for any delay it is possible to find moving observers able to produce active causal violation. This is mathematically due to the singularity of the Lorentz transformations for beta to 1. For a realistic delay due to the propagation of a luminal precursor, we find that causality violations in the reported experiments are still more unlikely (v/c > 0.989), and even in the hypothesis that the superluminal propagation velocity goes to infinity, the velocity requirement is bounded by v/c > 0.62. We also prove that if two macroscopic bodies exchange energy and momentum through superluminal signals, then the swap of signal source and target is incompatible with the Lorentz transformations; therefore it is not possible to distinguish between source and target, even with reference to a definite reference frame.
Bernhard Rothenstein
2005-06-20
We show that the transformation equations for the parameters that characterize a plane acoustic wave: period, (frequency), wave vector, wave length and phase velocity can be derived without using phase invariance and Lorentz-Einstein transformation
Quantitative imaging of the air-water flow fields formed by unsteady breaking waves
Belden, Jesse (Jesse Levi)
2009-01-01
An experimental method for simultaneously measuring the velocity fields on the air and water side of unsteady breaking waves is presented. The method is applied to breaking waves to investigate the physics of the air and ...
Relevant material we learned in class... Dispersion relation of deep water waves
Budker, Dmitry
#12;#12;Outline Relevant material we learned in class... Dispersion relation of deep water waves is stationary with respect to: Time k 2 = gk #12;Deep water waves Dispersion relation Phase velocity
Velocity fluctuations of fission fragments
Felipe J. Llanes-Estrada; Belen Martinez Carmona; Jose L. Muñoz Martinez
2015-11-19
We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramer-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.
Velocity fluctuations of fission fragments
Llanes-Estrada, Felipe J; Martinez, Jose L Muñoz
2015-01-01
We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramer-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.
Nonlinear Hysteretic Torsional Waves
J. Cabaret; P. Béquin; G. Theocharis; V. Andreev; V. E. Gusev; V. Tournat
2015-01-09
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities, and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other type of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short term memory as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Wave represents displacement Wave represents pressure Source -Sound Waves
Colorado at Boulder, University of
is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio. The Sound Waves simulation becomes the source of an analogical mapping to Radio Waves. Concepts Radio Waves 1 - Sound Waves references water waves 2 - Water is analogy for Sound Waves 3 - Radio
A multiplicity result for solitary gravitycapillary waves in deep water via criticalpoint theory
Bath, University of
A multiplicity result for solitary gravitycapillary waves in deep water via criticalpoint theory considers the existence of solitarywave solutions to the classical waterwave problem, which concerns of the water and the velocity of the solitary wave. Intro ducing dimensionless variables, one finds
SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves
Pierce, Stephen
SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M of coastline. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes
APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves
Pierce, Stephen
APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M. KLYMAK2. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes important
Gravitational Waves from Neutron Stars: A Review
Paul D. Lasky
2015-08-26
Neutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.
Gravitational Waves from Neutron Stars: A Review
Lasky, Paul D
2015-01-01
Neutron stars are excellent emitters of gravitational waves. Squeezing matter beyond nuclear densities invites exotic physical processes, many of which violently transfer large amounts of mass at relativistic velocities, disrupting spacetime and generating copious quantities of gravitational radiation. I review mechanisms for generating gravitational waves with neutron stars. This includes gravitational waves from radio and millisecond pulsars, magnetars, accreting systems and newly born neutron stars, with mechanisms including magnetic and thermoelastic deformations, various stellar oscillation modes and core superfluid turbulence. I also focus on what physics can be learnt from a gravitational wave detection, and where additional research is required to fully understand the dominant physical processes at play.
Jia, Pan; Claudin, Philippe
2015-01-01
A flexible sheet clamped at both ends and submitted to a permanent wind is unstable and propagates waves. Here, we experimentally study the selection of frequency and wavenumber as a function of the wind velocity. These quantities obey simple scaling laws, which are analytically derived from a linear stability analysis of the problem, and which also involve a gravity-induced velocity scale. This approach allows us to collapse data obtained with sheets whose flexible rigidity is varied by two orders of magnitude. This principle may be applied in the future for energy harvesting.
Variational Information Theory
Penny, Will
Variational Inference Will Penny Information Theory Information Entropy Kullback-Liebler Divergence Summary References Variational Inference Will Penny Bayesian Inference Course, WTCN, UCL, March 2013 #12;Variational Inference Will Penny Information Theory Information Entropy Kullback-Liebler Divergence Gaussians
Deep-water gravity waves: theoretical estimating of wave parameters
Mindlin, Ilia M
2014-01-01
This paper addresses deep-water gravity waves of finite amplitude generated by an initial disturbance to the water. It is assumed that the horizontal dimensions of the initially disturbed body of the water are much larger than the magnitude of the free surface displacement in the origin of the waves. Initially the free surface has not yet been displaced from its equilibrium position, but the velocity field has already become different from zero. This means that the water at rest initially is set in motion suddenly by an impulse. Duration of formation of the wave origin and the maximum water elevation in the origin are estimated using the arrival times of the waves and the maximum wave-heights at certain locations obtained from gauge records at the locations, and the distances between the centre of the origin and each of the locations. For points situated at a long distance from the wave origin, forecast is made for the travel time and wave height at the points. The forecast is based on the data recorded by th...
SHIP VELOCITY FIELDS , Lichuan Guib
Gui, Lichuan
and with free surface, bow flow, wave hydrodynamics, propulsor hydrodynamics, appendages, and cavitation extensive use of PIV for measurement of ship-hydrodynamic flows. In fact, PIV is fast replacing techniques of micro-scale flow structures so that new physics can be studied such as cavitation. Refinement
Acoustic wave propagation in two-phase heterogeneous porous media
J. I. Osypik; N. I. Pushkina; Ya. M. Zhileikin
2015-03-19
The propagation of an acoustic wave through two-phase porous media with spatial variation in porosity is studied. The evolutionary wave equation is derived, and the propagation of an acoustic wave is numerically analyzed in application to marine sediments with various physical parameters.
Three axis velocity probe system
Fasching, George E. (Morgantown, WV); Smith, Jr., Nelson S. (Morgantown, WV); Utt, Carroll E. (Morgantown, WV)
1992-01-01
A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.
Paul S. Wesson
2012-12-11
As an example of the unification of gravitation and particle physics, an exact solution of the five-dimensional field equations is studied which describes waves in the classical Einstein vacuum. While the solution is essentially 5D in nature, the waves exist in ordinary 3D space, and may provide a way to test for an extra dimension.
A variational principle in optics Jacob Rubinstein and Gershon Wolansky
Wolansky, Gershon
A variational principle in optics Jacob Rubinstein and Gershon Wolansky Department of Mathematics a new variational principle in optics. We first formulate the principle for paraxial waves principle to the problem of phase reconstruction from intensity measurements. Â© 2004 Optical Society
Estimating seismic velocities at ultrasonic frequencies in partially saturated rocks
Mavko, G.; Nolen-Hoeksema, R. (Stanford Univ., CA (United States). Dept. of Geophysics)
1994-02-01
Seismic velocities in rocks at ultrasonic frequencies depend not only on the degree of saturation but also on the distribution of the fluid phase at various scales within the pore space. Two scales of saturation heterogeneity are important: (1) saturation differences between thin compliant pores and larger stiffer pores, and (2) differences between saturated patches and undersaturated patches at a scale much larger than any pore. The authors propose a formalism for predicting the range of velocities in partially saturated rocks that avoids assuming idealized pore shapes by using measured dry rock velocity versus pressure and dry rock porosity versus pressure. The pressure dependence contains all of the necessary information about the distribution of pore compliance for estimating effects of saturation at the finest scales where small amounts of fluid in the thinnest, most compliant parts of the pore space stiffen the rock in both compression and shear (increasing both P- and S-wave velocities) in approximately the same way that confining pressure stiffens the rock by closing the compliant pores. Large-scale saturation patches tend to increase only the high-frequency bulk modulus by amounts roughly proportional to the saturation. The pore-scale effects will be most important at laboratory and logging frequencies when pore-scale pore pressure gradients are unrelaxed. The patchy-saturation effects can persist even at seismic field frequencies if the patch sizes are sufficiently large and the diffusivities are sufficiently low for the larger-scale pressure gradients to be unrelaxed.
Traveling waves in yeast extract and in cultures of Dictyostelium discoideum
Steinbock, Oliver
Zhabo- tinsky (BZ) reaction (cf. Ref. [9]). The velocity v of the excitation waves depends in general reaction step according to the relation v (k D)1/2 . Deviations from the constant velocity of a single traveling reaction-diffusion waves occur in response to oscillatory reactions. Glycolytic degradation
Predicting stress-induced velocity anisotropy in rocks
Mavko, G.; Mukerji, T.; Godfrey, N. [Stanford Univ., CA (United States). Rock Physics Lab.] [Stanford Univ., CA (United States). Rock Physics Lab.
1995-07-01
A simple transformation, using measured isotropic V{sub P} and V{sub S} versus hydrostatic pressure, is presented for predicting stress-induced seismic velocity anisotropy in rocks. The compliant, crack-like portions of the pore space are characterized by generalized compressional and shear compliances that are estimated form the isotropic V{sub P} and V{sub S}. The physical assumption that the compliant porosity is crack-like means that the pressure dependence of the generalized compliances is governed primarily by normal tractions resolved across cracks and defects. This allows the measured pressure dependence to be mapped form the hydrostatic stress state to any applied nonhydrostatic stress. Predicted P- and S-wave velocities agree reasonably well with uniaxial stress data for Barre Granite and Massillon Sandstone. While it is mechanically similar to methods based on idealized ellipsoidal cracks, the approach is relatively independent of any assumed crack geometry and is not limited to small crack densities.
Measuring In-Situ Mdf Velocity Of Detonation
Horine, Frank M. (Albuquerque, NM); James, Jr., Forrest B. (Albuquerque, NM)
2005-10-25
A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.
Velocity condensation for magnetotactic bacteria
Rupprecht, Jean-Francois; Bocquet, Lydéric
2015-01-01
Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g. active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that L\\'evy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior.
Newberry EGS Seismic Velocity Model
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Templeton, Dennise
We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.
Newberry EGS Seismic Velocity Model
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Templeton, Dennise
2013-10-01
We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.
Swigler, David Townley
2010-10-12
was used to generate the wave, while the free surface elevations and fluid velocities were measured using wave gauges and three-dimensional acoustic-Doppler velocimeters (ADVs), respectively. From the free surface elevations, the evolution and runup...
Method of accelerating photons by a relativistic plasma wave
Dawson, John M. (Pacific Palisades, CA); Wilks, Scott C. (Santa Monica, CA)
1990-01-01
Photons of a laser pulse have their group velocity accelerated in a plasma as they are placed on a downward density gradient of a plasma wave of which the phase velocity nearly matches the group velocity of the photons. This acceleration results in a frequency upshift. If the unperturbed plasma has a slight density gradient in the direction of propagation, the photon frequencies can be continuously upshifted to significantly greater values.
Resonance Van Hove Singularities in Wave Kinetics
Yi-Kang Shi; Gregory Eyink
2015-07-29
Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space $D=(N-2)d$ ($d$ physical space dimension, $N$ the number of waves in resonance) and the degree of degeneracy $\\delta$ of the critical points. Following Van Hove, we show that non-degenerate singularities lead to finite phase measures for $D>2$ but produce divergences when $D\\leq 2$ and possible breakdown of wave kinetics if the collision integral itself becomes too large (or even infinite). Similar divergences and possible breakdown can occur for degenerate singularities, when $D-\\delta\\leq 2,$ as we find for several physical examples, including electron-hole kinetics in graphene. When the standard kinetic equation breaks down, then one must develop a new singular wave kinetics. We discuss approaches from pioneering 1971 work of Newell \\& Aucoin on multi-scale perturbation theory for acoustic waves and field-theoretic methods based on exact Schwinger-Dyson integral equations for the wave dynamics.
Roberts, Jesse D.; Chang, Grace; Jones, Craig
2014-09-01
The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.
Edinburgh, University of
of otherwise low permeability. Here, we pre- sent a case study of fracture detection using 3D P-wave seismic the narrow-azimuth stack- ing method is applicable to the velocity and AVO gradient attributes. Study area-wave seismic attributes, such as traveltime, stacking velocity, reflected wave amplitudes, impedance, etc. can
Raphael, Elie
Self-consistent theory of capillary-gravity-wave generation by small moving objects A. D for example, wig- gling beetles may take advantage of the generation of capillary-gravity waves for echo/s. An object moving at constant velocity V cmin does not generate steady waves and the wave resis- tance
Slow Waves in Fractures Filled with Viscous Fluid
Korneev, Valeri
2008-01-08
Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.
Variability in Long-Wave Runup as a Function of Nearshore Bathymetric Features
Dunkin, Lauren M.
2011-08-08
infrastructure. In this thesis, long-wave runup variation due to changing bathymetric features as determined with the numerical model XBeach is quantified (eXtreme Beach behavior model). Wave heights are analyzed to determine the energy through the surfzone...
Niu, Fenglin
regions on Earth's surface due to the collision from the India plate and the suctions induced seismicity of the area, we conducted a Pn traveltime tomography to estimate the compressive wave speed. In each region, stable blocks tend to have high Pn velocity while the boundary regions, which show a high
Louis, Sushil J.
Seismic Velocity Inversion with Genetic Algorithms Sushil J. Louis Qinxue Chen Satish to compute travel times for seismic waves. However, in practice, we have to solve the inverse problem: travel synthetic seismic models shows that large population sizes are crit- ical to generating good seismic
Low Frequency Scattering Resonance Wave in Strong Heterogeneity
Liu, Yinbin
2015-01-01
Multiple scattering of wave in strong heterogeneity can cause resonance-like wave phenomenon where signal exhibits low frequency, high intensity, and slowly propagating velocity. For example, long period event in volcanic seismology and surface plasmon wave and quantum Hall effect in wave-particle interactions. Collective behaviour in a many-body system is usually thought to be the source for generating the anomaly. However, the detail physical mechanism is not fully understood. Here I show by wave field modeling for microscopic bubble cloud model and 1D heterogeneity that the anomaly is related to low frequency scattering resonance happened in transient regime. This low frequency resonance is a kind of wave coherent scattering enhancement phenomenon in strongly-scattered small-scale heterogeneity. Its resonance frequency is inversely proportional to heterogeneous scale and contrast and will further shift toward lower frequency with random heterogeneous scale and velocity fluctuations. Low frequency scatterin...
Detonation waves in pentaerythritol tetranitrate
Tarver, C.M.; Breithaupt, R.D.; Kury, J.W.
1997-06-01
Fabry{endash}Perot laser interferometry was used to obtain nanosecond time resolved particle velocity histories of the free surfaces of tantalum discs accelerated by detonating pentaerythritol tetranitrate (PETN) charges and of the interfaces between PETN detonation products and lithium fluoride crystals. The experimental records were compared to particle velocity histories calculated using very finely zoned meshes of the exact dimensions with the DYNA2D hydrodynamic code. The duration of the PETN detonation reaction zone was demonstrated to be less than the 5 ns initial resolution of the Fabry{endash}Perot technique, because the experimental records were accurately calculated using an instantaneous chemical reaction, the Chapman{endash}Jouguet (C-J) model of detonation, and the reaction product Jones{endash}Wilkins{endash}Lee (JWL) equation of state for PETN detonation products previously determined by supracompression (overdriven detonation) studies. Some of the PETN charges were pressed to densities approaching the crystal density and exhibited the phenomenon of superdetonation. An ignition and growth Zeldovich{endash}von Neumann{endash}Doring (ZND) reactive flow model was developed to explain these experimental records and the results of previous PETN shock initiation experiments on single crystals of PETN. Good agreement was obtained for the induction time delays preceding chemical reaction, the run distances at which the initial shock waves were overtaken by the detonation waves in the compressed PETN, and the measured particle velocity histories produced by the overdriven detonation waves before they could relax to steady state C-J velocity and pressure. {copyright} {ital 1997 American Institute of Physics.}
Nonlinear acoustic wave generation in a three-phase seabed
Kukarkin, A B; Zhileikin, Ya M
2015-01-01
Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.
Nonlinear acoustic wave generation in a three-phase seabed
A. B. Kukarkin; N. I. Pushkina; Ya. M. Zhileikin
2015-03-03
Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.
Modeling water waves beyond perturbations
Clamond, Didier
2015-01-01
In this chapter, we illustrate the advantage of variational principles for modeling water waves from an elementary practical viewpoint. The method is based on a `relaxed' variational principle, i.e., on a Lagrangian involving as many variables as possible, and imposing some suitable subordinate constraints. This approach allows the construction of approximations without necessarily relying on a small parameter. This is illustrated via simple examples, namely the Serre equations in shallow water, a generalization of the Klein-Gordon equation in deep water and how to unify these equations in arbitrary depth. The chapter ends with a discussion and caution on how this approach should be used in practice.
Wave Propagation in Multiferroic Materials
Keller, Scott Macklin
2013-01-01
130 SAW Waves . . . . . . . . . . . . . .QuasiStatic MEE Waves . . . . . . . . . . . . . . . . . . .General MEE Wave Solution . . . . . . . . . . . .
Guo, Lei; Yang, Xuelin Cheng, Jianpeng; Sang, Ling; Xu, Fujun; Tang, Ning; Feng, Zhihong; Lv, Yuanjie; Wang, Xinqiang; Shen, B.; Ge, Weikun
2014-12-15
We have investigated the variation of electron velocity in AlGaN/GaN heterostructures depending on illuminating light intensity and wavelength. It is shown that the electron velocity at high electric field increases under above-band light illumination. This electron velocity enhancement is found to be related to the photo-generated cold holes which interact with hot electrons and thus accelerate the energy relaxation at high electric field. The results suggest an alternative way to improve the electron energy relaxation rate and hence the electron velocity in GaN based heterostructures.
Internal wave instability: Wave-wave versus wave-induced mean flow interactions
Sutherland, Bruce
Internal wave instability: Wave-wave versus wave-induced mean flow interactions B. R. Sutherland fluid, vertically propagating internal gravity waves of moderately large amplitude can become unstable, energy from primary waves is transferred, for example, to waves with half frequency. Self
OBSERVATIONS OF THE INTERACTION OF ACOUSTIC WAVES AND SMALL-SCALE MAGNETIC FIELDS IN A QUIET SUN
Chitta, Lakshmi Pradeep; Kariyappa, R.; Jain, Rekha; Jefferies, Stuart M. E-mail: rkari@iiap.res.in E-mail: stuartj@ifa.hawaii.edu
2012-01-10
The effect of the magnetic field on photospheric intensity and velocity oscillations at the sites of small-scale magnetic fields (SMFs) in a quiet Sun near the solar disk center is studied. We use observations made by the G-band filter in the Solar Optical Telescope on board Hinode for intensity oscillations; Doppler velocity, magnetic field, and continuum intensity are derived from an Ni I photospheric absorption line at 6767.8 A using the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Our analysis shows that both the high-resolution intensity observed in the G band and velocity oscillations are influenced by the presence of a magnetic field. While intensity oscillations are suppressed at all frequencies in strong magnetic field regions compared to weak magnetic field regions, velocity oscillations show an enhancement of power in the frequency band 5.5-7 mHz. We find that there is a drop of 20%-30% in the p-mode power of velocity oscillations within the SMFs when compared to the regions surrounding them. Our findings indicate that the nature of the interaction of acoustic waves with the quiet Sun SMFs is similar to that of large-scale magnetic fields in active regions. We also report the first results of the center-to-limb variation of such effects using the observations of the quiet Sun from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). The independent verification of these interactions using SDO/HMI suggests that the velocity power drop of 20%-30% in p-modes is fairly constant across the solar disk.
Controlling Velocity In Bipedal Walking: A Dynamic Programming Approach
Atkeson, Christopher G.
velocity and swing leg angle and angular velocity) to 1 (stance leg angular velocity). RepercussionsControlling Velocity In Bipedal Walking: A Dynamic Programming Approach Thijs Mandersloot their velocity. We control velocity by using dynamic programming to design control laws for each desired velocity
Shallow Water Waves and Solitary Waves
Hereman, Willy
2013-01-01
Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.
Origin of coda waves: earthquake source resonance
Liu, Yinbin
2015-01-01
Seismic coda in local earthquake exhibits the characteristics of uniform spatial distribution energy, selective frequency, and slow temporal decay oscillation. It is usually assumed to be the incoherent waves scattered from random heterogeneity in the earth's lithosphere. Here I show by wave field modeling for 1D heterogeneity that seismic coda is related to the natural resonance of earthquake source around the earthquake's focus. This natural resonance is a kind of wave coherent scattering enhancement phenomenon or coupling oscillations happened in steady state regime in strong small-scale heterogeneity. Its resonance frequency is inversely proportional to the heterogeneous scale and contrast and will shift toward lower frequency with increasing random heterogeneous scale and velocity fluctuations. Its energy weakens with decreasing impedance contrast and increasing random heterogeneous scale and velocity fluctuations.
December 23, 2004 High Cadence Radio Observations of an EIT Wave
White, Stephen
December 23, 2004 High Cadence Radio Observations of an EIT Wave S. M. White1 and B. J. Thompson2 ABSTRACT Sensitive radio observations of the 1997 September 24 EIT wave show its velocity to be 830 km s-1 result is that no deceleration is observed during the 4 minutes that the wave is visible in the radio
Numerical studies of current generation by radio-frequency traveling waves
Karney, Charles
Numerical studies of current generation by radio-frequency traveling waves Charles F. F. Karney January 1979; final manuscript received 7 May 1979) By injecting radio-frequency traveling waves of the fusion power output. Recently,' the damping of high-phase-velocity radio- frequency traveling waves has
Rigorous Analysis of Traveling Wave Photodetectors under High-Power Illumination
Aste, Andreas
Rigorous Analysis of Traveling Wave Photodetectors under High- Power Illumination Damir Pasalic data has shown excellent agreement. I. INTRODUCTION High-power traveling-wave photodetectors (TWPDs and velocity mismatch between the optical and RF waves over the length of the TWPD. For high power handling
Linear wave dispersion laws in unmagnetized relativistic plasma: Analytical and numerical results
Linear wave dispersion laws in unmagnetized relativistic plasma: Analytical and numerical results laws for electrostatic and electromagnetic waves in a homogeneous and unmagnetized relativistic Vlasov plasma frequency pe , Debye wave number kD and the thermal velocity vth,e is established. The approximate
EFFECT OF VELOCITY CONTROL ON KINESTHETIC LUNG TUMOUR LOCALIZATION M. D. Naish1,2,3
Naish, Michael D.
EFFECT OF VELOCITY CONTROL ON KINESTHETIC LUNG TUMOUR LOCALIZATION M. D. Naish1,2,3 , G. L. Mc precludes manual palpation, making the localization of lung tumours chal- lenging. This paper investigates on stiffness variations of the lung parenchyma. Agar injected into ex vivo porcine lungs produced a model
Precision ephemerides for gravitational-wave searches. I. Sco X-1
Galloway, Duncan K.; Premachandra, Sammanani [Monash Centre for Astrophysics, Monash University, VIC 3800 (Australia); Steeghs, Danny; Marsh, Tom [Department of Physics, Astronomy and Astrophysics Group, University of Warwick, Coventry CV4 7AL (United Kingdom); Casares, Jorge; Cornelisse, Rémon, E-mail: Duncan.Galloway@monash.edu [Instituto de Astrofísica, E-38205, La Laguna, Tenerife (Spain)
2014-01-20
Rapidly rotating neutron stars are the only candidates for persistent high-frequency gravitational wave emission, for which a targeted search can be performed based on the spin period measured from electromagnetic (e.g., radio and X-ray) observations. The principal factor determining the sensitivity of such searches is the measurement precision of the physical parameters of the system. Neutron stars in X-ray binaries present additional computational demands for searches due to the uncertainty in the binary parameters. We present the results of a pilot study with the goal of improving the measurement precision of binary orbital parameters for candidate gravitational wave sources. We observed the optical counterpart of Sco X-1 in 2011 June with the William Herschel Telescope and also made use of Very Large Telescope observations in 2011 to provide an additional epoch of radial-velocity measurements to earlier measurements in 1999. From a circular orbit fit to the combined data set, we obtained an improvement of a factor of 2 in the orbital period precision and a factor of 2.5 in the epoch of inferior conjunction T {sub 0}. While the new orbital period is consistent with the previous value of Gottlieb et al., the new T {sub 0} (and the amplitude of variation of the Bowen line velocities) exhibited a significant shift, which we attribute to variations in the emission geometry with epoch. We propagate the uncertainties on these parameters through to the expected Advanced LIGO-Virgo detector network observation epochs and quantify the improvement obtained with additional optical observations.
3-D seismic velocity and attenuation structures in the geothermal field
Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)
2013-09-09
We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.
Moreton Waves and EIT Waves Related to the Flare Events of June 3, 2012 and July 6, 2012
Admiranto, A G; Yus'an, U; Puspitaningrum, E
2015-01-01
We present geometrical and kinematical analysis of Moreton waves and EIT waves observed on June 3, 2012 and Moreton waves observed on July 6, 2012. The Moreton waves were recorded in H$\\alpha$ images of Global Oscillation Network Group (GONG) archive and EIT waves obtained from SDO/AIA observations, especially in 193 nm channel. The observed wave of June 3 has angular span of about $70^{\\circ}$ with a broad wave front associated to NOAA active region 11496. It was found that the speed of the wave that started propagating at 17.53 UT is between 950 to 1500 km/s. Related to this wave occurrence, there was solar type II and III radio bursts. The speed of the EIT in this respect about 247 km/sec. On the other hand, the wave of July 6 may be associated to X1.1 class flare that occurred at 23.01 UT around the 11514 active region. From the kinematical analysis, the wave propagated with the initial velocity of about 1180 km/s which is in agreement with coronal shock velocity derived from type II radio burst observati...
Wave variability and wave spectra for wind generated gravity waves
Bretschneider, Charles L.
1959-01-01
A series of experiments of forces on a fixed vertical truncated column due to Stokes 5th order like waves were done in a wave tank. An effort was made to generate the waves as close as possible to theoretical Stokes 5th order waves. A systematic...
Tsvankin, Ilya
velocity models needed for depth migration. Here, we demonstrate that P-wave reflection data can for depth imaging (such as prestack depth migration) arises mostly in laterally heteroge- neous media. StillGEOPHYSICS, VOL. 66, NO. 3 (MAY-JUNE 2001); P. 897903, 4 FIGS., 1 TABLE. Depth-domain velocity
Analysis of Ultrasonic Velocities in Hydrocarbon Mixtures
of measurements on ultrasonic velocities of liquid hydrocarbons and mixtures. They found that their dataAnalysis of Ultrasonic Velocities in Hydrocarbon Mixtures James G. Berryman Lawrence Livermore on hydrocarbon mixtures was shown by Wang and Nur [JASA 89, 2725 (1991)] to agree quite well with the predictions
Field comparison of the point velocity probe with other groundwater velocity measurement methods
Labaky, W.; Devlin, John F.; Gillham, R. W.
2009-03-14
Field testing of a new tool for measuring groundwater velocities at the centimeter scale, the point velocity probe (PVP), was undertaken at Canadian Forces Base, Borden, Ontario, Canada. The measurements were performed in a sheet pile...
Henning, F. D. Mace, R. L.
2014-04-15
Electromagnetic ion cyclotron (EMIC) waves in multi-ion species plasmas propagate in branches. Except for the branch corresponding to the heaviest ion species, which has only a resonance at its gyrofrequency, these branches are bounded below by a cutoff frequency and above by a resonant gyrofrequency. The condition for wave growth is determined by the thermal anisotropies of each ion species, j, which sets an upper bound, ?{sub j}{sup ?}, on the wave frequency below which that ion species contributes positively to the growth rate. It follows that the relative positions of the cutoffs and the critical frequencies ?{sub j}{sup ?} play a crucial role in determining whether a particular wave branch will be unstable. The effect of the magnetospheric ion abundances on the growth rate of each branch of the EMIC instability in a model where all the ion species have kappa velocity distributions is investigated by appealing to the above ideas. Using the variation of the cutoff frequencies predicted by cold plasma theory as a guide, optimal ion abundances that maximise the EMIC instability growth rate are sought. When the ring current is comprised predominantly of H{sup +} ions, all branches of the EMIC wave are destabilised, with the proton branch having the maximum growth rate. When the O{sup +} ion abundance in the ring current is increased, a decrease in the growth rate of the proton branch and cyclotron damping of the helium branch are observed. The oxygen branch, on the other hand, experiences an increase in the maximum growth rate with an increase in the O{sup +} ion abundance. When the ring current is comprised predominantly of He{sup +} ions, only the helium and oxygen branches of the EMIC wave are destabilised, with the helium branch having the maximum growth rate.
Liu, W. H.; HEDPS and CAPT, Peking University, Beijing 100871 ; Wang, L. F.; Ye, W. H.; Institute of Applied Physics and Computational Mathematics, Beijing 100088; Department of Physics, Zhejiang University, Hangzhou 310027 ; He, X. T.; Institute of Applied Physics and Computational Mathematics, Beijing 100088
2013-06-15
In this research, the temporal evolution of the bubble tip velocity in Rayleigh-Taylor instability (RTI) at arbitrary Atwood numbers and different initial perturbation velocities with a discontinuous profile in irrotational, incompressible, and inviscid fluids (i.e., classical RTI) is investigated. Potential models from Layzer [Astrophys. J. 122, 1 (1955)] and perturbation velocity potentials from Goncharov [Phys. Rev. Lett. 88, 134502 (2002)] are introduced. It is found that the temporal evolution of bubble tip velocity [u(t)] depends essentially on the initial perturbation velocity [u(0)]. First, when the u(0)
Localization of Classical Waves I: Acoustic Waves.
Localization of Classical Waves I: Acoustic Waves. Alexander Figotin \\Lambda Department, 1997 Abstract We consider classical acoustic waves in a medium described by a position dependent mass the existence of localized waves, i.e., finite energy solutions of the acoustic equations with the property
Coda wave interferometry 1 Coda wave interferometry
Snieder, Roel
Coda wave interferometry 1 Coda wave interferometry An interferometer is an instrument that is sensitive to the interference of two or more waves (optical or acoustic). For example, an optical interferometer uses two interfering light beams to measure small length changes. Coda wave interferometry
Pratt, R. Gerhard
wave (V,s) velocity anomalies can be obtained by applying acoustic wave-equation imaging in two passes slightly better images of the V,] discontinuities than the acoustic wave-equation method. Errors in picking and algorithmic aspects of the method for acoustic and elastic wave equations and applied it to synthetic data
Wave Properties of Isothermal Magneto-Rotational Fluids
M. Sharif; Umber Sheikh
2009-08-28
In this paper, the isothermal plasma wave properties in the neighborhood of the pair production region for the Kerr black hole magnetosphere are discussed. We have considered the Fourier analyzed form of the perturbed general relativistic magnetohydrodynamical equations whose determinant leads to a dispersion relation. For the special scenario, the $x$-component of the complex wave vectors are numerically calculated. Respective components of the propagation vector, attenuation vector, phase and group velocities are shown in graphs. We have particularly investigated the existence of a Veselago medium and wave behavior (modes of waves dispersion
Stable operating regime for traveling wave devices
Carlsten, Bruce E. (Los Alamos, NM)
2000-01-01
Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.
Nonlinear extraordinary wave in dense plasma
Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)] [Russian University of Peoples’ Friendship (Russian Federation)
2013-10-15
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.
Scroll Waves Pinned to Moving Heterogeneities
Hua Ke; Zhihui Zhang; Oliver Steinbock
2014-12-04
Three-dimensional excitable systems can selforganize vortex patterns that rotate around one-dimensional phase singularities called filaments. In experiments with the Belousov-Zhabotinsky reaction and numerical simulations, we pin these scroll waves to moving heterogeneities and demonstrate the controlled repositioning of their rotation centers. If the pinning site extends only along a portion of the filament, the phase singularity is stretched out along the trajectory of the heterogeneity which effectively writes the singularity into the system. Its trailing end point follows the heterogeneity with a lower velocity. This velocity, its dependence on the placement of the anchor, and the shape of the filament are explained by a curvature flow model.
Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig
2014-09-01
A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .
Quench propagation velocity for highly stabilized conductors
Mints, R.G. |; Ogitsu, T. |; Devred, A.
1995-05-01
Quench propagation velocity in conductors having a large amount of stabilizer outside the multifilamentary area is considered. It is shown that the current redistribution process between the multifilamentary area and the stabilizer can strongly effect the quench propagation. A criterion is derived determining the conditions under which the current redistribution process becomes significant, and a model of effective stabilizer area is suggested to describe its influence on the quench propagation velocity. As an illustration, the model is applied to calculate the adiabatic quench propagation velocity for a conductor geometry with a multifilamentary area embedded inside the stabilizer.
Variational Calculations of Positronium Scattering with Hydrogen
Woods, Denton
2015-01-01
Positronium-hydrogen (Ps-H) scattering is of interest, as it is a fundamental four-body Coulomb problem. We have investigated low-energy Ps-H scattering below the Ps(n=2) excitation threshold using the Kohn variational method and variants of the method with a trial wavefunction that includes highly correlated Hylleraas-type short-range terms. We give an elegant formalism that combines all Kohn-type variational methods into a single form. Along with this, we have also developed a general formalism for Kohn-type matrix elements that allows us to evaluate arbitrary partial waves with a single codebase. Computational strategies we have developed and use in this work are also discussed. With these methods, we have computed phase shifts for the first six partial waves for both the singlet and triplet states. The $^{1,3}$S and $^{1,3}$P phase shifts are highly accurate results and could potentially be viewed as benchmark results. Resonance positions and widths for the $^1$S-, $^1$P-, $^1$D-, and $^1$F-waves have bee...
Investigation of Spatial Variation of Sea States Offshore of Humboldt Bay CA Using a Hindcast Model.
Dallman, Ann Renee; Neary, Vincent Sinclair
2014-10-01
Spatial variability of sea states is an important consideration when performing wave resource assessments and wave resource characterization studies for wave energy converter (WEC) test sites and commercial WEC deployments. This report examines the spatial variation of sea states offshore of Humboldt Bay, CA, using the wave model SWAN . The effect of depth and shoaling on bulk wave parameters is well resolved using the model SWAN with a 200 m grid. At this site, the degree of spatial variation of these bulk wave parameters, with shoaling generally perpendicular to the depth contours, is found to depend on the season. The variation in wave height , for example, was higher in the summer due to the wind and wave sheltering from the protruding land on the coastline north of the model domain. Ho wever, the spatial variation within an area of a potential Tier 1 WEC test site at 45 m depth and 1 square nautical mile is almost negligible; at most about 0.1 m in both winter and summer. The six wave characterization parameters recommended by the IEC 6 2600 - 101 TS were compared at several points along a line perpendicular to shore from the WEC test site . As expected, these parameters varied based on depth , but showed very similar seasonal trends.
Wave-Driven Rotation In Centrifugal Mirrors
Abraham J. Fetterman and Nathaniel J. Fisch
2011-03-28
Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.
Slow wave structures using twisted waveguides for charged particle applications
Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.
2012-12-11
A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.
Velocity dispersion and upscaling in a laboratory-simulated VSP
Rio, P.; Mukerji, T.; Mavko, G. [Stanford Univ., CA (United States)] [Stanford Univ., CA (United States); Marion, D. [Elf Aquitaine, Pau (France)] [Elf Aquitaine, Pau (France)
1996-03-01
A laboratory and numerical study was conducted to investigate the impact of scale-dependent seismic wave propagation in randomly layered media, as applied to sonic logs, surface seismic, and vertical seismic profiles (VSPs). Analysis of the laboratory results (1) confirmed the wavelength dependence of velocities inferred from traveltimes, (2) indicated that scale effects can introduce traveltime errors when upscaling from logs to surface seismic and VSPs, and (3) illustrated that erroneous VSP interval velocities can result when layer thicknesses are smaller than about one-tenth of the wavelength. A simple approximate recipe is presented for estimating these traveltimes by successively filtering the medium using a running Backus average and ray theory. The scale-dependent dispersion was also predicted well using a more rigorous invariant imbedding formulation. The predicted traveltimes, using the approximate recipe, compare well with the times observed in the laboratory stack of steel and plastic layers and in numerical studies of stratified media. The dispersion curves predicted by the approximate method also show the overall behavior computed with the more rigorous invariant imbedding formulation.
Modeling velocity dispersion In Gypsy site, Oklahoma
Alsaadan, Sami Ibrahim
2010-01-01
Discrepancies in interval velocities estimated from vertical well measurements made with different source central frequencies at Gypsy site could be primarily explained in terms of intrinsic attenuation. Four intervals ...
Recovering Velocity Distributions via Penalized Likelihood
David Merritt
1996-05-14
Line-of-sight velocity distributions are crucial for unravelling the dynamics of hot stellar systems. We present a new formalism based on penalized likelihood for deriving such distributions from kinematical data, and evaluate the performance of two algorithms that extract N(V) from absorption-line spectra and from sets of individual velocities. Both algorithms are superior to existing ones in that the solutions are nearly unbiased even when the data are so poor that a great deal of smoothing is required. In addition, the discrete-velocity algorithm is able to remove a known distribution of measurement errors from the estimate of N(V). The formalism is used to recover the velocity distribution of stars in five fields near the center of the globular cluster Omega Centauri.
Pavel Galich; Stephan Rudykh
2014-12-31
We analyze the propagation of elastic waves in soft materials subjected to finite deformations. We derive explicit dispersion relations, and apply these results to study elastic wave propagation in (i) nearly incompressible materials such as biological tissues and polymers, and (ii) negative Poisson's ratio or auxetic materials. We find that for nearly incompressible materials transverse wave velocities exhibit strong dependence on direction of propagation and initial strain state, whereas the longitudinal component is not affected significantly until extreme levels of deformations are attained. For highly compressible materials, we show that both pressure and shear wave velocities depend strongly on initial deformation and direction of propagation. When compression is applied, longitudinal wave velocity decreases in positive bulk modulus materials, and increases for negative bulk modulus materials; this is regardless the direction of wave prorogation. We demonstrate that finite deformations influence elastic wave propagation through combinations of induced effective compressibility and stiffness.
SHEAR-WAVE SOURCED 3-D VSP IMAGING OF TIGHT-GAS SANDSTONES IN RULISON FIELD, COLORADO
1 #12;SHEAR-WAVE SOURCED 3-D VSP IMAGING OF TIGHT-GAS SANDSTONES IN RULISON FIELD, COLORADO heavily on understanding the distribution of sandstone bodies in the subsurface. Shear-wave sourced 3-D was applied to the shear- wave reflection data. A geologically-constrained migration-velocity model
The Effect of Abnormal Granulation on Acoustic Wave Travel Times and Mode Frequencies
K. Petrovay; R. Erdelyi; M. J. Thompson
2007-02-02
Observations indicate that in plage areas (i.e. in active regions outside sunspots) acoustic waves travel faster than in quiet sun, leading to shortened travel times and higher p-mode frequencies. While it is clear that the ultimate cause of any difference between quiet sun and plage is the presence of magnetic fields of order 100 G in the latter, the mechanism by which the magnetic field exerts its influence has not yet been conclusively identified. One possible such mechanism is suggested by the observation that granular motions in plage areas tend to be slightly ``abnormal'', dampened compared to quiet sun. In this paper we consider the effect that abnormal granulation observed in active regions should have on the propagation of acoustic waves. Any such effect is found to be limited to a shallow surface layer where sound waves propagate nearly vertically. The magnetically suppressed turbulence implies higher sound speeds, leading to shorter travel times. This time shift Dt is independent of the travel distance, while it shows a characteristic dependence on the assumed plage field strength. As a consequence of the variation of the acoustic cutoff with height, Dt is expected to be significantly higher for higher frequency waves within the observed regime of 3-5 mHz. The lower group velocity near the upper reflection point further leads to an increased envelope time shift, as compared to the phase shift. $p$-mode frequencies in plage areas are increased by a corresponding amount, Dnu/nu = nu*Dt. These characteristics of the time and frequency shifts are in accordance with observations. The calculated overall amplitude of the time and frequency shifts are comparable to, but still significantly (factor of 2 to 5) less than suggested by measurements.
Doppler Shift of the de Broglie Waves- Some New Results from Very Old Concepts
Sanchari De; Somenath Chakrabarty
2015-02-28
The Doppler shift of de Broglie wave is obtained for fermions and massive bosons using the conventional form of Lorentz transformations for momentum and energy of the particles. A formalism is developed to obtain the variation of wave length for de Broglie waves with temperature for individual particles using the classic idea of Wien in a many body Fermi gas or massive Bose gas.
1. INTRODUCTION The investigation of whistler waves excitation and propagation in Earth
Paris-Sud XI, Université de
disturbance near antenna was about Bmax/B0~5%. #12;High frequency probe whistler waves (f0=80-200 MHz) were magnetic field disturbance the whistler wave (frequency f0=160 MHz is close to local electron cyclotron and parametric whistler wave interaction with plasma density and magnetic field variations. Amplitude-frequency
Turbulent combined wave-current boundary layer model for application in coastal waters
Humbyrd, Chelsea Joy
2012-01-01
Accurately predicting transport processes, including sediment transport, in the coastal environment is impossible without correct current velocity and shear stress information. A combined wave-current boundary layer theory ...
Observations and modeling of wave-acceleration-induced sediment transport in the surfzone
Hoefel, Fernanda Gemael, 1973-
2004-01-01
Onshore sediment transport and sandbar migration are important to the morphological evolution of beaches, but are not understood well. Here, a new model that accounts for accelerations of wave-orbital velocities predicts ...
Modeling fault-zone guided waves of microearthquakes in a geothermal...
the identification and modeling of such guided waves is an effective tool to locate fracture-induced, low-velocity fault-zone structures in geothermal fields. Authors Lou, M.;...
Landau damping of Langmuir waves in non-Maxwellian plasmas
Ouazene, M.; Annou, R.
2011-11-15
As free electrons move in the nearest neighbour ion's potential well, the equilibrium velocity departs from Maxwell distribution. The effect of the non-Maxwellian velocity distribution function (NMVDF) on many properties of the plasma such as the transport coefficients, the kinetic energy, and the degree of ionization is found to be noticeable. A correction to the Langmuir wave dispersion relation is proved to arise due to the NMVDF as well [Phys. Plasmas 17, 052105 (2010)]. The study is extended hereafter to include the effect of NMVDF on the Landau damping of Langmuir wave.
Extracting Fish and Water Velocity from Doppler Profiler Data
deYoung, Brad
Extracting Fish and Water Velocity from Doppler Profiler Data Äº Ð 1 ¸ Ö Ò ×¹ Ò ÝÖ¹Ê Ò 2 1 processing algo- rithms normally used to extract water velocity. We present an alternative method for velocity homogeneity precludes the extraction of fish velocities. Water velocities can sometimes still
Broader source: Energy.gov [DOE]
Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity.
Wirosoetisno, Djoko
focussing: in crossing seas due to coastal or submarine convergences. Moreover, (rogue) wave energy devices maker to create the highest rogue wave? geometry and dynamo in a new rogue wave energy device? maximum
Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow
Wang, Zhen-guo Wu, Liyin; Li, Qinglian; Li, Chun
2014-09-29
Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma?=?2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d?velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674–2686 (2008)] and Wang et al. [AIAA J. 50, 1360–1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.
Nehorai, Arye
4794 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, OCTOBER 2008 Seismic Velocity the shape pa- rameters of seismic wavefields using linear arrays of three-compo- nent (3C) vector sensors with uncertain acquisition geometry. The goal is to separate the different seismic waves, which is of prac- tical
Smith-Konter, Bridget
Your Mission: 1) Create a Tsunami in a box! Measure its velocity. 2) Analyze tsunami hazards and past tsunami data Your Supplies: Plastic tub (outside) Sand and water (outside) Board with handle will be using this as a marker for timing the arrival of the tsunami wave. Length of the tub = _______________ m
Starobinets, Alexander
2011-01-01
in the sun [1], waves in the solar corona [2], the wobble of stars perturbed by exoplanets [3,4], and binary of velocity is important to inferring the plasma kinetic energy, which can be the primary storage reservoir of j × B work accumulated over 100 ns during implosion and then provide plasma heating when thermalized
Waltz, R. E.; Staebler, G. M.; Solomon, W. M.
2011-04-15
Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and the much smaller profile shear residual stress component.
Velocity dependence of friction of confined polymers
I. M. Sivebaek; V. N. Samoilov; B. N. J. Persson
2009-11-18
We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate, and (b) polymer sliding on polymer. We discuss the velocity dependence of the frictional shear stress for both cases. In our simulations, the polymer films are very thin (approx. 3 nm), and the solid walls are connected to a thermostat at a short distance from the polymer slab. Under these circumstances we find that frictional heating effects are not important, and the effective temperature in the polymer film is always close to the thermostat temperature. In the first setup (a), for hydrocarbons with molecular lengths from 60 to 1400 carbon atoms, the shear stresses are nearly independent of molecular length, but for the shortest hydrocarbon C20H42 the frictional shear stress is lower. In all cases the frictional shear stress increases monotonically with the sliding velocity. For polymer sliding on polymer [case (b)] the friction is much larger, and the velocity dependence is more complex. For hydrocarbons with molecular lengths from 60 to 140 C-atoms, the number of monolayers of lubricant increases (abruptly) with increasing sliding velocity (from 6 to 7 layers), leading to a decrease of the friction. Before and after the layering transition, the frictional shear stresses are nearly proportional to the logarithm of sliding velocity. For the longest hydrocarbon (1400 C-atoms) the friction shows no dependence on the sliding velocity, and for the shortest hydrocarbon (20 C-atoms) the frictional shear stress increases nearly linearly with the sliding velocity.
Experimental study of internal wave generation by convection in water
Bars, Michael Le; Perrard, Stéphane; Ribeiro, Adolfo; Rodet, Laetitia; Aurnou, Jonathan M; Gal, Patrice Le
2015-01-01
We experimentally investigate the dynamics of water cooled from below at 0^oC and heated from above. Taking advantage of the unusual property that water's density maximum is at about 4^oC, this set-up allows us to simulate in the laboratory a turbulent convective layer adjacent to a stably stratified layer, which is representative of atmospheric and stellar conditions. High precision temperature and velocity measurements are described, with a special focus on the convectively excited internal waves propagating in the stratified zone. Most of the convective energy is at low frequency, and corresponding waves are localized to the vicinity of the interface. However, we show that some energy radiates far from the interface, carried by shorter horizontal wavelength, higher frequency waves. Our data suggest that the internal wave field is passively excited by the convective fluctuations, and the wave propagation is correctly described by the dissipative linear wave theory.
Asymptotic wave-splitting in anisotropic linear acoustics
B. L. G. Jonsson; M. Norgren
2009-08-11
Linear acoustic wave-splitting is an often used tool in describing sound-wave propagation through earth's subsurface. Earth's subsurface is in general anisotropic due to the presence of water-filled porous rocks. Due to the complexity and the implicitness of the wave-splitting solutions in anisotropic media, wave-splitting in seismic experiments is often modeled as isotropic. With the present paper, we have derived a simple wave-splitting procedure for an instantaneously reacting anisotropic media that includes spatial variation in depth, yielding both a traditional (approximate) and a `true amplitude' wave-field decomposition. One of the main advantages of the method presented here is that it gives an explicit asymptotic representation of the linear acoustic-admittance operator to all orders of smoothness for the smooth, positive definite anisotropic material parameters considered here. Once the admittance operator is known we obtain an explicit asymptotic wave-splitting solution.
Hydrodynamic Waves in an Anomalous Charged Fluid
Abbasi, Navid; Rezaei, Zahra
2015-01-01
We study the collective excitations in a relativistic fluid with an anomalous conserved charge. In $3+1$ dimensions, in addition to two ordinary sound modes we find two propagating modes in presence of an external magnetic field: one with a velocity proportional to the coefficient of gauge-gravitational anomaly coefficient and the other with a velocity which depends on both chiral anomaly and the gauge gravitational anomaly coefficients. While the former is the Chiral Alfv\\'en wave recently found in arXiv:1505.05444, the latter is a new type of collective excitations originated from the density fluctuations. We refer to these modes as the Type-M and Type-D chiral Alfv\\'en waves respectively. We show that the Type-M Chiral Alfv\\'en mode is split into two chiral Alfv\\'en modes when taking into account the effect of dissipation processes in the fluid. In 1+1 dimensions we find only one propagating mode associated with the anomalous effects. We explicitly compute the velocity of this wave and show that in contras...
DETERMINATION OF NON-THERMAL VELOCITY DISTRIBUTIONS FROM SERTS LINEWIDTH OBSERVATIONS
Coyner, Aaron J. [Department of Physics, Catholic University of America, 620 Michigan Avenue, Washington, DC 20064 (United States); Davila, Joseph M., E-mail: aaron.j.coyner@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2011-12-01
Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 A and a temperature range from 80,000 K to 12.6 MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22 km s{sup -1} in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfven wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.
RESEARCH PAPER Semiannual velocity variations around the 2008 Mw 7.9 Wenchuan
Niu, Fenglin
-mail: seismichc@163.com H. Chen Á H. Ge Á F. Niu Unconventional Natural Gas Institute, China University
Geometrical vs wave optics under gravitational waves
Raymond Angélil; Prasenjit Saha
2015-05-20
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics - rather than solving Maxwell's equations directly for the fields, as in most previous approaches - we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic fields all experience the same phase modulation. Applying such a phase modulation to a superposition of plane waves corresponding to a Gaussian wave packet leads to time delays.
Argonov, V. Yu.
2014-11-15
The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field can suppress packet splitting for some atoms whose specific velocities are in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. We also demonstrate that the modulated field can not only trap but also cool the atoms. We perform a numerical experiment with a large atomic ensemble having wide initial velocity and energy distributions. During the experiment, most of atoms leave the wave while the trapped atoms have a narrow energy distribution.
Characterization of a Dipole Flow System Using Point Velocity Probes
Bowen, Ian Reed
2010-11-23
A direct groundwater velocity measurement tool, the Point Velocity Probe, was developed to measure velocities in the vertical and horizontal directions. The tool was designed and tested in a low-cost laboratory flow-through tank. Following testing...
HYBRID COSMOLOGICAL SIMULATIONS WITH STREAM VELOCITIES
Richardson, Mark L. A.; Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Thacker, Robert J. [Department of Astronomy and Physics, Saint Mary's University, Halifax, B3H 3C3 (Canada)
2013-07-10
In the early universe, substantial relative ''stream'' velocities between the gas and dark matter arise due to radiation pressure and persist after recombination. To assess the impact of these velocities on high-redshift structure formation, we carry out a suite of high-resolution adaptive mesh refinement (AMR) cosmological simulations, which use smoothed particle hydrodynamic data sets as initial conditions, converted using a new tool developed for this work. These simulations resolve structures with masses as small as a few 100 M{sub Sun }, and we focus on the 10{sup 6} M{sub Sun} ''mini-halos'' in which the first stars formed. At z Almost-Equal-To 17, the presence of stream velocities has only a minor effect on the number density of halos below 10{sup 6} M{sub Sun }, but it greatly suppresses gas accretion onto all halos and the dark matter structures around them. Stream velocities lead to significantly lower halo gas fractions, especially for Almost-Equal-To 10{sup 5} M{sub Sun} objects, an effect that is likely to depend on the orientation of a halo's accretion lanes. This reduction in gas density leads to colder, more compact radial profiles, and it substantially delays the redshift of collapse of the largest halos, leading to delayed star formation and possibly delayed reionization. These many differences suggest that future simulations of early cosmological structure formation should include stream velocities to properly predict gas evolution, star formation, and the epoch of reionization.
Radial velocity measurements of the pulsating zirconium star: LS IV -14 116
Jeffery, C Simon; Neelamkodan, Naslim; Kerzendorf, Wolfgang
2014-01-01
The helium-rich hot subdwarf LS IV -14 116 shows remarkably high surface abundances of zirconium, yttrium, strontium, and germanium, indicative of strong chemical stratification in the photosphere. It also shows photometric behaviour indicative of non-radial g-mode pulsations, despite having surface properties inconsistent with any known pulsational instability zone. We have conducted a search for radial velocity variability. This has demonstrated that at least one photometric period is observable in several absorption lines as a radial velocity variation with a semi-amplitude in excess of 5 km s$^{-1}$. A correlation between line strength and pulsation amplitude provides evidence that the photosphere pulsates differentially. The ratio of light to velocity amplitude is too small to permit the largest amplitude oscillation to be radial.
New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion
Rondenay, Stephane
New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion Chin recorded by the POLARIS broadband seismic network and the Yellowknife array. Phase velocities obtained of its high degree of mantle depletion. The one-dimensional inversion of phase velocities yields high
Propagation of a solitary fission wave A. G. Osborne, G. D. Recktenwald, and M. R. Deinerta)
Deinert, Mark
, or oscillatory over the interval of interest.7 Solutions for the propagation velocity of reaction-diffusion waves diffusion coefficient and a is the inverse of the neutron velocity. The reaction term V/ takes 24 February 2012; accepted 5 June 2012; published online 22 June 2012) Reaction-diffusion phenomena
Non-diffracting chirped Bessel waves in optical antiguides
Chremmos, Ioannis
2015-01-01
Chirped Bessel waves are introduced as stable (non-diffracting) solutions of the paraxial wave equation in optical antiguides with a power-law radial variation in their index of refraction. Through numerical simulations, we investigate the propagation of apodized (finite-energy) versions of such waves, with or without vorticity, in antiguides with practical parameters. The new waves exhibit a remarkable resistance against the defocusing effect of the unstable index potentials, outperforming standard Gaussians with the same full width at half maximum. The chirped profile persists even under conditions of eccentric launching or antiguide bending and is also capable of self-healing like standard diffraction-free beams in free space.
Long wave expansions for water waves over random topography
Anne de Bouard; Walter Craig; Oliver Díaz-Espinosa; Philippe Guyenne; Catherine Sulem
2007-10-01
In this paper, we study the motion of the free surface of a body of fluid over a variable bottom, in a long wave asymptotic regime. We assume that the bottom of the fluid region can be described by a stationary random process $\\beta(x, \\omega)$ whose variations take place on short length scales and which are decorrelated on the length scale of the long waves. This is a question of homogenization theory in the scaling regime for the Boussinesq and KdV equations. The analysis is performed from the point of view of perturbation theory for Hamiltonian PDEs with a small parameter, in the context of which we perform a careful analysis of the distributional convergence of stationary mixing random processes. We show in particular that the problem does not fully homogenize, and that the random effects are as important as dispersive and nonlinear phenomena in the scaling regime that is studied. Our principal result is the derivation of effective equations for surface water waves in the long wave small amplitude regime, and a consistency analysis of these equations, which are not necessarily Hamiltonian PDEs. In this analysis we compute the effects of random modulation of solutions, and give an explicit expression for the scattered component of the solution due to waves interacting with the random bottom. We show that the resulting influence of the random topography is expressed in terms of a canonical process, which is equivalent to a white noise through Donsker's invariance principle, with one free parameter being the variance of the random process $\\beta$. This work is a reappraisal of the paper by Rosales & Papanicolaou \\cite{RP83} and its extension to general stationary mixing processes.
Hollweg, Joseph V.; Chandran, Benjamin D. G.; Kaghashvili, Edisher Kh. E-mail: ekaghash@aer.com
2013-06-01
We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.
PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS (Journal...
Office of Scientific and Technical Information (OSTI)
PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS Citation Details In-Document Search Title: PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS A protostellar jet and outflow...
RESEARCH ARTICLE Minimization of divergence error in volumetric velocity
Marusic, Ivan
RESEARCH ARTICLE Minimization of divergence error in volumetric velocity measurements Volumetric velocity measurements taken in incompressible fluids are typically hindered by a nonzero
Sound velocity bound and neutron stars
Paulo F. Bedaque; Andrew W. Steiner
2015-01-25
It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by $\\sqrt{3}$. Simple arguments support this bound in non-relativistic and/or weakly coupled theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. We point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at "low" densities is in strong tension with this bound.
Whitley, Darrell
Augmented Geophysical Data Interpretation Through Automated Velocity Picking in Semblance Velocity on the surface. Currently, geophysicists spend hours, days or weeks in front of monitors tracing curves on images of these cor- respond to the bright spots selected by the geophysicist. Next, a combinatorial optimization
Alfven Wave-Driven Supernova Explosion
T. K. Suzuki; K. Sumiyoshi; S. Yamada
2007-12-06
We investigate the role of Alfven waves in the core-collapse supernova (SN) explosion. We assume that Alfven waves are generated by convections inside a proto-neutron star (PNS) and emitted from its surface. Then these waves propagate outwards, dissipate via nonlinear processes, and heat up matter around a stalled prompt shock. To quantitatively assess the importance of this process for the revival of the stalled shock, we perform 1D time-dependent hydrodynamical simulations, taking into account the heating via the dissipation of Alfven waves that propagate radially outwards along open flux tubes. We show that the shock revival occurs if the surface field strength is larger than ~2e15 G and if the amplitude of velocity fluctuation at the PNS surface is larger than 20% of the local sound speed. Interestingly, the Alfven wave mechanism is self-regulating in the sense that the explosion energy is not very sensitive to the surface field strength and initial amplitude of Alfven waves as long as they are larger than the threshold values given above.
A Nonlocal Formulation of Rotational Water Waves
Anthony C. L Ashton; A. S. Fokas
2011-07-29
The classical equations of irrotational water waves have recently been reformulated as a system of two equations, one of which is an explicit non-local equation for the wave height and for the velocity potential evaluated on the free surface. Here, in the two dimensional case, (a) we generalise the relevant formulation to the case of constant vorticity, as well as to the case where the free surface is described by a multi-valued function; (b) in the case of travelling waves we derive an upper bound for the free surface; (c) in the case of constant vorticity we construct a sequence of nearly Hamiltonian systems which provide an approximation in the asymptotic limit of certain physical small parameters. In particular, the explicit dependence of the vorticity on the coefficients of the KdV equation is clarified. Also, in the irrotational case we extend the formalism to n>2 dimensions and analyse rigorously the linear limit of these equations.
Wave turbulence served up on a plate
Pablo Cobelli; Philippe Petitjeans; Agnes Maurel; Vincent Pagneux; Nicolas Mordant
2009-10-28
Wave turbulence in a thin elastic plate is experimentally investigated. By using a Fourier transform profilometry technique, the deformation field of the plate surface is measured simultaneously in time and space. This enables us to compute the wavevector-frequency Fourier ($\\mathbf k, \\omega$) spectrum of the full space-time deformation velocity. In the 3D ($\\mathbf k, \\omega$) space, we show that the energy of the motion is concentrated on a 2D surface that represents a nonlinear dispersion relation. This nonlinear dispersion relation is close to the linear dispersion relation. This validates the usual wavenumber-frequency change of variables used in many experimental studies of wave turbulence. The deviation from the linear dispersion, which increases with the input power of the forcing, is attributed to weak non linear effects. Our technique opens the way for many new extensive quantitative comparisons between theory and experiments of wave turbulence.
California at Santa Barbara, University of
Verdes, Campus Point, Coal Oil Point (Sands) Waves propagate perpendicular to isobaths (lines of constant
Water Waves Roger Grimshaw May 7, 2003 Abstract A short review of the theory of weakly nonlinear water waves, prepared for the forthcoming Encyclopedia of Nonlinear Science 1 Introduction Water waves nonlinear waves. Throughout the theory is based on the traditional assumptions that water is inviscid
0 1 2 3 4 5 6 0 0.2 0.4 Velocity (km/s) Poisson's Ratio
Crone, Timothy J.
pressure anomalies). As a result, tidal stresses lead to spatial variations in pore pressure that can this hypothesis. First, we used a one-dimensional model of pore pressure based on Biot's poroelastic theory velocity field. The flow pattern is very sensitive to the inflow pressure gradient, and for these models
Variational transition state theory
Truhlar, D.G. [Univ. of Minnesota, Minneapolis (United States)
1993-12-01
This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.
Seismic Ground Motions from a Bolide Shock Wave Charles A. Langston
Langston, Charles A.
-surface layer with low P wave (~0.25 km/s) and S wave (~0.125 km/s) velocities consistent with previously published profiling results in unconsolidated Mississippi embayment sediments. Ground motions are generally/04/2003 ~3:50 UT). Some observers also reported that the bolide was accompanied by a sonic boom and residents
EFFECT OF IMMISCIBLE LIQUID CONTAMINANTS ON P-WAVE TRANSMISSION THROUGH NATURAL AQUIFER SAMPLES
Ajo-Franklin, Jonathan
EFFECT OF IMMISCIBLE LIQUID CONTAMINANTS ON P-WAVE TRANSMISSION THROUGH NATURAL AQUIFER SAMPLES Jil the effect of non-aqueous phase liquid (NAPL) contaminants on P-wave velocity and attenuation attenuation, which may be due to lithology and/or contaminants (NAPL or gas phase). Intact core was obtained
the dispersion relation for the inertial waves. The energy of the waves is small compared to the energy, or the "gradient wind" velocity with very high spatial resolution (typically several million vectors) limited largely by the pixel resolution of the available imaging sensors. The technique is particularly suited
Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts
Calvez, Vincent
describes particles moving according to a velocity-jump process, and proliferating thanks to a reaction termPropagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts the existence and stability of travelling wave solutions of a kinetic reaction- transport equation. The model
Shock-Wave Attenuation and Energy-Dissipation Potential of Granular Materials
Grujicic, Mica
Shock-Wave Attenuation and Energy-Dissipation Potential of Granular Materials Mica Grujicic, B this approach, both compression shocks and decompression waves are treated as (stress, specific volume, particle velocity, mass-based internal energy density, temperature, and mass-based entropy density) propagating
PERFORMANCE EFFECTS OF AIR VELOCITY PROFILES IN
PERFORMANCE EFFECTS OF AIR VELOCITY PROFILES IN A RESIDENTIAL HEAT PUMP By NATHAN ANDREW WEBER PROFILES IN A RESIDENTIAL HEAT PUMP Thesis Approved: _______________________________________ Thesis Advisor the air speed transducer mount and the Plexiglas model of the heat pump. Ipseng Iu and myself worked side
Apparatus and method for laser velocity interferometry
Stanton, Philip L. (Bernalillo County, NM); Sweatt, William C. (Albuquerque, NM); Crump, Jr., O. B. (Albuquerque, NM); Bonzon, Lloyd L. (Albuquerque, NM)
1993-09-14
An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.
the wave model A traveling wave is an organized disturbance
Winokur, Michael
1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. · In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. · In longitudinal waves the particles of the medium move parallel to the direction
Local computation of angular velocity in rotational visual motion
Grzywacz, Norberto
Local computation of angular velocity in rotational visual motion Jose´ F. Barraza and Norberto M discrimination of angular velocity is local. Local discrimination of angular velocity requires an accurate of rotation result in a predictable systematic error when one is estimating local angular velocity. Our
Amplitude variations on the Extreme Adaptive Optics testbed
Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B
2007-08-14
High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.
Ion-acoustic cnoidal waves in a quantum plasma
Mahmood, S.; Haas, F.
2014-10-15
Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.
Global well-posedness of the 3-D full water wave problem
Sijue Wu
2009-10-13
We consider the problem of global in time existence and uniqueness of solutions of the 3-D infinite depth full water wave problem. We show that the nature of the nonlinearity of the water wave equation is essentially of cubic and higher orders. For any initial interface that is sufficiently small in its steepness and velocity, we show that there exists a unique smooth solution of the full water wave problem for all time, and the solution decays at the rate $1/t$.
Liu Wei; Title, Alan M.; Schrijver, Carolus J.; Aschwanden, Markus J.; De Pontieu, Bart; Tarbell, Theodore D.; Zhao Junwei; Ofman, Leon
2011-07-20
Quasi-periodic propagating fast mode magnetosonic waves in the solar corona were difficult to observe in the past due to relatively low instrument cadences. We report here evidence of such waves directly imaged in EUV by the new Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. In the 2010 August 1 C3.2 flare/coronal mass ejection event, we find arc-shaped wave trains of 1%-5% intensity variations (lifetime {approx}200 s) that emanate near the flare kernel and propagate outward up to {approx}400 Mm along a funnel of coronal loops. Sinusoidal fits to a typical wave train indicate a phase velocity of 2200 {+-} 130 km s{sup -1}. Similar waves propagating in opposite directions are observed in closed loops between two flare ribbons. In the k-{omega} diagram of the Fourier wave power, we find a bright ridge that represents the dispersion relation and can be well fitted with a straight line passing through the origin. This k-{omega} ridge shows a broad frequency distribution with power peaks at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz (period 181 s) temporally coincides with quasi-periodic pulsations of the flare, suggesting a common origin. The instantaneous wave energy flux of (0.1-2.6) x 10{sup 7} erg cm{sup -2} s{sup -1} estimated at the coronal base is comparable to the steady-state heating requirement of active region loops.
Surface electromagnetic wave equations in a warm magnetized quantum plasma
Li, Chunhua; Yang, Weihong [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Wu, Zhengwei, E-mail: wuzw@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Center of Low Temperature Plasma Application, Yunnan Aerospace Industry Company, Kunming, 650229 Yunnan (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)
2014-07-15
Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.
Decay of helical Kelvin waves on a quantum vortex filament
Van Gorder, Robert A.
2014-07-15
We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite value. These decaying Kelvin waves correspond to wave number below the critical value for the Donnelly-Glaberson instability, and hence our results on the Schwarz quantum LIA correspond exactly to what one would expect from prior work on the Donnelly-Glaberson instability.
Observation of negative-frequency waves in a water tank: A classical analogue to the Hawking effect?
Germain Rousseaux; Christian Mathis; Philippe Maissa; Thomas G. Philbin; Ulf Leonhardt
2008-03-01
The conversion of positive-frequency waves into negative-frequency waves at the event horizon is the mechanism at the heart of the Hawking radiation of black holes. In black-hole analogues, horizons are formed for waves propagating in a medium against the current when and where the flow exceeds the wave velocity. We report on the first direct observation of negative-frequency waves converted from positive-frequency waves in a moving medium. The measured degree of mode conversion is significantly higher than expected from theory.
Variations on Remy's algorithm Nicolas Curien
Borgs, Christian
... Variation 2 I heard about this variation from Luc Devroye (Barbados workshop, March 2011). We define
Tank, David
. The linear regression method presented here is valid for both fixation and low head velocity VOR dataLinear Regression of Eye Velocity on Eye Position and Head Velocity Suggests a Common Oculomotor Aksay, David W. Tank, and H. S. Seung. Linear regression of eye velocity on eye position and head
Coiled tubing velocity strings keep wells unloaded
Wesson, H.R.; Shursen, J.L.
1989-07-01
Liquid loading is a problem in many older and even some newer gas wells, particularly in pressure depletion type reservoirs. This liquid loading results in decreased production and may even kill the well. The use of coiled tubing as a velocity string (or siphon string) has proved to be an economically viable alternative to allow continued and thus, increased cumulative production for wells experiencing liquid loading problems. Coiled tubing run inside the existing production string reduces the flow area, whether the well is produced up the tubing or up the annulus. This reduction in flow area results in an increase in flow velocity and thus, an increase in the well's ability to unload fluids.
Relativistic Quaternionic Wave Equation II
Schwartz, Charles
2007-01-01
Relativistic quaternionic wave equation. II J. Math. Phys.Relativistic quaternionic wave equation. II Charles Schwartzcomponent quaternionic wave equation recently introduced. A
P- and S-body wave tomography of the state of Nevada.
Preston, Leiph
2010-04-01
P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.
Showalter, Kenneth
Wave-induced chaos in a continuously fed unstirred reactor John H. Merkin,"Valery Petrov,bStephen K of a constant-velocity constant-form reaction wave that traverses the reaction domain, leaving behind, allowing further wave events to be initiated, which then propagate into the `recovered' region. The chaotic
Effect of Resolution on Propagating Detonation Wave
Menikoff, Ralph
2014-07-10
Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8?m), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.
Radial velocities of southern visual multiple stars
Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra E-mail: pribulla@ta3.sk
2015-01-01
High-resolution spectra of visual multiple stars were taken in 2008–2009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out to have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.
Propagating and reflecting of spin wave in permalloy nanostrip with 360° domain wall
Zhang, Senfu; Mu, Congpu; Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Wang, Jianbo; Liu, Qingfang
2014-01-07
By micromagnetic simulation, we investigated the interaction between propagating spin wave (or magnonic) and a 360° domain wall in a nanostrip. It is found that propagating spin wave can drive a 360° domain wall motion, and the velocity and direction are closely related to the transmission coefficient of the spin wave of the domain wall. When the spin wave passes through the domain wall completely, the 360° domain wall moves toward the spin wave source. When the spin wave is reflected by the domain wall, the 360° domain wall moves along the spin wave propagation direction. Moreover, when the frequency of the spin wave is coincident with that of the 360° domain wall normal mode, the 360° domain wall velocity will be resonantly enhanced no matter which direction the 360 DW moves along. On the other hand, when the spin wave is reflected from the moving 360° domain wall, we observed the Doppler effect clearly. After passing through a 360° domain wall, the phase of the spin wave is changed, and the phase shift is related to the frequency. Nevertheless, phase shift could be manipulated by the number of 360° domain walls that spin wave passing through.
Horizon effects with surface waves on moving water
Germain Rousseaux; Philippe Maissa; Christian Mathis; Pierre Coullet; Thomas G. Philbin; Ulf Leonhardt
2010-10-01
Surface waves on a stationary flow of water are considered, in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity [Sch\\"utzhold R and Unruh W G 2002 Phys. Rev. D 66 044019]. A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/short wavelength case kh>>1 where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.
AN EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A SURGE
Zheng, Ruisheng; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Hong, Junchao; Yang, Bo; Yang, Dan
2013-02-10
Taking advantage of the high temporal and spatial resolution observations from the Solar Dynamics Observatory, we present an extreme-ultraviolet (EUV) wave associated with a surge on 2010 November 13. Due to the magnetic flux cancelation, some surges formed in the source active region (AR). The strongest surge produced our studied event. The surge was deflected by the nearby loops that connected to another AR, and disrupted the overlying loops that slowly expanded and eventually evolved into a weak coronal mass ejection (CME). The surge was likely associated with the core of the CME. The EUV wave happened after the surge deflected. The wave departed far from the flare center and showed a close location relative to the deflected surge. The wave propagated in a narrow angular extent, mainly in the ejection direction of the surge. The close timing and location relations between the EUV wave and the surge indicate that the wave was closely associated with the CME. The wave had a velocity of 310-350 km s{sup -1}, while the speeds of the surge and the expanding loops were about 130 and 150 km s{sup -1}, respectively. All of the results suggest that the EUV wave was a fast-mode wave and was most likely triggered by the weak CME.
The transverse and rotational motions of magnetohydrodynamic kink waves in the solar atmosphere
Goossens, M.; Van Doorsselaere, T. [Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, bus 2400, B-3001 Herverlee (Belgium); Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)
2014-06-10
Magnetohydrodynamic (MHD) kink waves have now been observed to be ubiquitous throughout the solar atmosphere. With modern instruments, they have now been detected in the chromosphere, interface region, and corona. The key purpose of this paper is to show that kink waves do not only involve purely transverse motions of solar magnetic flux tubes, but the velocity field is a spatially and temporally varying sum of both transverse and rotational motion. Taking this fact into account is particularly important for the accurate interpretation of varying Doppler velocity profiles across oscillating structures such as spicules. It has now been shown that, as well as bulk transverse motions, spicules have omnipresent rotational motions. Here we emphasize that caution should be used before interpreting the particular MHD wave mode/s responsible for these rotational motions. The rotational motions are not necessarily signatures of the classic axisymmetric torsional Alfvén wave alone, because kink motion itself can also contribute substantially to varying Doppler velocity profiles observed across these structures. In this paper, the displacement field of the kink wave is demonstrated to be a sum of its transverse and rotational components, both for a flux tube with a discontinuous density profile at its boundary, and one with a more realistic density continuum between the internal and external plasma. Furthermore, the Doppler velocity profile of the kink wave is forward modeled to demonstrate that, depending on the line of sight, it can either be quite distinct or very similar to that expected from a torsional Alfvén wave.
Mathur, Manikandan S.
Internal waves are a ubiquitous and significant means of momentum and energy transport in the oceans, atmosphere, and astrophysical bodies. Here, we show that internal wave propagation in nonuniform density stratifications, ...
Mercier, Matthieu J.
We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...
Scale effects on velocity dispersion: From ray to effective medium theories in stratified media
Marion, D. (Elf Aquitaine, Pau (France)); Mukerji, T.; Mavko, G. (Stanford Univ., CA (United States). Rockphysics Lab.)
1994-10-01
Wave propagation in stratified media may be explained by ray theory, effective medium theory, or scattering theory depending on the scales of wavelength and layer spacing. To effectively integrate and use seismic data ate different frequencies and widely varying scales, it is essential to understand the domain of applicability of long and short wavelength behavior and the transition between them. A joint experimental and theoretical study was conducted to investigate velocity behavior at the transition from ray theory to effective medium theory in stratified media. Velocity measurements were performed at 50 and 500 kHz on periodic media composed of steel and plastic discs. The ratio of wavelength to layer spacing, [lambda]/d, spanned more than two orders of magnitude between 0.1 and 50, and the volume fraction of steel ranged from 9 to 89 percent by volume. The results confirm that velocities in stratified media depend on composition and are controlled by the ratio of wavelength to layer spacing. Velocities in the short wavelength limit are generally faster than velocities in the long wavelength limit. The authors find that transition from ray to effective medium approximations occurs over a narrow range of [lambda]/d at a value of approximately 10. The amount of velocity change increases with impedance contrast, but the value of [lambda]/d at the transition is generally independent of the composition of the stratified medium. The numerically simulated waveforms are in close agreement with the experimentally observed delayed first arrival in the long wavelength limit and with the reduced amplitudes at the transition from short to long wavelength regime.
PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS
Machida, Masahiro N.
2014-11-20
A protostellar jet and outflow are calculated for ?270 yr following the protostar formation using a three-dimensional magnetohydrodynamics simulation, in which both the protostar and its parent cloud are spatially resolved. A high-velocity (?100 km s{sup –1}) jet with good collimation is driven near the disk's inner edge, while a low-velocity (? 10 km s{sup –1}) outflow with a wide opening angle appears in the outer-disk region. The high-velocity jet propagates into the low-velocity outflow, forming a nested velocity structure in which a narrow high-velocity flow is enclosed by a wide low-velocity flow. The low-velocity outflow is in a nearly steady state, while the high-velocity jet appears intermittently. The time-variability of the jet is related to the episodic accretion from the disk onto the protostar, which is caused by gravitational instability and magnetic effects such as magnetic braking and magnetorotational instability. Although the high-velocity jet has a large kinetic energy, the mass and momentum of the jet are much smaller than those of the low-velocity outflow. A large fraction of the infalling gas is ejected by the low-velocity outflow. Thus, the low-velocity outflow actually has a more significant effect than the high-velocity jet in the very early phase of the star formation.
Gravitational Waves on Conductors
A. Lewis Licht
2004-03-12
We consider a gravitational wave of arbitrary frequency incident on a normal or a super-conductor. The gravitationally induced fields inside the conductor are derived. The outward propagating EM waves are calculated for a low frequency wave on a small sphere and for a high frequency wave incident on a large disk. We estimate for both targets the GW to EM conversion efficiencies and also the magnitude of the superconductor's phase perturbation.
, USA c Dept. of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130 tectonic features on Earth. Buried beneath several kilometers of ice, the mountains are characterized large-scale ice sheets that formed in Antarctica as the Earth's climate cooled ~34 Ma (Bo et al., 2009
Degasperis, Antonio; Aceves, Alejandro B
2015-01-01
We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.
Keyser, John
Wave Particles Cem Yuksel Computer Science Texas A&M University Donald H. House Visualization captured from our real-time simulation system (approximately 100,000 wave particles) Abstract We present a new method for the real-time simulation of fluid sur- face waves and their interactions with floating
Internal wave instability: Wave-wave versus wave-induced mean flow interactions
Sutherland, Bruce
, known as parametric sub- harmonic instability, results generally when a disturbance of one frequency imparts energy to disturbances of half that frequency.13,14 Generally, a plane periodic internal wave, energy from primary waves is transferred, for example, to waves with half frequency. Self
Performance Assessment of the Wave Dragon Wave Energy Converter
Hansen, René Rydhof
Performance Assessment of the Wave Dragon Wave Energy Converter Based on the EquiMar Methodology S of the wave energy sector, device developers are called to provide reliable estimates on power performanceMar, Nissum Bredning, Hanstholm, North Sea, Ekofisk, Wave-to-wire, Wave energy. I. INTRODUCTION The wave
Barthelemy, X; Peirson, W L; Dias, F; Allis, M
2015-01-01
The kinematic properties of unsteady highly non-linear 3D wave groups have been investigated using a numerical wave tank. Although carrier wave speeds based on zero-crossing analysis remain within +-7% of linear theory predictions, crests and troughs locally undertake a systematic cyclical leaning from forward to backward as the crests/troughs transition through their maximum amplitude. Consequently, both crests and troughs slow down by approximately 15% of the linear velocity, in sharp contrast to the predictions of finite amplitude Stokes steady wavetrain theory. Velocity profiles under the crest maximum have been investigated and surface values in excess of 1.8 times the equivalent Stokes velocity can be observed. Equipartitioning between depth-integrated kinetic and potential energy holds globally on the scale of the wave group. However, equipartitioning does not occur at crests and troughs (even for low amplitude Stokes waves), where the local ratio of potential to total energy varies systemically as a f...
STATISTICS OF TURBULENT FIELD VARIATIONS, NON-GAUSSIANITY AND INTERMITTENCY
Ragot, B. R
2009-05-10
Statistics of magnetic field and velocity variations are important to the study of turbulence. Their departure from Gaussianity on the short separation scales has long been recognized and ascribed to intermittency. Non-Gaussian log-normal statistics of field-line separations are now predicted, however, from simple nonfluctuating turbulence Fourier spectra that do not model any intermittency, and one may wonder how this result may impact our interpretation of the statistics of field variations. It is shown in this paper how the intermittency of the turbulence can be taken into account to estimate the distributions of field-line separations and of field variations from the simple Fourier-spectra calculations. The first accurate theory/modeling predictions for the observed in situ distributions of turbulent field variations are thereby made, free of parameter adjustment. Magnetic field data from Helios 2 and Wind are used for the validation. Because the field variations are measured between points of constant separation and not between real field lines, intermittency remains the main cause for the observed non-Gaussianity of the statistics of field variations on the short scales, even if spatial limitations and/or short-scale phase correlations could also contribute to the deviations from Gaussianity.
Angular velocity of gravitational radiation from precessing binaries and the corotating frame
Michael Boyle
2013-04-10
This paper defines an angular velocity for time-dependent functions on the sphere, and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important---and largely ignored---problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the corotating frame of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive, and consistent framework for waveform analysis. Explicit implementations of all these methods are provided in accompanying computer code.
Analysis of PS-converted wave seismic data in the presence of azimuthal anisotropy
Liu, Weining
2014-11-27
Shear-wave splitting and azimuthal variations of seismic attributes are two major anisotropic effects induced by vertically-aligned fractures. They both have influences on seismic data processing and interpretation, and ...
Low velocity limits of cold atom clocks
J. Muñoz; I. Lizuain; J. G. Muga
2009-09-08
Fundamental low-energy limits to the accuracy of quantum clock and stopwatch models in which the clock hand motion is activated by the presence of a particle in a region of space have been studied in the past, but their relevance for actual atomic clocks had not been assessed. In this work we address the effect of slow atomic quantum motion on Rabi and Ramsey resonance fringe patterns, as a perturbation of the results based on classical atomic motion. We find the dependence of the fractional error of the corresponding atomic clocks on the atomic velocity and interaction parameters.
New pure shear acoustic surface waves guided by cuts in magneto-electro-elastic materials
Arman Melkumyan
2006-07-12
It is shown that new pure shear acoustic surface waves with five different velocities can be guided by stress free plane cuts with different magneto-electrical properties in magneto-electro-elastic materials. The possibility for the surface waves to be guided by a cut in pairs, which is reported in this paper, is new in magneto-electro-elastic materials and has no counterpart in piezoelectric materials. The five velocities of propagation of the surface waves are obtained in explicit forms. It is shown that the possibility for the surface waves to be guided in pairs disappears and the number of surface waves decreases from 5 to 1 if the magneto-electro-elastic material is changed to a piezoelectric material.
Simple Scalings for Various Regimes of Electron Acceleration in Surface Plasma Waves
Riconda, C; Vialis, T; Grech, M
2015-01-01
Different electron acceleration regimes in the evanescent field of a surface plasma wave are studied by considering the interaction of a test electron with the high-frequency electromagnetic field of a surface wave. The non-relativistic and relativistic limits are investigated. Simple scalings are found demonstrating the possibility to achieve an efficient conversion of the surface wave field energy into electron kinetic energy. This mechanism of electron acceleration can provide a high-frequency pulsed source of relativistic electrons with a well defined energy. In the relativistic limit, the most energetic electrons are obtained in the so-called electromagnetic regime for surface waves. In this regime the particles are accelerated to velocities larger than the wave phase velocity, mainly in the direction parallel to the plasma-vacuum interface.
Coastal Wave Generation and Wave Breaking over Terrain: Two Problems in Mesoscale Wave Dynamics
Qian, Tingting
2010-07-14
Two problems in mesoscale wave dynamics are addressed: (i) wave-turbulence interaction in a breaking mountain wave and (ii) gravity wave generation associated with coastal heating gradients. The mean and turbulent structures in a breaking mountain...
Using the Tremaine-Weinberg method to measure pattern speeds from H?velocity maps
John Beckman; Kambiz Fathi; Nuria Piñol; Olivier Hernandez; Claude Carignan; Isabel Pérez
2008-10-29
The Tremaine-Weinberg method is a well-known model independent technique for measuring density wave pattern speeds in spiral galaxies. Here we show how it can be applied to the data cubes (maps of surface brightness and velocity) obtained in H-alpha emission using a Fabry-Perot spectrometer. One of the main difficulties, the discontinuity of the H-alpha emission, is resolved using the neighbouring stellar continuum delivered by the data cube. We argue from symmetry that the motions not associated with the density wave should cancel. We show that our pattern speeds are reasonable by computing corotation radii, and comparing them to measured bar lengths. Simulations including star forming gas also add credibility to our results. Nevertheless it will be necessary to compare them with results using the spectra of the stellar components to quantify any systematic deviations from valid pattern speed values.
Using the Tremaine-Weinberg method to measure pattern speeds from H\\alpha velocity maps
Beckman, John; Piñol, Nuria; Hernandez, Olivier; Carignan, Claude; Pérez, Isabel
2008-01-01
The Tremaine-Weinberg method is a well-known model independent technique for measuring density wave pattern speeds in spiral galaxies. Here we show how it can be applied to the data cubes (maps of surface brightness and velocity) obtained in H-alpha emission using a Fabry-Perot spectrometer. One of the main difficulties, the discontinuity of the H-alpha emission, is resolved using the neighbouring stellar continuum delivered by the data cube. We argue from symmetry that the motions not associated with the density wave should cancel. We show that our pattern speeds are reasonable by computing corotation radii, and comparing them to measured bar lengths. Simulations including star forming gas also add credibility to our results. Nevertheless it will be necessary to compare them with results using the spectra of the stellar components to quantify any systematic deviations from valid pattern speed values.
Velocity-selected molecular pulses produced by an electric guide
Sommer, C.; Motsch, M.; Chervenkov, S.; Buuren, L. D. van; Zeppenfeld, M.; Pinkse, P. W. H.; Rempe, G. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)
2010-07-15
Electrostatic velocity filtering is a technique for the production of continuous guided beams of slow polar molecules from a thermal gas. We extended this technique to produce pulses of slow molecules with a narrow velocity distribution around a tunable velocity. The pulses are generated by sequentially switching the voltages on adjacent segments of an electric quadrupole guide synchronously with the molecules propagating at the desired velocity. This technique is demonstrated for deuterated ammonia (ND{sub 3}), delivering pulses with a velocity in the range of 20-100 m/s and a relative velocity spread of (16{+-}2)% at full width at half maximum. At velocities around 60 m/s, the pulses contain up to 10{sup 6} molecules each. The data are well reproduced by Monte Carlo simulations, which provide useful insight into the mechanisms of velocity selection.
Variational description of continuum states in terms of integral relations
A. Kievsky; M. Viviani; P. Barletta; C. Romero-Redondo; E. Garrido
2010-02-19
Two integral relations derived from the Kohn Variational Principle (KVP) are used for describing scattering states. In usual applications the KVP requires the explicit form of the asymptotic behavior of the scattering wave function. This is not the case when the integral relations are applied since, due to their short range nature, the only condition for the scattering wave function $\\Psi$ is that it be the solution of $(H-E)\\Psi=0$ in the internal region. Several examples are analyzed for the computation of phase-shifts from bound state type wave functions or, in the case of the scattering of charged particles, it is possible to obtain phase-shifts using free asymptotic conditions. As a final example we discuss the use of the integral relations in the case of the Hyperspherical Adiabatic method.
Alfven-wave particle interaction in finite-dimensional self-consistent field model
Padhye, N.; Horton, W.
1998-10-09
A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth`s geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons.
Radial Velocity Variability of Field Brown Dwarfs
Prato, L; Rice, E L; McLean, I S; Kirkpatrick, J D; Burgasser, A J; Kim, S S
2015-01-01
We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R~20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectrograph at the W. M. Keck Observatory. With a radial velocity precision of ~2 km/s, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1 sigma upper limit for very low mass binary frequency is 18%. Our targets included 7 known, wide brown dwarf binary systems. No significant radial velocity variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant ...
The Systemic Velocity of Eta Carinae
Nathan Smith
2004-06-23
High-resolution spectra of molecular hydrogen in the Homunculus nebula allow for the first direct measurement of the systemic velocity of Eta Carinae. Near-infrared long-slit data for H2 1-0 S(1) lambda 21218 obtained with the Phoenix spectrometer on the Gemini South telescope give Vsys=-8.1pm1 km/s (heliocentric), or VLSR=-19.7pm1 km/s, from the average of the near and far sides of the Homunculus. This measurement considerably improves the precision for the value of -7pm10 km/s inferred from neighboring O-type stars in the Carina nebula. New near-infrared spectra also provide a high-resolution line profile of [Fe II] lambda 16435 emission from gas condensations known as the Weigelt objects without contamination from the central star, revealing a line shape with complex kinematic structure. Previously, uncertainty in the Weigelt knots' kinematics was dominated by the adopted systemic velocity of Eta Car.
Modeling coiled tubing velocity strings for gas wells
Martinez, J.; Martinez, A.
1995-12-31
Multiphase flowing pressure and velocity prediction models are necessary to coiled tubing velocity string design. A model used by most of the coiled tubing service companies or manufacturers is reviewed. Guidance is provided for selecting a coiled tubing of the proper size. The steps include: (1) Measured data matching; (2) Fluid property adjustment; (3) Pressure, velocity, and holdup selection; (4) Correlation choice; (5) Coiled tubing selection. A velocity range for the lift of liquid is given.
Low velocity blunt impacts on composite aircraft structures
Whisler, Daniel A.
2009-01-01
as predict the velocity and energy right before the impacthit right at failure confirms the failure energy. To be
Hardage, Bob A; DeAngelo, Michael V; Ermolaeva, Elena; Hardage, Bob A; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion
2013-02-28
The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.
Mother templates for gravitational wave chirps
B. S. Sathyaprakash
2000-10-11
Templates used in a search for binary black holes and neutron stars in gravitational wave interferometer data will have to be computed on-line since the computational storage and retrieval costs for the template bank are too expensive. The conventional dimensionless variable $T=(c^3/Gm)t,$ where $m$ is the total mass of a binary, in the time-domain and a not-so-conventional velocity-like variable $v=(\\pi Gm f)^{1/3}$ in the Fourier-domain, render the phasing of the waves independent of the total mass of the system enabling the construction of {\\it mother templates} that depend only on the mass ratio of a black hole binary. Use of such mother templates in a template bank will bring about a reduction in computational costs up to a factor of 10 and a saving on storage by a factor of 100.
Characteristics of transverse waves in chromospheric mottles
Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Keenan, F. P. [Astrophysics Research Center, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN (United Kingdom); Verth, G.; Erdélyi, R. [Solar Physics and Space Plasma Research Center (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Morton, R. J. [Mathematics and Information Science, Northumbria University, Camden Street, Newcastle Upon Tyne NE1 8ST (United Kingdom); Christian, D. J., E-mail: dkuridze01@qub.ac.uk [Department of Physics and Astronomy, California State University, Northridge, CA 91330 (United States)
2013-12-10
Using data obtained by the high temporal and spatial resolution Rapid Oscillations in the Solar Atmosphere instrument on the Dunn Solar Telescope, we investigate at an unprecedented level of detail transverse oscillations in chromospheric fine structures near the solar disk center. The oscillations are interpreted in terms of propagating and standing magnetohydrodynamic kink waves. Wave characteristics including the maximum transverse velocity amplitude and the phase speed are measured as a function of distance along the structure's length. Solar magnetoseismology is applied to these measured parameters to obtain diagnostic information on key plasma parameters (e.g., magnetic field, density, temperature, flow speed) of these localized waveguides. The magnetic field strength of the mottle along the ?2 Mm length is found to decrease by a factor of 12, while the local plasma density scale height is ?280 ± 80 km.
Case History Imaging permafrost velocity structure using high resolution
Ramachandran, Kumar
horizontal and vertical checkerboard tests confirm the robustness of the velocity model in detailing small the permafrost velocity structure in lateral and vertical directions. It is inferred from the velocity model reflection data. More specifically, geothermal heterogeneities within the permafrost are associated
Seismic Velocity Estimation from Time Migration Maria Kourkina Cameron
Cameron, Maria Kourkina
Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron Diplom (Moscow Institute Dung-Hai Lee Spring 2007 #12;Seismic Velocity Estimation from Time Migration Copyright c 2007 by Maria Kourkina Cameron #12;Abstract Seismic Velocity Estimation from Time Migration by Maria Kourkina Cameron
Propagation and dispersion of sausage wave trains in magnetic flux tubes
Oliver, R; Terradas, J
2015-01-01
A localized perturbation of a magnetic flux tube produces a pair of wave trains that propagate in opposite directions along the tube. These wave packets disperse as they propagate, where the extent of dispersion depends on the physical properties of the magnetic structure, on the length of the initial excitation, and on its nature (e.g., transverse or axisymmetric). In Oliver et al. (2014) we considered a transverse initial perturbation, whereas the temporal evolution of an axisymmetric one is examined here. In both papers we use a method based on Fourier integrals to solve the initial value problem. Previous studies on wave propagation in magnetic wave guides have emphasized that the wave train dispersion is influenced by the particular dependence of the group velocity on the longitudinal wavenumber. Here we also find that long initial perturbations result in low amplitude wave packets and that large values of the magnetic tube to environment density ratio yield longer wave trains. To test the detectability ...
Parametric instabilities of large-amplitude parallel propagating Alfven waves: 2-D PIC simulation
Yasuhiro Nariyuki; Shuichi Matsukiyo; Tohru Hada
2008-04-25
We discuss the parametric instabilities of large-amplitude parallel propagating Alfven waves using the 2-D PIC simulation code. First, we confirmed the results in the past study [Sakai et al, 2005] that the electrons are heated due to the modified two stream instability and that the ions are heated by the parallel propagating ion acoustic waves. However, although the past study argued that such parallel propagating longitudinal waves are excited by transverse modulation of parent Alfven wave, we consider these waves are more likely to be generated by the usual, parallel decay instability. Further, we performed other simulation runs with different polarization of the parent Alfven waves or the different ion thermal velocity. Numerical results suggest that the electron heating by the modified two stream instability due to the large amplitude Alfven waves is unimportant with most parameter sets.
Three-dimensional P and S waves velocity structures of the Coso geothermal
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013)Open Energy Information Three dimensional seismic
Earthq Sci (2010)23: 449-463 449 Three dimensional shear wave velocity structure of
Song, Xiaodong
2010-01-01
of Illinois at Urbana-Champaign, Urbana IL 61801, USA 2 Institute of Earthquake Science, China Earthquake of the Pacific and Philippine plates led to the formation of island arcs and continental rift zones. Between
Accurate seismic phase-velocities from interfering surface-waves using homomorphic deconvolution
Szerbiak, Robert Bruce
1981-01-01
(1 ? bkz) X(z) = Az & k=1 k=1 27 Pi Po (1-ckz ) & (1-dkz k= 1 k= 1 (31) where k k -1 k -1 k m. i Pi m 0 Po DC component, linear-phase component, zeroes inside the unit circle, ized & saki poles inside the unit circle, )zi & ~cki...
Nonlinear pulse propagation and phase velocity of laser-driven plasma waves
Schroeder, Carl B.
2011-01-01
of California. Nonlinear pulse propagation and phasea relativistically-intense short-pulse laser in un- derdenseinvestigated in the broad pulse limit, including the e?ects
Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera,
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton, Maryland:Crownsville, Maryland:Crugers,New
Cycloidal Wave Energy Converter
Stefan G. Siegel, Ph.D.
2012-11-30
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.
Kim, Yeunjin; Jordan, G. C. IV; Graziani, Carlo; Lamb, D. Q.; Truran, J. W.; Meyer, B. S.
2013-07-01
A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned matter produced by the detonation.
An integrable evolution equation for surface waves in deep water
R. Kraenkel; H. Leblond; M. A. Manna
2011-01-30
In order to describe the dynamics of monochromatic surface waves in deep water, we derive a nonlinear and dispersive system of equations for the free surface elevation and the free surface velocity from the Euler equations in infinite depth. From it, and using a multiscale perturbative methods, an asymptotic model for small-aspect-ratio waves is derived. The model is shown to be completely integrable. The Lax pair, the first conserved quantities as well as the symmetries are exhibited. Theoretical and numerical studies reveal that it supports periodic progressive Stokes waves which peak and break in finite time. Comparison between the limiting wave solution of the asymptotic model and classical irrotational results is performed.
Obliquely propagating electromagnetic waves in magnetized kappa plasmas
Gaelzer, Rudi
2015-01-01
Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions to the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities c...
The Force of a Tsunami on a Wave Energy Converter
O'Brien, Laura; Renzi, Emiliano; Dutykh, Denys; Dias, Frédéric
2012-01-01
With an increasing emphasis on renewable energy resources, wave power technology is fast becoming a realistic solution. However, the recent tsunami in Japan was a harsh reminder of the ferocity of the ocean. It is known that tsunamis are nearly undetectable in the open ocean but as the wave approaches the shore its energy is compressed creating large destructive waves. The question posed here is whether a nearshore wave energy converter (WEC) could withstand the force of an incoming tsunami. The analytical 3D model of Renzi & Dias (2012) developed within the framework of a linear theory and applied to an array of fixed plates is used. The time derivative of the velocity potential allows the hydrodynamic force to be calculated.
A new two-component system modelling shallow-water waves
Delia Ionescu-Kruse
2013-05-22
For propagation of surface shallow-water waves on irrotational flows, we derive a new two-component system. The system is obtained by a variational approach in the Lagrangian formalism. The system has a non-canonical Hamiltonian formulation. We also find its exact solitary-wave solutions.
In-phase waves: Their behavior, internal stratification and fabric
Cheel, R.J. (Brock Univ., St. Catharines, Ontario (Canada). Dept. of Earth Sciences); Udri, A. (Freiburg Univ. (Germany). Dept. of Geologie)
1993-03-01
Experiments were conducted in 0.305m wide, 9m long recirculating sediment flume on a bed of quartz sand (mean diameter of 0.18mm). The experiments included eight runs over the following range of conditions: 0.0605m [<=] depth [<=] 0.068m, 0.51m/s [<=] mean flow velocity [<=] 0.90m/s and 0.63 [<=] Froze Number (F) [<=] 1.1. For F < 0.83 dunes were the dominant bedform and these became longer and lower as F increased. At F = 0.83 the bed was nominally plane but locally and temporarily developed low in-phase waves or dunes. Post-run bed profiles showed symmetrical bedwaves with average length (L) of 0.26m and average height (H) of 0.005m. A complete cycle was characterized by: increased height of bed and water surface waves [r arrow] upstream migration [r arrow] breaking or decay [r arrow] planing of bed surface [r arrow] growth of new in-phase waves (initially migrating downstream and then remaining stationary during continued vertical growth). Each in-phase wave normally behaved independently of other waves although less commonly a breaking wave would trigger breaking of the next downstream wave. For F > 1.0 in-phase waves behaved as described above but a breaking wave would more commonly cause breaking of other waves. With increasing F it became more common for waves to break and rebuild quickly without complete planing of the bed surface. However, complete cycles occurred frequently with the following significant differences: (1) the upstream-migrating antidune developed upstream slopes that approached 25[degree]; (2) planing was accomplished by the rapid migration of a low, asymmetrical bedform through the antidune trough.
Mojahedi, Mohammad
as the Sommerfeld forerunner, remain exactly luminal. The frequency of oscillations and the functional form, their delineation of the concept of wave velocity into such terms as phase, group, energy, and forerunner both. However, by their own admission such a definition is arbi- trary 1 , p. 79 , and as we will see
The Earth's velocity for direct detection experiments
Christopher McCabe
2014-02-26
The Earth's velocity relative to the Sun in galactic coordinates is required in the rate calculation for direct detection experiments. We provide a rigorous derivation of this quantity to first order in the eccentricity of the Earth's orbit. We also discuss the effect of the precession of the equinoxes, which has hitherto received little explicit discussion. Comparing with other expressions in the literature, we confirm that the expression of Lee, Lisanti and Safdi is correct, while the expression of Lewin and Smith, the de facto standard expression, contains an error. For calculations of the absolute event rate, the leading order expression is sufficient while for modulation searches, an expression with the eccentricity is required for accurate predictions of the modulation phase.
Filament velocity scaling laws for warm ions
Manz, P.; Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching ; Carralero, D.; Birkenmeier, G.; Müller, H. W.; Scott, B. D.; Müller, S. H.; Fuchert, G.; Stroth, U.; Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching
2013-10-15
The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.
Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino
Merlino, Robert L.
Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some findings and outstanding problems are also presented. Keywords: dusty plasmas, dust acoustic waves PACS: 52
Wave momentum flux parameter: a descriptor for nearshore waves
US Army Corps of Engineers
Wave momentum flux parameter: a descriptor for nearshore waves Steven A. Hughes* US Army Engineer Available online 7 October 2004 Abstract A new parameter representing the maximum depth-integrated wave momentum flux occurring over a wave length is proposed for characterizing the wave contribution
Structure-borne sound Flexural wave (bending wave)
Berlin,Technische Universität
1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure
REAL-TIME WATER WAVES WITH WAVE PARTICLES
Keyser, John
REAL-TIME WATER WAVES WITH WAVE PARTICLES A Dissertation by Cem Yuksel Submitted to the Office of DOCTOR OF PHILOSOPHY August 2010 Major Subject: Computer Science #12;REAL-TIME WATER WAVES WITH WAVE, Valerie E. Taylor August 2010 Major Subject: Computer Science #12;iii ABSTRACT Real-time Water Waves
GN Wave theory and TEBEM for Wave-Body Interaction
GN Wave theory and TEBEM for Wave-Body Interaction Dr. BinBin Zhao and Professor Wenyang Duan of simulating irregular nonlinear water wave interaction with arbitrary floating bodies, the Green-Naghdi wave corners. The results show that the high-level GN theory can predict wave transformation over uneven seabed
Blood Pressure and Blood Flow Variation during Postural Change from Sitting to Standing: Model
1 Blood Pressure and Blood Flow Variation during Postural Change from Sitting to Standing: Model- tural change from sitting to standing involve complex interactions between the autonomic nervous system cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular
Mats Ehrnström; Erik Wahlén
2013-10-31
We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves on finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave generically is a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.
Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation
Gopalsami, Nachappa (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)
1991-01-01
A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.
Shafer, D.; Toker, G. R.; Gurovich, V. Tz.; Gleizer, S.; Krasik, Ya. E.
2013-05-15
Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50?m
Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves
2012-10-16
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
Relativistic (covariant) kinetic theory of linear plasma waves and instabilities
Lazar, M. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); 'Alexandru Ioan Cuza' University, Faculty of Physics, 6600 Iasi (Romania); Schlickeiser, R. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Centre for Plasma Science and Astrophysics, Ruhr-University, D-44780 Bochum (Germany)
2006-06-19
The fundamental kinetic description is of vital importance in high-energy astrophysics and fusion plasmas where wave phenomena evolve on scales small comparing with binary collision scales. A rigorous relativistic analysis is required even for nonrelativistic plasma temperatures for which the classical theory yielded unphysical results: e.g. collisonless damping of superluminal waves (phase velocity exceeds the speed of light). The existing nonrelativistic approaches are now improved by covariantly correct dispersion theory. As an important application, the Weibel instability has been recently investigated and confirmed as the source of primordial magnetic field in the intergalactic medium.
Quantum metamaterials: Electromagnetic waves in a Josephson qubit line
A. L. Rakhmanov; A. M. Zagoskin; Sergey Savel'ev; Franco Nori
2007-12-19
We consider the propagation of a classical electromagnetic wave through a transmission line, formed by identical superconducting charge qubits inside a superconducting resonator. Since the qubits can be in a coherent superposition of quantum states, we show that such a system demonstrates interesting new effects, such as a ``breathing'' photonic crystal with an oscillating bandgap, and a ``quantum Archimedean screw'' that transports, at an arbitrary controlled velocity, Josephson plasma waves through the transmission line. The key ingredient of these effects is that the optical properties of the Josephson transmission line are controlled by the quantum coherent state of the qubits.
Wave Energy challenges and possibilities
© Wave Energy challenges and possibilities By: Per Resen Steenstrup www.WaveStarEnergy.com Risø-R-1608(EN) 161 #12;© Wave energy is an old story.... The first wave energy patent is 200 years old. Over the last 100 years more than 200 new wave energy devices have been developped and more than 1.000 patents
Variational derivation of two-component Camassa-Holm shallow water system
Delia Ionescu-Kruse
2012-02-22
By a variational approach in the Lagrangian formalism, we derive the nonlinear integrable two-component Camassa-Holm system (1). We show that the two-component Camassa-Holm system (1) with the plus sign arises as an approximation to the Euler equations of hydrodynamics for propagation of irrotational shallow water waves over a flat bed. The Lagrangian used in the variational derivation is not a metric.
Wave Energy Resource Analysis for Use in Wave Energy Conversion
Pastor, J.; Liu, Y.; Dou, Y.
2014-01-01
In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...
Wave-Corpuscle Mechanics for Electric Charges
Babin, Anatoli; Figotin, Alexander
2010-01-01
superposition in nonlinear wave dynamics. Rev. Math. Phys.6. Babin, A. , Figotin, A. : Wave-corpuscle mechanics forV. , Fortunato, D. : Solitary waves in the nonlinear wave
Microstructural Design for Stress Wave Energy Management /
Tehranian, Aref
2013-01-01
Nasser, S. , 2010. Stress-wave energy management throughNemat-Nasser, Stress-wave energy management through materialconstitute pressure wave energy and/or shear wave energy.
Tropical waves in a GCM with zonal symmetry
Yip, K.J.J.; North, G.R. (Texas A M Univ., College Station, TX (United States))
1993-09-01
Tropical wave phenomena have been examined in the last 520 days of two 15-year runs of a low-resolution general circulation model (CCMO). The model boundary conditions were simplified to all-land, perpetual equinox, and no topography. The two runs were for fixed soil moisture at 75% and 0%, the so-called [open quotes]wet[close quotes] and [open quotes]dry[close quotes] models. Both models develop well-defined ITCZs with low-level convergence erratically concentrated along the equator. Highly organized eastward-propagating waves are detectable in both models with different wave speeds depending on the presence of moisture. The wave amplitudes (in, e.g., vertical velocity) are many orders of magnitude stronger in the wet model. The waves have a definite transverse nature as precipitation (low-level convergence) patches tend to move systematically north and south across the equator. In the wet model the waves are distinctly nondispersive and the transit time for passage around the earth is about 50 days, consistent with the Madden-Julian frequency. The authors are also able to see most of the expected linear wave modes in spectral density plots in the frequency-wavenumber plane and compare them for the wet and dry cases. 28 refs., 16 figs.
Branching actin network remodeling governs the force-velocity relationship
Daniel B. Smith; Jian Liu
2011-11-28
Actin networks, acting as an engine pushing against an external load, are fundamentally important to cell motility. A measure of the effectiveness of an engine is the velocity the engine is able to produce at a given force, the force-velocity curve. One type of force-velocity curve, consisting of a concave region where velocity is insensitive to increasing force followed by a decrease in velocity, is indicative of an adaptive response. In contrast, an engine whose velocity rapidly decays as a convex curve in response to increasing force would indicate a lack of adaptive response. Even taken outside of a cellular context, branching actin networks have been observed to exhibit both concave and convex force-velocity curves. The exact mechanism that can explain both force-velocity curves is not yet known. We carried out an agent-based stochastic simulation to explore such a mechanism. Our results suggest that upon loading, branching actin networks are capable of remodeling by increasing the number filaments growing against the load. Our model provides a mechanism that can account for both convex and concave force-velocity relationships observed in branching actin networks. Finally, our model gives a potential explanation to the experimentally observed force history dependence for actin network velocity.
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark
2015-05-19
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodology of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark
2015-05-19
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore »of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
Aslam, Tariq [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dattelbaum, Dana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gustavsen, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scharff, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byers, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-01
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodology of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results, are presented.
Harmonic generation of gravitational wave induced Alfven waves
Mats Forsberg; Gert Brodin
2007-11-26
Here we consider the nonlinear evolution of Alfven waves that have been excited by gravitational waves from merging binary pulsars. We derive a wave equation for strongly nonlinear and dispersive Alfven waves. Due to the weak dispersion of the Alfven waves, significant wave steepening can occur, which in turn implies strong harmonic generation. We find that the harmonic generation is saturated due to dispersive effects, and use this to estimate the resulting spectrum. Finally we discuss the possibility of observing the above process.
Electromagnetic Wave Dynamics in
Kaiser, Robin
Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases Robin Kaiser and Mark D. Havey Mesoscopic Electromagnetic Wave Dynamics in Ultracold Atomic Gases #12;39 E xperimental developments permit in the transport proper- ties of electromagnetic radiation in strongly scattering random media. Even in weakly
Bieber, Michael
CATCHING THE FOURTH WAVE YOU MAY HAVE RIDDEN THEM YOURSELF -- the swells that develop farther out beyond Toffler, the fourth wave -- biologi- cal intelligence and medical technology -- is on the horizon second and fourth nationally in terms of cities that receive the most research funds from the National
Rayleigh WaveInternal Wave Coupling and Internal Wave Generation Above a Model Jet Stream
Sutherland, Bruce
Rayleigh WaveInternal Wave Coupling and Internal Wave Generation Above a Model Jet Stream B. R to the study of unstable jet flows and applications of this work for internal wave generation by dynamic remains poorly understood. Most investigations of sheargeneration of inter nal waves in the atmosphere
Rayleigh Wave-Internal Wave Coupling and Internal Wave Generation Above a Model Jet Stream
Sutherland, Bruce
Rayleigh Wave-Internal Wave Coupling and Internal Wave Generation Above a Model Jet Stream B. R to the study of unstable jet flows and applications of this work for internal wave generation by dynamic remains poorly understood. Most investigations of shear-generation of inter- nal waves in the atmosphere
An unsteady wave driver for narrowbanded waves: modeling nearshore circulation driven by wave groups
Kirby, James T.
An unsteady wave driver for narrowbanded waves: modeling nearshore circulation driven by wave Abstract In this paper, we derive an unsteady refractiondiffraction model for narrowbanded water waves for use in computing coupled wavecurrent motion in the nearshore. The end result is a variable
Out-of-plane ultrasonic velocity measurement
Hall, Maclin S. (Marietta, GA); Brodeur, Pierre H. (Smyrna, GA); Jackson, Theodore G. (Atlanta, GA)
1998-01-01
A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.
Out-of-plane ultrasonic velocity measurement
Hall, M.S.; Brodeur, P.H.; Jackson, T.G.
1998-07-14
A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.
Recirculation in multiple wave conversions
Brizard, A.J.
2008-01-01
model lies with the simple wave energy conservation law itthe recirculation of wave energy introduces interference e?particles, the tertiary-wave energy may be negative and thus
A useful resorting in surface wave method with the Autojuggie
Tian, Gang; Steeples, Don W.; Xia, Jianghai; Spikes, Kyle T.
2003-11-01
@ku.edu. c° 2003 Society of Exploration Geophysicists. All rights reserved. top of a dam with an autojuggie. A new resorting method, pseudorollaway geometry, was introduced for the autojuggie data to meet the required standard CMP roll-along acquisition... format. Two-dimensional S-wave velocity fields with different horizontal sampling intervals were generated for subsequent comparison. GEOLOGICAL SETTING The data were collected along the crest of a dam across the street from the Kansas Geological Survey...
Shear Waves in an inhomogeneous strongly coupled dusty plasma
Janaki, M S; Chakrabarti, N
2013-01-01
The properties of electrostatic transverse shear waves propagating in a strongly coupled dusty plasma with an equilibrium density gradient are examined using the generalized hydrodynamic equation. In the usual kinetic limit, the resulting equation has similarity to zero energy Schrodinger's equation. This has helped in obtaining some exact eigenmode solutions in both cartesian and cylindrical geometries for certain nontrivial density profiles. The corresponding velocity profiles and the discrete eigenfrequencies are obtained for several interesting situations and their physics discussed.
Center for Wave Phenomena Wave Phenomena
Snieder, Roel
research and education program in seismic exploration, monitoring and wave propagation. The main focus into a life of scientific discovery." Kurang Mehta, Ph.D. Class of 2007 Shell Exploration and Production Phil of CWP is on seismic modeling, imaging and inversion methods, as well as on improving the accuracy
Wave breaking over sloping beaches using a coupled boundary integral-level set method
Garzon, M.; Adalsteinsson, D.; Gray, L.; Sethian, J.A.
2003-12-08
We present a numerical method for tracking breaking waves over sloping beaches. We use a fully non-linear potential model for in-compressible, irrotational and inviscid flow, and consider the effects of beach topography on breaking waves. The algorithm uses a Boundary Element Method (BEM) to compute the velocity at the interface, coupled to a Narrow Band Level Set Method to track the evolving air/water interface, and an associated extension equation to update the velocity potential both on and off the interface. The formulation of the algorithm is applicable to two and three dimensional breaking waves; in this paper, we concentrate on two-dimensional results showing wave breaking and rollup, and perform numerical convergence studies and comparison with previous techniques.
Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.; Ofman, Leon
2012-07-01
We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.
Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv JumpTechDsc JumpLabVelocity at Wave
Multifractal statistics of Lagrangian velocity and acceleration in turbulence
L. Biferale; G. Boffetta; A. Celani; B. J. Devenish; A. Lanotte; F. Toschi
2004-03-11
The statistical properties of velocity and acceleration fields along the trajectories of fluid particles transported by a fully developed turbulent flow are investigated by means of high resolution direct numerical simulations. We present results for Lagrangian velocity structure functions, the acceleration probability density function and the acceleration variance conditioned on the instantaneous velocity. These are compared with predictions of the multifractal formalism and its merits and limitations are discussed.
Cryogenic Testing of High-Velocity Spoke Cavities
Hopper, Christopher S.; Delayen, Jean R.; Park, HyeKyoung
2014-12-01
Spoke-loaded cavities are being investigated for the high-velocity regime. The relative compactness at low-frequency makes them attractive for applications requiring, or benefiting from, 4 K operation. Additionally, the large velocity acceptance makes them good candidates for the acceleration of high-velocity protons and ions. Here we present the results of cryogenic testing of a 325 MHz, ?0= 0.82 single-spoke cavity and a 500 MHz, ?0 = 1 double-spoke cavity.
B. V. Ivanov
1997-05-21
A coordinate transformation is found which diagonalizes the axisymmetric pp-waves. Its effect upon concrete solutions, including impulsive and shock waves, is discussed.
Waveinduced velocities inside a model seagrass bed Mitul Luhar,1
Nepf, Heidi M.
the seabed. Reduced resuspension improves water clarity, leading to greater light penetration and increased. By damping nearbed water velocities, seagrasses reduce local resuspension and promote the retention
Velocity Effects on the Deflection of Light by Gravitational Microlenses
David Heyrovsky
2004-10-07
We study the influence of general lens and source velocities on the gravitational deflection of light by single and two-point-mass microlenses with general axis orientation. We demonstrate that in all cases the lens equation preserves its form exactly. However, its parameters -- the Einstein radius and the binary-lens separation -- are influenced by the lens velocity. In Galactic microlensing settings the velocity mainly affects the inferred separation for wide binary-star or star+planet microlenses oriented close to the line of sight. We briefly discuss the case of lenses moving with highly relativistic velocities.
Seismic Velocity And Attenuation Structure Of The Geysers Geothermal...
Seismic Velocity And Attenuation Structure Of The Geysers Geothermal Field, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic...
USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...
USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE GEOLOGIC AND HYDROLOGIC STRUCTURE WITHIN THE COSO GEOTHERMAL FIELD, CALIFORNIA Jump to: navigation, search OpenEI...
Using Micro-Seismicity and Seismic Velocities to Map Subsurface...
Using Micro-Seismicity and Seismic Velocities to Map Subsurface Geologic and Hydrologic Structure Within the Coso Geothermal Field California Jump to: navigation, search OpenEI...
MEASUREMENTS OF JET VELOCITY IN UNSTRATIFIED AND STRATIFIED FLUIDS
in Civil Engineering Georgia Institute of Technology February 2000 #12;MEASUREMENTS OF JET VELOCITYMEASUREMENTS OF JET VELOCITY IN UNSTRATIFIED AND STRATIFIED FLUIDS A Thesis Presented
Wave-wave interactions in solar type III radio bursts
Thejappa, G.; MacDowall, R. J.
2014-02-11
The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.
The dust acoustic waves in three dimensional scalable complex plasma
Zhukhovitskii, D I
2015-01-01
Dust acoustic waves in the bulk of a dust cloud in complex plasma of low pressure gas discharge under microgravity conditions are considered. The dust component of complex plasma is assumed a scalable system that conforms to the ionization equation of state (IEOS) developed in our previous study. We find singular points of this IEOS that determine the behavior of the sound velocity in different regions of the cloud. The fluid approach is utilized to deduce the wave equation that includes the neutral drag term. It is shown that the sound velocity is fully defined by the particle compressibility, which is calculated on the basis of the scalable IEOS. The sound velocities and damping rates calculated for different 3D complex plasmas both in ac and dc discharges demonstrate a good correlation with experimental data that are within the limits of validity of the theory. The theory provides interpretation for the observed independence of the sound velocity on the coordinate and for a weak dependence on the particle ...
Transport induced by Density Waves in a Andreev-Lifshitz Supersolid
Kwang-Hua W. Chu
2006-09-03
Macroscopic derivation of the entrainment in in a Andreev-Lifshitz Supersolid induced by a surface elastic wave propagating along the flexible interface is conducted by considering the nonlinear coupling between the interface and the rarefaction effect. We obtain the critical bounds for zero-volume-flow-rate states corresponding to specific rarefaction measure and wave number which is relevant to the rather small critical velocity of supersolid flows reported by Kim and Chan.
Plate damage identification using wave propagation and impedance methods.
Wait, J. R. (Jeannette R.); Park, G. H. (Gyu Hae); Sohn, H. (Hoon); Farrar, C. R. (Charles R.)
2004-01-01
This paper illustrates an integrated approach for identifying structural damage in an aluminum plate. Piezoelectric (PZT) materials are used to actuatehense the dynamic response of the structure. Two damage identification techniques are integrated in this study, including Lamb wave propagations and impedance methods. In Lamb wave propagations, one PZT launches an elastic wave through the structure, and responses are measured by an array of PZT sensors. The changes in both wave attenuation and reflection are used to detect and locate the damage. The impedance method monitors the variations in structural mechanical impedance, which is coupled with the electrical impedance of the PZT. Both methods operate in high frequency ranges at which there are measurable changes in structural responses even for incipient damage such as small cracks or loose connections. This paper summarizes two methods used for damage identification, experimental procedures, and additional issues that can be used as a guideline for future investigations.
High frequency poroelastic waves in hydrogels
Piero Chiarelli; Antonio Lanatà; Claudio Domenici; Marina Carbone
2012-06-06
In this work a continuum model for high frequency poroelastic longitudinal waves in hydrogels is presented. A viscoelastic force describing the interaction between the polymer network and the bounded water present in such materials is introduced. The model is tested by means of ultrasound wave speed and attenuation measurements in polyvinylalcohol hydrogel samples. The theory and experiments show that ultrasound attenuation decreases linearly with the increase of the water volume fraction "{\\beta}" of the hydrogel. The introduction of the viscoelastic force between the bounded water and the polymer network leads to a bi-phasic theory showing an ultrasonic fast wave attenuation that can vary as a function of the frequency with a non-integer exponent in agreement with the experimental data in literature. When {\\beta} tends to 1 (100% of interstitial water) due to the presence of bounded water in the hydrogel, the ultrasound phase velocity acquires higher value than that of pure water. The ultrasound speed gap at {\\beta} = 1 is confirmed by the experimental results that show that it increases in less cross-linked gel samples that own a higher concentration of bounded water.
Theory of solar luminosity variations
H. C. Spruit
2000-03-03
The theory of stellar structure can be used to identify the most plausible mechanisms for the irradiance variations associated with the solar cycle. Changes in surface emissivity, i.e. the reduced cooling in spots and enhanced emission by small scale magnetic fields, are the most effective mechanisms and account for most of the observed variation. Helioseismology will soon be able to test the consequences of changes in surface emissivity, and distinguish them from other scenarios for irradiance variability.
Measurements and modeling of surface waves in drilled shafts in rock
Kalinski, M.E.; Stokoe, K.H. II; Roesset, J.M.; Cheng, D.S.
1999-07-01
Seismic testing was conducted in the WIPP facility in November 1994 by personnel from the Geotechnical Engineering Center at the University of Texas at Austin. Surface wave measurements were made in horizontal drilled shafts in rock salt to characterize the stiffness of the rock around the shafts. The Spectral-Analysis-of-Surface-Waves (SASW) method was used to determine dispersion curves of surface wave velocity versus wavelength. Dispersion curves were measured for surface waves propagating axially and circumferentially in the shafts. Surface wave velocities determined from axial testing increased slightly with increasing wavelength due to the cylindrical geometry of the shafts. On the other hand, surface wave velocities determined from circumferential testing exhibited a completely different type of geometry-induced dispersion. In both instances, finite-element forward modeling of the experimental dispersion curves revealed the presence of a thin, slightly softer disturbed rock zone (DRZ) around the shafts. This phenomenon has been previously confirmed by crosshole and other seismic measurements and is generally associated with relaxation of the individual salt crystals after confirming stress is relieved by excavation.
Shallow Water Waves and Solitary Waves Willy Hereman
Hereman, Willy A.M.
. Water Wave Experiments and Observations VII. Future Directions VIII. Bibliography Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depthShallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer
Long wave expansions for water waves over random topography
Craig, Walter
Long wave expansions for water waves over random topography Anne de Bouard1 , Walter Craig2 interacting with the random bottom. We show that the resulting influence of the random topography is expressed numbers: 76B15, 35Q53, 76M50, 60F17 Keywords :Water waves, random topography, long wave asymptotics #12
On Generating Gravity Waves with Matter and Electromagnetic Waves
C. Barrabes; P. A. Hogan
2008-04-05
If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.
High Velocity Rain: The Terminal Velocity of Model of Galactic Infall
Robert A. Benjamin; Laura Danly
1996-12-18
A model is proposed for determining the distances to falling interstellar clouds in the galactic halo by measuring the cloud velocity and column density and assuming a model for the vertical density distribution of the Galactic interstellar medium. It is shown that falling clouds with $N(H I) \\sim 0.4 kpc$ one or more of the following occurs: (1) the neutral fraction of the cloud decreases to $\\sim 31 \\pm 14%$, (2) the density drops off faster than characterized by Reynolds, or (3) there is a systematic decrease in drag coefficient with increasing z.
to conserve wave energy. When propagating into the MLT region, the horizontal wind tidal amplitude can reachSeasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal, Colorado (40.6°N, 105.1°W). The observed monthly results are in good agreement with MF radar tidal
Modeling the longitudinal variation in the post-sunset far-ultraviolet OI airglow using the
California at Berkeley, University of
magnetic field lines. The electric fields that drive this uplift are generated by dynamo action of winds that variations in the neutral-wind driven dynamo electric fields from the E-region are responsible for this pattern. Additionally, measurements of the electric fields in the E-region have shown a wave number
Automatic detection of atrial fibrillation using the coefficient of variation and
Glass, Leon
f Automatic detection of atrial fibrillation using the coefficient of variation and density, Quebec, Canada \\ Abstract--The paper describes a method for the automatic detection of atria, as P-waves are difficult to determine automatically, and irregular baseline activity of the ECG
Evolution of Rogue Waves in Interacting Wave Systems
A. Grönlund; B. Eliasson; M. Marklund
2009-04-03
Large amplitude water waves on deep water has long been known in the sea faring community, and the cause of great concern for, e.g., oil platform constructions. The concept of such freak waves is nowadays, thanks to satellite and radar measurements, well established within the scientific community. There are a number of important models and approaches for the theoretical description of such waves. By analyzing the scaling behavior of freak wave formation in a model of two interacting waves, described by two coupled nonlinear Schroedinger equations, we show that there are two different dynamical scaling behaviors above and below a critical angle theta_c of the direction of the interacting waves below theta_c all wave systems evolve and display statistics similar to a wave system of non-interacting waves. The results equally apply to other systems described by the nonlinear Schroedinger equations, and should be of interest when designing optical wave guides.
Eulerian simulations of collisional effects on electrostatic plasma waves
Pezzi, Oreste; Valentini, Francesco; Perrone, Denise; Veltri, Pierluigi [Dipartimento di Fisica and CNISM, Università della Calabria, 87036 Rende (CS) (Italy)] [Dipartimento di Fisica and CNISM, Università della Calabria, 87036 Rende (CS) (Italy)
2013-09-15
The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attack, both from the theoretical and the numerical point of view. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear forms. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator, recently used to describe the collisional dissipation of electron plasma waves in a pure electron plasma column [M. W. Anderson and T. M. O'Neil, Phys. Plasmas 14, 112110 (2007)]. Finally, for the study of collisional plasmas, a recipe to set the simulation parameters in order to prevent the filamentation problem can be provided, by exploiting the property of velocity diffusion operators to smooth out small velocity scales.
Minnesota, University of
LABORATORY VII: WAVE OPTICS Lab VII - 1 In this lab, you will solve problems in ways that take-like behavior. These conditions may be less familiar to you than the conditions for which geometrical optics
Halliday, David Fraser
2009-01-01
This thesis concerns the application of seismic interferometry to surface waves. Seismic interferometry is the process by which the wavefield between two recording locations is estimated, resulting in new recordings at ...
Relativistic quaternionic wave equation
Schwartz, C
2006-01-01
Schrodinger ?time dependent? equation, ? 1 and ? 2 , then?TCP?. The current conservation equation ?3.2? is still truefor this extended wave equation ?8.1?, however, Eq. ?6.7?
Neurocomputing 6566 (2005) 907913 Conduction velocity costs energy
Levy, William B.
2005-01-01
Neurocomputing 6566 (2005) 907913 Conduction velocity costs energy Thomas Sangrey, William B Levy we investigate the metabolic cost of conduction velocity. By manipulating ion channel density metabolic cost. Thus, in addition to the cost of information transmission (Neural Comput. 8(1996) 531 [9
Project Report Evaluation of TDWR Range-Velocity
Cho, John Y. N.
Project Report ATC-310 Evaluation of TDWR Range-Velocity Ambiguity Mitigation Techniques J. Y. N the degree of mitigation offered by existing phase diversity methods to these problems. Using optimized-OOG·OOO2. 16. Abstract Range and velocity ambiguities pose significant data quality challenges
Hydrocarbon saturation determination using acoustic velocities obtained through casing
Moos, Daniel (Houston, TX)
2010-03-09
Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.
Front velocity in models with quadratic autocatalysis Vladimir K. Vanaga)
Epstein, Irving R.
Front velocity in models with quadratic autocatalysis Vladimir K. Vanaga) and Irving R. Epstein reactiondiffusion models based on the Oregonator model of the BelousovZhabotinsky reaction. Each system the dependence of the front velocity on the diffusion coefficients of X and R, the interconversion rates
Nonlinear Wave-Currents interactions in shallow water
Lannes, David
2015-01-01
We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in [?] that the motion of the waves could be described using an extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show that they can be used to get some new insight into wave-current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We als...
ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES
Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)
2013-05-10
Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.
Investigation of an ion-ion hybrid Alfven wave resonator
Vincena, S. T.; Farmer, W. A.; Maggs, J. E.; Morales, G. J. [Physics and Astronomy Department, University of California, Los Angeles, Los Angeles, California 90095 (United States)
2013-01-15
A theoretical and experimental investigation is made of a wave resonator based on the concept of wave reflection along the confinement magnetic field at a spatial location where the wave frequency matches the local value of the ion-ion hybrid frequency. Such a situation can be realized by shear Alfven waves in a magnetized plasma with two ion species because this mode has zero parallel group velocity and experiences a cut-off at the ion-ion hybrid frequency. Since the ion-ion hybrid frequency is proportional to the magnetic field, it is expected that a magnetic well configuration in a two-ion plasma can result in an Alfven wave resonator. Such a concept has been proposed in various space plasma studies and could have relevance to mirror and tokamak fusion devices. This study demonstrates such a resonator in a controlled laboratory experiment using a H{sup +}-He{sup +} mixture. The resonator response is investigated by launching monochromatic waves and impulses from a magnetic loop antenna. The observed frequency spectra are found to agree with predictions of a theoretical model of trapped eigenmodes.
Single crystal metal wedges for surface acoustic wave propagation
Fisher, Edward S. (Wheaton, IL)
1982-01-01
An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore »of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
Single crystal metal wedges for surface acoustic wave propagation
Fisher, E.S.
1980-05-09
An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.
Extremal Trajectories for Bounded Velocity Mobile Robots Devin J. Balkcom and Matthew T. Mason
Balkcom, Devin
with velocity and angular velocity controls. The systems are differentiated only by the bounds on the con- trols, with velocity and angular velocity controls. For these sys- tems, the instantaneous rotation center. For the steered car, the bounds on velocity and angular velocity are derived from con- straints on steering angle
Martin, S.J.; Ricco, A.J.
1993-08-10
A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.
Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection
Liot, O; Zonta, F; Chibbaro, S; Coudarchet, T; Gasteuil, Y; Pinton, J -F; Salort, J; Chillà, F
2015-01-01
We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and t...
Tracking moving radar targets with parallel, velocity-tuned filters
Bickel, Douglas L.; Harmony, David W.; Bielek, Timothy P.; Hollowell, Jeff A.; Murray, Margaret S.; Martinez, Ana
2013-04-30
Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.
No evidence for bulk velocity from type Ia supernovae
Huterer, Dragan; Schmidt, Fabian
2015-01-01
We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard LCDM model. We then consider the dipolar component of the velocity correlations - the frequently studied "bulk velocity" - and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in LCDM and effectively captured by the covariance. We further clarify ...
An Optical Velocity for the Phoenix Dwarf Galaxy
Mike Irwin; Eline Tolstoy
2002-07-03
We present the results of a VLT observing program carried out in service mode using FORS1 on ANTU in Long Slit mode to determine the optical velocities of nearby low surface brightness galaxies. As part of our program of service observations we obtained long-slit spectra of several members of the Phoenix dwarf galaxy from which we derive an optical helio-centric radial velocity of -13 +/- 9km/s. This agrees very well with the velocity of the most promising of the HI clouds seen around Phoenix, which has a helio-centric velocity of -23 km/s, but is significantly different to the recently published optical heliocentric velocity of Phoenix of -52 +/- 6 km/s of Gallart et al. (2001).
Wave Propagation in Multiferroic Materials
Keller, Scott Macklin
2013-01-01
Waves in Magnetoelectric Materials . . . Need forApplication of Multiferroic Materials to Receive AntennaMaterials . . . . . . . . . . . . . . . . . . . . . . . . .
Wave breaking onset of two-dimensional deep-water wave groups in the presence and absence of wind
Saket, Arvin; Banner, Michael L; Barthelemy, Xavier; Allis, Michael J
2015-01-01
The criterion for the initiation of breaking demonstrated numerically by Barthelemy et al. (2015) has been investigated in the laboratory for unidirectional wave groups in deep-water and extended to include conditions of moderate wind forcing. Thermal Image Velocimetry was used to compare measurements of the crest surface water particle velocity (Us) with the wave crest velocity (C), as determined by an array of closely-spaced wave gauges. The energy flux ratio Bx = Us/C that distinguishes maximum recurrence from marginal breaking was found to be 0.840 $\\pm$ 0.016 in good agreement with the numerically determined value of 0.855. Further, the threshold was found to be robust for different classes of wave groups of distinct characteristic steepness at the breaking threshold. Increasing wind forcing from zero to U{\\lambda}/4/C0=1.42 increased this threshold by 2%. Increasing the spectral bandwidth (decreasing the Benjamin-Feir index from 0.39 to 0.31) systematically reduced the threshold by 1.5%.
López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, J. Alejandro
2014-09-15
We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ??/?k?>?0) and an anomalous zone (where ??/?k?waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.
Barthelemy, X; Peirson, W L; Fedele, F; Allis, M; Dias, F
2015-01-01
We revisit the classical, but as yet unresolved problem of predicting the breaking onset of 2D and 3D irrotational gravity water waves. This study focuses on domains with flat bottom topography and conditions ranging from deep to intermediate depth (depth to wavelength ratio between 1 and 0.2). Using a fully-nonlinear boundary element model, our initial calculations investigated geometric, kinematic and energetic differences between maximally recurrent and marginally breaking waves in focusing wave groups. Maximallyrecurrent waves are clearly separated from marginally-breaking waves by their energy fluxes localized near the crest region. Specifically, tracking the local ratio of energy flux velocity to crest speed at the crest of the tallest wave in the evolving group provides a robust breaking onset threshold parameter. Warning of imminent breaking onset was found to depend on the strength of breaking, but was detectable only up to half a carrier wave period prior to a breaking event.
Projected Constraints on Lorentz-Violating Gravity with Gravitational Waves
Devin Hansen; Nicolas Yunes; Kent Yagi
2014-12-12
Gravitational waves are excellent tools to probe the foundations of General Relativity in the strongly dynamical and non-linear regime. One such foundation is Lorentz symmetry, which can be broken in the gravitational sector by the existence of a preferred time direction, and thus, a preferred frame at each spacetime point. This leads to a modification in the orbital decay rate of binary systems, and also in the generation and chirping of their associated gravitational waves. We here study whether waves emitted in the late, quasi-circular inspiral of non-spinning, neutron star binaries can place competitive constraints on two proxies of gravitational Lorentz-violation: Einstein-\\AE{}ther theory and khronometric gravity. We model the waves in the small-coupling (or decoupling) limit and in the post-Newtonian approximation, by perturbatively solving the field equations in small deformations from General Relativity and in the small-velocity/weak-gravity approximation. We assume a gravitational wave consistent with General Relativity has been detected with second- and third-generation, ground-based detectors, and with the proposed space-based mission, DECIGO, with and without coincident electromagnetic counterparts. Without a counterpart, a detection consistent with General Relativity of neutron star binaries can only place competitive constraints on gravitational Lorentz violation when using future, third-generation or space-based instruments. On the other hand, a single counterpart is enough to place constraints that are 10 orders of magnitude more stringent than current binary pulsar bounds, even when using second-generation detectors. This is because Lorentz violation forces the group velocity of gravitational waves to be different from that of light, and this difference can be very accurately constrained with coincident observations.
Nagurney, Anna
Variational InequalitiesInequalities andand ApplicationsApplications toto aa FinancialFinancial ModelModel Patrizia Daniele VariationalD Variational InequalitiesInequalities EE QuasiQuasi--VariationalVariational InequalitiesInequalitiesVariational InequalitiesInequalities"",, Comm.Comm. PurePure ApplAppl.. MathMath..,, 2222, 493, 493--519.519. 2.2. Brezis
Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion
Wabnitz, Stefan
2013-01-01
In analogy with ocean waves running up towards the beach, shoaling of prechirped optical pulses may occur in the normal group-velocity dispersion regime of optical fibers. We present exact Riemann wave solutions of the optical shallow water equations and show that they agree remarkably well with the numerical solutions of the nonlinear Schr\\"odinger equation, at least up to the point where a vertical pulse front develops. We also reveal that extreme wave events or optical tsunamis may be generated in dispersion tapered fibers in the presence of higher-order dispersion.
Quazi, Mohammad Fazlur Rahim
1955-01-01
, no shift operation is needed.] do 1,..., 1lh=? do 1,2,...,4 l ibox = .1 .1 .ibox st potential ibox st potential ibox potentil?> = ?> + .2 .2 .ibox nd potential ibox nd potential ibox potentil?> = ?> + .3 .3 .ibox rd potential ibox... rd potential ibox potentil?> = ?> + .4 .4 .ibox th potential ibox th potential ibox potentil?> = ?> + enddo enddo Step6 Comment [For each box, distribute the potential of the box to the contained tiles.] do 1,...,ibox M...
Do Core Sample Measurements Record Group or Phase Velocity?
Joe Dellinger, Univ. of Hawaii, Lev Vernik, Stanford Univ.
2001-08-12
tendency for the wave energy to “slip sideways” and the flat part of the wavefront impacts the .... Science Technology publication. REFERENCES. Green, R. E. ...
Monitoring rapid temporal change in a volcano with coda wave interferometry
Snieder, Roel
the case for the coda. Approximately midway through this period, however, the seismic coda decorrelates not be discernible using direct or singlescattered seismic wave methods. Citation: Gre^t, A., R. Snieder, R. C to study nonlinear temperature dependence of velocity in granite [Snieder et al., 2002], where
A Lagrangian finite element approach for the simulation of water-waves induced by landslides
Frangi, Attilio
due to landslides, of interest to ocean, coastal as well as to dam engineers. Validation is car- ried breaks [7,8]. In particular specific attention has always been devoted by ocean, coastal and dam rockslide penetrated into the Vajont reservoir at velocities of up to 30 m/s. Wave run-up reached a highest
Amoudache, Samira; Pennec, Yan Djafari Rouhani, Bahram; Khater, Antoine; Lucklum, Ralf; Tigrine, Rachid
2014-04-07
We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.
Gravitational-wave Detection With Matter-wave Interferometers Based On Standing Light Waves
Dongfeng Gao; Peng Ju; Baocheng Zhang; Mingsheng Zhan
2011-03-25
We study the possibility of detecting gravitational-waves with matter-wave interferometers, where atom beams are split, deflected and recombined totally by standing light waves. Our calculation shows that the phase shift is dominated by terms proportional to the time derivative of the gravitational wave amplitude. Taking into account future improvements on current technologies, it is promising to build a matter-wave interferometer detector with desired sensitivity.
Excitation of kinetic Alfvén waves by fast electron beams
Chen, L.; Wu, D. J.; Zhao, G. Q. [Purple Mountain Observatory, CAS, Nanjing (China); Tang, J. F. [Xinjiang Astronomical Observatory, CAS, Urumqi 830011 (China); Huang, J., E-mail: clvslc214@pmo.ac.cn, E-mail: djwu@pmo.ac.cn, E-mail: gqzhao@pmo.ac.cn, E-mail: jftang@xao.ac.cn, E-mail: huangj@bao.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China)
2014-09-20
Energetic electron beams, which are ubiquitous in a large variety of active phenomena in space and astrophysical plasmas, are one of the most important sources that drive plasma instabilities. In this paper, taking account of the return-current effect of fast electron beams, kinetic Alfvén wave (KAW) instability driven by a fast electron beam is investigated in a finite-? plasma of Q < ? < 1 (where ? is the kinetic-to-magnetic pressure ratio and Q ? m{sub e} /m{sub i} is the mass ratio of electrons to ions). The results show that the kinetic resonant interaction of beam electrons is the driving source for KAW instability, unlike the case driven by a fast ion beam, where both the kinetic resonant interaction of beam ions and the return-current are the driving source for the KAW instability. KAW instability has a nonzero growth rate in the range of the perpendicular wave number, 0
Measuring Oscillatory Velocity Fields Due to Swimming Algae
Guasto, Jeffrey S; Gollub, J P
2010-01-01
In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.
Two-stream instability with time-dependent drift velocity
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Qin, Hong; Davidson, Ronald C.
2014-06-01
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. Stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Two-stream instability with time-dependent drift velocity
Qin, Hong [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Davidson, Ronald C. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)
2014-06-15
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. Stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Superconducting spoke cavities for high-velocity applications
Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB
2013-10-01
To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.
Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves
IceCube Collaboration; Klein, Spencer
2009-06-04
We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.
Density waves in the Calogero model - revisited
Bardek, V. Feinberg, J. Meljanac, S.
2010-03-15
The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.
Yerganian, Simon Scott (Lee's Summit, MO)
2001-07-17
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)
1991-01-01
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
He, Jiansen; Marsch, Eckart; Chen, Christopher H K; Wang, Linghua; Pei, Zhongtian; Zhang, Lei; Salem, Chadi S; Bale, Stuart D
2015-01-01
Magnetohydronamic turbulence is believed to play a crucial role in heating the laboratorial, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. Different from the traditional paradigm with counter-propagating Alfv\\'en waves, anti-sunward Alfv\\'en waves (AWs) are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond respectively to the dominant and sub-dominant populations of the imbalanced Els\\"asser variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orth...
SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS
Yang, Liheng; Zhang, Jun; Li, Ting; Liu, Wei; Shen, Yuandeng E-mail: zjun@bao.ac.cn
2013-09-20
We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wave transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.
Report of IAU Commission 30 on Radial Velocities (2009-2012)
Torres, G; Lovis, C; Marcy, G W; Mathieu, R D; Mazeh, T; Meibom, S; Minniti, D; Moutou, C; Pepe, F; Pourbaix, D; Turon, C; Udry, S; Zwitter, T
2011-01-01
Brief summaries are given of the following subjects of interest to IAU Commission 30: Large-scale radial-velocity surveys; The role of radial-velocity measurements in studies of stellar angular momentum evolution and stellar age; Radial velocities in open clusters; Toward higher radial-velocity precision; High-precision radial velocities applied to studies of binary stars; Doppler boosting effect; Working groups (Stellar radial velocity bibliography; Radial velocity standards; Catalogue of orbital elements of spectroscopic binaries [SB9]).
Adaptive multiconfigurational wave functions
Evangelista, Francesco A.
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Xue, Ming
innovative observing systems for high-resolution sensing of the lower atmosphere. The development of low-cost-power beamwidth, is designed to be 2° to keep the hardware cost down. For the purpose of detecting hazard weather
Superluminal Velocity of Photons in a Gravitational Background
I. B. Khriplovich
1994-11-20
The influence of radiative corrections on the photon propagation in a gravitational background is investigated without the low-frequency approximation $\\omega \\ll m$. The conclusion is made in this way that the velocity of light can exceed unity.
Tsallis Entropy Based Velocity Distribution in Open Channel Flows
Luo, Hao
2010-07-14
The Tsallis entropy is applied to derive both 1-D and 2-D velocity distributions in an open channel cross section. These distributions contain a parameter m through which the Tsallis entropy becomes a generalization of the Shannon entropy. Different...
Experimental High Velocity Acid Jetting in Limestone Carbonates
Holland, Christopher
2014-04-30
Acid jetting is a well stimulation technique that is used in carbonate reservoirs. It typically involves injecting acid down hole at high flow rates through small orifices which cause high velocities of acid to strike the borehole wall...
CHANGES OF ACTION POTENTIAL SHAPE AND VELOCITY FOR
Levine, Alex J.
at constant velocity. Both assumptions offer the great computational advantage of permitting the partial are illustrated in Fig. 1; included are sealed termination, step decrease or increase of diameter, taper or flare
Design of regulated velocity flow assurance device for petroleum industry
Yardi, Chaitanya Narendra
2005-02-17
ABSTRACT Design of Regulated Velocity Flow Assurance Device for the Petroleum Industry. (December 2004) Chaitanya Yardi, B.E., Gujarat University Chair of Advisory Committee: Dr. Reza Langari The petroleum industry faces problems in transportation of crude...
Wave runup on cylinders subject to deep water random waves
Indrebo, Ann Kristin
2001-01-01
runup. Laboratory measurements of irregular waves interfering with vertical platform cylinders were used to obtain the Weibull coefficients necessary for the analytical model. Six data sets with different configurations where the wave elevation...
Real-time Water Waves with Wave Particles
Yuksel, Cem
2010-10-12
This dissertation describes the wave particles technique for simulating water surface waves and two way fluid-object interactions for real-time applications, such as video games. Water exists in various different forms in our environment...
Heat Waves, Global Warming, and Mitigation
Carlson, Ann E.
2008-01-01
Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177
mm-Wave Phase Shifters and Switches
Adabi Firouzjaei, Ehsan
2010-01-01
combiners . . . . . . . . . . . 5.3 mm-Wave implementationfailed to predict current mm-wave design trend [1] . . . . .solutions . . . . . . . . mm-wave imaging for medical and