National Library of Energy BETA

Sample records for wave velocity variations

  1. P wave velocity variations in the Coso region, California, derived...

    Open Energy Info (EERE)

    defined with layers of blocks. Slowness variations in the surface layer reflect local geology, including slow velocities for the sedimentary basins of Indian Wells and Rose...

  2. Estimating propagation velocity through a surface acoustic wave sensor

    DOE Patents [OSTI]

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  3. Elastic wave velocity measurement combined with synchrotron X-ray

    Office of Scientific and Technical Information (OSTI)

    measurements at high pressure and high temperature conditions: Towards prediction and reproduction of MoHole rocks (Journal Article) | SciTech Connect Elastic wave velocity measurement combined with synchrotron X-ray measurements at high pressure and high temperature conditions: Towards prediction and reproduction of MoHole rocks Citation Details In-Document Search Title: Elastic wave velocity measurement combined with synchrotron X-ray measurements at high pressure and high temperature

  4. Anisotropic parameter estimation using velocity variation with offset analysis

    SciTech Connect (OSTI)

    Herawati, I.; Saladin, M.; Pranowo, W.; Winardhie, S.; Priyono, A.

    2013-09-09

    Seismic anisotropy is defined as velocity dependent upon angle or offset. Knowledge about anisotropy effect on seismic data is important in amplitude analysis, stacking process and time to depth conversion. Due to this anisotropic effect, reflector can not be flattened using single velocity based on hyperbolic moveout equation. Therefore, after normal moveout correction, there will still be residual moveout that relates to velocity information. This research aims to obtain anisotropic parameters, ? and ?, using two proposed methods. The first method is called velocity variation with offset (VVO) which is based on simplification of weak anisotropy equation. In VVO method, velocity at each offset is calculated and plotted to obtain vertical velocity and parameter ?. The second method is inversion method using linear approach where vertical velocity, ?, and ? is estimated simultaneously. Both methods are tested on synthetic models using ray-tracing forward modelling. Results show that ? value can be estimated appropriately using both methods. Meanwhile, inversion based method give better estimation for obtaining ? value. This study shows that estimation on anisotropic parameters rely on the accuracy of normal moveout velocity, residual moveout and offset to angle transformation.

  5. Temporal Velocity Variations beneath the Coso Geothermal Field...

    Open Energy Info (EERE)

    Double Difference Tomography of Compressional and Shear Wave Arrival Times Abstract Microseismic imaging can be an important tool for characterizing geothermal reservoirs....

  6. Stochastic simulation for the propagation of high-frequency acoustic waves through a random velocity field

    SciTech Connect (OSTI)

    Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.

    2012-05-17

    In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.

  7. 3-D moveout inversion in azimuthally anisotropic media with lateral velocity variation: Theory and a case study

    SciTech Connect (OSTI)

    Grechka, V.; Tsvankin, I.

    1999-08-01

    Reflection moveout recorded over an azimuthally anisotropic medium (e.g., caused by vertical or dipping fractures) varies with the azimuth of the source-receiver line. Normal-moveout (NMO) velocity, responsible for the reflection traveltimes on conventional-length spreads, forms an elliptical curve in the horizontal plane. While this result remains valid in the presence of arbitrary anisotropy and heterogeneity, the inversion of the NMO ellipse for the medium parameters has been discussed so far only for horizontally homogeneous models above a horizontal or dipping reflector. Here, the authors develop an analytic moveout correction for weak lateral velocity variation in horizontally layered azimuthally anisotropic media. The correction term is proportional to the curvature of the zero-offset travel-time surface at the common midpoint and, therefore, can be estimated from surface seismic data. After the influence of lateral velocity variation on the effective NMO ellipses has been stripped, the generalized Dix equation can be used to compute the interval ellipses and evaluate the magnitude of azimuthal anisotropy (measured by P-wave NMO velocity) within the layer of interest. This methodology was applied to a 3-D wide-azimuth data set acquired over a fractured reservoir in the Powder River Basin, Wyoming. The processing sequence included 3-D semblance analysis (based on the elliptical NMO equation) for a grid of common-midpoint supergathers, spatial smoothing of the effective NMO ellipses and zero-offset traveltimes, correction for lateral velocity variation, and generalized Dix differentiation. The estimates of depth-varying fracture trends in the survey area, based on the interval P-wave NMO ellipses, are in good agreement with the results of outcrop and borehole measurements and the rotational analysis of four component S-wave data.

  8. Minimal position-velocity uncertainty wave packets in relativistic and non-relativistic quantum mechanics

    SciTech Connect (OSTI)

    Al-Hashimi, M.H. Wiese, U.-J.

    2009-12-15

    We consider wave packets of free particles with a general energy-momentum dispersion relation E(p). The spreading of the wave packet is determined by the velocity v={partial_derivative}{sub p}E. The position-velocity uncertainty relation {delta}x{delta}v{>=}1/2 |<{partial_derivative}{sub p}{sup 2}E>| is saturated by minimal uncertainty wave packets {phi}(p)=Aexp(-{alpha}E(p)+{beta}p). In addition to the standard minimal Gaussian wave packets corresponding to the non-relativistic dispersion relation E(p)=p{sup 2}/2m, analytic calculations are presented for the spreading of wave packets with minimal position-velocity uncertainty product for the lattice dispersion relation E(p)=-cos(pa)/ma{sup 2} as well as for the relativistic dispersion relation E(p)={radical}(p{sup 2}+m{sup 2}). The boost properties of moving relativistic wave packets as well as the propagation of wave packets in an expanding Universe are also discussed.

  9. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    SciTech Connect (OSTI)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations in the western half of the study area (Eurasia and the Middle East) and (ii) identify well located seismic events with event-station paths isolated to individual tectonic provinces within the study area and collect broadband waveforms and source parameters for the selected events. The 1D models obtained from the joint inversion will then be combined with published geologic terrain maps to produce regionalized models for distinctive tectonic areas within the study area, and the models will be validated through full waveform modeling of well-located seismic events recorded at local and regional distances.

  10. Structure of the Crust beneath Cameroon, West Africa, from the Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions

    SciTech Connect (OSTI)

    Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E

    2010-02-18

    The Cameroon Volcanic Line (CVL) is a major geologic feature that cuts across Cameroon from the south west to the north east. It is a unique volcanic lineament which has both an oceanic and a continental sector and consists of a chain of Tertiary to Recent, generally alkaline volcanoes stretching from the Atlantic island of Pagalu to the interior of the African continent. The oceanic sector includes the islands of Bioko (formerly Fernando Po) and Sao Tome and Principe while the continental sector includes the Etinde, Cameroon, Manengouba, Bamboutos, Oku and Mandara mountains, as well as the Adamawa and Biu Plateaus. In addition to the CVL, three other major tectonic features characterize the region: the Benue Trough located northwest of the CVL, the Central African Shear Zone (CASZ), trending N70 degrees E, roughly parallel to the CVL, and the Congo Craton in southern Cameroon. The origin of the CVL is still the subject of considerable debate, with both plume and non-plume models invoked by many authors (e.g., Deruelle et al., 2007; Ngako et al, 2006; Ritsema and Allen, 2003; Burke, 2001; Ebinger and Sleep, 1998; Lee et al, 1994; Dorbath et al., 1986; Fairhead and Binks, 1991; King and Ritsema, 2000; Reusch et al., 2010). Crustal structure beneath Cameroon has been investigated previously using active (Stuart et al, 1985) and passive (Dorbath et al., 1986; Tabod, 1991; Tabod et al, 1992; Plomerova et al, 1993) source seismic data, revealing a crust about 33 km thick at the south-western end of the continental portion of the CVL (Tabod, 1991) and the Adamawa Plateau, and thinner crust (23 km thick) beneath the Garoua Rift in the north (Stuart et al, 1985) (Figure 1). Estimates of crustal thickness obtained using gravity data show similar variations between the Garoua rift, Adamawa Plateau, and southern part of the CVL (Poudjom et al., 1995; Nnange et al., 2000). In this study, we investigate further crustal structure beneath the CVL and the adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.

  11. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOE Patents [OSTI]

    Benjamin, R.F.

    1983-10-18

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  12. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOE Patents [OSTI]

    Benjamin, Robert F. (315 Rover Blvd., Los Alamos, NM 87544)

    1987-01-01

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  13. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOE Patents [OSTI]

    Benjamin, R.F.

    1987-03-10

    An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.

  14. Ion Bernstein waves in a plasma with a kappa velocity distribution

    SciTech Connect (OSTI)

    Nsengiyumva, F.; Mace, R. L.; Hellberg, M. A.

    2013-10-15

    Using a Vlasov-Poisson model, a numerical investigation of the dispersion relation for ion Bernstein waves in a kappa-distributed plasma has been carried out. The dispersion relation is found to depend significantly on the spectral index of the ions, κ{sub i}, the parameter whose smallness is a measure of the departure from thermal equilibrium of the distribution function. Over all cyclotron harmonics, the typical Bernstein wave curves are shifted to higher wavenumbers (k) if κ{sub i} is reduced. For waves whose frequency lies above the lower hybrid frequency, ω{sub LH}, an increasing excess of superthermal particles (decreasing κ{sub i}) reduces the frequency, ω{sub peak}, of the characteristic peak at which the group velocity vanishes, while the associated k{sub peak} is increased. As the ratio of ion plasma to cyclotron frequency (ω{sub pi}/ω{sub ci}) is increased, the fall-off of ω at large k is smaller for lower κ{sub i} and curves are shifted towards larger wavenumbers. In the lower hybrid frequency band and harmonic bands above it, the frequency in a low-κ{sub i} plasma spans only a part of the intraharmonic space, unlike the Maxwellian case, thus exhibiting considerably less coupling between adjacent bands for low κ{sub i}. It is suggested that the presence of the ensuing stopbands may be a useful diagnostic for the velocity distribution characteristics. The model is applied to the Earth's plasma sheet boundary layer in which waves propagating perpendicularly to the ambient magnetic field at frequencies between harmonics of the ion cyclotron frequency are frequently observed.

  15. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  16. MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    PETERSON SW

    2010-10-08

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1, 2009 for 7 wells in the 200-PO-1 OU and Gable Gap regions (see Figure 3 and Figure 4); and March 22, 2010 and April 19, 2010 for 17 wells in the 200 East, The initial scope of survey work was planned for Wells 299-EI8-1, 699-2-E14, 699-12-18, 699-16-51, 699-42-30, 699-53-55B, 699-54-18D, and 699-84-34B. Well 299-E18-1 could not be entered due to bent casing (prevented removal of the pump), wells 699-12-18 and 699-42-30 could not be safely reached by the logging truck, Well 699-16-51 was decommissioned prior to survey start, Well 699-53-55B did not have its pump pulled, and Wells 699-2-EI4, 699-54-18D, and 699-84-34B are artesian and capped with an igloo structure. Table 1 provides a list of wells that were surveyed and Figure 1 through Figure 5 show the well locations relative to the Hanford Site.

  17. Seismic Velocity Structure and Depth-Dependence of Anisotropy in the Red Sea and Arabian Shield from Surface Wave Analysis

    SciTech Connect (OSTI)

    Hansen, S; Gaherty, J; Schwartz, S; Rodgers, A; Al-Amri, A

    2007-07-25

    We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.

  18. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect (OSTI)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Gttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  19. Shear Wave Velocity Structure of Southern African Crust: Evidence for Compositional Heterogeneity within Archaean and Proterozoic Terrains

    SciTech Connect (OSTI)

    Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E

    2008-11-11

    Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.

  20. Dual variational principles for nonlinear traveling waves in multifluid plasmas

    SciTech Connect (OSTI)

    Webb, G. M.; McKenzie, J. F.; Mace, R. L.; Ko, C. M.; Zank, G. P.

    2007-08-15

    A Hamiltonian description of nonlinear, obliquely propagating traveling waves in a charge neutral, electron-proton, multifluid plasma is developed. The governing equations are written as a dual spatial Hamiltonian system. In the first formulation, the Hamiltonian is identified with the longitudinal, x-momentum flux integral P{sub x}=const, in which the energy integral {epsilon}={epsilon}{sub 0} acts as a constraint, and the Hamiltonian evolution operator is d/dx, where x is the position coordinate in the wave frame. In the second Hamiltonian formulation, the Hamiltonian is proportional to the conserved energy integral {epsilon}, in which the momentum integral P{sub x}=const acts as a constraint, and the Hamiltonian evolution operator d/d{tau}=u{sub x}d/dx is the Lagrangian time derivative where u{sub x} is the x component of the electron and proton fluids. The analysis is facilitated by using the de Hoffman-Teller frame of magnetohydrodynamic shock theory to simplify the transverse electron and proton momentum equations. The system is exactly integrable in cases in which the total transverse momentum fluxes of the system are zero in the de Hoffman-Teller frame. The implications of this constraint for the Alfven Mach number of the traveling wave are discussed. The physical conditions for the formation of whistler oscillitons based on the whistler dispersion equation are discussed.

  1. Coherent molecular transistor: Control through variation of the gate wave function

    SciTech Connect (OSTI)

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  2. Determination of elastic properties of a MnO{sub 2} coating by surface acoustic wave velocity dispersion analysis

    SciTech Connect (OSTI)

    Sermeus, J.; Glorieux, C.; Sinha, R.; Vereecken, P. M.; Vanstreels, K.

    2014-07-14

    MnO{sub 2} is a material of interest in the development of high energy-density batteries, specifically as a coating material for internal 3D structures, thus ensuring rapid energy deployment. Its electrochemical properties have been mapped extensively, but there are, to the best of the authors' knowledge, no records of the elastic properties of thin film MnO{sub 2}. Impulsive stimulated thermal scattering (ISTS), also known as the heterodyne diffraction or transient grating technique, was used to determine the Young's modulus (E) and porosity (?) of a 500?nm thick MnO{sub 2} coating on a Si(001) substrate. ISTS is an all optical method that is able to excite and detect surface acoustic waves (SAWs) on opaque samples. From the measured SAW velocity dispersion, the Young's modulus and porosity were determined to be E?=?25??1?GPa and ?=421%, respectively. These values were confirmed by independent techniques and determined by a most-squares analysis of the carefully fitted SAW velocity dispersion. This study demonstrates the ability of the presented technique to determine the elastic parameters of a thin, porous film on an anisotropic substrate.

  3. Azimuthally Anisotropic 3D Velocity Continuation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  4. Dielectric waveguide with transverse index variation that support a zero group velocity mode at a non-zero longitudinal wavevector

    DOE Patents [OSTI]

    Ibanescu, Mihai; Joannopoious, John D.; Fink, Yoel; Johnson, Steven G.; Fan, Shanhui

    2005-06-21

    Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.

  5. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winske, D.; Daughton, W.

    2015-02-02

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, themore » waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.« less

  6. Stochastic acceleration of electrons by fast magnetosonic waves in solar flares: the effects of anisotropy in velocity and wavenumber space

    SciTech Connect (OSTI)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.

    2014-11-20

    We develop a model for stochastic acceleration of electrons in solar flares. As in several previous models, the electrons are accelerated by turbulent fast magnetosonic waves ({sup f}ast waves{sup )} via transit-time-damping (TTD) interactions. (In TTD interactions, fast waves act like moving magnetic mirrors that push the electrons parallel or anti-parallel to the magnetic field). We also include the effects of Coulomb collisions and the waves' parallel electric fields. Unlike previous models, our model is two-dimensional in both momentum space and wavenumber space and takes into account the anisotropy of the wave power spectrum F{sub k} and electron distribution function f {sub e}. We use weak turbulence theory and quasilinear theory to obtain a set of equations that describes the coupled evolution of F{sub k} and f {sub e}. We solve these equations numerically and find that the electron distribution function develops a power-law-like non-thermal tail within a restricted range of energies E in (E {sub nt}, E {sub max}). We obtain approximate analytic expressions for E {sub nt} and E {sub max}, which describe how these minimum and maximum energies depend upon parameters such as the electron number density and the rate at which fast-wave energy is injected into the acceleration region at large scales. We contrast our results with previous studies that assume that F{sub k} and f {sub e} are isotropic, and we compare one of our numerical calculations with the time-dependent hard-X-ray spectrum observed during the 1980 June 27 flare. In our numerical calculations, the electron energy spectra are softer (steeper) than in models with isotropic F{sub k} and f {sub e} and closer to the values inferred from observations of solar flares.

  7. Modulational instability of ion-acoustic waves in a plasma with a q-nonextensive electron velocity distribution

    SciTech Connect (OSTI)

    Bains, A. S.; Gill, T. S.; Tribeche, Mouloud

    2011-02-15

    The modulational instability (MI) of ion-acoustic waves (IAWs) in a two-component plasma is investigated in the context of the nonextensive statistics proposed by Tsallis [J. Stat. Phys. 52, 479 (1988)]. Using the reductive perturbation method, the nonlinear Schroedinger equation (NLSE) which governs the MI of the IAWs is obtained. The presence of the nonextensive electron distribution is shown to influence the MI of the waves. Three different ranges of the nonextensive q-parameter are considered and in each case the MI sets in under different conditions. Furthermore, the effects of the q-parameter on the growth rate of MI are discussed in detail.

  8. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    SciTech Connect (OSTI)

    Hall, M.S.; Jackson, T.G.; Knerr, C.

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  9. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    SciTech Connect (OSTI)

    Hall, Maclin S.; Jackson, Theodore G.; Knerr, Christopher

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  10. Variation of Langmuir wave polarization with electron beam speed in type III radio bursts

    SciTech Connect (OSTI)

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2013-06-13

    Observations by the twin STEREO spacecraft of in-situ electric field waveforms and radio signatures associated with type III radio bursts have demonstrated that the polarization of electron beam-driven waves near the local plasma frequency depends strongly on the speed of the driving electron beam. We expand upon a previous study by including all radio bursts with in-situ waveforms observed by STEREO in 2011. The expanded data set contains five times more radio bursts (35 up from 7) and three times as many Langmuir waves (663 up from 168). While this expanded study supports the results of the original study, that faster (slower) beam electrons drive waves with strong (weak) electric fields perpendicular to the local magnetic field, the larger data set emphasizes that the observation of strong perpendicular electric fields at high electron beam speeds is probabilistic rather than definite. This property supports the interpretation of wave polarization dependence on beam speed as Langmuir/z-mode waves shifted to small wave number through interaction with turbulent solar wind density fluctuations.

  11. Final Data Report: P- and S-Wave Velocity Logging Borings C4993, C4996, and C4997 Part B: Overall Logs

    SciTech Connect (OSTI)

    Diehl, John; Steller, Robert

    2007-03-20

    Insitu borehole P- and S-wave velocity measurements were collected in three borings located within the Waste Treatment Plant (WTP) boundaries at the Hanford Site, southeastern Washington. Geophysical data acquisition was performed between August and October of 2006 by Rob Steller, Charles Carter, Antony Martin and John Diehl of GEOVision. Data analysis was performed by Rob Steller and John Diehl, and reviewed by Antony Martin of GEOVision, and report preparation was performed by John Diehl and reviewed by Rob Steller. The work was performed under subcontract with Battelle, Pacific Northwest Division with Marty Gardner as Battelles Technical Representative and Alan Rohay serving as the Technical Administrator for Pacific Northwest National Laboratory (PNNL). This report describes the field measurements, data analysis, and results of this work.

  12. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOE Patents [OSTI]

    Wood, C.B.

    1992-12-15

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

  13. The various manifestations of collisionless dissipation in wave propagation

    SciTech Connect (OSTI)

    Benisti, Didier; Morice, Olivier; Gremillet, Laurent

    2012-06-15

    The propagation of an electrostatic wave packet inside a collisionless and initially Maxwellian plasma is always dissipative because of the irreversible acceleration of the electrons by the wave. Then, in the linear regime, the wave packet is Landau damped, so that in the reference frame moving at the group velocity, the wave amplitude decays exponentially with time. In the nonlinear regime, once phase mixing has occurred and when the electron motion is nearly adiabatic, the damping rate is strongly reduced compared to the Landau one, so that the wave amplitude remains nearly constant along the characteristics. Yet, we show here that the electrons are still globally accelerated by the wave packet, and in one dimension, this leads to a non local amplitude dependence of the group velocity. As a result, a freely propagating wave packet would shrink, and therefore, so would its total energy. In more than one dimension, not only does the magnitude of the group velocity nonlinearly vary, but also its direction. In the weakly nonlinear regime, when the collisionless damping rate is still significant compared to its linear value, the group velocity is directed towards the outside of the wave packet and tends to increase its transverse extent, while the opposite is true once the wave is essentially undamped. The impact of the nonlinear variation of the group velocity on the transverse size of the wave packet is quantified, and compared to that induced by the self-focussing due to wave front bowing.

  14. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    SciTech Connect (OSTI)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-08-15

    In this work an alumina-zirconia ceramic composites have been prepared with {alpha}-Al{sub 2}O{sub 3} contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest {alpha}-Al{sub 2}O{sub 3} content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  15. Effect of spatial density variation and O+ concentration on the growth and evolution of electromagnetic ion cyclotron waves

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Denton, R. E.; Jordanova, V. K.; Fraser, B. J.

    2014-10-01

    We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore » L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less

  16. Effect of spatial density variation and O+ concentration on the growth and evolution of electromagnetic ion cyclotron waves

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Denton, R. E.; Jordanova, V. K.; Fraser, B. J.

    2014-10-01

    We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell frommore »L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.« less

  17. Effect of spatial density variation and O+ concentration on the growth and evolution of electromagnetic ion cyclotron waves

    SciTech Connect (OSTI)

    Denton, R. E.; Jordanova, V. K.; Fraser, B. J.

    2014-10-01

    We simulate electromagnetic ion cyclotron (EMIC) wave growth and evolution within three regions, the plasmasphere (or plasmaspheric plume), the plasmapause, and the low-density plasmatrough outside the plasmapause. First, we use a ring current simulation with a plasmasphere model to model the particle populations that give rise to the instability for conditions observed on 9 June 2001. Then, using two different models for the cold ion composition, we do a full scale hybrid code simulation in dipole coordinates of the EMIC waves on a meridional plane at MLT = 18 and at 1900 UT within a range of L shell from L = 4.9 to 6.7. EMIC waves were observed during June 9, 2001 by Geostationary Operational Environmental Satellite (GOES) spacecraft. While an exact comparison between observed and simulated spectra is not possible here, we do find significant similarities between the two, at least at one location within the region of largest wave growth. We find that the plasmapause is not a preferred region for EMIC wave growth, though waves can grow in that region. The density gradient within the plasmapause does, however, affect the orientation of wave fronts and wave vector both within the plasmapause and in adjacent regions. There is a preference for EMIC waves to be driven in the He+ band (frequencies between the O+ and He+ gyrofrequencies) within the plasmasphere, although they can also grow in the plasmatrough. If present, H+ band waves are more likely to grow in the plasmatrough. This fact, plus L dependence of the frequency and possible time evolution toward lower frequency waves, can be explained by a simple model. Large O+ concentration limits the frequency range of or even totally quenches EMIC waves. This is more likely to occur in the plasmatrough at solar maximum. Such large O+ concentration significantly affects the H+ cutoff frequency and hence the width in frequency of the stop band above the He+ gyrofrequency. EMIC wave surfaces predicted by cold plasma theory are altered by the finite temperature of the ring current H+.

  18. Seismic Surface-Wave Tomography of Waste Sites

    SciTech Connect (OSTI)

    Leland Timothy Long

    2002-12-17

    Surface-wave group-velocity tomography is an efficient way to obtain images of the group velocity over a test area. Because Rayleigh-wave group velocity depends on frequency, there are separate images for each frequency. Thus, at each point in these images the group velocities define a dispersion curve, a curve that relates group velocity to frequency. The objective of this study has been to find an accurate and efficient way to find the shear-wave structure from these dispersion curves. The conventional inversion techniques match theoretical and observed dispersion curves to determine the structure. These conventional methods do not always succeed in correctly differentiating the fundamental and higher modes, and for some velocity structures can become unstable. In this research a perturbation technique was developed. The perturbation method allows the pre-computation of a global inversion matrix which improves efficiency in obtaining solutions for the structure. Perturbation methods are stable and mimic the averaging process in wave propagation; hence. leading to more accurate solutions. Finite difference techniques and synthetic trace generation techniques were developed to define the perturbations. A new differential trace technique was developed for slight variations in dispersion. The improvements in analysis speed and the accuracy of the solution could lead to real-time field analysis systems, making it possible to obtain immediate results or to monitor temporal change in structure, such as might develop in using fluids for soil remediation.

  19. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  20. DeFrees Small Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Current Velocity Range(ms) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction...

  1. Penetration of lower hybrid current drive waves in tokamaks

    SciTech Connect (OSTI)

    Horton, W.; Aix-Marseille University, 58, Bd Charles Livon, 13284 Marseille ; Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X.

    2013-11-15

    Lower hybrid (LH) ray propagation in toroidal plasma is shown to be controlled by combination of the azimuthal spectrum launched by the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the drift wave fluctuations. The width of the poloidal and radial radio frequency wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the drift waves. The electron temperature gradient (ETG) spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and phase velocities. ETG turbulence is also driven by the radial gradient of the electron current profile giving rise to an anomalous viscosity spreading the LH driven plasma currents. The LH wave scattering is derived from a Fokker-Planck equation for the distribution of the ray trajectories with diffusivities derived from the drift wave fluctuations. The condition for chaotic diffusion for the rays is derived. The evolution of the poloidal and radial mode number spectrum of the lower hybrid waves are both on the antenna spectrum and the spectrum of the drift waves. Antennas launching higher poloidal mode number spectra drive off-axis current density profiles producing negative central shear [RS] plasmas with improved thermal confinement from ETG transport. Core plasma current drive requires antennas with low azimuthal mode spectra peaked at m = 0 azimuthal mode numbers.

  2. Generalized Dix equation and analytic treatment of normal-movement velocity for anisotropic media

    SciTech Connect (OSTI)

    Grechka, V.; Tsvankin, I.; Cohen, J.K.

    1999-03-01

    Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e., plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. The high accuracy of the NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. The authors also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.

  3. Pyrotechnic deflagration velocity and permeability

    SciTech Connect (OSTI)

    Begeal, D R; Stanton, P L

    1982-01-01

    Particle size, porosity, and permeability of the reactive material have long been considered to be important factors in propellant burning rates and the deflagration-to-detonation transition in explosives. It is reasonable to assume that these same parameters will also affect the deflagration velocity of pyrotechnics. This report describes an experimental program that addresses the permeability of porous solids (particulate beds), in terms of particle size and porosity, and the relationship between permeability and the behavior of pyrotechnics and explosives. The experimental techniques used to acquire permeability data and to characterize the pyrotechnic burning are discussed. Preliminary data have been obtained on the burning characteristics of titanium hydride/potassium perchlorate (THKP) and boron/calcium chromate (BCCR). With THKP, the velocity of a pressure wave (from hot product gases) in the unburned region shows unsteady behavior which is related to the initial porosity or permeability. Simultaneous measurements with pressure gauges and ion gauges reveal that the pressure wave precedes the burn front. Steady burning of BCCR was observed with pressure gauge diagnostics and with a microwave interferometry technique.

  4. ARM - Measurement - Vertical velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVertical velocity ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Vertical velocity The component of the velocity vector, along the local vertical. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements,

  5. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect (OSTI)

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  6. Traveling-wave photodetector

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  7. Traveling-wave photodetector

    DOE Patents [OSTI]

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  8. Evidence for wave heating of the quiet-sun corona

    SciTech Connect (OSTI)

    Hahn, M.; Savin, D. W.

    2014-11-10

    We have measured the energy and dissipation of Alfvnic waves in the quiet Sun. A magnetic field model was used to infer the location and orientation of the magnetic field lines along which the waves are expected to travel. The waves were measured using spectral lines to infer the wave amplitude. The waves cause a non-thermal broadening of the spectral lines, which can be expressed as a non-thermal velocity v {sub nt}. By combining the spectroscopic measurements with this magnetic field model, we were able to trace the variation of v {sub nt} along the magnetic field. At each footpoint of the quiet-Sun loops, we find that waves inject an energy flux in the range of 1.3-5.5 10{sup 5} erg cm{sup 2} s{sup 1}. At the minimum of this range, this amounts to more than 80% of the energy needed to heat the quiet Sun. We also find that these waves are dissipated over a region centered on the top of the loops. The position along the loop where the damping begins is strongly correlated with the length of the loop, implying that the damping mechanism depends on the global loop properties rather than on local collisional dissipation.

  9. Perspectives on Deposition Velocity

    Office of Environmental Management (EM)

    Deposition Velocity ... Going down the rabbit hole to explain that sinking feeling Brian DiNunno, Ph.D. Project Enhancement Corporation June 6 th , 2012 Discussion Framework  Development of the HSS Deposition Velocity Safety Bulletin  Broader discussion of appropriate conservatism within dispersion modeling and DOE-STD-3009 DOE-STD-3009 Dose Comparison "General discussion is provided for source term calculation and dose estimation, as well as prescriptive guidance for the latter. The

  10. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, Stanley P. (Los Alamos, NM)

    1988-01-01

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

  11. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  12. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  13. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect (OSTI)

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  14. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A. (Walnut Creek, CA)

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  15. Velocity pump reaction turbine

    DOE Patents [OSTI]

    House, Palmer A. (Walnut Creek, CA)

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  16. ARM - Measurement - Hydrometeor fall velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    velocity Fall velocity of hydrometeors (e.g. rain, snow, graupel, hail). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  17. MODELING SUPER-FAST MAGNETOSONIC WAVES OBSERVED BY SDO IN ACTIVE REGION FUNNELS

    SciTech Connect (OSTI)

    Ofman, L.; Liu, W.; Title, A.; Aschwanden, M.

    2011-10-20

    Recently, quasi-periodic, rapidly propagating waves have been observed in extreme ultraviolet by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) instrument in about 10 flare/coronal mass ejection (CME) events thus far. A typical example is the 2010 August 1 C3.2 flare/CME event that exhibited arc-shaped wave trains propagating in an active region (AR) magnetic funnel with {approx}5% intensity variations at speeds in the range of 1000-2000 km s{sup -1}. The fast temporal cadence and high sensitivity of AIA enabled the detection of these waves. We identify them as fast magnetosonic waves driven quasi-periodically at the base of the flaring region and develop a three-dimensional MHD model of the event. For the initial state we utilize the dipole magnetic field to model the AR and include gravitationally stratified density at coronal temperature. At the coronal base of the AR, we excite the fast magnetosonic wave by periodic velocity pulsations in the photospheric plane confined to a funnel of magnetic field lines. The excited fast magnetosonic waves have similar amplitude, wavelength, and propagation speeds as the observed wave trains. Based on the simulation results, we discuss the possible excitation mechanism of the waves, their dynamical properties, and the use of the observations for coronal MHD seismology.

  18. 10-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent...

  19. Gravitational wave generation from bubble collisions in first...

    Office of Scientific and Technical Information (OSTI)

    wave generation from bubble collisions in first-order phase transitions: An analytic ... In our approach, we provide a model for the bubble velocity power spectrum, suitable for ...

  20. Propagation and dispersion of transverse wave trains in magnetic flux tubes

    SciTech Connect (OSTI)

    Oliver, R.; Terradas, J.; Ruderman, M. S.

    2014-07-01

    The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ? 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup 1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.

  1. DeFrees Large Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Current Velocity Range(ms) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be...

  2. Wave merging mechanism: formation of low-frequency Alfven and magnetosonic waves in cosmic plasmas

    SciTech Connect (OSTI)

    Tishchenko, V N; Shaikhislamov, I F

    2014-02-28

    We investigate the merging mechanism for the waves produced by a pulsating cosmic plasma source. A model with a separate background/source description is used in our calculations. The mechanism was shown to operate both for strong and weak source background interactions. We revealed the effect of merging of individual Alfven waves into a narrow low-frequency wave, whose amplitude is maximal for a plasma expansion velocity equal to 0.5 1 of the Alfven Mach number. This wave is followed along the field by a narrow low-frequency magnetosonic wave, which contains the bulk of source energy. For low expansion velocities the wave contains background and source particles, but for high velocities it contains only the background particles. The wave lengths are much greater than their transverse dimension. (letters)

  3. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, David J. (Oakland, CA)

    1999-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  4. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, David J. (Oakland, CA)

    1997-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  5. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1997-06-24

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  6. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  7. Discrimination of porosity and fluid saturation using seismic velocity analysis

    DOE Patents [OSTI]

    Berryman, James G. (Danville, CA)

    2001-01-01

    The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.

  8. Unitaxial constant velocity microactuator

    DOE Patents [OSTI]

    McIntyre, T.J.

    1994-06-07

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.

  9. Unitaxial constant velocity microactuator

    DOE Patents [OSTI]

    McIntyre, Timothy J.

    1994-01-01

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

  10. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    SciTech Connect (OSTI)

    Mumford, S. J.; Fedun, V.; Erdlyi, R.

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above ? = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvn modes (?60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  11. Comparison of Hydrocode Simulations with Measured Shock Wave Velocities

    SciTech Connect (OSTI)

    Hixson, R. S.; Veeser, L. R.

    2014-11-30

    We have conducted detailed 1- and 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly made to understand various shock processes in a sample and to design shock experiments. We began with relatively simple shock experiments, where we examined the effects of the equation of state and the viscoplastic strength models. Eventually we included spallation in copper and iron and a solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations.

  12. Elastic wave velocity measurement combined with synchrotron X...

    Office of Scientific and Technical Information (OSTI)

    measurements at high pressure and high temperature conditions: Towards prediction and ... measurements at high pressure and high temperature conditions: Towards prediction and ...

  13. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles...

    Open Energy Info (EERE)

    by mantle-derived melts has occurred. Authors Lee K. Steck, Clifford H. Thurber, Michael C. Fehler, William J. Lutter, Peter M. Roberts, W. Scott Baldridge, Darrik G....

  14. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect (OSTI)

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  15. GMTI radar minimum detectable velocity.

    SciTech Connect (OSTI)

    Richards, John Alfred

    2011-04-01

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  16. DIFFERENTIAL GROUP-VELOCITY DETECTION OF FLUID PATHS

    SciTech Connect (OSTI)

    Leland Timothy Long

    2005-12-20

    For nearly 50 years, surface waves that propagate through near-surface soils have been utilized in engineering for the determination of the small-strain dynamic properties of soils. These techniques, although useful, have not been sufficiently precise to use in detecting the subtle changes in soil properties that accompany short-term changes in fluid content. The differential techniques developed in this research now make it possible to monitor small changes (less than 3 cm) in the water level of shallow soil aquifers. Using inversion techniques and tomography, differential seismic techniques could track the water level distribution in aquifers with water being pumped in or out. Differential surface wave analysis could lead to new ways to monitor reservoir levels and verify hydrologic models. Field data obtained during this investigation have measured changes in surface-wave phase and group velocity before and after major rain events, and have detected subtle changes associated with pumping water into an aquifer and pumping water out of an aquifer. This research has established analysis techniques for observing these changes. These techniques combine time domain measurements to isolate surface wave arrivals with frequency domain techniques to determine the effects as a function of frequency. Understanding the differences in response as a function of wave frequency facilitates the inversion of this data for soil velocity structure. These techniques have also quantified many aspects of data acquisition and analysis that are important for significant results. These include tight control on the character of the source and proper placement of the geophones. One important application is the possibility that surface waves could be used to monitor and/or track fluid movement during clean-up operations, verifying that the fluid reached all affected areas. Extending this to a larger scale could facilitate monitoring of water resources in basins without having to drill many expensive wells. The next step is to investigate the commercial applications of differential surface wave analysis.

  17. Modeling fault-zone guided waves of microearthquakes in a geothermal...

    Open Energy Info (EERE)

    velocity structure have been estimated. It is suggested here that the identification and modeling of such guided waves is an effective tool to locate fracture-induced,...

  18. Slow Neutron Velocity Spectrometer Transmission Studies Of Pu

    DOE R&D Accomplishments [OSTI]

    Havens, W. W. Jr.; Melkonian, E.; Rainwater, L. J.; Levin, M.

    1951-05-28

    The slow neutron transmission of several samples of Pu has been investigated with the Columbia Neutron Velocity Spectrometer. Data are presented in two groups, those covering the energy region from 0 to 6 ev, and those covering the region above 6 ev. Below 6 ev the resolution was relatively good, and a detailed study of the cross section variation was made. Work above 6 ev consisted of merely locating levels and obtaining a rough idea of their strengths.

  19. DOE Workshop - Deposition Velocity Status

    Office of Environmental Management (EM)

    Safely Delivering DOE's Vision for the East Tennessee Technology Park Mission Safely Delivering the Department of Energy's Vision for the East Tennessee Technology Park Mission DOE Workshop Deposition Velocity Status Mike Hitchler, Manager Nuclear Facility Safety June 5, 2012 Safely Delivering DOE's Vision for the East Tennessee Technology Park Mission Existing UCOR Analyses * UCOR facilities at East Tennessee Technology Park (ETTP) and Oak Ridge National Laboratory (ORNL) use various plume

  20. Three axis velocity probe system

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV); Smith, Jr., Nelson S. (Morgantown, WV); Utt, Carroll E. (Morgantown, WV)

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  1. Wave transmission over submerged breakwaters

    SciTech Connect (OSTI)

    Kobayashi, N.; Wurjanto, A. )

    1989-09-01

    Monochromatic wave reflection and transmission over a submerged impermeable breakwater is predicted numerically by slightly modifying the numerical model developed previously for predicting wave reflection and run-up on rough or smooth impermeable slopes. The slight modification is related to the landward boundary condition required for the transmitted wave propagating landward. In addition to the conservation equations of mass and momentum used to compute the flow field, an equation of energy is derived to estimate the rate of energy dissipation due to wave breaking. The computed reflection and transmission coefficients are shown to be in agreement with available small-scale test data. The numerical model also predicts the spatial variation of the energy dissipation, the mean water level difference, and the time-averaged volume flux per unit width, although available measurements are not sufficient for evaluating the capabilities and limitations of the numerical model for predicting these quantities.

  2. Seismic Velocities Contain Information About Depth, Lithology, Fluid Content, and Microstructure

    SciTech Connect (OSTI)

    Berge, P A; Bonner, B P

    2002-01-03

    Recent advances in field and laboratory methods for measuring elastic wave velocities provide incentive and opportunity for improving interpretation of geophysical data for engineering and environmental applications. Advancing the state-of-the-art of seismic imaging requires developing petrophysical relationships between measured velocities and the hydrogeology parameters and lithology. Our approach uses laboratory data and rock physics methods. Compressional (Vp) and shear (Vs) wave velocities, Vp/Vs ratios, and relative wave amplitudes show systematic changes related to composition, saturation, applied stress (analogous to depth), and distribution of clay for laboratory ultrasonic measurements on soils. The artificial soils were mixtures of Ottawa sand and a second phase, either Wyoming bentonite or peat moss used to represent clay or organic components found in natural soils. Compressional and shear wave velocities were measured for dry, saturated, and partially-saturated conditions, for applied stresses between about 7 and 100 kPa, representing approximately the top 5 m of the subsurface. Analysis of the results using rock physics methods shows the link between microstructure and wave propagation, and implications for future advances in seismic data interpretation. For example, we found that Vp in dry sand-clay mixtures initially increases as clay cements the sand grains and fills porosity, but then Vp decreases when the clay content is high enough that the clay matrix controls the elastic response of the material. Vs decreases monotonically with increasing clay content. This provides a method for using Vp/Vs ratios to estimate clay content in a dry soil.

  3. Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    2014-09-01

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

  4. Newberry EGS Seismic Velocity Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    2013-10-01

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  5. Method of accelerating photons by a relativistic plasma wave

    DOE Patents [OSTI]

    Dawson, John M. (Pacific Palisades, CA); Wilks, Scott C. (Santa Monica, CA)

    1990-01-01

    Photons of a laser pulse have their group velocity accelerated in a plasma as they are placed on a downward density gradient of a plasma wave of which the phase velocity nearly matches the group velocity of the photons. This acceleration results in a frequency upshift. If the unperturbed plasma has a slight density gradient in the direction of propagation, the photon frequencies can be continuously upshifted to significantly greater values.

  6. Detonation waves in pentaerythritol tetranitrate

    SciTech Connect (OSTI)

    Tarver, C.M.; Breithaupt, R.D.; Kury, J.W.

    1997-06-01

    Fabry{endash}Perot laser interferometry was used to obtain nanosecond time resolved particle velocity histories of the free surfaces of tantalum discs accelerated by detonating pentaerythritol tetranitrate (PETN) charges and of the interfaces between PETN detonation products and lithium fluoride crystals. The experimental records were compared to particle velocity histories calculated using very finely zoned meshes of the exact dimensions with the DYNA2D hydrodynamic code. The duration of the PETN detonation reaction zone was demonstrated to be less than the 5 ns initial resolution of the Fabry{endash}Perot technique, because the experimental records were accurately calculated using an instantaneous chemical reaction, the Chapman{endash}Jouguet (C-J) model of detonation, and the reaction product Jones{endash}Wilkins{endash}Lee (JWL) equation of state for PETN detonation products previously determined by supracompression (overdriven detonation) studies. Some of the PETN charges were pressed to densities approaching the crystal density and exhibited the phenomenon of superdetonation. An ignition and growth Zeldovich{endash}von Neumann{endash}Doring (ZND) reactive flow model was developed to explain these experimental records and the results of previous PETN shock initiation experiments on single crystals of PETN. Good agreement was obtained for the induction time delays preceding chemical reaction, the run distances at which the initial shock waves were overtaken by the detonation waves in the compressed PETN, and the measured particle velocity histories produced by the overdriven detonation waves before they could relax to steady state C-J velocity and pressure. {copyright} {ital 1997 American Institute of Physics.}

  7. Measuring In-Situ Mdf Velocity Of Detonation

    DOE Patents [OSTI]

    Horine, Frank M. (Albuquerque, NM); James, Jr., Forrest B. (Albuquerque, NM)

    2005-10-25

    A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

  8. Tangential velocity measurement using interferometric MTI radar

    DOE Patents [OSTI]

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  9. OBSERVATIONS OF THE INTERACTION OF ACOUSTIC WAVES AND SMALL-SCALE MAGNETIC FIELDS IN A QUIET SUN

    SciTech Connect (OSTI)

    Chitta, Lakshmi Pradeep; Kariyappa, R.; Jain, Rekha; Jefferies, Stuart M. E-mail: rkari@iiap.res.in E-mail: stuartj@ifa.hawaii.edu

    2012-01-10

    The effect of the magnetic field on photospheric intensity and velocity oscillations at the sites of small-scale magnetic fields (SMFs) in a quiet Sun near the solar disk center is studied. We use observations made by the G-band filter in the Solar Optical Telescope on board Hinode for intensity oscillations; Doppler velocity, magnetic field, and continuum intensity are derived from an Ni I photospheric absorption line at 6767.8 A using the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Our analysis shows that both the high-resolution intensity observed in the G band and velocity oscillations are influenced by the presence of a magnetic field. While intensity oscillations are suppressed at all frequencies in strong magnetic field regions compared to weak magnetic field regions, velocity oscillations show an enhancement of power in the frequency band 5.5-7 mHz. We find that there is a drop of 20%-30% in the p-mode power of velocity oscillations within the SMFs when compared to the regions surrounding them. Our findings indicate that the nature of the interaction of acoustic waves with the quiet Sun SMFs is similar to that of large-scale magnetic fields in active regions. We also report the first results of the center-to-limb variation of such effects using the observations of the quiet Sun from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). The independent verification of these interactions using SDO/HMI suggests that the velocity power drop of 20%-30% in p-modes is fairly constant across the solar disk.

  10. Stable operating regime for traveling wave devices

    DOE Patents [OSTI]

    Carlsten, Bruce E. (Los Alamos, NM)

    2000-01-01

    Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

  11. Head-on-collision of modulated dust acoustic waves in strongly coupled dusty plasma

    SciTech Connect (OSTI)

    El-Labany, S. K.; El-Depsy, A.; Zedan, N. A.; El-Taibany, W. F.; El-Shamy, E. F.

    2012-10-15

    The derivative expansion perturbation method is applied to a strongly coupled dusty plasma system consisting of negatively charged dust grains, electrons, and ions. The basic equations are reduced to a nonlinear Schroedinger type equation appropriate for describing the modulated dust acoustic (DA) waves. We have examined the modulation (in) stability and the dependence of the system physical parameters (angular frequency and group velocity) on the polarization force variation. Finally, the extended Poincare-Lighthill-Kuo technique is employed to investigate the head-on collision (HoC) between two DA dark solitons. The analytical phase shifts and the trajectories of these dark solitons after the collision are derived. The numerical illustrations show that the polarization effect has strong influence on the nature of the phase shifts and the trajectories of the two DA dark solitons after collision.

  12. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect (OSTI)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  13. Effects of light illumination on electron velocity of AlGaN/GaN heterostructures under high electric field

    SciTech Connect (OSTI)

    Guo, Lei; Yang, Xuelin Cheng, Jianpeng; Sang, Ling; Xu, Fujun; Tang, Ning; Feng, Zhihong; Lv, Yuanjie; Wang, Xinqiang; Shen, B.; Ge, Weikun

    2014-12-15

    We have investigated the variation of electron velocity in AlGaN/GaN heterostructures depending on illuminating light intensity and wavelength. It is shown that the electron velocity at high electric field increases under above-band light illumination. This electron velocity enhancement is found to be related to the photo-generated cold holes which interact with hot electrons and thus accelerate the energy relaxation at high electric field. The results suggest an alternative way to improve the electron energy relaxation rate and hence the electron velocity in GaN based heterostructures.

  14. Variational description of continuum states in terms of integral relations

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Variational description of continuum states in terms of integral relations Citation Details In-Document Search Title: Variational description of continuum states in terms of integral relations Two integral relations derived from the Kohn variational principle (KVP) are used for describing scattering states. In usual applications the KVP requires the explicit form of the asymptotic behavior of the scattering wave function. This is not the case when the

  15. Effects of ion abundances on electromagnetic ion cyclotron wave growth rate in the vicinity of the plasmapause

    SciTech Connect (OSTI)

    Henning, F. D. Mace, R. L.

    2014-04-15

    Electromagnetic ion cyclotron (EMIC) waves in multi-ion species plasmas propagate in branches. Except for the branch corresponding to the heaviest ion species, which has only a resonance at its gyrofrequency, these branches are bounded below by a cutoff frequency and above by a resonant gyrofrequency. The condition for wave growth is determined by the thermal anisotropies of each ion species, j, which sets an upper bound, ?{sub j}{sup ?}, on the wave frequency below which that ion species contributes positively to the growth rate. It follows that the relative positions of the cutoffs and the critical frequencies ?{sub j}{sup ?} play a crucial role in determining whether a particular wave branch will be unstable. The effect of the magnetospheric ion abundances on the growth rate of each branch of the EMIC instability in a model where all the ion species have kappa velocity distributions is investigated by appealing to the above ideas. Using the variation of the cutoff frequencies predicted by cold plasma theory as a guide, optimal ion abundances that maximise the EMIC instability growth rate are sought. When the ring current is comprised predominantly of H{sup +} ions, all branches of the EMIC wave are destabilised, with the proton branch having the maximum growth rate. When the O{sup +} ion abundance in the ring current is increased, a decrease in the growth rate of the proton branch and cyclotron damping of the helium branch are observed. The oxygen branch, on the other hand, experiences an increase in the maximum growth rate with an increase in the O{sup +} ion abundance. When the ring current is comprised predominantly of He{sup +} ions, only the helium and oxygen branches of the EMIC wave are destabilised, with the helium branch having the maximum growth rate.

  16. Seismic Surface-Wave Tomography of Waste Sites - Final Report

    SciTech Connect (OSTI)

    Long, Timothy L.

    2000-09-14

    The objective of this study was to develop analysis programs for surface-wave group-velocity tomography, and apply these to three test areas. We succeeded by obtaining data covering two square areas that were 30 meters on a side, and a third area that was 16 meters on a side, in addition to a collaborative effort wherein we processed data from the Oak Ridge National Laboratory site. At all sites, usable group velocities were obtained for frequencies from 16 to 50 Hz using a sledgehammer source. The resulting tomographic images and velocity anomalies were sufficient to delineate suspected burial trenches (one 4-meters deep) and anomalous velocity structure related to rocks and disturbed soil. The success was not uniform because in portions of one area the inversion for shear-wave structure became unstable. More research is needed to establish a more robust inversion technique.

  17. Temporal evolution of bubble tip velocity in classical Rayleigh-Taylor instability at arbitrary Atwood numbers

    SciTech Connect (OSTI)

    Liu, W. H.; HEDPS and CAPT, Peking University, Beijing 100871 ; Wang, L. F.; Ye, W. H.; Institute of Applied Physics and Computational Mathematics, Beijing 100088; Department of Physics, Zhejiang University, Hangzhou 310027 ; He, X. T.; Institute of Applied Physics and Computational Mathematics, Beijing 100088

    2013-06-15

    In this research, the temporal evolution of the bubble tip velocity in Rayleigh-Taylor instability (RTI) at arbitrary Atwood numbers and different initial perturbation velocities with a discontinuous profile in irrotational, incompressible, and inviscid fluids (i.e., classical RTI) is investigated. Potential models from Layzer [Astrophys. J. 122, 1 (1955)] and perturbation velocity potentials from Goncharov [Phys. Rev. Lett. 88, 134502 (2002)] are introduced. It is found that the temporal evolution of bubble tip velocity [u(t)] depends essentially on the initial perturbation velocity [u(0)]. First, when the u(0)velocity increases smoothly up to the asymptotic velocity (u{sup asp}) or terminal velocity. Second, when C{sup (1)}u{sup asp}?u(0)velocity increases quickly, reaching a maximum velocity and then drops slowly to the u{sup asp}. Third, when C{sup (2)}u{sup asp}?u(0)velocity decays rapidly to a minimum velocity and then increases gradually toward the u{sup asp}. Finally, when u(0)?C{sup (3)}u{sup asp}, the bubble tip velocity decays monotonically to the u{sup asp}. Here, the critical coefficients C{sup (1)},C{sup (2)}, and C{sup (3)}, which depend sensitively on the Atwood number (A) and the initial perturbation amplitude of the bubble tip [h(0)], are determined by a numerical approach. The model proposed here agrees with hydrodynamic simulations. Thus, it should be included in applications where the bubble tip velocity plays an important role, such as the design of the ignition target of inertial confinement fusion where the Richtmyer-Meshkov instability (RMI) can create the seed of RTI with u(0)?u{sup asp}, and stellar formation and evolution in astrophysics where the deflagration wave front propagating outwardly from the star is subject to the combined RMI and RTI.

  18. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  19. Quench propagation velocity for highly stabilized conductors

    SciTech Connect (OSTI)

    Mints, R.G. |; Ogitsu, T. |; Devred, A.

    1995-05-01

    Quench propagation velocity in conductors having a large amount of stabilizer outside the multifilamentary area is considered. It is shown that the current redistribution process between the multifilamentary area and the stabilizer can strongly effect the quench propagation. A criterion is derived determining the conditions under which the current redistribution process becomes significant, and a model of effective stabilizer area is suggested to describe its influence on the quench propagation velocity. As an illustration, the model is applied to calculate the adiabatic quench propagation velocity for a conductor geometry with a multifilamentary area embedded inside the stabilizer.

  20. Landau damping of Langmuir waves in non-Maxwellian plasmas

    SciTech Connect (OSTI)

    Ouazene, M.; Annou, R.

    2011-11-15

    As free electrons move in the nearest neighbour ion's potential well, the equilibrium velocity departs from Maxwell distribution. The effect of the non-Maxwellian velocity distribution function (NMVDF) on many properties of the plasma such as the transport coefficients, the kinetic energy, and the degree of ionization is found to be noticeable. A correction to the Langmuir wave dispersion relation is proved to arise due to the NMVDF as well [Phys. Plasmas 17, 052105 (2010)]. The study is extended hereafter to include the effect of NMVDF on the Landau damping of Langmuir wave.

  1. ARM - Evaluation Product - Convective Vertical Velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsConvective Vertical Velocity ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Convective Vertical Velocity Convective processes play an important role in Earth's energy balance by distributing heat and moisture throughout the atmosphere. In particular, vertical air motions associated with these

  2. Coherent cooling of atoms in a frequency-modulated standing laser wave: Wave function and stochastic trajectory approaches

    SciTech Connect (OSTI)

    Argonov, V. Yu.

    2014-11-15

    The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field can suppress packet splitting for some atoms whose specific velocities are in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. We also demonstrate that the modulated field can not only trap but also cool the atoms. We perform a numerical experiment with a large atomic ensemble having wide initial velocity and energy distributions. During the experiment, most of atoms leave the wave while the trapped atoms have a narrow energy distribution.

  3. Slow wave structures using twisted waveguides for charged particle applications

    DOE Patents [OSTI]

    Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.

    2012-12-11

    A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.

  4. Seismic Velocity Measurements at Expanded Seismic Network Sites

    SciTech Connect (OSTI)

    Woolery, Edward W; Wang, Zhenming

    2005-01-01

    Structures at the Paducah Gaseous Diffusion Plant (PGDP), as well as at other locations in the northern Jackson Purchase of western Kentucky may be subjected to large far-field earthquake ground motions from the New Madrid seismic zone, as well as those from small and moderate-sized local events. The resultant ground motion a particular structure is exposed from such event will be a consequence of the earthquake magnitude, the structures' proximity to the event, and the dynamic and geometrical characteristics of the thick soils upon which they are, of necessity, constructed. This investigation evaluated the latter. Downhole and surface (i.e., refraction and reflection) seismic velocity data were collected at the Kentucky Seismic and Strong-Motion Network expansion sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to define the dynamic properties of the deep sediment overburden that can produce modifying effects on earthquake waves. These effects are manifested as modifications of the earthquake waves' amplitude, frequency, and duration. Each of these three ground motion manifestations is also fundamental to the assessment of secondary earthquake engineering hazards such as liquefaction.

  5. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    SciTech Connect (OSTI)

    Durand, O.; Soulard, L.

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  6. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    SciTech Connect (OSTI)

    Wang, Zhen-guo Wu, Liyin; Li, Qinglian; Li, Chun

    2014-09-29

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma?=?2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d?velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 26742686 (2008)] and Wang et al. [AIAA J. 50, 13601366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.

  7. Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears

    SciTech Connect (OSTI)

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2011-04-15

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and the much smaller profile shear residual stress component.

  8. DETERMINATION OF NON-THERMAL VELOCITY DISTRIBUTIONS FROM SERTS LINEWIDTH OBSERVATIONS

    SciTech Connect (OSTI)

    Coyner, Aaron J. [Department of Physics, Catholic University of America, 620 Michigan Avenue, Washington, DC 20064 (United States); Davila, Joseph M., E-mail: aaron.j.coyner@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2011-12-01

    Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 A and a temperature range from 80,000 K to 12.6 MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22 km s{sup -1} in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfven wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.

  9. Property:Maximum Velocity(m/s) | Open Energy Information

    Open Energy Info (EERE)

    Velocity(ms) Jump to: navigation, search Property Name Maximum Velocity(ms) Property Type String Pages using the property "Maximum Velocity(ms)" Showing 25 pages using this...

  10. Property:Velocity(m/s) | Open Energy Information

    Open Energy Info (EERE)

    Velocity(ms) Jump to: navigation, search Property Name Velocity(ms) Property Type String Pages using the property "Velocity(ms)" Showing 21 pages using this property. A Alden...

  11. Detonation Wave Profile

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  12. VELOCITY-SHEAR-INDUCED MODE COUPLING IN THE SOLAR ATMOSPHERE AND SOLAR WIND: IMPLICATIONS FOR PLASMA HEATING AND MHD TURBULENCE

    SciTech Connect (OSTI)

    Hollweg, Joseph V.; Chandran, Benjamin D. G.; Kaghashvili, Edisher Kh. E-mail: ekaghash@aer.com

    2013-06-01

    We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.

  13. TOWARD UNBIASED GALAXY CLUSTER MASSES FROM LINE-OF-SIGHT VELOCITY DISPERSIONS

    SciTech Connect (OSTI)

    Saro, Alex; Mohr, Joseph J.; Bazin, Gurvan; Dolag, Klaus

    2013-07-20

    We study the use of red-sequence-selected galaxy spectroscopy for unbiased estimation of galaxy cluster masses by using a publicly available simulated galaxy catalog. We explore the impact of selection using galaxy color, projected separation from the cluster center, galaxy luminosity, and spectroscopic redshift. We identify and characterize each of the following sources of bias and scatter in velocity dispersion at fixed mass: the intrinsic properties of halos in the form of halo triaxiality, sampling noise, the presence of multiple kinematic populations within the cluster, and the effect of interlopers. We show that even in red-sequence and spectroscopically selected galaxy samples, the interloper fraction is significant, and that the variations in the interloper population from cluster to cluster provide the dominant contribution to the velocity dispersion scatter at fixed mass. We present measurements of the total scatter in dispersion at fixed mass as a function of the number of redshifts. Results indicate that improvements in scatter are modest beyond samples of {approx}30 redshifts per cluster. Our results show that while cluster velocity dispersions extracted from a few dozen red-sequence-selected galaxies do not provide precise masses on a single cluster basis, an ensemble of cluster velocity dispersions can be combined to produce a precise calibration of a cluster survey-mass-observable relation. Currently, disagreements in the literature on simulated subhalo velocity dispersion-mass relations place a systematic floor on velocity dispersion mass calibration at the 5% level in dispersion.

  14. PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS (Journal...

    Office of Scientific and Technical Information (OSTI)

    PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS Citation Details In-Document Search Title: PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS A protostellar jet and outflow...

  15. Catching a Wave: Innovative Wave Energy Device Surfs for Power...

    Office of Environmental Management (EM)

    Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii July 29, 2015 - 12:00pm Addthis...

  16. Decay of helical Kelvin waves on a quantum vortex filament

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-07-15

    We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite value. These decaying Kelvin waves correspond to wave number below the critical value for the Donnelly-Glaberson instability, and hence our results on the Schwarz quantum LIA correspond exactly to what one would expect from prior work on the Donnelly-Glaberson instability.

  17. Apparatus and method for laser velocity interferometry

    DOE Patents [OSTI]

    Stanton, Philip L.; Sweatt, William C.; Crump, Jr., O. B.; Bonzon, Lloyd L.

    1993-09-14

    An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.

  18. Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Jump to: navigation, search Contents 1 Description 2 History 3 Technology 4 Current and Possible Wave Farms 5 Pros and Cons Description Wave energy (or wave power) is...

  19. In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors

    SciTech Connect (OSTI)

    Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D

    2007-07-25

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.

  20. Effect of Resolution on Propagating Detonation Wave

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2014-07-10

    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8?m), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  1. Investigation of Spatial Variation of Sea States Offshore of Humboldt Bay CA Using a Hindcast Model.

    SciTech Connect (OSTI)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    Spatial variability of sea states is an important consideration when performing wave resource assessments and wave resource characterization studies for wave energy converter (WEC) test sites and commercial WEC deployments. This report examines the spatial variation of sea states offshore of Humboldt Bay, CA, using the wave model SWAN . The effect of depth and shoaling on bulk wave parameters is well resolved using the model SWAN with a 200 m grid. At this site, the degree of spatial variation of these bulk wave parameters, with shoaling generally perpendicular to the depth contours, is found to depend on the season. The variation in wave height , for example, was higher in the summer due to the wind and wave sheltering from the protruding land on the coastline north of the model domain. Ho wever, the spatial variation within an area of a potential Tier 1 WEC test site at 45 m depth and 1 square nautical mile is almost negligible; at most about 0.1 m in both winter and summer. The six wave characterization parameters recommended by the IEC 6 2600 - 101 TS were compared at several points along a line perpendicular to shore from the WEC test site . As expected, these parameters varied based on depth , but showed very similar seasonal trends.

  2. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect (OSTI)

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  3. AN EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A SURGE

    SciTech Connect (OSTI)

    Zheng, Ruisheng; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Hong, Junchao; Yang, Bo; Yang, Dan

    2013-02-10

    Taking advantage of the high temporal and spatial resolution observations from the Solar Dynamics Observatory, we present an extreme-ultraviolet (EUV) wave associated with a surge on 2010 November 13. Due to the magnetic flux cancelation, some surges formed in the source active region (AR). The strongest surge produced our studied event. The surge was deflected by the nearby loops that connected to another AR, and disrupted the overlying loops that slowly expanded and eventually evolved into a weak coronal mass ejection (CME). The surge was likely associated with the core of the CME. The EUV wave happened after the surge deflected. The wave departed far from the flare center and showed a close location relative to the deflected surge. The wave propagated in a narrow angular extent, mainly in the ejection direction of the surge. The close timing and location relations between the EUV wave and the surge indicate that the wave was closely associated with the CME. The wave had a velocity of 310-350 km s{sup -1}, while the speeds of the surge and the expanding loops were about 130 and 150 km s{sup -1}, respectively. All of the results suggest that the EUV wave was a fast-mode wave and was most likely triggered by the weak CME.

  4. P- and S-body wave tomography of the state of Nevada.

    SciTech Connect (OSTI)

    Preston, Leiph

    2010-04-01

    P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.

  5. Propagating and reflecting of spin wave in permalloy nanostrip with 360 domain wall

    SciTech Connect (OSTI)

    Zhang, Senfu; Mu, Congpu; Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin; Wang, Jianbo; Liu, Qingfang

    2014-01-07

    By micromagnetic simulation, we investigated the interaction between propagating spin wave (or magnonic) and a 360 domain wall in a nanostrip. It is found that propagating spin wave can drive a 360 domain wall motion, and the velocity and direction are closely related to the transmission coefficient of the spin wave of the domain wall. When the spin wave passes through the domain wall completely, the 360 domain wall moves toward the spin wave source. When the spin wave is reflected by the domain wall, the 360 domain wall moves along the spin wave propagation direction. Moreover, when the frequency of the spin wave is coincident with that of the 360 domain wall normal mode, the 360 domain wall velocity will be resonantly enhanced no matter which direction the 360 DW moves along. On the other hand, when the spin wave is reflected from the moving 360 domain wall, we observed the Doppler effect clearly. After passing through a 360 domain wall, the phase of the spin wave is changed, and the phase shift is related to the frequency. Nevertheless, phase shift could be manipulated by the number of 360 domain walls that spin wave passing through.

  6. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

  7. Coiled tubing velocity strings keep wells unloaded

    SciTech Connect (OSTI)

    Wesson, H.R.; Shursen, J.L.

    1989-07-01

    Liquid loading is a problem in many older and even some newer gas wells, particularly in pressure depletion type reservoirs. This liquid loading results in decreased production and may even kill the well. The use of coiled tubing as a velocity string (or siphon string) has proved to be an economically viable alternative to allow continued and thus, increased cumulative production for wells experiencing liquid loading problems. Coiled tubing run inside the existing production string reduces the flow area, whether the well is produced up the tubing or up the annulus. This reduction in flow area results in an increase in flow velocity and thus, an increase in the well's ability to unload fluids.

  8. The transverse and rotational motions of magnetohydrodynamic kink waves in the solar atmosphere

    SciTech Connect (OSTI)

    Goossens, M.; Van Doorsselaere, T. [Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, bus 2400, B-3001 Herverlee (Belgium); Soler, R.; Terradas, J. [Departament de Fsica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2014-06-10

    Magnetohydrodynamic (MHD) kink waves have now been observed to be ubiquitous throughout the solar atmosphere. With modern instruments, they have now been detected in the chromosphere, interface region, and corona. The key purpose of this paper is to show that kink waves do not only involve purely transverse motions of solar magnetic flux tubes, but the velocity field is a spatially and temporally varying sum of both transverse and rotational motion. Taking this fact into account is particularly important for the accurate interpretation of varying Doppler velocity profiles across oscillating structures such as spicules. It has now been shown that, as well as bulk transverse motions, spicules have omnipresent rotational motions. Here we emphasize that caution should be used before interpreting the particular MHD wave mode/s responsible for these rotational motions. The rotational motions are not necessarily signatures of the classic axisymmetric torsional Alfvn wave alone, because kink motion itself can also contribute substantially to varying Doppler velocity profiles observed across these structures. In this paper, the displacement field of the kink wave is demonstrated to be a sum of its transverse and rotational components, both for a flux tube with a discontinuous density profile at its boundary, and one with a more realistic density continuum between the internal and external plasma. Furthermore, the Doppler velocity profile of the kink wave is forward modeled to demonstrate that, depending on the line of sight, it can either be quite distinct or very similar to that expected from a torsional Alfvn wave.

  9. Radial velocities of southern visual multiple stars

    SciTech Connect (OSTI)

    Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra E-mail: pribulla@ta3.sk

    2015-01-01

    High-resolution spectra of visual multiple stars were taken in 20082009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out to have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.

  10. DIRECT IMAGING OF QUASI-PERIODIC FAST PROPAGATING WAVES OF {approx}2000 km s{sup -1} IN THE LOW SOLAR CORONA BY THE SOLAR DYNAMICS OBSERVATORY ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect (OSTI)

    Liu Wei; Title, Alan M.; Schrijver, Carolus J.; Aschwanden, Markus J.; De Pontieu, Bart; Tarbell, Theodore D.; Zhao Junwei; Ofman, Leon

    2011-07-20

    Quasi-periodic propagating fast mode magnetosonic waves in the solar corona were difficult to observe in the past due to relatively low instrument cadences. We report here evidence of such waves directly imaged in EUV by the new Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. In the 2010 August 1 C3.2 flare/coronal mass ejection event, we find arc-shaped wave trains of 1%-5% intensity variations (lifetime {approx}200 s) that emanate near the flare kernel and propagate outward up to {approx}400 Mm along a funnel of coronal loops. Sinusoidal fits to a typical wave train indicate a phase velocity of 2200 {+-} 130 km s{sup -1}. Similar waves propagating in opposite directions are observed in closed loops between two flare ribbons. In the k-{omega} diagram of the Fourier wave power, we find a bright ridge that represents the dispersion relation and can be well fitted with a straight line passing through the origin. This k-{omega} ridge shows a broad frequency distribution with power peaks at 5.5, 14.5, and 25.1 mHz. The strongest signal at 5.5 mHz (period 181 s) temporally coincides with quasi-periodic pulsations of the flare, suggesting a common origin. The instantaneous wave energy flux of (0.1-2.6) x 10{sup 7} erg cm{sup -2} s{sup -1} estimated at the coronal base is comparable to the steady-state heating requirement of active region loops.

  11. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    SciTech Connect (OSTI)

    Nie, J. D.; Wood, P. R. E-mail: peter.wood@anu.edu.au

    2014-12-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  12. Characteristics of transverse waves in chromospheric mottles

    SciTech Connect (OSTI)

    Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Keenan, F. P. [Astrophysics Research Center, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN (United Kingdom); Verth, G.; Erdlyi, R. [Solar Physics and Space Plasma Research Center (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Morton, R. J. [Mathematics and Information Science, Northumbria University, Camden Street, Newcastle Upon Tyne NE1 8ST (United Kingdom); Christian, D. J., E-mail: dkuridze01@qub.ac.uk [Department of Physics and Astronomy, California State University, Northridge, CA 91330 (United States)

    2013-12-10

    Using data obtained by the high temporal and spatial resolution Rapid Oscillations in the Solar Atmosphere instrument on the Dunn Solar Telescope, we investigate at an unprecedented level of detail transverse oscillations in chromospheric fine structures near the solar disk center. The oscillations are interpreted in terms of propagating and standing magnetohydrodynamic kink waves. Wave characteristics including the maximum transverse velocity amplitude and the phase speed are measured as a function of distance along the structure's length. Solar magnetoseismology is applied to these measured parameters to obtain diagnostic information on key plasma parameters (e.g., magnetic field, density, temperature, flow speed) of these localized waveguides. The magnetic field strength of the mottle along the ?2 Mm length is found to decrease by a factor of 12, while the local plasma density scale height is ?280 80 km.

  13. Three-dimensional P and S waves velocity structures of the Coso...

    Open Energy Info (EERE)

    synthetic modeling of a cross model at critical locations, is estimated to be 0.35 km for V (sub p ) and 0.5 km for V (sub s ) . Model uncertainties are estimated by a jackknife...

  14. PROTOSTELLAR JETS ENCLOSED BY LOW-VELOCITY OUTFLOWS

    SciTech Connect (OSTI)

    Machida, Masahiro N.

    2014-11-20

    A protostellar jet and outflow are calculated for ?270yr following the protostar formation using a three-dimensional magnetohydrodynamics simulation, in which both the protostar and its parent cloud are spatially resolved. A high-velocity (?100 km s{sup 1}) jet with good collimation is driven near the disk's inner edge, while a low-velocity (? 10 km s{sup 1}) outflow with a wide opening angle appears in the outer-disk region. The high-velocity jet propagates into the low-velocity outflow, forming a nested velocity structure in which a narrow high-velocity flow is enclosed by a wide low-velocity flow. The low-velocity outflow is in a nearly steady state, while the high-velocity jet appears intermittently. The time-variability of the jet is related to the episodic accretion from the disk onto the protostar, which is caused by gravitational instability and magnetic effects such as magnetic braking and magnetorotational instability. Although the high-velocity jet has a large kinetic energy, the mass and momentum of the jet are much smaller than those of the low-velocity outflow. A large fraction of the infalling gas is ejected by the low-velocity outflow. Thus, the low-velocity outflow actually has a more significant effect than the high-velocity jet in the very early phase of the star formation.

  15. 1-D seismic velocity model and hypocenter relocation using double difference method around West Papua region

    SciTech Connect (OSTI)

    Sabtaji, Agung E-mail: agung.sabtaji@bmkg.go.id; Nugraha, Andri Dian

    2015-04-24

    West Papua region has fairly high of seismicity activities due to tectonic setting and many inland faults. In addition, the region has a unique and complex tectonic conditions and this situation lead to high potency of seismic hazard in the region. The precise earthquake hypocenter location is very important, which could provide high quality of earthquake parameter information and the subsurface structure in this region to the society. We conducted 1-D P-wave velocity using earthquake data catalog from BMKG for April, 2009 up to March, 2014 around West Papua region. The obtained 1-D seismic velocity then was used as input for improving hypocenter location using double-difference method. The relocated hypocenter location shows fairly clearly the pattern of intraslab earthquake beneath New Guinea Trench (NGT). The relocated hypocenters related to the inland fault are also observed more focus in location around the fault.

  16. In-phase waves: Their behavior, internal stratification and fabric

    SciTech Connect (OSTI)

    Cheel, R.J. (Brock Univ., St. Catharines, Ontario (Canada). Dept. of Earth Sciences); Udri, A. (Freiburg Univ. (Germany). Dept. of Geologie)

    1993-03-01

    Experiments were conducted in 0.305m wide, 9m long recirculating sediment flume on a bed of quartz sand (mean diameter of 0.18mm). The experiments included eight runs over the following range of conditions: 0.0605m [<=] depth [<=] 0.068m, 0.51m/s [<=] mean flow velocity [<=] 0.90m/s and 0.63 [<=] Froze Number (F) [<=] 1.1. For F < 0.83 dunes were the dominant bedform and these became longer and lower as F increased. At F = 0.83 the bed was nominally plane but locally and temporarily developed low in-phase waves or dunes. Post-run bed profiles showed symmetrical bedwaves with average length (L) of 0.26m and average height (H) of 0.005m. A complete cycle was characterized by: increased height of bed and water surface waves [r arrow] upstream migration [r arrow] breaking or decay [r arrow] planing of bed surface [r arrow] growth of new in-phase waves (initially migrating downstream and then remaining stationary during continued vertical growth). Each in-phase wave normally behaved independently of other waves although less commonly a breaking wave would trigger breaking of the next downstream wave. For F > 1.0 in-phase waves behaved as described above but a breaking wave would more commonly cause breaking of other waves. With increasing F it became more common for waves to break and rebuild quickly without complete planing of the bed surface. However, complete cycles occurred frequently with the following significant differences: (1) the upstream-migrating antidune developed upstream slopes that approached 25[degree]; (2) planing was accomplished by the rapid migration of a low, asymmetrical bedform through the antidune trough.

  17. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Compositional Variation Within Hybrid Nanostructures Print Wednesday, 29 September 2010 00:00 The inherently high surface area...

  18. On the fully nonlinear acoustic waves in a plasma with positrons beam impact and superthermal electrons

    SciTech Connect (OSTI)

    Ali Shan, S.; National Centre For Physics , Shahdra Valley Road, 44000 Islamabad; Pakistan Institute of Engineering and Applied Sciences , Islamabad ; El-Tantawy, S. A.; Moslem, W. M.

    2013-08-15

    Arbitrary amplitude ion-acoustic waves in an unmagnetized plasma consisting of cold positive ions, superthermal electrons, and positrons beam are reported. The basic set of fluid equations is reduced to an energy-balance like equation. The latter is numerically analyzed to examine the existence regions for solitary and shock waves. It is found that only solitary waves can propagate, however, the model cannot support shocks. The effects of superthermality and beam parameters (via, positrons concentration and streaming velocity) on the existence region, as well as solitary wave profile have been discussed.

  19. Modeling coiled tubing velocity strings for gas wells

    SciTech Connect (OSTI)

    Martinez, J.; Martinez, A.

    1995-12-31

    Multiphase flowing pressure and velocity prediction models are necessary to coiled tubing velocity string design. A model used by most of the coiled tubing service companies or manufacturers is reviewed. Guidance is provided for selecting a coiled tubing of the proper size. The steps include: (1) Measured data matching; (2) Fluid property adjustment; (3) Pressure, velocity, and holdup selection; (4) Correlation choice; (5) Coiled tubing selection. A velocity range for the lift of liquid is given.

  20. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    SciTech Connect (OSTI)

    Padhye, N.; Horton, W.

    1998-10-09

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth`s geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons.

  1. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    SciTech Connect (OSTI)

    Hardage, Bob A; DeAngelo, Michael V; Ermolaeva, Elena; Hardage, Bob A; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

    2013-02-28

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.

  2. Wave-wave interactions in solar type III radio bursts

    SciTech Connect (OSTI)

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  3. Filament velocity scaling laws for warm ions

    SciTech Connect (OSTI)

    Manz, P.; Max-Planck-Institut fr Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching ; Carralero, D.; Birkenmeier, G.; Mller, H. W.; Scott, B. D.; Mller, S. H.; Fuchert, G.; Stroth, U.; Physik-Department E28, Technische Universitt Mnchen, James-Franck-Str. 1, 85748 Garching

    2013-10-15

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvn fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.

  4. Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation

    DOE Patents [OSTI]

    Gopalsami, Nachappa; Raptis, Apostolos C.

    1991-01-01

    A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.

  5. Peculiarity of convergence of shock wave generated by underwater electrical explosion of ring-shaped wire

    SciTech Connect (OSTI)

    Shafer, D.; Toker, G. R.; Gurovich, V. Tz.; Gleizer, S.; Krasik, Ya. E.

    2013-05-15

    Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50?mwave propagates with a constant velocity of v{sub sw}=1.2M, where M is the Mach number. The dynamics of the leading part of the shock wave, based on the oblique shock wave theory, is presented, explaining the constant velocity of the shock wave.

  6. Lattice Waves, Spin Waves, and Neutron Scattering

    DOE R&D Accomplishments [OSTI]

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  7. Problem-free time-dependent variational principle for open quantum systems

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Problem-free time-dependent variational principle for open quantum systems Citation Details In-Document Search Title: Problem-free time-dependent variational principle for open quantum systems Methods of quantum nuclear wave-function dynamics have become very efficient in simulating large isolated systems using the time-dependent variational principle (TDVP). However, a straightforward extension of the TDVP to the density matrix framework gives rise to

  8. THE EFFECT OF THE PRE-DETONATION STELLAR INTERNAL VELOCITY PROFILE ON THE NUCLEOSYNTHETIC YIELDS IN TYPE Ia SUPERNOVA

    SciTech Connect (OSTI)

    Kim, Yeunjin; Jordan, G. C. IV; Graziani, Carlo; Lamb, D. Q.; Truran, J. W.; Meyer, B. S.

    2013-07-01

    A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned matter produced by the detonation.

  9. WindWaveFloat

    SciTech Connect (OSTI)

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  10. Surface-wave and refraction tomography at the FACT Site, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Abbott, Robert E.; Bartel, Lewis Clark; Pullammanappallil, Satish; Engler, Bruce Phillip

    2006-08-01

    We present a technique that allows for the simultaneous acquisition and interpretation of both shear-wave and compressive-wave 3-D velocities. The technique requires no special seismic sources or array geometries, and is suited to studies with small source-receiver offsets. The method also effectively deals with unwanted seismic arrivals by using the statistical properties of the data itself to discriminate against spurious picks. We demonstrate the technique with a field experiment at the Facility for Analysis, Calibration, and Testing at Sandia National Laboratories, Albuquerque, New Mexico. The resulting 3-D shear-velocity and compressive-velocity distributions are consistent with surface geologic mapping. The averaged velocities and V{sub p}/V{sub s} ratio in the upper 30 meters are also consistent with examples found in the scientific literature.

  11. Wave Propagation Program

    Energy Science and Technology Software Center (OSTI)

    2007-01-08

    WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see User’s Manual [1].

  12. Amplitude variations on the Extreme Adaptive Optics testbed

    SciTech Connect (OSTI)

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  13. QUASI-PERIODIC FAST-MODE WAVE TRAINS WITHIN A GLOBAL EUV WAVE AND SEQUENTIAL TRANSVERSE OSCILLATIONS DETECTED BY SDO/AIA

    SciTech Connect (OSTI)

    Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.; Ofman, Leon

    2012-07-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  14. System and method to estimate compressional to shear velocity (VP/VS) ratio in a region remote from a borehole

    DOE Patents [OSTI]

    Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves

    2012-10-16

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  15. Out-of-plane ultrasonic velocity measurement

    DOE Patents [OSTI]

    Hall, Maclin S.; Brodeur, Pierre H.; Jackson, Theodore G.

    1998-01-01

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated.

  16. Out-of-plane ultrasonic velocity measurement

    DOE Patents [OSTI]

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1998-07-14

    A method for improving the accuracy of measuring the velocity and time of flight of ultrasonic signals through moving web-like materials such as paper, paperboard and the like, includes a pair of ultrasonic transducers disposed on opposing sides of a moving web-like material. In order to provide acoustical coupling between the transducers and the web-like material, the transducers are disposed in fluid-filled wheels. Errors due to variances in the wheel thicknesses about their circumference which can affect time of flight measurements and ultimately the mechanical property being tested are compensated by averaging the ultrasonic signals for a predetermined number of revolutions. The invention further includes a method for compensating for errors resulting from the digitization of the ultrasonic signals. More particularly, the invention includes a method for eliminating errors known as trigger jitter inherent with digitizing oscilloscopes used to digitize the signals for manipulation by a digital computer. In particular, rather than cross-correlate ultrasonic signals taken during different sample periods as is known in the art in order to determine the time of flight of the ultrasonic signal through the moving web, a pulse echo box is provided to enable cross-correlation of predetermined transmitted ultrasonic signals with predetermined reflected ultrasonic or echo signals during the sample period. By cross-correlating ultrasonic signals in the same sample period, the error associated with trigger jitter is eliminated. 20 figs.

  17. The preliminary results: Seismic ambient noise Rayleigh wave tomography around Merapi volcano, central Java, Indonesia

    SciTech Connect (OSTI)

    Trichandi, Rahmantara; Yudistira, Tedi; Nugraha, Andri Dian; Zulhan, Zulfakriza; Saygin, Erdinc

    2015-04-24

    Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Greens function for all possible station pairs. Then we carefully picked the peak of each Greens function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.

  18. Numerical wave propagation on non-uniform one-dimensional staggered grids

    SciTech Connect (OSTI)

    Long, D.; Thuburn, J.

    2011-04-01

    The wave propagation behaviour of centered difference schemes on one-dimensional non-uniform staggered grids is investigated. Previous results for the linear advection equation are extended to the case of the shallow water equations on staggered grids. For waves of a given frequency, the wave field is decomposed into right- and left-propagating components, and a wave energy conservation law is derived in terms of these components. For slowly varying grids, separate evolution equations for the right- and left-propagating components are derived, leading to the result that there is asymptotically no reflection in the limit of a slowly varying grid, provided that waves of that frequency are resolvable. However, there will be reflection from any location at which the wave group velocity goes to zero. The possibility for wave energy to tunnel through a narrow region of the grid too coarse for propagation is noted. Grids with an abrupt jump in resolution are also investigated. It is possible to tailor the scheme at the jump to minimize spurious wave reflection over a range of frequencies provided the waves are resolvable on both sides of the jump. However, it does not appear possible to avoid complete reflection, except by introducing extra dissipation terms, if the waves are not resolvable on one side of the jump. An example is presented of a second-order accurate scheme that spontaneously radiates waves from the resolution jump.

  19. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less

  20. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    SciTech Connect (OSTI)

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodology of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.

  1. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    SciTech Connect (OSTI)

    Aslam, Tariq [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dattelbaum, Dana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gustavsen, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scharff, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byers, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodology of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results, are presented.

  2. Eulerian simulations of collisional effects on electrostatic plasma waves

    SciTech Connect (OSTI)

    Pezzi, Oreste; Valentini, Francesco; Perrone, Denise; Veltri, Pierluigi [Dipartimento di Fisica and CNISM, Universit della Calabria, 87036 Rende (CS) (Italy)] [Dipartimento di Fisica and CNISM, Universit della Calabria, 87036 Rende (CS) (Italy)

    2013-09-15

    The problem of collisions in a plasma is a wide subject with a huge historical literature. In fact, the description of realistic plasmas is a tough problem to attack, both from the theoretical and the numerical point of view. In this paper, a Eulerian time-splitting algorithm for the study of the propagation of electrostatic waves in collisional plasmas is presented. Collisions are modeled through one-dimensional operators of the Fokker-Planck type, both in linear and nonlinear forms. The accuracy of the numerical code is discussed by comparing the numerical results to the analytical predictions obtained in some limit cases when trying to evaluate the effects of collisions in the phenomenon of wave plasma echo and collisional dissipation of Bernstein-Greene-Kruskal waves. Particular attention is devoted to the study of the nonlinear Dougherty collisional operator, recently used to describe the collisional dissipation of electron plasma waves in a pure electron plasma column [M. W. Anderson and T. M. O'Neil, Phys. Plasmas 14, 112110 (2007)]. Finally, for the study of collisional plasmas, a recipe to set the simulation parameters in order to prevent the filamentation problem can be provided, by exploiting the property of velocity diffusion operators to smooth out small velocity scales.

  3. Optimization of High-order Wave Equations for Multicore CPUs

    Energy Science and Technology Software Center (OSTI)

    2011-11-01

    This is a simple benchmark to guage the performance of a high-order isotropic wave equation grid. The code is optimized for both SSE and AVX and is parallelized using OpenMP (see Optimization section). Structurally, the benchmark begins, reads a few command-line parameters, allocates and pads the four arrays (current, last, next wave fields, and the spatially varying but isotropic velocity), initializes these arrays, then runs the benchmark proper. The code then benchmarks the naive, SSEmore » (if supported), and AVX (if supported implementations) by applying the wave equation stencil 100 times and taking the average performance. Boundary conditions are ignored and would noiminally be implemented by the user. THus, the benchmark measures only the performance of the wave equation stencil and not a full simulation. The naive implementation is a quadruply (z,y,x, radius) nested loop that can handle arbitrarily order wave equations. The optimized (SSE/AVX) implentations are somewhat more complex as they operate on slabs and include a case statement to select an optimized inner loop depending on wave equation order.« less

  4. ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES

    SciTech Connect (OSTI)

    Goossens, M.; Van Doorsselaere, T.; Soler, R.; Verth, G.

    2013-05-10

    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  5. Scattering of matter waves in spatially inhomogeneous environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tsitoura, F.; Krüger, P.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2015-03-30

    In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numericallymore » and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed.« less

  6. Scattering of matter waves in spatially inhomogeneous environments

    SciTech Connect (OSTI)

    Tsitoura, F.; Krger, P.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2015-03-30

    In this article, we study scattering of quasi-one-dimensional matter waves at an interface of two spatial domains, one with repulsive and one with attractive interatomic interactions. It is shown that the incidence of a Gaussian wave packet from the repulsive to the attractive region gives rise to generation of a soliton train. More specifically, the number of emergent solitons can be controlled, e.g., by the variation of the amplitude or the width of the incoming wave packet. Furthermore, we study the reflectivity of a soliton incident from the attractive region to the repulsive one. We find the reflection coefficient numerically and employ analytical methods, which treat the soliton as a particle (for moderate and large amplitudes) or a quasilinear wave packet (for small amplitudes), to determine the critical soliton momentum (as a function of the soliton amplitude) for which total reflection is observed.

  7. Single crystal metal wedges for surface acoustic wave propagation

    DOE Patents [OSTI]

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  8. Single crystal metal wedges for surface acoustic wave propagation

    DOE Patents [OSTI]

    Fisher, Edward S. (Wheaton, IL)

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  9. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    SciTech Connect (OSTI)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  10. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect (OSTI)

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  11. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  12. Measurements and modeling of surface waves in drilled shafts in rock

    SciTech Connect (OSTI)

    Kalinski, M.E.; Stokoe, K.H. II; Roesset, J.M.; Cheng, D.S.

    1999-07-01

    Seismic testing was conducted in the WIPP facility in November 1994 by personnel from the Geotechnical Engineering Center at the University of Texas at Austin. Surface wave measurements were made in horizontal drilled shafts in rock salt to characterize the stiffness of the rock around the shafts. The Spectral-Analysis-of-Surface-Waves (SASW) method was used to determine dispersion curves of surface wave velocity versus wavelength. Dispersion curves were measured for surface waves propagating axially and circumferentially in the shafts. Surface wave velocities determined from axial testing increased slightly with increasing wavelength due to the cylindrical geometry of the shafts. On the other hand, surface wave velocities determined from circumferential testing exhibited a completely different type of geometry-induced dispersion. In both instances, finite-element forward modeling of the experimental dispersion curves revealed the presence of a thin, slightly softer disturbed rock zone (DRZ) around the shafts. This phenomenon has been previously confirmed by crosshole and other seismic measurements and is generally associated with relaxation of the individual salt crystals after confirming stress is relieved by excavation.

  13. MACCS2/Deposition Velocity Workshop | Department of Energy

    Office of Environmental Management (EM)

    MACCS2/Deposition Velocity Workshop MACCS2/Deposition Velocity Workshop The Department of Energy's Chief of Nuclear Safety hosted a MACCS2/Deposition Velocity Workshop on June 5-6, 2012, in Germantown, Maryland. Approximately 70 participants attended. The purpose of the workshop was to: Discuss MACCS2 and atmospheric dispersion models as applied to DOE consequence analysis. Discuss implementation of HSS Safety Bulletin 2011-2, Accident Analysis Parameter Update, at field sites. Develop a

  14. Cryogenic Testing of High-Velocity Spoke Cavities

    SciTech Connect (OSTI)

    Hopper, Christopher S.; Delayen, Jean R.; Park, HyeKyoung

    2014-12-01

    Spoke-loaded cavities are being investigated for the high-velocity regime. The relative compactness at low-frequency makes them attractive for applications requiring, or benefiting from, 4 K operation. Additionally, the large velocity acceptance makes them good candidates for the acceleration of high-velocity protons and ions. Here we present the results of cryogenic testing of a 325 MHz, ?0= 0.82 single-spoke cavity and a 500 MHz, ?0 = 1 double-spoke cavity.

  15. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  16. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  17. Standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  18. Property:Current Velocity Range(m/s) | Open Energy Information

    Open Energy Info (EERE)

    Current Velocity Range(ms) Jump to: navigation, search Property Name Current Velocity Range(ms) Property Type String Pages using the property "Current Velocity Range(ms)"...

  19. Property:Maximum Velocity with Constriction(m/s) | Open Energy...

    Open Energy Info (EERE)

    Velocity with Constriction(ms) Jump to: navigation, search Property Name Maximum Velocity with Constriction(ms) Property Type String Pages using the property "Maximum Velocity...

  20. Adaptive multiconfigurational wave functions

    SciTech Connect (OSTI)

    Evangelista, Francesco A.

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  1. USING MICRO-SEISMICITY AND SEISMIC VELOCITIES TO MAP SUBSURFACE...

    Open Energy Info (EERE)

    some cases, although a significant portion of seismicity remains diffuse and does not cluster into sharply defined structures. The seismic velocity structure reveals heterogeneous...

  2. Using Micro-Seismicity and Seismic Velocities to Map Subsurface...

    Open Energy Info (EERE)

    some cases, although a significant portion of seismicity remains diffuse and does not cluster into sharply defined structures. The seismic velocity structure reveals heterogeneous...

  3. Exact seismic velocities for VTI and HTI media and extendedThomsen Formulas for stronger anisotropies

    SciTech Connect (OSTI)

    Berryman, J.G.

    2007-05-14

    I explore a different type of approximation to the exactanisotropic wave velocities as a function of incidence angle invertically transversely isotropic (VTI) media. This method extends theThomsen weak anisotropy approach to stronger anisotropy withoutsignificantly affecting the simplicity of the formulas. One importantimprovement is that the peak of the quasi-SV-wave speed vsv(theta) islocated at the correct incidence angle theta= theta max, rather thanalways being at the position theta = 45o, which universally holds forThomsen's approximation although max theta = 45o is actually nevercorrect for any VTI anisotropic medium. The magnitudes of all the wavespeeds are also more closely approximated for all values of the incidenceangle. Furthermore, the value of theta max (which is needed in the newformulas) can be deduced from the same data that are typically used inthe weak anisotropy data analysis. The two examples presented are basedon systems having vertical fractures. The first set of model fractureshas their axes of symmetry randomly oriented in the horizontal plane.Such a system is then isotropic in the horizontal plane and, therefore,exhibits vertical transverse isotropic (VTI) symmetry. The second set offractures also has axes of symmetry in the horizontal plane, but it isassumed these axes are aligned so that the system exhibits horizontaltransverse isotropic (HTI) symmetry. Both types of systems are easilytreated with the new wave speed formulation.

  4. AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode

    SciTech Connect (OSTI)

    Toomey, Aoife

    2005-01-06

    This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

  5. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOE Patents [OSTI]

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  6. Deflagration Wave Profiles

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  7. Electron acceleration by Z-mode and whistler-mode waves

    SciTech Connect (OSTI)

    Lee, K. H.; Omura, Y.; Lee, L. C.; Institute of Earth Science, Academia Sinica, Nankang, Taiwan

    2013-11-15

    We carried out a series of particle simulations to study electron acceleration by Z-mode and whistler-mode waves generated by an electron ring distribution. The electron ring distribution leads to excitations of X-mode waves mainly in the perpendicular direction, Z-mode waves in the perpendicular and parallel directions, and whistler-mode waves mainly in the parallel direction. The parallel Z- and whistler-mode waves can lead to an effective acceleration of ring electrons. The electron acceleration is mainly determined by the wave amplitude and phase velocity, which in turn is affected by the ratio of electron plasma to cyclotron frequencies. For the initial kinetic energy ranging from 100 to 500 keV, the peak energy of the accelerated electrons is found to reach 28 times the initial kinetic energy. We further study the acceleration process by test-particle calculations in which electrons interact with one, two, or four waves. The electron trajectories in the one-wave case are simple diffusion curves. In the multi-wave cases, electrons are accelerated simultaneously by counter-propagating waves and can have a higher final energy.

  8. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    DOE Patents [OSTI]

    Moos, Daniel (Houston, TX)

    2010-03-09

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  9. Wave Star Energy | Open Energy Information

    Open Energy Info (EERE)

    Star Energy Jump to: navigation, search Name: Wave Star Energy Place: Denmark Zip: DK-2920 Product: Denmark-based private wave device developer. References: Wave Star Energy1...

  10. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin...

  11. MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE

    SciTech Connect (OSTI)

    Hahn, M.; Savin, D. W.

    2013-02-15

    We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

  12. Tracking moving radar targets with parallel, velocity-tuned filters

    DOE Patents [OSTI]

    Bickel, Douglas L.; Harmony, David W.; Bielek, Timothy P.; Hollowell, Jeff A.; Murray, Margaret S.; Martinez, Ana

    2013-04-30

    Radar data associated with radar illumination of a movable target is processed to monitor motion of the target. A plurality of filter operations are performed in parallel on the radar data so that each filter operation produces target image information. The filter operations are defined to have respectively corresponding velocity ranges that differ from one another. The target image information produced by one of the filter operations represents the target more accurately than the target image information produced by the remainder of the filter operations when a current velocity of the target is within the velocity range associated with the one filter operation. In response to the current velocity of the target being within the velocity range associated with the one filter operation, motion of the target is tracked based on the target image information produced by the one filter operation.

  13. Evolution of velocity dispersion along cold collisionless flows

    SciTech Connect (OSTI)

    Banik, Nilanjan; Sikivie, Pierre

    2015-11-17

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.

  14. Elgen Wave | Open Energy Information

    Open Energy Info (EERE)

    Elgen Wave Jump to: navigation, search Name: Elgen Wave Region: United States Sector: Marine and Hydrokinetic Website: www.elgenwave.com This company is listed in the Marine and...

  15. Density waves in the Calogero model - revisited

    SciTech Connect (OSTI)

    Bardek, V. Feinberg, J. Meljanac, S.

    2010-03-15

    The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.

  16. Shock-wave strength properties of boron carbide and silicon carbide

    SciTech Connect (OSTI)

    Grady, D.E.

    1994-02-01

    Time-resolved velocity interferometry measurements have been made on boron carbide and silicon carbide ceramics to assess dynamic equation-of-state and strength properties of these materials. Hugoniot pecursor characteristics, and post-yield shock and release wave properties, indicated markedly different dynamic strength and flow behavior for the two carbides.

  17. Kinetic transverse dispersion relation for relativistic magnetized electron-positron plasmas with Maxwell-Jttner velocity distribution functions

    SciTech Connect (OSTI)

    Lpez, Rodrigo A.; Moya, Pablo S.; Muoz, Vctor; Vias, Adolfo F.; Valdivia, J. Alejandro

    2014-09-15

    We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvn mode. In the low frequency regime, the Alfvn branch has two dispersive zones, the normal zone (where ??/?k?>?0) and an anomalous zone (where ??/?k?waves are damped, and there is a maximum wave number for which the Alfvn branch is suppressed. We also study the dependence of the Alfvn velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.

  18. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  19. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Yang, Liheng; Zhang, Jun; Li, Ting; Liu, Wei; Shen, Yuandeng E-mail: zjun@bao.ac.cn

    2013-09-20

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup 1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wave transit, the original redshift increased by about 3 km s{sup 1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.

  20. Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy...

    Open Energy Info (EERE)

    at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave...

  1. Rotation-induced nonlinear wavepackets in internal waves

    SciTech Connect (OSTI)

    Whitfield, A. J. Johnson, E. R.

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrdinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  2. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous...

  3. Charge Density Wave Compounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have discovered a novel set of properties pertaining to a compound of materials called tritellurides. These compounds, composed of three atoms of tellurium and a single atom of one of the rare earth elements, demonstrate unique electronic properties that can be controlled by altering the temperature of the material. The

  4. Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows

    SciTech Connect (OSTI)

    Uchava, E. S.; Shergelashvili, B. M.; Tevzadze, A. G.; Poedts, S.

    2014-08-15

    We present a linear stability analysis of the perturbation modes in anisotropic magnetohydrodynamic (MHD) flows with velocity shear and strong magnetic field. Collisionless or weakly collisional plasma is described within the 16-momentum MHD fluid closure model that takes into account not only the effect of pressure anisotropy but also the effect of anisotropic heat fluxes. In this model, the low frequency acoustic wave is revealed into a standard acoustic mode and higher frequency fast thermo-acoustic and lower frequency slow thermo-acoustic waves. It is shown that thermo-acoustic waves become unstable and grow exponentially when the heat flux parameter exceeds some critical value. It seems that velocity shear makes thermo-acoustic waves overstable even at subcritical heat flux parameters. Thus, when the effect of heat fluxes is not profound acoustic waves will grow due to the velocity shear, while at supercritical heat fluxes the flow reveals compressible thermal instability. Anisotropic thermal instability should be also important in astrophysical environments, where it will limit the maximal value of magnetic field that a low density ionized anisotropic flow can sustain.

  5. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    SciTech Connect (OSTI)

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; Andr, M.; Jordanova, V. K.

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (20012010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  6. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less

  7. Lower bound on the electroweak wall velocity from hydrodynamic instability

    SciTech Connect (OSTI)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D.

    2015-03-27

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  8. Two-stream instability with time-dependent drift velocity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qin, Hong; Davidson, Ronald C.

    2014-06-26

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  9. Ocean current wave interaction study

    SciTech Connect (OSTI)

    Hayes, J.G.

    1980-09-20

    A numerical model has been developed to incorporate refraction of ocean surface gravity waves by major ocean currents. The model is initialized with directional wave spectra and verified with aircraft synthetic aperture radar X band spectra, laser profilometer spectra, and pitch and roll buoy data. Data collected during the Marineland test experiment are used as surface truth observations for the wave-current study. Evidence of Gulf Stream refraction and trapping of surface waves as well as caustics in the current is shown and modeled assuming a nonuniform Gulf Stream distribution. Frequency and directional resolution of the wave spectral distribution and the current refraction patterns illustrates the need for further study of ocean current-wave interaction in wave refraction studies.

  10. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects

    SciTech Connect (OSTI)

    Amoudache, Samira; Pennec, Yan Djafari Rouhani, Bahram; Khater, Antoine; Lucklum, Ralf; Tigrine, Rachid

    2014-04-07

    We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.

  11. The PDV Velocity History and Shock Arrival Time Analyzer

    Energy Science and Technology Software Center (OSTI)

    2006-08-29

    This software allows the user to analyze heterodyne beat signals generated when a Doppler-shifted laser light interacts with un-shifted laser light. The software analyzes the data in a joint time frequency domain to extract instantaneous velocity.

  12. Prop transport in vertical fractures: settling velocity correlations

    SciTech Connect (OSTI)

    Clark, P.E.; Guler, N.

    1983-03-01

    The settling velocity of propping agents is a critical variable in the calculation of proppant distribution in a fracture. Most computer programs available in the industry today base estimates of settling velocity on a Stokes' Law type calculation. We have found that significant deviations from Stokes' Law settling velocities occur in cross-linked fluids and uncrosslinked fluids (concentrations in excess of 0.48%). This paper discusses experimental results obtained with a dynamic system and the implications which these data have on prop transport calculations. In addition, correlations have been derived which can be used to predict the settling velocities of particles in cross-linked gels. A discussion of these correlations will be included.

  13. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; Shippert, TR; Riihimaki, LD

    2015-07-01

    fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  14. A millimeter wave relativistic backward wave oscillator operating in TM{sub 03} mode with low guiding magnetic field

    SciTech Connect (OSTI)

    Ye, Hu; Wu, Ping; Teng, Yan; Chen, Changhua; Ning, Hui; Song, Zhimin; Cao, Yibing

    2015-06-15

    A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over the other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425?MW and a conversion efficiency of 32% are achieved at 60.5?GHz with an external magnetic field of 1.25?T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.

  15. Influence of the outer-magnetospheric magnetohydrodynamic waveguide on the reflection of hydromagnetic waves from a shear flow at the magnetopause

    SciTech Connect (OSTI)

    Mazur, V. A. Chuiko, D. A.

    2013-12-15

    The coefficient of reflection of a fast magnetosonic wave incident on the magnetosphere from the solar wind is studied analytically in the framework of a plane-stratified model of the medium with allowance for the transverse inhomogeneity of the magnetosphere and a jump of the plasma parameters at the magnetopause. Three factors decisively affecting the properties of reflection are taken into account: the shear flow of the solar wind plasma relative to the magnetosphere; the presence of a magnetospheric magnetohydrodynamic waveguide caused by the transverse plasma inhomogeneity; and the presence of an Alfvn resonance deep in the magnetosphere, where the oscillation energy dissipates. If the solar wind velocity exceeds the wave phase velocity along the magnetopause, then the wave energy in the solar wind is negative and such a wave experiences overreflection. In the opposite case, the wave energy is positive and the wave is reflected only partially. The wave reflection has a pronounced resonant character: the reflection coefficient has deep narrow minima or high narrow maxima at the eigenfrequencies of the magnetospheric waveguide. For other frequencies, the reflection coefficient only slightly differs from unity. The wave energy influx into the magnetosphere is positive for waves with both positive and negative energies. For waves with a negative energy, this is a consequence of their overreflection, because the flux of negative energy carried away by the reflected wave exceeds the incident flux of negative energy.

  16. Nonrelativistic QCD factorization and the velocity dependence of NNLO poles

    Office of Scientific and Technical Information (OSTI)

    in heavy quarkonium production (Journal Article) | SciTech Connect Nonrelativistic QCD factorization and the velocity dependence of NNLO poles in heavy quarkonium production Citation Details In-Document Search Title: Nonrelativistic QCD factorization and the velocity dependence of NNLO poles in heavy quarkonium production We study the transition of a heavy quark pair from octet to singlet color configurations at next-to-next-to-leading order in heavy quarkonium production. We show that the

  17. Longitudinal dispersion coefficient depending on superficial velocity of

    Office of Scientific and Technical Information (OSTI)

    hydrogen isotopes flowing in column packed with zeolite pellets at 77.4 K (Journal Article) | SciTech Connect Longitudinal dispersion coefficient depending on superficial velocity of hydrogen isotopes flowing in column packed with zeolite pellets at 77.4 K Citation Details In-Document Search Title: Longitudinal dispersion coefficient depending on superficial velocity of hydrogen isotopes flowing in column packed with zeolite pellets at 77.4 K Authors have been developing a cryogenic pressure

  18. Noise pair velocity and range echo location system

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-02-16

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution is disclosed. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna. 46 figs.

  19. Noise pair velocity and range echo location system

    DOE Patents [OSTI]

    Erskine, David J. (Oakland, CA)

    1999-01-01

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna.

  20. Spin waves in the (

    SciTech Connect (OSTI)

    Lipscombe, O. J.; Chen, G. F.; Fang, Chen; Perring, T. G.; Abernathy, Douglas L; Christianson, Andrew D; Egami, Takeshi; Wang, Nanlin; Hu, Jiangping; Dai, Pengcheng

    2011-01-01

    We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

  1. Spin Wave Genie

    Energy Science and Technology Software Center (OSTI)

    2015-02-16

    The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce themore » time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.« less

  2. Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma

    SciTech Connect (OSTI)

    Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro E-mail: saito@stelab.nagoya-u.ac.jp

    2014-10-10

    Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90 are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.

  3. Wave Energy Converter Effects on Nearshore Wave Propagation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Converter Effects on Nearshore Wave Propagation Jesse Roberts 1 , Grace Chang *2 , Craig Jones *3 Sandia National Laboratories 1515 Eubank SE, Albuquerque, NM 87123 USA 1...

  4. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect (OSTI)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, Niranjan; Reddy, Kishore; Kotamarthi, Veerabhadra R.; Newsom, Rob K.; Ouarda, Taha B.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  5. The detection of upwardly propagating waves channeling energy from the chromosphere to the low corona

    SciTech Connect (OSTI)

    Freij, N.; Nelson, C. J.; Mumford, S.; Erdlyi, R.; Scullion, E. M.; Wedemeyer, S.

    2014-08-10

    There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardly propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 0.5 km s{sup 1} and a minimum vertical velocity of 42 21 km s{sup 1}. The estimated energy of the waves is around 150 W m{sup 2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.

  6. Statistics, Uncertainty, and Transmitted Variation

    SciTech Connect (OSTI)

    Wendelberger, Joanne Roth

    2014-11-05

    The field of Statistics provides methods for modeling and understanding data and making decisions in the presence of uncertainty. When examining response functions, variation present in the input variables will be transmitted via the response function to the output variables. This phenomenon can potentially have significant impacts on the uncertainty associated with results from subsequent analysis. This presentation will examine the concept of transmitted variation, its impact on designed experiments, and a method for identifying and estimating sources of transmitted variation in certain settings.

  7. Dual output acoustic wave sensor for molecular identification

    DOE Patents [OSTI]

    Frye, Gregory C. (Cedar Crest, NM); Martin, Stephen J. (Albuquerque, NM)

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  8. Wave propagation in an epoxy-graphite laminate

    SciTech Connect (OSTI)

    Clements, B.E.; Johnson, J.N.; Addessio, F.L.

    1997-11-01

    The third-order, nonhomogenized, dynamic method of cells is used to calculate the particle velocity for a shock wave experiment involving an epoxy{endash}graphite laminate. Constitutive relations suitable for the various materials are used. This includes linear and nonlinear elasticity and, when appropriate, viscoelasticity. It is found to be beneficial to incorporate artificial viscosity into the analysis. Artificial viscosity successfully removes the unphysical high-frequency ringing in the numerical solutions of the theory, while leaving the physical oscillations, characteristic of wave propagation in a periodic laminate, largely undiminished. It also allows the viscoelastic relaxed moduli to be closer to their unrelaxed counterparts than in a previous calculation, thus making them more acceptable. The results agree well with the corresponding plate-impact experiment, and are compared to the second-order theory of Clements, Johnson, and Hixson [Phys. Rev. E, {bold 54}, 6876 (1996)]. {copyright} {ital 1997 American Institute of Physics.}

  9. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Basin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaveBasin&oldid596392" Feedback Contact needs updating Image needs updating Reference...

  10. Guided acoustic wave inspection system

    DOE Patents [OSTI]

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  11. Wave | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing...

  12. Wave energy and intertidal productivity

    SciTech Connect (OSTI)

    Leigh, E.G. Jr.; Paine, R.T.; Quinn, J.F.; Suchanek, T.H.

    1987-03-01

    In the northern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 x 10/sup 8/ J, per m/sup 2/ in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms harness wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organism, and protect intertidal residents by knocking away their enemies or preventing them from feeding.

  13. The generation and damping of propagating MHD kink waves in the solar atmosphere

    SciTech Connect (OSTI)

    Morton, R. J.; Verth, G.; Erdlyi, R.; Hillier, A. E-mail: g.verth@sheffield.ac.uk

    2014-03-20

    The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvn and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.

  14. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Compositional Variation Within Hybrid Nanostructures Print Wednesday, 29 September 2010 00:00 The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles

  15. Effect of squeeze on electrostatic Trivelpiece-Gould wave damping

    SciTech Connect (OSTI)

    Ashourvan, Arash; Dubin, Daniel H. E.

    2014-05-15

    We present a theory for increased damping of Trivelpiece-Gouid plasma modes on a nonneutral plasma column, due to application of a Debye shielded cylindrically symmetric squeeze potential φ{sub 1}. We present two models of the effect this has on the plasma modes: a 1D model with only axial dependence, and a 2D model that also keeps radial dependence in the squeezed equilibrium and the mode. We study the models using both analytical and numerical methods. For our analytical studies, we assume that φ{sub 1}/T≪1, and we treat the Debye shielded squeeze potential as a perturbation in the equilibrium Hamiltonian. Our numerical simulations solve the 1D Vlasov-Poisson system and obtain the frequency and damping rate for a self-consistent plasma mode, making no assumptions as to the size of the squeeze. In both the 1D and 2D models, damping of the mode is caused by Landau resonances at energies E{sub n} for which the particle bounce frequency ω{sub b}(E{sub n}) and the wave frequency ω satisfy ω=nω{sub b}(E{sub n}). Particles experience a non-sinusoidal wave potential along their bounce orbits due to the squeeze potential. As a result, the squeeze induces bounce harmonics with n > 1 in the perturbed distribution. The harmonics allow resonances at energies E{sub n}≤T that cause substantial damping, even when wave phase velocities are much larger than the thermal velocity. In the regime ω/k≫√(T/m) (k is the wave number) and T≫φ{sub 1}, the resonance damping rate has a |φ{sub 1}|{sup 2} dependence. This dependence agrees with the simulations and experimental results.

  16. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    SciTech Connect (OSTI)

    Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming

    2014-04-15

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

  17. Effect of parametric resonance on the formation of waves with a broad multiharmonic spectrum during the development of two-stream instability

    SciTech Connect (OSTI)

    Kulish, V. V.; Lysenko, A. V.; Rombovsky, M. Yu.

    2010-07-15

    A cubically nonlinear multiharmonic theory of two-stream instability in a two-velocity relativistic electron beam is constructed with allowance for parametric resonance between harmonics of longitudinal waves of different types, as well as between wave harmonics of the same type. The effect of these two kinds of parametric resonance interaction on the development of two-stream instability is investigated. It is shown that parametric resonance between different types of longitudinal waves excited in a two-velocity beam can substantially affect the development of physical processes in the system under study. It is proposed to use parametric resonance between longitudinal waves of different types to form waves with a prescribed broad multiharmonic spectrum.

  18. Effects of increasing tip velocity on wind turbine rotor design.

    SciTech Connect (OSTI)

    Resor, Brian Ray; Maniaci, David Charles; Berg, Jonathan Charles; Richards, Phillip William

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  19. Ion velocities in a micro-cathode arc thruster

    SciTech Connect (OSTI)

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-06-15

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2 Multiplication-Sign 10{sup 4} m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5 Multiplication-Sign 10{sup 4} m/s were detected for the magnetic field of about 300 mT at distance of about 100-200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  20. Exceptional Ground Accelerations and Velocities Caused by Earthquakes

    SciTech Connect (OSTI)

    Anderson, John

    2008-01-17

    This project aims to understand the characteristics of the free-field strong-motion records that have yielded the 100 largest peak accelerations and the 100 largest peak velocities recorded to date. The peak is defined as the maximum magnitude of the acceleration or velocity vector during the strong shaking. This compilation includes 35 records with peak acceleration greater than gravity, and 41 records with peak velocities greater than 100 cm/s. The results represent an estimated 150,000 instrument-years of strong-motion recordings. The mean horizontal acceleration or velocity, as used for the NGA ground motion models, is typically 0.76 times the magnitude of this vector peak. Accelerations in the top 100 come from earthquakes as small as magnitude 5, while velocities in the top 100 all come from earthquakes with magnitude 6 or larger. Records are dominated by crustal earthquakes with thrust, oblique-thrust, or strike-slip mechanisms. Normal faulting mechanisms in crustal earthquakes constitute under 5% of the records in the databases searched, and an even smaller percentage of the exceptional records. All NEHRP site categories have contributed exceptional records, in proportions similar to the extent that they are represented in the larger database.

  1. Marine pipeline dynamic response to waves from directional wave spectra

    SciTech Connect (OSTI)

    Lambrakos, K.F.

    1982-07-01

    A methodology has been developed to calculate the dynamic probabilistic movement and resulting stresses for marine pipelines subjected to storm waves. A directional wave spectrum is used with a Fourier series expansion to simulate short-crested waves and calculate their loads on the pipeline. The pipeline displacements resulting from these loads are solutions to the time-dependent beam-column equation which also includes the soil resistance as external loading. The statistics of the displacements for individual waves are combined with the wave statistics for a given period of time, e.g. pipeline lifetime, to generate probabilistic estimates for net pipeline movement. On the basis of displacements for specified probability levels the pipeline configuration is obtained from which pipeline stresses can be estimated using structural considerations, e.g. pipeline stiffness, end restraints, etc.

  2. Wave energy absorber mountable on wave-facing structure

    SciTech Connect (OSTI)

    Kondo, H.

    1983-09-13

    A wave energy absorber comprising a caisson mountable on the seaside surface of an existing breakwater or coastal embankment, which caisson has a water chamber with an open side and a rear wall facing the open side. The distance from the open side to the rear wall is longer than one quarter of a wavelength L /SUB c/ in the water chamber so as to generate a standing wave in the water chamber with a node of the standing wave at a distance L /SUB c/ /4 from the rear wall toward the open side. A wave power turbine impeller is pivotally supported in the caisson at the node position, the impeller rotating in only one direction, whereby wave energy is absorbed by the impeller for further conversion into electric or thermal energy. The caisson itself can also be utilized as a breakwater or an embankment.

  3. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    SciTech Connect (OSTI)

    Artemyev, A. V.; Mourenas, D.; Krasnoselskikh, V. V.

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.

  4. Mixing between high velocity clouds and the galactic halo

    SciTech Connect (OSTI)

    Gritton, Jeffrey A.; Shelton, Robin L.; Kwak, Kyujin E-mail: rls@physast.uga.edu

    2014-11-01

    In the Galactic halo, metal-bearing Galactic halo material mixes into high velocity clouds (HVCs) as they hydrodynamically interact. This interaction begins long before the clouds completely dissipate and long before they slow to the velocity of the Galactic material. In order to make quantitative estimates of the mixing efficiency and resulting metal enrichment of HVCs, we made detailed two- and three-dimensional simulations of cloud-interstellar medium interactions. Our simulations track the hydrodynamics and time-dependent ionization levels. They assume that the cloud originally has a warm temperature and extremely low metallicity while the surrounding medium has a high temperature, low density, and substantial metallicity, but our simulations can be generalized to other choices of initial metallicities. In our simulations, mixing between cloud and halo gas noticeably raises the metallicity of the high velocity material. We present plots of the mixing efficiency and metal enrichment as a function of time.

  5. Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions

    SciTech Connect (OSTI)

    Galvao, R. A.; Ziebell, L. F.; Gaelzer, R.; Juli, M. C. de

    2012-12-15

    We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.

  6. On the damping of right hand circularly polarized waves in spin quantum plasmas

    SciTech Connect (OSTI)

    Iqbal, Z.; Hussain, A.; Murtaza, G.; Ali, M.

    2014-12-15

    General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k{sub ?}v?(?+?{sub ce}),(?+?{sub cg}) and (ii) k{sub ?}v?(?+?{sub ce}),(?+?{sub cg}). Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effects can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.

  7. Property:Wind Velocity Range(m/s) | Open Energy Information

    Open Energy Info (EERE)

    Velocity Range(ms) Jump to: navigation, search Property Name Wind Velocity Range(ms) Property Type String Pages using the property "Wind Velocity Range(ms)" Showing 10 pages...

  8. Compressive passive millimeter wave imager

    DOE Patents [OSTI]

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C

    2015-01-27

    A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.

  9. Full wave simulations of fast wave heating losses in the scrape...

    Office of Scientific and Technical Information (OSTI)

    Full wave simulations of fast wave heating losses in the scrape-off layer of NSTX and NSTX-U Citation Details In-Document Search Title: Full wave simulations of fast wave heating...

  10. Clutter in the GMTI range-velocity map.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2009-04-01

    Ground Moving Target Indicator (GMTI) radar maps echo data to range and range-rate, which is a function of a moving target's velocity and its position within the antenna beam footprint. Even stationary clutter will exhibit an apparent motion spectrum and can interfere with moving vehicle detections. Consequently it is very important for a radar to understand how stationary clutter maps into radar measurements of range and velocity. This mapping depends on a wide variety of factors, including details of the radar motion, orientation, and the 3-D topography of the clutter.

  11. Edge Turbulence Velocity Changes with Lithium Coating on NSTX

    SciTech Connect (OSTI)

    Cao, A.; Zweben, S. J.; Stotler, D. P.; Bell, M.; Diallo, A.; Kaye, S. M.; LeBlanc, B.

    2012-08-10

    Lithium coating improves energy confinement and eliminates edge localized modes in NSTX, but the mechanism of this improvement is not yet well understood. We used the gas-puff-imaging (GPI) diagnostic on NSTX to measure the changes in edge turbulence which occurred during a scan with variable lithium wall coating, in order to help understand the reason for the confinement improvement with lithium. There was a small increase in the edge turbulence poloidal velocity and a decrease in the poloidal velocity fluctuation level with increased lithium. The possible effect of varying edge neutral density on turbulence damping was evaluated for these cases in NSTX. __________________________________________________

  12. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  13. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  14. Integrated coherent matter wave circuits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmoreelectric polarizability. Moreover, the source of coherent matter waves is a BoseEinstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.less

  15. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A.; Bakulin, Andrey

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  16. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  17. Symmetries of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves

    SciTech Connect (OSTI)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1996-07-20

    A formulation of Hamiltonian and Lagrangian variational principles, Lie point symmetries and conservation laws for the triple degenerate DNLS equations describing the propagation of weakly nonlinear dispersive MHD waves along the ambient magnetic field, in {beta}{approx}1 plasmas is given. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic point, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a{sub g}{sup 2}=V{sub A}{sup 2} where a{sub g} is the gas sound speed and V{sub A} is the Alfven speed. A discussion is given of the travelling wave similarity solutions of the equations, which include solitary wave and periodic traveling waves. Strongly compressible solutions indicate the necessity for the insertion of shocks in the flow, whereas weakly compressible, near Alfvenic solutions resemble similar, shock free travelling wave solutions of the DNLS equation.

  18. MHK Technologies/C Wave | Open Energy Information

    Open Energy Info (EERE)

    homepage C Wave.jpg Technology Profile Primary Organization C Wave Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The C Wave...

  19. C Wave Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: C-Wave Ltd Place: England, United Kingdom Zip: SO17 1BJ Product: C-Wave is developing an innovative wave power technology using a unique...

  20. Low inlet gas velocity high throughput biomass gasifier

    DOE Patents [OSTI]

    Feldmann, Herman F. (Worthington, OH); Paisley, Mark A. (Upper Arlington, OH)

    1989-01-01

    The present invention discloses a novel method of operating a gasifier for production of fuel gas from carbonaceous fuels. The process disclosed enables operating in an entrained mode using inlet gas velocities of less than 7 feet per second, feedstock throughputs exceeding 4000 lbs/ft.sup.2 -hr, and pressures below 100 psia.

  1. Measurement of turbulent wind velocities using a rotating boom apparatus

    SciTech Connect (OSTI)

    Sandborn, V.A.; Connell, J.R.

    1984-04-01

    The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

  2. Velocity Autocorrelation Functions and Diffusion of Dusty Plasma

    SciTech Connect (OSTI)

    Ramazanov, T. S.; Dzhumagulova, K. N.; Daniyarov, T. T.; Dosbolayev, M. K.; Jumabekov, A. N.

    2008-09-07

    The velocity autocorrelation functions and square displacements were calculated on the basis of experimental data obtained on experimental setup with dc discharge. Computer simulation of the system of dust particles by the method of the Langevin dynamics was performed. The comparisons of experimental and theoretical results are given.

  3. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  4. Forging of compressor blades: Temperature and ram velocity effects

    SciTech Connect (OSTI)

    Saigal, A.; Zhen, K.; Chan, T.S.

    1995-07-01

    Forging is one of the most widely used manufacturing process for making high-strength, structurally integrated, impact and creep-resistant Ti-6Al-4V compressor blades for jet engines. In addition, in modern metal forming technology, finite element analysis method and computer modeling are being extensively employed for initial evaluation and optimization of various processes, including forging. In this study, DEFORM, a rigid viscoplastic two-dimensional finite element code was used to study the effects of initial die temperature and initial ram velocity on the forging process. For a given billet, die temperature and ram velocity influence the strain rate, temperature distribution,and thus the flow stress of the material. The die temperature and the ram velocity were varied over the range 300 to 700 F and 15--25 in./sec, respectively, to estimate the maximum forging load and the total energy required to forge compressor blades. The ram velocity was assumed to vary linearly as a function of stroke. Based on the analysis,it was found the increasing the die temperature from 300 to 700 F decreases the forging loads by 19.9 percent and increases the average temperature of the workpiece by 43 F. Similarly, increasing the initial ram velocity from 15 to 25 in./sec decreases the forging loads by 25.2 percent and increases the average temperature of the workpiece by 36 F. The nodal temperature distribution is bimodal in each case. The forging energy required to forge the blades is approximately 18 kips *in./in.

  5. Mirror force induced wave dispersion in Alfvn waves

    SciTech Connect (OSTI)

    Damiano, P. A.; Johnson, J. R.

    2013-06-15

    Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvn waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror force effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.

  6. Green Ocean Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Energy Jump to: navigation, search Name: Green Ocean Wave Energy Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  7. Wave Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    Wave Wind LLC Jump to: navigation, search Name: Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and...

  8. Wind Waves and Sun | Open Energy Information

    Open Energy Info (EERE)

    Wind Waves and Sun Jump to: navigation, search Name: Wind Waves and Sun Region: United States Sector: Marine and Hydrokinetic Website: www.windwavesandsun.com This company is...

  9. Clean Wave Ventures | Open Energy Information

    Open Energy Info (EERE)

    Wave Ventures Jump to: navigation, search Name: Clean Wave Ventures Place: Indianapolis, Indiana Zip: 46204 Product: Midwest-based venture capital firm specializing in high growth...

  10. Kinetic Wave Power | Open Energy Information

    Open Energy Info (EERE)

    Wave Power Jump to: navigation, search Name: Kinetic Wave Power Address: 2861 N Tupelo St Place: Midland Zip: 48642 Region: United States Sector: Marine and Hydrokinetic Phone...

  11. Triton Sea Wave Technologies | Open Energy Information

    Open Energy Info (EERE)

    Triton Sea Wave Technologies Jump to: navigation, search Name: Triton Sea Wave Technologies Address: 22 A Thrakis Zip: 15669 Region: Greece Sector: Marine and Hydrokinetic Year...

  12. Motor Wave Group | Open Energy Information

    Open Energy Info (EERE)

    Wave Group Jump to: navigation, search Name: Motor Wave Group Place: Hong Kong Region: China Sector: Marine and Hydrokinetic Website: www.motorwavegroup.com This company is listed...

  13. Euro Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Jump to: navigation, search Name: Euro Wave Energy Region: Norway Sector: Marine and Hydrokinetic Website: www.eurowaveenergy.com This company is listed in the Marine...

  14. Dartmouth Wave Energy Searaser | Open Energy Information

    Open Energy Info (EERE)

    Energy Searaser Jump to: navigation, search Name: Dartmouth Wave Energy (Searaser) Place: United Kingdom Product: British firm developing the wave energy converter, Searaser....

  15. Leancon Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Leancon Wave Energy Jump to: navigation, search Name: Leancon Wave Energy Address: Alpedalsvej 37 Place: Kolding Zip: 6000 Region: Denmark Sector: Marine and Hydrokinetic Phone...

  16. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean » Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of

  17. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

    2008-07-30

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  18. HIGH-RESOLUTION OBSERVATIONS AND THE PHYSICS OF HIGH-VELOCITY CLOUD A0

    SciTech Connect (OSTI)

    Verschuur, Gerrit L.

    2013-04-01

    The neutral hydrogen structure of high-velocity cloud A0 (at about -180 km s{sup -1}) has been mapped with a 9.'1 resolution. Gaussian decomposition of the profiles is used to separately map families of components defined by similarities in center velocities and line widths. About 70% of the H I gas is in the form of a narrow, twisted filament whose typical line widths are of the order of 24 km s{sup -1}. Many bright features with narrow line widths of the order of 6 km s{sup -1}, clouds, are located in and near the filament. A third category with properties between those of the filament and clouds appears in the data. The clouds are not always co-located with the broader line width filament emission as seen projected on the sky. Under the assumption that magnetic fields underlie the presence of the filament, a theorem is developed for its stability in terms of a toroidal magnetic field generated by the flow of gas along field lines. It is suggested that the axial magnetic field strength may be derived from the excess line width of the H I emission over and above that due to kinetic temperature by invoking the role of Alfven waves that create what is in essence a form of magnetic turbulence. At a distance of 200 pc the axial and the derived toroidal magnetic field strengths in the filament are then about 6 {mu}G while for the clouds they are about 4 {mu}G. The dependence of the derived field strength on distance is discussed.

  19. The interaction of katabatic winds and mountain waves

    SciTech Connect (OSTI)

    Poulos, G.S.

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  20. Wave-operated power plant

    SciTech Connect (OSTI)

    Ghesquiere, H.

    1980-08-12

    This wave-operated power plant comprises a perforated caisson breakwater in which propellers, or turbines, are mounted in the perforations or openings and drives hydraulic pumps connected thereto, which in turn drives a hydraulic motor coupled to an electric generator. One-way flap valves are mounted in the openings. Some of said flap valves allow the rushing waves to enter the caisson, while the other flap valves allow the water to flow out of the caisson.

  1. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  2. Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals

    SciTech Connect (OSTI)

    Yang Xuefeng [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China); Wang Zhengxiong [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.

  3. Laser generation and detection of longitudinal and shear acoustic waves in a diamond anvil cell

    SciTech Connect (OSTI)

    Chigarev, Nikolay; Zinin, Pavel; Ming Lichung; Amulele, George; Bulou, Alain; Gusev, Vitalyi

    2008-11-03

    Laser ultrasonics in a point-source-point-receiver configuration is applied for the evaluation of elastic properties of nontransparent materials in a diamond anvil cell at high pressures. Measurement of both longitudinal and shear acoustic wave velocities in an iron foil at pressures up to 23 GPa does not require any information in addition to the one obtained by all-optical pump-probe technique.

  4. THE RADIAL VELOCITY EXPERIMENT (RAVE): FOURTH DATA RELEASE

    SciTech Connect (OSTI)

    Kordopatis, G.; Gilmore, G.; Steinmetz, M.; Williams, M. E. K.; Piffl, T.; Enke, H.; Carrillo, I.; Boeche, C.; Roeser, S.; Seabroke, G. M.; Siebert, A.; Zwitter, T.; Binney, J.; De Laverny, P.; Recio-Blanco, A.; Bijaoui, A.; Wyse, R. F. G.; Freeman, K.; Munari, U.; Anguiano, B.; and others

    2013-11-01

    We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar atmospheric parameters are computed using a new pipeline, based on the algorithms of MATISSE and DEGAS. The spectral degeneracies and the Two Micron All Sky Survey photometric information are now better taken into consideration, improving the parameter determination compared to the previous RAVE data releases. The individual abundances for six elements (magnesium, aluminum, silicon, titanium, iron, and nickel) are also given, based on a special-purpose pipeline that is also improved compared to that available for the RAVE DR3 and Chemical DR1 data releases. Together with photometric information and proper motions, these data can be retrieved from the RAVE collaboration Web site and the Vizier database.

  5. Low velocity ion stopping in binary ionic mixtures

    SciTech Connect (OSTI)

    Tashev, Bekbolat; Baimbetov, Fazylkhan; Deutsch, Claude; Fromy, Patrice

    2008-10-15

    Attention is focused on the low ion velocity stopping mechanisms in multicomponent and dense target plasmas built of quasiclassical electron fluids neutralizing binary ionic mixtures, such as, deuterium-tritium of current fusion interest, proton-heliumlike iron in the solar interior or proton-helium ions considered in planetology, as well as other mixtures of fiducial concern in the heavy ion beam production of warm dense matter at Bragg peak conditions. The target plasma is taken in a multicomponent dielectric formulation a la Fried-Conte. The occurrence of projectile ion velocities (so-called critical) for which target electron slowing down equals that of given target ion components is also considered. The corresponding multiquadrature computations, albeit rather heavy, can be monitored analytical through a very compact code operating a PC cluster. Slowing down results are systematically scanned with respect to target temperature and electron density, as well as ion composition.

  6. Apparatus and method for measuring and imaging traveling waves

    DOE Patents [OSTI]

    Telschow, Kenneth L. (Idaho Falls, ID); Deason, Vance A. (Idaho Falls, ID)

    2001-01-01

    An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.

  7. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    49 Doppler Lidar Vertical Velocity Statistics Value-Added Product RK Newsom C Sivaraman TR Shippert LD Riihimaki July 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  8. Vertical dispersion of inertial waves in the upper ocean

    SciTech Connect (OSTI)

    Rubenstein, D.M.

    1983-05-20

    A linear model of the vertical dispersion of near-inertial waves is developed. A porosity distribution near the bottom of the computational domain minimizes bottom reflections and simulates an ocean of the infinite depth. The model is used to show that the vertical dispersion of near-inertial waves in the upper ocean may, under certain conditions, contribute significanlty to the observed rapid decay of inertial oscillations in the surface layer. The kinetic energy of inertial oscillations at mid-latitudes decays with an e folding time scale of 10 days or less, when the parameter lambda(km)/N(cph)d(m) is less than or of the order of unity, where lambda is the wavelength of the wind-generated near-inertial waves, N is the Vaeisaelae frequency in the upper pycnocline, and d is the surface layer thickness. At the top of the pycnocline the model predicts a velocity maximum, which develops as energy propagates downward, out of the surface layer. However, when the upper pycnocline is sufficiently peaked, a resonant frequency interference effect is predicted. This effect modulates the dissipation of surface layer inertial oscillations, and their magnitude after a storm need not decay monotonically. We also make qualitative comparisons with deep-ocean current meter observations taken during the Mixed Layer Experiment (MILE) and with shallow water (105 m) observations taken in the Baltic Sea.

  9. Creating unstable velocity-space distributions with barium injections

    SciTech Connect (OSTI)

    Pongratz, M.B.

    1983-01-01

    Large Debye lengths relative to detector dimensions and the absence of confining walls makes space an attractive laboratory for studying fundamental theories of plasma instabilities. However, natural space plasmas are rarely found displaced from equilibrium enough to permit isolation and diagnosis of the controlling parameters and driving conditions. Furthermore, any plasma or field response to the departure from equilibrium can be masked by noise in the natural system. Active experiments provide a technique for addressing the chicken or egg dilemma. Early thermite barium releases were generally conducted at low altitudes from sounding rockets to trace electric fields passively or to study configuration-space instabilities. One can also study velocity-space instabilities with barium releases. Neutral barium vapor releases wherein a typical speed greatly exceeds the thermal speed can be used to produce barium ion velocity-space distributions that should be subject to a number of microinstabilities. We examine the ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped-charges.

  10. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    SciTech Connect (OSTI)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-08-15

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  11. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  12. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  13. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  14. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  15. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  16. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  17. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  18. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in

  19. Shear wave transducer for boreholes

    DOE Patents [OSTI]

    Mao, N.H.

    1984-08-23

    A technique and apparatus is provided for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data are used to back-calculate the applied stress.

  20. Experimental determination of radiated internal wave power without pressure field data

    SciTech Connect (OSTI)

    Lee, Frank M.; Morrison, P. J. [Physics Department and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 787121192 (United States)] [Physics Department and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 787121192 (United States); Paoletti, M. S.; Swinney, Harry L. [Physics Department, The University of Texas at Austin, Austin, Texas 787121192 (United States)] [Physics Department, The University of Texas at Austin, Austin, Texas 787121192 (United States)

    2014-04-15

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ?. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  1. Supernova 2010as: the lowest-velocity member of a family of flat-velocity type IIb supernovae

    SciTech Connect (OSTI)

    Folatelli, Gastn; Bersten, Melina C.; Nomoto, Ken'ichi [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kuncarayakti, Hanindyo; Hamuy, Mario [Departamento de Astronoma, Universidad de Chile, Casilla 36-D, Santiago (Chile); Olivares Estay, Felipe; Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Holmbo, Simon; Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Maeda, Keiichi [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Morrell, Nidia; Contreras, Carlos; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Frster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120 Piso 7, Santiago (Chile); Prieto, Jos Luis [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Afonso, Paulo; Altenmller, Konrad; Elliott, Jonny, E-mail: gaston.folatelli@ipmu.jp [Max-Planck-Institut fr extraterrestrische Physik, Giessenbachstrae 1, D-85740 Garching (Germany); and others

    2014-09-01

    We present extensive optical and near-infrared photometric and spectroscopic observations of the stripped-envelope supernova SN 2010as. Spectroscopic peculiarities such as initially weak helium features and low expansion velocities with a nearly flat evolution place this object in the small family of events previously identified as transitional Type Ib/c supernovae (SNe). There is ubiquitous evidence of hydrogen, albeit weak, in this family of SNe, indicating that they are in fact a peculiar kind of Type IIb SNe that we name 'flat-velocity' Type IIb. The flat-velocity evolutionwhich occurs at different levels between 6000 and 8000 km s{sup 1} for different SNesuggests the presence of a dense shell in the ejecta. Despite the spectroscopic similarities, these objects show surprisingly diverse luminosities. We discuss the possible physical or geometrical unification picture for such diversity. Using archival Hubble Space Telescope images, we associate SN 2010as with a massive cluster and derive a progenitor age of ?6 Myr, assuming a single star-formation burst, which is compatible with a Wolf-Rayet progenitor. Our hydrodynamical modeling, on the contrary, indicates that the pre-explosion mass was relatively low, ?4 M {sub ?}. The seeming contradiction between a young age and low pre-SN mass may be solved by a massive interacting binary progenitor.

  2. Homogeneous charge engines -- Basis of cyclic variations. Final report

    SciTech Connect (OSTI)

    Whitelaw, J.H.

    1997-06-30

    The objectives of the Grant required investigations of cyclic variations in a homogeneous-charge engine initially with gas combustion and the air from ranging from near quiescent to the incorporation of swirl and tumble by valve inserts. Later experiments were performed with unleaded gasoline. The measurements included local velocity and cylinder pressure through the four strokes of a single-cylinder engine, under motored and firing conditions and with examination of the flame kernel growth by combinations of photography and flame-ionization gauges. In all cases, the measurements of in-cylinder characteristics were linked to performance as measured in terms of speed and its variability, load and emissions. The experiments progressed to consider deviations from homogeneous charge and included consideration of stratified charge with local injection of a rich mixture in the vicinity of the spark gap so as to establish a flame kernel which would propagate securely into an overall weak mixture.

  3. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    SciTech Connect (OSTI)

    Ata-ur-Rahman; National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 ; Ali, S.; Moslem, W. M.; Mushtaq, A.; Department of Physics, Abdul Wali Khan University, Mardan 23200

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical KadomtsevPetviashvili (KP) equation is derived, which can be further transformed into a Kortewegde Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrdinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are strongly influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.

  4. A restoration model of distorted electron density in wave-cutoff probe measurement

    SciTech Connect (OSTI)

    Jun, Hyun-Su Lee, Yun-Seong

    2014-02-15

    This study investigates the problem of electron density distortion and how the density can be restored in a wave-cutoff probe. Despite recent plasma diagnostics research using a wave-cutoff probe, the problem of electron density distortion caused by plasma conditions has not been resolved. Experimental results indicate that electron density measured using the wave-cutoff method is highly susceptible to variations in the probe tip gap. This electron density distortion is caused by the bulk plasma disturbance between probe tips, and it must be removed for calculating the absolute electron density. To do this, a detailed analytic model was developed using the power balance equation near probe tips. This model demonstrates the characteristics of plasma distortion in wave-cutoff probe measurement and successfully restored the absolute value of electron density with varying probe tip gaps.

  5. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    SciTech Connect (OSTI)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G.; Beckwith, Martha A.; Collins, Gilbert W.; Higginbotham, Andrew; Wark, Justin S.; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C.; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B.; Schroer, Christian G.

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  6. Gravitational waves from gravitational collapse

    SciTech Connect (OSTI)

    Fryer, Christopher L; New, Kimberly C

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  7. Low Velocity Sphere Impact of a Borosilicate Glass

    SciTech Connect (OSTI)

    Morrissey, Timothy G; Ferber, Mattison K; Wereszczak, Andrew A; Fox, Ethan E

    2012-05-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Borofloat borosilicate glass, and is a follow-up to a similar study completed by the authors on Starphire soda-lime silicate glass last year. The response of the borosilicate glass to impact testing at different angles was also studied. The Borofloat glass was supplied by the US Army Research Laboratory and its tin-side was impacted or indented. The intent was to better understand low velocity impact response in the Borofloat. Seven sphere materials were used whose densities bracket that of rock: borosilicate glass, soda-lime silicate glass, silicon nitride, aluminum oxide, zirconium oxide, carbon steel, and a chrome steel. A gas gun or a ball-drop test setup was used to produce controlled velocity delivery of the spheres against the glass tile targets. Minimum impact velocities to initiate fracture in the Borofloat were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the seven sphere-Borofloat-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) BS glass responded similarly to soda-lime silicate glass when spherically indented but quite differently under sphere impact conditions; (2) Frictional effects contributed to fracture initiation in BS glass when it spherically indented. This effect was also observed with soda-lime silicate glass; (3) The force necessary to initiate fracture in BS glass under spherical impact decreases with increasing elastic modulus of the sphere material. This trend is opposite to what was observed with soda-lime silicate glass. Friction cannot explain this trend and the authors do not have a legitimate explanation for it yet; (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than under quasi-static conditions. That difference decreases with increasing elastic modulus mismatch between the sphere material and borosilicate This trend was opposite in soda-lime silicate glass; (5) Fracture in borosilicate glass occurs at lower velocities (i.e., easier) at 24{sup o} than at 0{sup o} (orthogonal) and 46{sup o} of impact for the same probability of failure. Though not analyzed yet, this suggests that a convolution of kinetic energy and friction is contributing to that trend; (6) There is a subtle indication there was intra-tile differences in spherical indentation RCIF. This likely is not a material property nor exclusive to borosilicate glass, rather, it is a statistical response of a combination of local, surface-located flaw and imposed tensile stress. Understanding of the surface flaw population and flaw positioning can likely enable prediction of spherical indentation RCIF; and (7) Contact-induced fracture did not initiate in the Borofloat BS for impact kinetic energies up to {approx} 20 mJ. For kinetic energies between {approx} 20-150 mJ, fracture sometimes initiated. Contact-induced fracture would always occur for impact energies > 150 mJ. The energy values, and their boundaries, were much lower for BS glass than they were for soda-lime silicate glass.

  8. Effects of alpha beam on the parametric decay of a parallel propagating circularly polarized Alfven wave: Hybrid simulations

    SciTech Connect (OSTI)

    Gao, Xinliang; Lu, Quanming; Tao, Xin; Hao, Yufei; Wang, Shui

    2013-09-15

    Alfven waves with a finite amplitude are found to be unstable to a parametric decay in low beta plasmas. In this paper, the parametric decay of a circularly polarized Alfven wave in a proton-electron-alpha plasma system is investigated with one-dimensional (1-D) hybrid simulations. In cases without alpha particles, with the increase of the wave number of the pump Alfven wave, the growth rate of the decay instability increases and the saturation amplitude of the density fluctuations slightly decrease. However, when alpha particles with a sufficiently large bulk velocity along the ambient magnetic field are included, at a definite range of the wave numbers of the pump wave, both the growth rate and the saturation amplitude of the parametric decay become much smaller and the parametric decay is heavily suppressed. At these wave numbers, the resonant condition between the alpha particles and the daughter Alfven waves is satisfied, therefore, their resonant interactions might play an important role in the suppression of the parametric decay instability.

  9. Method and apparatus for measuring flow velocity using matched filters

    DOE Patents [OSTI]

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  10. Method and apparatus for measuring flow velocity using matched filters

    DOE Patents [OSTI]

    Raptis, A.C.

    1983-09-06

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  11. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  12. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  13. Pulse Wave Well Development Demonstration

    SciTech Connect (OSTI)

    Burdick, S.

    2001-02-23

    Conventional methods of well development at the Savannah River Site generate significant volumes of investigative derived waste (IDW) which must be treated and disposed of at a regulated Treatment, Storage, or Disposal (TSD) facility. Pulse Wave technology is a commercial method of well development utilizing bursts of high pressure gas to create strong pressure waves through the well screen zone, extending out into the formation surrounding the well. The patented process is intended to reduce well development time and the amount of IDW generated as well as to micro-fracture the formation to improve well capacity.

  14. Global coherence of dust density waves

    SciTech Connect (OSTI)

    Killer, Carsten; Melzer, Andr

    2014-06-15

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  15. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  16. Diversity waves in collapse-driven population dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maslov, Sergei; Sneppen, Kim

    2015-09-14

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g.more » by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.« less

  17. Nonlinear dust acoustic waves in inhomogeneous four-component dusty plasma with opposite charge polarity dust grains

    SciTech Connect (OSTI)

    El-Taibany, W. F.

    2013-09-15

    The reductive perturbation technique is employed to investigate the propagation properties of nonlinear dust acoustic (DA) waves in a four-component inhomogeneous dusty plasma (4CIDP). The 4CIDP consists of both positive- and negative-charge dust grains, characterized by different mass, temperature, and density, in addition to a background of Maxwellian electrons and ions. The inhomogeneity caused by nonuniform equilibrium values of particle densities, fluid velocities, and electrostatic potential leads to a significant modification to the nature of nonlinear DA solitary waves. It is found that this model reveals two DA wave velocities, one slow, ?{sub s}, and the other is fast, ?{sub f}. The nonlinear wave evolution is governed by a modified Kortweg-de Vries equation, whose coefficients are space dependent. Both the two soliton types; compressive and rarefactive are allowed corresponding to ?{sub s}. However, only compressive soliton is created corresponding to ?{sub f}. The numerical investigations illustrate the dependence of the soliton amplitude, width, and velocity on the plasma inhomogeneities in each case. The relevance of these theoretical results with 4CIDPs observed in a multi-component plasma configurations in the polar mesosphere is discussed.

  18. Approval/Variation Request Comment Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EA15PC3041-3-0 Mar. 25, 2003 Rev. 0 Page 1 of 2 ApprovalVariation Request Comment Sheet 1. Page of 2. G APPROVAL REQUEST 3. G VARIATION REQUEST 4. ARVR No. 5. POSubcontract No....

  19. ELLIPSOIDAL VARIABLE V1197 ORIONIS: ABSOLUTE LIGHT-VELOCITY ANALYSIS FOR KNOWN DISTANCE

    SciTech Connect (OSTI)

    Wilson, R. E.; Chochol, D.; KomzIk, R.; Van Hamme, W.; Pribulla, T.; Volkov, I.

    2009-09-01

    V1197 Orionis light curves from a long-term observing program for red giant binaries show ellipsoidal variation of small amplitude in the V and R{sub C} bands, although not clearly in U and B. Eclipses are not detected. All four bands show large irregular intrinsic variations, including fleeting quasi-periodicities identified by power spectra, that degrade analysis and may be caused by dynamical tides generated by orbital eccentricity. To deal with the absence of eclipses and consequent lack of astrophysical and geometrical information, direct use is made of the Hipparcos parallax distance while the V and R{sub C} light curves and (older) radial velocity curves are analyzed simultaneously in terms of absolute flux. The red giant's temperature is estimated from new spectra. This type of analysis, called Inverse Distance Estimation for brevity, is new and can also be applied to other ellipsoidal variables. Advantages gained by utilization of definite distance and temperature are discussed in regard to how radius, fractional lobe filling, and mass ratio information are expressed in the observations. The advantages were tested in solutions of noisy synthetic data. Also discussed and tested by simulations are ideas on the optimal number of light curves to be solved simultaneously under various conditions. The dim companion has not been observed or discussed in the literature but most solutions find its mass to be well below that of the red giant. Solutions show red giant masses that are too low for evolution to the red giant stage within the age of the Galaxy, although that result is probably an artifact of the intrinsic brightness fluctuations.

  20. Radial distribution of compressive waves in the solar corona revealed by Akatsuki radio occultation observations

    SciTech Connect (OSTI)

    Miyamoto, Mayu; Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato; Tokumaru, Munetoshi; Shiota, Daikou; Isobe, Hiroaki; Asai, Ayumi; Husler, Bernd; Ptzold, Martin; Nabatov, Alexander

    2014-12-10

    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ?30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ?6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvn waves. The compressive waves should eventually dissipate through shock generation to heat the corona.

  1. Nonlinear dissipation of circularly polarized Alfven waves due to the beam-induced obliquely propagating waves

    SciTech Connect (OSTI)

    Nariyuki, Y.; Hada, T.; Tsubouchi, K.

    2012-08-15

    In the present study, the dissipation processes of circularly polarized Alfven waves in solar wind plasmas including beam components are numerically discussed by using a 2-D hybrid simulation code. Numerical results suggest that the parent Alfven waves are rapidly dissipated due to the presence of the beam-induced obliquely propagating waves, such as kinetic Alfven waves. The nonlinear wave-wave coupling is directly evaluated by using the induction equation for the parent wave. It is also observed both in the 1-D and 2-D simulations that the presence of large amplitude Alfven waves strongly suppresses the beam instabilities.

  2. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect (OSTI)

    Sati, Priti; Tripathi, V. K.

    2012-12-15

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  3. Characterizing the convective velocity fields in massive stars

    SciTech Connect (OSTI)

    Chatzopoulos, Emmanouil; Graziani, Carlo; Couch, Sean M.

    2014-11-01

    We apply the mathematical formalism of vector spherical harmonics decomposition to convective stellar velocity fields from multidimensional hydrodynamics simulations and show that the resulting power spectra furnish a robust and stable statistical description of stellar convective turbulence. Analysis of the power spectra helps identify key physical parameters of the convective process such as the dominant scale of the turbulent motions that influence the structure of massive evolved pre-supernova stars. We introduce the numerical method that can be used to calculate vector spherical harmonics power spectra from two-dimensional (2D) and three-dimensional (3D) convective shell simulation data. Using this method we study the properties of oxygen shell burning and convection for a 15 M {sub ☉} star simulated by the hydrodynamics code FLASH in 2D and 3D. We discuss the importance of realistic initial conditions to achieving successful core-collapse supernova explosions in multidimensional simulations. We show that the calculated power spectra can be used to generate realizations of the velocity fields of presupernova convective shells. We find that the slope of the solenoidal mode power spectrum remains mostly constant throughout the evolution of convection in the oxygen shell in both 2D and 3D simulations. We also find that the characteristic radial scales of the convective elements are smaller in 3D than in 2D, while the angular scales are larger in 3D.

  4. Discretising the velocity distribution for directional dark matter experiments

    SciTech Connect (OSTI)

    Kavanagh, Bradley J.

    2015-07-13

    Dark matter (DM) direct detection experiments which are directionally-sensitive may be the only method of probing the full velocity distribution function (VDF) of the Galactic DM halo. We present an angular basis for the DM VDF which can be used to parametrise the distribution in order to mitigate astrophysical uncertainties in future directional experiments and extract information about the DM halo. This basis consists of discretising the VDF in a series of angular bins, with the VDF being only a function of the DM speed v within each bin. In contrast to other methods, such as spherical harmonic expansions, the use of this basis allows us to guarantee that the resulting VDF is everywhere positive and therefore physical. We present a recipe for calculating the event rates corresponding to the discrete VDF for an arbitrary number of angular bins N and investigate the discretisation error which is introduced in this way. For smooth, Standard Halo Model-like distribution functions, only N=3 angular bins are required to achieve an accuracy of around 10–30% in the number of events in each bin. Shortly after confirmation of the DM origin of the signal with around 50 events, this accuracy should be sufficient to allow the discretised velocity distribution to be employed reliably. For more extreme VDFs (such as streams), the discretisation error is typically much larger, but can be improved with increasing N. This method paves the way towards an astrophysics-independent analysis framework for the directional detection of dark matter.

  5. DETECTION OF LOW-VELOCITY COLLISIONS IN SATURN'S F RING

    SciTech Connect (OSTI)

    Attree, N. O.; Murray, C. D.; Cooper, N. J.; Williams, G. A.

    2012-08-20

    Jets of material extending several hundred kilometers from Saturn's F ring are thought to be caused by collisions at speeds of several tens of ms{sup -1} between {approx}10 km diameter objects such as S/2004 S 6 and the core of the ring. The subsequent effects of Keplerian shear give rise to the multi-stranded nature of the F ring. Observations of the ring by the Imaging Science Subsystem experiment on the Cassini spacecraft have provided evidence that some smaller protrusions from the ring's core are the result of low-velocity collisions with nearby objects. We refer to these protrusions as 'mini-jets' and one such feature has been observed for {approx}7.5 hr as its length changed from {approx}75 km to {approx}250 km while it simultaneously appeared to collapse into the core. Orbit determinations suggest that such mini-jets consist of ring material displaced by a {approx}1 ms{sup -1} collision with a nearby moonlet, resulting in paths relative to the core that are due to a combination of Keplerian shear and epicyclic motion. Detections of mini-jets in the Cassini images suggest that it may now be possible to understand most small-scale F ring structure as the result of such collisions. A study of these mini-jets will therefore put constraints on the properties of the colliding population as well as improve our understanding of low-velocity collisions between icy objects.

  6. Initial Examination of Low Velocity Sphere Impact of Glass Ceramics

    SciTech Connect (OSTI)

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A; Ferber, Mattison K

    2012-06-01

    This report summarizes US Army TARDEC sponsored work at Oak Ridge National Laboratory (ORNL) involving low velocity (< 30 m/s or < 65 mph) sphere impact testing of two materials from the lithium aluminosilicate family reinforced with different amounts of ceramic particulate, i.e., glass-ceramic materials, SCHOTT Resistan{trademark}-G1 and SCHOTT Resistan{trademark}-L. Both materials are provided by SCHOTT Glass (Duryea, PA). This work is a follow-up to similar sphere impact studies completed by the authors on PPG's Starphire{reg_sign} soda-lime silicate glass and SCHOTT BOROFLOAT{reg_sign} borosilicate glass. A gas gun or a sphere-drop test setup was used to produce controlled velocity delivery of silicon nitride (Si{sub 3}N{sub 4}) spheres against the glass ceramic tile targets. Minimum impact velocities to initiate fracture in the glass-ceramics were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between sphere and target material. Quasistatic spherical indentation was also performed on both glass ceramics and their contact damage responses were compared to those of soda-lime silicate and borosilicate glasses. Lastly, variability of contact damage response was assessed by performing spherical indentation testing across the area of an entire glass ceramic tile. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Resistan{trademark}-L glass ceramic required the highest velocity of sphere impact for damage to initiate. Starphire{reg_sign} soda-lime silicate glass was second best, then Resistan{trademark}-G1 glass ceramic, and then BOROFLOAT{reg_sign} borosilicate glass. (2) Glass-ceramic Resistan{trademark}-L also required the largest force to initiate ring crack from quasi-static indentation. That ranking was followed, in descending order, by Starphire{reg_sign} soda-lime silicate glass, Resistan{trademark}-G1 glass ceramic, and BOROFLOAT{reg_sign} borosilicate glass. (3) Spheres with a lower elastic modulus require less force to initiate fracture in Resistan{trademark}-G1 from quasi-static spherical indentation. This indicates that friction is affecting ring crack initiation in Resistan{trademark}-G1. Friction also affected ring crack initiation in Starphire{reg_sign} soda-lime silicate and BOROFLOAT{reg_sign} borosilicate glasses. Among these three materials, friction was the most pronounced (largest slope in the RCIF-elastic modulus graph) in the Starphire{reg_sign} and least pronounced in the BOROFLOAT{reg_sign}. The reason for this is not understood, but differences in deformation behavior under high contact stresses could be a cause or contributor to this. (4) The force necessary to initiate contact-induced fracture is higher under dynamic conditions than it is under quasi-static conditions in Resistan{trademark}-L and Resistan{trademark}-G1 glass ceramics. This is a trend observed too in Starphire{reg_sign} and BOROFLOAT{reg_sign}. (5) There is a subtle indication there was intra-tile differences in spherical indentation-induced ring crack initiation forces. This is not a material property nor is it exclusive to glass-ceramic Resistan{trademark}-G1 glass ceramic, rather, it is a statistical mechanical response to an accumulated history of processing and handling of that specific tile.

  7. Method for estimation of ocean current velocity from satellite images

    SciTech Connect (OSTI)

    Mollo-Christensen, E.; Cornillon, P.; Da S. Mascarenhas, A. Jr.

    1981-05-08

    Barotropic instability waves on a shear interface propagate at the average speed of the water on the two sides. Assuming the instability to be excited by tidal oscillations, the phase speed is the wavelength divided by the tidal period. If the water is at rest on one side of the shear layer the current speed on the other side can be calculated. This method, applied to the Gulf Stream beyond Cape Hatteras as seen in satellite images, gives estimates of current speed in general agreement with in situ observations.

  8. A chain of winking (oscillating) filaments triggered by an invisible extreme-ultraviolet wave

    SciTech Connect (OSTI)

    Shen, Yuandeng; Tian, Zhanjun; Zhao, Ruijuan; Ichimoto, Kiyoshi; Ishii, Takako T.; Shibata, Kazunari

    2014-05-10

    Winking (oscillating) filaments have been observed for many years. However, observations of successive winking filaments in one event have not yet been reported. In this paper, we present the observations of a chain of winking filaments and a subsequent jet that are observed right after the X2.1 flare in AR11283. The event also produced an extreme-ultraviolet (EUV) wave that has two components: an upward dome-like wave (850 km s{sup 1}) and a lateral surface wave (554 km s{sup 1}) that was very weak (or invisible) in imaging observations. By analyzing the temporal and spatial relationships between the oscillating filaments and the EUV waves, we propose that all the winking filaments and the jet were triggered by the weak (or invisible) lateral surface EUV wave. The oscillation of the filaments last for two or three cycles, and their periods, Doppler velocity amplitudes, and damping times are 11-22 minutes, 6-14 km s{sup 1}, and 25-60 minutes, respectively. We further estimate the radial component magnetic field and the maximum kinetic energy of the filaments, and they are 5-10 G and ?10{sup 19} J, respectively. The estimated maximum kinetic energy is comparable to the minimum energy of ordinary EUV waves, suggesting that EUV waves can efficiently launch filament oscillations on their path. Based on our analysis results, we conclude that the EUV wave is a good agent for triggering and connecting successive but separated solar activities in the solar atmosphere, and it is also important for producing solar sympathetic eruptions.

  9. WETGen (Wave Energy Turbine GENerator) | Open Energy Information

    Open Energy Info (EERE)

    WETGen (Wave Energy Turbine GENerator) Jump to: navigation, search Logo: WETGen (Wave Energy Turbine GENerator) Name WETGen (Wave Energy Turbine GENerator) Place Coos Bay, Oregon...

  10. Sandia Energy - WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC-Sim (Wave Energy Converter SIMulator) Home Stationary Power Energy Conversion Efficiency Water Power WEC-Sim (Wave Energy Converter SIMulator) WEC-Sim (Wave Energy Converter...

  11. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator...

  12. Oregon Wave Energy Trust OWET | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Trust OWET Jump to: navigation, search Name: Oregon Wave Energy Trust (OWET) Place: Portland, Oregon Zip: 97207 Product: String representation "The Oregon Wave ... rgy...

  13. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Che, H.; Goldstein, M. L.

    2014-11-10

    The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a long-time puzzle. In this Letter, based on the current knowledge of nanoflares, we show that the nanoflare-accelerated electron beams are likely to trigger a strong electron two-stream instability that generates kinetic Alfvn wave and whistler wave turbulence, as we demonstrated in a previous paper. We further show that the core-halo feature produced during the origin of kinetic turbulence is likely to originate in the inner corona and can be preserved as the solar wind escapes to space along open field lines. We formulate a set of equations to describe the heating processes observed in the simulation and show that the core-halo temperature ratio of the solar wind is insensitive to the initial conditions in the corona and is related to the core-halo density ratio of the solar wind and to the quasi-saturation property of the two-stream instability at the time when the exponential decay ends. This relation can be extended to the more general core-halo-strahl feature in the solar wind. The temperature ratio between the core and hot components is nearly independent of the heliospheric distance to the Sun. We show that the core-halo relative drift previously reported is a relic of the fully saturated two-stream instability. Our theoretical results are consistent with the observations while new tests for this model are provided.

  14. On quantization of nondispersive wave packets

    SciTech Connect (OSTI)

    Altaisky, M. V.

    2013-10-15

    Nondispersive wave packets are widely used in optics and acoustics. We found it interesting that such packets could be also a subject of quantum field theory. Canonical commutation relations for the nondispersive wave packets are constructed.

  15. Rene Wave Ltd | Open Energy Information

    Open Energy Info (EERE)

    Rene Wave Ltd Jump to: navigation, search Name: Rene Wave Ltd Address: 85 Emmett Ave Suite 2508 Place: Toronto Zip: M6M 5A2 Region: Canada Sector: Marine and Hydrokinetic Phone...

  16. Wave Energy Centre | Open Energy Information

    Open Energy Info (EERE)

    Centre Jump to: navigation, search Name: Wave Energy Centre Address: Wave Energy Centre Av Manuela da Maia 36 R C Dto Place: Lisboa Zip: 1000-201 Region: Portugal Sector: Marine...

  17. Next Wave Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Next Wave Energy Inc Place: Denver,CO, Colorado Zip: 80202 Sector: Renewable Energy Product: NextWave Energy was a consulting firm focused...

  18. Property:Wave Direction | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin + Uni-Directional + Lakefront Tow Tank + Uni-Directional + Los Angeles and Long Beach Harbors Model + Uni-Directional + M MHL 2D WindWave + Uni-Directional + MHL...

  19. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    SciTech Connect (OSTI)

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.

  20. Wave-driven Countercurrent Plasma Centrifuge

    SciTech Connect (OSTI)

    A.J. Fetterman and N.J. Fisch

    2009-03-20

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the ? channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  1. Low velocity impact of inclined CSM composite laminates

    SciTech Connect (OSTI)

    Arnold, W.S.; Madjidi, S.; Marshall, I.H.; Robb, M.D.

    1993-12-31

    The damage tolerance of composite laminates subject to low velocity impact is an important aspect of current design philosophies required to ensure the integrity of primary load bearing structures. To the authors knowledge, no work published in the open literature has addressed the damage tolerance of composites subject to impacts at non-perpendicular inclinations, which in practical situations is the most common form of impact. This paper describes an experimental study, devised to assess the influence of inclined impact on the residual strength characteristics of CSM laminates. Preliminary experimental results and comparisons with previous work on flat plate impact tests are presented. The influence of the degree of inclination and impact energy are correlated with the laminates damage area and residual tensile properties.

  2. Visualizing 3D velocity fields near contour surfaces. Revision 1

    SciTech Connect (OSTI)

    Max, N.; Crawfis, R.; Grant, C.

    1994-08-08

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphics pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  3. Acoustic-velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, E.F.

    1982-09-30

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  4. Acoustic velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, Edwin F. (Alamo, CA)

    1986-01-01

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  5. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    SciTech Connect (OSTI)

    Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.

  6. Multi-reflective acoustic wave device

    DOE Patents [OSTI]

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  7. 3D Elastic Seismic Wave Propagation Code

    Energy Science and Technology Software Center (OSTI)

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  8. THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES

    SciTech Connect (OSTI)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard E-mail: benjamin.chandran@unh.edu E-mail: devore@nrl.navy.mil

    2012-09-20

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  9. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOE Patents [OSTI]

    Mbius, Arnold (Eggenstein, DE); Ives, Robert Lawrence (Saratoga, CA)

    2005-07-19

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  10. Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii July 29, 2015 - 12:00pm Addthis The Azura device sits 30m out from the Wave Energy Test Site (WETS) in Oahu. The Azura device sits 30m out from the Wave Energy Test Site (WETS) in Oahu. With support from the Energy Department and the U.S. Navy, a prototype wave energy device has advanced successfully from initial concept to

  11. Reconstruction of nonlinear wave propagation

    DOE Patents [OSTI]

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  12. Millimeter-wave active probe

    DOE Patents [OSTI]

    Majidi-Ahy, Gholamreza; Bloom, David M.

    1991-01-01

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  13. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  14. A 2.5D boundary element formulation for modeling damped waves in arbitrary cross-section waveguides and cavities

    SciTech Connect (OSTI)

    Mazzotti, M.; Civil, Architectural and Environmental Engineering Department, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104 ; Bartoli, I.; Marzani, A.; Viola, E.

    2013-09-01

    Highlights: Dispersive properties of viscoelastic waveguides and cavities are computed using a regularized 2.5D BEM. Linear viscoelasticity is introduced at the constitutive level by means of frequency dependent complex moduli. A contour integral algorithm is used to solve the nonlinear eigenvalue problem. The Sommerfeld radiation condition is used to select the permissible Riemann sheets. Attenuation of surface waves in cavities approaches the attenuation of Rayleigh waves. -- Abstract: A regularized 2.5D boundary element method (BEM) is proposed to predict the dispersion properties of damped stress guided waves in waveguides and cavities of arbitrary cross-section. The wave attenuation, induced by material damping, is introduced using linear viscoelastic constitutive relations and described in a spatial manner by the imaginary component of the axial wavenumber. The discretized dispersive wave equation results in a nonlinear eigenvalue problem, which is solved obtaining complex axial wavenumbers for a fixed frequency using a contour integral algorithm. Due to the singular characteristics and the multivalued feature of the wave equation, the requirement of holomorphicity inside the contour region over the complex wavenumber plane is fulfilled by the introduction of the Sommerfeld branch cuts and by the choice of the permissible Riemann sheets. A post processing analysis is developed for the extraction of the energy velocity of propagative guided waves. The reliability of the method is demonstrated by comparing the results obtained for a rail and a bar with square cross-section with those obtained from a 2.5D Finite Element formulation also known in literature as Semi Analytical Finite Element (SAFE) method. Next, to show the potential of the proposed numerical framework, dispersion properties are predicted for surface waves propagating along cylindrical cavities of arbitrary cross-section. It is demonstrated that the attenuation of surface waves approaches asymptotically the attenuation of Rayleigh waves.

  15. Evolution of rogue waves in dusty plasmas

    SciTech Connect (OSTI)

    Tolba, R. E. El-Bedwehy, N. A.; Moslem, W. M.; El-Labany, S. K.

    2015-04-15

    The evolution of rogue waves associated with the dynamics of positively charged dust grains that interact with streaming electrons and ions is investigated. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrdinger equation (NLSE). The rational solution of the NLSE is presented, which proposed as an effective tool for studying the rogue waves in Jupiter. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming densities of the ions and electrons. Furthermore, the supersonic rogue waves are much taller than the subsonic rogue waves by ?25 times.

  16. Ponderomotive Forces On Waves In Modulated Media

    SciTech Connect (OSTI)

    Dodin, I.Y; Fisch, Nathaniel

    2014-02-28

    Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same way as ponderomotive wave-particle interactions in high-frequency electromagnetic fi eld. The ponderomotive effect arises when rays of a probe wave scatter off perturbations of the underlying medium produced by a second, modulation wave, much like charged particles scatter off a quasiperiodic field. Parallels with the point-particle dynamics, which itself is generalized by this theory, lead to new methods of wave manipulation, including asymmetric barriers for light.

  17. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM)

    1993-01-01

    A chemical sensor (1) includes two or more pairs of interdigital electrodes (10) having different periodicities. Each pair is comprised of a first electrode (10a) and a second electrode (10b). The electrodes are patterned on a surface of a piezoelectric substrate (12). Each pair of electrodes may launch and receive various acoustic waves (AW), including a surface acoustic wave (SAW), and may also launch and receive several acoustic plate modes (APMs). The frequencies associated with each are functions of the transducer periodicity as well as the velocity of the particular AW in the chosen substrate material. An AW interaction region (13) exists between each pair of electrodes. Circuitry (20, 40) is used to launch, receive, and monitor the propagation characteristics of the AWs and may be configured in an intermittent measurement fashion or in a continuous measurement fashion. Perturbations to the AW velocity and attenuation are recorded at several frequencies and provide the sensor response.

  18. Closed orbit response to quadrupole strength variation (Technical...

    Office of Scientific and Technical Information (OSTI)

    strength variation We derive two formulae relating the variation in closed orbit in a storage ring to variations in quadrupole strength, neglecting nonlinear and dispersive...

  19. Freak waves in white dwarfs and magnetars

    SciTech Connect (OSTI)

    Sabry, R.; Moslem, W. M.; Shukla, P. K.

    2012-12-15

    We report properties of ion acoustic freak waves that propagate in a plasma composed of warm ions and ultrarelativistic electrons and positrons. The dynamics of the nonlinear freak waves is governed by the nonlinear Schroedinger equation. The possible region for the freak waves to exist is defined precisely for typical parameters of white dwarfs and magnetars corona. It is found that for low wave number, the nonlinear ion-acoustic wave packets are structurally stable in magnetars corona than in white dwarfs. However, for large wave numbers the situation is opposite. The critical wave number threshold (k{sub c}), which indicates where the modulational instability sets in, is defined for both applications. It is seen that near to k{sub c} the freak wave amplitude becomes high, but it decreases whenever we stepped away from k{sub c}. For the wave numbers close to k{sub c}, the increase of the unperturbed density ratio of positrons-to-electrons ({beta}) would lead to increase the freak wave amplitude, but for larger wave numbers the amplitude decreases with the increase of {beta}.

  20. [Investigation of ultrasonic wave interactions with fluid-saturated porous rocks]. [Annual report

    SciTech Connect (OSTI)

    Adler, L.

    1992-07-01

    During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.

  1. (Investigation of ultrasonic wave interactions with fluid-saturated porous rocks)

    SciTech Connect (OSTI)

    Adler, L.

    1992-01-01

    During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.

  2. Argonoxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect (OSTI)

    Saikia, Partha, E-mail: partha.008@gmail.com; Saikia, Bipul Kumar; Goswami, Kalyan Sindhu [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup, Assam 782 402 (India); Phukan, Arindam [Madhabdev College, Narayanpur, Lakhimpur, Assam 784164 (India)

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  3. Microsoft Word - S08364_SeasonalVariation

    Office of Legacy Management (LM)

    Groundwater Constituents and Seasonal Variation at the Riverton, Wyoming, Processing Site February 2012 LMS/RVT/S08364 This page intentionally left blank U.S. Department of Energy Evaluation of Groundwater Constituents and Seasonal Variation, Riverton, Wyoming February 2012 Doc. No. S08364 Page 1 Evaluation of Groundwater Constituents and Seasonal Variation at the Riverton, Wyoming, Processing Site Executive Summary Historical groundwater monitoring at the Riverton site included collecting

  4. Wave

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with high heat and humidity levels. Heat and humidity take their toll faster on the elderly, small children, and those with respiratory health problems. ANLERNL-01-08 2...

  5. Interferometric millimeter wave and THz wave doppler radar

    DOE Patents [OSTI]

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  6. Coiled tubing velocity string hangoff method and apparatus

    SciTech Connect (OSTI)

    Gipson, T.C.

    1991-07-02

    This patent describes a method for hanging off a coiled tube velocity string in an active gas production well tubing run, the run having at least a master valve and a first line valve. It includes installing a hangoff assembly in the production well tubing run between the master valve and the first line valve the hangoff assembly comprising a hangoff head, a second line valve, an upper valve, and a hydraulic packoff valve, the hangoff head further comprising a threaded body member, a slip bowl and a threaded cap; inserting through the hydraulic packoff valve, the upper valve, and the hangoff head, coiled tubing for fluid communication with well gases and fluids in the production well tubing run, the coiled tubing having a first downhole end being open to immediately receive and conduct the gases and fluids; opening gas and fluid communication between the production well tubing run and the open end of the coiled tubing whereby the well gases and fluid may pass up through the coiled tubing, the hangoff head sealing the gases and fluids from passing to the hydraulic packoff valve, the upper valve and the second line valve; further inserting the coiled tubing to a desired depth in the production well tubing run; and rotating the cap of the hangoff head to expose the slip bowl.

  7. Radiation Hydrodynamics Test Problems with Linear Velocity Profiles

    SciTech Connect (OSTI)

    Hendon, Raymond C.; Ramsey, Scott D.

    2012-08-22

    As an extension of the works of Coggeshall and Ramsey, a class of analytic solutions to the radiation hydrodynamics equations is derived for code verification purposes. These solutions are valid under assumptions including diffusive radiation transport, a polytropic gas equation of state, constant conductivity, separable flow velocity proportional to the curvilinear radial coordinate, and divergence-free heat flux. In accordance with these assumptions, the derived solution class is mathematically invariant with respect to the presence of radiative heat conduction, and thus represents a solution to the compressible flow (Euler) equations with or without conduction terms included. With this solution class, a quantitative code verification study (using spatial convergence rates) is performed for the cell-centered, finite volume, Eulerian compressible flow code xRAGE developed at Los Alamos National Laboratory. Simulation results show near second order spatial convergence in all physical variables when using the hydrodynamics solver only, consistent with that solver's underlying order of accuracy. However, contrary to the mathematical properties of the solution class, when heat conduction algorithms are enabled the calculation does not converge to the analytic solution.

  8. Low inlet gas velocity high throughput biomass gasifier

    SciTech Connect (OSTI)

    Feldmann, H.F.; Paisley, M.A.

    1989-05-09

    A method is described for operating a gasifier which comprises: introducing inlet gas at a velocity of about 0.5 to 7 ft/sec to fluidize a bed in a gasifier vessel; forming the bed into a fluidized bed in a first space region by means of the inlet gas, the fluidized bed containing a circulating hot relatively fine and inert solid bed particle component; inputting and throughputting carbonaceous material into and through the first space region with fluidized bed at a rate from 500-4400 lbs/ft/sup 2/-hr; endothermally pyrolyzing the carbonaceous material by means of the circulating hot inert particle component so as to form a product gas; forming contiguous to and above the fluidized bed a lower average density entrained space region containing an entrained mixture of inert solid particles, char, and carbonaceous material and the product gas; gradually and continuously removing the entrained mixture and the product gas from the lower average density entrained space region of the gasifier to a separator, residence time of the carbonaceous material in the gasifier not exceeding 3 minutes on average; separating the entrained mixture from the product gas; passing the entrained mixture containing inert solid particles, char, and carbonaceous material through an exothermic reaction zone to add heat; and returning at least the inert solid particles to the first space region.

  9. GLOBAL CORONAL SEISMOLOGY IN THE EXTENDED SOLAR CORONA THROUGH FAST MAGNETOSONIC WAVES OBSERVED BY STEREO SECCHI COR1

    SciTech Connect (OSTI)

    Kwon, Ryun-Young; Kramar, Maxim; Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.; Chae, Jongchul; Zhang, Jie

    2013-10-10

    We present global coronal seismology for the first time, which allows us to determine inhomogeneous magnetic field strength in the extended corona. From the measurements of the propagation speed of a fast magnetosonic wave associated with a coronal mass ejection (CME) and the coronal background density distribution derived from the polarized radiances observed by the STEREO SECCHI COR1, we determined the magnetic field strengths along the trajectories of the wave at different heliocentric distances. We found that the results have an uncertainty less than 40%, and are consistent with values determined with a potential field model and reported in previous works. The characteristics of the coronal medium we found are that (1) the density, magnetic field strength, and plasma ? are lower in the coronal hole region than in streamers; (2) the magnetic field strength decreases slowly with height but the electron density decreases rapidly so that the local fast magnetosonic speed increases while plasma ? falls off with height; and (3) the variations of the local fast magnetosonic speed and plasma ? are dominated by variations in the electron density rather than the magnetic field strength. These results imply that Moreton and EIT waves are downward-reflected fast magnetosonic waves from the upper solar corona, rather than freely propagating fast magnetosonic waves in a certain atmospheric layer. In addition, the azimuthal components of CMEs and the driven waves may play an important role in various manifestations of shocks, such as type II radio bursts and solar energetic particle events.

  10. NONLINEAR WAVE INTERACTIONS AS EMISSION PROCESS OF TYPE II RADIO BURSTS

    SciTech Connect (OSTI)

    Ganse, Urs; Kilian, Patrick; Spanier, Felix; Vainio, Rami

    2012-06-01

    The emission of fundamental and harmonic frequency radio waves of type II radio bursts are assumed to be products of three-wave interaction processes of beam-excited Langmuir waves. Using a particle-in-cell code, we have performed simulations of the assumed emission region, a coronal mass ejection foreshock with two counterstreaming electron beams. Analysis of wavemodes within the simulation shows self-consistent excitation of beam-driven modes, which yield interaction products at both fundamental and harmonic emission frequencies. Through variation of the beam strength, we have investigated the dependence of energy transfer into electrostatic and electromagnetic modes, confirming the quadratic dependence of electromagnetic emission on electron beam strength.

  11. Alfvn wave coupled with flow-driven fluid instability in interpenetrating plasmas

    SciTech Connect (OSTI)

    Vranjes, J.

    2015-05-15

    The Alfvn wave is analyzed in case of one quasineutral plasma propagating with some constant speed v{sub 0} through another static quasineutral plasma. A dispersion equation is derived describing the Alfvn wave coupled with the flow driven mode ?=kv{sub 0} and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfvn waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfvn speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case, it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate solutions. The Alfvn wave in interpenetrating plasmas is thus modified and coupled with the flow-driven mode and this coupled mode is shown to be growing when the flow speed is large enough. The energy for the instability is macroscopic kinetic energy of the flowing plasma. The dynamics of plasma particles caused by such a coupled wave still remains similar to the ordinary Alfvn wave. This means that well-known stochastic heating by the Alfvn wave may work, and this should additionally support the potential role of the Alfvn wave in the coronal heating.

  12. Electron acoustic wave driven vortices with non-Maxwellian hot electrons in magnetoplasmas

    SciTech Connect (OSTI)

    Haque, Q.; Mirza, Arshad M.; Zakir, U.

    2014-07-15

    Linear dispersion characteristics of the Electron Acoustic Wave (EAW) and the corresponding vortex structures are investigated in a magnetoplasma in the presence of non-Maxwellian hot electrons. In this regard, kappa and Cairns distributed hot electrons are considered. It is noticed that the nonthermal distributions affect the phase velocity of the EAW. Further, it is found that the phase velocity of EAW increases for Cairns and decreases for kappa distributed hot electrons. Nonlinear solutions in the form of dipolar vortices are also obtained for both stationary and non-stationary ions in the presence of kappa distributed hot electrons and dynamic cold electrons. It is found that the amplitude of the nonlinear vortex structures also reduces with kappa factor like the electron acoustic solitons.

  13. Sound velocity of tantalum under shock compression in the 18–142 GPa range

    SciTech Connect (OSTI)

    Xi, Feng Jin, Ke; Cai, Lingcang Geng, Huayun; Tan, Ye; Li, Jun

    2015-05-14

    Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.

  14. Determination of plasma velocity from light fluctuations in a cutting torch

    SciTech Connect (OSTI)

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2009-09-01

    Measurements of plasma velocities in a 30 A high energy density cutting torch are reported. The velocity diagnostic is based on the analysis of the light fluctuations emitted by the arc which are assumed to propagate with the flow velocity. These light fluctuations originate from plasma temperature and plasma density fluctuations mainly due to hydrodynamic instabilities. Fast photodiodes are employed as the light sensors. The arc core velocity was obtained from spectrally filtered light fluctuations measurements using a band-pass filter to detect light emission fluctuations emitted only from the arc axis. Maximum plasma jet velocities of 5000 m s{sup -1} close to the nozzle exit and about 2000 m s{sup -1} close to the anode were found. The obtained velocity values are in good agreement with those values predicted by a numerical code for a similar torch to that employed in this work.

  15. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    K. Coppersmith; R. Quittmeyer

    2005-02-16

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10{sup -8}. For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the horizontal PGV hazard curve for the waste emplacement level. The relation of this analysis to other work feeding the seismic consequence abstraction and the TSPA is shown on Figure 1-1. The ground motion hazard results from the PSHA provide the basis for inputs to a site-response model that determines the effect of site materials on the ground motion at a location of interest (e.g., the waste emplacement level). Peak ground velocity values determined from the site-response model for the waste emplacement level are then used to develop time histories (seismograms) that form input to a model of drift degradation under seismic loads potentially producing rockfall. The time histories are also used to carry out dynamic seismic structural response calculations of the drip shield and waste package system. For the drip shield, damage from seismically induced rockfall also is considered. In the seismic consequence abstraction, residual stress results from the structural response calculations are interpreted in terms of the percentage of the component (drip shield, waste package) damaged as a function of horizontal PGV. The composite hazard curve developed in this analysis, which reflects the results of site-response modeling and the bound to credible horizontal PGV at the waste emplacement level, also feeds the seismic consequence abstraction. The composite hazard curve is incorporated into the TSPA sampling process to bound horizontal PGV and related seismic consequences to values that are credible.

  16. DEPOSITION VELOCITY ESTIMATION WITH THE GENII V2 SOFTWARE

    SciTech Connect (OSTI)

    Hutchins, H.

    2012-04-23

    In 2010, the Department of Energy (DOE) Chief of Nuclear Safety and Office of Health, Safety and Security (HSS), with the support of industry experts in atmospheric sciences and accident dose consequences analysis, performed detailed analyses of the basis for the dry deposition velocity (DV) values used in the MACCS2 computer code. As a result of these analyses, DOE concluded that the historically used default DV values of 1 centimeter/second (cm/s) for unfiltered/unmitigated releases and 0.1 cm/s for filtered/mitigated releases may not be reasonably conservative for all DOE sites and accident scenarios. HSS recently issued Safety Bulletin 2011-02, Accident Analysis Parameter Update, recommending the use of the newly developed default DV, 0.1 cm/s for an unmitigated/unfiltered release. Alternatively site specific DV values can be developed using GENII version 2 (GENII v2) computer code. Key input parameters for calculating DV values include surface roughness, maximum wind speed for calm, particle size, particle density and meteorological data (wind speed and stability class). This paper will include reasonably conservative inputs, and a truncated parametric study. In lieu of the highly-conservative recommended DV value (0.1cm/s) for unmitigated/unfiltered release, GENII v2 has been used to justify estimated 95th percentile DV values. Also presented here are atmospheric dilution factors ({chi}/Q values) calculated with the MACCS2 code using the DV values form GENII v2, {chi}/Q values calculated directly with GENII v2, and a discussion of these results compare with one another. This paper will give an overview of the process of calculating DV with GENII v2 including a discussion of the sensitivity of input parameters.

  17. Emergent cosmological constant from colliding electromagnetic waves

    SciTech Connect (OSTI)

    Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr

    2014-11-01

    In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

  18. Refrigeration system having standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S. (Glen Allen, VA)

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  19. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION

    Office of Scientific and Technical Information (OSTI)

    FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA (Journal Article) | SciTech Connect ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA Citation Details In-Document Search Title: THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a

  20. Regional Wave Field Modeling and Array Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1C Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop - Broomfield, CO July 9 th , 2012 Regional Wave Field Modeling and Array Effects Outline  Overview of SNL's Large-Scale Wave and WEC Array Modeling Activities * WEC Farm Modeling on Roadmap * SNL Current Modeling Capabilities * SNL WEC Farm Model Tool Development WEC Farm Modeling  WEC Farms * Currently focused on improving large scale wave models for environmental assessments WEC Farm Modeling: WEC

  1. ARM - Lesson Plans: Moving Water and Waves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moving Water and Waves Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Moving Water and Waves Objective The objective of this activity is to enable students to demonstrate how wind causes water to move and generate waves and how water pressure causes water to move from higher

  2. Ocean floor mounting of wave energy converters

    DOE Patents [OSTI]

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  3. HELICAL BLOWOUT JETS IN THE SUN: UNTWISTING AND PROPAGATION OF WAVES

    SciTech Connect (OSTI)

    Lee, E. J.; Archontis, V.; Hood, A. W.

    2015-01-01

    We report on a numerical experiment of the recurrent onset of helical ''blowout'' jets in an emerging flux region. We find that these jets are running with velocities of ?100-250 km s{sup 1} and they transfer a vast amount of heavy plasma into the outer solar atmosphere. During their emission, they undergo an untwisting motion as a result of reconnection between the twisted emerging and the non-twisted pre-existing magnetic field in the solar atmosphere. For the first time in the context of blowout jets, we provide direct evidence that their untwisting motion is associated with the propagation of torsional Alfvn waves in the corona.

  4. Test Loop Demonstration and Evaluation of Slurry Transfer Line Critical Velocity Measurement Instruments

    SciTech Connect (OSTI)

    Bontha, Jagannadha R.; Jenks, Jeromy WJ; Morgen, Gerald P.; Peters, Timothy J.; Wilcox, Wayne A.; Adkins, Harold E.; Burns, Carolyn A.; Greenwood, Margaret S.; MacFarlan, Paul J.; Denslow, Kayte M.; Schonewill, Philip P.; Blanchard, Jeremy; Baer, Ellen BK

    2010-07-31

    This report presents the results of the evaluation of three ultrasonic sensors for detecting critical velocity during slurry transfer between the Hanford tank farms and the WTP.

  5. Use of traveltime skips in refraction analysis to delineate velocity inversion

    SciTech Connect (OSTI)

    Tewari, H.C.; Dixit, M.M.; Murty, P.R.K.

    1995-08-01

    First arrival refraction data does not normally provide any indication of the velocity inversion problem. However, under certain favorable circumstances, when the low-velocity layer (LVL) is considerably thicker than the overlying higher-velocity layer (HVL), the velocity inversion can be seen in the form of a traveltime skip. Model studies show that in such cases the length of the HVL traveltime branch can be used to determine the thickness of the HVL and the magnitude of the traveltime skip in order to determine the thickness of the LVL. This is also applicable in the case of field data.

  6. MHK ISDB/Sensors/Vented Wave Sensor | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  7. MHK ISDB/Instruments/ACM-WAVE-PLUS | Open Energy Information

    Open Energy Info (EERE)

    Velocity Planar Measurement (Current), 3D Velocity Volumetric Measurement (Current), Density (Ice), Direction (Ice), Speed (Ice), Thickness (Ice), Pressure (Tidal), Sea Surface...

  8. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect (OSTI)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  9. SeWave | Open Energy Information

    Open Energy Info (EERE)

    50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References:...

  10. Wave Power Plant Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Wave Power Plant Inc Address: 2563 Granite Park Dr Place: Lincoln Zip: 95648 Region: United States Sector: Marine and Hydrokinetic Phone...

  11. Lower Hybrid to Whistler Wave Conversion

    SciTech Connect (OSTI)

    Winske, Dan

    2012-07-16

    In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

  12. European Wave and Tidal Energy Conference

    Broader source: Energy.gov [DOE]

    The European Wave and Tidal Energy Conference (EWTEC) series are international, technical and scientific conferences, focussed on ocean renewable energy and widely respected for their commitment to...

  13. Apparatus for utilizing the energy of wave swells and waves

    SciTech Connect (OSTI)

    Dubois, Y.; Dubois, F.Y.

    1983-07-05

    The invention involves a device for utilizing the energy from sea swells and waves. The device is characterized by the combination of: (a) a vessel adapted to follow the regular undulations of sea swells at a place of anchorage, and constructed in a manner to face the swells so as to pitch and not to roll while anchored; (b) air cylinders disposed at least at one extremity of the vessel to moderate more or less the amplitude of the pitching; (c) watertight compartments containing a liquid; (d) prime movers, such as continuously powered turbines, located in the path of the liquid and suited to harness energy from the liquid as it moves so as to supply mechanical energy to at least one rotatable shaft; and (e) liquid deflectors located at the extremities of each water-tight compartment.

  14. EERE Success Story-Catching a Wave: Innovative Wave Energy Device...

    Broader source: Energy.gov (indexed) [DOE]

    The Azura device sits 30m out from the Wave Energy Test Site (WETS) in Oahu. The Azura device sits 30m out from the Wave Energy Test Site (WETS) in Oahu. With support from the ...

  15. MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open...

    Open Energy Info (EERE)

    float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005 Technology Dimensions Device Testing Date Submitted 48:21.4 <<...

  16. Three-dimensional electromagnetic Monte Carlo particle-in-cell simulations of critical ionization velocity experiments in space

    SciTech Connect (OSTI)

    Wang, J.; Biasca, R.; Liewer, P.C.

    1996-01-01

    Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper the authors move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In their model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location. 32 refs., 8 figs., 2 tabs.

  17. Electrostatic wave structures in a magnetized superthermal plasma with two-temperature electrons

    SciTech Connect (OSTI)

    Shahmansouri, M.; Alinejad, H.

    2013-08-15

    The linear and nonlinear excitation of arbitrary amplitude ion-acoustic (IA) solitary waves in a magnetized plasma comprising two-temperature electrons and cold ions are studied. The oblique propagation properties of two possible modes (in the linear regime) are investigated. It is found that the electron superthermality reduces the phase velocities of both modes, whereas obliqueness leads to an increase in the separation between two modes. In the nonlinear regime, an energy-like equation describes the evolution of IA solitary waves in the present model. The combined effects of the electron superthermality, magnitude of magnetic field, obliqueness and electron population are incorporated in the study of the existence domain of solitary waves and the soliton characteristics. It is shown that the small values of the hot electron population shift the permitted interval of Mach number to the lower values. Both compressive and rarefactive solitary structures are found to exist in the presence of two temperature electrons. The present investigation contributes to the physics of electrostatic wave structures in Saturn's magnetosphere in which two temperature electrons with kappa distribution exist.

  18. Dust magneto-gravitational drift wave in gB configuration

    SciTech Connect (OSTI)

    Salahshoor, M. Niknam, A. R.

    2014-11-15

    The dispersion relation of electrostatic waves in a magnetized complex plasma under gravity is presented. It is assumed that the waves propagate perpendicular to the external fields. The effects of weak electric field, neutral drag force, and ion drag force are also taken into account. The dispersion relation is numerically examined in an appropriate parameter space in which the gravity plays the dominant role in the dynamics of magnetized microparticles. The numerical results show that an unstable low frequency drift wave can be developed in the long wavelength limit. This unstable mode is transformed into an aperiodic stationary structure at a cut-off wavenumber. Furthermore, the influence of the external fields on the dispersion properties is analyzed. It is shown that the instability is essentially due to the EB drift motion of plasma particles. However, in the absence of weak electric field, the gB drift motion of microparticles can cause the instability in a wide range of wavenumbers. It is also found that by increasing the magnetic field strength, the wave frequency is first increased and then decreased. This behaviour is explained by the existence of an extremum point in the dust magneto-gravitational drift velocity.

  19. NO TRANSIT TIMING VARIATIONS IN WASP-4

    SciTech Connect (OSTI)

    Petrucci, R.; Schwartz, M.; Buccino, A. P.; Mauas, P. J. D.; Jofr, E.; Cneo, V.; Gmez, M.; Martnez, C.

    2013-12-20

    We present six new transits of the system WASP-4. Together with 28 light curves published in the literature, we perform a homogeneous study of its parameters and search for variations in the transits' central times. The final values agree with those previously reported, except for a slightly lower inclination. We find no significant long-term variations in i or R{sub P} /R {sub *}. The O-C mid-transit times do not show signs of transit timing variations greater than 54s.

  20. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect (OSTI)

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy� to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  1. System and method for investigating sub-surface features and 3D imaging of non-linear property, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation

    DOE Patents [OSTI]

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-06-02

    A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resulting from linear interaction and the three dimensional image of is generated.

  2. surf_cg

    Energy Science and Technology Software Center (OSTI)

    1998-06-01

    Purpose of the program is to perform a tomographic inversion of surface wave dispersion measurements for group velocity. Seismic tomography is a basic technique to get lateral variations in earth parameters (such as velocities) from a suite of path measurements.

  3. THE BEHAVIOR OF TRANSVERSE WAVES IN NONUNIFORM SOLAR FLUX TUBES. I. COMPARISON OF IDEAL AND RESISTIVE RESULTS

    SciTech Connect (OSTI)

    Soler, Roberto; Terradas, Jaume; Oliver, Ramn; Goossens, Marcel

    2013-11-10

    Magnetohydrodynamic (MHD) waves are ubiquitously observed in the solar atmosphere. Kink waves are a type of transverse MHD waves in magnetic flux tubes that are damped due to resonant absorption. The theoretical study of kink MHD waves in solar flux tubes is usually based on the simplification that the transverse variation of density is confined to a nonuniform layer much thinner than the radius of the tube, i.e., the so-called thin boundary approximation. Here, we develop a general analytic method to compute the dispersion relation and the eigenfunctions of ideal MHD waves in pressureless flux tubes with transversely nonuniform layers of arbitrary thickness. Results for kink waves are produced and compared with fully numerical resistive MHD eigenvalue computations in the limit of small resistivity. We find that the frequency and resonant damping rate are the same in both ideal and resistive cases. The actual results for thick nonuniform layers deviate from the behavior predicted in the thin boundary approximation and strongly depend on the shape of the nonuniform layer. The eigenfunctions in ideal MHD are very different from those in resistive MHD. The ideal eigenfunctions display a global character regardless of the thickness of the nonuniform layer, while the resistive eigenfunctions are localized around the resonance and are indistinguishable from those of ordinary resistive Alfvn modes. Consequently, the spatial distribution of wave energy in the ideal and resistive cases is dramatically different. This poses a fundamental theoretical problem with clear observational consequences.

  4. Efficient transformer for electromagnetic waves

    DOE Patents [OSTI]

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  5. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect (OSTI)

    Kaladze, T.; I.Vekua Institute of Applied Mathematics, Tbilisi State University, 0186 Georgia ; Mahmood, S.

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  6. Density variations and anomalies in palladium compacts

    SciTech Connect (OSTI)

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  7. Density variations and anomalies in palladium compacts

    SciTech Connect (OSTI)

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  8. WindWaveFloat Final Report

    SciTech Connect (OSTI)

    Alla Weinstein, Dominique Roddier, Kevin Banister

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  9. Controller for a wave energy converter

    DOE Patents [OSTI]

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  10. Wave Energy Resource Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wave Energy Resource Assessment Office presentation icon 52_wave_resource_assessment_epri_jacobson.ppt More Documents & Publications OTEC resource assessment OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) Whitestone Power & Communications (TRL 1 2 3 System) - Whitestone Poncelet RISEC Project

  11. Understanding Variation in Partition Coefficient, Kd, Values

    National Nuclear Security Administration (NNSA)

    Office of Air and Radiation EPA 402-R-99-004A Environmental Protection August 1999 Agency UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, K d , VALUES Volume I: The K d Model, Methods of Measurement, and Application of Chemical Reaction Codes UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, K d , VALUES Volume I: The K d Model, Methods of Measurement, and Application of Chemical Reaction Codes August 1999 A Cooperative Effort By: Office of Radiation and Indoor Air Office of Solid Waste and

  12. Comparison of formulas for resonant interactions between energetic electrons and oblique whistler-mode waves

    SciTech Connect (OSTI)

    Li, Jinxing; Bortnik, Jacob; Thorne, Richard M.; Xie, Lun Pu, Zuyin; Fu, Suiyan; Guo, Ruilong; Chen, Lunjin; Ni, Binbin; Tao, Xin; Yao, Zhonghua

    2015-05-15

    Test particle simulation is a useful method for studying both linear and nonlinear wave-particle interactions in the magnetosphere. The gyro-averaged equations of particle motion for first-order and other cyclotron harmonic resonances with oblique whistler-mode waves were first derived by Bell [J. Geophys. Res. 89, 905 (1984)] and the most recent relativistic form was given by Ginet and Albert [Phys. Fluids B 3, 2994 (1991)], and Bortnik [Ph.D. thesis (Stanford University, 2004), p. 40]. However, recently we found there was a (?1){sup l?1} term difference between their formulas of perpendicular motion for the lth-order resonance. This article presents the detailed derivation process of the generalized resonance formulas, and suggests a check of the signs for self-consistency, which is independent of the choice of conventions, that is, the energy variation equation resulting from the momentum equations should not contain any wave magnetic components, simply because the magnetic field does not contribute to changes of particle energy. In addition, we show that the wave centripetal force, which was considered small and was neglect in previous studies of nonlinear interactions, has a profound time derivative and can significantly enhance electron phase trapping especially in high frequency waves. This force can also bounce the low pitch angle particles out of the loss cone. We justify both the sign problem and the missing wave centripetal force by demonstrating wave-particle interaction examples, and comparing the gyro-averaged particle motion to the full particle motion under the Lorentz force.

  13. Relativistic electron acceleration by oblique whistler waves

    SciTech Connect (OSTI)

    Yoon, Peter H.; School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 ; Pandey, Vinay S.; Lee, Dong-Hun

    2013-11-15

    Test-particle simulations of electrons interacting with finite-amplitude, obliquely propagating whistler waves are carried out in order to investigate the acceleration of relativistic electrons by these waves. According to the present findings, an efficient acceleration of relativistic electrons requires a narrow range of oblique propagation angles, close to the whistler resonance cone angle, when the wave amplitude is held constant at relatively low value. For a constant wave propagation angle, it is found that a range of oblique whistler wave amplitudes permits the acceleration of relativistic electrons to O(MeV) energies. An initial distribution of test electrons is shown to form a power-law distribution when plotted in energy space. It is also found that the acceleration is largely uniform in electron pitch-angle space.

  14. Surface acoustic wave dust deposition monitor

    DOE Patents [OSTI]

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  15. Velocity scaling for filament motion in scrape-off layer plasmas

    SciTech Connect (OSTI)

    Kube, R.; Garcia, O. E.

    2011-10-15

    The velocity scaling for isolated plasma filaments in non-uniformly magnetized plasmas with respect to filament amplitude and cross-field size has been investigated by means of numerical simulations. The model includes electric currents due to magnetic gradient and curvature drifts, polarization drifts, and parallel currents through sheaths, where the magnetic field lines intersect material walls. In the ideal limit, the radial velocity of the filament increases with the square root of its size. When sheath currents dominate over polarization currents, the filament velocity is inversely proportional to the square of its size. In the presence of sheath currents, the velocity is maximum for an intermediate filament size determined by the balance between diamagnetic, polarization, and sheath currents. The parameter dependence of this filament size and velocity is elucidated. The results are discussed in the context of blob-like structures in basic laboratory plasma experiments and in the scrape-off layer of magnetically confined plasmas.

  16. Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma

    SciTech Connect (OSTI)

    Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)] [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)

    2014-04-15

    We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ? log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.

  17. Extracting Short Rise-Time Velocity Profiles with Digital Down-Shift Analysis of Optically Up-Converted PDV Data

    SciTech Connect (OSTI)

    Abel Diaz, Nathan Riley, Cenobio Gallegos, Matthew Teel, Michael Berninger, Thomas W. Tunnell

    2010-09-08

    This work describes the digital down-shift (DDS) technique, a new method of extracting short rise-time velocity profiles in the analysis of optically up-converted PDV data. The DDS technique manipulates the PDV data by subtracting a constant velocity (i.e., the DDS velocity ?DDS) from the velocity profile. DDS exploits the simple fact that the optically up-converted data ride on top of a base velocity (?0, the apparent velocity at no motion) with a rapid rise to a high velocity (?f) of a few km/s or more. Consequently, the frequency content of the signal must describe a velocity profile that increases from ?0 to ?0 + ?f. The DDS technique produces velocity reversals in the processed data before shock breakout when ?0 < ?DDS < ?0 + ?f. The DDS analysis process strategically selects specific DDS velocities (velocity at which the user down shifts the data) that produce anomalous reversals (maxima and/or minima), which are predictable and easy to identify in the mid-range of the data. Additional analysis determines when these maxima and minima occur. By successive application of the DDS technique and iterative analysis, velocity profiles are extracted as time as a function of velocity rather than as a function of time as it would be in a conventional velocity profile. Presented results include a description of DDS, velocity profiles extracted from laser-driven shock data with rise times of 200 ps or less, and a comparison with other techniques.

  18. Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint

    SciTech Connect (OSTI)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-08-24

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  19. Low-frequency elastic waves alter pore-scale colloid mobilization

    SciTech Connect (OSTI)

    Beckham, Richard Edward; Abdel-fattah, Amr I; Roberts, Peter M; Ibrahim, Reem; Tarimala, Sownitri

    2009-01-01

    Naturally occurring seismic events and artificially generated low-frequency elastic waves have been observed to alter the production rates of oil and water wells, sometimes increasing and sometimes decreasing production, and to influence the turbidity of water wells. TEe decreases in production are of particular concern - especially when artificially generated elastic waves are applied as a method for enhanced oil recovery. The exact conditions that result in a decrease in production remain unknown. While the underlying environment is certainly complex, the observed increase in water well turbidity after seismic events suggests the existence of a mechanism that can affect both the subsurface flow paths and mobilization of in-situ colloidal particles. This paper explores the macroscopic and microscopic effects of elastic wave stimulations on the release of colloidal particles and investigates the microscopic mechanism of particle release during stimulation. Experiments on a column packed with 1-mm borosilicate beads loaded with polystyrene microspheres demonstrate that low-frequency elastic wave stimulations enhance the mobilization of captured microspheres. Increasing the intensity of the stimulations increases the number of microspheres released and can also result in cyclical variations in effluent microsphere concentration during and after stimulations. Under a prolonged period of stimulation, the cyclical effluent variations coincided with fluctuations in the column pressure data. This behavior can be attributed to flow pathways fouling and/or rearrangements of the beads in the column. Optical microscopy observations of the beads during low frequency oscillations reveal that the individual beads rotate, thereby rubbing against each other and scraping off portions of the adsorbed microspheres. These results support the theory that mechanical interactions between soil grains are important mechanisms in flow path alteration and the mobilization of naturally occurring colloidal particles during elastic wave stimulation. These results also point to both continuous and discrete, en masse releases of colloidal particles.

  20. MHK Technologies/WaveStar | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage WaveStar.jpg Technology Profile Primary Organization Wave Star Energy Project(s) where this technology is utilized *MHK ProjectsWave Star Energy 1...

  1. Property:Wave Period Range(s) | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:Wave Period Range(s) Jump to: navigation, search Property Name Wave Period Range(s) Property Type String Pages using the property "Wave...

  2. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks ofmore » both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.« less

  3. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    SciTech Connect (OSTI)

    Syracuse, E. M.; Maceira, M.; Zhang, H.; Thurber, C. H.

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local Vp, Vs, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond the flanks of both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-Vp features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-Vp region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.

  4. Wave-particle Interactions In Rotating Mirrors

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in EB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  5. Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields

    DOE Patents [OSTI]

    Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.

    1984-04-19

    In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.

  6. Using the depth-velocity-size diagram to interpret equilibrium bed configurations in river flows

    SciTech Connect (OSTI)

    Southard, J.B. (Massachusetts Institute of Technology, Cambridge, MA (USA))

    1990-05-01

    Data from flume studies that report equilibrium bed configuration as well as water temperature, flow depth, flow velocity, and sediment size were used to develop the best approximation to the relationships among the various bed phases (ripples, dunes, lower regime plane bed, upper regime plane bed, and antidunes) in a three-axis graph (depth-velocity-size diagram) with dimensionless measures of mean flow depth, mean flow velocity, and sediment size along the axis. Relationships are shown in a series of depth-velocity and velocity-size sections through the diagram. Boundaries between bed-phase stability fields are drawn as surfaces that minimize, misplacement of data points. A large subset of the data, for which reliable values of bed shear stress are reported, was also used to represent the stability relationships in a graph of dimensionless boundary shear stress against dimensionless sediment size, but with results less useful for fluvial flow interpretation. The diagram covers about one order of magnitude in flow depth. To be useful for river flows, the diagram must be extrapolated in flow depth by about one more order of magnitude, but this is not a serious problem for approximate work. The depth-velocity-size diagram permits prediction of equilibrium bed configuration in river flows when the approximate flow depth and mean flow velocity are known. Because the diagram is essentially dimensionless, the effect of water temperature (via the fluid viscosity) on the bed configuration is easily accounted for by use of the diagram.

  7. Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse

    SciTech Connect (OSTI)

    Hughes, James S.; Deng, Zhiqun; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong

    2011-11-22

    Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by providing a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if they become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) at the Bonneville Dam second powerhouse (B2) intended to increase the guidance of juvenile salmonids into the juvenile bypass system (JBS) have resulted in high mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters (ADV) in the gatewell slot at Units 12A and 14A of B2. From the measurements collected the average approach velocity, sweep velocity, and the root mean square (RMS) value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS varied but were mostly less than 0.3 m/s. The sweep velocities also showed large variances across the face of the VBS with most measurements being less than 1.5 m/s. This study revealed that the approach velocities exceeded criteria recommended by NOAA Fisheries and Washington State Department of Fish and Wildlife intended to improve fish passage conditions.

  8. Alignments of the galaxies in and around the Virgo cluster with the local velocity shear

    SciTech Connect (OSTI)

    Lee, Jounghun; Rey, Soo Chang; Kim, Suk

    2014-08-10

    Observational evidence is presented for the alignment between the cosmic sheet and the principal axis of the velocity shear field at the position of the Virgo cluster. The galaxies in and around the Virgo cluster from the Extended Virgo Cluster Catalog that was recently constructed by Kim et al. are used to determine the direction of the local sheet. The peculiar velocity field reconstructed from the Sloan Digital Sky Survey Data Release 7 is analyzed to estimate the local velocity shear tensor at the Virgo center. Showing first that the minor principal axis of the local velocity shear tensor is almost parallel to the direction of the line of sight, we detect a clear signal of alignment between the positions of the Virgo satellites and the intermediate principal axis of the local velocity shear projected onto the plane of the sky. Furthermore, the dwarf satellites are found to appear more strongly aligned than their normal counterparts, which is interpreted as an indication of the following. (1) The normal satellites and the dwarf satellites fall in the Virgo cluster preferentially along the local filament and the local sheet, respectively. (2) The local filament is aligned with the minor principal axis of the local velocity shear while the local sheet is parallel to the plane spanned by the minor and intermediate principal axes. Our result is consistent with the recent numerical claim that the velocity shear is a good tracer of the cosmic web.

  9. Wave Energy Converter System Requirements and Performance Metrics

    Broader source: Energy.gov [DOE]

    The Energy Department and Wave Energy Scotland are holding a joint workshop on wave energy converter (WEC) system requirements and performance metrics on Friday, February 26.

  10. MHK Technologies/Indian Wave Energy Device IWAVE | Open Energy...

    Open Energy Info (EERE)

    Indian Wave Energy Device IWAVE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Indian Wave Energy Device IWAVE.jpg Technology Profile Primary...

  11. Wave propagation in anisotropic elastic materials and curvilinear...

    Office of Scientific and Technical Information (OSTI)

    Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method Citation Details In-Document Search Title: Wave...

  12. Shear horizontal surface acoustic wave microsensor for Class...

    Office of Scientific and Technical Information (OSTI)

    Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection. Citation Details In-Document Search Title: Shear horizontal surface acoustic wave...

  13. MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...

    Open Energy Info (EERE)

    New Knowledge Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge...

  14. L-Shaped Flume Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers...

  15. Using Radio Waves to Control Fusion Plasma Density

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics ...

  16. Green Wave Energy Corp GWEC | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Corp GWEC Jump to: navigation, search Name: Green Wave Energy Corp GWEC Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in...

  17. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed...

    Office of Scientific and Technical Information (OSTI)

    Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media Citation Details In-Document Search Title: Equivalent Continuum Modeling for Shock Wave Propagation in...

  18. Gravitational waves and the scale of inflation (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Gravitational waves and the scale of inflation Citation Details In-Document Search Title: Gravitational waves and the scale of inflation Authors: Mirbabayi, Mehrdad ; Senatore, ...

  19. A New Mechanism of Charge Density Wave Discovered in Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 A New Mechanism of Charge Density Wave Discovered in Transition Metal Dichalcogenides Charge density waves (CDW) are a type of coupled electronic-lattice instability found in...

  20. Negative Effective Gravity in Water Waves by Periodic Resonator...

    Office of Scientific and Technical Information (OSTI)

    Negative Effective Gravity in Water Waves by Periodic Resonator Arrays Prev Next Title: Negative Effective Gravity in Water Waves by Periodic Resonator Arrays Authors: Hu,...

  1. Open Ocean Aquaculture & Wave Energy Site | Open Energy Information

    Open Energy Info (EERE)

    Aquaculture & Wave Energy Site Jump to: navigation, search Basic Specifications Facility Name Open Ocean Aquaculture & Wave Energy Site Overseeing Organization University of New...

  2. Mapping and Assessment of the United States Ocean Wave Energy...

    Broader source: Energy.gov (indexed) [DOE]

    analysis and results of a rigorous assessment of the United States ocean wave energy resource. Mapping and Assessment of the United States Ocean Wave Energy Resource More Documents...

  3. Characterization of Heat-Wave Propagation through Laser-Driven...

    Office of Scientific and Technical Information (OSTI)

    Characterization of Heat-Wave Propagation through Laser-Driven Ti-Doped Underdense Plasma Citation Details In-Document Search Title: Characterization of Heat-Wave Propagation...

  4. Supersonic Heat Wave Propagation in Laser-Produced Underdense...

    Office of Scientific and Technical Information (OSTI)

    Conference: Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation Citation Details In-Document Search Title: Supersonic Heat Wave...

  5. Supersonic Heat Wave Propagation in Laser-Produced Underdense...

    Office of Scientific and Technical Information (OSTI)

    Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation Citation Details In-Document Search Title: Supersonic Heat Wave Propagation in...

  6. 3-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 3-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC)...

  7. MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy...

    Open Energy Info (EERE)

    with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following...

  8. Impurity states in multiband s -wave superconductors: Analysis...

    Office of Scientific and Technical Information (OSTI)

    Impurity states in multiband s -wave superconductors: Analysis of iron pnictides Citation Details In-Document Search Title: Impurity states in multiband s -wave superconductors:...

  9. Development of Feedforward Control Strategies for Wave Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wave and Tidal Find More Like This Return to Search Development of Feedforward Control Strategies for Wave Energy Conversion Technologies National Renewable Energy...

  10. Characteristics of seismic waves from Soviet peaceful nuclear...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt Citation Details In-Document Search Title: Characteristics of seismic waves from...

  11. BlueWave Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    BlueWave Capital LLC Jump to: navigation, search Name: BlueWave Capital LLC Place: Boston, Massachusetts Sector: Renewable Energy Product: Knowledge-based investment firm focused...

  12. 5-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers (ERDC)...

  13. 1.5-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    .5-ft Wave Flume Facility Jump to: navigation, search Basic Specifications Facility Name 1.5-ft Wave Flume Facility Overseeing Organization United States Army Corp of Engineers...

  14. MHK Technologies/DEXA Wave Converter | Open Energy Information

    Open Energy Info (EERE)

    Click here Wave Technology Type Click here Attenuator Technology Description The wave energy conversion is similar to other devices There is no data publicly available...

  15. California Wave Energy Partners LLC | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Partners LLC Jump to: navigation, search Name: California Wave Energy Partners LLC Address: 1590 Reed Road Place: Pennington Zip: 8534 Region: United States Sector:...

  16. Wave Dragon ApS | Open Energy Information

    Open Energy Info (EERE)

    Denmark Country: Denmark Zip: DK-2200 Sector: Marine and Hydrokinetic Product: Wave energy converter development company. Has patented the Wave Dragon, an offshore floating...

  17. Danish Wave Energy Development Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Development Ltd Jump to: navigation, search Name: Danish Wave Energy Development Ltd Place: Gentofte, Denmark Zip: 2820 Product: Original developer and now holding...

  18. Ocean Wave Energy Company OWECO | Open Energy Information

    Open Energy Info (EERE)

    Energy Company OWECO Jump to: navigation, search Name: Ocean Wave Energy Company (OWECO) Place: Bristol, Rhode Island Sector: Ocean Product: Wave energy device developer. The...

  19. MHK Technologies/WAVE ENERGY CONVERTER | Open Energy Information

    Open Energy Info (EERE)

    WAVE ENERGY CONVERTER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Wave Technology Type...

  20. MHK Technologies/The Crestwing Wave Energy Converter | Open Energy...

    Open Energy Info (EERE)

    Crestwing Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Crestwing Wave Energy Converter.jpg Technology Profile...

  1. MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter...

    Open Energy Info (EERE)

    Magnetohydrodynamic MHD Wave Energy Converter MWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Magnetohydrodynamic MHD Wave Energy...

  2. MHK Technologies/Floating wave Generator | Open Energy Information

    Open Energy Info (EERE)

    homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator...

  3. MHK Technologies/WaveSurfer | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage WaveSurfer.jpg Technology Profile Primary Organization Green Energy Industries Inc Technology Resource Click here Wave Technology Type Click here...

  4. Measuring Tiny Waves with High Power Particle Beams | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring Tiny Waves with High Power Particle Beams American Fusion News Category: U.S. Universities Link: Measuring Tiny Waves with High Power Particle Beams...

  5. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    SciTech Connect (OSTI)

    Mandel, Kaisey S.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II ?6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B V and B R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B V and B R color differences between HV and NV groups are 0.06 0.02 and 0.09 0.02 mag, respectively. A linear model finds significant slopes of 0.021 0.006 and 0.030 0.009 mag (10{sup 3} km s{sup 1}){sup 1} for intrinsic B V and B R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as 0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.

  6. WEC-Sim (Wave Energy Converter - SIMulator)

    Energy Science and Technology Software Center (OSTI)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-sourcemore » code to model WECs.« less

  7. Standing gravitational waves from domain walls

    SciTech Connect (OSTI)

    Gogberashvili, Merab; Myrzakul, Shynaray; Singleton, Douglas

    2009-07-15

    We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.

  8. Wave soldering with Pb-free solders

    SciTech Connect (OSTI)

    Artaki, I.; Finley, D.W.; Jackson, A.M.; Ray, U.; Vianco, P.T.

    1995-07-01

    The manufacturing feasibility and attachment reliability of a series of newly developed lead-free solders were investigated for wave soldering applications. Some of the key assembly aspects addressed included: wettability as a function of board surface finish, flux activation and surface tension of the molten solder, solder joint fillet quality and optimization of soldering thermal profiles. Generally, all new solder formulations exhibited adequate wave soldering performance and can be considered as possible alternatives to eutectic SnPb for wave soldering applications. Further process optimization and flux development is necessary to achieve the defect levels associated with the conventional SnPb process.

  9. Protective, Modular Wave Power Generation System

    SciTech Connect (OSTI)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  10. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect (OSTI)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  11. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    SciTech Connect (OSTI)

    Peralta, J.; Lpez-Valverde, M. A.; Imamura, T.; Read, P. L.; Luz, D.; Piccialli, A.

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studiedacoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  12. Contribution from cosmological scalar perturbations to the angular velocity spectrum of extragalactic sources

    SciTech Connect (OSTI)

    Marakulin, A. O. Sazhina, O. S.; Sazhin, M. V.

    2012-07-15

    The possibility of the influence of adiabatic scalar perturbations on the angular velocity spectrum of extragalactic sources is considered. The multipole expansion coefficients of the angular velocity field in terms of vector spherical harmonics are calculated. We show that there is no contribution from adiabatic perturbations to the angular spectrum for a spatially flat Universe at the dusty stage, while there is a contribution only to the electric multiple coefficients at the stage of {Lambda}-term domination. The cases of long-wavelength and short-wavelength perturbations are considered separately. The relationship between the multipole angular velocity spectrum and the primordial scalar perturbation spectrum is discussed.

  13. ARM - PI Product - Cloud-Scale Vertical Velocity and Turbulent Dissipation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Retrievals ProductsCloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files

  14. The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation

    Office of Scientific and Technical Information (OSTI)

    for MaxBCG Galaxy Clusters (Journal Article) | SciTech Connect The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for MaxBCG Galaxy Clusters Citation Details In-Document Search Title: The Mean and Scatter of the Velocity Dispersion-Optical Richness Relation for MaxBCG Galaxy Clusters The distribution of galaxies in position and velocity around the centers of galaxy clusters encodes important information about cluster mass and structure. Using the maxBCG galaxy cluster

  15. Measurement of velocity deficit at the downstream of a 1:10 axial hydrokinetic turbine model

    SciTech Connect (OSTI)

    Gunawan, Budi; Neary, Vincent S; Hill, Craig; Chamorro, Leonardo

    2012-01-01

    Wake recovery constrains the downstream spacing and density of turbines that can be deployed in turbine farms and limits the amount of energy that can be produced at a hydrokinetic energy site. This study investigates the wake recovery at the downstream of a 1:10 axial flow turbine model using a pulse-to-pulse coherent Acoustic Doppler Profiler (ADP). In addition, turbine inflow and outflow velocities were measured for calculating the thrust on the turbine. The result shows that the depth-averaged longitudinal velocity recovers to 97% of the inflow velocity at 35 turbine diameter (D) downstream of the turbine.

  16. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial scale plant. It is important to understand that the purpose of this study was to establish baseline scenarios based on basic device data that was provided to use by the manufacturer for illustrative purposes only.

  17. Quark mass variation constraints from Big Bang nucleosynthesis...

    Office of Scientific and Technical Information (OSTI)

    Quark mass variation constraints from Big Bang nucleosynthesis Citation Details In-Document Search Title: Quark mass variation constraints from Big Bang nucleosynthesis We study...

  18. Regional Variation in Residential Heat Pump Water Heater Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Variation in Residential Heat Pump Water Heater Performance in the United States Regional Variation in Residential Heat Pump Water Heater Performance in the United States ...

  19. APPROVAL/VARIATION REQUEST (AR/VR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APPROVAL/VARIATION REQUEST (AR/VR) EA15PC3041-2-0 May 30, 2013 Rev. 5 Page 1 of 2 Supplier - enter/complete all applicable blanks and check-boxes (in accordance with attached instructions). 1. APPROVAL REQUEST 2. VARIATION REQUEST - Yes No 3. PO/Subcontract No. 4. AR/VR No. 5. Resubmittal 6. Supplier Company Name 7. Describe request in detail (attach additional documents, if necessary). Reference or list applicable specifications, drawings, document numbers, equipment numbers, etc. If Approval

  20. Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions

    SciTech Connect (OSTI)

    Yu, Y.; Li, Y.

    2011-10-01

    This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

  1. Apparatus and method for generating mechanical waves

    DOE Patents [OSTI]

    Allensworth, D.L.; Chen, P.J.

    1982-10-25

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  2. Fast wave evanescence in filamentary boundary plasmas

    SciTech Connect (OSTI)

    Myra, J. R.

    2014-02-15

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed.

  3. Apparatus and method for generating mechanical waves

    DOE Patents [OSTI]

    Allensworth, Dwight L. (Albuquerque, NM); Chen, Peter J. (Albuquerque, NM)

    1985-01-01

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  4. Particle physics. Positrons ride the wave

    SciTech Connect (OSTI)

    Piot, Philippe

    2015-08-26

    Experiments reveal that positrons the antimatter equivalents of electrons can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electronpositron particle colliders.

  5. 12th Annual Wave & Tidal 2015

    Broader source: Energy.gov [DOE]

    The UK is currently the undisputed global leader in marine energy, with more wave and tidal stream devices installed than the rest of the world combined. This leading position is built on an...

  6. Renewable Energy Wave Pumps | Open Energy Information

    Open Energy Info (EERE)

    Technology Database. This company is involved in the following MHK Technologies: Wave Water Pump WWP This article is a stub. You can help OpenEI by expanding it. Retrieved from...

  7. Wave Energy AS | Open Energy Information

    Open Energy Info (EERE)

    AS Jump to: navigation, search Name: Wave Energy AS Address: Opstadveien 11C Place: Aalgaard Zip: 4330 Region: Norway Sector: Marine and Hydrokinetic Phone Number: (+47) 51 6109 30...

  8. Wave Energy Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Technologies Inc Jump to: navigation, search Name: Wave Energy Technologies Inc Address: 270 Sandy Cove Rd Place: Ketch Harbour Zip: B3V 1K9 Region: Canada Sector: Marine and...

  9. Accurate evaluation of pionium wave functions

    SciTech Connect (OSTI)

    Suebka, P.; Yan, Y.

    2004-09-01

    A suitable numerical approach based on Sturmian functions is employed to solve the pionium problem for both local and nonlocal potentials. The approach accounts for both the short-ranged strong interaction and the long-ranged Coulomb force and provides accurately the wave function and binding energy of pionium. It is found that the ground-state pionium wave function in realistic pion-pion strong interactions might be considerably different from the hydrogen-like one at a small distance.

  10. Gravity waves from cosmic bubble collisions

    SciTech Connect (OSTI)

    Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar E-mail: ps88@stanford.edu

    2013-02-01

    Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.

  11. The geometry of electron wave functions

    SciTech Connect (OSTI)

    Aminov, Yurii A

    2013-02-28

    To each wave function we assign a codimension-two submanifold in Euclidean space. We study the case of the wave function of a single electron in the hydrogen atom or other hydrogen-type atoms with quantum numbers n, l, m in detail. We prove theorems describing the behaviour of the scalar and sectional curvature of the constructed submanifold, depending on the quantum numbers. We also consider the external geometry of the submanifold. Bibliography: 9 titles.

  12. Optical fiber having wave-guiding rings

    DOE Patents [OSTI]

    Messerly, Michael J. (Danville, CA); Dawson, Jay W. (Livermore, CA); Beach, Raymond J. (Livermore, CA); Barty, Christopher P. J. (Hayward, CA)

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  13. Experiment Indicates Sound Waves Can Trigger Quakes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'memory' could spur aftershocks January 3, 2008 Experiment Indicates Sound Waves Can Trigger Quakes LOS ALAMOS, New Mexico, January 3, 2008-Using a novel device that simulates earthquakes in a laboratory setting, a Los Alamos researcher and his colleagues have shown that seismic waves-the sounds radiated from earthquakes-can induce earthquake aftershocks, often long after a quake has subsided. The research provides insight into how earthquakes may be triggered and how they recur. In a letter

  14. Wave power prototype nears construction phase

    SciTech Connect (OSTI)

    Baggott, M.; Morris, R.

    1985-02-01

    A Scottish-led consortium of major United Kingdom (UK) and European companies will soon decide on the next stage in the development of a prototype 5-MW wave energy system. The oscillating water column, wave energy Breakwater system was developed in Scotland by the National Engineering Laboratory (NEL) over the past 10 years. Plans for the prototype follow a year-long economic and feasibility study that indicated a worldwide market potential of $1 billion over the next decade for the system.

  15. HEATING AND CURRENT DRIVE IN NSTX WITH ELECTRON BERNSTEIN WAVES AND HIGH HARMONIC FAST WAVES

    SciTech Connect (OSTI)

    Ram, Abhay K

    2010-06-14

    A suitable theoretical and computational framework for studying heating and current drive by electron Bernstein waves in the National Spherical Torus Experiment has been developed. This framework can also be used to study heating and current drive by electron Bernstein waves in spherical tori and other magnetic confinement devices. It is also useful in studying the propagation and damping of electron cyclotron waves in the International Thermonuclear Experimental Reactor

  16. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    SciTech Connect (OSTI)

    Lipton, Robert Polizzi, Anthony

    2014-10-14

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  17. Compensation for phase mismatch of high harmonics by the group-velocity mismatch

    SciTech Connect (OSTI)

    Kulagin, I A; Kim, V V; Usmanov, T

    2011-09-30

    A mechanism providing an essential enhancement of the conversion efficiency of a single high harmonic in gaseous media is first proposed using an appropriate change in the phase mismatch and group-velocity mismatch in the vicinity of resonance.

  18. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect (OSTI)

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian [State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049 (China)

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect on flame instability is observed for the isomers of butanol. Critical flame radii are the same for the isomers of butanol. Peclet number decreases with the increase in equivalence ratio. (author)

  19. Preliminary result of teleseismic double-difference relocation of earthquakes in the Molucca collision zone with a 3D velocity model

    SciTech Connect (OSTI)

    Shiddiqi, Hasbi Ash E-mail: h.a.shiddiqi@gmail.com; Widiyantoro, Sri; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono,; Sutiyono,; Handayani, Titi; Nugroho, Hendro

    2015-04-24

    We have relocated hypocenters of earthquakes occurring in the Molucca collision zone and surrounding region taken from the BMKG catalog using teleseismic double-difference relocation algorithm (teletomoDD). We used P-wave arrival times of local, regional, and teleseismic events recorded at 304 recording stations. Over 7,000 earthquakes were recorded by the BMKG seismographicnetworkin the study region from April, 2009 toJune, 2014. We used a 3D regional-global nested velocity modelresulting fromprevious global tomographystudy. In this study, the3D seismic velocity model was appliedto theIndonesian region, whilethe1D seismicvelocity model (ak135)wasused for regions outside of Indonesia. Our relocation results show a better improvement in travel-time RMS residuals comparedto those of the BMKG catalog.Ourresultsalso show that relocation shifts were dominated intheeast-west direction, whichmaybeinfluenced by theexistingvelocity anomaly related to the reversed V-shaped slabbeneaththestudy region. Our eventrelocation results refine the geometry of slabs beneath the Halmahera and Sangihe arcs.

  20. Weak measurement and Bohmian conditional wave functions

    SciTech Connect (OSTI)

    Norsen, Travis; Struyve, Ward

    2014-11-15

    It was recently pointed out and demonstrated experimentally by Lundeen etal. that the wave function of a particle (more precisely, the wave function possessed by each member of an ensemble of identically-prepared particles) can be directly measured using weak measurement. Here it is shown that if this same technique is applied, with appropriate post-selection, to one particle from a perhaps entangled multi-particle system, the result is precisely the so-called conditional wave function of Bohmian mechanics. Thus, a plausibly operationalist method for defining the wave function of a quantum mechanical sub-system corresponds to the natural definition of a sub-system wave function which Bohmian mechanics uniquely makes possible. Similarly, a weak-measurement-based procedure for directly measuring a sub-systems density matrix should yield, under appropriate circumstances, the Bohmian conditional density matrix as opposed to the standard reduced density matrix. Experimental arrangements to demonstrate this behaviorand also thereby reveal the non-local dependence of sub-system state functions on distant interventionsare suggested and discussed. - Highlights: We study a direct measurement protocol for wave functions and density matrices. Weakly measured states of entangled particles correspond to Bohmian conditional states. Novel method of observing quantum non-locality is proposed.