National Library of Energy BETA

Sample records for wave travel time

  1. Recent developments in guided wave travel time tomography

    SciTech Connect (OSTI)

    Zon, Tim van; Volker, Arno

    2014-02-18

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improve the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.

  2. Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam

    SciTech Connect (OSTI)

    Wang, Qiushi Peng, Shuyuan; Luo, Jirun

    2014-08-15

    This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.

  3. Traveling-wave photodetector

    DOE Patents [OSTI]

    Hietala, Vincent M.; Vawter, Gregory A.

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  4. Traveling-wave photodetector

    DOE Patents [OSTI]

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  5. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  6. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    SciTech Connect (OSTI)

    Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming

    2014-04-15

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes.

  7. Traveling-wave device with mass flux suppression (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Traveling-wave device with mass flux suppression Title: Traveling-wave device with mass flux suppression A traveling-wave device is provided with the conventional moving pistons ...

  8. Investigation of structural heterogeneity at the SPE site using combined P–wave travel times and Rg phase velocities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rowe, Charlotte A.; Patton, Howard J.

    2015-10-01

    Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains,more » then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.« less

  9. TIMING OF SHOCK WAVES

    DOE Patents [OSTI]

    Tuck, J.L.

    1955-03-01

    This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

  10. Enabling time travel for the scholarly web

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling time travel for the scholarly web Enabling time travel for the scholarly web An international team of information scientists has begun a study to investigate how web links ...

  11. Stable operating regime for traveling wave devices

    DOE Patents [OSTI]

    Carlsten, Bruce E.

    2000-01-01

    Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

  12. Code for Calculating Regional Seismic Travel Time

    Energy Science and Technology Software Center (OSTI)

    2009-07-10

    The RSTT software computes predictions of the travel time of seismic energy traveling from a source to a receiver through 2.5D models of the seismic velocity distribution within the Earth. The two primary applications for the RSTT library are tomographic inversion studies and seismic event location calculations. In tomographic inversions studies, a seismologist begins with number of source-receiver travel time observations and an initial starting model of the velocity distribution within the Earth. A forwardmore » travel time calculator, such as the RSTT library, is used to compute predictions of each observed travel time and all of the residuals (observed minus predicted travel time) are calculated. The Earth model is then modified in some systematic way with the goal of minimizing the residuals. The Earth model obtained in this way is assumed to be a better model than the starting model if it has lower residuals. The other major application for the RSTT library is seismic event location. Given an Earth model, an initial estimate of the location of a seismic event, and some number of observations of seismic travel time thought to have originated from that event, location codes systematically modify the estimate of the location of the event with the goal of minimizing the difference between the observed and predicted travel times. The second application, seismic event location, is routinely implemented by the military as part of its effort to monitor the Earth for nuclear tests conducted by foreign countries.« less

  13. Bifurcations of traveling wave solutions for an integrable equation

    SciTech Connect (OSTI)

    Li Jibin; Qiao Zhijun

    2010-04-15

    This paper deals with the following equation m{sub t}=(1/2)(1/m{sup k}){sub xxx}-(1/2)(1/m{sup k}){sub x}, which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.

  14. Geostatistical evaluation of travel time uncertainties

    SciTech Connect (OSTI)

    Devary, J.L.

    1983-08-01

    Data on potentiometric head and hydraulic conductivity, gathered from the Wolfcamp Formation of the Permian System, have exhibited tremendous spatial variability as a result of heterogeneities in the media and the presence of petroleum and natural gas deposits. Geostatistical data analysis and error propagation techniques (kriging and conditional simulation) were applied to determine the effect of potentiometric head uncertainties on radionuclide travel paths and travel times through the Wolfcamp Formation. Blok-average kriging was utilized to remove measurement error from potentiometric head data. The travel time calculations have been enhanced by the use of an inverse technique to determine the relative hydraulic conductivity along travel paths. In this way, the spatial variability of the hydraulic conductivity corresponding to streamline convergence and divergence may be included in the analysis. 22 references, 11 figures, 1 table.

  15. Dual variational principles for nonlinear traveling waves in multifluid plasmas

    SciTech Connect (OSTI)

    Webb, G. M.; McKenzie, J. F.; Mace, R. L.; Ko, C. M.; Zank, G. P.

    2007-08-15

    A Hamiltonian description of nonlinear, obliquely propagating traveling waves in a charge neutral, electron-proton, multifluid plasma is developed. The governing equations are written as a dual spatial Hamiltonian system. In the first formulation, the Hamiltonian is identified with the longitudinal, x-momentum flux integral P{sub x}=const, in which the energy integral {epsilon}={epsilon}{sub 0} acts as a constraint, and the Hamiltonian evolution operator is d/dx, where x is the position coordinate in the wave frame. In the second Hamiltonian formulation, the Hamiltonian is proportional to the conserved energy integral {epsilon}, in which the momentum integral P{sub x}=const acts as a constraint, and the Hamiltonian evolution operator d/d{tau}=u{sub x}d/dx is the Lagrangian time derivative where u{sub x} is the x component of the electron and proton fluids. The analysis is facilitated by using the de Hoffman-Teller frame of magnetohydrodynamic shock theory to simplify the transverse electron and proton momentum equations. The system is exactly integrable in cases in which the total transverse momentum fluxes of the system are zero in the de Hoffman-Teller frame. The implications of this constraint for the Alfven Mach number of the traveling wave are discussed. The physical conditions for the formation of whistler oscillitons based on the whistler dispersion equation are discussed.

  16. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOE Patents [OSTI]

    Möbius, Arnold; Ives, Robert Lawrence

    2005-07-19

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  17. Supplemental Guidance Regarding Compensatory Time Off for Travel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Supplemental Guidance Regarding Compensatory Time Off for Travel Supplemental Guidance Regarding Compensatory Time Off for Travel Questions and answers on issues that supplement the final regulations on compensatory time for travel issued by the Office of Personnel Management. In addition, a sample worksheet is attached to assist travelers in determining and documenting their travel time that may be credited for compensatory time for travel. This information will be

  18. Traveling-wave device with mass flux suppression

    DOE Patents [OSTI]

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2000-01-01

    A traveling-wave device is provided with the conventional moving pistons eliminated. Acoustic energy circulates in a direction through a fluid within a torus. A side branch may be connected to the torus for transferring acoustic energy into or out of the torus. A regenerator is located in the torus with a first heat exchanger located on a first side of the regenerator downstream of the regenerator relative to the direction of the circulating acoustic energy; and a second heat exchanger located on an upstream side of the regenerator. The improvement is a mass flux suppressor located in the torus to minimize time-averaged mass flux of the fluid. In one embodiment, the device further includes a thermal buffer column in the torus to thermally isolate the heat exchanger that is at the operating temperature of the device.

  19. Investigation of structural heterogeneity at the SPE site using combined Pwave travel times and Rg phase velocities

    SciTech Connect (OSTI)

    Rowe, Charlotte A.; Patton, Howard J.

    2015-10-01

    Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains, then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.

  20. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    SciTech Connect (OSTI)

    Lipton, Robert Polizzi, Anthony

    2014-10-14

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  1. Apparatus and method for measuring and imaging traveling waves

    DOE Patents [OSTI]

    Telschow, Kenneth L.; Deason, Vance A.

    2001-01-01

    An apparatus is provided for imaging traveling waves in a medium. The apparatus includes a vibration excitation source configured to impart traveling waves within a medium. An emitter is configured to produce two or more wavefronts, at least one wavefront modulated by a vibrating medium. A modulator is configured to modulate another wavefront in synchronization with the vibrating medium. A sensing media is configured to receive in combination the modulated one wavefront and the another wavefront and having a detection resolution within a limited bandwidth. The another wavefront is modulated at a frequency such that a difference frequency between the one wavefront and the another wavefront is within a response range of the sensing media. Such modulation produces an image of the vibrating medium having an output intensity that is substantially linear with small physical variations within the vibrating medium for all vibration frequencies above the sensing media's response bandwidth. A detector is configured to detect an image of traveling waves in the vibrating medium resulting from interference between the modulated one wavefront and the another wavefront when combined in association with the sensing media. The traveling wave can be used to characterize certain material properties of the medium. Furthermore, a method is provided for imaging and characterizing material properties according to the apparatus.

  2. Shielded serpentine traveling wave tube deflection structure

    DOE Patents [OSTI]

    Hudson, C.L.; Spector, J.

    1994-12-27

    A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.

  3. Shielded serpentine traveling wave tube deflection structure

    DOE Patents [OSTI]

    Hudson, Charles L.; Spector, Jerome

    1994-01-01

    A shielded serpentine slow wave deflection structure (10) having a serpene signal conductor (12) within a channel groove (46). The channel groove (46) is formed by a serpentine channel (20) in a trough plate (18) and a ground plane (14). The serpentine signal conductor (12) is supported at its ends by coaxial feed through connectors 28. A beam interaction trough (22) intersects the channel groove (46) to form a plurality of beam interaction regions (56) wherein an electron beam (54) may be deflected relative to the serpentine signal conductor (12).

  4. Traveling waves and their tails in locally resonant granular systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, H.; Kevrekidis, P. G.; Stefanov, A.

    2015-04-22

    In the present study, we revisit the theme of wave propagation in locally resonant granular crystal systems, also referred to as mass-in-mass systems. We use three distinct approaches to identify relevant traveling waves. In addition, the first consists of a direct solution of the traveling wave problem. The second one consists of the solution of the Fourier tranformed variant of the problem, or, more precisely, of its convolution reformulation (upon an inverse Fourier transform) in real space. Finally, our third approach will restrict considerations to a finite domain, utilizing the notion of Fourier series for important technical reasons, namely themore » avoidance of resonances, which will be discussed in detail. All three approaches can be utilized in either the displacement or the strain formulation. Typical resulting computations in finite domains result in the solitary waves bearing symmetric non-vanishing tails at both ends of the computational domain. Importantly, however, a countably infinite set of anti-resonance conditions is identified for which solutions with genuinely rapidly decaying tails arise.« less

  5. Design and fabrication of a traveling-wave muffin-tin accelerating structure at 90 GHz

    SciTech Connect (OSTI)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Siemann, R.H.; Henke, H.

    1997-05-01

    A prototype of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz) was built for research in high gradient acceleration. A traveling-wave design with single input and output feeds was chosen for the prototype which was fabricated by wire electrodischarge machining. Features of the mechanical design for the prototype are described. Design improvements are presented including considerations of cooling and vacuum.

  6. Three-cell traveling wave superconducting test structure

    SciTech Connect (OSTI)

    Avrakhov, Pavel; Kanareykin, Alexei; /Euclid Techlabs, Solon; Kazakov, Sergey; Solyak, Nikolay; Wu, Genfa; Yakovlev, Vyacheslav P.; /Fermilab

    2011-03-01

    Use of a superconducting traveling wave accelerating (STWA) structure with a small phase advance per cell rather than a standing wave structure may provide a significant increase of the accelerating gradient in the ILC linac. For the same surface electric and magnetic fields the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing wave cavities. The STWA allows also longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed, manufactured and successfully tested demonstrating the possibility of a proper processing to achieve a high accelerating gradient. These results open way to take the next step of the TW SC cavity development: to build and test a travelingwave three-cell cavity with a feedback waveguide. The latest results of the single-cell cavity tests are discussed as well as the design of the test 3-cell TW cavity.

  7. Wave coupling in sheet- and multiple-beam traveling-wave tubes

    SciTech Connect (OSTI)

    Nusinovich, Gregory S.; Cooke, Simon J.; Levush, Baruch; Botton, Moti

    2009-06-15

    To increase the power level of the sources of coherent electromagnetic radiation at frequencies from 100 GHz up to the terahertz range it makes sense to develop devices with a spatially extended interaction space. Sheet-beam and multiple-beam devices belong to the category. In the present paper the small-signal theory of traveling-wave tubes with sheet-beam and multiple sheet-beam configurations is developed. It is shown that in such tubes the wave coupling on electron beams may occur even in small-signal regimes. The wave coupling and its role for amplification of forward and excitation of backward waves in such amplifiers is studied. Also the effect of transverse nonuniformity of the electromagnetic field on the device operation is analyzed and illustrated by several examples.

  8. Modeling highway travel time distribution with conditional probability models

    SciTech Connect (OSTI)

    Oliveira Neto, Francisco Moraes; Chin, Shih-Miao; Hwang, Ho-Ling; Han, Lee

    2014-01-01

    ABSTRACT Under the sponsorship of the Federal Highway Administration's Office of Freight Management and Operations, the American Transportation Research Institute (ATRI) has developed performance measures through the Freight Performance Measures (FPM) initiative. Under this program, travel speed information is derived from data collected using wireless based global positioning systems. These telemetric data systems are subscribed and used by trucking industry as an operations management tool. More than one telemetric operator submits their data dumps to ATRI on a regular basis. Each data transmission contains truck location, its travel time, and a clock time/date stamp. Data from the FPM program provides a unique opportunity for studying the upstream-downstream speed distributions at different locations, as well as different time of the day and day of the week. This research is focused on the stochastic nature of successive link travel speed data on the continental United States Interstates network. Specifically, a method to estimate route probability distributions of travel time is proposed. This method uses the concepts of convolution of probability distributions and bivariate, link-to-link, conditional probability to estimate the expected distributions for the route travel time. Major contribution of this study is the consideration of speed correlation between upstream and downstream contiguous Interstate segments through conditional probability. The established conditional probability distributions, between successive segments, can be used to provide travel time reliability measures. This study also suggests an adaptive method for calculating and updating route travel time distribution as new data or information is added. This methodology can be useful to estimate performance measures as required by the recent Moving Ahead for Progress in the 21st Century Act (MAP 21).

  9. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    SciTech Connect (OSTI)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  10. SENSITIVITY OF HELIOSEISMIC TRAVEL TIMES TO THE IMPOSITION OF A LORENTZ FORCE LIMITER IN COMPUTATIONAL HELIOSEISMOLOGY

    SciTech Connect (OSTI)

    Moradi, Hamed; Cally, Paul S.

    2014-02-20

    The rapid exponential increase in the Alfvn wave speed with height above the solar surface presents a serious challenge to physical modeling of the effects of magnetic fields on solar oscillations, as it introduces a significant Courant-Friedrichs-Lewy time-step constraint for explicit numerical codes. A common approach adopted in computational helioseismology, where long simulations in excess of 10 hr (hundreds of wave periods) are often required, is to cap the Alfvn wave speed by artificially modifying the momentum equation when the ratio between the Lorentz and hydrodynamic forces becomes too large. However, recent studies have demonstrated that the Alfvn wave speed plays a critical role in the MHD mode conversion process, particularly in determining the reflection height of the upwardly propagating helioseismic fast wave. Using numerical simulations of helioseismic wave propagation in constant inclined (relative to the vertical) magnetic fields we demonstrate that the imposition of such artificial limiters significantly affects time-distance travel times unless the Alfvn wave-speed cap is chosen comfortably in excess of the horizontal phase speeds under investigation.

  11. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    SciTech Connect (OSTI)

    Ginzburg, N. S. Zaslavsky, V. Yu.; Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-15

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  12. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; Vainchtein, A.; Rubin, J. E.

    2016-02-27

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  13. Comparison of actinide production in traveling wave and pressurized water reactors

    SciTech Connect (OSTI)

    Osborne, A.G.; Smith, T.A.; Deinert, M.R.

    2013-07-01

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactor cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)

  14. X-BAND TRAVELING WAVE RF DEFLECTOR STRUCTURES

    SciTech Connect (OSTI)

    Wang, J.W.; Tantawi, S.; /SLAC

    2008-12-18

    Design studies on the X-Band transverse RF deflectors operating at HEM{sub ll} mode have been made for two different applications. One is for beam measurement of time-sliced emittance and slice energy spread for the upgraded LCLS project, its optimization in RF efficiency and system design are carefully considered. Another is to design an ultra-fast RF kicker in order to pick up single bunches from the bunch-train of the B-factory storage ring. The challenges are to obtain very short structure filling time with high RF group velocity and good RF efficiency with reasonable transverse shunt impedance. Its RF system will be discussed.

  15. Shielded helix traveling wave cathode ray tube deflection structure

    DOE Patents [OSTI]

    Norris, Neil J.; Hudson, Charles L.

    1992-01-01

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse.

  16. Shielded helix traveling wave cathode ray tube deflection structure

    DOE Patents [OSTI]

    Norris, N.J.; Hudson, C.L.

    1992-12-15

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.

  17. One-dimensional kinetic description of nonlinear traveling-pulse and traveling-wave disturbances in long coasting charged particle beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davidson, Ronald C.; Qin, Hong

    2015-09-21

    This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius r w . The average axial electric field is expressed as z >=(?/?z)=ebg???b/?z ebg2r2w?3?b/?z3, where g0 and g2 are constant geometric factors, ?b(z,t)=?dpz Fb (z,pz,t) is the line density of beam particles, and F b (z,pz,t) satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (soliton) solutions with time-stationary waveform are examined for a wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations ofmorethe beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (i) the nonlinear waterbag distribution, where Fb = const in a bounded region of pz-space; and (ii) nonlinear Bernstein-Green-Kruskal (BGK)-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field.less

  18. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    SciTech Connect (OSTI)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.

    2014-04-10

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  19. Simulation studies on the standing and traveling wave thermoacoustic prime movers

    SciTech Connect (OSTI)

    Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra

    2014-01-29

    Thermoacoustic systems have been a focus of recent research due to its structural simplicity, high reliability due to absence of moving parts, and can be driven by low grade energy such as fuel, gas, solar energy, waste heat etc. There has been extensive research on both standing wave and traveling wave systems. Towards the development of such systems, simulations can be carried out by several methods such as (a) solving the energy equation, (b) enthalpy flow model, (c) DeltaEC, a free software available from LANL, USA (d) Computational Fluid Dynamics (CFD) etc. We present here the simulation studies of standing wave and traveling wave thermoacoustic prime movers using CFD and DeltaEC. The CFD analysis is carried out using Fluent 6.3.26, incorporating the necessary boundary conditions with different working fluids at different operating pressures. The results obtained by CFD are compared with those obtained using DeltaEC. Also, the CFD simulation of the thermoacoustically driven refrigerator is presented.

  20. Traveling waves for the mass in mass model of granular chains

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kevrekidis, Panayotis G.; Stefanov, Atanas G.; Xu, Haitao

    2016-08-01

    In this work, we consider the mass in mass (or mass with mass) system of granular chains, namely, a granular chain involving additionally an internal (or, respectively, external) resonator. For these chains, we rigorously establish that under suitable “anti-resonance” conditions connecting the mass of the resonator and the speed of the wave, bell-shaped traveling-wave solutions continue to exist in the system, in a way reminiscent of the results proven for the standard granular chain of elastic Hertzian contacts. Finally, we also numerically touch upon settings, where the conditions do not hold, illustrating, in line also with recent experimental work, thatmore » non-monotonic waves bearing non-vanishing tails may exist in the latter case.« less

  1. Integrating a Traveling Wave Tube into an AECR-U ion source

    SciTech Connect (OSTI)

    Covo, Michel Kireeff; Benitez, Janilee Y.; Ratti, Alessandro; Vujic, Jasmina L.

    2011-07-01

    An RF system of 500W - 10.75 to 12.75 GHz was designed and integrated into the Advanced Electron Cyclotron Resonance - Upgrade (AECR-U) ion source of the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The AECR-U produces ion beams for the Cyclotron giving large flexibility of ion species and charge states. The broadband frequency of a Traveling Wave Tube (TWT) allows modifying the volume that couples and heats the plasma. The TWT system design and integration with the AECR-U ion source and results from commissioning are presented.

  2. Enhanced traveling wave amplification of co-planar slow wave structure by extended phase-matching

    SciTech Connect (OSTI)

    Palm, Andrew; Sirigiri, Jagadishwar; Shin, Young-Min

    2015-09-15

    The electron beam co-propagating with slow waves in a staggered double grating array (SDGA) efficiently amplifies millimeter and sub-millimeter waves over a wide spectrum. Our theoretical and numerical analyses show that the power amplification in the fundamental passband is enhanced by the extended beam-wave phase-matching. Particle-in-cell simulations on the SDGA slow wave structure, designed with 10.4 keV and 50–100 mA sheet beam, indicate that maintaining beam-wave synchronization along the entire length of the circuit improves the gain by 7.3% leading to a total gain of 28 dB, corresponding to 62 W saturated power at the middle of operating band, and a 3-dB bandwidth of 7 GHz with 10.5% at V-band (73.5 GHz center frequency) with saturated peak power reaching 80 W and 28 dB at 71 GHz. These results also show a reasonably good agreement with analytic calculations based on Pierce small signal gain theory.

  3. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    SciTech Connect (OSTI)

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; Webb, Ian K.; Deng, Liulin; Chen, Tsung-Chi; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; Smith, Richard D.

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses a parallel array of RF electrodes for ion confinement, spaced by an array of short DC electrodes to which a TW can be applied to drive ion motion. The ability of the TW-SLIM for efficient ion confinement, lossless ion transport, and ion mobility separations at different RF and TW parameters is reported. The TW-SLIM module is shown to allow transfers a wide mass range of ions (200-2500 Da) utilizing a confining RF waveform (1 MHz and 300 Vp-p), and low TW amplitudes (<20 V). Also, the short module achieved an ion mobility peak capacity of 24 and a peak generation rate of 1014 s-1 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of RF and DC voltage parameters, and demonstrated robust performance. The combined attributes of flexible design and low voltage requirements for traveling wave IMS, provide a basis for SLIM devices incorporating extended series of ion manipulations.

  4. A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier

    SciTech Connect (OSTI)

    Li, Ke Cao, Miaomiao; Liu, Wenxin Wang, Yong

    2015-04-15

    A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics.

  5. G-band harmonic multiplying gyrotron traveling-wave amplifier with a mode-selective circuit

    SciTech Connect (OSTI)

    Yeh, Y. S.; Chen, Chang-Hong; Wang, Z. W.; Kao, B. H.; Chen, Chien-Hsiang; Lin, T. Y.; Guo, Y. W.

    2014-12-15

    Harmonic multiplying gyrotron traveling-wave amplifiers (gyro-TWAs) permit for magnetic field reduction and frequency multiplication. A high-order-mode harmonic multiplying gyro-TWA with large circuit dimensions and low ohmic loss can achieve a high average power. By amplifying a fundamental harmonic TE{sub 01} drive wave, the second harmonic component of the beam current initiates a TE{sub 02} wave to be amplified. Wall losses can suppress some competing modes because they act as an effective sink of the energy of the modes. However, such wall losses do not suppress all competing modes as the fields are contracted in the copper section in the gyro-TWA. An improved mode-selective circuit, using circular waveguides with the specified radii, can provide the rejection points within the frequency range to suppress the competing modes. The simulated results reveal that the mode-selective circuit can provide an attenuation of more than 10 dB to suppress the competing modes (TE{sub 21}, TE{sub 51}, TE{sub 22}, and TE{sub 03}). A G-band second harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 50 kW at 198.8 GHz, corresponding to a saturated gain of 55 dB at an interaction efficiency of 10%. The full width at half maximum bandwidth is 5 GHz.

  6. Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching

    SciTech Connect (OSTI)

    White, T. C.; Mutus, J. Y.; Hoi, I.-C.; Barends, R.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Martinis, John M.; Megrant, A.; Chaudhuri, S.; and others

    2015-06-15

    Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted ?/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12?dB across a 4?GHz span, along with an average saturation power of ?92 dBm with noise approaching the quantum limit.

  7. Preliminary performance of the MKII 17 GHz traveling wave relativistic klystron

    SciTech Connect (OSTI)

    Haimson, J.; Mecklenburg, B.; Stowell, G.; Kreischer, K. E.; Mastovsky, I. [Haimson Research Corporation, 3350 Scott Blvd., Building 60, Santa Clara, California 95054-3104 (United States); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4294 (United States)

    1999-05-07

    Initial test results are presented of an upgraded RF source developed for high peak power 17 GHz linear accelerator applications. The objectives of this upgrade program were (a) to increase the output capability of the existing vacuum demountable prototype tube so that RF power could also be supplied to a future 2 MeV photoinjector system without appreciable loss of input power to the 17 GHz linac and (b) to investigate the performance of a new design traveling wave output circuit incorporating a racetrack shaped dual output coupler with 5% bandwidth high peak power ceramic RF windows. These recently installed devices are presently being conditioned and tested at the MIT Plasma Science and Fusion Center.

  8. Preliminary performance of the MKII 17 GHz traveling wave relativistic klystron

    SciTech Connect (OSTI)

    Haimson, J.; Mecklenburg, B.; Stowell, G. [Haimson Research Corporation, 3350 Scott Blvd., Building 60, Santa Clara, California 95054-3104 (United States); Kreischer, K.E.; Mastovsky, I. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4294 (United States)

    1999-05-01

    Initial test results are presented of an upgraded RF source developed for high peak power 17 GHz linear accelerator applications. The objectives of this upgrade program were (a) to increase the output capability of the existing vacuum demountable prototype tube so that RF power could also be supplied to a future 2 MeV photoinjector system without appreciable loss of input power to the 17 GHz linac and (b) to investigate the performance of a new design traveling wave output circuit incorporating a racetrack shaped dual output coupler with 5{percent} bandwidth high peak power ceramic RF windows. These recently installed devices are presently being conditioned and tested at the MIT Plasma Science and Fusion Center. {copyright} {ital 1999 American Institute of Physics.}

  9. Quantifying groundwater travel time near managed recharge operations using 35S as an intrinsic tracer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Urióstegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.; Clark, Jordan F.

    2016-04-23

    By identifying groundwater retention times near managed aquifer recharge (MAR) facilities is a high priority for managing water quality, especially for operations that incorporate recycled wastewater. In order to protect public health, California guidelines for Groundwater Replenishment Reuse Projects require a minimum 2–6 month subsurface retention time for recycled water depending on the level of disinfection, which highlights the importance of quantifying groundwater travel times on short time scales. This study developed and evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 (35S). The 87.5 day half-life of 35S is ideal for investigating groundwater travel times onmore » the <1 year timescale of interest to MAR managers. Natural concentrations of 35S found in water as dissolved sulfate (35SO4) were measured in source waters and groundwater at the Rio Hondo Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge Facilities in Orange County, CA. 35SO4 travel times are comparable to travel times determined by well-established deliberate tracer studies. The study also revealed that 35SO4 in MAR source water can vary seasonally and therefore careful characterization of 35SO4 is needed to accurately quantify groundwater travel time. But, more data is needed to fully assess whether or not this tracer could become a valuable tool for managers.« less

  10. Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band

    SciTech Connect (OSTI)

    Yeh, Y. S.; Guo, Y. W.; Kao, B. H.; Chen, C. H.; Wang, Z. W.; Hung, C. L.; Chang, T. H.

    2015-12-15

    Harmonic multiplying operation in a gyrotron traveling-wave amplifier (gyro-TWA) permits for magnetic field reduction and frequency multiplication. Lowering a beam voltage is an important step toward miniaturization of a harmonic multiplying gyro-TWA. However, the additional degree of freedom that is provided by the multitude cyclotron harmonics in a low-voltage harmonic multiplying gyro-TWA still easily generates various competing modes. An improved mode-selective circuit, using circular waveguides with various radii, can provide the rejection points within the frequency range to suppress competing modes. Simulated results reveal that the mode-selective circuit can provide an attenuation of more than 14 dB to suppress the competing modes. Furthermore, the performance of the gyro-TWA is analyzed for studying the sensitivity of the saturated output power and full width at half maximum bandwidth of the gyro-TWA to the beam voltage and the magnetic field. A stable low-voltage harmonic multiplying gyro-TWA with the mode-selective circuit is predicted to yield a peak output power of 24 kW at 200.4 GHz, corresponding to a saturated gain of 56 dB at an interaction efficiency of 20%. The full width at half maximum bandwidth is 3.0 GHz.

  11. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOE Patents [OSTI]

    Sher, Mark H.; Macklin, John J.; Harris, Stephen E.

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  12. 0.22 THz wideband sheet electron beam traveling wave tube amplifier: Cold test measurements and beam wave interaction analysis

    SciTech Connect (OSTI)

    Baig, Anisullah; Gamzina, Diana; Barchfeld, Robert; Domier, Calvin; Barnett, Larry R.; Luhmann, Neville C. Jr.

    2012-09-15

    In this paper, we describe micro-fabrication, RF measurements, and particle-in-cell (PIC) simulation modeling analysis of the 0.22 THz double-vane half period staggered traveling wave tube amplifier (TWTA) circuit. The TWTA slow wave structure comprised of two sections separated by two sever ports loaded by loss material, with integrated broadband input/output couplers. The micro-metallic structures were fabricated using nano-CNC milling and diffusion bonded in a three layer process. The 3D optical microscopy and SEM analysis showed that the fabrication error was within 2-3 {mu}m and surface roughness was measured within 30-50 nm. The RF measurements were conducted with an Agilent PNA-X network analyzer employing WR5.1 T/R modules with a frequency range of 178-228 GHz. The in-band insertion loss (S{sub 21}) for both the short section and long section (separated by a sever) was measured as {approx}-5 dB while the return loss was generally around {approx}-15 dB or better. The measurements matched well with the S-matrix simulation analysis that predicted a 3 dB bandwidth of {approx}45 GHz with an operating frequency at 220 GHz. However, the measured S{sub 21} was {approx}3 dB less than the design values, and is attributed to surface roughness and alignment issues. The confirmation measurements were conducted over the full frequency band up to 270 GHz employing a backward wave oscillator (BWO) scalar network analyzer setup employing a BWO in the frequency range 190 GHz-270 GHz. PIC simulations were conducted for the realistic TWT output power performance analysis with incorporation of corner radius of 127 {mu}m, which is inevitably induced by nano-machining. Furthermore, the S{sub 21} value in both sections of the TWT structure was reduced to correspond to the measurements by using a degraded conductivity of 10% International Annealed Copper Standard. At 220 GHz, for an elliptic sheet electron beam of 20 kV and 0.25 A, the average output power of the tube was predicted

  13. Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure

    SciTech Connect (OSTI)

    Gee, Anthony; Shin, Young-Min

    2013-01-01

    A multi-beam traveling wave amplifier designed with an overmoded staggered double grating array was examined by small signal analysis combined with simulation. Eigenmode and S-parameter analyses show that the 2cm long slow wave structure (SWS) has 1-5dB insertion loss over the passband (TM31 mode) with ~28% cold bandwidth. Analytic gain calculation indicates that in the SWS, TM31-mode is amplified with 15–20 dB/beam at 64–84GHz with three elliptical beams of 10kV and 150mA/beam, which was compared with particle-in-cell (PIC) simulations. PIC analysis on the analysis of instability with zero-input driving excitations demonstrated that background noises and non-operating lower order modes are noticeably suppressed by implanting equidistant dielectric absorbers; the overmoded structure only allowed the desired 3rd order mode to propagate in the structure. The designed circuit structure can be widely applied to multi-beam devices for high power RF generation.

  14. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; Ng, Cho -Kuen; Qi, Minghao H.; England, Robert J.

    2016-03-01

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  15. Multi-time wave functions for quantum field theory

    SciTech Connect (OSTI)

    Petrat, Sren; Tumulka, Roderich

    2014-06-15

    Multi-time wave functions such as ?(t{sub 1},x{sub 1},,t{sub N},x{sub N}) have one time variable t{sub j} for each particle. This type of wave function arises as a relativistic generalization of the wave function ?(t,x{sub 1},,x{sub N}) of non-relativistic quantum mechanics. We show here how a quantum field theory can be formulated in terms of multi-time wave functions. We mainly consider a particular quantum field theory that features particle creation and annihilation. Starting from the particleposition representation of state vectors in Fock space, we introduce multi-time wave functions with a variable number of time variables, set up multi-time evolution equations, and show that they are consistent. Moreover, we discuss the relation of the multi-time wave function to two other representations, the TomonagaSchwinger representation and the Heisenberg picture in terms of operator-valued fields on spacetime. In a certain sense and under natural assumptions, we find that all three representations are equivalent; yet, we point out that the multi-time formulation has several technical and conceptual advantages. -- Highlights: Multi-time wave functions are manifestly Lorentz-covariant objects. We develop consistent multi-time equations with interaction for quantum field theory. We discuss in detail a particular model with particle creation and annihilation. We show how multi-time wave functions are related to the TomonagaSchwinger approach. We show that they have a simple representation in terms of operator valued fields.

  16. Design and performance of the traveling-wave beam chopper for the SSRL injector

    SciTech Connect (OSTI)

    Borland, M.; Weaver, J.N.; Baltay, M.; Emery, L.; Fisher, A.S.; Golceff, P.; Hettel, R.; Morales, H.; Sebek, J.; Wiedemann, H.; Youngman, B. . Stanford Synchrotron Radiation Lab.); Anderson, R. ); Miller, R.H. )

    1991-05-01

    A pulsed, split-parallel plate chopper has been designed built, and installed as part of the preinjector of the SSRL Injector. Its function is to allow the linear accelerator three consecutive S-band bunches from the long bunch train provided by a RF gun. A permanent magnet deflector (PMD) at the chopper entrance deflects the beam into an absorber when the chopper pulse is off. The beam is swept across a pair of slits at the beam output end when a 7 kV, 10-ns rise-time pulse passes in the opposite direction through the 75 {Omega} stripline formed by the deflecting plates. Bunches exiting the slits have their trajectories corrected by another PMD, and enter the linac. Beam tests demonstrate that the chopper functions as expected. 9 refs., 5 figs.

  17. TRAVELING WAVE PYROTRON

    DOE Patents [OSTI]

    Post, R.F.

    1963-06-11

    The invention relates to a pyrotron, i.e., magnetic mirror device, designed for continuous operation in producing a high-temperature fusion reaction plasma and for directly converting the plasma energy into electrical power. The device utilizes a system in which an axially symmetric magnetic field is produced and transports plasma through a first zone of progressively rising field intensity, a second reaction zone of slowly increasing intensity, and thenceforth through a third zone of progressively decreasing intensity wherein the plasma expands against the magnetic field thereby producing electrical current in magnetic field generating solenoids associated with said third zone. (AEC)

  18. Uncertainty and Sensitivity of Contaminant Travel Times from the Upgradient Nevada Test Site to the Yucca Mountain Area

    SciTech Connect (OSTI)

    J. Zhu; K. Pohlmann; J. Chapman; C. Russell; R.W.H. Carroll; D. Shafer

    2009-09-10

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as the nation’s first permanent geologic repository for spent nuclear fuel and highlevel radioactive waste. In this study, the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to intercept the subsurface of the proposed land withdrawal area for the repository is investigated. The timeframe for advective travel and its uncertainty for possible radionuclide movement along these flow pathways is estimated as a result of effective-porosity value uncertainty for the hydrogeologic units (HGUs) along the flow paths. Furthermore, sensitivity analysis is conducted to determine the most influential HGUs on the advective radionuclide travel times from the NTS to the YM area. Groundwater pathways are obtained using the particle tracking package MODPATH and flow results from the Death Valley regional groundwater flow system (DVRFS) model developed by the U.S. Geological Survey (USGS). Effectiveporosity values for HGUs along these pathways are one of several parameters that determine possible radionuclide travel times between the NTS and proposed YM withdrawal areas. Values and uncertainties of HGU porosities are quantified through evaluation of existing site effective-porosity data and expert professional judgment and are incorporated in the model through Monte Carlo simulations to estimate mean travel times and uncertainties. The simulations are based on two steady-state flow scenarios, the pre-pumping (the initial stress period of the DVRFS model), and the 1998 pumping (assuming steady-state conditions resulting from pumping in the last stress period of the DVRFS model) scenarios for the purpose of long-term prediction and monitoring. The pumping scenario accounts for groundwater withdrawal activities in the Amargosa Desert and other areas downgradient of YM. Considering each detonation in a clustered region around Pahute Mesa (in

  19. Interview Travel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interview Travel Interview Travel Travel preapproval and reimbursement process information for invited Laboratory job interviewees. Contact Travel Reservations (505) 667-1692 Email Student Travel (505) 667-5859 Interview travel process Interview travel will be reimbursed only when a Laboratory organization has invited a candidate to come to the Laboratory to interview for a specific job and the following process is used. Eligible expenses are paid post-interview only. Before beginning, review

  20. Travel Reimbursement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Reimbursement Travel Reimbursement Travel preapproval and reimbursement process information for interviewees, students, and relocations including new regular hires, term assignment hires, post-doctoral or advance study employees, and long-term visiting staff members. Interview Travel» Graduate, Undergraduate Travel» Relocation Travel» Guest Travel» TOP STORIES - highlights of our science, people, technologies close Rio Arriba Leadership Summit addresses challenges, opportunities

  1. Cooling by Time Reversal of Atomic Matter Waves

    SciTech Connect (OSTI)

    Martin, J.; Georgeot, B.; Shepelyansky, D. L. [Laboratoire de Physique Theorique, Universite de Toulouse III, CNRS, 31062 Toulouse (France)

    2008-02-01

    We propose an experimental scheme which allows us to realized approximate time reversal of matter waves for ultracold atoms in the regime of quantum chaos. We show that a significant fraction of the atoms return back to their original state, being at the same time cooled down by several orders of magnitude. We give a theoretical description of this effect supported by extensive numerical simulations. The proposed scheme can be implemented with existing experimental setups.

  2. Connected Traveler

    SciTech Connect (OSTI)

    Schroeder, Alex

    2015-11-01

    The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing efficient traveler behavior. This poster outlines various aspects of the Connected Traveler project, including market opportunity, understanding traveler behavior and decision-making, automation and connectivity, and a projected timeline for Connected Traveler's key milestones.

  3. Relocation Travel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relocation Travel Relocation Travel Travel reimbursement process information for relocations including new regular hires, term assignment hires, post-doctoral or advance study employees, and long-term visiting staff members. Contact Gloria Salazar Relocation Office (505) 665-4484 Email Sher Robinson (505) 665-8529 Relocation travel process Reimbursement for travel includes new regular hires, term assignment hires, post-doctoral or advance study employees, and long-term visiting staff members.

  4. Guest Travel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    group office for reimbursement.) Guest makes reservations for airline, rental car, and hotel, in accordance with Laboratory travel regulations. After guest returns Visitor...

  5. Barrier interaction time and the Salecker-Wigner quantum clock: Wave-packet approach

    SciTech Connect (OSTI)

    Park, Chang-Soo

    2009-07-15

    The time-of-flight measurement approach of Peres based on the Salecker-Wigner quantum clock is applied to the one-dimensional scattering of a wave packet from a rectangular barrier. By directly evaluating the expectation value of the clock-time operator in the asymptotic states of wave packet long after the scattering process, we derive an average wave-packet clock time for the barrier interaction, which is expressed as an average of the stationary-state clock time over all possible initial scattering states of the wave packet. We show that the average wave-packet clock time is identical to the average dwell time of a wave packet.

  6. ZERO-TIME INDICATOR

    DOE Patents [OSTI]

    Sander, H.H.

    1960-08-30

    The travel time of a nuclear shock wave from its point of origin to a location can be determined accurately by an apparatus for noting and comparably recording both zerotime, as indicated by the electromagnetic transient associated with the nuclear detonation, and shock wave arrival time.

  7. Wave function for harmonically confined electrons in time-dependent electric and magnetostatic fields

    SciTech Connect (OSTI)

    Zhu, Hong-Ming; Chen, Jin-Wang; Pan, Xiao-Yin; Sahni, Viraht

    2014-01-14

    We derive via the interaction “representation” the many-body wave function for harmonically confined electrons in the presence of a magnetostatic field and perturbed by a spatially homogeneous time-dependent electric field—the Generalized Kohn Theorem (GKT) wave function. In the absence of the harmonic confinement – the uniform electron gas – the GKT wave function reduces to the Kohn Theorem wave function. Without the magnetostatic field, the GKT wave function is the Harmonic Potential Theorem wave function. We further prove the validity of the connection between the GKT wave function derived and the system in an accelerated frame of reference. Finally, we provide examples of the application of the GKT wave function.

  8. Travel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Travel The Office of Travel Management serves as the Department's POC for the following services: Headquarters Travel Management Center (TMC) Official Travel, Domestic and Foreign Foreign Travel Management System (FTMS) Official Travel Regulations and Guidelines U.S. Passports and Visa Services (Official and Diplomatic) Non-Refundable Airfare Guidance International Insurance for DOE Officials (MEDEX) Car Rental Hotel Reservations Travel FAQs For questions about Travel Services or the

  9. JLab Travelers and Travel Coordinators: Effective Immediately...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information could result in denial of country clearance and jeopardize future travel. ... All FTMS Travel Requisitions and Electronic Country Clearance (eCC) requests must be ...

  10. Wave

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Summer 2001 Heat Wave This summer has proved to be downright hot in the Southern Great ... Not only is a summer heat wave uncomfortable, but it can also be ARM Facilities Newsletter ...

  11. Real-time fracture monitoring in Engineered Geothermal Systems with seismic waves

    SciTech Connect (OSTI)

    Jose A. Rial; Jonathan Lees

    2009-03-31

    As proposed, the main effort in this project is the development of software capable of performing real-time monitoring of micro-seismic activity recorded by an array of sensors deployed around an EGS. The main milestones are defined by the development of software to perform the following tasks: • Real-time micro-earthquake detection and location • Real-time detection of shear-wave splitting • Delayed-time inversion of shear-wave splitting These algorithms, which are discussed in detail in this report, make possible the automatic and real-time monitoring of subsurface fracture systems in geothermal fields from data collected by an array of seismic sensors. Shear wave splitting (SWS) is parameterized in terms of the polarization of the fast shear wave and the time delay between the fast and slow shear waves, which are automatically measured and stored. The measured parameters are then combined with previously measured SWS parameters at the same station and used to invert for the orientation (strike and dip) and intensity of cracks under that station. In addition, this grant allowed the collection of seismic data from several geothermal regions in the US (Coso) and Iceland (Hengill) to use in the development and testing of the software.

  12. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    SciTech Connect (OSTI)

    Wu, Ping; Deng, Yuqun; Sun, Jun; Teng, Yan; Shi, Yanchao; Chen, Changhua

    2015-10-15

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited.

  13. Time- and power-dependent operation of a parametric spin-wave amplifier

    SciTech Connect (OSTI)

    Brächer, T.; Heussner, F.; Pirro, P.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Serga, A. A.; Hillebrands, B.

    2014-12-08

    We present the experimental observation of the localized amplification of externally excited, propagating spin waves in a transversely in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide by means of parallel pumping. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the dependency of the amplification on the applied pumping power and on the delay between the input spin-wave packet and the pumping pulse. We show that there are two different operation regimes: At large pumping powers, the spin-wave packet needs to enter the amplifier before the pumping is switched on in order to be amplified while at low powers the spin-wave packet can arrive at any time during the pumping pulse.

  14. Graduate, Undergraduate Student Travel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate, Undergraduate Travel Graduate, Undergraduate Student Travel Travel reimbursement process information for participants in the Graduate Research Assistant (GRA) and Undergraduate Student (UGS) programs Contact Travel Reservations (505) 667-1692 Email Student Travel (505) 667-5859 Email Graduate, undergraduate student travel process Travel by employees who participate in the Graduate Research Assistant (GRA) and Undergraduate Student (UGS) programs will be reimbursed only when the

  15. On-Line Travel Reservations through "Concur Travel" | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    them as a travel administrator. Travel will not be booked on Concur Travel until Ames Lab Travel Worksheet has been received and reviewed by the Travel Office. Concur Travel is...

  16. Time delay of wave packets during their tunnelling through a quantum diode

    SciTech Connect (OSTI)

    Ivanov, N A; Skalozub, V V

    2014-04-28

    A modified saddle-point method is used to investigate the process of propagation of a wave packet through a quantum diode. A scattering matrix is constructed for the structure in question. The case of tunnelling of a packet with a Gaussian envelope through the diode is considered in detail. The time delay and the shape of the wave packet transmitted are calculated. The dependence of the delay time on the characteristics of the input packet and the internal characteristics of the quantum diode is studied. Possible applications of the results obtained are discussed. (laser applications and other topics in quantum electronics)

  17. Relocation Travel FAQs Travel/Moving FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relocation Travel FAQs Travel/Moving FAQs When may I begin making travel and moving arrangements? No arrangements should be made prior to receiving a written offer of employment from Human Resources (HR) Division. The written offer letter is the official offer. The offer of employment must be accepted in writing (a signature on the offer letter) and returned to the Laboratory before making any travel or moving arrangements. How will I receive the relocation information? The relocation

  18. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOE Patents [OSTI]

    Sappey, Andrew D.

    1998-04-14

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  19. Statistical Evaluation of Travel Time Estimation Based on Data from Freeze-Branded Chinook Salmon on the Snake River, 1982-1990.

    SciTech Connect (OSTI)

    Smith, Steven G.; Skalski, J.R.; Giorgi, Albert E.

    1993-10-01

    The purpose of this investigation is to assess the strengths and limitations of existing freeze brand recapture data in describing the migratory dynamics of juvenile salmonids in the mainstream, impounded sections of the Snake and Columbia Rivers. With the increased concern over the threatened status of spring and summer chinook salmon in the Snake River drainage, we used representative stocks for these races as our study populations. However, statistical considerations resultant from these analyses apply to other species and drainages as well. This report describes analyses we conducted using information derived from freeze-branded groups. We examined both index production groups released from hatcheries upstream from Lower Granite Dam (1982--1990) and freeze-branded groups used as controls in smolt transportation evaluations conducted by the National Marine Fisheries Service (1986, 1989). The scope of our analysis was limited to describing travel time estimates and derived relationships, as well as reach survival estimates through the mainstem Snake River from Lower Granite to McNary Dam.

  20. Travel Requirements - ITER (June 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Requirements - ITER (June 2014) Prior to any travel under this subcontract, the ... approval, with a copy to the identified US ITER Project Office Travel Administrative ...

  1. Travel Policy | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Travel Policy Travel Policy for Contractor Personnel Travel Policy Changes October 1, 2009 Per Diem Adjustments for Meals Memo or EXAMPLE...

  2. Exact Time-Dependent Nonlinear Dispersive Wave Solutions in Compressible Magnetized Plasmas Exhibiting Collapse

    SciTech Connect (OSTI)

    Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans

    2011-04-08

    Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the Lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris' current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.

  3. Analytical estimate of phase mixing time of longitudinal Akhiezer-Polovin waves

    SciTech Connect (OSTI)

    Mukherjee, Arghya Sengupta, Sudip

    2014-11-15

    Phase mixing of a longitudinal Akhiezer-Polovin wave subjected to a small amplitude longitudinal perturbation and its eventual breaking is studied analytically. It is well known that longitudinal Akhiezer-Polovin wave subjected to arbitrarily small longitudinal perturbation breaks via the process of phase mixing at an amplitude well below its limiting amplitude [Verma et al., Phys. Rev. Lett. 108, 125005 (2012)]. We analytically show that the phase mixing time (breaking time, ω{sub p}τ{sub mix}) scales with β (phase velocity) and u{sub m}(maximum fluid velocity) as ω{sub p}τ{sub mix}∼(2πβ)/(3δ) [1/u{sub m}{sup 2}−1/4], where δ is the amplitude of velocity perturbation and ω{sub p} is the non-relativistic plasma frequency. This analytical dependence of phase mixing time on β, u{sub m}, and δ is further verified using numerical simulations based on Dawson sheet model.

  4. Travel Policy and Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-04

    To supplement the Federal Travel Regulation (41 CFR, Parts 300-304), the principal source of policy for Federal employee travel and relocation matters, and to establish DOE M 552.1-1, U.S. Department of Energy Travel Manual, dated 09-04-02, as the repository for supplementary travel requirements information for the Department of Energy (DOE). Cancels DOE 1500.2A and DOE 1500.4A. Canceled by DOE O 552.1A.

  5. Travel Policy and Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-17

    The Order supplements the Federal Travel Regulation as principal source of policy for Federal employee travel and relocation and establishes DOE M 552.1-1A, U.S. Department of Energy Travel Manual, dated 2-17-06, as the DOE repository for supplementary travel requirements information. Cancels DOE O 552.1-1. Canceled by DOE O 552.1A Admin Chg 1.

  6. Travel Policy and Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-17

    The Order supplements the Federal Travel Regulation as principal source of policy for Federal employee travel and relocation and establishes DOE M 552.1-1A, U.S. Department of Energy Travel Manual, dated 2-17-06, as the repository for supplementary travel requirements information. Supersedes DOE O 552.1. Admin Chg 1, dated 10-1-08, supersedes DOE O 552.1A.

  7. JLab Travelers and Travel Coordinators: Effective Immediately - Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new requirements for all travel to or passing through France | Jefferson Lab Travelers and Travel Coordinators: Effective Immediately - Critical new requirements for all travel to or passing through France JLab Travelers and Travel Coordinators: Effective Immediately - Critical new requirements for all travel to or passing through France Due to increased security levels in France, it is critical for the U.S. State Department / Embassy of Paris to have the ability to quickly and directly

  8. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-11-08

    To establish Department of Energy (DOE) and National Nuclear Security Administration (NNSA) requirements and responsibilities governing official foreign travel by Federal and contractor employees. The Page Change 1 to the CRD issued 11-8-02, will expand the requirements for country clearance for contractors to include all official foreign travel, including travel to nonsensitive countries. Cancels DOE O 551.1. Canceled by DOE O 551.1B.

  9. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-24

    The Order sets forth requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1B.

  10. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-04-12

    The order establishes requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1C.

  11. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-04-02

    The order establishes DOE requirements and responsibilities governing official foreign travel by Federal and contractor employees. The Pg Chg removes the requirement to surrender official passports and replaces it with a process that requires travelers be responsible for safeguarding theirown official passports. Supersedes DOE O 551.1D, dated 4-12-12.

  12. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-04-02

    The order establishes DOE requirements and responsibilities governing official foreign travel by Federal and contractor employees. The proposed revisions to the Official Foreign Travel Order align it with established leave policy and update organizational responsibilities. Supersedes DOE O 551.1D Chg 1 (Pg Chg).

  13. Numerical solution of the time dependent Ginzburg-Landau equations for mixed (d + s)-wave superconductors

    SciTech Connect (OSTI)

    Gonalves, W. C.; Sardella, E.; UNESP-Universidade Estadual Paulista, IPMet-Instituto de Pesquisas Meteorolgicas, CEP 17048-699 Bauru, SP ; Becerra, V. F.; Miloevi?, M. V.; Peeters, F. M.; Departamento de Fsica, Universidade Federal do Cear, 60455-900 Fortaleza, Cear

    2014-04-15

    The time-dependent Ginzburg-Landau formalism for (d + s)-wave superconductors and their representation using auxiliary fields is investigated. By using the link variable method, we then develop suitable discretization of these equations. Numerical simulations are carried out for a mesoscopic superconductor in a homogeneous perpendicular magnetic field which revealed peculiar vortex states.

  14. Accounting Techinican (Travel Duties)

    Broader source: Energy.gov [DOE]

    This position may be filled either at Morgantown, WV or Pittsburgh, PA. A successful candidate in this position will provide technical accounting support to the travel program at the National...

  15. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-08-25

    To establish Department of Energy (DOE) and National Nuclear Security Administration (NNSA) requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1. Canceled by DOE O 551.1B.

  16. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-19

    To establish Department of Energy (DOE) and National Nuclear Security Administration (NNSA) requirements and responsibilities governing official foreign travel by Federal and contractor employees. Cancels DOE O 551.1A. Canceled by DOE O 551.1C.

  17. Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-01-31

    Establishes Department of Energy (DOE) requirements and responsibilities governing official foreign travel by Federal and contract employees. Cancels DOE O 1500.3. Canceled by DOE O 551.1A.

  18. Accounting Technician (Travel Duties)

    Broader source: Energy.gov [DOE]

    This position may be filled either at Morgantown, WV or Pittsburgh, PA. A successful candidate in this position will provide technical accounting support to the travel program at the National...

  19. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    SciTech Connect (OSTI)

    Sakakibara, Y.; Yamamoto, K.; Chen, D.; Tokoku, C.; Uchiyama, T.; Ohashi, M.; Kuroda, K.; Kimura, N.; Suzuki, T.; Koike, S.

    2014-01-29

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  20. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOE Patents [OSTI]

    Benjamin, R.F.

    1983-10-18

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  1. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOE Patents [OSTI]

    Benjamin, R.F.

    1987-03-10

    An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.

  2. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOE Patents [OSTI]

    Benjamin, Robert F.

    1987-01-01

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  3. Constraining dark matter late-time energy injection: decays and p-wave annihilations

    SciTech Connect (OSTI)

    Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C.; Lopez-Honorez, Laura E-mail: llopezho@vub.ac.be E-mail: sergio.palomares.ruiz@ific.uv.es

    2014-02-01

    We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z∼<50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman–α measurements of the matter temperature at z ∼ 4 to set a 95% confidence level lower bound on the dark matter lifetime of ∼ 4 × 10{sup 25} s for m{sub χ} = 100 MeV. This bound becomes lower by an order of magnitude at m{sub χ} = 1 TeV due to inefficient energy deposition into the intergalactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.

  4. Reporting Unofficial Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-15

    Establishes requirements for the reporting of unofficial travel to foreign countries by DOE and DOE contractor employees that hold an access authorization (personnel security clearances). DOE N 251.40, dated 5/3/01, extended this directive until 12/31/01.

  5. Local timespace mesh refinement for simulation of elastic wave propagation in multi-scale media

    SciTech Connect (OSTI)

    Kostin, Victor; Lisitsa, Vadim; Reshetova, Galina; Tcheverda, Vladimir

    2015-01-15

    This paper presents an original approach to local timespace grid refinement for the numerical simulation of wave propagation in models with localized clusters of micro-heterogeneities. The main features of the algorithm are the application of temporal and spatial refinement on two different surfaces; the use of the embedded-stencil technique for the refinement of grid step with respect to time; the use of the Fast Fourier Transform (FFT)-based interpolation to couple variables for spatial mesh refinement. The latter makes it possible to perform filtration of high spatial frequencies, which provides stability in the proposed finite-difference schemes. In the present work, the technique is implemented for the finite-difference simulation of seismic wave propagation and the interaction of such waves with fluid-filled fractures and cavities of carbonate reservoirs. However, this approach is easy to adapt and/or combine with other numerical techniques, such as finite elements, discontinuous Galerkin method, or finite volumes used for approximation of various types of linear and nonlinear hyperbolic equations.

  6. A coherent method for the detection and parameter estimation of continuous gravitational wave signals using a pulsar timing array

    SciTech Connect (OSTI)

    Wang, Yan; Mohanty, Soumya D.; Jenet, Fredrick A. [Department of Physics and Astronomy, University of Texas at Brownsville, 1 West University Boulevard, Brownsville, TX 78520 (United States)

    2014-11-01

    The use of a high precision pulsar timing array is a promising approach to detecting gravitational waves in the very low frequency regime (10{sup 6}-10{sup 9} Hz) that is complementary to ground-based efforts (e.g., LIGO, Virgo) at high frequencies (?10-10{sup 3} Hz) and space-based ones (e.g., LISA) at low frequencies (10{sup 4}-10{sup 1} Hz). One of the target sources for pulsar timing arrays is individual supermassive black hole binaries which are expected to form in galactic mergers. In this paper, a likelihood-based method for detection and parameter estimation is presented for a monochromatic continuous gravitational wave signal emitted by such a source. The so-called pulsar terms in the signal that arise due to the breakdown of the long-wavelength approximation are explicitly taken into account in this method. In addition, the method accounts for equality and inequality constraints involved in the semi-analytical maximization of the likelihood over a subset of the parameters. The remaining parameters are maximized over numerically using Particle Swarm Optimization. Thus, the method presented here solves the monochromatic continuous wave detection and parameter estimation problem without invoking some of the approximations that have been used in earlier studies.

  7. P- and S-body wave tomography of the state of Nevada.

    SciTech Connect (OSTI)

    Preston, Leiph

    2010-04-01

    P- and S-body wave travel times collected from stations in and near the state of Nevada were inverted for P-wave velocity and the Vp/Vs ratio. These waves consist of Pn, Pg, Sn and Sg, but only the first arriving P and S waves were used in the inversion. Travel times were picked by University of Nevada Reno colleagues and were culled for inclusion in the tomographic inversion. The resulting tomographic model covers the entire state of Nevada to a depth of {approx}90 km; however, only the upper 40 km indicate relatively good resolution. Several features of interest are imaged including the Sierra Nevada, basin structures, and low velocities at depth below Yucca Mountain. These velocity structure images provide valuable information to aide in the interpretation of geothermal resource areas throughout the state on Nevada.

  8. Travel Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Airline Baggage Policies Amtrak Argonne Guest House Association of Corporate Travel Executives Database of hotels that meet fire safety code GSA Per Diem Rates Iowa Road Work ISU - Office Procedure Guide - Travel Policies Map Quest Atlas National Business Travel Association Weather Channel Web Flyer

  9. travel-demand-modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Demand Modeling for a Small sized MPO Using TRANSIMS Mohammad Sharif Ullah Champaign County Regional Planning Commission 1776 E Washington Street, Urbana, IL 61802 Phone: 217 328 3313 Ext 124 Email: This email address is being protected from spambots. You need JavaScript enabled to view it. List of Authors ================ Mohammad Sharif Ullah, Senior Transportation Engineer, CCRPC, Urbana, IL Asadur Rahman, PhD student, IIT, Chicago, IL Rita Morocoima-Black, Planning & Comm.

  10. The application of domain decomposition to time-domain computations of nonlinear water waves with a panel method

    SciTech Connect (OSTI)

    De Haas, P.C.A.; Zandbergen, P.J.

    1996-12-01

    In this paper an iterative domain decomposition method for the solution of Laplace`s equation is described and its effectiveness in time-domain computations of nonlinear water waves with a panel method is investigated. An important aspect of these computations is the varying shape of the free surface. The convergence of the iterative method is fast and leads to a speedup of the computations in the aforementioned application. The domain decomposition method gives a considerable reduction of memory requirements. Furthermore, it lends itself naturally for parallel computing. 18 refs., 9 figs., 2 tabs.

  11. A real-time heart rate analysis for a remote millimeter wave I-Q sensor.

    SciTech Connect (OSTI)

    Bakhtiari, S.; Liao, S.; Elmer, T.; Gopalsami, N.; Raptis, A. C.

    2011-06-01

    This paper analyzes heart rate (HR) information from physiological tracings collected with a remote millimeter wave (mmW) I-Q sensor for biometric monitoring applications. A parameter optimization method based on the nonlinear Levenberg-Marquardt algorithm is used. The mmW sensor works at 94 GHz and can detect the vital signs of a human subject from a few to tens of meters away. The reflected mmW signal is typically affected by respiration, body movement, background noise, and electronic system noise. Processing of the mmW radar signal is, thus, necessary to obtain the true HR. The down-converted received signal in this case consists of both the real part (I-branch) and the imaginary part (Q-branch), which can be considered as the cosine and sine of the received phase of the HR signal. Instead of fitting the converted phase angle signal, the method directly fits the real and imaginary parts of the HR signal, which circumvents the need for phase unwrapping. This is particularly useful when the SNR is low. Also, the method identifies both beat-to-beat HR and individual heartbeat magnitude, which is valuable for some medical diagnosis applications. The mean HR here is compared to that obtained using the discrete Fourier transform.

  12. Interviewee Travel Regulations Scope

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rucks that travel in the western United States will soon be able to operate clean-burning alternative fuel vehicles (AFVs) along the Interstate Clean Transpor- tation Corridor (ICTC). The ICTC project is the first effort to develop clean transportation corridors to connect Los Angeles, San Bernar- dino, the San Joaquin Valley, Sacra- mento/San Francisco, Salt Lake City, Reno, and Las Vegas along routes 1-15, 1-80, and 1-5/CA-99. The ICTC team, headed by California- based Gladstein and

  13. Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons

    SciTech Connect (OSTI)

    Guo, Shimin Mei, Liquan; Zhang, Zhengqiang

    2015-05-15

    Nonlinear propagation of ion-acoustic waves is investigated in a one-dimensional, unmagnetized plasma consisting of positive ions, negative ions, and nonthermal electrons featuring Tsallis distribution that is penetrated by a negative-ion-beam. The classical Gardner equation is derived to describe nonlinear behavior of ion-acoustic waves in the considered plasma system via reductive perturbation technique. We convert the classical Gardner equation into the time-fractional Gardner equation by Agrawal's method, where the time-fractional term is under the sense of Riesz fractional derivative. Employing variational iteration method, we construct solitary wave solutions of the time-fractional Gardner equation with initial condition which depends on the nonlinear and dispersion coefficients. The effect of the plasma parameters on the compressive and rarefactive ion-acoustic solitary waves is also discussed in detail.

  14. Omega World Travel Awarded JLab Contract for Travel Services | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Who is Omega World Travel? Omega World Travel has over 43 years of experience in the travel industry with a diversified customer base across multiple industries as well as DOE Laboratories. When is the Omega "Go-Live" date? The "Go-Live" date is Monday, August 1, 2016. Why did we select Omega World Travel? Omega's capabilities and experience, coupled with advantageous pricing and customer satisfaction, resulted in their selection. What does this mean to me? The Concur

  15. Foreign Travel | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guidance Foreign Trip Report Template Trip Report Example 1 Trip Report Example 2 Insurance: Travelers are eligible for the Cultural Insurance Services International (CISI)...

  16. Optical Square-Wave Clock Generation Based on an All-Optical Flip-Flop

    SciTech Connect (OSTI)

    Kaplan, A.M.; Agrawal, G.P.; Maywar, D.N.

    2010-03-10

    We demonstrate optical square-wave clock generation based on an all-optical flip-flop. The bistable output power from a resonant-type semiconductor optical amplifier (SOA) is switched ON and OFF by modulating its input with its output via cross-gain modulation in a traveling-wave SOA. All active components are driven by dc currents, and the wavelength and clock frequency are selectable. A clock frequency of 3.5 MHz is demonstrated, limited by the time of flight between bulk optical components. Optical square-wave clock signals are promising for applications in photonic integrated circuits and all-optical signal processing.

  17. Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines

    SciTech Connect (OSTI)

    Bradley, D.; Kalghatgi, G.T.

    2009-12-15

    The functional relationship of autoignition delay time with temperature and pressure is employed to derive the propagation velocities of autoignitive reaction fronts for particular reactivity gradients, once autoignition has been initiated. In the present study of a variety of premixtures, with different functional relationships, such gradients comprise fixed initial temperature gradients. The smaller is the ratio of the acoustic speed through the mixture to the localised velocity of the autoignitive front, the greater are the amplitude and frequency of the induced pressure wave. This might lead to damaging engine knock. At higher values of the ratio, the autoignition can be benign with only small over-pressures. This approach to the effects of autoignition is confirmed by its application to a variety of experimental studies involving: (i)Imposed temperature gradients in a rapid compression and expansion machine. (ii)Onset of knock in an engine with advancing spark timing. (iii)Development of autoignition at a single hot spot in an engine. (iv)Autoignition fronts initiated by several hot spots. There is much diversity in the effects that can be produced by different fuels in different ranges of temperature and pressure. Higher values of autoignitive propagation speeds lead to increasingly severe engine knock. Such effects cannot always be predicted from the Research and Motor octane numbers. (author)

  18. Omega World Travel Awarded JLab Contract for Travel Services | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Effective today, ALL travel to go through Omega World Travel. The Concur On-line Travel System is up and running. You can access it now. Questions / Concerns Omega representatives will be holding informational / training sessions August 1st 3:00pm - 4:00pm and August 2nd 2:00pm - 3:00pm in the Cebaf Center Auditorium. All staff are encouraged to attend. Topics will cover: Introduction of Omega's Account Manager, Reservation Agent, and Transition Team, Elimination of on-site agent, Who to

  19. NEUP Student Travel Request Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Student Travel Request Form NEUP Student Travel Request Form NEUP Fellowship Travel Request Form PDF icon Student Travel Request Form.pdf More Documents & Publications Investing in ...

  20. ORISE: Travelers' Health Campaign | How ORISE is Making a Difference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travelers' Health Campaign Travelers' Health Campaign takes critical messages worldwide Travelers' Health Campaign poster Click image to enlarge Traveling can be a dangerous...

  1. Chapter 3. Vehicle-Miles Traveled

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important...

  2. QUASI-PERIODIC FAST-MODE WAVE TRAINS WITHIN A GLOBAL EUV WAVE AND SEQUENTIAL TRANSVERSE OSCILLATIONS DETECTED BY SDO/AIA

    SciTech Connect (OSTI)

    Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.; Ofman, Leon

    2012-07-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  3. Microsoft Word - Travel Checklist.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kinds of tickets are and are not reimbursable are, in conjunction with the ongoing globalization of airline and other travel consortiums, complex enough that whether a travel...

  4. ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) This schedule covers records documenting the ...

  5. Effect of trapped electron on the dust ion acoustic waves in dusty plasma using time fractional modified Korteweg-de Vries equation

    SciTech Connect (OSTI)

    Nazari-Golshan, A.; Nourazar, S. S.; Department of Mechanical Engineering, Amirkabir University of Technology, Tehran

    2013-10-15

    The time fractional modified Korteweg-de Vries (TFMKdV) equation is solved to study the nonlinear propagation of small but finite amplitude dust ion-acoustic (DIA) solitary waves in un-magnetized dusty plasma with trapped electrons. The plasma is composed of a cold ion fluid, stationary dust grains, and hot electrons obeying a trapped electron distribution. The TFMKdV equation is derived by using the semi-inverse and Agrawal's methods and then solved by the Laplace Adomian decomposition method. Our results show that the amplitude of the DIA solitary waves increases with the increase of time fractional order β, the wave velocity v{sub 0}, and the population of the background free electrons λ. However, it is vice-versa for the deviation from isothermality parameter b, which is in agreement with the result obtained previously.

  6. A staggered-grid finite-difference scheme optimized in the timespace domain for modeling scalar-wave propagation in geophysical problems

    SciTech Connect (OSTI)

    Tan, Sirui; Huang, Lianjie

    2014-11-01

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.

  7. Time evolution of nonplanar dust ion-acoustic solitary waves in a charge varying dusty plasma with superthermal electrons

    SciTech Connect (OSTI)

    Mayout, Saliha; Tribeche, Mouloud; Sahu, Biswajit

    2015-12-15

    A theoretical study on the nonlinear propagation of nonplanar (cylindrical and spherical) dust ion-acoustic solitary waves (DIASW) is carried out in a dusty plasma, whose constituents are inertial ions, superthermal electrons, and charge fluctuating stationary dust particles. Using the reductive perturbation theory, a modified Korteweg-de Vries equation is derived. It is shown that the propagation characteristics of the cylindrical and spherical DIA solitary waves significantly differ from those of their one-dimensional counterpart.

  8. Molten metal feed system controlled with a traveling magnetic field

    DOE Patents [OSTI]

    Praeg, Walter F.

    1991-01-01

    A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

  9. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    SciTech Connect (OSTI)

    Winey, J. M.; Gupta, Y. M.

    2014-07-21

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7?GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101{sup }2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More

  10. Measuring tides and binary parameters from gravitational wave data and eclipsing timings of detached white dwarf binaries

    SciTech Connect (OSTI)

    Shah, Sweta; Nelemans, Gijs

    2014-08-20

    The discovery of the most compact detached white dwarf (WD) binary SDSS J065133.33+284423.3 has been discussed in terms of probing the tidal effects in WDs. This system is also a verification source for the space-based gravitational wave (GW) detector, eLISA, or the evolved Laser Interferometer Space Antenna, which will observe short-period compact Galactic binaries with P {sub orb} ≲ 5 hr. We address the prospects of performing tidal studies using eLISA binaries by showing the fractional uncertainties in the orbital decay rate, f-dot , and the rate of that decay, f{sup ¨} expected from both the GW and electromagnetic (EM) data for some of the high-f binaries. We find that f-dot and f{sup ¨} can be measured using GW data only for the most massive WD binaries observed at high frequencies. From timing the eclipses for ∼10 yr, we find that f-dot can be known to ∼0.1% for J0651. We find that from GW data alone, measuring the effects of tides in binaries is (almost) impossible. We also investigate the improvement in the knowledge of the binary parameters by combining the GW amplitude and inclination with EM data with and without f-dot . In our previous work, we found that EM data on distance constrained the 2σ uncertainty in chirp mass to 15%-25% whereas adding f-dot reduces it to 0.11%. EM data on f-dot also constrain the 2σ uncertainty in distance to 35%-19%. EM data on primary mass constrain the secondary mass m {sub 2} to factors of two to ∼40% whereas adding f-dot reduces this to 25%. Finally, using single-line spectroscopic data constrains 2σ uncertainties in both the m {sub 2}, d to factors of two to ∼40%. Adding EM data on f-dot reduces these 2σ uncertainties to ≤25% and 6%-19%, respectively. Thus we find that EM measurements of f-dot and radial velocity are valuable in constraining eLISA binary parameters.

  11. 2001 New York State NHTS: Travel Patterns of Special Populations

    SciTech Connect (OSTI)

    Hu, Patricia S; Reuscher, Tim

    2010-03-01

    pertinent to geographic areas that are significantly smaller than what the national NHTS data allowed. The final sample size for New York State was 13,423 usable households. In this report, Oak Ridge National Laboratory (ORNL) identifies and analyzes differences, if any, in travel patterns that are attributable to demographic characteristics (e.g., gender, age, race and ethnicity), household characteristics (e.g., low income households, zero and one car households), modal characteristics and geographic location. Travel patterns of those who work at home are examined and compared to those of conventional workers, as well as those who do not work. Focus is given to trip frequency, travel by time of day, trip purpose, and mode choice. For example, included in this analysis is the mobility of the elderly population in New York State. The American society is undergoing a major demographic transformation that is resulting in a greater percentage of older individuals in the population. In addition to demographic changes, recent travel surveys show that an increasing number of older individuals are licensed to drive and that they drive more than their same age cohort did a decade ago. Cohort differences in driving are particularly apparent - not only are more of today's elderly population licensed to drive than their age cohort two decades ago, they also drive more. Equally important are the increase in immigration and in racial and cultural diversity. This report also discusses vehicle availability, socioeconomic characteristics, travel trends (e.g., miles travelled, distance driven, commute patterns), and the transportation accessibility of these populations. Specifically, this report addresses in detail the travel behavior of the following special populations: (1) the elderly, defined as those who were 65 years old or older, (2) low-income households, (3) ethnic groups and immigrants, and (4) those who worked at home.

  12. Quantifying the {sup 12}C+{sup 12}C sub-Coulomb fusion with the time-dependent wave-packet method

    SciTech Connect (OSTI)

    Diaz-Torres, Alexis; Wiescher, Michael

    2012-10-20

    This contribution provides a preliminary study of the {sup 12}C+{sup 12}C sub-Coulomb fusion reaction using the time-dependent wave-packet method within a nuclear molecular picture. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.

  13. Travel Office creates on-line guide to help travelers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Office creates on-line guide to help travelers The Ames Lab Travel Office has created a couple of informational tools found on their web page to help assist travelers while making travel arrangements. "How to Fill Out a Travel Worksheet" can be found under the "Instructions" tab. The guide walks you step-by-step in filling out a travel worksheet. Also, the "Travel Arrangement Guide" can help with general questions and this is found under the "Making

  14. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    SciTech Connect (OSTI)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations in the

  15. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    DOE Patents [OSTI]

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  16. Precise Calculation of Traveling-Wave Periodic Structure

    SciTech Connect (OSTI)

    Wang, L.; Li, Z.; Seryi, A.; /SLAC

    2007-07-06

    The effects of the round edge beam hole on the frequency and wake field are studied using variational method, which allows for rounded iris disk hole without any approximation in shape treatment. The frequency and wake field of accelerating mode and dipole mode are studied for different edge radius cases, including the flat edge shape that is often used to approximately represent the actual structure geometry. The edge hole shape has weak effect on the frequency, but much effect on the wake field. Our study shows that the amounts of wake fields are not precise enough with the assumption of the flat edge beam hole instead of round edge.

  17. New York Household Travel Patterns: A Comparison Analysis

    SciTech Connect (OSTI)

    Hu, Patricia S; Reuscher, Tim

    2007-05-01

    In 1969, the U. S. Department of Transportation began collecting detailed data on personal travel to address various transportation planning issues. These issues range from assessing transportation investment programs to developing new technologies to alleviate congestion. This 1969 survey was the birth of the Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990 and 1995. Longer-distance travel was collected in 1977 and 1995. In 2001, the survey was renamed to the National Household Travel Survey (NHTS) and collected both daily and longer-distance trips in one survey. In addition to the number of sample households that the national NPTS/NHTS survey allotted to New York State (NYS), the state procured an additional sample of households in both the 1995 and 2001 surveys. In the 1995 survey, NYS procured an addition sample of more than 9,000 households, increasing the final NY NPTS sample size to a total of 11,004 households. Again in 2001, NYS procured 12,000 additional sample households, increasing the final New York NHTS sample size to a total of 13,423 households with usable data. These additional sample households allowed NYS to address transportation planning issues pertinent to geographic areas significantly smaller than for what the national NPTS and NHTS data are intended. Specifically, these larger sample sizes enable detailed analysis of twelve individual Metropolitan Planning Organizations (MPOs). Furthermore, they allowed NYS to address trends in travel behavior over time. In this report, travel data for the entire NYS were compared to those of the rest of the country with respect to personal travel behavior and key travel determinants. The influence of New York City (NYC) data on the comparisons of the state of New York to the rest of the country was also examined. Moreover, the analysis examined the relationship between population density and travel patterns, and the similarities and differences among New

  18. Time-periodic solutions of the Benjamin-Ono equation

    SciTech Connect (OSTI)

    Ambrose , D.M.; Wilkening, Jon

    2008-04-01

    We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one of the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.

  19. MHK Technologies/Seatricity wave energy converter | Open Energy...

    Open Energy Info (EERE)

    In the simplest terms, a float travels up and down with the waves and operates a pump to pressurise sea water which is piped ashore. Many individual pumps are connected...

  20. Photochemistry of the water dimer: Time-dependent quantum wave-packet description of the dynamics at the S{sub 1}-S{sub 0} conical intersection

    SciTech Connect (OSTI)

    Chmura, Bartosz; Rode, Michal F.; Sobolewski, Andrzej L.; Lan Zhenggang

    2009-10-07

    The photoinduced electron-driven proton-transfer dynamics of the water-dimer system has been investigated by time-dependent quantum wave-packet calculations. The main nuclear degrees of freedom driving the system from the Frank-Condon region to the S{sub 0}-S{sub 1} conical intersection are the distance between the oxygen atoms and the displacement of the hydrogen atom from the oxygen-oxygen bond center. Two important coupling modes have been investigated: Rotation of the H-donating water dangling proton and asymmetric stretching of the H-accepting water dangling protons'O{sub a}H bonds. Potential energy surfaces of the ground and lowest excited electronic states have been constructed on the basis of ab initio calculations. The time-dependent quantum wave-packet propagation has been employed within the (2 + 1)-dimensional systems for the description of the nonadiabatic dynamics of water dimer. The effects of the initial vibrational state of the system on the electronic population transfer and dissociation dynamics are presented. To approximate the photochemical behavior of water dimer in bulk water, we add a boundary condition into the (2 + 1)-dimensional systems to simulate the existence of water bulk. The results provide insight into the mechanisms of excited state deactivation of the water-dimer system in gas phase and in bulk water through the electron-driven proton-transfer process.

  1. Two-dimensional Vlasov simulation of electron plasma wave trapping, wavefront bowing, self-focusing, and sideloss

    SciTech Connect (OSTI)

    Banks, J. W.; Berger, R. L.; Cohen, B. I.; Hittinger, J. A. F.; Brunner, S.

    2011-05-15

    Two-dimensional Vlasov simulations of nonlinear electron plasma waves are presented, in which the interplay of linear and nonlinear kinetic effects is evident. The plasma wave is created with an external traveling wave potential with a transverse envelope of width {Delta}y such that thermal electrons transit the wave in a ''sideloss'' time, t{sub sl{approx}{Delta}}y/v{sub e}. Here, v{sub e} is the electron thermal velocity. The quasisteady distribution of trapped electrons and its self-consistent plasma wave are studied after the external field is turned off. In cases of particular interest, the bounce frequency, {omega}{sub be}=k{radical}(e{phi}/m{sub e}), satisfies the trapping condition {omega}{sub be}t{sub sl}>2{pi} such that the wave frequency is nonlinearly downshifted by an amount proportional to the number of trapped electrons. Here, k is the wavenumber of the plasma wave and {phi} is its electric potential. For sufficiently short times, the magnitude of the negative frequency shift is a local function of {phi}. Because the trapping frequency shift is negative, the phase of the wave on axis lags the off-axis phase if the trapping nonlinearity dominates linear wave diffraction. In this case, the phasefronts are curved in a focusing sense. In the opposite limit, the phasefronts are curved in a defocusing sense. Analysis and simulations in which the wave amplitude and transverse width are varied establish criteria for the development of each type of wavefront. The damping and trapped-electron-induced focusing of the finite-amplitude electron plasma wave are also simulated. The damping rate of the field energy of the wave is found to be about the sideloss rate, {nu}{sub e{approx}}t{sub sl}{sup -1}. For large wave amplitudes or widths {Delta}y, a trapping-induced self-focusing of the wave is demonstrated.

  2. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  3. Tube-wave seismic imaging

    DOE Patents [OSTI]

    Korneev, Valeri A.; Bakulin, Andrey

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  4. Fermilab | Tevatron | Tevatron Symposium | Travel and Lodging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel and Lodging Directions to Fermilab Local Accommodations Map of Local Hotels Transportation Visa Information Wifi Access at Fermilab Other Useful Links

  5. ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 6: ACCOUNTABLE OFFICERS' ACCOUNTS RECORDS ADM 6 PDF...

  6. Field trials results of guided wave tomography

    SciTech Connect (OSTI)

    Volker, Arno Zon, Tim van; Leden, Edwin van der

    2015-03-31

    Corrosion is one of the industries major issues regarding the integrity of assets. Guided wave travel time tomography is a method capable of providing an absolute wall thickness map. This method is currently making the transition from the laboratory to the field. For this purpose a dedicated data acquisition system and special purpose EMAT sensor rings have been developed. The system can be deployed for permanent monitoring and inspections. Field trials have been conducted on various pipes with different diameters, containing either liquid or gas. The main focus has been on pipe supports. The results demonstrate the successful operation of the technology in the field. Expected corrosion damage was clearly visible on the produced results enabling asset owner to make calculated decisions on the pipelines safety, maintenance and operations.

  7. Guided wave opto-acoustic device

    DOE Patents [OSTI]

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  8. Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 4 5 6 7 8 9 10 Time with respect to the BNB Trigger Time [µs] 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Fractional Flash Count per 0.15 µs with respect to Cosmic Background Measured Cosmic Rate (Beam-Off) BNB Trigger Data (Beam-On) [4.51E18 POT]

  9. Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 15 20 Time with respect to the NuMI Trigger Time [µs] 0.9 1.0 1.1 1.2 1.3 1.4 1.5 Fractional Flash Count per 0.5 µs with respect to Cosmic Background Measured Cosmic Rate (Beam-Off) NuMI Trigger Data (Beam-On) [4.83E18 POT]

  10. Errors in determination of soil water content using time-domain reflectometry caused by soil compaction around wave guides

    SciTech Connect (OSTI)

    Ghezzehei, T.A.

    2008-05-29

    Application of time domain reflectometry (TDR) in soil hydrology often involves the conversion of TDR-measured dielectric permittivity to water content using universal calibration equations (empirical or physically based). Deviations of soil-specific calibrations from the universal calibrations have been noted and are usually attributed to peculiar composition of soil constituents, such as high content of clay and/or organic matter. Although it is recognized that soil disturbance by TDR waveguides may have impact on measurement errors, to our knowledge, there has not been any quantification of this effect. In this paper, we introduce a method that estimates this error by combining two models: one that describes soil compaction around cylindrical objects and another that translates change in bulk density to evolution of soil water retention characteristics. Our analysis indicates that the compaction pattern depends on the mechanical properties of the soil at the time of installation. The relative error in water content measurement depends on the compaction pattern as well as the water content and water retention properties of the soil. Illustrative calculations based on measured soil mechanical and hydrologic properties from the literature indicate that the measurement errors of using a standard three-prong TDR waveguide could be up to 10%. We also show that the error scales linearly with the ratio of rod radius to the interradius spacing.

  11. NEUP Foreign Travel Request Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreign Travel Request Form NEUP Foreign Travel Request Form NEUP Foreign Travel Request Form NEUP Foreign Travel Form 07_31_12.docx (62.57 KB) More Documents & Publications DOE F 551.1 NEUP Student Travel Request Form HQ FNVA Questionnaire

  12. Positioner with long travel in two dimensions

    DOE Patents [OSTI]

    Trumper, David L.; Williams, Mark E.

    1997-12-23

    A precision positioning system is provided which provides long travel in two of the linear dimensions, while using non-contact bearings for both a first subassembly which provides long travel in one of the linear dimension and a second subassembly which provides long travel in the second linear dimension. The first or upper subassembly is preferably a magnetic subassembly which, in addition to providing long travel, also compensates or positions in three rotary dimensions and in the third linear dimension. The second subassembly is preferably either an air bearing or magnetic subassembly and is normally used only to provide long travel. Angled surfaces may be provided for magnetic bearings and capacitive or other gap sensing probes may be mounted to the stage and ground flush with the bearing actuators to provide more precise gap measurements.

  13. A real-time laser feedback control method for the three-wave laser source used in the polarimeter-interferometer diagnostic on Joint-TEXT tokamak

    SciTech Connect (OSTI)

    Xiong, C. Y.; Chen, J. Li, Q.; Liu, Y.; Gao, L.

    2014-12-15

    A three-wave laser polarimeter-interferometer, equipped with three independent far-infrared laser sources, has been developed on Joint-TEXT (J-TEXT) tokamak. The diagnostic system is capable of high-resolution temporal and phase measurement of the Faraday angle and line-integrated density. However, for long-term operation (>10 min), the free-running lasers can lead to large drifts of the intermediate frequencies (∼100–∼500 kHz/10 min) and decay of laser power (∼10%–∼20%/10 min), which act to degrade diagnostic performance. In addition, these effects lead to increased maintenance cost and limit measurement applicability to long pulse/steady state experiments. To solve this problem, a real-time feedback control method of the laser source is proposed. By accurately controlling the length of each laser cavity, both the intermediate frequencies and laser power can be simultaneously controlled: the intermediate frequencies are controlled according to the pre-set values, while the laser powers are maintained at an optimal level. Based on this approach, a real-time feedback control system has been developed and applied on J-TEXT polarimeter-interferometer. Long-term (theoretically no time limit) feedback of intermediate frequencies (maximum change less than ±12 kHz) and laser powers (maximum relative power change less than ±7%) has been successfully achieved.

  14. Wave-wave interactions in solar type III radio bursts

    SciTech Connect (OSTI)

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  15. RADIATION WAVE DETECTION

    DOE Patents [OSTI]

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  16. Better World Club Travel Cool | Open Energy Information

    Open Energy Info (EERE)

    World Club Travel Cool Jump to: navigation, search Name: Better World Club Travel Cool Place: Portland, Oregon Zip: 97209 Product: Travel Cool is the eNewsletter of the Better...

  17. Venue and Travel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Venue and Travel Venue and Travel Venue and Travel Hilton Anaheim 777 W Convention Way Anaheim, California, 92802 USA TEL: 1-714-750-4321 FAX: 1-714-740-4460 Reserving Your Room For your convenience, a limited room block has been set up at the group rate of $133 per night (plus applicable taxes). Space is limited and will sell out fast. Reservations can be made via the call center 1-877-776-4932 using the group code: SGE or you can book online: SunShot Grand Challenge Summit Room Block.

  18. Time-resolved imaging of millimeter waves using visible continuum from the positive column of a Cs-Xe dc discharge

    SciTech Connect (OSTI)

    Gitlin, M. S.; Golovanov, V. V.; Spivakov, A. G.; Tsvetkov, A. I.; Zelenogorskiy, V. V.

    2010-03-15

    We present a high-sensitivity technique for time-resolved imaging of millimeter waves (MMWs) using the visible continuum (VC) from the positive column (PC) of a medium-pressure Cs-Xe dc discharge. For the MMW imaging application, a uniform plasma slab of the PC of a Cs-Xe discharge with 10x8 cm{sup 2} aperture and 2 cm in thickness was generated for 45 Torr xenon. The imaging technique is based on the fact that the intensity of the e-Xe bremsstrahlung continuum from the PC increases in the visible region when the electrons in the plasma are heated by MMWs. It is shown that in the MMW intensity range from zero to the threshold of the microwave-induced plasma breakdown, the intensity of the VC from the PC of a Cs-Xe discharge increases approximately as a second-order polynomial function of the MMW intensity. The obtained experimental data agree well with our calculations of the dependence of the VC intensity on electron temperature. The Ka-band MMW field patterns at the output of conical horn antennas and in the quasioptical beam were imaged using the discharge technique. It is shown that the technique can be used for time-resolved measurement of the profiles of watt- and subwatt-level MMWs. An energy flux sensitivity of the technique of about 10 {mu}J/cm{sup 2} in the Ka-band was demonstrated. The temporal resolution of the technique is about 0.8 {mu}s. Our modeling of the transient behavior of the electron temperature in the PC shows that the time history of the electron temperature variation coincides well with the measured time history of the VC intensity variation.

  19. ORISE: CDC Travelers' Health Mobile App, Designed by ORISE, Gains...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    choices while traveling internationally and tasked ORISE with designing iPhone and Android versions. "Nothing is more important to us than the health and safety of travelers,...

  20. DOE Energy Taxation Forum - Travel Fact Sheet | Department of...

    Office of Environmental Management (EM)

    Travel Fact Sheet DOE Energy Taxation Forum - Travel Fact Sheet PDF icon TFS Tax Forum New Orleans 02272012.pdf More Documents & Publications DOE Energy Taxation Forum -...

  1. Hotel and Travel Information for the Summit

    Broader source: Energy.gov [DOE]

    The Executive Summit on Wind Research and Development is being held in the Cottonwoods Pavillion at the Hyatt Regency Tamaya Resort and Spa. Here registrants can find summit hotel and travel...

  2. Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Burton, E.

    2015-02-01

    The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.

  3. Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics

    SciTech Connect (OSTI)

    Greene, David L

    2010-01-01

    U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

  4. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  5. Thurston Regional Planning Council Helps Washingtonians Save on Travel Costs

    Broader source: Energy.gov [DOE]

    Thurston County provides travel information for lower costs, improved safety, and faster response to challenges.

  6. PIA - Foreign Travel Management System (FTMS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Travel Management System (FTMS) PIA - Foreign Travel Management System (FTMS) PIA - Foreign Travel Management System (FTMS) PIA - Foreign Travel Management System (FTMS) (389.71 KB) More Documents & Publications PIA - INL PeopleSoft - Human Resource System PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE

  7. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  8. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  9. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, Stanley P. (Los Alamos, NM)

    1988-01-01

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

  10. The detection of upwardly propagating waves channeling energy from the chromosphere to the low corona

    SciTech Connect (OSTI)

    Freij, N.; Nelson, C. J.; Mumford, S.; Erdlyi, R.; Scullion, E. M.; Wedemeyer, S.

    2014-08-10

    There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardly propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 0.5 km s{sup 1} and a minimum vertical velocity of 42 21 km s{sup 1}. The estimated energy of the waves is around 150 W m{sup 2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.

  11. Frequency-dependent damping in propagating slow magneto-acoustic waves

    SciTech Connect (OSTI)

    Prasad, S. Krishna; Banerjee, D.; Van Doorsselaere, T.

    2014-07-10

    Propagating slow magneto-acoustic waves are often observed in polar plumes and active region fan loops. The observed periodicities of these waves range from a few minutes to a few tens of minutes and their amplitudes were found to decay rapidly as they travel along the supporting structure. Previously, thermal conduction, compressive viscosity, radiation, density stratification, and area divergence were identified to be some of the causes for change in the slow wave amplitude. Our recent studies indicate that the observed damping in these waves is frequency-dependent. We used imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly to study this dependence in detail and for the first time via observations we attempted to deduce a quantitative relation between the damping length and frequency of these oscillations. We developed a new analysis method to obtain this relation. The observed frequency dependence does not seem to agree with the current linear wave theory and it was found that the waves observed in the polar regions show a different dependence from those observed in the on-disk loop structures despite the similarity in their properties.

  12. Transferring 2001 National Household Travel Survey

    SciTech Connect (OSTI)

    Hu, Patricia S; Reuscher, Tim; Schmoyer, Richard L; Chin, Shih-Miao

    2007-05-01

    Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle

  13. Foreign Travel Health & Wellness Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wellness Programs » Foreign Travel Health & Wellness Information Foreign Travel Health & Wellness Information All travelers should take the following precautions, no matter the destination: Wash hands often with soap and water. Because motor vehicle crashes are a leading cause of injury among travelers, walk and drive defensively; avoid travel at night if possible and always use seat belts. Don't eat or drink dairy products unless you know they have been pasteurized. Never eat

  14. Light-Duty Vehicle Energy Demand, Demographics, and Travel Behavior

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA Conference July 15, 2014 | Washington, DC By Trisha Hutchins, Office of Energy Consumption and Efficiency Analysis Light-duty vehicle energy demand, demographics, and travel behavior Examining changes in light-duty vehicle travel trends 2 EIA Conference: Light-duty vehicle energy demand, demographics, and travel behavior July 15, 2014 * Recent data indicate possible structural shift in travel behavior, measured as vehicle miles traveled (VMT) - VMT per licensed driver, vehicles per capita,

  15. Regional Seismic Travel Time Node Get and Set

    Energy Science and Technology Software Center (OSTI)

    2012-10-24

    RSTT_NOGS allows users to easily get and set seismic velocity vs. depth profiles at specified model tessellation nodes. RSTT_NOGS uses the Sandia Seismic Location Baseline Model code that was released under BSD license in 2009.

  16. A neural network for real-time retrievals of PWV and LWP from Arctic millimeter-wave ground-based observations.

    SciTech Connect (OSTI)

    Cadeddu, M. P.; Turner, D. D.; Liljegren, J. C.; Decision and Information Sciences; Univ. of Wisconsin at Madison

    2009-07-01

    This paper presents a new neural network (NN) algorithm for real-time retrievals of low amounts of precipitable water vapor (PWV) and integrated liquid water from millimeter-wave ground-based observations. Measurements are collected by the 183.3-GHz G-band vapor radiometer (GVR) operating at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility, Barrow, AK. The NN provides the means to explore the nonlinear regime of the measurements and investigate the physical boundaries of the operability of the instrument. A methodology to compute individual error bars associated with the NN output is developed, and a detailed error analysis of the network output is provided. Through the error analysis, it is possible to isolate several components contributing to the overall retrieval errors and to analyze the dependence of the errors on the inputs. The network outputs and associated errors are then compared with results from a physical retrieval and with the ARM two-channel microwave radiometer (MWR) statistical retrieval. When the NN is trained with a seasonal training data set, the retrievals of water vapor yield results that are comparable to those obtained from a traditional physical retrieval, with a retrieval error percentage of {approx}5% when the PWV is between 2 and 10 mm, but with the advantages that the NN algorithm does not require vertical profiles of temperature and humidity as input and is significantly faster computationally. Liquid water path (LWP) retrievals from the NN have a significantly improved clear-sky bias (mean of {approx}2.4 g/m{sup 2}) and a retrieval error varying from 1 to about 10 g/m{sup 2} when the PWV amount is between 1 and 10 mm. As an independent validation of the LWP retrieval, the longwave downwelling surface flux was computed and compared with observations. The comparison shows a significant improvement with respect to the MWR statistical retrievals, particularly for LWP amounts of less than 60 g/m{sup 2}.

  17. New Hire Relocation Travel Information Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Hire Relocation Travel Information Guide This information guide is provided by the CFO Travel Relocation Office to assist you in planning your relocation to Los Alamos. Please contact the Relocation Office at least two to four weeks prior to your relocation to discuss your relocation plans. You can contact the Relocation Office at (505) 665-4484 or by e-mail at relocation@lanl.gov. You must have met all contingencies, if any, of your hire as well as have proper work authorization before the

  18. Analysis of plug-in hybrid electric vehicles' utility factors using GPS-based longitudinal travel data

    SciTech Connect (OSTI)

    Wu, Xing; Aviquzzaman, Md.; Lin, Zhenhong

    2015-05-29

    The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel and charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline. In addition, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist's daily distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3-18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. However, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.

  19. Analysis of plug-in hybrid electric vehicles' utility factors using GPS-based longitudinal travel data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Xing; Aviquzzaman, Md.; Lin, Zhenhong

    2015-05-29

    The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel andmore » charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline. In addition, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist's daily distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3-18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. However, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.« less

  20. Entropic information for travelling solitons in Lorentz and CPT breaking systems

    SciTech Connect (OSTI)

    Correa, R.A.C.; Rocha, Roldão da; Souza Dutra, A. de

    2015-08-15

    In this work we group four research topics apparently disconnected, namely solitons, Lorentz symmetry breaking, supersymmetry, and entropy. Following a recent work (Gleiser and Stamatopoulos, 2012), we show that it is possible to construct in the context of travelling wave solutions a configurational entropy measure in functional space, from the field configurations. Thus, we investigate the existence and properties of travelling solitons in Lorentz and CPT breaking scenarios for a class of models with two interacting scalar fields. Here, we obtain a complete set of exact solutions for the model studied which display both double and single-kink configurations. In fact, such models are very important in applications that include Bloch branes, Skyrmions, Yang–Mills, Q-balls, oscillons and various superstring-motivated theories. We find that the so-called Configurational Entropy (CE) for travelling solitons shows that the best value of parameter responsible to break the Lorentz symmetry is one where the energy density is distributed equally around the origin. In this way, the information-theoretical measure of travelling solitons in Lorentz symmetry violation scenarios opens a new window to probe situations where the parameters responsible for breaking the symmetries are arbitrary. In this case, the CE selects the best value of the parameter in the model.

  1. Travel Services Transition to Omega World Travel to Begin on July 29 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab on August 2 in the CEBAF Center auditorium. Be sure to monitor your email for further information on the transition and cut-over. If you have any questions about the transition, please contact Travel Services at757-269-7192. For more information, see the original announcement: https://www.jlab.org/memo/omega-world-travel-will-be-taking-over-subcontract

  2. Travel Services Transition to Omega World Travel to Begin on July 29 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab on August 2 in the CEBAF Center auditorium. Be sure to monitor your email for further information on the transition and cut-over. If you have any questions about the transition, please contact Travel Services at757-269-7192. For more information, see the original announcement: https://www.jlab.org/memo/omega-world-travel-will-be-taking-over-subcont...

  3. Fracture identification and evaluation using borehole imaging and full wave form logs in the Permian basin

    SciTech Connect (OSTI)

    Sanders, L. )

    1994-03-01

    The borehole imaging and acoustic full wave form logs provide an excellent means for identifying and evaluating naturally occurring fractures. The natural fractures can provide the porosity and permeability essential for a productive reservoir. The detection of these fractures may be accomplished by tow types of wireline logging tools: borehole imaging devices and acoustic full wave form tools. The borehole imaging tools produce images based upon the electromagnetic or the acoustic properties of the borehole wall. Fractures will appear as darker images that are distinct from the nonfracture formation. These images are coupled with a reference azimuth that allows for the determination of the orientation of the fracture image. The acoustic full wave form logs are used to detect fractures by analyzing various acoustic properties of the formation. The travel time, amplitude, and frequency responses of fractured formations differ remarkably from the responses of nonfractured formations because of the reduction of the acoustic energy in the fractures. The various field examples from the Queen sandstone to the Ellenburger formation demonstrate the advantages and disadvantages unique to the borehole imaging and the acoustic full wave form devices. Within this geologic framework, comparisons are made among the data extracted from whole cores, borehole imaging devices, and the acoustic full wave form tools in establishing a systematic approach for the identification and evaluation of fractures.

  4. RADIATION WAVE DETECTOR

    DOE Patents [OSTI]

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  5. Researchers test novel power system for space travel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power system for space travel Researchers test novel power system for space travel The ... "The heat pipe and Stirling engine used in this test are meant to represent one module ...

  6. Symmetries of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves

    SciTech Connect (OSTI)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1996-07-20

    A formulation of Hamiltonian and Lagrangian variational principles, Lie point symmetries and conservation laws for the triple degenerate DNLS equations describing the propagation of weakly nonlinear dispersive MHD waves along the ambient magnetic field, in {beta}{approx}1 plasmas is given. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic point, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a{sub g}{sup 2}=V{sub A}{sup 2} where a{sub g} is the gas sound speed and V{sub A} is the Alfven speed. A discussion is given of the travelling wave similarity solutions of the equations, which include solitary wave and periodic traveling waves. Strongly compressible solutions indicate the necessity for the insertion of shocks in the flow, whereas weakly compressible, near Alfvenic solutions resemble similar, shock free travelling wave solutions of the DNLS equation.

  7. Checklist for Medical Issues When Traveling Overseas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits » Wellness Programs » Foreign Travel Health & Wellness Information » Checklist for Medical Issues When Traveling Overseas Checklist for Medical Issues When Traveling Overseas Before the Trip A written confirmation from an appropriate manager, i.e., a Travel Authorization or memorandum, that identifies the employee and country(ies) that will be visited should be provided the medical support staff 4-8 weeks prior to the trip or, if less than 4 weeks, as soon as management or the

  8. ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Revision 2) | Department of Energy 9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) This schedule covers records documenting the movement of goods and persons under Government orders. ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS (Revision 2) (14.5 KB) More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 9: TRAVEL AND TRANSPORTATION RECORDS ADMINISTRATIVE RECORDS SCHEDULE

  9. Connected Traveler (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Source: Texas A&M Transportation Institute, 2015 Urban Mobility Scorecard MARKET OPPORTUNITY Increased Mobility Meets Emission Reductions Traveler Vehicle Transport System Built Environment Starting with the Traveler The Connected Traveler approach looks at sustainable transportation as a network of travelers, services, and decision points connected by communication technology and decision-making tools-rather than just by vehicles and roads-to signifcantly reduce related energy consumption

  10. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    SciTech Connect (OSTI)

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; Andr, M.; Jordanova, V. K.

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (20012010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  11. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    SciTech Connect (OSTI)

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  12. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less

  13. Jefferson Lab Visitor's Center - Travel Accommodations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Travel Accommodations While visiting or working at JLab there are many options for living accommodations. These options vary depending upon the expected length of stay, transportation available and money allotted for housing expenses. The following information has been compiled to assist in the search for living accommodations near the lab. For further assistance e-mail User Liaison or call 757-269-6388. On-Site Accommodations SURA Residence Facility Off-Site Accommodations Negotiated Lodging

  14. Extension arm for mobile travelers suit case

    DOE Patents [OSTI]

    Byington, Gerald A.

    1999-01-01

    The invention is an apparatus for adjusting a luggage handle in relation to a luggage frame utilized to transport luggage by a traveler. The handle is connected to two extendable and retractable slide tube assemblies, the assemblies allow for the telescoping of the luggage handle to multiple positions in relation to a pair of fixed frame tubes connected to a luggage shell with wheels, to accommodate the height and personal stride of traveler. The luggage handle incorporates triggering buttons that allow ambidextrous and single-handed control of the height of the handle and slide tube assembly in relation to the luggage. The handle and slide tube assembly are connected by interior filaments to pulleys and filaments within two concentric light-weight slide tubes, which are inserted respectively into two fixed frame tubes, to allow a multitude of positions for the slide tubes to lock into the fixed frame tubes. The apparatus can be pushed or pulled by the traveler, and the support shell can accommodate multiple pieces of luggage.

  15. MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy...

    Open Energy Info (EERE)

    with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following...

  16. CONNECTING THE SUN AND THE SOLAR WIND: THE FIRST 2.5-DIMENSIONAL SELF-CONSISTENT MHD SIMULATION UNDER THE ALFVEN WAVE SCENARIO

    SciTech Connect (OSTI)

    Matsumoto, Takuma; Suzuki, Takeru Ken

    2012-04-10

    The solar wind emanates from the hot and tenuous solar corona. Earlier studies using 1.5-dimensional simulations show that Alfven waves generated in the photosphere play an important role in coronal heating through the process of nonlinear mode conversion. In order to understand the physics of coronal heating and solar wind acceleration together, it is important to consider the regions from photosphere to interplanetary space as a single system. We performed 2.5-dimensional, self-consistent magnetohydrodynamic simulations, covering from the photosphere to the interplanetary space for the first time. We carefully set up the grid points with spherical coordinates to treat the Alfven waves in the atmosphere with huge density contrast and successfully simulate the solar wind streaming out from the hot solar corona as a result of the surface convective motion. The footpoint motion excites Alfven waves along an open magnetic flux tube, and these waves traveling upward in the non-uniform medium undergo wave reflection, nonlinear mode conversion from Alfven mode to slow mode, and turbulent cascade. These processes lead to the dissipation of Alfven waves and acceleration of the solar wind. It is found that the shock heating by the dissipation of the slow-mode wave plays a fundamental role in the coronal heating process, whereas the turbulent cascade and shock heating drive the solar wind.

  17. Omega World Travel will be taking over the subcontract | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will be taking over the subcontract JLab's Travel Agency Contract: Omega World Travel will be taking over the subcontract by Aug. 1, 2016 Jefferson Lab's Travel Agency contract was recently sent out for rebid. We are pleased to announce that Omega World Travel was awarded the subcontract as the Lab's official travel agency. We plan to go live using Omega World Travel by August 1st. In the interim, MAKE NO CHANGES - continue to utilize CIAZ Travel for all travel arrangements until further

  18. A mm-wave planar microcavity structure for electron linear accelerator system

    SciTech Connect (OSTI)

    Kang, Y.W.; Kustom, R.; Mills, F.; Mavrogenes, G.; Henke, H.

    1993-07-01

    The muffin-tin cavity structure is planar and well suited for mm-wave accelerator with silicon etching techniques. A constant impedance traveling-wave structure is considered for design simplicity. The RF parameters are calculated and the shunt impedance is compared with the shunt impedance of a disk loaded cylindrical structure.

  19. Stochastic simulation for the propagation of high-frequency acoustic waves through a random velocity field

    SciTech Connect (OSTI)

    Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.

    2012-05-17

    In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.

  20. Preliminary result of P-wave speed tomography beneath North Sumatera region

    SciTech Connect (OSTI)

    Jatnika, Jajat; Nugraha, Andri Dian; Wandono

    2015-04-24

    The structure of P-wave speed beneath the North Sumatra region was determined using P-wave arrival times compiled by MCGA from time periods of January 2009 to December 2012 combining with PASSCAL data for February to May 1995. In total, there are 2,246 local earthquake events with 10,666 P-wave phases from 63 stations seismic around the study area. Ray tracing to estimate travel time from source to receiver in this study by applying pseudo-bending method while the damped LSQR method was used for the tomographic inversion. Based on assessment of ray coverage, earthquakes and stations distribution, horizontal grid nodes was set up of 3030 km2 for inside the study area and 8080 km2 for outside the study area. The tomographic inversion results show low Vp anomaly beneath Toba caldera complex region and around the Sumatra Fault Zones (SFZ). These features are consistent with previous study. The low Vp anomaly beneath Toba caldera complex are observed around Mt. Pusuk Bukit at depths of 5?km down to 100?km. The interpretation is these anomalies may be associated with ascending hot materials from subduction processes at depths of 80?km down to 100?km. The obtained Vp structure from local tomography will give valuable information to enhance understanding of tectonic and volcanic in this study area.

  1. Pressure waves in liquid mercury target from pulsed heat loads and the possible way controlling their effects

    SciTech Connect (OSTI)

    Ni, L.; Skala, K.

    1996-06-01

    In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded the design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.

  2. Marine pipeline dynamic response to waves from directional wave spectra

    SciTech Connect (OSTI)

    Lambrakos, K.F.

    1982-07-01

    A methodology has been developed to calculate the dynamic probabilistic movement and resulting stresses for marine pipelines subjected to storm waves. A directional wave spectrum is used with a Fourier series expansion to simulate short-crested waves and calculate their loads on the pipeline. The pipeline displacements resulting from these loads are solutions to the time-dependent beam-column equation which also includes the soil resistance as external loading. The statistics of the displacements for individual waves are combined with the wave statistics for a given period of time, e.g. pipeline lifetime, to generate probabilistic estimates for net pipeline movement. On the basis of displacements for specified probability levels the pipeline configuration is obtained from which pipeline stresses can be estimated using structural considerations, e.g. pipeline stiffness, end restraints, etc.

  3. Quantum positron acoustic waves

    SciTech Connect (OSTI)

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  4. THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES

    SciTech Connect (OSTI)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard E-mail: benjamin.chandran@unh.edu E-mail: devore@nrl.navy.mil

    2012-09-20

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ({sup f}ast waves{sup )}. In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  5. Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

  6. Solar Decathlon: How far did they travel? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decathlon Journeys Visualizing the distances that each Solar Decathlon house travelled Click competitors to toggle their journeys on and off. All routes and distances are...

  7. NNSA Administrator D'Agostino's Safeguards Conference Travel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Travel Blog Follow the second international meeting in Tokai-mura, Ibaraki Japan This week, NNSA Administrator Thomas D'Agostino attended the second international...

  8. Secretary Bodman Travels to Saudi Arabia to Discuss Global Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    business leaders in Jordan. He will also travel to the United Arab Emirates, Qatar, and Egypt, to continue dialogues with global leaders, enhance the United States' relationship...

  9. Travelers Rest, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Travelers Rest, South Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9676167, -82.4434548 Show Map Loading map......

  10. Statement by DOE Spokesperson on Secretary Moniz's Travel to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    travel to Geneva on Saturday to join Secretary Kerry in continued negotiations with Iran over its nuclear program. Department of Energy officials have consistently been...

  11. NNSA Administrator D'Agostino's 2009 IAEA Travel Blog | National...

    National Nuclear Security Administration (NNSA)

    09 IAEA Travel Blog | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  12. DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse...

    Office of Environmental Management (EM)

    document reviews with regulators instead of meeting in person and reduced rental car usage by standardizing travel arrangements so that only one rental car is necessary per...

  13. Sec. Chu Travels to Houston | Department of Energy

    Office of Environmental Management (EM)

    Secretary Chu traveled to Houston, Texas, today to meet with executives from various oil ... This strategy is focused on safely and responsibly developing our oil and gas resources ...

  14. NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE

    SciTech Connect (OSTI)

    Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2013-08-10

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

  15. ocean waves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waves - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. Online Travel Reservations through "Concur Travel" | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online Learning Center Online Learning Center Online Learning Center Whether you're looking to discover new learning opportunities, better manage your career, request external training or connect your employees with the learning they need, OLC provides new features and services to help. Fulfill your training needs with ease and save money on travel and training costs Explore the enhanced catalog and complete a course at your own pace to stay abreast in the latest technology, science

  17. Integrated coherent matter wave circuits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmoreelectric polarizability. Moreover, the source of coherent matter waves is a BoseEinstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.less

  18. Formation of rarefaction waves in origami-based metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yasuda, H.; Chong, C.; Charalampidis, E. G.; Kevrekidis, P. G.; Yang, J.

    2016-04-15

    Here, we investigate the nonlinear wave dynamics of origami-based metamaterials composed of Tachi-Miura polyhedron (TMP) unit cells. These cells exhibit strain softening behavior under compression, which can be tuned by modifying their geometrical configurations or initial folded conditions. We assemble these TMP cells into a cluster of origami-based metamaterials, and we theoretically model and numerically analyze their wave transmission mechanism under external impact. Numerical simulations show that origami-based metamaterials can provide a prototypical platform for the formation of nonlinear coherent structures in the form of rarefaction waves, which feature a tensile wavefront upon the application of compression to the system.more » We also demonstrate the existence of numerically exact traveling rarefaction waves in an effective lumped-mass model. Origami-based metamaterials can be highly useful for mitigating shock waves, potentially enabling a wide variety of engineering applications.« less

  19. Deflagration Wave Profiles

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  20. Secretary Chu To Travel to China and Japan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Travel to China and Japan Secretary Chu To Travel to China and Japan November 5, 2010 - 12:00am Addthis Washington, D.C. -U.S. Energy Secretary Steven Chu will travel to China ...

  1. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  2. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    SciTech Connect (OSTI)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Gttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  3. Which Road to Travel? | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Which Road to Travel? Which Road to Travel? Posted: July 16, 2013 - 6:06pm There's no question which road (crosswalk) to travel when you park in the North Portal parking lot. Thanks to the recent restriping of the parking lot, the crosswalk and parking spaces are clearly marked. Earlier this year, the Employee-Driven Safety Campaign was created as a way to easily submit safety issues as we continue pursuing Safety for Life and our Voluntary Protection Program focus. Y-12 is a large site, so it

  4. Urban structure and its influence on vehicle travel reduction strategies

    SciTech Connect (OSTI)

    Southworth, F.; Jones, D.W.; Harrison, G.

    1996-04-01

    This paper examines what is known about the relationship between urban spatial structure (i.e. the arrangement of residential, industrial, commercial, recreational and municipal buildings and land lots) and urban travel. The first section provides an overview of the empirical evidence for relationships between urban spatial structure and travel in the United States. Section two focuses on the barriers to and opportunities for reducing the use of automobiles and light trucks in urban areas. The final section offers a policy-point-of-impact perspective on the sort of instruments governments have at their disposal for reducing vehicular travel.

  5. Evolution of rogue waves in dusty plasmas

    SciTech Connect (OSTI)

    Tolba, R. E. El-Bedwehy, N. A.; Moslem, W. M.; El-Labany, S. K.

    2015-04-15

    The evolution of rogue waves associated with the dynamics of positively charged dust grains that interact with streaming electrons and ions is investigated. Using a perturbation method, the basic set of fluid equations is reduced to a nonlinear Schrdinger equation (NLSE). The rational solution of the NLSE is presented, which proposed as an effective tool for studying the rogue waves in Jupiter. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming densities of the ions and electrons. Furthermore, the supersonic rogue waves are much taller than the subsonic rogue waves by ?25 times.

  6. Plane wave method for elastic wave scattering by a heterogeneous...

    Office of Scientific and Technical Information (OSTI)

    Plane wave method for elastic wave scattering by a heterogeneous fracture Citation Details In-Document Search Title: Plane wave method for elastic wave scattering by a ...

  7. ORISE: CDC Travelers' Health Team Receives Innovation Award for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CDC Travelers' Health Team Receives Innovation Award for Website Redesign ORISE serves as lead redesign contractor on award-winning website redesign for the CDC How ORISE is Making...

  8. Secretary Chu will Travel to China to Highlight Clean Energy...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON - U.S. Energy Secretary Steven Chu will travel to China from May 24th to 28th to highlight the benefit of U.S.-China partnerships and cooperation in the clean energy ...

  9. U.S. Department of Energy Travel Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-17

    The Manual supplements information in the Federal Travel Regulation (FTR) by providing further clarification and establishing Department of Energy (DOE) policy on matters that the FTR left to Agency discretion. Supersedes DOE M 552.1-1.

  10. U.S. Department of Energy Travel Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-04

    To supplement information contained in the Federal Travel Regulation (FTR) by providing further clarification and establishing Department of Energy (DOE) policy on matters that the FTR left to Agency discretion. Canceled by DOE M 552.1-1A.

  11. Deputy Secretary Poneman to Travel to Russia | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. - On Monday, December 6, U.S. Deputy Secretary of Energy Daniel Poneman will travel to Russia as part of the ongoing cooperation between the two countries on ...

  12. Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    1995-01-01

    A shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival "points" constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the "points" of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.

  13. Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-08-29

    A shock velocity and damage location sensor providing a means of measuring shock speed and damage location is disclosed. The sensor consists of a long series of time-of-arrival ``points`` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the ``points`` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor. 6 figs.

  14. NNSA Deputy Administrator Creedon Travels to China | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Deputy Administrator Creedon Travels to China Monday, April 4, 2016 - 3:46pm Members of the U.S. delegation, led by Secretary of Energy Ernest Moniz, were met by Chinese Vice Premier Ma Kai at the Center of Excellence on Nuclear Security in Beijing. In March, National Nuclear Security Administration (NNSA) Principal Deputy Administrator Madelyn Creedon traveled to China to participate in activities related to NNSA's cooperative engagement with various Chinese

  15. NNSA deputy administrator travels to Ukraine | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) administrator travels to Ukraine Thursday, April 14, 2016 - 10:02am From left, NNSA Director of Strategic Planning/Integration Andy Hood, STCU Executive Director Curtis Bjelajac, NNSA Deputy Administrator Anne Harrington, and NNSA Assistant Deputy Administrator Pete Hanlon. Earlier this month, Deputy Administrator for Defense Nuclear Nonproliferation Anne Harrington traveled to Ukraine to celebrate the 20th anniversary of the Science and Technology Center in Ukraine

  16. MONDAY: Secretary Chu Travels to New Jersey and Philadelphia | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy MONDAY: Secretary Chu Travels to New Jersey and Philadelphia MONDAY: Secretary Chu Travels to New Jersey and Philadelphia September 24, 2010 - 12:00am Addthis WASHINGTON - On Monday, September 27, 2010, U.S. Energy Secretary Steven Chu and Representative Rush Holt will tour Applied Photovoltaics. With help from a Recovery Act-funded $1.1 million clean energy manufacturing tax credit, Applied Photovoltaics will manufacture solar energy modules for use in building-integrated

  17. The Department of Energy's Management of Foreign Travel, IG-0872

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Department of Energy's Management of Foreign Travel DOE/IG-0872 October 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 16, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Management Alert: "The Department of Energy's Management of Foreign Travel" INTRODUCTION The Department of Energy and its workforce of 116,000 Federal and contractor

  18. Time Structure of the LANSCE Beam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The proton beam is delivered to Target-1 after passing through the proton storage ring (PSR). The time it takes an 800 MeV proton to travel one circuit of the PSR is 360 ns. The...

  19. Method and apparatus for actively controlling a micro-scale flexural plate wave device

    DOE Patents [OSTI]

    Dohner, Jeffrey L.

    2001-01-01

    An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.

  20. Large neighborhood search for the double traveling salesman problem with multiple stacks

    SciTech Connect (OSTI)

    Bent, Russell W; Van Hentenryck, Pascal

    2009-01-01

    This paper considers a complex real-life short-haul/long haul pickup and delivery application. The problem can be modeled as double traveling salesman problem (TSP) in which the pickups and the deliveries happen in the first and second TSPs respectively. Moreover, the application features multiple stacks in which the items must be stored and the pickups and deliveries must take place in reserve (LIFO) order for each stack. The goal is to minimize the total travel time satisfying these constraints. This paper presents a large neighborhood search (LNS) algorithm which improves the best-known results on 65% of the available instances and is always within 2% of the best-known solutions.

  1. Shear wave transducer for boreholes

    DOE Patents [OSTI]

    Mao, N.H.

    1984-08-23

    A technique and apparatus is provided for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data are used to back-calculate the applied stress.

  2. Wave transmission over submerged breakwaters

    SciTech Connect (OSTI)

    Kobayashi, N.; Wurjanto, A. )

    1989-09-01

    Monochromatic wave reflection and transmission over a submerged impermeable breakwater is predicted numerically by slightly modifying the numerical model developed previously for predicting wave reflection and run-up on rough or smooth impermeable slopes. The slight modification is related to the landward boundary condition required for the transmitted wave propagating landward. In addition to the conservation equations of mass and momentum used to compute the flow field, an equation of energy is derived to estimate the rate of energy dissipation due to wave breaking. The computed reflection and transmission coefficients are shown to be in agreement with available small-scale test data. The numerical model also predicts the spatial variation of the energy dissipation, the mean water level difference, and the time-averaged volume flux per unit width, although available measurements are not sufficient for evaluating the capabilities and limitations of the numerical model for predicting these quantities.

  3. Transition probability from matter-wave soliton to chaos

    SciTech Connect (OSTI)

    Zhu Qianquan; Hai Wenhua; Rong Shiguang

    2009-07-15

    For a Bose-Einstein condensate loaded into a weak traveling optical superlattice, it is demonstrated that under a stochastic initial set and in a given parameter region, the solitonic chaos appears with a certain probability. Effects of the lattice depths and wave vectors on the chaos probability are investigated analytically and numerically and different chaotic regions associated with different chaos probabilities are found. The results suggest a method for weakening or strengthening chaos by modulating the moving superlattice.

  4. Wave Energy Scotland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Industry outreach: DOE and Wave Energy Scotland co-sponsored WEC technology workshop News, Partnership, Renewable Energy, Water Power, Workshops Industry outreach: DOE and Wave ...

  5. Gravitational waves found, black-hole models led the way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravitational waves found, black-hole models led the way Gravitational waves found, black-hole models led the way Gravitational waves were predicted by Einstein's theory of general relativity in 1916, and now, almost exactly 100 years later, the faint ripples across space-time have been found. February 11, 2016 A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. A simulation of two merging black holes, creating gravitational waves. Photo courtesy of

  6. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOE Patents [OSTI]

    Hagen, E.C.; Hudson, C.L.

    1995-07-25

    A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.

  7. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOE Patents [OSTI]

    Hagen, Edward C.; Hudson, Charles L.

    1995-01-01

    A new deflection structure (12) which deflects a beam of charged particles, uch as an electron beam (15), includes a serpentine set (20) for transmitting a deflection field, and a shielding frame (25) for housing the serpentine set (20). The serpentine set (20) includes a vertical serpentine deflection element (22) and a horizontal serpentine deflection element (24). These deflection elements (22, 24) are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage (75), through which the electron beam (15) passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame (25) includes a plurality of ground blocks (26, 28, 30, 32), and forms an internal serpentine trough (77) within these ground blocks, for housing the serpentine set (20). The deflection structure (12) further includes a plurality of feedthrough connectors (35, 37, 35I, 37I), which are inserted through the shielding frame (25), and which are electrically connected to the serpentine set (20).

  8. Stochastic features of multipactor in coaxial waveguides for travelling and standing waves

    SciTech Connect (OSTI)

    Romanov, Gennady; /Fermilab

    2011-02-01

    CST Particle Studio combines electromagnetic field simulation, multi-particle tracking, adequate post-processing and advanced probabilistic emission model, which is the most important new capability in multipactor simulation. The emission model includes in simulation the stochastic properties of emission and adds primary electron elastic and inelastic reflection from the surfaces. The simulation of multipactor in coaxial waveguides have been performed to study the effects of the innovations on the multipactor threshold and the range over which multipactor can occur. The results compared with available previous experiments and simulations as well as the technique of MP simulation with CST PS are presented and discussed.

  9. EERE Success Story—Thurston Regional Planning Council Helps Washingtonians Save on Travel Costs

    Broader source: Energy.gov [DOE]

    Thurston County provides travel information for lower costs, improved safety, and faster response to challenges.

  10. Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Broader source: Energy.gov [DOE]

    Numerous transportation strategies are directed at reducing energy use and greenhouse gas (GHG) emissions by changing the behavior of individual drivers or travelers. These behavioral changes may have the effect of reducing travel, shifting travel to more efficient modes, or improving the efficiency of existing travel. Since the 1970s, federal, regional, state and municipal agencies have tried to reduce energy use, emissions, and congestion by influencing travel behavior. This report reviews and summarizes the literature on relationships between these strategies and transportation-related energy use and GHG emissions to examine how changes to travel behavior can reduce transportation energy use and discuss the potential for federal actions to affect travel behavior.

  11. High Resolution Photon Timing with MCP-PMTs: A Comparison of a Commercial Constant Fraction Discriminator (CFD) with the ASIC-based Waveform Digitizers TARGET and WaveCatcher

    SciTech Connect (OSTI)

    Breton, D.; Delagnes, E.; Maalmi, J.; Nishimura, K.; Ruckman, L.L.; Varner, G.; Va'vra, J.

    2011-07-14

    There is a considerable interest to develop new time-of-flight detectors using, for example, micro-channel-plate photodetectors (MCP-PMTs). The question we pose in this paper is if new waveform digitizer ASICs, such as the WaveCatcher and TARGET, operating with a sampling rate of 2-3 GSa/s can compete with 1GHz BW CFD/TDC/ADC electronics. We have performed a series of measurements with these waveform digitizers coupled to MCP-PMTs operating at low gain and with a signal equivalent to {approx}40 photoelectrons. The tests were done with a laser diode on detectors operating under the same condition used previously in SLAC and Fermilab beam tests. Our test results indicate that one can achieve similar resolution with both methods. Although the commercial CFD-based electronics does exist and performs very well, it is difficult to implement on a very large scale, and therefore the custom electronics is needed. In addition, the analog delay line requirement makes it very difficult to incorporate CFD discriminators in ASIC designs.

  12. Spin Wave Genie

    Energy Science and Technology Software Center (OSTI)

    2015-02-16

    The four-dimensional scattering function S(Q,w) obtained by inelastic neutron scattering measurements provides unique "dynamical fingerprints" of the spin state and interactions present in complex magnetic materials. Extracting this information however is currently a slow and complex process that may take an expert -depending on the complexity of the system- up to several weeks of painstaking work to complete. Spin Wave Genie was created to abstract and automate this process. It strives to both reduce themore » time to complete this analysis and make these calculations more accessible to a broader group of scientists and engineers.« less

  13. Preliminary Analysis of an Oscillating Surge Wave Energy Converter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The device geometry will be controlled on a sea state time scale and combined with wave-to- wave power-take-off control to maximize power capture, increase capacity factor, and ...

  14. SU-E-T-545: MLC Distance Travelled as a Predictor for Motor Failure

    SciTech Connect (OSTI)

    Stathakis, S; Defoor, D; Linden, P; Kirby, N; Papanikolaou, N; Mavroidis, P

    2015-06-15

    Purpose: To study the frequency of Multi-Leaf Collimator (MLC) leaf failures, investigate methods to predict them and reduce linac downtime. Methods: A Varian HD120 MLC was used in our study. The hyperterminal MLC errors logged from 06/2012 to 12/2014 were collected. Along with the hyperterminal errors, the MLC motor changes and all other MLC interventions by the linear accelerator engineer were recorded. The MLC dynalog files were also recorded on a daily basis for each treatment and during linac QA. The dynalog files were analyzed to calculate root mean square errors (RMS) and cumulative MLC travel distance per motor. An in-house MatLab code was used to analyze all dynalog files, record RMS errors and calculate the distance each MLC traveled per day. Results: A total of 269 interventions were recorded over a period of 18 months. Of these, 146 included MLC motor leaf change, 39 T-nut replacements, and 84 MLC cleaning sessions. Leaves close to the middle of each side required the most maintenance. In the A bank, leaves A27 to A40 recorded 73% of all interventions, while the same leaves in the B bank counted for 52% of the interventions. On average, leaves in the middle of the bank had their motors changed approximately every 1500m of travel. Finally, it was found that the number of RMS errors increased prior to an MLC motor change. Conclusion: An MLC dynalog file analysis software was developed that can be used to log daily MLC usage. Our eighteen-month data analysis showed that there is a correlation between the distance an MLC travels, the RMS and the life of the MLC motor. We plan to use this tool to predict MLC motor failures and with proper and timely intervention, reduce the downtime of the linac during clinical hours.

  15. Travel & Hotels | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time and hassle saved will be more than worth it. UC Santa Barbara is an easy 5 minute cab ride from the Santa Barbara Airport, see taxi information below. For Santa Barbara...

  16. Final Report Phase I Study to Characterize the Market Potential for Non-Motorized Travel

    SciTech Connect (OSTI)

    Hwang, Ho-Ling; Reuscher, Tim; Wilson, Daniel W; Schmoyer, Richard L

    2012-06-01

    The idea of livable communities suggests that people should have the option to utilize non-motorized travel (NMT), specifically walking and bicycling, to conduct their daily tasks. Forecasting personal travel by walk and bike is necessary as part of regional transportation planning, and requires fine detail not only about individual travel, but also on transportation and neighborhood infrastructure. In an attempt to characterize the 'market' potential for NMT, the Office of Planning, Federal Highway Administration (FHWA) funded the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) to conduct a study. The objectives of this effort were to identify factors that influence communities to walk and bike and to examine why, or why not, travelers walk and bike in their communities. This study relied on information collected under the 2009 National Household Travel Survey (NHTS) as the major source of data, and was supplemented with data from the American Community Survey (ACS), educational survey, health, employment, and others. Initial statistical screening methods were applied to sort through over 400 potential predictor variables, and examined with various measures (e.g., walk trip per person, walk mileage per person, bike trip per person, bike mileage per person) as the dependent variables. The best geographic level of detail used in the modeling for this study was determined to be the Census block group level for walking and Census tract level for biking. The need for additional supplemental private data (i.e., Walk Scores and Nielsen employment data), and geospatial information that reflects land use and physical environments, became evident after an examination of findings from the initial screening models. To be feasible, in terms of costs and time, the geographic scale of the study region was scaled down to nine selected NHTS add-on regions. These regions were chosen based on various criteria including transit availability

  17. Traveling solitons in Lorentz and CPT breaking systems

    SciTech Connect (OSTI)

    Souza Dutra, A. de; Correa, R. A. C.

    2011-05-15

    In this work we present a class of traveling solitons in Lorentz and CPT breaking systems. In the case of Lorentz violating scenarios, as far as we know, only static solitonic configurations were analyzed up to now in the literature. Here it is shown that it is possible to construct some traveling solitons which cannot be mapped into static configurations by means of Lorentz boosts due to explicit breaking. In fact, the traveling solutions cannot be reached from the static ones by using something similar to a Lorentz boost in those cases. Furthermore, in the model studied, a complete set of exact solutions is obtained. The solutions present a critical behavior controlled by the choice of an arbitrary integration constant.

  18. Secretary Chu Travels to Memphis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Travels to Memphis Secretary Chu Travels to Memphis January 31, 2011 - 2:33pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this project do? The Sharp solar manufacturing plant has produced more than 2 million solar panels since 2002, increased its staff from 300 to 480 employees over the last year, and produces enough solar paneling to power more than 140,000 homes. Worldwide, FedEx Express is operating 329 hybrid and 19

  19. Refrigeration system having standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  20. Effects of reagent rotational excitation on the H + CHD{sub 3} → H{sub 2} + CD{sub 3} reaction: A seven dimensional time-dependent wave packet study

    SciTech Connect (OSTI)

    Zhang, Zhaojun; Zhang, Dong H.

    2014-10-14

    Seven-dimensional time-dependent wave packet calculations have been carried out for the title reaction to obtain reaction probabilities and cross sections for CHD{sub 3} in J{sub 0} = 1, 2 rotationally excited initial states with k{sub 0} = 0 − J{sub 0} (the projection of CHD{sub 3} rotational angular momentum on its C{sub 3} axis). Under the centrifugal sudden (CS) approximation, the initial states with the projection of the total angular momentum on the body fixed axis (K{sub 0}) equal to k{sub 0} are found to be much more reactive, indicating strong dependence of reactivity on the orientation of the reagent CHD{sub 3} with respect to the relative velocity between the reagents H and CHD{sub 3}. However, at the coupled-channel (CC) level this dependence becomes much weak although in general the K{sub 0} specified cross sections for the K{sub 0} = k{sub 0} initial states remain primary to the overall cross sections, implying the Coriolis coupling is important to the dynamics of the reaction. The calculated CS and CC integral cross sections obtained after K{sub 0} averaging for the J{sub 0} = 1, 2 initial states with all different k{sub 0} are essentially identical to the corresponding CS and CC results for the J{sub 0} = 0 initial state, meaning that the initial rotational excitation of CHD{sub 3} up to J{sub 0} = 2, regardless of its initial k{sub 0}, does not have any effect on the total cross sections for the title reaction, and the errors introduced by the CS approximation on integral cross sections for the rotationally excited J{sub 0} = 1, 2 initial states are the same as those for the J{sub 0} = 0 initial state.

  1. Energy Extraction from a Slider-Crank Wave Energy under Irregular Wave Conditions: Preprint

    SciTech Connect (OSTI)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-08-24

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  2. Energy Extraction from a Slider-Crank Wave Energy Converter under Irregular Wave Conditions

    SciTech Connect (OSTI)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-10-19

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  3. Pulse Wave Well Development Demonstration

    SciTech Connect (OSTI)

    Burdick, S.

    2001-02-23

    Conventional methods of well development at the Savannah River Site generate significant volumes of investigative derived waste (IDW) which must be treated and disposed of at a regulated Treatment, Storage, or Disposal (TSD) facility. Pulse Wave technology is a commercial method of well development utilizing bursts of high pressure gas to create strong pressure waves through the well screen zone, extending out into the formation surrounding the well. The patented process is intended to reduce well development time and the amount of IDW generated as well as to micro-fracture the formation to improve well capacity.

  4. Evidence for wave heating of the quiet-sun corona

    SciTech Connect (OSTI)

    Hahn, M.; Savin, D. W.

    2014-11-10

    We have measured the energy and dissipation of Alfvénic waves in the quiet Sun. A magnetic field model was used to infer the location and orientation of the magnetic field lines along which the waves are expected to travel. The waves were measured using spectral lines to infer the wave amplitude. The waves cause a non-thermal broadening of the spectral lines, which can be expressed as a non-thermal velocity v {sub nt}. By combining the spectroscopic measurements with this magnetic field model, we were able to trace the variation of v {sub nt} along the magnetic field. At each footpoint of the quiet-Sun loops, we find that waves inject an energy flux in the range of 1.3-5.5 × 10{sup 5} erg cm{sup –2} s{sup –1}. At the minimum of this range, this amounts to more than 80% of the energy needed to heat the quiet Sun. We also find that these waves are dissipated over a region centered on the top of the loops. The position along the loop where the damping begins is strongly correlated with the length of the loop, implying that the damping mechanism depends on the global loop properties rather than on local collisional dissipation.

  5. Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles When a household has more than one vehicle, the secondary vehicles travel fewer miles than the primary vehicle. In a two-vehicle household, the second vehicle travels less than half of the miles that the primary vehicle travels in a day. In a six-vehicle household, the sixth vehicle travels fewer than five miles a day. Daily Vehicle

  6. Traveling dark solitons in superfluid Fermi gases

    SciTech Connect (OSTI)

    Liao Renyuan; Brand, Joachim

    2011-04-15

    Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.

  7. Detonation Wave Profile

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  8. Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes

    SciTech Connect (OSTI)

    Hartley, D. P.; Chen, Y.; Kletzing, C. A.; Denton, M. H.; Kurth, W. S.

    2015-02-17

    Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1–0.9 fce). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10⁻³ nT², using the cold plasma dispersion relation results in an underestimate of the wave intensity by a factor of 2 or greater 56% of the time over the full chorus wave band, 60% of the time for lower band chorus, and 59% of the time for upper band chorus. Hence, during active periods, empirical chorus wave models that are reliant on the cold plasma dispersion relation will underestimate chorus wave intensities to a significant degree, thus causing questionable calculation of wave-particle resonance effects on MeV electrons.

  9. Catching a Wave: Innovative Wave Energy Device Surfs for Power...

    Office of Environmental Management (EM)

    Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii July 29, 2015 - 12:00pm Addthis...

  10. Fact #640: September 13, 2010 Monthly Trends in Vehicle Miles of Travel

    Broader source: Energy.gov [DOE]

    Vehicle travel in the U.S. varies by month. There are many reasons for this, including the fact that some months are shorter than others. The vehicle miles of travel (VMT) recorded in February is...

  11. Will We Drive Less? A White Paper on U.S. Light Duty Travel ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vehicle travel in the U.S. and other developed nations, with VMT likely stagnating or dropping in the future. This report examines a variety of issues surrounding light-duty travel...

  12. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008

    Broader source: Energy.gov [DOE]

    As the U.S. population has doubled from 1950 to 2012, the number of vehicles has grown nearly 6-fold and vehicle travel even more than that. The number of vehicles and vehicle travel peaked in 2007...

  13. How Do You Go Green When You Travel? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Choices such as less frequent linen service are opportunities to save water and energy while traveling. How do you go green when you travel? E-mail your responses to the Energy ...

  14. Secretary Chu To Travel to Scotland and Ireland | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    series. Galway and Kildare, Ireland On Friday, the Secretary will tour Wavebob, a wave energy technologies company based in Ireland. On Saturday, November 6, Secretary Chu will...

  15. Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Jump to: navigation, search Contents 1 Description 2 History 3 Technology 4 Current and Possible Wave Farms 5 Pros and Cons Description Wave energy (or wave power) is...

  16. Table 10 Costs of Foreign Travel, IG-0397 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Table 10 Costs of Foreign Travel, IG-0397 Table 10 Costs of Foreign Travel, IG-0397 Table 10 Costs of Foreign Travel, IG-0397 Table 10 Costs of Foreign Travel, IG-0397 (242.36 KB) More Documents & Publications Inspection Report: IG-0397 Audit of Department of Energy International Charter Flights, IG-0397 John C. Layton: Before The Subcommittee on Oversight and Investigations Committee on Commerce

  17. Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle Travel:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Both Increased during 2015 | Department of Energy 4: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 SUBSCRIBE to the Fact of the Week The nation's highway vehicle miles of travel (VMT) and the U.S. gross domestic product (GDP) reflect strikingly similar patterns, indicating the strong relationship between the nation's economy and its travel. Beginning in

  18. Propagating spectroscopy of backward volume spin waves in a metallic FeNi film

    SciTech Connect (OSTI)

    Sato, N.; Ishida, N.; Kawakami, T.; Sekiguchi, K.

    2014-01-20

    We report a propagating spin wave spectroscopy for a magnetostatic backward volume spin wave in a metallic Fe{sub 19}Ni{sub 81} film. We show that the mutual-inductance between two independent antennas detects a small but clear propagation signal of backward volume spin waves. All experimental data are consistent with the time-domain propagating spin-wave spectroscopy. The control of propagating backward spin wave enables to realize the miniaturize spin-wave circuit.

  19. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    SciTech Connect (OSTI)

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  20. MEASUREMENT OF COMPRESSIONAL-WAVE SEISMIC VELOCITIES IN 29 WELLS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    PETERSON SW

    2010-10-08

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1

  1. 10-ft Wave Flume Facility | Open Energy Information

    Open Energy Info (EERE)

    None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent...

  2. NEW - DOE O 551.1D Chg 1 (PgChg), Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The requirement to surrender official passports is considered burdensome to travelers and will be removed as a requirement and replaced with a process that requires travelers be responsible for safeguarding their own official passports. In conjunction with this revision, administrative changes will be made to update the title of the Office of Travel Management.

  3. Shock wave absorber having apertured plate

    DOE Patents [OSTI]

    Shin, Yong W.; Wiedermann, Arne H.; Ockert, Carl E.

    1985-01-01

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  4. Shock wave absorber having apertured plate

    DOE Patents [OSTI]

    Shin, Y.W.; Wiedermann, A.H.; Ockert, C.E.

    1983-08-26

    The shock or energy absorber disclosed herein utilizes an apertured plate maintained under the normal level of liquid flowing in a piping system and disposed between the normal liquid flow path and a cavity pressurized with a compressible gas. The degree of openness (or porosity) of the plate is between 0.01 and 0.60. The energy level of a shock wave travelling down the piping system thus is dissipated by some of the liquid being jetted through the apertured plate toward the cavity. The cavity is large compared to the quantity of liquid jetted through the apertured plate, so there is little change in its volume. The porosity of the apertured plate influences the percentage of energy absorbed.

  5. FIRST SIMULTANEOUS OBSERVATION OF AN H{alpha} MORETON WAVE, EUV WAVE, AND FILAMENT/PROMINENCE OSCILLATIONS

    SciTech Connect (OSTI)

    Asai, Ayumi; Isobe, Hiroaki; Ishii, Takako T.; Kitai, Reizaburo; Ichimoto, Kiyoshi; UeNo, Satoru; Nagata, Shin'ichi; Morita, Satoshi; Nishida, Keisuke; Shibata, Kazunari; Shiota, Daikou; Oi, Akihito; Akioka, Maki

    2012-02-15

    We report on the first simultaneous observation of an H{alpha} Moreton wave, the corresponding EUV fast coronal waves, and a slow and bright EUV wave (typical EIT wave). We observed a Moreton wave, associated with an X6.9 flare that occurred on 2011 August 9 at the active region NOAA 11263, in the H{alpha} images taken by the Solar Magnetic Activity Research Telescope at Hida Observatory of Kyoto University. In the EUV images obtained by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory we found not only the corresponding EUV fast 'bright' coronal wave, but also the EUV fast 'faint' wave that is not associated with the H{alpha} Moreton wave. We also found a slow EUV wave, which corresponds to a typical EIT wave. Furthermore, we observed, for the first time, the oscillations of a prominence and a filament, simultaneously, both in the H{alpha} and EUV images. To trigger the oscillations by the flare-associated coronal disturbance, we expect a coronal wave as fast as the fast-mode MHD wave with the velocity of about 570-800 km s{sup -1}. These velocities are consistent with those of the observed Moreton wave and the EUV fast coronal wave.

  6. Surface acoustic wave dust deposition monitor

    DOE Patents [OSTI]

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  7. Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hartley, D. P.; Chen, Y.; Kletzing, C. A.; Denton, M. H.; Kurth, W. S.

    2015-02-17

    Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1–0.9 fce). Results from this study indicate that the calculated wavemore » intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10⁻³ nT², using the cold plasma dispersion relation results in an underestimate of the wave intensity by a factor of 2 or greater 56% of the time over the full chorus wave band, 60% of the time for lower band chorus, and 59% of the time for upper band chorus. Hence, during active periods, empirical chorus wave models that are reliant on the cold plasma dispersion relation will underestimate chorus wave intensities to a significant degree, thus causing questionable calculation of wave-particle resonance effects on MeV electrons.« less

  8. Watching Spins Travel across Borders | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Watching Spins Travel across Borders Wednesday, September 30, 2015 Spintronics is a field that keeps both scientists and engineers excited from a fundamental physics and applications perspective. But what is "spintronics" exactly? In order to understand this new field of magnetism research, it is necessary to take a step back and revisit conventional electronics. For almost a century, electronic devices - starting with the early vacuum tubes - have used the charge of

  9. Inspection of the Secretary of Energy`s foreign travel

    SciTech Connect (OSTI)

    1996-10-07

    On December 9, 1995, the Secretary of Energy requested that the Department`s Inspector General (IG) conduct a thorough examination of all Secretarial foreign travel from 1993 to December 1995 to include the purpose of each trip, the activities of each Federal participant in each trip, the funding of each trip, and claims for reimbursements for expenses by Federal trip participants. The Secretary also requested that the review include an assessment of travel authorization, voucher, traveler reimbursement, and auditing systems employed by the Department to identify steps that could be taken to reduce errors and improve accounting oversight. Additionally, the Secretary requested that the Inspector General conduct a thorough examination of the establishment and filling of the Department`s Ombudsman position. The Office of Inspector General (OIG) initiated a review into these matters and assigned primary responsibility for the review to the Office of Inspections. The purpose of this inspection was to conduct a thorough examination of the 16 Secretarial foreign trips from June 1993 to December 1995. This report focuses on the four trade missions because of their extent and cost. We examined a number of Departmental management systems and processes involved in planning and executing the 16 foreign trips. To determine the actual cost of the 16 trips, it was necessary to determine who participated in the trips and to identify the individual travel costs. We were required to perform extensive reviews of records and conduct a large number of interviews because the Department could not provide any specific documents that could accurately account for who actually participated on the 16 trips. Having identified who participated, it was then necessary to examine key aspects of the Department`s management systems. Our report contains 31 recommendations for corrective action.

  10. Brain teasers traveling exhibit opens at Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradbury Science Museum Brain teasers exhibit opens at museum Brain Teasers traveling exhibit opens at Los Alamos National Laboratory's Bradbury Science Museum The interactive exhibit is a collection of more than 20 puzzles and mind benders. December 4, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  11. Wave Power Demonstration Project at Reedsport, Oregon

    SciTech Connect (OSTI)

    Mekhiche, Mike; Downie, Bruce

    2013-10-21

    Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.

  12. Travel Patterns And Characteristics Of Transit Users In New York State

    SciTech Connect (OSTI)

    Hwang, Ho-Ling; Wilson, Daniel W.; Reuscher, Tim; Chin, Shih-Miao; Taylor, Rob D.

    2015-12-01

    This research is a detailed examination of the travel behaviors and patterns of transit users within New York State (NYS), primarily based on travel data provided by the National Household Travel Survey (NHTS) in 2009 and the associated Add-on sample households purchased by the New York State Department of Transportation (NYSDOT). Other data sources analyzed in this study include: NYS General Transit Feed Specification (GTFS) to assist in analyzing spatial relationships for access to transit and the creation of Transit Shed geographic areas of 1, 2.5, and 5 miles from transit stop locations, LandScan population database to understand transit coverage, and Census Bureau s American Community Survey (ACS) data to examine general transit patterns and trends in NYS over time. The majority of analyses performed in this research aimed at identifying transit trip locations, understanding differences in transit usage by traveler demographics, as well as producing trip/mode-specific summary statistics including travel distance, trip duration, time of trip, and travel purpose of transit trips made by NYS residents, while also analyzing regional differences and unique travel characteristics and patterns. The analysis was divided into two aggregated geographic regions: New York Metropolitan Transportation Council (NYMTC) and NYS minus NYMTC (Rest of NYS). The inclusion of NYMTC in all analysis would likely produce misleading conclusions for other regions in NYS. TRANSIT COVERAGE The NYS transit network has significant coverage in terms of transit stop locations across the state s population. Out of the 19.3 million NYS population in 2011, about 15.3 million (or 79%) resided within the 1-mile transit shed. This NYS population transit coverage increased to 16.9 million (or 88%) when a 2.5-mile transit shed was considered; and raised to 17.7 million (or 92%) when the 5-mile transit shed was applied. KEY FINDINGS Based on 2009 NHTS data, about 40% of NYMTC households used transit

  13. WindWaveFloat Final Report

    SciTech Connect (OSTI)

    Alla Weinstein, Dominique Roddier, Kevin Banister

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

  14. DOE Premium Class Travel Report for FY 09 through FY 15 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Premium Class Travel Report for FY 09 through FY 15 DOE Premium Class Travel Report for FY 09 through FY 15 This report was provided to the FOIA office in response to several FOIA requests. DOEPremiumClassTravelReportsFY09-FY13.pdf (4.6 MB) DOE_PREMIUM_CLASS_TRAVEL_REPORTS_FY14.pdf (184.26 KB) DOE_PREMIUM_CLASS_TRAVEL_REPORTS_FY15.pdf (256.46 KB) More Documents & Publications ISSUANCE 2015-07-15: Energy Conservation Program: Test Procedure for Refrigerated Bottled or Canned

  15. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    SciTech Connect (OSTI)

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.

  16. Travel determinants and multi-scale transferability of national activity patterns to local populations

    SciTech Connect (OSTI)

    Henson, Kriste M; Gou; ias, Konstadinos G

    2010-11-30

    The ability to transfer national travel patterns to a local population is of interest when attempting to model megaregions or areas that exceed metropolitan planning organization (MPO) boundaries. At the core of this research are questions about the connection between travel behavior and land use, urban form, and accessibility. As a part of this process, a group of land use variables have been identified to define activity and travel patterns for individuals and households. The 2001 National Household Travel Survey (NHTS) participants are divided into categories comprised of a set of latent cluster models representing persons, travel, and land use. These are compared to two sets of cluster models constructed for two local travel surveys. Comparison of means statistical tests are used to assess differences among sociodemographic groups residing in localities with similar land uses. The results show that the NHTS and the local surveys share mean population activity and travel characteristics. However, these similarities mask behavioral heterogeneity that are shown when distributions of activity and travel behavior are examined. Therefore, data from a national household travel survey cannot be used to model local population travel characteristics if the goal to model the actual distributions and not mean travel behavior characteristics.

  17. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect (OSTI)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  18. WEC-Sim (Wave Energy Converter - SIMulator)

    Energy Science and Technology Software Center (OSTI)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-sourcemore » code to model WECs.« less

  19. Laser- and Radar-based Mission Concepts for Suborbital and Spaceborne Monitoring of Seismic Surface Waves

    SciTech Connect (OSTI)

    Foxall, W; Schultz, C A; Tralli, D M

    2004-09-21

    The development of a suborbital or spaceborne system to monitor seismic waves poses an intriguing prospect for advancing the state of seismology. This capability would enable an unprecedented global mapping of the velocity structure of the earth's crust, understanding of earthquake rupture dynamics and wave propagation effects, and event source location, characterization and discrimination that are critical for both fundamental earthquake research and nuclear non-proliferation applications. As part of an ongoing collaboration between LLNL and JPL, an advanced mission concept study assessed architectural considerations and operational and data delivery requirements, extending two prior studies by each organization--a radar-based satellite system (JPL) for earthquake hazard assessment and a feasibility study of space- or UAV-based laser seismometer systems (LLNL) for seismic event monitoring. Seismic wave measurement requirements include lower bounds on detectability of specific seismic sources of interest and wave amplitude accuracy for different levels of analysis, such as source characterization, discrimination and tomography, with a 100 {micro}m wave amplitude resolution for waves nominally traveling 5 km/s, an upper frequency bound based on explosion and earthquake surface displacement spectra, and minimum horizontal resolution (1-5 km) and areal coverage, in general and for targeted observations. For a radar system, corresponding engineering and operational factors include: Radar frequency (dictated by required wave amplitude measurement accuracy and maximizing ranging, Doppler or interferometric sensitivity), time sampling (maximum seismic wave frequency and velocity), and overall system considerations such as mass, power and data rate. Technical challenges include characterization of, and compensation for, phase distortion resulting from atmospheric and ionospheric perturbations and turbulence, and effects of ground scattering characteristics and seismic

  20. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    SciTech Connect (OSTI)

    Wu, Xing; Dong, Jing; Lin, Zhenhong

    2014-01-01

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  1. Gravitational-Wave Astronomy Vicky Kalogera

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dawn of a new Era: Gravitational-Wave Astronomy Vicky Kalogera Northwestern University - CIERA (Center for Interdisciplinary Exploration & Research March 23, 2016 4:00 p.m. - Wilson Hall, One West The LIGO detectors have detected gravitational waves for the first time ever. The source GW150914 is a pair of heavy black holes that coalesce causing the most powerful explosion of energy ever detected. I will discuss the discovery and its implications for astrophysics

  2. Dual output acoustic wave sensor for molecular identification

    DOE Patents [OSTI]

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  3. Secretary Chu To Travel to Scotland and Ireland | Department...

    Office of Environmental Management (EM)

    On Friday, the Secretary will tour Wavebob, a wave energy technologies company based in ... Secretary Chu in Scotland Chu in Ireland: A Case Study in Wind Power Secretary Chu to Give ...

  4. ADVANCED WAVE-EQUATION MIGRATION

    SciTech Connect (OSTI)

    L. HUANG; M. C. FEHLER

    2000-12-01

    Wave-equation migration methods can more accurately account for complex wave phenomena than ray-tracing-based Kirchhoff methods that are based on the high-frequency asymptotic approximation of waves. With steadily increasing speed of massively parallel computers, wave-equation migration methods are becoming more and more feasible and attractive for imaging complex 3D structures. We present an overview of several efficient and accurate wave-equation-based migration methods that we have recently developed. The methods are implemented in the frequency-space and frequency-wavenumber domains and hence they are called dual-domain methods. In the methods, we make use of different approximate solutions of the scalar-wave equation in heterogeneous media to recursively downward continue wavefields. The approximations used within each extrapolation interval include the Born, quasi-Born, and Rytov approximations. In one of our dual-domain methods, we use an optimized expansion of the square-root operator in the one-way wave equation to minimize the phase error for a given model. This leads to a globally optimized Fourier finite-difference method that is a hybrid split-step Fourier and finite-difference scheme. Migration examples demonstrate that our dual-domain migration methods provide more accurate images than those obtained using the split-step Fourier scheme. The Born-based, quasi-Born-based, and Rytov-based methods are suitable for imaging complex structures whose lateral variations are moderate, such as the Marmousi model. For this model, the computational cost of the Born-based method is almost the same as the split-step Fourier scheme, while other methods takes approximately 15-50% more computational time. The globally optimized Fourier finite-difference method significantly improves the accuracy of the split-step Fourier method for imaging structures having strong lateral velocity variations, such as the SEG/EAGE salt model, at an approximately 30% greater

  5. Secretary Bodman Travels to Russia to Advance Energy Security | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Russia to Advance Energy Security Secretary Bodman Travels to Russia to Advance Energy Security March 15, 2006 - 12:20pm Addthis Promotes Transparent Markets and Clean Energy Technologies; Participates in G8 Energy Ministerial and Delivers Remarks on the Global Nuclear Energy Partnership MOSCOW, RUSSIA-U.S. Secretary of Energy Samuel W. Bodman today began a two-day visit to Russia where he will lead the U.S. delegation to the G8 Energy Ministerial. During his visit the Secretary

  6. Secretary Bodman Travels to Saudi Arabia to Discuss Global Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investments | Department of Energy Saudi Arabia to Discuss Global Energy Investments Secretary Bodman Travels to Saudi Arabia to Discuss Global Energy Investments January 19, 2007 - 10:38am Addthis Furthers Strategic Energy Dialogue between the Nations and Highlights U.S. - Saudi Scientific Innovation RIYADH, SAUDI ARABIA - U.S. Secretary of Energy Samuel W. Bodman today continued his six-nation visit to the Middle East and Europe with a two-day stop in Saudi Arabia where he met with Saudi

  7. Secretary Bodman Travels to the Middle East | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Middle East Secretary Bodman Travels to the Middle East November 10, 2005 - 2:22pm Addthis Four-nation swing to emphasize domestic energy needs and goals WASHINGTON, DC - Secretary of Energy Samuel W. Bodman embarked upon a four-nation tour through the Middle East to enhance the United States' relationship with major oil-producing nations, promote economic liberalization and increased foreign investment in the region, and reaffirm U.S. energy policy goals. "Both consumers and producers

  8. SQUARE WAVE AMPLIFIER

    DOE Patents [OSTI]

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  9. Acoustic travel time gauges for in-situ determination of pressure...

    Office of Scientific and Technical Information (OSTI)

    APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email Email address: Content: Close Send Cite: MLA Format Close Cite: APA ...

  10. Nonlinear waves and coherent structures in the quantum single-wave model

    SciTech Connect (OSTI)

    Tzenov, Stephan I. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Marinov, Kiril B. [ASTeC, STFC Daresbury Laboratory, Keckwick Lane, Daresbury WA4 4AD (United Kingdom)

    2011-10-15

    Starting from the von Neumann-Maxwell equations for the Wigner quasi-probability distribution and for the self-consistent electric field, the quantum analog of the classical single-wave model has been derived. The linear stability of the quantum single-wave model has been studied, and periodic in time patterns have been found both analytically and numerically. In addition, some features of quantum chaos have been detected in the unstable region in parameter space. Further, a class of standing-wave solutions of the quantum single-wave model has also been found, which have been observed to behave as stable solitary-wave structures. The analytical results have been finally compared to the exact system dynamics obtained by solving the corresponding equations in Schrodinger representation numerically.

  11. Methods for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  12. A simple line wave generator using commercial explosives

    SciTech Connect (OSTI)

    Morris, John S; Jackson, Scott I; Hill, Larry G

    2009-01-01

    We present a simple and inexpensive explosive line wave generator has been designed using commercial sheet explosive and plane wave lens concepts. The line wave generator is constructed using PETN and RDX based sheet explosive for the slow and fast components respectively. The design permits the creation of any desired line width. A series of experiments were performed on a 100 mm design, measuring the detonation arrival time at the output of the generator using a streak camera. An iterative technique was used to adjust the line wave generator's slow and fast components, so as to minimize the arrival time deviation. Designs, test results, and concepts for improvements will be discussed.

  13. Fast wave evanescence in filamentary boundary plasmas

    SciTech Connect (OSTI)

    Myra, J. R.

    2014-02-15

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed.

  14. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wavemore » disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.« less

  15. A technical review of urban land use - transportation models as tools for evaluating vehicle travel reduction strategies

    SciTech Connect (OSTI)

    Southworth, F.

    1995-07-01

    The continued growth of highway traffic in the United States has led to unwanted urban traffic congestion as well as to noticeable urban air quality problems. These problems include emissions covered by the 1990 Clean Air Act Amendments (CAAA) and 1991 Intermodal Surface Transportation Efficiency Act (ISTEA), as well as carbon dioxide and related {open_quotes}greenhouse gas{close_quotes} emissions. Urban travel also creates a major demand for imported oil. Therefore, for economic as well as environmental reasons, transportation planning agencies at both the state and metropolitan area level are focussing a good deal of attention on urban travel reduction policies. Much discussed policy instruments include those that encourage fewer trip starts, shorter trip distances, shifts to higher-occupancy vehicles or to nonvehicular modes, and shifts in the timing of trips from the more to the less congested periods of the day or week. Some analysts have concluded that in order to bring about sustainable reductions in urban traffic volumes, significant changes will be necessary in the way our households and businesses engage in daily travel. Such changes are likely to involve changes in the ways we organize and use traffic-generating and-attracting land within our urban areas. The purpose of this review is to evaluate the ability of current analytic methods and models to support both the evaluation and possibly the design of such vehicle travel reduction strategies, including those strategies involving the reorganization and use of urban land. The review is organized into three sections. Section 1 describes the nature of the problem we are trying to model, Section 2 reviews the state of the art in operational urban land use-transportation simulation models, and Section 3 provides a critical assessment of such models as useful urban transportation planning tools. A number of areas are identified where further model development or testing is required.

  16. TEE-0068 - In the Matter of Bowlin Travel Centers, Inc. | Department of

    Energy Savers [EERE]

    Energy 8 - In the Matter of Bowlin Travel Centers, Inc. TEE-0068 - In the Matter of Bowlin Travel Centers, Inc. Bowlin Travel Centers, Inc., filed an Application for Exception with the Department of Energy's (DOE) Office of Hearings and Appeals (OHA). The firm requests permanent relief from its requirement to prepare and file the Energy Information Administration (EIA) Form EIA-782B, entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report." As explained below, we

  17. Energy Secretary Bodman Travels to Moscow, Baku, Kiev to Discuss Energy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Security | Department of Energy Travels to Moscow, Baku, Kiev to Discuss Energy and Nuclear Security Energy Secretary Bodman Travels to Moscow, Baku, Kiev to Discuss Energy and Nuclear Security May 20, 2005 - 12:49pm Addthis Trip Will Focus on World Energy Security, Energy Resource Development, and Nuclear Nonproliferation WASHINGTON, DC -- Secretary of Energy Samuel Bodman next week will travel to Moscow, Russia; Baku, Azerbaijan; and Kiev, Ukraine, where he will hold discussions

  18. Fact #904: December 21, 2015 Gross Domestic Product and Vehicle Travel:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Both Increased during 2015 - Dataset | Department of Energy Fact #904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 - Dataset Fact #904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 - Dataset Excel file and dataset for Gross Domestic Product and Vehicle Travel: Both Increased during 2015 fotw#904_web_rev.xlsx (19.75 KB) More Documents & Publications Vehicle Technologies Office Spring 2016 Quarterly

  19. Wave induced density modification in RF sheaths and close to wave launchers

    SciTech Connect (OSTI)

    Van Eester, D.; Lu, Ling-Feng

    2015-12-10

    With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale model involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple ’derivative switch-on’ procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.

  20. Fact #552: January 5, 2009 Vehicle Miles of Travel by Region | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2: January 5, 2009 Vehicle Miles of Travel by Region Fact #552: January 5, 2009 Vehicle Miles of Travel by Region Total vehicle miles of travel (VMT) in the U.S. have declined from 2007 to 2008. The latest data available, September 2008, shows a 4.4% decline in travel that varies by region. Comparing September 2007 to September 2008, the South Atlantic and South Gulf regions experienced VMT declines of more than 5%. Total U.S. cumulative VMT for 2008 (January-September) is 3.5%

  1. Fact #902: December 7, 2015 Rural versus Urban Vehicle Miles of Travel by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State | Department of Energy 2: December 7, 2015 Rural versus Urban Vehicle Miles of Travel by State Fact #902: December 7, 2015 Rural versus Urban Vehicle Miles of Travel by State SUBSCRIBE to the Fact of the Week In the United States, the U.S. Department of Transportation classifies 3.9 million miles of roadway as rural and 1.2 million miles of roadway as urban. Each state has a different travel pattern affecting the proportion of vehicle miles traveled (VMT) on rural versus urban roads.

  2. Fact #902: December 7, 2015 Rural versus Urban Vehicle Miles of Travel by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State - Dataset | Department of Energy 2: December 7, 2015 Rural versus Urban Vehicle Miles of Travel by State - Dataset Fact #902: December 7, 2015 Rural versus Urban Vehicle Miles of Travel by State - Dataset Excel file and dataset for Rural versus Urban Vehicle Miles of Travel by State fotw#902_web.xlsx (177.48 KB) More Documents & Publications Fact #904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 - Dataset Fact #906: January 4, 2016 VMT

  3. Secretary Bodman to Travel to the Middle East to Advance International...

    Broader source: Energy.gov (indexed) [DOE]

    Secretary Bodman will depart on Monday, January 14, 2008 and travel to Jordan, Saudi Arabia, United Arab Emirates, Qatar and Egypt. "To increase global energy security, producing ...

  4. Nonlinear oscillations and waves in an arbitrary mass ratio cold plasma

    SciTech Connect (OSTI)

    Verma, Prabal Singh

    2011-12-15

    It is well known that nonlinear standing oscillations in an arbitrary mass ratio cold plasma always phase mix away. However, there exist nonlinear electron-ion traveling wave solutions, which do not exhibit phase mixing because they have zero ponderomotive force. The existence of these waves has been demonstrated using a perturbation method. Moreover, it is shown that cold plasma BGK waves [Albritton et al., Nucl. Fusion 15, 1199 (1975)] phase mix away if ions are allowed to move and the scaling of phase mixing is found to be different from earlier work [Sengupta et al., Phys. Rev. Lett. 82, 1867 (1999)]. Phase mixing of these waves has been further verified in 1-D particle in cell simulation.

  5. Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory

    SciTech Connect (OSTI)

    Casolari, A.; Cardinali, A.

    2014-02-12

    In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.

  6. WindWaveFloat

    SciTech Connect (OSTI)

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  7. The various manifestations of collisionless dissipation in wave propagation

    SciTech Connect (OSTI)

    Benisti, Didier; Morice, Olivier; Gremillet, Laurent

    2012-06-15

    The propagation of an electrostatic wave packet inside a collisionless and initially Maxwellian plasma is always dissipative because of the irreversible acceleration of the electrons by the wave. Then, in the linear regime, the wave packet is Landau damped, so that in the reference frame moving at the group velocity, the wave amplitude decays exponentially with time. In the nonlinear regime, once phase mixing has occurred and when the electron motion is nearly adiabatic, the damping rate is strongly reduced compared to the Landau one, so that the wave amplitude remains nearly constant along the characteristics. Yet, we show here that the electrons are still globally accelerated by the wave packet, and in one dimension, this leads to a non local amplitude dependence of the group velocity. As a result, a freely propagating wave packet would shrink, and therefore, so would its total energy. In more than one dimension, not only does the magnitude of the group velocity nonlinearly vary, but also its direction. In the weakly nonlinear regime, when the collisionless damping rate is still significant compared to its linear value, the group velocity is directed towards the outside of the wave packet and tends to increase its transverse extent, while the opposite is true once the wave is essentially undamped. The impact of the nonlinear variation of the group velocity on the transverse size of the wave packet is quantified, and compared to that induced by the self-focussing due to wave front bowing.

  8. Wave Propagation Program

    Energy Science and Technology Software Center (OSTI)

    2007-01-08

    WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see User’s Manual [1].

  9. Gravitational Waves Community Lecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravitational Waves Community Lecture Gravitational Waves Community Lecture WHEN: Sep 19, 2016 7:30 PM - 8:30 PM WHERE: Grand Ballroom at the Eldorado Hotel 309 W San Francisco St Santa Fe, New Mexico 87501 USA (505) 988-4455 SPEAKER: Gabriela Gonzalez CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Sponsored by Los Alamos National Laboratory, University of New Mexico, St. John's College and Santa Fe Community College The Los Alamos National

  10. Decay of helical Kelvin waves on a quantum vortex filament

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-07-15

    We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite

  11. WaveDyn: A Design Tool for Performance & Operational Loads Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of WaveDyn Multi-body formulation Time-domain core solver Modular structure Wave Hydrodynamic Power-take-off Control Moorings Post-processing Node Special Mooring Line Load Hinge ...

  12. PROPAGATION OF ALFVENIC WAVES FROM CORONA TO CHROMOSPHERE AND CONSEQUENCES FOR SOLAR FLARES

    SciTech Connect (OSTI)

    Russell, A. J. B.; Fletcher, L.

    2013-03-10

    How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a two-fluid model (of plasma and neutrals) and used it to perform one-dimensional simulations of Alfven waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra, and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of 1 s or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 s or longer pass through the chromosphere with relatively little damping, however, for periods of 1 s or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid- and upper chromosphere, with electron resistivity playing some role in the lower chromosphere and in umbras. We therefore conclude that Alfvenic waves with periods of a few seconds or less are capable of heating the chromosphere during solar flares, and speculate that they could also contribute to electron acceleration or exciting sunquakes.

  13. Detonation waves in pentaerythritol tetranitrate

    SciTech Connect (OSTI)

    Tarver, C.M.; Breithaupt, R.D.; Kury, J.W.

    1997-06-01

    Fabry{endash}Perot laser interferometry was used to obtain nanosecond time resolved particle velocity histories of the free surfaces of tantalum discs accelerated by detonating pentaerythritol tetranitrate (PETN) charges and of the interfaces between PETN detonation products and lithium fluoride crystals. The experimental records were compared to particle velocity histories calculated using very finely zoned meshes of the exact dimensions with the DYNA2D hydrodynamic code. The duration of the PETN detonation reaction zone was demonstrated to be less than the 5 ns initial resolution of the Fabry{endash}Perot technique, because the experimental records were accurately calculated using an instantaneous chemical reaction, the Chapman{endash}Jouguet (C-J) model of detonation, and the reaction product Jones{endash}Wilkins{endash}Lee (JWL) equation of state for PETN detonation products previously determined by supracompression (overdriven detonation) studies. Some of the PETN charges were pressed to densities approaching the crystal density and exhibited the phenomenon of superdetonation. An ignition and growth Zeldovich{endash}von Neumann{endash}Doring (ZND) reactive flow model was developed to explain these experimental records and the results of previous PETN shock initiation experiments on single crystals of PETN. Good agreement was obtained for the induction time delays preceding chemical reaction, the run distances at which the initial shock waves were overtaken by the detonation waves in the compressed PETN, and the measured particle velocity histories produced by the overdriven detonation waves before they could relax to steady state C-J velocity and pressure. {copyright} {ital 1997 American Institute of Physics.}

  14. Nonlinear Trivelpiece--Gould waves: Recurrence, harmonic cascade, and sidebands

    SciTech Connect (OSTI)

    Cabral, J.A.C.; Lapao, L.M.; Mendonca, J.T. )

    1993-03-01

    A theoretical and experimental study of Trivelpiece--Gould waves propagating in a magnetized plasma column is presented in this paper. In the experiments, these waves are excited by a radio frequency (rf) source, which also serves to create the plasma. Observation of nonlinear effects includes space and time recurrence effects, a wave spectrum containing a large number (up to 25) harmonics, and low-frequency sidebands. The theoretical model explains the recurrence effects as a consequence of multiple nonlinear interactions between the fundamental wave and its harmonics. A good agreement is found between theory and the experiments.

  15. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  16. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  17. Standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S.

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  18. Formation mechanism of steep wave front in magnetized plasmas

    SciTech Connect (OSTI)

    Sasaki, M. Kasuya, N.; Itoh, S.-I.; Kobayashi, T.; Arakawa, H.; Itoh, K.; Fukunaga, K.; Yamada, T.; Yagi, M.

    2015-03-15

    Bifurcation from a streamer to a solitary drift wave is obtained in three dimensional simulation of resistive drift waves in cylindrical plasmas. The solitary drift wave is observed in the regime where the collisional transport is important as well as fluctuation induced transport. The solitary drift wave forms a steep wave front in the azimuthal direction. The phase of higher harmonic modes are locked to that of the fundamental mode, so that the steep wave front is sustained for a long time compared to the typical time scale of the drift wave oscillation. The phase entrainment between the fundamental and second harmonic modes is studied, and the azimuthal structure of the stationary solution is found to be characterized by a parameter which is determined by the deviation of the fluctuations from the Boltzmann relation. There are two solutions of the azimuthal structures, which have steep wave front facing forward and backward in the wave propagation direction, respectively. The selection criterion of these solutions is derived theoretically from the stability of the phase entrainment. The simulation result and experimental observations are found to be consistent with the theoretical prediction.

  19. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    SciTech Connect (OSTI)

    Saha, Asit E-mail: prasantachatterjee1@rediffmail.com; Pal, Nikhil; Chatterjee, Prasanta E-mail: prasantachatterjee1@rediffmail.com

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  20. Adaptive multiconfigurational wave functions

    SciTech Connect (OSTI)

    Evangelista, Francesco A.

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  1. Alaska North Slope Tundra Travel Model and Validation Study

    SciTech Connect (OSTI)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a lack

  2. Hough transform search for continuous gravitational waves

    SciTech Connect (OSTI)

    Krishnan, Badri; Papa, Maria Alessandra; Sintes, Alicia M.; Schutz, Bernard F.; Frasca, Sergio; Palomba, Cristiano

    2004-10-15

    This paper describes an incoherent method to search for continuous gravitational waves based on the Hough transform, a well-known technique used for detecting patterns in digital images. We apply the Hough transform to detect patterns in the time-frequency plane of the data produced by an earth-based gravitational wave detector. Two different flavors of searches will be considered, depending on the type of input to the Hough transform: either Fourier transforms of the detector data or the output of a coherent matched-filtering type search. We present the technical details for implementing the Hough transform algorithm for both kinds of searches, their statistical properties, and their sensitivities.

  3. Scaling Behavior of the First Arrival Time of a Random-Walking Magnetic Domain

    SciTech Connect (OSTI)

    Im, M.-Y.; Lee, S.-H.; Kim, D.-H.; Fischer, P.; Shin, S.-C.

    2008-02-04

    We report a universal scaling behavior of the first arrival time of a traveling magnetic domain wall into a finite space-time observation window of a magneto-optical microscope enabling direct visualization of a Barkhausen avalanche in real time. The first arrival time of the traveling magnetic domain wall exhibits a nontrivial fluctuation and its statistical distribution is described by universal power-law scaling with scaling exponents of 1.34 {+-} 0.07 for CoCr and CoCrPt films, despite their quite different domain evolution patterns. Numerical simulation of the first arrival time with an assumption that the magnetic domain wall traveled as a random walker well matches our experimentally observed scaling behavior, providing an experimental support for the random-walking model of traveling magnetic domain walls.

  4. Fast strain wave induced magnetization changes in long cobalt bars: Domain motion versus coherent rotation

    SciTech Connect (OSTI)

    Davis, S.; Adenwalla, S.; Borchers, J. A.; Maranville, B. B.

    2015-02-14

    A high frequency (88 MHz) traveling strain wave on a piezoelectric substrate is shown to change the magnetization direction in 40 μm wide Co bars with an aspect ratio of 10{sup 3}. The rapidly alternating strain wave rotates the magnetization away from the long axis into the short axis direction, via magnetoelastic coupling. Strain-induced magnetization changes have previously been demonstrated in ferroelectric/ferromagnetic heterostructures, with excellent fidelity between the ferromagnet and the ferroelectric domains, but these experiments were limited to essentially dc frequencies. Both magneto-optical Kerr effect and polarized neutron reflectivity confirm that the traveling strain wave does rotate the magnetization away from the long axis direction and both yield quantitatively similar values for the rotated magnetization. An investigation of the behavior of short axis magnetization with increasing strain wave amplitude on a series of samples with variable edge roughness suggests that the magnetization reorientation that is seen proceeds solely via coherent rotation. Polarized neutron reflectivity data provide direct experimental evidence for this model. This is consistent with expectations that domain wall motion cannot track the rapidly varying strain.

  5. Shear wave transducer for stress measurements in boreholes

    DOE Patents [OSTI]

    Mao, Nai-Hsien

    1987-01-01

    A technique and apparatus for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data is used to back-calculate the applied stress.

  6. Request for Travel Funds for Systems Radiation Biology Workshop

    SciTech Connect (OSTI)

    Barcellos-Hoff, Mary Helen

    2014-03-22

    The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expenses of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.

  7. Shock wave perturbation decay in granular materials

    SciTech Connect (OSTI)

    Vogler, Tracy J.

    2015-11-05

    A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtained for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.

  8. Shock wave perturbation decay in granular materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogler, Tracy J.

    2015-11-05

    A technique in which the evolution of a perturbation in a shock wave front is monitored as it travels through a sample is applied to granular materials. Although the approach was originally conceived as a way to measure the viscosity of the sample, here it is utilized as a means to probe the deviatoric strength of the material. Initial results for a tungsten carbide powder are presented that demonstrate the approach is viable. Simulations of the experiments using continuum and mesoscale modeling approaches are used to better understand the experiments. The best agreement with the limited experimental data is obtainedmore » for the mesoscale model, which has previously been shown to give good agreement with planar impact results. The continuum simulations indicate that the decay of the perturbation is controlled by material strength but is insensitive to the compaction response. Other sensitivities are assessed using the two modeling approaches. The simulations indicate that the configuration used in the preliminary experiments suffers from certain artifacts and should be modified to remove them. As a result, the limitations of the current instrumentation are discussed, and possible approaches to improve it are suggested.« less

  9. Notice of Intent to Develop a Page Change to DOE O 551.1D, Official Foreign Travel

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-21

    The requirement to surrender official passports is considered burdensome to travelers and will be removed as a requirement and replaced with a process that requires travelers be responsible for safeguarding their own official passports. In conjunction with this revision, administrative changes will be made to update the title of the Office of Travel Management.

  10. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin...

  11. Microfabricated bulk wave acoustic bandgap device (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Microfabricated bulk wave acoustic bandgap device Title: Microfabricated bulk wave acoustic bandgap device A microfabricated bulk wave acoustic bandgap device comprises a periodic ...

  12. Wave Star Energy | Open Energy Information

    Open Energy Info (EERE)

    Star Energy Jump to: navigation, search Name: Wave Star Energy Place: Denmark Zip: DK-2920 Product: Denmark-based private wave device developer. References: Wave Star Energy1...

  13. Travel Patterns and Characteristics of Elderly Subpopulation in New York State

    SciTech Connect (OSTI)

    Hwang, Ho-Ling; Wilson, Daniel W.; Reuscher, Tim; Yang, Jianjiang; Taylor, Rob D.; Chin, Shih-Miao

    2015-03-01

    With the increasing demographic shift towards a larger population of elderly (individuals 65 years and older), it is essential for policy makers and planners to have an understanding of transportation issues that affect the elderly. These issues include livability of the community, factors impacting travel behavior and mobility, transportation safety, etc. In this study, Oak Ridge National Laboratory was tasked by the New York State (NYS) Department of Transportation to conduct a detailed examination of travel behaviors, and identify patterns and trends of the elderly within NYS. The National Household Travel Survey (NHTS) was used as the primary data source to analyze subjects and address questions such as: Are there differences in traveler demographics between the elderly population and those of younger age groups who live in various NYS regions; e.g., New York City, other urban areas of NYS, or other parts of the country? How do they compare with the population at large? Are there any regional differences (e.g., urban versus rural)? Gender differences? Do any unique travel characteristics or patterns exist within the elderly group? In addition to analysis of NHTS data, roadway travel safety concerns associated with elderly travelers were also investigated in this study. Specifically, data on accidents involving the elderly (including drivers, passengers, and others) as captured in the Fatal Analysis Reporting System (FARS) database was analyzed to examine elderly driver and elderly pedestrian travel safety issues in NYS. The analyses of these data sets provide a greater understanding of the elderly within NYS and their associated transportation issues. Through this study, various key findings on elderly population size, household characteristics, and travel patterns were produced and are report herein this report.

  14. Kinematic dust viscosity effect on linear and nonlinear dust-acoustic waves in space dusty plasmas with nonthermal ions

    SciTech Connect (OSTI)

    El-Hanbaly, A. M.; Sallah, M.; El-Shewy, E. K.; Darweesh, H. F.

    2015-10-15

    Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions are related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.

  15. Elgen Wave | Open Energy Information

    Open Energy Info (EERE)

    Elgen Wave Jump to: navigation, search Name: Elgen Wave Region: United States Sector: Marine and Hydrokinetic Website: www.elgenwave.com This company is listed in the Marine and...

  16. Fact #566: April 13, 2009 Vehicle Travel and the Price of Gasoline |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: April 13, 2009 Vehicle Travel and the Price of Gasoline Fact #566: April 13, 2009 Vehicle Travel and the Price of Gasoline The price of gasoline is one factor that can have an effect on the number of highway vehicle miles traveled (VMT). The graph below shows a three-month moving average of the percentage change of monthly data from one year to the next (i.e., February 2001 data were compared with February 2000 data). In 2008, when gasoline prices were 20-30% higher,

  17. Fact #584: August 17, 2009 The Price of Gasoline and Vehicle Travel: How Do

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    They Relate? | Department of Energy 4: August 17, 2009 The Price of Gasoline and Vehicle Travel: How Do They Relate? Fact #584: August 17, 2009 The Price of Gasoline and Vehicle Travel: How Do They Relate? The price of gasoline is one factor that can have an effect on the number of highway vehicle miles traveled (VMT). The graph below shows a three-month moving average of the percentage change of monthly data from one year to the next (i.e., February 2001 data were compared with February

  18. Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 6: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose In 2009, getting to and from work accounted for about 27% of household vehicle-miles of travel (VMT). Work-related business was 8.4% of VMT in 2001, but declined to 6.7% in 2009, possibly due to advancements in computing technology making it possible for more business to be handled electronically. VMT for shopping was almost

  19. Acquisition Guide Chapter 42.2- Documentation and Approval of Federally Funded International Travel

    Broader source: Energy.gov [DOE]

    The subject guide chapter provides guidance to DOE Contracting Officers, Contracting Officer Representatives, and Program Officials on documentation and approval of federally funded international travel by Federal contractors and subcontractors. Contracting Officers, Contracting Officer Representatives or Program Officials responsible for reviewing and approving for payment Contractor invoices that include travel expenses must ensure that when a foreign air carrier is used a certification is provided with the invoice in accordance with §301-10.142 of the FTR. Reimbursement for travel expenses from a foreign air carrier fare may be denied if appropriate certification is not provided.

  20. Fact #903: December 14, 2015 Vehicle Miles of Travel is up in 2015 -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dataset | Department of Energy 3: December 14, 2015 Vehicle Miles of Travel is up in 2015 - Dataset Fact #903: December 14, 2015 Vehicle Miles of Travel is up in 2015 - Dataset Excel file and dataset for Vehicle Miles of Travel is up in 2015 fotw#903_web.xlsx (17.31 KB) More Documents & Publications Project Reports for Salish and Kootenai Tribes, Confederated Tribes of the Flathead Reservation: S&K Holding Company - 2004 Project 2015 GTO Peer Review Fact #926: May 23, 2016 Petroleum

  1. Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Since 2008 - Dataset | Department of Energy 2: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008 - Dataset Fact #842: October 13, 2014 Vehicles and Vehicle Travel Trends have Changed Since 2008 - Dataset Excel file with dataset for Fact #842: Vehicles and Vehicle Travel Trends have Changed Since 2008 fotw#842_web.xlsx (27.66 KB) More Documents & Publications Residential Lighting Usage Estimate Tool, v1.0 Residential Lighting Usage Estimate Tool, v1.0, MacOS

  2. Fact #860 February 16, 2015 Relationship of Vehicle Miles of Travel and the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Price of Gasoline - Dataset | Department of Energy 0 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of Gasoline - Dataset Fact #860 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of Gasoline - Dataset Excel file and dataset for Relationship of Vehicle Miles of Travel and the Price of Gasoline fotw#860_web.xlsx (30.54 KB) More Documents & Publications Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition -

  3. Statement on U.S. Secretary of Energy Ernest Moniz's Travel to Istanbul,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turkey | Department of Energy Statement on U.S. Secretary of Energy Ernest Moniz's Travel to Istanbul, Turkey Statement on U.S. Secretary of Energy Ernest Moniz's Travel to Istanbul, Turkey November 19, 2013 - 9:48am Addthis NEWS MEDIA CONTACT (202) 586-4940 "U.S. Secretary of Energy Ernest Moniz will travel to Istanbul, Turkey November 20 to 23 and give opening remarks at the 5th Atlantic Council Energy Summit. Secretary Moniz will also attend the Ministerial meeting on 'Energy

  4. U. S. DEPARTMENT OF ENERGY REQUEST AND AUTHORIZATION FOR OFFICIAL TRAVEL (Change of Station)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY REQUEST AND AUTHORIZATION FOR OFFICIAL TRAVEL (Change of Station) (Do Not Remove Carbons) DOE F 1510.9 (07-93) (Previously CR-279A) (07-89 edition may be used) 1. Amendment 2. Division/Office Code 3. (Leave Blank) Authorization Number 4. Employee's Name (First name, middle initial and last name) 5. Spouse Plans To: 6. No. of Dependents Age 12 and Over Traveling with Employee (excluding spouse) 7. No. of Dependents Under 12 Traveling with Employee 8. No. of Dependents Age 12 and Over

  5. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect (OSTI)

    Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es

    2013-04-20

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  6. AN EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A SURGE

    SciTech Connect (OSTI)

    Zheng, Ruisheng; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Hong, Junchao; Yang, Bo; Yang, Dan

    2013-02-10

    Taking advantage of the high temporal and spatial resolution observations from the Solar Dynamics Observatory, we present an extreme-ultraviolet (EUV) wave associated with a surge on 2010 November 13. Due to the magnetic flux cancelation, some surges formed in the source active region (AR). The strongest surge produced our studied event. The surge was deflected by the nearby loops that connected to another AR, and disrupted the overlying loops that slowly expanded and eventually evolved into a weak coronal mass ejection (CME). The surge was likely associated with the core of the CME. The EUV wave happened after the surge deflected. The wave departed far from the flare center and showed a close location relative to the deflected surge. The wave propagated in a narrow angular extent, mainly in the ejection direction of the surge. The close timing and location relations between the EUV wave and the surge indicate that the wave was closely associated with the CME. The wave had a velocity of 310-350 km s{sup -1}, while the speeds of the surge and the expanding loops were about 130 and 150 km s{sup -1}, respectively. All of the results suggest that the EUV wave was a fast-mode wave and was most likely triggered by the weak CME.

  7. Electromagnetic wave propagation through an overdense magnetized collisional plasma layer

    SciTech Connect (OSTI)

    Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P. [Voss Scientific LLC, Albuquerque, New Mexico 87108 (United States)

    2009-08-15

    The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.

  8. Property:Maximum Wave Height(m) at Wave Period(s) | Open Energy...

    Open Energy Info (EERE)

    at Wave Period(s) Jump to: navigation, search Property Name Maximum Wave Height(m) at Wave Period(s) Property Type String Pages using the property "Maximum Wave Height(m) at Wave...

  9. Shock wave absorber having a deformable liner

    DOE Patents [OSTI]

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  10. Charge Density Wave Compounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have discovered a novel set of properties pertaining to a compound of materials called tritellurides. These compounds, composed of three atoms of tellurium and a single atom of one of the rare earth elements, demonstrate unique electronic properties that can be controlled by altering the temperature of the material. The

  11. ocean wave energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wave energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  12. Fact #903: December 14, 2015 Vehicle Miles of Travel is up in...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Miles of Travel is up in 2015 fotw903web.xlsx (17.31 KB) More Documents & Publications Project Reports for Salish and Kootenai Tribes, Confederated Tribes of the Flathead ...

  13. Microsoft Word - gra-ugs-program-travel-regs-tr9003.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... These requests must be reviewed by division-level managers and approved by Occupational Medicine. 3.4.2 Private Vehicle Travel 3.4.2a General A private vehicle is defined as an ...

  14. Secretaries Chu and Locke to Travel to China Next Week | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Secretary Gary Locke will travel to China from July 14 to 17. The two secretaries ... "Today, we are more interdependent with China than at any point in the last 30 years," ...

  15. Secretary Chu to Travel to India and China to Promote Clean Energy...

    Energy Savers [EERE]

    India and China to Promote Clean Energy Partnerships Secretary Chu to Travel to India and China to Promote Clean Energy Partnerships November 10, 2009 - 12:00am Addthis Washington, ...

  16. Communication: A combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of {sup 4}He nanodroplets on surfaces: {sup 4}He/graphene

    SciTech Connect (OSTI)

    Lara-Castells, María Pilar de; Stoll, Hermann; Civalleri, Bartolomeo; Causà, Mauro; Voloshina, Elena; Mitrushchenkov, Alexander O.; Pi, Martí

    2014-10-21

    In this work we propose a general strategy to calculate accurate He–surface interaction potentials. It extends the dispersionless density functional approach recently developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] to adsorbate-surface interactions by including periodic boundary conditions. We also introduce a scheme to parametrize the dispersion interaction by calculating two- and three-body dispersion terms at coupled cluster singles and doubles and perturbative triples (CCSD(T)) level via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. The performance of the composite approach is tested on {sup 4}He/graphene by determining the energies of the low-lying selective adsorption states, finding an excellent agreement with the best available theoretical data. Second, the capability of the approach to describe dispersionless correlation effects realistically is used to extract dispersion effects in time-dependent density functional simulations on the collision of {sup 4}He droplets with a single graphene sheet. It is found that dispersion effects play a key role in the fast spreading of the {sup 4}He nanodroplet, the evaporation-like process of helium atoms, and the formation of solid-like helium structures. These characteristics are expected to be quite general and highly relevant to explain experimental measurements with the newly developed helium droplet mediated deposition technique.

  17. NNSA Launches Second Travel Blog to Feature Administrator's Work at Next

    National Nuclear Security Administration (NNSA)

    Generation Safeguards Meeting in Japan | National Nuclear Security Administration | (NNSA) Launches Second Travel Blog to Feature Administrator's Work at Next Generation Safeguards Meeting in Japan October 26, 2009 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today launched its second travel blog, allowing online visitors to follow NNSA Administrator Thomas D'Agostino and receive updates from the second international meeting on Next Generation Safeguards in

  18. Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Across the Continental United States | Department of Energy Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Real-World Greenhouse Gas Emissions from a MY2010 Diesel Truck Traveling Across the Continental United States Data analysis from this study will provide insight into real-world performance of current emissions reduction devices, under various operating conditions, and with respect to greenhouse gas emissions. p-03_carder.pdf

  19. Secretary Bodman To Travel to Vienna, Austria for Second GNEP Ministerial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and IAEA General Conference | Department of Energy Bodman To Travel to Vienna, Austria for Second GNEP Ministerial and IAEA General Conference Secretary Bodman To Travel to Vienna, Austria for Second GNEP Ministerial and IAEA General Conference A letter issued by the Department of Energy's Office of Public Affairs detailling the mission behind the U.S. Secretary of Energy Samuel W. Bodman's trip to Vienna, Austria, to chair the second Global Nuclear Energy Partnership (GNEP) Ministerial on

  20. Secretary Chu and Energy Department Officials to Travel Across America to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Discuss the Obama Administration's Commitment to Energy Innovation and Manufacturing | Department of Energy Travel Across America to Discuss the Obama Administration's Commitment to Energy Innovation and Manufacturing Secretary Chu and Energy Department Officials to Travel Across America to Discuss the Obama Administration's Commitment to Energy Innovation and Manufacturing January 24, 2012 - 3:47pm Addthis Washington D.C. - This week, Energy Secretary Steven Chu, Deputy Secretary Daniel

  1. Characterising the acceleration phase of blast wave formation

    SciTech Connect (OSTI)

    Fox, T. E. Pasley, J.; Robinson, A. P. L.; Schmitz, H.

    2014-10-15

    Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.

  2. Ocean current wave interaction study

    SciTech Connect (OSTI)

    Hayes, J.G.

    1980-09-20

    A numerical model has been developed to incorporate refraction of ocean surface gravity waves by major ocean currents. The model is initialized with directional wave spectra and verified with aircraft synthetic aperture radar X band spectra, laser profilometer spectra, and pitch and roll buoy data. Data collected during the Marineland test experiment are used as surface truth observations for the wave-current study. Evidence of Gulf Stream refraction and trapping of surface waves as well as caustics in the current is shown and modeled assuming a nonuniform Gulf Stream distribution. Frequency and directional resolution of the wave spectral distribution and the current refraction patterns illustrates the need for further study of ocean current-wave interaction in wave refraction studies.

  3. Wave-function functionals

    SciTech Connect (OSTI)

    Pan Xiaoyin; Slamet, Marlina; Sahni, Viraht

    2010-04-15

    We extend our prior work on the construction of variational wave functions {psi} that are functionals of functions {chi}:{psi}={psi}[{chi}] rather than simply being functions. In this manner, the space of variations is expanded over those of traditional variational wave functions. In this article we perform the constrained search over the functions {chi} chosen such that the functional {psi}[{chi}] satisfies simultaneously the constraints of normalization and the exact expectation value of an arbitrary single- or two-particle Hermitian operator, while also leading to a rigorous upper bound to the energy. As such the wave function functional is accurate not only in the region of space in which the principal contributions to the energy arise but also in the other region of the space represented by the Hermitian operator. To demonstrate the efficacy of these ideas, we apply such a constrained search to the ground state of the negative ion of atomic hydrogen H{sup -}, the helium atom He, and its positive ions Li{sup +} and Be{sup 2+}. The operators W whose expectations are obtained exactly are the sum of the single-particle operators W={Sigma}{sub i}r{sub i}{sup n},n=-2,-1,1,2, W={Sigma}{sub i{delta}}(r{sub i}), W=-(1/2){Sigma}{sub i{nabla}i}{sup 2}, and the two-particle operators W={Sigma}{sub n}u{sup n},n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|. Comparisons with the method of Lagrangian multipliers and of other constructions of wave-function functionals are made. Finally, we present further insights into the construction of wave-function functionals by studying a previously proposed construction of functionals {psi}[{chi}] that lead to the exact expectation of arbitrary Hermitian operators. We discover that analogous to the solutions of the Schroedinger equation, there exist {psi}[{chi}] that are unphysical in that they lead to singular values for the expectations. We also explain the origin of the singularity.

  4. An Ansatz Regarding Relativistic Space Travel Part II-Propulsion Realities

    SciTech Connect (OSTI)

    Murad, Paul A

    2008-01-21

    Travel to the stars can involve a perilous journey in an unfriendly space-time continuum that can include singularities, nonlinear events, gravity as a function of both position and vehicle velocity, and extra dimensional effects discussed in Part I. Such a device may possibly use field propulsion technology. Although several field propulsion schemes exist, a proposed candidate is based upon using an electromagnetic drive that uses a rotating magnetic field superimposed on the spacecraft's stationary or static electric field. This is comparable to a Searl generator and the field interaction would generate an electromagnetic vortex to create nonlinear gravitational effects possibly due to an inverse Gertsenshtein relationship to push against the intrinsic gravitational field of a planet. Moreover, changing alignment of the magnetic field axis with the electric field will induce a margin of lateral controllability. Issues such as assessing this combined effect of using both electric and magnetic fields are discussed. Finally, the need for experimental data is stressed to validate these otherwise very speculative theoretical notions.

  5. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    SciTech Connect (OSTI)

    Jochem, Warren C; Sims, Kelly M; Bright, Eddie A; Urban, Marie L; Rose, Amy N; Coleman, Phil R; Bhaduri, Budhendra L

    2013-01-01

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.

  6. Shock wave convergence in water with parabolic wall boundaries

    SciTech Connect (OSTI)

    Yanuka, D.; Shafer, D.; Krasik, Ya.

    2015-04-28

    The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ?45?kA and rise time of ?80?ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger.

  7. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    SciTech Connect (OSTI)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko; Midorikawa, Katsumi

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  8. High-frequency shear-horizontal surface acoustic wave sensor

    DOE Patents [OSTI]

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  9. High-frequency shear-horizontal surface acoustic wave sensor

    DOE Patents [OSTI]

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  10. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOE Patents [OSTI]

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.

  11. Spin waves in the (

    SciTech Connect (OSTI)

    Lipscombe, O. J.; Chen, G. F.; Fang, Chen; Perring, T. G.; Abernathy, Douglas L; Christianson, Andrew D; Egami, Takeshi; Wang, Nanlin; Hu, Jiangping; Dai, Pengcheng

    2011-01-01

    We use neutron scattering to show that spin waves in the iron chalcogenide Fe{sub 1.05}Te display novel dispersion clearly different from both the first principles density functional calculations and recent observations in the related iron pnictide CaFe{sub 2}As{sub 2}. By fitting to a Heisenberg Hamiltonian, we find that although the nearest-neighbor exchange couplings in the two systems are quite different, their next-nearest-neighbor (NNN) couplings are similar. This suggests that superconductivity in the pnictides and chalcogenides share a common magnetic origin that is intimately associated with the NNN magnetic coupling between the irons.

  12. Wave Energy Converter Effects on Nearshore Wave Propagation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Converter Effects on Nearshore Wave Propagation Jesse Roberts 1 , Grace Chang *2 , Craig Jones *3 Sandia National Laboratories 1515 Eubank SE, Albuquerque, NM 87123 USA 1...

  13. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect (OSTI)

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  14. Wave forces on an array of oscillating water column type free standing wave energy caissons

    SciTech Connect (OSTI)

    Neelamani, S.; Thiruvenkatasamy, K.

    1995-12-31

    The wave induced in-line forces on a 1:50 scale model of an array of Multi resonant Oscillating Water Column (MOWC) type free standing wave energy caisson were experimentally investigated. A range of hydrodynamic parameters with different damping of oscillating water column (OWC) chamber and various center to center spacings between the caissons were used. In general, the force on the MOWC caisson array is two times that of a vertical wall, for maximum damping of OWC chamber. Reduction of damping of the OWC air chamber reduces the force on the array of caissons. With reduced damping, forces on OWC array can even be smaller than that the ones on a vertical wall. For smaller center to center (C/C) spacing between the caissons with respect to its harbor width, OWC array acts like a perforated breakwater, attracting smaller wave forces and for higher C/C spacing, it behaves like a vertical wall.

  15. Time-dependent seismic tomography and its application to the...

    Open Energy Info (EERE)

    changes in Earth structure are commonly determined using local earthquake tomography computer programs that invert multiple seismic-wave arrival time data sets separately and...

  16. Isentropic compressive wave generator and method of making same

    DOE Patents [OSTI]

    Barker, L.M.

    An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.

  17. Wave energy and intertidal productivity

    SciTech Connect (OSTI)

    Leigh, E.G. Jr.; Paine, R.T.; Quinn, J.F.; Suchanek, T.H.

    1987-03-01

    In the northern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 x 10/sup 8/ J, per m/sup 2/ in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms harness wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organism, and protect intertidal residents by knocking away their enemies or preventing them from feeding.

  18. Wave | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Ocop(5) Member 15 July, 2014 - 07:07 MHK LCOE Reporting Guidance Draft Cost Current DOE LCOE numerical modeling Performance Tidal Wave To normalize competing...

  19. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Basin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaveBasin&oldid596392" Feedback Contact needs updating Image needs updating Reference...

  20. Guided acoustic wave inspection system

    DOE Patents [OSTI]

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  1. Harnessing Energy from Ocean Waves

    SciTech Connect (OSTI)

    Lehmann, Marcus

    2015-05-06

    Berkeley Lab scientist Marcus Lehmann, a member of the Lab's Cyclotron Road cohort, discusses his research on harnessing energy from ocean waves.

  2. On the dispersion relation of the transit time instability in inverted fireballs

    SciTech Connect (OSTI)

    Gruenwald, J.

    2014-08-15

    Recently discovered inverted fireballs are non-linear plasma phenomena, which are formed in hollow grid anodes with high transparency in an existing background plasma. If a sufficiently large potential is applied, accelerated electrons from the bulk start to oscillate through the grid. Experimental investigations have shown that they produce different types of plasma instabilities. One of those oscillations is a transit time instability which originates from strong electron beams that travel through the inverted fireball. This type of instability is similar to vircator reflex oscillations and produces radio frequency waves. Hence, it is suitable to convert DC signals into signals oscillating in the MHz range. This paper analyses the dispersion relation of the transit time instability for three different plasma regimes. The regimes can be divided into a collision less regime, a regime with high collisionality and one in between those former two. It is demonstrated that the plasma properties of the surrounding background plasma have a strong influence on the behavior of the instability itself.

  3. Princeton physicists share in excitement of gravitational waves Einstein

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicted | Princeton Plasma Physics Lab Princeton physicists share in excitement of gravitational waves Einstein predicted By Catherine Zandonella, Office of the Dean for Research February 12, 2016 Tweet Widget Google Plus One Share on Facebook The collision of two black holes - an event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory, or LIGO - is seen in this still from a computer simulation. (Image by SXS) The collision of two black holes - an

  4. Princeton physicists share in excitement of gravitational waves Einstein

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predicted | Princeton Plasma Physics Lab Princeton physicists share in excitement of gravitational waves Einstein predicted By Catherine andonella, Office of the Dean for Research February 12, 2016 Tweet Widget Google Plus One Share on Facebook The collision of two black holes - an event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory, or LIGO - is seen in this still from a computer simulation. (Image by SXS) The collision of two black holes - an

  5. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    SciTech Connect (OSTI)

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V; Marklund, Mattias; Mourou, G; Sergeev, Aleksandr M

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)

  6. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    SciTech Connect (OSTI)

    Padhye, N.; Horton, W.

    1998-10-09

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth`s geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons.

  7. Ultra Deep Wave Equation Imaging and Illumination

    SciTech Connect (OSTI)

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  8. A STUDY OF ALFVN WAVE PROPAGATION AND HEATING THE CHROMOSPHERE

    SciTech Connect (OSTI)

    Tu, Jiannan; Song, Paul

    2013-11-01

    Alfvn wave propagation, reflection, and heating of the chromosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma, neutral fluid, and Maxwell's equations with incorporation of the Hall effect and strong electron-neutral, electron-ion, and ion-neutral collisions. We have developed a numerical model based on an implicit backward difference formula of second-order accuracy both in time and space to solve stiff governing equations resulting from strong inter-species collisions. A non-reflecting boundary condition is applied to the top boundary so that the wave reflection within the simulation domain can be unambiguously determined. It is shown that due to the density gradient the Alfvn waves are partially reflected throughout the chromosphere and more strongly at higher altitudes with the strongest reflection at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation, producing heating strong enough to balance the radiative loss for the quiet chromosphere without invoking anomalous processes or turbulences. The heating rates are larger for weaker background magnetic fields below ?500 km with higher-frequency waves subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the interaction of reflected waves with the upward propagating waves produces power at their double frequencies, which leads to more damping. The wave energy flux transmitted to the corona is one order of magnitude smaller than that of the driving source.

  9. DOE_PREMIUM_CLASS_TRAVEL_REPORTS_FY14.pdf

    Energy Savers [EERE]

    May, 2016 DOE HQ Shuttle Bus Route and Schedule The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific

  10. Wave energy absorber mountable on wave-facing structure

    SciTech Connect (OSTI)

    Kondo, H.

    1983-09-13

    A wave energy absorber comprising a caisson mountable on the seaside surface of an existing breakwater or coastal embankment, which caisson has a water chamber with an open side and a rear wall facing the open side. The distance from the open side to the rear wall is longer than one quarter of a wavelength L /SUB c/ in the water chamber so as to generate a standing wave in the water chamber with a node of the standing wave at a distance L /SUB c/ /4 from the rear wall toward the open side. A wave power turbine impeller is pivotally supported in the caisson at the node position, the impeller rotating in only one direction, whereby wave energy is absorbed by the impeller for further conversion into electric or thermal energy. The caisson itself can also be utilized as a breakwater or an embankment.

  11. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    SciTech Connect (OSTI)

    Artemyev, A. V.; Mourenas, D.; Krasnoselskikh, V. V.

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.

  12. Ulysses observations of magnetic waves due to newborn interstellar pickup ions. II. Application of turbulence concepts to limiting wave energy and observability

    SciTech Connect (OSTI)

    Cannon, Bradford E.; Smith, Charles W.; Isenberg, Philip A.; Vasquez, Bernard J.; Joyce, Colin J.; Murphy, Neil; Nuno, Raquel G. E-mail: Charles.Smith@unh.edu E-mail: Bernie.Vasquez@unh.edu E-mail: Neil.Murphy@jpl.nasa.gov

    2014-06-01

    The low-frequency magnetic waves that arise from the isotropization of newborn interstellar pickup ions (PUIs) are reasonably well described by linear and quasi-linear kinetic theory in so far as those theories predict the wave frequency and polarization in the spacecraft frame. Those theories fail to describe the scarce observability of the waves. Quasilinear theory predicts that the wave power should accumulate over long periods of time as the relatively weak kinetic instability slowly adds power to the observed spectrum. At the same time it has been argued that the same wave energy must serve as a secondary source of thermal ion heating in the outer heliosphere once the initial turbulence is depleted. To the extent that turbulent transport of the wave energy acts against the spectrally confined accumulation of wave energy, turbulence should be a limiting factor in observability. We argue that turbulence does limit the observability of the waves and we use turbulence theory to predict the observed wave energy. We compare this prediction against a database of 502 wave observations attributed to newborn interstellar PUIs observed by the Ulysses spacecraft.

  13. Compressive passive millimeter wave imager

    DOE Patents [OSTI]

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C

    2015-01-27

    A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.

  14. Data Processing Procedures and Methodology for Estimating Trip Distances for the 1995 American Travel Survey (ATS)

    SciTech Connect (OSTI)

    Hwang, H.-L.; Rollow, J.

    2000-05-01

    The 1995 American Travel Survey (ATS) collected information from approximately 80,000 U.S. households about their long distance travel (one-way trips of 100 miles or more) during the year of 1995. It is the most comprehensive survey of where, why, and how U.S. residents travel since 1977. ATS is a joint effort by the U.S. Department of Transportation (DOT) Bureau of Transportation Statistics (BTS) and the U.S. Department of Commerce Bureau of Census (Census); BTS provided the funding and supervision of the project, and Census selected the samples, conducted interviews, and processed the data. This report documents the technical support for the ATS provided by the Center for Transportation Analysis (CTA) in Oak Ridge National Laboratory (ORNL), which included the estimation of trip distances as well as data quality editing and checking of variables required for the distance calculations.

  15. Full wave simulations of fast wave heating losses in the scrape...

    Office of Scientific and Technical Information (OSTI)

    Full wave simulations of fast wave heating losses in the scrape-off layer of NSTX and NSTX-U Citation Details In-Document Search Title: Full wave simulations of fast wave heating...

  16. Millimeter wave sensor for monitoring effluents

    DOE Patents [OSTI]

    Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.

    1995-01-01

    A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.

  17. MHK Technologies/C Wave | Open Energy Information

    Open Energy Info (EERE)

    homepage C Wave.jpg Technology Profile Primary Organization C Wave Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The C Wave...

  18. GE, NASA Work to Relaunch Supersonic Air Travel | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supporting NASA's efforts to Relaunch Commercial Supersonic Air Travel Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Supporting NASA's efforts to Relaunch Commercial Supersonic Air Travel Awarded 2- year $599,000 program to reduce engine noise during takeoffs and landings NISKAYUNA, NY - JUNE 10, 2015 - Scientists

  19. Cut Gas Costs This Holiday Traveling Season with Three Easy Tips |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cut Gas Costs This Holiday Traveling Season with Three Easy Tips Cut Gas Costs This Holiday Traveling Season with Three Easy Tips November 26, 2013 - 9:23am Addthis Turning off your engine while waiting in the parking lot is a great way to save money on gas. | Photo courtesy of Kristy Keel-Blackmon, NREL/21196. Turning off your engine while waiting in the parking lot is a great way to save money on gas. | Photo courtesy of Kristy Keel-Blackmon, NREL/21196. Jason

  20. C Wave Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: C-Wave Ltd Place: England, United Kingdom Zip: SO17 1BJ Product: C-Wave is developing an innovative wave power technology using a unique...

  1. The occurrence and wave properties of H⁺-, He⁺-, and O⁺-band EMIC waves observed by the Van Allen Probes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Saikin, A. A.; Zhang, J. -C.; Allen, R. C.; Smith, C. W.; Kistler, L. M.; Spence, H. E.; Torbert, R. B.; Kletzing, C. A.; Jordanova, Vania K.

    2015-09-26

    We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 RE). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 to 30 June 2014). EMIC waves are examined in H⁺-,more » He⁺-, and O⁺-bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H⁺-band events, 438 He⁺-band events, and 68 O⁺-band events). EMIC wave events are observed between L = 2 – 8, with over 140 EMIC wave events observed below L = 4. The results show that H⁺-band EMIC waves have two peak magnetic local time (MLT) occurrence regions: pre-noon (09:00 < MLT ≤ 12:00) and afternoon (15:00 < MLT ≤ 17:00) sectors. He⁺-band EMIC waves feature an overall stronger dayside occurrence. O⁺-band EMIC waves have one peak region located in the morning sector at lower L shells (L < 4). He⁺-band EMIC waves average the highest wave power overall (>0.1 nT²/Hz), especially in the afternoon sector. Ellipticity observations reveal that linearly polarized EMIC waves dominate in lower L shells.« less

  2. The occurrence and wave properties of H⁺-, He⁺-, and O⁺-band EMIC waves observed by the Van Allen Probes

    SciTech Connect (OSTI)

    Saikin, A. A.; Zhang, J. -C.; Allen, R. C.; Smith, C. W.; Kistler, L. M.; Spence, H. E.; Torbert, R. B.; Kletzing, C. A.; Jordanova, Vania K.

    2015-09-26

    We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 RE). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 to 30 June 2014). EMIC waves are examined in H⁺-, He⁺-, and O⁺-bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H⁺-band events, 438 He⁺-band events, and 68 O⁺-band events). EMIC wave events are observed between L = 2 – 8, with over 140 EMIC wave events observed below L = 4. The results show that H⁺-band EMIC waves have two peak magnetic local time (MLT) occurrence regions: pre-noon (09:00 < MLT ≤ 12:00) and afternoon (15:00 < MLT ≤ 17:00) sectors. He⁺-band EMIC waves feature an overall stronger dayside occurrence. O⁺-band EMIC waves have one peak region located in the morning sector at lower L shells (L < 4). He⁺-band EMIC waves average the highest wave power overall (>0.1 nT²/Hz), especially in the afternoon sector. Ellipticity observations reveal that linearly polarized EMIC waves dominate in lower L shells.

  3. Methods and apparatus for use in detecting seismic waves in a borehole

    DOE Patents [OSTI]

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  4. (3 + 1)-dimensional cylindrical Korteweg-de Vries equation for nonextensive dust acoustic waves: Symbolic computation and exact solutions

    SciTech Connect (OSTI)

    Guo Shimin; Wang Hongli; Mei Liquan

    2012-06-15

    By combining the effects of bounded cylindrical geometry, azimuthal and axial perturbations, the nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma consisting of negatively charged dust grains, nonextensive ions, and nonextensive electrons are studied in this paper. Using the reductive perturbation method, a (3 + 1)-dimensional variable-coefficient cylindrical Korteweg-de Vries (KdV) equation describing the nonlinear propagation of DAWs is derived. Via the homogeneous balance principle, improved F-expansion technique and symbolic computation, the exact traveling and solitary wave solutions of the KdV equation are presented in terms of Jacobi elliptic functions. Moreover, the effects of the plasma parameters on the solitary wave structures are discussed in detail. The obtained results could help in providing a good fit between theoretical analysis and real applications in space physics and future laboratory plasma experiments where long-range interactions are present.

  5. TIME CALIBRATED OSCILLOSCOPE SWEEP

    DOE Patents [OSTI]

    Owren, H.M.; Johnson, B.M.; Smith, V.L.

    1958-04-22

    The time calibrator of an electric signal displayed on an oscilloscope is described. In contrast to the conventional technique of using time-calibrated divisions on the face of the oscilloscope, this invention provides means for directly superimposing equal time spaced markers upon a signal displayed upon an oscilloscope. More explicitly, the present invention includes generally a generator for developing a linear saw-tooth voltage and a circuit for combining a high-frequency sinusoidal voltage of a suitable amplitude and frequency with the saw-tooth voltage to produce a resultant sweep deflection voltage having a wave shape which is substantially linear with respect to time between equal time spaced incremental plateau regions occurring once each cycle of the sinusoidal voltage. The foregoing sweep voltage when applied to the horizontal deflection plates in combination with a signal to be observed applied to the vertical deflection plates of a cathode ray oscilloscope produces an image on the viewing screen which is essentially a display of the signal to be observed with respect to time. Intensified spots, or certain other conspicuous indications corresponding to the equal time spaced plateau regions of said sweep voltage, appear superimposed upon said displayed signal, which indications are therefore suitable for direct time calibration purposes.

  6. Resonant wave-particle interactions modified by intrinsic Alfvenic turbulence

    SciTech Connect (OSTI)

    Wu, C. S.; Lee, K. H.; Wang, C. B.; Wu, D. J.

    2012-08-15

    The concept of wave-particle interactions via resonance is well discussed in plasma physics. This paper shows that intrinsic Alfven waves can qualitatively modify the physics discussed in conventional linear plasma kinetic theories. It turns out that preexisting Alfven waves can affect particle motion along the ambient magnetic field and, moreover, the ensuing force field is periodic in time. As a result, the meaning of the usual Landau and cyclotron resonance conditions becomes questionable. It turns out that this effect leads us to find a new electromagnetic instability. In such a process intrinsic Alfven waves not only modify the unperturbed distribution function but also result in a different type of cyclotron resonance which is affected by the level of turbulence. This instability might enable us to better our understanding of the observed radio emission processes in the solar atmosphere.

  7. Irregular Wave Energy Extraction Analysis for a Slider Crank WEC Power Take-Off System

    SciTech Connect (OSTI)

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard

    2015-09-02

    Slider crank Wave Energy Converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this WEC has been done under regular sinusoidal wave conditions, and a suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and the control methodology is modified to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but still a reasonable amount of energy can be extracted.

  8. Localization of ultra-low frequency waves in multi-ion plasmas of the planetary magnetosphere

    SciTech Connect (OSTI)

    Kim, Eun -Hwa; Johnson, Jay R.; Lee, Dong -Hun

    2015-01-01

    By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Lastly, our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH waves can be localized in different locations along the field line.

  9. Semiclassical wave-packets emerging from interaction with an environment

    SciTech Connect (OSTI)

    Recchia, Carla; Teta, Alessandro

    2014-01-15

    We study the quantum evolution in dimension three of a system composed by a test particle interacting with an environment made of N harmonic oscillators. At time zero the test particle is described by a spherical wave, i.e., a highly correlated continuous superposition of states with well localized position and momentum, and the oscillators are in the ground state. Furthermore, we assume that the positions of the oscillators are not collinear with the center of the spherical wave. Under suitable assumptions on the physical parameters characterizing the model, we give an asymptotic expression of the solution of the Schrdinger equation of the system with an explicit control of the error. The result shows that the approximate expression of the wave function is the sum of two terms, orthogonal in L{sup 2}(R{sup 3(N+1)}) and describing rather different situations. In the first one, all the oscillators remain in their ground state and the test particle is described by the free evolution of a slightly deformed spherical wave. The second one consists of a sum of N terms where in each term there is only one excited oscillator and the test particle is correspondingly described by the free evolution of a wave packet, well concentrated in position and momentum. Moreover, the wave packet emerges from the excited oscillator with an average momentum parallel to the line joining the oscillator with the center of the initial spherical wave. Such wave packet represents a semiclassical state for the test particle, propagating along the corresponding classical trajectory. The main result of our analysis is to show how such a semiclassical state can be produced, starting from the original spherical wave, as a result of the interaction with the environment.

  10. Kinetic Wave Power | Open Energy Information

    Open Energy Info (EERE)

    Wave Power Jump to: navigation, search Name: Kinetic Wave Power Address: 2861 N Tupelo St Place: Midland Zip: 48642 Region: United States Sector: Marine and Hydrokinetic Phone...

  11. Triton Sea Wave Technologies | Open Energy Information

    Open Energy Info (EERE)

    Triton Sea Wave Technologies Jump to: navigation, search Name: Triton Sea Wave Technologies Address: 22 A Thrakis Zip: 15669 Region: Greece Sector: Marine and Hydrokinetic Year...

  12. Clean Wave Ventures | Open Energy Information

    Open Energy Info (EERE)

    Wave Ventures Jump to: navigation, search Name: Clean Wave Ventures Place: Indianapolis, Indiana Zip: 46204 Product: Midwest-based venture capital firm specializing in high growth...

  13. Euro Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Jump to: navigation, search Name: Euro Wave Energy Region: Norway Sector: Marine and Hydrokinetic Website: www.eurowaveenergy.com This company is listed in the Marine...

  14. Dartmouth Wave Energy Searaser | Open Energy Information

    Open Energy Info (EERE)

    Energy Searaser Jump to: navigation, search Name: Dartmouth Wave Energy (Searaser) Place: United Kingdom Product: British firm developing the wave energy converter, Searaser....

  15. Leancon Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Leancon Wave Energy Jump to: navigation, search Name: Leancon Wave Energy Address: Alpedalsvej 37 Place: Kolding Zip: 6000 Region: Denmark Sector: Marine and Hydrokinetic Phone...

  16. Green Ocean Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Energy Jump to: navigation, search Name: Green Ocean Wave Energy Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  17. Millimeter Wave Sensor Technologies Track Biometrics; Detect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's millimeter wave (mmW) sensor technologies measure a wide range of threat ... Argonne's millimeter wave (mmW) sensor technologies measure a wide range of threat ...

  18. Wave Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    Wave Wind LLC Jump to: navigation, search Name: Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and...

  19. Wind Waves and Sun | Open Energy Information

    Open Energy Info (EERE)

    Wind Waves and Sun Jump to: navigation, search Name: Wind Waves and Sun Region: United States Sector: Marine and Hydrokinetic Website: www.windwavesandsun.com This company is...

  20. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean » Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of

  1. Motor Wave Group | Open Energy Information

    Open Energy Info (EERE)

    Wave Group Jump to: navigation, search Name: Motor Wave Group Place: Hong Kong Region: China Sector: Marine and Hydrokinetic Website: www.motorwavegroup.com This company is listed...

  2. Mirror force induced wave dispersion in Alfvn waves

    SciTech Connect (OSTI)

    Damiano, P. A.; Johnson, J. R.

    2013-06-15

    Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvn waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror force effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.

  3. ARE PULSING SOLITARY WAVES RUNNING INSIDE THE SUN?

    SciTech Connect (OSTI)

    Wolff, Charles L.

    2012-09-10

    A precise sequence of frequencies-detected four independent ways-is interpreted as a system of solitary waves below the Sun's convective envelope. Six future observational or theoretical tests of this idea are suggested. Wave properties (rotation rates, radial energy distribution, nuclear excitation strength) follow from conventional dynamics of global oscillation modes after assuming a localized nuclear term strong enough to perturb and hold mode longitudes into alignments that form 'families'. To facilitate future tests, more details are derived for a system of two dozen solitary waves 2 {<=} l {<=} 25. Wave excitation by {sup 3}He and {sup 14}C burning is complex. It spikes by factors M{sub 1} {<=} 10{sup 3} when many waves overlap in longitude but its long-time average is M{sub 2} {<=} 10. Including mixing can raise overall excitation to {approx}50 times that in a standard solar model. These spikes cause tiny phase shifts that tend to pull wave rotation rates toward their ideal values {proportional_to}[l(l + 1)]{sup -1}. A system like this would generate some extra nuclear energy in two spots at low latitude on opposite sides of the Sun. Each covers about 20 Degree-Sign of longitude. Above a certain wave amplitude, the system starts giving distinctly more nuclear excitation to some waves (e.g., l = 9, 14, and 20) than to neighboring l values. The prominence of l = 20 has already been reported. This transition begins at temperature amplitudes {Delta}T/T = 0.03 in the solar core for a typical family of modes, which corresponds to {delta}T/T {approx} 0.001 for one of its many component oscillation modes.

  4. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

    2008-07-30

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  5. SECONDARY WAVES AND/OR THE 'REFLECTION' FROM AND 'TRANSMISSION' THROUGH A CORONAL HOLE OF AN EXTREME ULTRAVIOLET WAVE ASSOCIATED WITH THE 2011 FEBRUARY 15 X2.2 FLARE OBSERVED WITH SDO/AIA AND STEREO/EUVI

    SciTech Connect (OSTI)

    Olmedo, Oscar; Vourlidas, Angelos; Zhang Jie; Cheng Xin

    2012-09-10

    For the first time, the kinematic evolution of a coronal wave over the entire solar surface is studied. Full Sun maps can be made by combining images from the Solar Terrestrial Relations Observatory satellites, Ahead and Behind, and the Solar Dynamics Observatory, thanks to the wide angular separation between them. We study the propagation of a coronal wave, also known as the 'Extreme Ultraviolet Imaging Telescope' wave, and its interaction with a coronal hole (CH) resulting in secondary waves and/or reflection and transmission. We explore the possibility of the wave obeying the law of reflection. In a detailed example, we find that a loop arcade at the CH boundary cascades and oscillates as a result of the extreme ultraviolet (EUV) wave passage and triggers a wave directed eastward that appears to have reflected. We find that the speed of this wave decelerates to an asymptotic value, which is less than half of the primary EUV wave speed. Thanks to the full Sun coverage we are able to determine that part of the primary wave is transmitted through the CH. This is the first observation of its kind. The kinematic measurements of the reflected and transmitted wave tracks are consistent with a fast-mode magnetohydrodynamic wave interpretation. Eventually, all wave tracks decelerate and disappear at a distance. A possible scenario of the whole process is that the wave is initially driven by the expanding coronal mass ejection and subsequently decouples from the driver and then propagates at the local fast-mode speed.

  6. Evolution of a wave packet scattered by a one-dimensional potential

    SciTech Connect (OSTI)

    Khachatrian, A Zh; Alexanyan, Al G; Khoetsyan, V A; Alexanyan, N A

    2013-06-30

    We consider the evolution of a wave packet that is made up of a group of the wave functions describing the stationary scattering process and tunnels through a one-dimensional potential of arbitrary form. As the main characteristics of the time difference of the tunnelling process, use is made of the propagation speed of the wave-packet maximum. We show that the known Hartman formula for the tunnelling time corresponds to the wave packet with a wavenumber-uniform spectral composition in the case, when the phase and transmission coefficient modulus dispersions are taken into account only in the linear approximation. The amplitude of the main peak of the transmitted wave intensity is proven to be independent of the tunnelling time and is determined by the transmission coefficient of the spectral component at the carrier frequency and the spectral width of the wave packet. In the limit of an infinitely wide potential barrier the amplitude of the wave-packet maximum is shown to tend to zero slower than the tunnelling time tends to its asymptotic value, i.e., indeed we deal with the paradox of an infinitely large propagation speed of a wave disturbance through the barrier. (propagation of wave fronts)

  7. Coherent cooling of atoms in a frequency-modulated standing laser wave: Wave function and stochastic trajectory approaches

    SciTech Connect (OSTI)

    Argonov, V. Yu.

    2014-11-15

    The wave function of a moderately cold atom in a stationary near-resonant standing light wave delocalizes very fast due to wave packet splitting. However, we show that frequency modulation of the field can suppress packet splitting for some atoms whose specific velocities are in a narrow range. These atoms remain localized in a small space for a long time. We demonstrate and explain this effect numerically and analytically. We also demonstrate that the modulated field can not only trap but also cool the atoms. We perform a numerical experiment with a large atomic ensemble having wide initial velocity and energy distributions. During the experiment, most of atoms leave the wave while the trapped atoms have a narrow energy distribution.

  8. DOE Honors WIPP Representative for Cutting Travel Costs, Greenhouse Gas Emissions

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – A representative of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., on Tuesday received the Secretary of Energy’s Appreciation Award for her efforts to improve sustainability and reduce travel costs and the number of fleet vehicles.

  9. Microsoft Word - gra-ugs-program-travel-regs-tr9003.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No: CFO-TR9003 Revision: 2 Issued: 1/27/14 Effective Date: 1/27/14 Required Review Date: 1/27/16 LANL CFO-TR9003 1 of 7 GRA and UGS Program Travel Table o f C ontents 1.0 Purpose ........................................................................................................................................ 2 2.0 Authority and Applicability ............................................................................................................ 2 2.1 Authority

  10. How many electric miles do Nissan Leafs and Chevrolet Volts in The EV Project travel?

    SciTech Connect (OSTI)

    John Smart

    2014-05-01

    This paper presents travel statistics and metrics describing the driving behavior of Nissan Leaf and Chevrolet Volt drivers in the EV Project. It specifically quantifies the distance each group of vehicles drives each month. This paper will be published to INL's external website and will be accessible by the general public.

  11. Topeka’s “Green Light Tunnel” Saves Fuel and Time

    Broader source: Energy.gov [DOE]

    Topeka, Kansas is saving their motorists time and gasoline through the use of a real-time, adaptive "green light tunnel". A traffic signal system that synchronizes traffic lights in order to create a series of green lights that result in fewer stops and less travel time.

  12. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  13. Coulomb wave functions in momentum space

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eremenko, V; Upadhyay, N. J.; Thompson, I J; Elster, Charlotte; Nunes, F. M.; Arbanas, Goran; Escher, J.E.; Hlophe, L.

    2015-01-01

    An algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space is presented. The arguments are the Sommerfeld parameter eta, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p -> q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical barmore » in the range of 10(-1) to 10, and thus is particularly suited for momentum space calculations of nuclear reactions. Program Summary Program title: libcwfn Catalogue identifier: AEUQ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 864503 No. of bytes in distributed program, including test data, etc.: 7178021 Distribution format: tar.gz Programming language: Fortran 90, Fortran 77, Python, make (GNU Make dialect), GNU Bash shell interpreter (available as /bin/bash). Computer: Apple Powermac (Intel Xeon), ASUS K53U (AMD E-350 (Dual Core)), DELL Precision T3500 (Intel Xeon), NERSC Carver (Intel Nehalem Quad Core). Operating system: Linux, Windows (using Cygwin). RAM: less than 512 Mbytes Classification: 17.8, 17.13, 17.16. Nature of problem: The calculation of partial wave Coulomb functions with integer land all other arguments real. Solution method: Computing the value of the function using explicit formulae and algorithms. Running time: Less than 10(-3) s. (C) 2014 Elsevier B.V. All rights reserved.« less

  14. Coulomb wave functions in momentum space

    SciTech Connect (OSTI)

    Eremenko, V; Upadhyay, N. J.; Thompson, I J; Elster, Charlotte; Nunes, F. M.; Arbanas, Goran; Escher, J.E.; Hlophe, L.

    2015-01-01

    An algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space is presented. The arguments are the Sommerfeld parameter eta, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p -> q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical bar in the range of 10(-1) to 10, and thus is particularly suited for momentum space calculations of nuclear reactions. Program Summary Program title: libcwfn Catalogue identifier: AEUQ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 864503 No. of bytes in distributed program, including test data, etc.: 7178021 Distribution format: tar.gz Programming language: Fortran 90, Fortran 77, Python, make (GNU Make dialect), GNU Bash shell interpreter (available as /bin/bash). Computer: Apple Powermac (Intel Xeon), ASUS K53U (AMD E-350 (Dual Core)), DELL Precision T3500 (Intel Xeon), NERSC Carver (Intel Nehalem Quad Core). Operating system: Linux, Windows (using Cygwin). RAM: less than 512 Mbytes Classification: 17.8, 17.13, 17.16. Nature of problem: The calculation of partial wave Coulomb functions with integer land all other arguments real. Solution method: Computing the value of the function using explicit formulae and algorithms. Running time: Less than 10(-3) s. (C) 2014 Elsevier B.V. All rights reserved.

  15. AnisWave 2D

    Energy Science and Technology Software Center (OSTI)

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  16. Wave-operated power plant

    SciTech Connect (OSTI)

    Ghesquiere, H.

    1980-08-12

    This wave-operated power plant comprises a perforated caisson breakwater in which propellers, or turbines, are mounted in the perforations or openings and drives hydraulic pumps connected thereto, which in turn drives a hydraulic motor coupled to an electric generator. One-way flap valves are mounted in the openings. Some of said flap valves allow the rushing waves to enter the caisson, while the other flap valves allow the water to flow out of the caisson.

  17. Direct Drive Wave Energy Buoy

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.; Schacher, Alphonse A.; Hammagren, Erik J.; Zhang, Zhe

    2013-07-29

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  18. Smolt Condition and Timing of Arrival at Lower Granite Reservoir, 1987 Annual Report.

    SciTech Connect (OSTI)

    Buettner, Edwin W.; Nelson, V. Lance

    1990-01-01

    This project monitored the daily passage of smolts during the 1988 spring outmigration at two migrant traps; one each on the Snake and Clearwater rivers. Due to the low runoff year, chinook salmon catch at the Snake River trap was very low. Steelhead trout catch was higher than normal, probably due to trap modifications and because the trap was moved to the east side of the river. Chinook salmon and steelhead trout catch at the Clearwater River trap was similar to 1987. Total cumulative recovery of PIT tagged fish at the three dams, with PIT tag detection systems was: 55% for chinook salmon, 73% for hatchery steelhead trout, and 75% for wild steelhead trout. Travel time through Lower Granite Reservoir for PIT tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that as discharge increased from 40 kcfs to 80 kcfs, chinook salmon travel time decreased three fold, and steelhead trout travel time decreased two fold. There was a statistical difference between estimates of travel time through Lower Granite Reservoir for PIT tagged and freeze branded steelhead trout, but not for chinook salmon. These differences may be related to the estimation techniques used for PIT tagged and freeze branded groups, rather than real differences in travel time. 10 figs, 15 tabs.

  19. Wave Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave Energy Resource Assessment Wave Energy Resource Assessment Wave Energy Resource Assessment 52_wave_resource_assessment_epri_jacobson.ppt (308.5 KB) More Documents & Publications OTEC resource assessment OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) Whitestone Power & Communications (TRL 1 2 3 System) - Whitestone Poncelet RISEC Project

  20. Parameter spaces for linear and nonlinear whistler-mode waves

    SciTech Connect (OSTI)

    Summers, Danny; School of Space Research, Kyung Hee University, Yongin, Gyeonggi ; Tang, Rongxin; Institute of Space Science and Technology, Nanchang University, Nanchang; State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing ; Omura, Yoshiharu; Lee, Dong-Hun

    2013-07-15

    We examine the growth of magnetospheric whistler-mode waves which comprises a linear growth phase followed by a nonlinear growth phase. We construct time-profiles for the wave amplitude that smoothly match at the transition between linear and nonlinear wave growth. This matching procedure can only take place over a limited “matching region” in (N{sub h}/N{sub 0},A{sub T})-space, where A{sub T} is the electron thermal anisotropy, N{sub h} is the hot (energetic) electron number density, and N{sub 0} is the cold (background) electron number density. We construct this matching region and determine how the matching wave amplitude varies throughout the region. Further, we specify a boundary in (N{sub h}/N{sub 0},A{sub T})-space that separates a region where only linear chorus wave growth can occur from the region in which fully nonlinear chorus growth is possible. We expect that this boundary should prove of practical use in performing computationally expensive full-scale particle simulations, and in interpreting experimental wave data.

  1. EVIDENCE FOR THE PHOTOSPHERIC EXCITATION OF INCOMPRESSIBLE CHROMOSPHERIC WAVES

    SciTech Connect (OSTI)

    Morton, R. J.; Verth, G.; Fedun, V.; Erdelyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Shelyag, S., E-mail: richard.morton@northumbria.ac.uk [Astrophysics Research Centre, School of Mathematics and Physics, Main Physics Building, Queen's University Belfast, Belfast, County Antrim BT7 1NN (United Kingdom)

    2013-05-01

    Observing the excitation mechanisms of incompressible transverse waves is vital for determining how energy propagates through the lower solar atmosphere. We aim to show the connection between convectively driven photospheric flows and incompressible chromospheric waves. The observations presented here show the propagation of incompressible motion through the quiet lower solar atmosphere, from the photosphere to the chromosphere. We determine photospheric flow vectors to search for signatures of vortex motion and compare results to photospheric flows present in convective simulations. Further, we search for the chromospheric response to vortex motions. Evidence is presented that suggests incompressible waves can be excited by the vortex motions of a strong magnetic flux concentration in the photosphere. A chromospheric counterpart to the photospheric vortex motion is also observed, presenting itself as a quasi-periodic torsional motion. Fine-scale, fibril structures that emanate from the chromospheric counterpart support transverse waves that are driven by the observed torsional motion. A new technique for obtaining details of transverse waves from time-distance diagrams is presented and the properties of transverse waves (e.g., amplitudes and periods) excited by the chromospheric torsional motion are measured.

  2. Optimization of High-order Wave Equations for Multicore CPUs

    Energy Science and Technology Software Center (OSTI)

    2011-11-01

    This is a simple benchmark to guage the performance of a high-order isotropic wave equation grid. The code is optimized for both SSE and AVX and is parallelized using OpenMP (see Optimization section). Structurally, the benchmark begins, reads a few command-line parameters, allocates and pads the four arrays (current, last, next wave fields, and the spatially varying but isotropic velocity), initializes these arrays, then runs the benchmark proper. The code then benchmarks the naive, SSEmore » (if supported), and AVX (if supported implementations) by applying the wave equation stencil 100 times and taking the average performance. Boundary conditions are ignored and would noiminally be implemented by the user. THus, the benchmark measures only the performance of the wave equation stencil and not a full simulation. The naive implementation is a quadruply (z,y,x, radius) nested loop that can handle arbitrarily order wave equations. The optimized (SSE/AVX) implentations are somewhat more complex as they operate on slabs and include a case statement to select an optimized inner loop depending on wave equation order.« less

  3. An evaluation of groundwater travel times in the Wolfcamp Formation using the CFEST-INV stochastic hydrology library

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    Performance assessments of a nuclear waste repository must consider the hydrologic, thermal, mechanical, and geochemical environments of a candidate site. Predictions of radionuclide transport requires estimating water movement as a function of pressure, temperature, and solute concentration. CFEST (Coupled Fluid, Energy, and Solute Transport, Gupta et al., 1987) is a finite-element based groundwater code that can be used to simultaneously solve the partial differential equations for pressure heads, solute temperature, and solute concentration. The CFEST code has been designed to support site, repository, and waste package subsystem assessments. CFEST-INV is a stochastic hydrology software library that was developed to augment the CFEST technology in data processing; model calibration; performance prediction; error propagation; and data collection guidance. 18 refs., 9 figs., 4 tabs.

  4. Effect of non-uniform slow wave structure in a relativistic backward wave oscillator with a resonant reflector

    SciTech Connect (OSTI)

    Chen, Changhua; Xiao, Renzhen; Sun, Jun; Song, Zhimin; Huo, Shaofei; Bai, Xianchen; Shi, Yanchao; Liu, Guozhi

    2013-11-15

    This paper provides a fresh insight into the effect of non-uniform slow wave structure (SWS) used in a relativistic backward wave oscillator (RBWO) with a resonant reflector. Compared with the uniform SWS, the reflection coefficient of the non-uniform SWS is higher, leading to a lower modulating electric field in the resonant reflector and a larger distance to maximize the modulation current. Moreover, for both types of RBWOs, stronger standing-wave field takes place at the rear part of the SWS. In addition, besides Cerenkov effects, the energy conversion process in the RBWO strongly depends on transit time effects. Thus, the matching condition between the distributions of harmonic current and standing wave field provides a profound influence on the beam-wave interaction. In the non-uniform RBWO, the region with a stronger standing wave field corresponds to a higher fundamental harmonic current distribution. Particle-in-cell simulations show that with a diode voltage of 1.02 MV and beam current of 13.2 kA, a microwave power of 4 GW has been obtained, compared to that of 3 GW in the uniform RBWO.

  5. What are Gravitational Waves? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are Gravitational Waves? What are Gravitational Waves? June 27, 2016 - 1:03pm Addthis Einstein was right! Gravitational Waves exist. Find out how they work. | Graphic courtesy of California Institute of Technology. Einstein was right! Gravitational Waves exist. Find out how they work. | Graphic courtesy of California Institute of Technology. Daniel Holz University of Chicago Albert Einstein first predicted gravitational waves almost a century ago, but only since September 15, 2015, have

  6. Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers

    SciTech Connect (OSTI)

    Pirro, P.; Chumak, A. V.; Lägel, B.; Leven, B.; Hillebrands, B.; Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern ; Dubs, C.; Surzhenko, O.; Görnert, P.

    2014-01-06

    We present an experimental study of spin-wave excitation and propagation in microstructured waveguides consisting of a 100 nm thick yttrium iron garnet/platinum (Pt) bilayer. The life time of the spin waves is found to be more than an order of magnitude higher than in comparably sized metallic structures, despite the fact that the Pt capping enhances the Gilbert damping. Utilizing microfocus Brillouin light scattering spectroscopy, we reveal the spin-wave mode structure for different excitation frequencies. An exponential spin-wave amplitude decay length of 31 μm is observed which is a significant step towards low damping, insulator based micro-magnonics.

  7. Soliton generation and multiple phases in dispersive shock and rarefaction wave interaction

    SciTech Connect (OSTI)

    Ablowitz, M. J.; Baldwin, D. E.; Hoefer, M. A.

    2009-07-15

    Interactions of dispersive shock waves (DSWs) and rarefaction waves (RWs) associated with the Korteweg-de Vries equation are shown to exhibit multiphase dynamics and isolated solitons. There are six canonical cases: one is the interaction of two DSWs that exhibit a transient two-phase solution but evolve to a single-phase DSW for large time; two tend to a DSW with either a small amplitude wave train or a finite number of solitons, which can be determined analytically; two tend to a RW with either a small wave train or a finite number of solitons; finally, one tends to a pure RW.

  8. TIMING APPARATUS

    DOE Patents [OSTI]

    Bennett, A.E.; Geisow, J.C.H.

    1956-04-17

    The timing device comprises an escapement wheel and pallet, a spring drive to rotate the escapement wheel to a zero position, means to wind the pretensioned spring proportional to the desired signal time, and a cam mechanism to control an electrical signal switch by energizing the switch when the spring has been wound to the desired position, and deenergizing it when it reaches the zero position. This device produces an accurately timed signal variably witain the control of the operator.

  9. Electron acceleration by Z-mode and whistler-mode waves

    SciTech Connect (OSTI)

    Lee, K. H.; Omura, Y.; Lee, L. C.; Institute of Earth Science, Academia Sinica, Nankang, Taiwan

    2013-11-15

    We carried out a series of particle simulations to study electron acceleration by Z-mode and whistler-mode waves generated by an electron ring distribution. The electron ring distribution leads to excitations of X-mode waves mainly in the perpendicular direction, Z-mode waves in the perpendicular and parallel directions, and whistler-mode waves mainly in the parallel direction. The parallel Z- and whistler-mode waves can lead to an effective acceleration of ring electrons. The electron acceleration is mainly determined by the wave amplitude and phase velocity, which in turn is affected by the ratio of electron plasma to cyclotron frequencies. For the initial kinetic energy ranging from 100 to 500 keV, the peak energy of the accelerated electrons is found to reach 28 times the initial kinetic energy. We further study the acceleration process by test-particle calculations in which electrons interact with one, two, or four waves. The electron trajectories in the one-wave case are simple diffusion curves. In the multi-wave cases, electrons are accelerated simultaneously by counter-propagating waves and can have a higher final energy.

  10. Gravitational waves from gravitational collapse

    SciTech Connect (OSTI)

    Fryer, Christopher L; New, Kimberly C

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  11. Localization of ultra-low frequency waves in multi-ion plasmas of the planetary magnetosphere

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Eun -Hwa; Johnson, Jay R.; Lee, Dong -Hun

    2015-01-01

    By adopting a 2D time-dependent wave code, we investigate how mode-converted waves at the Ion-Ion Hybrid (IIH) resonance and compressional waves propagate in 2D density structures with a wide range of field-aligned wavenumbers to background magnetic fields. The simulation results show that the mode-converted waves have continuous bands across the field line consistent with previous numerical studies. These waves also have harmonic structures in frequency domain and are localized in the field-aligned heavy ion density well. Lastly, our results thus emphasize the importance of a field-aligned heavy ion density structure for ultra-low frequency wave propagation, and suggest that IIH wavesmore » can be localized in different locations along the field line.« less

  12. Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Union Address, Commitment to Clean Energy | Department of Energy Bay Area to Highlight State of the Union Address, Commitment to Clean Energy Energy Secretary Steven Chu to Travel to Bay Area to Highlight State of the Union Address, Commitment to Clean Energy January 31, 2012 - 7:38pm Addthis Washington, D.C. - As part of the Energy Department's ongoing efforts to highlight President Obama's State of the Union address and discuss the Obama Administration's commitment to American energy

  13. Local Teams from PA, WV Travel to Washington D.C. for National Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | netl.doe.gov Regional News Local Teams from PA, WV Travel to Washington D.C. for National Science Bowl Pittsburgh, Pa. - The National Energy Technology Laboratory have sent the regional winners of the southwestern Pennsylvania (SWPA) and West Virginia Science Bowls off to compete in the U.S. Department of Energy National Science Bowl April 28-May 2, 2016, in Washington, D.C. By winning their regional tournaments, the Marshall Middle School (Wexford, PA), Morgantown High School (Morgantown,

  14. Global coherence of dust density waves

    SciTech Connect (OSTI)

    Killer, Carsten; Melzer, Andr

    2014-06-15

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  15. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  16. GRAVITATIONAL WAVES FROM STELLAR COLLAPSE

    SciTech Connect (OSTI)

    C. L. FRYER

    2001-01-01

    Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.

  17. Three-body dwell time

    SciTech Connect (OSTI)

    Kelkar, N. G.

    2010-06-15

    The lifetime of an unstable state or resonance formed as an intermediate state in two-body scattering is known to be related to the dwell time or the time spent within a given region of space by the two interacting particles. This concept is extended to the case of three-body systems and a relation connecting the three-body dwell time with the two-body dwell times of the substructures of the three-body system is derived for the case of separable wave functions. The Kapur-Peierls formalism is revisited to discover one of the first definitions of dwell time in the literature. An extension of the Kapur-Peierls formalism to the three-body case shows that the lifetime of a three-body resonance can indeed be given by the three-body dwell time.

  18. Nonlinear dissipation of circularly polarized Alfven waves due to the beam-induced obliquely propagating waves

    SciTech Connect (OSTI)

    Nariyuki, Y.; Hada, T.; Tsubouchi, K.

    2012-08-15

    In the present study, the dissipation processes of circularly polarized Alfven waves in solar wind plasmas including beam components are numerically discussed by using a 2-D hybrid simulation code. Numerical results suggest that the parent Alfven waves are rapidly dissipated due to the presence of the beam-induced obliquely propagating waves, such as kinetic Alfven waves. The nonlinear wave-wave coupling is directly evaluated by using the induction equation for the parent wave. It is also observed both in the 1-D and 2-D simulations that the presence of large amplitude Alfven waves strongly suppresses the beam instabilities.

  19. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect (OSTI)

    Sati, Priti; Tripathi, V. K.

    2012-12-15

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  20. Plasma wave aided two photon decay of an electromagnetic wave in a plasma

    SciTech Connect (OSTI)

    Kumar, K. K. Magesh; Singh, Rohtash; Krishan, Vinod

    2014-11-15

    The presence of a Langmuir wave in an unmagnetized plasma is shown to allow parametric decay of an electromagnetic wave into two electromagnetic waves, which is otherwise not allowed due to wave number mismatch. The decay occurs at plasma densities below one ninth the critical density and the decay waves propagate at finite angles to the pump laser. Above the threshold, the growth rate scales linearly with the amplitude of the Langmuir wave and the amplitude of the pump electromagnetic wave. The frequency ω of the lower frequency decay wave increases with the angle its propagation vector makes with that of the pump. The growth rate, however, decreases with ω.

  1. Time Off

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Off Time Off A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact Benefits Office (505) 667-1806 Email Time Off Work schedules A variety of work schedules are available that allow flexibility for workers and Laboratory programs. The most popular work schedule is the 9/80-employees work 80 hours over a 9 workday (two week) period, with a Friday off every other week. Holidays The Lab recognizes these 12

  2. Attosecond Electron Wave-Packet Interference Observed by Transient Absorption

    SciTech Connect (OSTI)

    Holler, M.; Schapper, F.; Gallmann, L.; Keller, U.

    2011-03-25

    We perform attosecond time-resolved transient absorption spectroscopy around the first ionization threshold of helium and observe rapid oscillations of the absorption of the individual harmonics as a function of time delay with respect to a superimposed, moderately strong infrared laser field. The phase relation between the absorption modulation of individual harmonics gives direct evidence for the interference of transiently bound electronic wave packets as the mechanism behind the absorption modulation.

  3. Notice of Intent to Submit Page Changes to Revise DOE O 552.1A, Travel Policy and Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-01-07

    A page-change is being undertaken to reflect changes in responsibilities brought about by the August 2013 reorganization which transferred travel related functions and systems between the Office of Chief Financial Officer (OCFO) and the Office of Management (MA).

  4. Notice of Intent to Submit Page Changes to Revise DOE O 552.1A, Travel Policy and Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-01-07

    A page change is being undertaken to reflect changes in responsibilities brought about by the August 2013 reorganization which transferred travel related functions and systems between the Office of Chief Financial Officer (OCFO) and the Office of Management (MA).

  5. Method for generation of THz frequency radiation and sensing of large amplitude material strain waves in piezoelectric materials

    DOE Patents [OSTI]

    Reed, Evan J.; Armstrong, Michael R.

    2010-09-07

    Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.

  6. Interface boundary conditions for dynamic magnetization and spin wave dynamics in a ferromagnetic layer with the interface Dzyaloshinskii-Moriya interaction

    SciTech Connect (OSTI)

    Kostylev, M.

    2014-06-21

    In this work, we derive the interface exchange boundary conditions for the classical linear dynamics of magnetization in ferromagnetic layers with the interface Dzyaloshinskii-Moriya interaction (IDMI). We show that IDMI leads to pinning of dynamic magnetization at the interface. An unusual peculiarity of the IDMI-based pinning is that its scales as the spin-wave wave number. We incorporate these boundary conditions into an existing numerical model for the dynamics of the Damon-Eshbach spin wave in ferromagnetic films. IDMI affects the dispersion and the frequency non-reciprocity of the travelling Damon-Eshbach spin wave. For a broad range of film thicknesses L and wave numbers, the results of the numerical simulations of the spin wave dispersion are in a good agreement with a simple analytical expression, which shows that the contribution of IDMI to the dispersion scales as 1/L, similarly to the effect of other types of interfacial anisotropy. Suggestions to experimentalists how to detect the presence of IDMI in a spin wave experiment are given.

  7. Numerical Modeling At Coso Geothermal Area (1999) | Open Energy...

    Open Energy Info (EERE)

    microseismic travel time data Lees, J.M.; Wu, H. (1 August 1999) P wave anisotropy, stress, and crack distribution at Coso geothermal field, California Additional References...

  8. Analysis of Real Ship Rolling Dynamics under Wave Excitement Force Composed of Sums of Cosine Functions

    SciTech Connect (OSTI)

    Zhang, Y. S. [Department of Scientific Research, Dalian Naval Academy, Dalian 116018 (China); Cai, F. [Department of Navigation, Dalian Naval Academy, Dalian 116018 (China); Xu, W. M. [Department of Hydrography and Cartography, Dalian Naval Academy, Dalian 116018 (China)

    2011-09-28

    The ship motion equation with a cosine wave excitement force describes the slip moments in regular waves. A new kind of wave excitement force model, with the form as sums of cosine functions was proposed to describe ship rolling in irregular waves. Ship rolling time series were obtained by solving the ship motion equation with the fourth-order-Runger-Kutta method. These rolling time series were synthetically analyzed with methods of phase-space track, power spectrum, primary component analysis, and the largest Lyapunove exponent. Simulation results show that ship rolling presents some chaotic characteristic when the wave excitement force was applied by sums of cosine functions. The result well explains the course of ship rolling's chaotic mechanism and is useful for ship hydrodynamic study.

  9. Linear mechanism of surface gravity wave generation in horizontally sheared flow

    SciTech Connect (OSTI)

    Kalashnik, M. V.

    2008-01-15

    An analysis is presented of a linear mechanism of surface gravity wave generation in a horizontally sheared flow in a fluid layer with free boundary. A free-surface flow of this type is found to be algebraically unstable. The development of instability leads to the formation of surface gravity waves whose amplitude grows with time according to a power law. Flow stability is analyzed by using a nonmodal approach in which the behavior of a spatial Fourier harmonic of a disturbance is considered in a semi-Lagrangian frame of reference moving with the flow. Shear-flow disturbances are divided into two classes (wave and vortex disturbances) depending on the value of potential vorticity. It is shown that vortex disturbances decay with time while the energy of wave disturbances increases indefinitely. Transformation of vortex disturbances into wave ones under strong shear is described.

  10. Non-contact feature detection using ultrasonic Lamb waves

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  11. Combined distance-of-flight and time-of-flight mass spectrometer

    DOE Patents [OSTI]

    Enke, Christie G; Ray, Steven J; Graham, Alexander W; Hieftje, Gary M; Barinaga, Charles J; Koppenaal, David W

    2014-02-11

    A combined distance-of-flight mass spectrometry (DOFMS) and time-of-flight mass spectrometry (TOFMS) instrument includes an ion source configured to produce ions having varying mass-to-charge ratios, a first detector configured to determine when each of the ions travels a predetermined distance, a second detector configured to determine how far each of the ions travels in a predetermined time, and a detector extraction region operable to direct portions of the ions either to the first detector or to the second detector.

  12. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Yang, Liheng; Zhang, Jun; Li, Ting; Liu, Wei; Shen, Yuandeng E-mail: zjun@bao.ac.cn

    2013-09-20

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup 1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wave transit, the original redshift increased by about 3 km s{sup 1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.

  13. Sandia Energy - WEC-Sim (Wave Energy Converter SIMulator)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WEC-Sim (Wave Energy Converter SIMulator) Home Stationary Power Energy Conversion Efficiency Water Power WEC-Sim (Wave Energy Converter SIMulator) WEC-Sim (Wave Energy Converter...

  14. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator...

  15. Oregon Wave Energy Trust OWET | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Trust OWET Jump to: navigation, search Name: Oregon Wave Energy Trust (OWET) Place: Portland, Oregon Zip: 97207 Product: String representation "The Oregon Wave ... rgy...

  16. Circulating heat exchangers for oscillating wave engines and...

    Office of Scientific and Technical Information (OSTI)

    heat exchangers for oscillating wave engines and refrigerators Title: Circulating heat exchangers for oscillating wave engines and refrigerators An oscillating-wave engine or ...

  17. WETGen (Wave Energy Turbine GENerator) | Open Energy Information

    Open Energy Info (EERE)

    WETGen (Wave Energy Turbine GENerator) Jump to: navigation, search Logo: WETGen (Wave Energy Turbine GENerator) Name WETGen (Wave Energy Turbine GENerator) Place Coos Bay, Oregon...

  18. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    SciTech Connect (OSTI)

    Skender, M.; Tsiklauri, D.

    2014-04-15

    Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri [Phys. Plasmas 18, 052903 (2011)], Schmitz and Tsiklauri [Phys. Plasmas 20, 062903 (2013)], and Pechhacker and Tsiklauri [Phys. Plasmas 19, 112903 (2012)], in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are shown to be generated by the normal Doppler-shifted relativistic resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves, while a small but sufficient fraction is going into L- and R-electromagnetic modes.

  19. Rotation-induced nonlinear wavepackets in internal waves

    SciTech Connect (OSTI)

    Whitfield, A. J. Johnson, E. R.

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  20. Nonintrusive stabilization of a conical detonation wave for supersonic combustion

    SciTech Connect (OSTI)

    Carrier, G.F.; Fendell, F.E.; Fink, S.F. IV

    1995-12-01

    Theoretical and experimental studies are undertaken of the feasibility of an air-breathing supersonic combustor based on a stabilized, conically configured (oblique) detonation wave. The conical wave is the result of the interaction of a train of spherical detonation waves, each directly initiated by a brief, localized deposition of energy from a very-rapidly-repeated pulsed laser. The laser is tightly focused on a fixed site (in the combustor) where there is a steady uniform supersonic stream of combustible gas. Simple analysis of the requirements for (nonintrusive) direct initiation of an individual spherical detonation wave by a single laser pulse relates the pulse-energy and pulse-duration parameters. Then, an estimate is given of the entropy production associated with the early-time interaction of spherical detonations created in a supersonic reactive stream by a train of laser pulses. The entropy production, which arises from reflected shocks in the already detonated mixture, is reduced by increasing the repetition rate of the laser. Finally, the fuel/air mixing is inevitably imperfect in practical high-speed combustors. The authors investigate that portion of the throughput which is compressed, but not reacted, during transit of the conical detonation wave, because of imperfect mixing. Specifically, they estimate the spatial scale of the cold-mixture inhomogeneity that still permits diffusive burnup, prior to exhaust from the nozzle of the combustor.