Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

wave power density | OpenEI  

Open Energy Info (EERE)

power density power density Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (2 years ago) Date Updated Unknown Keywords EPRI MHK NREL ocean Virginia Tech wave wave power density Data application/pdf icon Download Full Report (pdf, 8.8 MiB) Quality Metrics Level of Review Some Review Comment

2

Effect of electron density profile on power absorption of high frequency electromagnetic waves in plasma  

SciTech Connect

Considering different typical electron density profiles, a multi slab approximation model is built up to study the power absorption of broadband (0.75-30 GHz) electromagnetic waves in a partially ionized nonuniform magnetized plasma layer. Based on the model, the power absorption spectra for six cases are numerically calculated and analyzed. It is shown that the absorption strongly depends on the electron density fluctuant profile, the background electron number density, and the collision frequency. A potential optimum profile is also analyzed and studied with some particular parameters.

Xi Yanbin; Liu Yue [MOE Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

2012-07-15T23:59:59.000Z

3

Kinetics of density striations excited by powerful electromagnetic waves in the ionosphere  

Science Conference Proceedings (OSTI)

One of the most important effects observed when pumping ionospheric plasma by powerful radio waves from the ground is the excitation of filamentary density striations that are stretched along the ambient geomagnetic field. The kinetics of the striations present in the pump electromagnetic field is studied theoretically. The density irregularities cause inhomogeneities in the pump field, which result in a ponderomotive force acting on the striations that makes the density depressions move perpendicular to the geomagnetic field. Striations moving with different velocities can collide, thereby merging to produce larger scale striations. The merging of striations constitutes a cascade process that distributes the energy over the spatial spectrum of the striations. The resulting inhomogeneity spectrum as well as the obtained outward radial drift of a few meters per second is consistent with experimental results.

Istomin, Ya. N. [P. N. Lebedev Physical Institute, Leninsky Prospect 53, 117924 Moscow (Russian Federation); Leyser, T. B. [Swedish Institute of Space Physics, Box 537, SE-751 21 Uppsala (Sweden)

2010-03-15T23:59:59.000Z

4

Charge Density Wave Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Fisher Research Group Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have discovered a novel set of properties pertaining to a compound of materials called tritellurides. These compounds, composed of three atoms of tellurium and a single atom of one of the rare earth elements, demonstrate unique electronic properties that can be controlled by altering the temperature of the material. The tritellurides display phenomena known as charge density waves (CDW). In a normal conductive metal, electrons persist in a "sea" wherein they are evenly distributed and equally available, or conductive. A CDW occurs under certain circumstances and causes the electrons to clump together, lowering their availability, and thereby lowering the compound's conductivity. Tellurium, when crystallized into quasi-two-dimensional planes and combined with rare earth elements, produces a material with CDWs that can be manipulated and controlled.

5

Definition: Power density | Open Energy Information  

Open Energy Info (EERE)

density density Jump to: navigation, search Dictionary.png Power density The rate of energy flow (power) per unit volume, area or mass. Common metrics include: horsepower per cubic inch, watts per square meter and watts per kilogram.[1][2] View on Wikipedia Wikipedia Definition Power density (or volume power density or volume specific power) is the amount of power (time rate of energy transfer) per unit volume. In energy transformers like batteries, fuel cells, motors, etc. but also power supply units or similar, power density refers to a volume. It is then also called volume power density which is expressed as W/m. Volume power density is sometimes an important consideration where space is constrained. In reciprocated internal combustion engines, power density- power per swept

6

Kinetic Wave Power | Open Energy Information  

Open Energy Info (EERE)

Kinetic Wave Power Jump to: navigation, search Name Kinetic Wave Power Address 2861 N Tupelo St Place Midland Zip 48642 Sector Marine and Hydrokinetic Phone number 989-839-9757...

7

Retail beamed power using millimeter waves: Survey  

Science Conference Proceedings (OSTI)

Retail delivery of electric power through millimeter waves is relevant in developing areas where the market for communication devices outpaces the power grid infrastructure. It is also a critical component of an evolutionary path towards terrestrial ... Keywords: Micro renewable energy systems, millimeter wave, power beaming, rural India power, space power grid, systems

Narayanan Komerath; Aravinda Kar

2012-08-01T23:59:59.000Z

8

Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel  

SciTech Connect

Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

Sati, Priti; Tripathi, V. K. [Indian Institute of Technology, Hauz Khas, Delhi 110054 (India)

2012-12-15T23:59:59.000Z

9

Competition between superconductivity and spin density wave  

E-Print Network (OSTI)

The Hubbard model has been investigated widely by many authors, while this work may be new in two aspects. One, we focus on the possible effects of the positions of the gaps associated with the pairing and the spin density wave. Two, we suggest that the models with different parameters are appropriate for different materials (or a material in different doped regions). This will lead to some new insights into the high temperature superconductors. It is shown that the SDW can appear at some temperature region when the on-site Coulomb interaction is larger, while the SC requires a decreased U at a lower temperature. This can qualitatively explain the relationship between superconducting and pseudogap states of Cu-based superconductors in underdoped and optimally doped regions. The superinsulator is also discussed.

Tian De Cao

2011-01-02T23:59:59.000Z

10

Wave Power Demonstration Project at Reedsport, Oregon  

SciTech Connect

Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

2013-10-21T23:59:59.000Z

11

Effect of Chemical Pressure on the Charge Density Wave Transition...  

NLE Websites -- All DOE Office Websites (Extended Search)

at SSRL and the department of Applied Physics at Stanford University has determined the phase diagram of a new family of prototypical charge density wave (CDW) compounds. These...

12

Considering Air Density in Wind Power Production  

E-Print Network (OSTI)

In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

Zénó Farkas

2011-03-11T23:59:59.000Z

13

Ducted kinetic Alfven waves in plasma with steep density gradients  

SciTech Connect

Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.

Houshmandyar, Saeid [Solar Observatory Department, Prairie View A and M University, Prairie View, Texas 77446 (United States); Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Scime, Earl E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

2011-11-15T23:59:59.000Z

14

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E PG&E Wave Energy Wave Energy Federal Utility Partnership Federal Utility Partnership Working Group Meeting Working Group Meeting Wave Energy Wave Energy Development Development Ontario, CA Ontario, CA November 18 November 18- -19, 200 19, 2009 9 Donald G. Price Donald G. Price Senior Consulting Scientist, PG&E Senior Consulting Scientist, PG&E Wave Power Overview Wave Power Overview * * What is Wave Power? What is Wave Power? o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean waves that is converted into electricity by various means. waves that is converted into electricity by various means. o o It is a clean, renewable energy resource capable of being utilized

15

An Optimization of Electrode Energy and Power Density through...  

NLE Websites -- All DOE Office Websites (Extended Search)

An Optimization of Electrode Energy and Power Density through of Variations in Inactive Material and Electrode Porosity Title An Optimization of Electrode Energy and Power Density...

16

Constraints on primordial density perturbations from induced gravitational waves  

SciTech Connect

We consider the stochastic background of gravitational waves produced during the radiation-dominated hot big bang as a constraint on the primordial density perturbation on comoving length scales much smaller than those directly probed by the cosmic microwave background or large-scale structure. We place weak upper bounds on the primordial density perturbation from current data. Future detectors such as BBO and DECIGO will place much stronger constraints on the primordial density perturbation on small scales.

Assadullahi, Hooshyar; Wands, David [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

2010-01-15T23:59:59.000Z

17

Plasma wave propagation with a plasma density gradient  

Science Conference Proceedings (OSTI)

Plasma waves with the plasma diffusion velocity u{sub n} due to a plasma density gradient are described in a positive column plasma. The ion wave is generated by the perturbation of the operating frequency 10{sup 6} s{sup -1} and it propagates with the group velocity u{sub g{approx}}c{sub s}{sup 2}/u{sub n{approx}}(10{sup 5}-10{sup 6}) m/s, where c{sub s} is the acoustic velocity in a fine tube fluorescent lamp, while the electron wave cannot be generated with a turbulence of low frequency less than the electron oscillation frequency {omega}{sub pe}. The propagation of the lighting signal observed in long tube fluorescent lamps is well understood with the propagation of ion waves occurring along the plasma density gradient.

Cho, Guangsup; Choi, Eun-Ha; Uhm, Han Sup [Department of Electrophysics, Kwangwoon University, 447-1 Nowon Wallgye, Seoul 139-701 (Korea, Republic of)

2011-03-15T23:59:59.000Z

18

Plasma density measurements using FM-CW millimeter wave radar techniques  

SciTech Connect

Modified FM-CW radar techniques using swept millimeter-wave oscillators are useful for determining when a particular density has been reached in a plasma. Narrowband measurements on the Princeton Large Torus (PLT) demonstrate the suitability of these techniques for controlling high-power auxiliary plasma heating systems. Broadband measurements using these same techniques are proposed, by which the density profile could be determined.

Doane, J.L.; Mazzucato, E.; Schmidt, G.L.

1980-09-01T23:59:59.000Z

19

Density inhomogeneity driven electrostatic shock waves in planetary rings  

SciTech Connect

Dust inertia and background density driven dust drift shock waves are theoretically studied in a rotating planetary environment and are subsequently applied to the planetary rings where the collisional effects are pronounced. It has been found that the system under consideration admits significant shock formation if the collision frequency is of the order of or less than the rotational frequency of the Saturn's rings.

Masood, W.; Siddiq, M. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P. O. Nilore, Islamabad 44000 (Pakistan); National Center for Physics (NCP), Islamabad 44000 (Pakistan); Rizvi, H.; Haque, Q. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P. O. Nilore, Islamabad 44000 (Pakistan); Hasnain, H. [NILOP, P. O. Nilore, Islamabad 44000 (Pakistan); PIEAS, P. O. Nilore, Islamabad 44000 (Pakistan)

2011-05-15T23:59:59.000Z

20

Pressure induced Superconductivity in the Charge Density Wave Compound Tritelluride  

Science Conference Proceedings (OSTI)

A series of high-pressure electrical resistivity measurements on single crystals of TbTe{sub 3} reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave order. The onset of superconductivity reaches a maximum of almost 4 K (onset) near {approx} 12.4 GPa.

Hamlin, J.J.; Zocco, D.A.; Sayles, T.A.; Maple, M.B.; /UC, Davis; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.

2010-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Innovative fuel designs for high power density pressurized water reactor  

E-Print Network (OSTI)

One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

Feng, Dandong, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

22

Design of annular fuel for high power density BWRs  

E-Print Network (OSTI)

Enabling high power density in the core of Boiling Water Reactors (BWRs) is economically profitable for existing or new reactors. In this work, we examine the potential for increasing the power density in BWR plants by ...

Morra, Paolo

2005-01-01T23:59:59.000Z

23

New Wave Power Project In Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Power Project In Oregon Wave Power Project In Oregon New Wave Power Project In Oregon June 17, 2011 - 3:12pm Addthis Mike Reed Water Power Program Manager, Water Power Program What does this project do? Promises to add tremendous value to the wave energy industry, reinforcing utility-scale viability, collecting ground-breaking environmental impact data and exploring avenues for cost reduction. Has issued localized manufacturing contracts for the PB150 to several Oregon companies. If you've ever been surfing, or gone swimming in choppy water, you've experienced first-hand the striking power of waves. In fact, further offshore, wave activity becomes even more powerful, making it an excellent resource for generating clean, renewable energy. That's exactly what the Department of Energy and its partner Ocean Power Technologies (OPT) are

24

NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE  

Science Conference Proceedings (OSTI)

Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

2013-08-10T23:59:59.000Z

25

Wave localization and density bunching in pair ion plasmas  

SciTech Connect

By investigating the nonlinear propagation of high intensity electromagnetic (EM) waves in a pair ion plasma, whose symmetry is broken via contamination by a small fraction of high mass immobile ions, it is shown that this new and interesting state of (laboratory created) matter is capable of supporting structures that strongly localize and bunch the EM radiation with density excess in the region of localization. Testing of this prediction in controlled laboratory experiments can lend credence, inter alia, to conjectures on structure formation (via the same mechanism) in the MEV era of the early universe.

Mahajan, Swadesh M. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Shatashvili, Nana L. [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, Tbilisi 0128 (Georgia) and Andronikashvili Institute of Physics, Tbilisi 0177, Georgia (United States)

2008-10-15T23:59:59.000Z

26

Multiple charge density wave transitions in Gd2Te5  

Science Conference Proceedings (OSTI)

Diffraction measurements performed via transmission electron microscopy and high resolution X-ray scattering reveal two distinct charge density wave transitions in Gd{sub 2}Te{sub 5} at T{sub c1} = 410(3) and T{sub c2} = 532(3) K, associated with the on-axis incommensurate lattice modulation and off-axis commensurate lattice modulation respectively. Analysis of the temperature dependence of the order parameters indicates a non-vanishing coupling between these two distinct CDW states.

Shin, K.Y.; Ru, N.; /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.; Condron, C.L.; /SLAC, SSRL; Wu, Y.Q.; Kramer, M.J.; Toney, M.F.; /Ames Lab /Iowa State U., Dept. Mater. Sci. /SLAC, SSRL; Fisher, I.R.; /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.

2010-02-15T23:59:59.000Z

27

wind power density | OpenEI  

Open Energy Info (EERE)

density density Dataset Summary Description This dataset was developed by the National Renewable Energy Laboratory (NREL) for the U.S. Source National Renewable Energy Lab (NREL) Date Released Unknown Date Updated Unknown Keywords afghanistan dataset GIS Wind Power wind power density Data application/zip icon Wind Power Density at 50-m Above Ground Level GIS Data (zip, 1.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations. DISCLAIMER NOTICE This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy, LLC for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

28

High power density supercapacitors using locally aligned carbon nanotube electrodes  

E-Print Network (OSTI)

B E 1999 Electrochemical Supercapacitor ( New York: Kluwer–power density of a supercapacitor is its most remarkablepower density of a supercapacitor is given by P max = V i

Du, C S; Yeh, J; Pan, Ning

2005-01-01T23:59:59.000Z

29

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density  

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density Note: The technology described above is an early stage opportunity. Licensing rights to this ...

30

Device Fabrication Method for High Power Density Capacitors  

Device Fabrication Method for High Power Density Capacitors Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual ...

31

MHK Technologies/Wave Power Desalination | Open Energy Information  

Open Energy Info (EERE)

Desalination < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Power Desalination.gif Technology Profile Primary Organization Delbuoy...

32

Measurements of the Effects of Gravity Waves in the Middle Atmosphere Using Parametric Models of Density Fluctuations. Part II: Energy Dissipation and Eddy Diffusion  

Science Conference Proceedings (OSTI)

Part I of this series demonstrated the advantages of parametric models in estimating the gravity wave spectrum from density fluctuation measurements using a large power-aperture-product Rayleigh-scatter lidar. The spectra calculated using the ...

R. J. Sica

1999-05-01T23:59:59.000Z

33

MHK Technologies/SyncWave Power Resonator | Open Energy Information  

Open Energy Info (EERE)

Power Resonator Power Resonator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SyncWave Power Resonator.jpg Technology Profile Primary Organization Marinus Power Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The SyncWave Power Resonator makes power by capturing the motion differential due to the phase lag between the two concentric float structures the Float and the Spar each having a very different resonance characteristic in waves The power generated from this phase lag is maximized under varying ocean wave conditions via a proprietary variable inertia tuning system SWELS located inside the central Spar Power is captured by an hydraulic power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and converted to in farm power in a sea bed mounted collector hub then transmitted ashore by subsea cable for interconnection to a shoreside load

34

Applications of high power millimeter waves in the DIII-D fusion program  

SciTech Connect

First operation of a new generation of MW level, 110 GHz generator (gyrotron) on the DIII-D fusion experimental device has been achieved. The desire for high power, cw millimeter (mm) wave sources to support fusion research and development is just now beginning to be realized. Plasma heating and current drive with directed mm waves rely on the strong absorption achieved when the wave frequency matches the natural ``cyclotron`` frequency of electrons in a magnetic field, or its harmonics. Recent progress in fusion experiments highlights the need for control of the interior details of the hot plasma, and nun wave systems are ideally suited for this role. A brief status of fusion research is given, and the importance of mm waves in the future directions for fusion research is described. The vacuum transmission components necessary for transmitting, monitoring, and launching high power 1 10 GHz waves into a plasma have been developed at General Atomics (GA) and will be described. High power mm waves have a number of attractive technological features for fusion applications compared with other candidate plasma heating and current drive technologies. Millimeter waves can be transmitted with high power density over large distances with low losses by utilizing corrugated waveguides, so the generators can be sited remotely, facilitating maintenance and saving valuable space near the fusion device.

Freeman, R.L.

1996-08-01T23:59:59.000Z

35

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

36

An evolutionary fuel assembly design for high power density BWRs  

E-Print Network (OSTI)

An evolutionary BWR fuel assembly design was studied as a means to increase the power density of current and future BWR cores. The new assembly concept is based on replacing four traditional assemblies and large water gap ...

Karahan, Aydin

2007-01-01T23:59:59.000Z

37

The design of high power density annular fuel for LWRs  

E-Print Network (OSTI)

Fuel performance models have been developed to assess the performance of internally and externally cooled LWR annular fuel. Such fuel may be operated at 30-50% higher core power density than the current operating LWRs, and ...

Yuan, Yi, 1975-

2004-01-01T23:59:59.000Z

38

Power Density Analysis for a Regenerated Closed Brayton Cycle  

Science Conference Proceedings (OSTI)

In this paper, the power density, defined as the ratio of power output to the maximum specific volume in the cycle, is set as the objective for performance analysis of an irreversible, regenerated and closed Brayton cycle coupled to constant-temperature ...

Lingen Chen; Junlin Zheng; Fengrui Sun; Chih Wu

2001-12-01T23:59:59.000Z

39

On the Vertical Extrapolation of Mean Wind Power Density  

Science Conference Proceedings (OSTI)

A simple method of estimating the height variation of the mean wind power density is presented which accounts for the variation of the exponent p of the wind speed power law, with stability and roughness. Measurements are used to compare the new ...

Leon Sedefian

1980-04-01T23:59:59.000Z

40

Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines  

Science Conference Proceedings (OSTI)

Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign ... Keywords: Density functional theory, Electronic structure, First-principles, GPU, Molecular dynamics, Plane wave pseudopotential

Weile Jia, Jiyun Fu, Zongyan Cao, Long Wang, Xuebin Chi, Weiguo Gao, Lin-Wang Wang

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

42

Protective, Modular Wave Power Generation System  

Science Conference Proceedings (OSTI)

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

43

Excitation of surface plasma waves by a density-modulated electron beam in a magnetized plasma cylinder  

Science Conference Proceedings (OSTI)

A density-modulated electron beam propagating through a plasma cylinder excites surface plasma waves (SPWs) via Cerenkov and fast cyclotron interaction. A nonlocal theory of this process has been developed. Numerical calculations of the growth rate and unstable mode frequencies have been carried out for the typical parameters of the SPWs. The growth rate {gamma} (in rad/s) of the unstable wave instability increases with the modulation index {Delta} and has the largest value for {Delta}{approx}1 in addition to when the frequency and wave number of the modulation are comparable to that of the unstable wave. For {Delta}=0, {gamma} turns out to be {approx}6.06x10{sup 9} rad/s for Cerenkov interaction and {approx}5.47x10{sup 9} rad/s for fast cyclotron interaction. The growth rate of the instability increases with the beam density and scales as one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in fast cyclotron interaction. The real part of the frequency of the unstable wave increases as almost the square root of the beam voltage. The results of the theory are applied to explain some of the experimental observations.

Gupta, Ruby [Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110036 (India); Sharma, Suresh C. [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-1, Sector-22, Rohini, Delhi 110086 (India); Prakash, Ved [India Meteorological Department, Ministry of Earth Science, Lodi Road, New Delhi 110003 (India)

2010-12-15T23:59:59.000Z

44

Excitation of surface plasma waves by a density modulated electron beam at a conductor-dusty plasma interface  

SciTech Connect

A density modulated electron beam propagating through a conductor-dusty plasma interface drives electromagnetic surface plasma waves (SPWs) to instability via Cerenkov and cyclotron interaction. The SPWs propagate across an external magnetic field parallel to the interface. Numerical calculations of the growth rate and unstable mode frequencies have been carried out for the typical parameters of the SPWs. The frequency and the growth rate of the unstable wave instability increase with the relative density of negatively charged dust grains {delta} (= n{sub io}/n{sub eo}, where n{sub io} is the ion plasma density and n{sub eo} is the electron plasma density). The phase velocity of the unstable waves also increases with {delta}. In addition, the growth rate of the instability increases with the beam density and scales as one-third power of the beam density in Cerenkov interaction and square root of beam density in fast cyclotron interaction. Moreover, the dispersion relation of SPWs has been retrieved in the absence of the modulated beam and without dust grains.

Gupta, Ruby [Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi-110036 (India); Sharma, Suresh C. [Department of Physics, Maharaja Agrasen Institute of Technology, Rohini, Delhi-110086 (India); Prakash, Ved [India Meteorological Department, Ministry of Earth Science, Lodi Road, New Delhi-110003 (India)

2011-05-15T23:59:59.000Z

45

Limits to the power density of very large wind farms  

E-Print Network (OSTI)

A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

Nishino, Takafumi

2013-01-01T23:59:59.000Z

46

Integrating wind and wave power in California.  

E-Print Network (OSTI)

??California is increasing the percentage of its electrical energy supply from renewable energy resources. The motivation to shift from fossil fuel fired electric power plants… (more)

Stoutenburg, Eric Dale

2012-01-01T23:59:59.000Z

47

GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds  

SciTech Connect

GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode studies. However, these features are more localized and lower amplitude than past studies would suggest. When we consider all seismic anomalies in GyPSuM, we find that P and S-wave speeds are strongly correlated throughout the mantle. However, correlations between the high-velocity S zones in the deep mantle ({approx} 2000 km depth) and corresponding P-wave anomalies are very low suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. Nevertheless, they argue that temperature variations are the primary cause of P-wave, S-wave, and density anomalies in the mantle.

Simmons, N A; Forte, A M; Boschi, L; Grand, S P

2010-03-30T23:59:59.000Z

48

High Power Superconducting Continuous Wave Linacs for Protons and  

Office of Science (SC) Website

Power Superconducting Continuous Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions

49

Beat-wave heating with density profile steepening  

SciTech Connect

Electron heating by the beat between 0.53 and 1.06 ..mu..m light in a self-consistently steepened density profile is examined.

Kruer, W.L.; Estabrook, K.

1986-10-01T23:59:59.000Z

50

Thin liquid lithium targets for high power density  

E-Print Network (OSTI)

Thin liquid lithium targets for high power density applications: heavy ion beam strippers and beta Hilton Malmö City #12;Outline Liquid Lithium Stripper idea for FRIB Brief theory of film stability Thickness measurement results Next Steps Beta-beams 2 #12;Liquid Lithium Stripper for FRIB: Advantages

McDonald, Kirk

51

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program

52

Power Density Spectra of Gamma-Ray Bursts  

E-Print Network (OSTI)

Power density spectra (PDSs) of long gamma-ray bursts provide useful information on GRBs, indicating their self-similar temporal structure. The best power-law PDSs are displayed by the longest bursts (T_90 > 100 s) in which the range of self-similar time scales covers more than 2 decades. Shorter bursts have apparent PDS slopes more strongly affected by statistical fluctuations. The underlying power law can then be reproduced with high accuracy by averaging the PDSs for a large sample of bursts. This power-law has a slope alpha\\approx -5/3 and a sharp break at 1 Hz. The power-law PDS provides a new sensitive tool for studies of gamma-ray bursts. In particular, we calculate the PDSs of bright bursts in separate energy channels. The PDS flattens in the hard channel (h\

Andrei M. Beloborodov

1999-11-08T23:59:59.000Z

53

Electrojet-independent ionospheric extremely low frequency/very low frequency wave generation by powerful high frequency waves  

Science Conference Proceedings (OSTI)

Results of extremely low frequency/very low frequency (ELF/VLF) wave generation by intensity-modulated high frequency (HF) heaters of 3.2 MHz in Gakona, Alaska, near local solar noon during a geomagnetic quiet time, are presented to support an electrojet-independent ELF/VLF wave generation mechanism. The modulation was set by splitting the HF transmitter array into two subarrays; one was run at cw full power and the other run alternatively at 50% and 100% power modulation by rectangular waves of 2.02, 5, 8, and 13 kHz. The most effective generation was from the X-mode heater with 100% modulation. While the 8 kHz radiation has the largest wave amplitude, the spectral intensity of the radiation increases with the modulation frequency, i.e., 13 kHz line is the strongest. Ionograms recorded significant virtual height spread of the O-mode sounding echoes. The patterns of the spreads and the changes of the second and third hop virtual height traces caused by the O/X-mode heaters are distinctively different, evidencing that it is due to differently polarized density irregularities generated by the filamentation instability of the O/X-mode HF heaters.

Kuo, Spencer [Polytechnic Institute of New York University, 6 MetroTech Center, Brooklyn, New York 11201 (United States); Snyder, Arnold [NorthWest Research Associates, P.O. Box 530, Stockton Springs, Maine 04981 (United States); Chang, Chia-Lie [BAE Systems-Technology Solutions, 2000 North 15th Street, Suite 1100, Arlington, Virginia 22201-2627 (United States)

2010-08-15T23:59:59.000Z

54

Advanced, High Power, Next Scale, Wave Energy Conversion Device  

SciTech Connect

The project conducted under DOE contract DE?EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven?stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy? technology to deliver a device with much increased power delivery. Scaling?up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke? unlimited Power Take?Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Dufera, Hiz [Project Manager] [Project Manager; Montagna, Deb [Business Point of Contact] [Business Point of Contact

2012-10-29T23:59:59.000Z

55

Power supply switching for a mm-wave asymmetric multilevel outphasing power amplifier system  

E-Print Network (OSTI)

This thesis demonstrates power switches to be used in our new Asymmetric Multilevel Outphasing (AMO) transmitter architecture at mm-wave frequencies. The AMO topology breaks the linearity vs. efficiency design objective ...

Spaulding, Jonathon David

2010-01-01T23:59:59.000Z

56

A Comprehensive Study of Fracture Patterns and Densities in The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography  

DOE Green Energy (OSTI)

In this project we developed a method for using seismic S-wave data to map the patterns and densities of sub-surface fractures in the NW Geysers Geothermal Field/ (1) This project adds to both the general methods needed to characterize the geothermal production fractures that supply steam for power generation and to the specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be possible to reduce the cost of geothermal power development with the targeting of high production geothermal wells. (3) The results of the project having been transferred to both US based and international geothermal research and exploration agencies and concerns by several published papers and meeting presentations, and through the distribution of the data handling and other software codes we developed.

Peter E. Malin; Eylon Shalev; Min Lou; Silas M. Simiyu; Anastasia Stroujkova; Windy McCausland

2004-02-24T23:59:59.000Z

57

Pulsed power drivers for ICF and high energy density physics  

SciTech Connect

Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to ICF and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates {approximately}500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-II, and a design concept for the proposed {approximately}15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

Ramirez, J.J.; Matzen, M.K.; McDaniel, D.H.

1995-12-31T23:59:59.000Z

58

A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles  

E-Print Network (OSTI)

Cassini radio science experiments have provided multiple occultation optical depth profiles of Saturn's rings that can be used in combination to analyze density waves. This paper establishes an accurate procedure of inversion of the wave profiles to reconstruct the wave kinematic parameters as a function of semi-major axis, in the nonlinear regime. This procedure is achieved from simulated data in the presence of realistic noise perturbations, to control the reconstruction error. By way of illustration we have applied our procedure to the Mimas 5:3 density wave. We were able to recover precisely the kinematic parameters from the radio experiment occultation data in most of the propagation region; a preliminary analysis of the pressure-corrected dispersion allowed us to determine new but still uncertain values for the opacity ($K\\simeq 0.02$ cm$^2$/g) and velocity dispersion of ($c_o\\simeq 0.6$ cm/s) in the wave region. Our procedure constitutes the first step in our planned analysis of the density waves of Sa...

Rappaport, N J; French, R G; Marouf, E A; McGhee, C A

2010-01-01T23:59:59.000Z

59

A low-power wave union TDC implemented in FPGA  

SciTech Connect

A low-power time-to-digital convertor (TDC) for an application inside a vacuum has been implemented based on the Wave Union TDC scheme in a low-cost field programmable gate array (FPGA) device. Bench top tests have shown that a time measurement resolution better than 30 ps (standard deviation of time differences between two channels) is achieved. Special firmware design practices are taken to reduce power consumption. The measurements indicate that with 32 channels fitting in the FPGA device, the power consumption on the FPGA core voltage is approximately 9.3 mW/channel and the total power consumption including both core and I/O banks is less than 27 mW/channel.

Wu, Jinyuan; /Fermilab; Shi, Yanchen; Zhu, Douglas; /Illinois Math. Sci. Acad.

2011-10-01T23:59:59.000Z

60

An Improved Method for Estimating the Wind Power Density Distribution Function  

Science Conference Proceedings (OSTI)

The wind power density (WPD) distribution curve is essential for wind power assessment and wind turbine engineering. The usual practice of estimating this curve from wind speed data is to first estimate the wind speed probability density function ...

Mark L. Morrissey; Werner E. Cook; J. Scott Greene

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Wind: wind power density GIS data at 50m above ground and 1km...  

Open Energy Info (EERE)

Wind: wind power density GIS data at 50m above ground and 1km resolution for Central America from NREL

(Abstract):  Raster GIS data, 50 m wind power density...

62

Wind: wind power density maps at 50m above ground and 1km resolution...  

Open Energy Info (EERE)

Wind: wind power density maps at 50m above ground and 1km resolution for Ghana from NREL

(Abstract):  Raster GIS data, 50 m wind power density for Ghana.

...

63

Wind: wind power density maps at 50 m above ground and 1km resolution...  

Open Energy Info (EERE)

Wind: wind power density maps at 50 m above ground and 1km resolution for Cuba from NREL

(Abstract):  Raster GIS data, 50 m wind power density for Cuba.

...

64

Wind: wind power density maps at 50m above ground and 1km resolution...  

Open Energy Info (EERE)

Wind: wind power density maps at 50m above ground and 1km resolution for Central America from NREL

(Abstract):  50 m wind power density (Wm2) maps of Central...

65

Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves  

Science Conference Proceedings (OSTI)

For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.

Mazzarella, G.; Giampaolo, S. M.; Illuminati, F. [Dipartimento di Fisica 'E. R. Caianiello', Universita di Salerno, Coherentia CNR-INFM, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, 84081 Baronissi (Saudi Arabia) (Italy)

2006-01-15T23:59:59.000Z

66

Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: from superfluidity to density waves  

E-Print Network (OSTI)

For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the {\\it lattice attenuation factor}. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on site occupation numbers. In mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is in principle possible, but completely suppressed at lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.

G. Mazzarella; S. M. Giampaolo; F. Illuminati

2005-09-06T23:59:59.000Z

67

The Use of the Weibull Three-Parameter Model for Estimating Mean Wind Power Densities  

Science Conference Proceedings (OSTI)

The Weibull three-parameter model is discussed for estimation of mean wind power densities. This probability density function is a generalization of a number of more conventional density functions. Using wind speed observations, it is shown that ...

L. Van Der Auwera; F. De Meyer; L. M. Malet

1980-07-01T23:59:59.000Z

68

Interplay of superconductivity and spin-density-wave order in doped graphene  

E-Print Network (OSTI)

We study the interplay between superconductivity and spin-density-wave order in graphene doped to 3/8 or 5/8 filling (a van Hove doping). At this doping level, the system is known to exhibit weak-coupling instabilities to ...

Chubukov, Andrey V.

69

Carbonate fuel cell monolith design for high power density and low cost  

SciTech Connect

Objective is higher power density operation and cost reduction. This is accomplished by the design of a bipolar plate where the separate corrugated current collectors are eliminated; cost reduction was also derived through higher power density and reduced material usage. The higher volumetric power density operation was achieved through lower cell resistance, increased active component surface area, and reduced cell height.

Allen, J.; Doyon, J.

1996-08-01T23:59:59.000Z

70

Observation of the spatial growth of self-excited dust-density waves  

SciTech Connect

The growth of a naturally occurring dust-density wave (DDW) is experimentally observed using high-speed imaging. This low frequency wave ({approx}25 Hz) grows in amplitude as it propagates downward through a dusty plasma. The wave's linear growth rate -k{sub i} is measured using a phase-sensitive analysis method. For the conditions studied here, the growth rate increases as gas pressure decreases. At a critical gas pressure, which is observed, a balance between an ion-flow instability and dissipation by neutral gas drag determines a threshold for wave propagation. A linear dispersion relation is derived, taking into account the effects of strong-coupling, to compare to the experiment.

Flanagan, T. M.; Goree, J. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

2010-12-15T23:59:59.000Z

71

CENTER FOR PULSED POWER DRIVEN HIGH ENERGY DENSITY PLASMA STUDIES  

SciTech Connect

This annual report summarizes the activities of the Cornell Center for Pulsed-Power-Driven High-Energy-Density Plasma Studies, for the 12-month period October 1, 2005-September 30, 2006. This period corresponds to the first year of the two-year extension (awarded in October, 2005) to the original 3-year NNSA/DOE Cooperative Agreement with Cornell, DE-FC03-02NA00057. As such, the period covered in this report also corresponds to the fourth year of the (now) 5-year term of the Cooperative Agreement. The participants, in addition to Cornell University, include Imperial College, London (IC), the University of Nevada, Reno (UNR), the University of Rochester (UR), the Weizmann Institute of Science (WSI), and the P.N. Lebedev Physical Institute (LPI), Moscow. A listing of all faculty, technical staff and students, both graduate and undergraduate, who participated in Center research activities during the year in question is given in Appendix A.

Professor Bruce R. Kusse; Professor David A. Hammer

2007-04-18T23:59:59.000Z

72

Shock waves in a Z-pinch and the formation of high energy density plasma  

Science Conference Proceedings (OSTI)

A Z-pinch liner, imploding onto a target plasma, evolves in a step-wise manner, producing a stable, magneto-inertial, high-energy-density plasma compression. The typical configuration is a cylindrical, high-atomic-number liner imploding onto a low-atomic-number target. The parameters for a terawatt-class machine (e.g., Zebra at the University of Nevada, Reno, Nevada Terawatt Facility) have been simulated. The 2-1/2 D MHD code, MACH2, was used to study this configuration. The requirements are for an initial radius of a few mm for stable implosion; the material densities properly distributed, so that the target is effectively heated initially by shock heating and finally by adiabatic compression; and the liner's thickness adjusted to promote radial current transport and subsequent current amplification in the target. Since the shock velocity is smaller in the liner, than in the target, a stable-shock forms at the interface, allowing the central load to accelerate magnetically and inertially, producing a magneto-inertial implosion and high-energy density plasma. Comparing the implosion dynamics of a low-Z target with those of a high-Z target demonstrates the role of shock waves in terms of compression and heating. In the case of a high-Z target, the shock wave does not play a significant heating role. The shock waves carry current and transport the magnetic field, producing a high density on-axis, at relatively low temperature. Whereas, in the case of a low-Z target, the fast moving shock wave preheats the target during the initial implosion phase, and the later adiabatic compression further heats the target to very high energy density. As a result, the compression ratio required for heating the low-Z plasma to very high energy densities is greatly reduced.

Rahman, H. U. [Magneto-Inertial Fusion Technologies Inc. (MIFTI), Irvine, California 92612 (United States) and Department of Physics, University of California Irvine, Irvine, California 92697 (United States); Wessel, F. J. [Department of Physics, University of California Irvine, Irvine California 92697 (United States); Ney, P. [Mount San Jacinto College, Menifee, California 92584 (United States); Presura, R. [University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557-0208 (United States); Ellahi, Rahmat [Department of Mathematics and Statistics, FBAS, IIU, Islamabad (Pakistan) and Department of Mechanical Engineering, University of California Riverside, Riverside, California 92521 (United States); Shukla, P. K. [Department of Mechanical and Aerospace Engineering and Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)

2012-12-15T23:59:59.000Z

73

A thermal analysis model for high power density beam stops  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) is presently designing and building the 2.5 MeV injector for the Spallation Neutron Source (SNS). The design includes various beam intercepting devices such as beam stops and slits. The target power densities can be as high as 500 kW/cm{sup 2} with a beam stopping range of 25 to 30 microns, producing stresses well above yield in most materials. In order to analyze the induced temperatures and stresses, a finite element model has been developed. The model has been written parametrically to allow the beam characteristics, target material, dimensions, angle of incidence and mesh densities to be easily adjusted. The heat load is applied to the model through the use of a 3-dimensional table containing the calculated volumetric heat rates. The load is based on a bi-gaussian beam shape which is absorbed by the target according to a Bragg peak distribution. The results of several analyses using the SNS Front End beam are presented.

Virostek, S.; Oshatz, D.; Staples, J.

2001-06-08T23:59:59.000Z

74

A New Mechanism of Charge Density Wave Discovered in Transition Metal  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 A New Mechanism of Charge Density Wave Discovered in Transition Metal Dichalcogenides Charge density waves (CDW) are a type of coupled electronic-lattice instability found in quasi-low dimensional materials. The driving force behind the instability is the reduction in energy of electrons in the material as a consequence of establishing a spontaneous periodic modulation of the crystalline lattice with an appropriate wave vector. The symmetry of the CDW state is very sensitive to the electronic structure of the host material. Charge density wave has been observed in quasi-one dimensional compounds, high temperature superconductors, manganites and many others.1-4 Conventionally, Fermi surface nesting is the dominant and textbook mechanism for CDW. However, it fails to explain the CDW in the 2H-structured transition metal dichalcogenides (2H-TMD's), which is actually the first two-dimensional CDW materials discovered in 1975.5 Even after three decades of intensive research on this subject, the CDW mechanism of 2H-TMD's remain mysterious and controversial.

75

High power densities from high-temperature material interactions  

DOE Green Energy (OSTI)

Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

Morris, J.F.

1981-01-01T23:59:59.000Z

76

Power Density Primer: Understanding the Spatial Dimension of the Unfolding Transition to Renewable  

E-Print Network (OSTI)

-driven process; this will be followed by power densities of three new renewable conversions: a thermal station densities resulting from disparities in coal quality, fuel delivery and power plant operation. The highest capacity of 1 GWe) mine-mouth power plant (supplied by high-capacity conveyors or short-haul trucking

Smil, Vaclav

77

Evaluating office-lighting environments: reference lighting power-density data  

SciTech Connect

The document reports on an exercise in archiving in-situ lighting power densities for occupied office lighting environments. Drawing from a previous study where field surveys of existing lighting installations were recorded, the present study extends the data to include referencable lighting power densities for the original conditions. In addition, theoretical alternate ANSI lighting power densities are computed assuming one-for-one replacement with either energy saving or standard lamps and ballasts.

Gillette, G.

1988-01-01T23:59:59.000Z

78

Evidence for coupling between collective state and phonons in two-dimensional charge-density-wave systems  

SciTech Connect

We report on a Raman scattering investigation of the charge-density-wave (CDW), quasi two-dimensional rare-earth tri-tellurides RTe{sub 3} (R = La, Ce, Pr, Nd, Sm, Gd and Dy) at ambient pressure, and of LaTe{sub 3} and CeTe{sub 3} under externally applied pressure. The observed phonon peaks can be ascribed to the Raman active modes for both the undistorted as well as the distorted lattice in the CDW state by means of a first principles calculation. The latter also predicts the Kohn anomaly in the phonon dispersion, driving the CDW transition. The integrated intensity of the two most prominent modes scales as a characteristic power of the CDW-gap amplitude upon compressing the lattice, which provides clear evidence for the tight coupling between the CDW condensate and the vibrational modes.

Lavagnini, M.; /Zurich, ETH; Baldini, M.; /INFN, Rome; Sacchetti, A.; /Zurich, ETH; Castro, D.Di; /Zurich, ETH; Delley, B.; /PSI, Villigen; Monnier, R.; /Zurich, ETH; Chu, J.-H.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Postorino, P.; /INFN, Rome; Degiorgi, L.; /Zurich, ETH

2010-02-15T23:59:59.000Z

79

Wind: wind power density GIS data at 50m above ground and 1km...  

Open Energy Info (EERE)

Wind: wind power density GIS data at 50m above ground and 1km resolution for Cuba from NREL

(Abstract):  Raster GIS data, exported as BIL file, 50 m wind power...

80

Numerical Classical and Quantum Mechanical simulations of Charge Density wave models  

E-Print Network (OSTI)

We first present how to do a computer simulation of Charge Density Waves using a driven harmonic oscillator model by a numerical scheme as initially formulated by Littlewood, and then afterwards use this to present how the dielectric model as presented by this proceedure leads to a blow up at the initialization of a threshold field ET. We find that this is highly unphysical and this initiated our inquiry as to alternative models. Afterwards, we then investigate hwo to present this transport problem of CDW quantum mechanically, threough a numerical simulation of the massive Schwinger model. We find that this single chaing quantum mechanical simulation uwed to formulate solutions to CDW transport in itself is insufficient for transport of solitons(anti-solitons) through a pinning gap model of CDW. We show that a model Hamiltonian with Peierls condensation energy used to couple adjacent chains (or transverse wave vectors) permits formation of solitons (anti- solitons) which can be used to transport CDW through a potential barrier. This addition of the Peierls condensation energy term is essential for any quantum model of Charge Density Waves to give tunneling behavior as seen via a numerical simulation.

A. W. Beckwith

2004-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network (OSTI)

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

82

Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials.  

E-Print Network (OSTI)

??Superconductivity, charge- and spin-density waves are collective electronic phenomena that originate from electron-electron and electron-phonon interactions, and the concept of Fermi surface competition between these… (more)

Zocco, Diego Andrés

2011-01-01T23:59:59.000Z

83

OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES  

DOE Green Energy (OSTI)

This work builds upon discoveries by the University of Pennsylvania and others pertaining to the oxidation of dry hydrocarbon fuels in high temperature solid oxide fuel cells. The work reported here was restricted primarily to dry methane and confirms that YSZ-based cells, having ceria in the anode as a catalyst and copper in the anode as a current collector, can operate on dry methane for extended periods. Thirty-three lab-scale cells of various designs were fabricated and operated under a variety of conditions. The longest-lived cell gave stable performance on dry methane at 800 C for over 305 hours. Only slight carbon deposition was noted at the completion of the test. A corresponding nickel/YSZ-based anode would have lasted for less than an hour under these test conditions (which included open circuit potential measurements) before carbon fouling essentially destroyed the cell. The best performing cell achieved 112 mW/cm{sub 2} on dry methane at 800 C. Several problems were encountered with carbon fouling and declining open circuit voltages in many of the test cells after switching from operation on hydrogen to dry methane. Although not rigorously confirmed by experimentation, the results suggested that air infiltration through less than perfect perimeter seals or pinholes in the electrolytes, or both gave rise to conditions that caused the carbon fouling and OCV decline. Small amounts of air reacting with methane in a partial oxidation reaction could produce carbon monoxide that, in turn, would deposit the carbon. If this mechanism is confirmed, it implies that near perfect hardware is required for extended operation. Some evidence was also found for the formation of electrical shorts, probably from carbon deposits bridging the electrolyte. Work with odorized methane and with methane containing 100-ppm hydrogen sulfide confirmed that copper is stable at 800 C in dry hydrocarbon fuels in the presence of sulfur. In a number of cases, but not exclusively, the performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

K.Krist; O. Spaldon-Stewart; R. Remick

2004-03-01T23:59:59.000Z

84

Optical properties of the Ce and La ditelluride charge density wave compounds  

SciTech Connect

The La and Ce di-tellurides LaTe{sub 2} and CeTe{sub 2} are deep in the charge-density-wave (CDW) ground state even at 300 K. We have collected their electrodynamic response over a broad spectral range from the far infrared up to the ultraviolet. We establish the energy scale of the single particle excitation across the CDW gap. Moreover, we find that the CDW collective state gaps a very large portion of the Fermi surface. Similarly to the related rare earth tri-tellurides, we envisage that interactions and Umklapp processes play a role in the onset of the CDW broken symmetry ground state.

Lavagnini, M.; Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.

2010-02-15T23:59:59.000Z

85

Low Loss, High Power Density Magnetics in Inductor/Transformer ...  

Science Conference Proceedings (OSTI)

The former power requirements motivate high efficiency materials for use in bulk scale inductors and transformers. The magnetic material requirements include ...

86

High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

None

2010-04-01T23:59:59.000Z

87

MHK Technologies/IVEC Floating Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

IVEC Floating Wave Power Plant IVEC Floating Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IVEC Floating Wave Power Plant.jpg Technology Profile Primary Organization Ivec Pty Ltd Technology Resource Click here Wave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description FWP design is based on an array of linked OWC s or chambers Similar to the cylinders of a combustion engine each FWP chamber has inlet low pressure flaps valves and outlet high pressure flaps valves As a wave passes through the FWP the water level and thus the air pressure within each chamber oscillates depending on its position within the wave cycle Mooring Configuration single point

88

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

89

Electron Trapping in Shear Alfven Waves that Power the Aurora  

Science Conference Proceedings (OSTI)

Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth's geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfven waves, preventing immediate wave damping. As waves move to regions with larger v{sub Te}/v{sub A}, their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfven waves and electrons that form aurora.

Watt, Clare E. J.; Rankin, Robert [University of Alberta, Edmonton, Alberta (Canada)

2009-01-30T23:59:59.000Z

90

Advanced control for power density maximization of the brushless DC generator  

E-Print Network (OSTI)

This dissertation proposes a novel control technique for power density maximization of the brushless DC (BLDC) generator which is a nonsinusoidal power supply system. In a generator of given rating, the weight and size of the system affect the fuel consumption directly, therefore power density is one of the most important issues in a stand-alone generator. Conventional rectification methods cannot achieve the maximum power possible because of a distorted or unsuitable current waveform. The optimal current waveform for maximizing power density and minimizing machine size and weight in a nonsinusoidal power supply system has been proposed theoretically and verified by simulation and experimental work. Also, various attributes of practical interest are analyzed and simulated to investigate the impact on real systems.

Lee, Hyung-Woo

2003-12-01T23:59:59.000Z

91

One millimeter wave interferometer for the measurement of line integral electron density on TFTR  

SciTech Connect

A two-pass interferometer at 285 GHz has been developed to measure the line-integrated electron density on the horizontal midplane of the Toroidal Fusion Test Reactor (TFTR). Presently, the interferometer employs a 2 MW solid state source to supply the launch wave, a 2 mm klystron oscillator, and a harmonic mixer to provide a superheterodyne front end. The transmission system consists of 25 meters of C-band rectangular waveguide, adjustable miter bends, and a spherical mirror in the vacuum vessel with a total round trip transmission loss of 21 dB. The interferometer signal-to-noise ratio is greater than or equal to 50 dB. Utilization of a feed-forward tracking system provides long-term stable operation. The interferometer routinely provides real time feedback control for the gas injection system and a permissive for neutral beam operation.

Efthimion, P.C.; Taylor, G.; Ernst, W.; Goldman, M.; McCarthy, M.; Anderson, H.; Luhmann, N.C.

1985-03-01T23:59:59.000Z

92

Fermi Surface Evolution Across Multiple Charge Density Wave Transitions in ErTe3  

Science Conference Proceedings (OSTI)

The Fermi surface (FS) of ErTe{sub 3} is investigated using angle-resolved photoemission spectroscopy (ARPES). Low temperature measurements reveal two incommensurate charge density wave (CDW) gaps created by perpendicular FS nesting vectors. A large {Delta}{sub 1} = 175 meV gap arising from a CDW with c* - q{sub CDW1} {approx} 0.70(0)c* is in good agreement with the expected value. A second, smaller {Delta}{sub 2} = 50 meV gap is due to a second CDW with a* - q{sub CDW2} {approx} 0.68(5)a*. The temperature dependence of the FS, the two gaps and possible interaction between the CDWs are examined.

Moore, R.G.; /SLAC, SSRL /Stanford U., Geballe Lab.; Brouet, V.; /Orsay, LPS; He, R.; /SLAC, SSRL /Stanford U., Geballe Lab.; Lu, D.H.; /SLAC, SSRL; Ru, N.; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.; Shen, Z.-X.; /SLAC, SSRL /Stanford U., Geballe Lab.

2010-02-15T23:59:59.000Z

93

Predictive Power Control of Doubly-Fed Induction Generator for Wave Energy Converters  

E-Print Network (OSTI)

the Doubly- fed induction generator (DFIG). This paper deals then with a model-based predictive power control of a DFIG-based Wave Energy Converter (WEC). In the proposed control approach, the predicted output power was calculated using a DFIG linearized state-space model. The DFIG-based WEC power tracking performances further

Paris-Sud XI, Université de

94

Near-Millimeter Wave Issues for a Space Power Grid Narayanan Komerath, Vigneshwar Venkat, Jason Fernandez  

E-Print Network (OSTI)

Near-Millimeter Wave Issues for a Space Power Grid Narayanan Komerath, Vigneshwar Venkat, Jason on Earth. This phase enables renewable power plants to be built at remote locations, and yet exploit these plants to smooth out their power output using input from plants as far away as the other side

95

Assessment of helical-cruciform fuel rods for high power density LWRs  

E-Print Network (OSTI)

In order to significantly increase the power density of Light Water Reactors (LWRs), the helical-cruciform (HC) fuel rod assembly has been proposed as an alternative to traditional fuel geometry. The HC assembly is a ...

Conboy, Thomas M

2010-01-01T23:59:59.000Z

96

Wind: wind power density maps at 50 m above ground and 1km resolution...  

Open Energy Info (EERE)

Wind: wind power density maps at 50 m above ground and 1km resolution for eastern China from NREL

(Abstract):  PDF maps of Eastern China wind mapping.

...

97

NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS  

E-Print Network (OSTI)

As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

Morra, P.

98

Wind: wind speed and wind power density GIS data at 10m and 50m...  

Open Energy Info (EERE)

data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer.

...

99

Wind: wind speed and wind power density maps at 10m and 50m above...  

Open Energy Info (EERE)

data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer.

...

100

Development of optimized core design and analysis methods for high power density BWRs  

E-Print Network (OSTI)

Increasing the economic competitiveness of nuclear energy is vital to its future. Improving the economics of BWRs is the main goal of this work, focusing on designing cores with higher power density, to reduce the BWR ...

Shirvan, Koroush

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluation of high power density annular fuel application in the Korean OPR-1000 reactor  

E-Print Network (OSTI)

Compared to the traditional solid fuel geometry for PWRs, the internally and externally cooled annular fuel offers the potential to increase the core power density while maintaining or increasing safety margins. It is ...

Zhang, Liang, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

102

Wind: wind power density GIS data at 50m above ground and 1km...  

Open Energy Info (EERE)

Wind: wind power density GIS data at 50m above ground and 1km resolution for China from NREL

(Abstract):  Raster GIS data, exported as BIL file, 50 m wind...

103

Wind: wind power density GIS data at 50m above ground and 1km...  

Open Energy Info (EERE)

Wind: wind power density GIS data at 50m above ground and 1km resolution for Ghana from NREL

(Abstract):  Raster GIS data, exported as BIL file, 50 m wind...

104

X-ray power density spectra of black hole binaries : a new deadtime model for the RXTE PCA  

E-Print Network (OSTI)

The power density spectrum is an essential tool for determining the frequency content of X-ray radiation from astronomical sources. For neutron star systems, power density spectra reveal coherent oscillations for those ...

Wei, Dennis

2006-01-01T23:59:59.000Z

105

Observation of the Power Spectrum of Ocean Waves Using a Cloverleaf Buoy  

Science Conference Proceedings (OSTI)

The power spectra of typical sets of ocean wave data obtained in the open ocean using a cloverleaf buoy are analyzed to determine an idealized form for the spectrum of ocean surface waves. It is shown that most of the single-peaked spectra ...

Hisashi Mitsuyasu; Fukuzo Tasai; Toshiro Suhara; Shinjiro Mizuno; Makoto Ohkusu; Tadao Honda; Kunio Rikiishi

1980-02-01T23:59:59.000Z

106

Design of Millimeter-Wave Power Ampliers in Silicon /  

E-Print Network (OSTI)

stub and open stub transmission lines are used as matchingthe use of slow-wave transmission lines, which reduce thethe short and open stub transmission lines. The PA operates

Kalantari, Nader

2013-01-01T23:59:59.000Z

107

Modeling the propagation of whistler-mode waves in the presence of field-aligned density irregularities  

SciTech Connect

We present a numerical study of propagation of VLF whistler-mode waves in a laboratory plasma. Our goal is to understand whistler propagation in magnetic field-aligned irregularities (also called channels or ducts). Two cases are examined, that of a high-frequency ({omega}>{Omega}{sub ce}/2) whistler in a density depletion duct and that of a low-frequency ({omega}<{Omega}{sub ce}/2) whistler in a density enhancement. Results from a numerical simulation of whistler wave propagation are compared to data from the UCLA Los Angeles Physics Teachers Alliance Group plasma device and whistler propagation in pre-existing density depletion and density enhancement ducts is demonstrated.

Streltsov, A. V.; Woodroffe, J. [Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114 (United States); Gekelman, W.; Pribyl, P. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

2012-05-15T23:59:59.000Z

108

Efficiency enhancement techniques for RF and millimeter wave power amplifiers  

E-Print Network (OSTI)

Power amplifiers are the circuit blocks in wireless transceivers that require the largest power budget because of their relatively low efficiencies. RF designers cannot depend solely on the development better semiconductor ...

Ogunnika, Olumuyiwa Temitope, 1978-

2012-01-01T23:59:59.000Z

109

Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams  

DOE Patents (OSTI)

A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

Gammel, George M. (Merrick, NY); Kugel, Henry W. (Somerset, NJ)

1992-10-06T23:59:59.000Z

110

Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams  

DOE Patents (OSTI)

A method and apparatus for determining the power, momentum, energy, and power density profile for high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

Gammel, G.M.; Kugel, H.W.

1991-12-31T23:59:59.000Z

111

On the breaking of a plasma wave in a thermal plasma. I. The structure of the density singularity  

SciTech Connect

The structure of the singularity that is formed in a relativistically large amplitude plasma wave close to the wave breaking limit is found by using a simple waterbag electron distribution function. The electron density distribution in the breaking wave has a typical 'peakon' form. The maximum value of the electric field in a thermal breaking plasma is obtained and compared to the cold plasma limit. The results of computer simulations for different initial electron distribution functions are in agreement with the theoretical conclusions. The after-wavebreak regime is then examined, and a semi-analytical model of the density evolution is constructed. Finally the results of two dimensional particle in cell simulations for different initial electron distribution functions are compared, and the role of thermal effects in enhancing particle injection is noted.

Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Pirozhkov, Alexander S.; Nakamura, Tatsufumi [QuBS, Japan Atomic Energy Agency, 1-8-7 Umemidai, Kizugawa, Kyoto 619-0215 (Japan); Bulanov, Stepan S. [University of California, Berkeley, California 94720 (United States); Schroeder, Carl B.; Esarey, Eric [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Califano, Francesco; Pegoraro, Francesco [Physics Department, University of Pisa, Pisa 56127 (Italy)

2012-11-15T23:59:59.000Z

112

DENSITY  

Science Conference Proceedings (OSTI)

... Table 2: Principal mineral phases found in the granite rock. Mineral phase. ... Table 4. Average density of 12 granite rocks by Archimedes and CT. ...

2007-01-08T23:59:59.000Z

113

Resonant Enhancement of Charge Density Wave Diffraction in the Rare-Earth Tri-Tellurides  

SciTech Connect

We performed resonant soft X-ray diffraction on known charge density wave (CDW) compounds, rare earth tri-tellurides. Near the M{sub 5} (3d - 4f) absorption edge of rare earth ions, an intense diffraction peak is detected at a wavevector identical to that of CDW state hosted on Te{sub 2} planes, indicating a CDW-induced modulation on the rare earth ions. Surprisingly, the temperature dependence of the diffraction peak intensity demonstrates an exponential increase at low temperatures, vastly different than that of the CDW order parameter. Assuming 4f multiplet splitting due to the CDW states, we present a model to calculate X-ray absorption spectrum and resonant profile of the diffraction peak, agreeing well with experimental observations. Our results demonstrate a situation where the temperature dependence of resonant X-ray diffraction peak intensity is not directly related to the intrinsic behavior of the order parameter associated with the electronic order, but is dominated by the thermal occupancy of the valence states.

Lee, W.S.; Sorini, A.P.; Yi, M.; Chuang, Y.D.; Moritz, B.; Yang, W.L.; Chu, J.-H.; Kuo, H.H.; Gonzalez, A.G.Cruz; Fisher, I.R.; Hussain, Z.; Devereau, T.P.; Shen, Z.X.

2012-05-15T23:59:59.000Z

114

Method of Fabrication of High Power Density Solid Oxide Fuel Cells  

DOE Patents (OSTI)

A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

2008-09-09T23:59:59.000Z

115

Improving Power Density Of A Class Of Piezoelectic Power Harvesters Through Proof Mass Optimization.  

E-Print Network (OSTI)

??This thesis presents a method to optimize the proof mass of the cantilever piezoelectric power harvester. With this novel proof mass, a lower fundamental frequency… (more)

Li, Wen G.

2009-01-01T23:59:59.000Z

116

High Power Superconducting Continuous Wave Linacs for Protons...  

Office of Science (SC) Website

(ANL) Developed in: Current Result of NP research: Spin-off of high power driver linac R&D for the FRIB project Application currently being supported by: DOE Office of Nuclear...

117

TerraPower Traveling Wave Reactor: Design and Development Status...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aug 28 2013 09:00 AM - 10:00 AM Pat Schweiger, TerraPower, LLC, Bellevue, Washington Reactor and Nuclear Systems Division Seminar ORNL Conference Center (Bldg. 5200), TN Rm...

118

Scanning tunneling microscopy of charge density wave structure in 1T- TaS sub 2  

SciTech Connect

I have used a scanning tunneling microscope (STM) to image simultaneously the atomic lattice and the charge density wave (CDW) superstructure in tantalum disulfide (1T-TaS{sub 2}) over the temperature range of 370-77K. In the lowest temperature (commensurate) phase, present below 180K, the CDW is at an angle of 13.9{degrees} relative to the lattice and is uniformly commensurate. In the incommensurate phase, present above 353K, the CDW is aligned with the lattice. 1T-TaS{sub 2} exhibits two other phases; the triclinic (T) phase which is present between 223K and 283K upon warming the sample, and the nearly-commensurate (NC) phase which is present between 353K and 180K upon cooling the sample and between 283K and 353K upon warming the sample. In both of these phases, discommensurate models where the CDW is arranged in small commensurate domains have been proposed. In the NC phase the CDW is rotated between 10{degrees} and 12.5{degrees} relative to the atomic lattice. Such a rotated CDW would create an interference pattern with the underlying atomic lattice regardless of the existence of a true domain superstructure. Previous work on 1T-TaS{sub 2} has not adequately accounted for the possibility of this moire pattern. However, around each fundamental CDW peak in the Fourier transform of the real space STM images, several satellite spots are visible, which conclusively prove the existence of domains in the NC phase.

Thomson, R.E.

1991-11-01T23:59:59.000Z

119

Scanning tunneling microscopy of charge density wave structure in 1T- TaS{sub 2}  

SciTech Connect

I have used a scanning tunneling microscope (STM) to image simultaneously the atomic lattice and the charge density wave (CDW) superstructure in tantalum disulfide (1T-TaS{sub 2}) over the temperature range of 370-77K. In the lowest temperature (commensurate) phase, present below 180K, the CDW is at an angle of 13.9{degrees} relative to the lattice and is uniformly commensurate. In the incommensurate phase, present above 353K, the CDW is aligned with the lattice. 1T-TaS{sub 2} exhibits two other phases; the triclinic (T) phase which is present between 223K and 283K upon warming the sample, and the nearly-commensurate (NC) phase which is present between 353K and 180K upon cooling the sample and between 283K and 353K upon warming the sample. In both of these phases, discommensurate models where the CDW is arranged in small commensurate domains have been proposed. In the NC phase the CDW is rotated between 10{degrees} and 12.5{degrees} relative to the atomic lattice. Such a rotated CDW would create an interference pattern with the underlying atomic lattice regardless of the existence of a true domain superstructure. Previous work on 1T-TaS{sub 2} has not adequately accounted for the possibility of this moire pattern. However, around each fundamental CDW peak in the Fourier transform of the real space STM images, several satellite spots are visible, which conclusively prove the existence of domains in the NC phase.

Thomson, R.E.

1991-11-01T23:59:59.000Z

120

2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING  

E-Print Network (OSTI)

1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

Braun, Paul

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics  

Science Conference Proceedings (OSTI)

SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

Angraini, Lily Maysari [STKIP Hamzanwadi Selong East Lombok, NTB, PostGraduate student at Physics Department UNS, Jl. Ir. Sutami 36 A, Surakarta (Indonesia); Suparmi,; Variani, Viska Inda [Physics Department UNS, Jl. Ir. Sutami 36 A, Surakarta (Indonesia)

2010-12-23T23:59:59.000Z

122

Thulium heat source for high-endurance and high-energy density power systems  

DOE Green Energy (OSTI)

We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

1991-05-01T23:59:59.000Z

123

Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Platform Aims to Harness Offshore Wind and Deepwater Platform Aims to Harness Offshore Wind and Wave Power Innovative Deepwater Platform Aims to Harness Offshore Wind and Wave Power March 28, 2011 - 5:55pm Addthis An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Principle Power, Inc, of Seattle is using $1.4 million in funding from the Department of Energy's Office of Energy Efficiency and Renewable Energy to develop an innovative technology with the potential to generate electricity

124

Wave-actuated power take-off device for electricity generation  

Science Conference Proceedings (OSTI)

Since 2008, Resolute Marine Energy, Inc. (RME) has been engaged in the development of a rigidly moored shallow-water point absorber wave energy converter, the "3D-WEC". RME anticipated that the 3D-WEC configuration with a fully buoyant point absorber buoy coupled to three power take off (PTO) units by a tripod array of tethers would achieve higher power capture than a more conventional 1-D configuration with a single tether and PTO. The investigation conducted under this program and documented herein addressed the following principal research question regarding RME'Â?Â?s power take off (PTO) concept for its 3D-WEC: Is RME's winch-driven generator PTO concept, previously implemented at sub-scale and tested at the Ohmsett wave tank facility, scalable in a cost-effective manner to significant power levels Â?Â?e.g., 10 to 100kW?

Chertok, Allan

2013-01-31T23:59:59.000Z

125

Linear and Nonlinear Signatures in the Planetary Wave Dynamics of an AGCM: Probability Density Functions  

Science Conference Proceedings (OSTI)

To identify and quantify indications of linear and nonlinear planetary wave behavior and their impact on the distribution of atmospheric states, characteristics of a very long integration of an atmospheric general circulation model (GCM) in a ...

Judith Berner; Grant Branstator

2007-01-01T23:59:59.000Z

126

Grid connection of wave power farm using an N-level cascaded H-bridge multilevel inverter  

Science Conference Proceedings (OSTI)

An N-level cascaded H-bridge multilevel inverter is proposed for grid connection of large wave power farms. The point-absorber wave energy converters are individually rectified and used as isolated DC-sources. The variable power characteristics of the ...

Rickard Ekström, Mats Leijon

2013-01-01T23:59:59.000Z

127

Wind: wind power density maps at 50m above ground and 1km resolution for  

Open Energy Info (EERE)

924 924 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142257924 Varnish cache server Wind: wind power density maps at 50m above ground and 1km resolution for Central America from NREL Dataset Summary Description (Abstract): 50 m wind power density (W/m2) maps of Central America. (Purpose): To provide information on the wind resource potential within the following countries in Central America: Belize, El Salvador, Guatemala, Honduras, and Nicaragua. Source NREL Date Released June 30th, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Central America GIS maps NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 2.2 MiB) Quality Metrics

128

Wind: wind power density GIS data at 50m above ground and 1km resolution  

Open Energy Info (EERE)

7018 7018 Varnish cache server Wind: wind power density GIS data at 50m above ground and 1km resolution for Ghana from NREL Dataset Summary Description (Abstract): Raster GIS data, exported as BIL file, 50 m wind power density for Ghana. Note: BIL files can be converted to raster data in ArcInfo using the IMAGEGRID command. (Purpose): To provide information on the wind resource potential in Ghana. Values range from 0 to 620 meters. (Supplemental Information):***** Spatial Reference Information (Beg) *****Projection ParametersCoordinate System:Projection Transverse MercatorZunits W/m2Units MetersSpheroid: WGS84ParametersScale factor at central meridian: 1.0000Longitude of central meridian: -1 0 0.0Latitude of origin: 8 0 0.0False easting: 0False northing: 0Spatial InformationRaster:Number of Columns:

129

Durability of Low Pt Fuel Cells Operating at High Power Density  

NLE Websites -- All DOE Office Websites (Extended Search)

SPIRE Program Kickoff SPIRE Program Kickoff Topic 3A. Cell Degradation Studies / Degradation Studies Durability of Low Pt Fuel Cells Operating at High Power Density US DOE Fuel Cell Projects Kickoff Meeting DOE Award: DE-EE0000469 October 1 st , 2009 Program Objectives The objective of this program is to study and identify strategies to assure durability of fuel cells designed to meet DOE cost targets. Technical Barriers Barrier Approach Strategy A. Durability Reinforced, Stabilized Membrane MEA Partner Durability-Enhanced Electrodes Electrocatalyst/MEA Partner Optimized Operating Conditions Parametric model & experimental studies B. Cost Low Pt Loadings (0.2 mg/cm 2 ) Electrocatalyst/MEA Partner High Power Density (>1.0W/cm 2 ) Open Flowfield Stack Metallic Stack Architecture Incumbent Derivative

130

Investigation of an improved relativistic backward wave oscillator in efficiency and power capacity  

SciTech Connect

Investigation of relativistic backward wave oscillator with high efficiency and power capacity is presented in this paper. To obtain high power and high efficiency, a TM{sub 021} mode resonant reflector is used to reduce the pulse shortening and increase power capacity to about 1.7 times. Meanwhile, an extraction cavity at the end of slow wave structure is employed to improve the efficiency from less than 30% to over 40%, through the beam-wave interaction intensification and better energy conversion from modulated electron beam to the electromagnetic field. Consistent with the numerical results, microwave with a power of 3.2 GW, a frequency of 9.75 GHz, and a pulse width of 27 ns was obtained in the high power microwave generation experiment, where the electron beam energy was configured to be {approx}910 kV and its current to be {approx}8.6 kA. The efficiency of the RBWO exceeds 40% at a voltage range of 870 kV-1000 kV.

Song, W.; Chen, C. H.; Sun, J.; Zhang, X. W.; Shao, H.; Song, Z. M.; Huo, S. F.; Shi, Y. C.; Li, X. Z. [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024 (China)

2012-10-15T23:59:59.000Z

131

Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint  

DOE Green Energy (OSTI)

The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

2012-04-01T23:59:59.000Z

132

Effect of areal power density and relative humidity on corrosion resistant container performance  

SciTech Connect

The impact of the rewetting process on the performance of waste containers at the Yucca Mountain repository is analyzed. This paper explores the impact of the temperature-humidity relationships on pitting corrosion failure of stainless steel containers for different areal power densities (APDs)in the repository. It compares the likely performance of containers in a repository with a low APD, 55 Kw/acre, and a high APD, 110 kW/acre.

Gansemer, J.D.

1994-10-01T23:59:59.000Z

133

An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator  

DOE Green Energy (OSTI)

The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

1990-06-01T23:59:59.000Z

134

THE SLOW-MODE NATURE OF COMPRESSIBLE WAVE POWER IN SOLAR WIND TURBULENCE  

Science Conference Proceedings (OSTI)

We use a large, statistical set of measurements from the Wind spacecraft at 1 AU, and supporting synthetic spacecraft data based on kinetic plasma theory, to show that the compressible component of inertial range solar wind turbulence is primarily in the kinetic slow mode. The zero-lag cross-correlation C({delta}n, {delta}B{sub ||}) between proton density fluctuations {delta}n and the field-aligned (compressible) component of the magnetic field {delta}B{sub ||} is negative and close to -1. The typical dependence of C({delta}n, {delta}B{sub ||}) on the ion plasma beta {beta}{sub i} is consistent with a spectrum of compressible wave energy that is almost entirely in the kinetic slow mode. This has important implications for both the nature of the density fluctuation spectrum and for the cascade of kinetic turbulence to short wavelengths, favoring evolution to the kinetic Alfven wave mode rather than the (fast) whistler mode.

Howes, G. G.; Klein, K. G.; TenBarge, J. M. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Bale, S. D.; Chen, C. H. K.; Salem, C. S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

2012-07-01T23:59:59.000Z

135

Experimental power density distribution benchmark in the TRIGA Mark II reactor  

Science Conference Proceedings (OSTI)

In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the few available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)

Snoj, L.; Stancar, Z.; Radulovic, V.; Podvratnik, M.; Zerovnik, G.; Trkov, A. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Barbot, L.; Domergue, C.; Destouches, C. [CEA DEN, DER, Instrumentation Sensors and Dosimetry laboratory Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

2012-07-01T23:59:59.000Z

136

Initiation of a Solitary Wave Family in the Demise of a Nocturnal Thunderstorm Density Current  

Science Conference Proceedings (OSTI)

This paper describes the characteristics and evolving nature of a vigorous thunderstorm density current very early in the morning of 9 May 1981 in Oklahoma. Because the ambient lower atmosphere was stratified, interesting interactions between the ...

Richard Fulton; Dusan S. Zrni?; Richard J. Doviak

1990-02-01T23:59:59.000Z

137

MHK Projects/Coos County Offshore Wave Energy Power Plant | Open Energy  

Open Energy Info (EERE)

Coos County Offshore Wave Energy Power Plant Coos County Offshore Wave Energy Power Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0238,"lon":-124.519,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

138

Collisionless absorption of light waves incident on overdense plasmas with steep density gradients  

Science Conference Proceedings (OSTI)

Collisionless absorption of laser light incident on overdense plasmas with steep density gradients is studied analytically and numerically. For the normal incidence case, it is shown that both sheath inverse bremsstrahlung and the anomalous skin effect are limiting cases of the same collisionless absorption mechanism. Using particle-in-cell (PIC) plasma simulations, the effects of finite sheath-transit time and finite density gradient are investigated. The analyses are extended to oblique incident cases. For p-polarized obliquely incident light, the results are significantly different from those for the normal incidence case. Most noticeable is the absorption enhancement for the p-polarized light due to the interaction of the electrons with the normal (parallel to the density gradient) component of the laser electric field in the sheath region.

Yang, T.Y.B.; Kruer, W.L.; Langdon, A.B.

1995-07-31T23:59:59.000Z

139

A non-intrusive beam power monitor for high power pulsed or continuous wave lasers  

DOE Patents (OSTI)

A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

Hawsey, R.A.; Scudiere, M.B.

1991-05-29T23:59:59.000Z

140

A non-intrusive beam power monitor for high power pulsed or continuous wave lasers  

DOE Patents (OSTI)

A system for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor. 4 figs.

Hawsey, R.A.; Scudiere, M.B.

1989-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Excitation of guided ELF-VLF waves through modification of the F{sub 2} ionospheric layer by high-power radio waves  

SciTech Connect

The possibility of controlled excitation of ELF-VLF electromagnetic waves through modification of the F{sub 2} ionospheric layer by high-power high-frequency emission is demonstrated in a natural experiment by using the Sura midlatitude heating facility. The excited low-frequency waves can be used to explore the near-Earth space and stimulate the excitation of a magnetospheric maser.

Markov, G. A.; Belov, A. S.; Komrakov, G. P. [Lobachevsky State University (Russian Federation); Parrot, M. [Environmental Physics and Chemistry Laboratory (France)

2012-03-15T23:59:59.000Z

142

Subspace accelerated inexact Newton method for large scale wave functions calculations in Density Functional Theory  

SciTech Connect

We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.

Fattebert, J

2008-07-29T23:59:59.000Z

143

wave | OpenEI  

Open Energy Info (EERE)

9 9 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281559 Varnish cache server wave Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (3 years ago) Date Updated Unknown Keywords

144

Coexistence of the spini-density-wave and superconductivity in the Ba1-xKxFe2As2  

SciTech Connect

The relation between the spin-density-wave (SDW) and superconducting order is a central topic in current research on the FeAs-based high T{sub c} superconductors. Conflicting results exist in the LaFeAs(O,F)-class of materials, for which whether the SDW and superconductivity are mutually exclusive or they can coexist has not been settled. Here we show that for the (Ba,K)Fe{sub 2}As{sub 2} system, the SDW and superconductivity can coexist in an extended range of compositions. The availability of single crystalline samples and high value of the energy gaps would make the materials a model system to investigate the high T{sub c} ferropnictide superconductivity.

Bao, Wei [Los Alamos National Laboratory; Chen, H [HEFEI NAT. LAB; Ren, Y [ANL; Qiu, Y [NIST CENTER FOR NEUTRON; Liu, R [HEFEI NAT. LAB.; Wu, G H [HEFEI NAT. LAB; Wu, T [HEFEI NAT. LAB.; Xie, Y L [HEFEI NAT. LAB; Wang, F [HEFEI NAT. LAB.; Huang, Q [NIST CENTER FOR NEUTRON; Chen, X H [HEFEI NAT. LAB

2008-01-01T23:59:59.000Z

145

High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system  

Science Conference Proceedings (OSTI)

High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20 deg. - 40 deg. from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Doane, J.; Olstad, R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Henderson, M. [ITER Organization, CS90 046, 13067 St. Paul lez Durance Cedex (France)

2011-06-15T23:59:59.000Z

146

Observation of high-power millimeter wave emission from a virtual cathode  

SciTech Connect

Intense bursts of mm wave power have been observed in microwave generation experiments with a relativistic electron beam (REB) virtual cathode oscillator. In this device an electron beam is injected into a drift space at a current above the space-charge-limit, and a potential develops downstream which is large enough to reflect electrons back to the source region. Two mechanisms can give rise to microwave oscillations in a virtual cathode device: electrons reflexing between the real and virtual cathodes, and oscillations in the amplitude and position of the virtual cathode. Typically both mechanisms are present, but in the present experiments reflexing has been shown to be dominant.

Davis, H.A.; Bartsch, R.R.; Sherwood, E.G.; Stringfield, R.M.; Thode, L.E.

1985-01-01T23:59:59.000Z

147

Wind: wind speed and wind power density GIS data at 10m and 50m above  

Open Energy Info (EERE)

10m and 50m above 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL ocean offshore QuikScat SWERA UNEP wind Data application/msword icon Download Documentation (doc, 53.8 KiB) application/zip icon Download Data (zip, 41 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/2000 - 12/31/2004

148

Wind: wind speed and wind power density maps at 10m and 50m above surface  

Open Energy Info (EERE)

maps at 10m and 50m above surface maps at 10m and 50m above surface and 0.25 degree resolution for global oceans from NREL Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 36.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2004 License License Other or unspecified, see optional comment below

149

Wind: wind power density GIS data at 50m above ground and 1km resolution  

Open Energy Info (EERE)

Cuba from NREL Cuba from NREL Dataset Summary Description (Abstract): Raster GIS data, exported as BIL file, 50 m wind power density for Cuba. Note: BIL files can be converted to raster data in ArcInfo using the IMAGEGRID command. (Purpose): To provide information on the wind resource potential in Cuba. Values range from 0 to 547. (Supplemental Information): ***** Spatial Reference Information (Beg) *****Projection ParametersCoordinate System:Projection CylindricalZunits W/m2Units MetersSpheroid: SphereParametersProjection Type 1Longitude of central meridian: -79 32 40.2Latitude of standard parallel: 21 33 21.6Spatial InformationRaster:Number of Columns: 1360Number of Rows: 628Pixel Resolution (m): 1000Data Type: integer***** Spatial Reference Information (End) *****

150

Wind: wind power density maps at 50 m above ground and 1km resolution for  

Open Energy Info (EERE)

Cuba from NREL Cuba from NREL Dataset Summary Description (Abstract): Raster GIS data, 50 m wind power density for Cuba. (Purpose): To provide information on the wind resource potential in Cuba. Source NREL Date Released September 02nd, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Cuba GEF GIS maps NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 839.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

151

Wind: wind power density maps at 50m above ground and 1km resolution for  

Open Energy Info (EERE)

Ghana from NREL Ghana from NREL Dataset Summary Description (Abstract): Raster GIS data, 50 m wind power density for Ghana. (Purpose): To provide information on the wind resource potential in Ghana. Source NREL Date Released September 02nd, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF Ghana GIS maps NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 661.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

152

Wind: wind power density GIS data at 50m above ground and 1km resolution  

Open Energy Info (EERE)

China from NREL China from NREL Dataset Summary Description (Abstract): Raster GIS data, exported as BIL file, 50 m wind power density for eastern China. (Purpose): To provide information on the wind resource potential in eastern China. Values range from 0 to 3079 W/m2. (Supplemental Information): The modeling regions do not completely cover eastern China. Projection Parameters Projection LAMBERT_AZIMUTHAL Datum WGS84 Zunits METERS Units METERS Spheroid DEFINED Major Axis 6370997.00000 Minor Axis 0.00000 Parameters: radius of the sphere of reference 6370997.00000 Continue? longitude of center of projection 119 0 0.00 latitude of center of projection 33 30 0.000 false easting (meters) 0.00000 false northing (meters) 0.00000 Spatial Information Raster: Number of Columns: 2658 Number of Rows: 3926 Pixel

153

Wind: wind power density maps at 50 m above ground and 400m resolution for  

Open Energy Info (EERE)

400m resolution for 400m resolution for Sri Lanka from NREL Dataset Summary Description (Abstract): 50 m wind power density (W/m2) maps of Sri Lanka (Purpose): To provide information on the wind resource potential within Sri Lanka, with supplemental information on political boundaries, transmission lines, roads, and terrain relief. Source NREL Date Released June 30th, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS maps NREL Sri Lanka SWERA UNEP wind Data application/zip icon Download Maps (zip, 799.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

154

Wind: wind power density GIS data at 50m above ground and 1km resolution  

Open Energy Info (EERE)

Central America from NREL Central America from NREL Dataset Summary Description (Abstract): Raster GIS data, 50 m wind power density for Central America (Purpose): To provide information on the wind resource potential within the following countries in Central America: Belize, El Salvador, Guatemala, Honduras, and Nicaragua. (Supplemental Information): ***** Spatial Reference Information (Beg) *****Projection ParametersCoordinate System:Lambert_Azimuthal_Equal_AreaFalse_Easting: 0.000000False_Northing: 0.000000Central_Meridian: -87.450000Latitude_Of_Origin: 13.300000GCS_Sphere_ARC_INFODatum: D_Sphere_ARC_INFOPrime Meridian: 0Units: MetersSpatial InformationRaster:Number of Columns: 1374Number of Rows: 1143Pixel Resolution (m): 1000Data Type: integer***** Spatial Reference Information (End) *****

155

Wind: wind power density GIS data at 50m above ground and 400m resolution  

Open Energy Info (EERE)

400m resolution 400m resolution for Sri Lanka from NREL Dataset Summary Description (Abstract): Raster GIS data, 50 m wind power density for Sri Lanka (Purpose): To provide information on the wind resource potential within Sri Lanka and selected offshore areas (Supplemental Information): ***** Spatial Reference Information (Beg) *****Projection ParametersProjection UTMZone 44Datum WGS84Zunits NoneUnits METERSSpheroid WGS84Xshift 0.0000000000Yshift 0.0000000000ParametersSpatial InformationRaster:Number of Columns: 764Number of Rows: 1218Pixel Resolution (m): 400Data Type: real***** Spatial Reference Information (End) ***** Source NREL Date Released June 30th, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GIS NREL Sri Lanka SWERA UNEP wind Data application/zip icon Download Data (zip, 771.5 KiB)

156

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

Anil V. Virkar

2001-06-21T23:59:59.000Z

157

Minimizing lighting power density in office rooms equipped with Anidolic Daylighting Systems  

Science Conference Proceedings (OSTI)

Electric lighting is responsible for up to one third of an office building's electricity needs. Making daylight more available in office buildings can not only contribute to significant energy savings but also enhance the occupants' performance and wellbeing. Anidolic Daylighting Systems (ADS) are one type of very effective facade-integrated daylighting systems. All south-facing office rooms within the LESO solar experimental building in Lausanne (Switzerland) are equipped with a given type of ADS. A recent study has shown that these offices' occupants are highly satisfied with their lighting environment. The most energy-efficient south-facing offices have a lighting power density of less than 5W/m{sup 2}. The lighting situation within these ''best practice''-offices has been assessed using the lighting simulation software RELUX Vision. Because this lighting situation is very much appreciated by the occupants, it was used as a starting point for developing even more energy-efficient office lighting designs. Two new lighting designs, leading to lighting power densities of 3.9W/m{sup 2} and 3W/m{sup 2}, respectively, have been suggested and simulated with RELUX Vision. Simulation results have shown that the expected performances of these new systems are comparable to that of the current lighting installation within the ''best practice''-offices or even better. These simulation results have been confirmed during experiments on 20 human subjects in a test office room recently set up within the LESO building. This article gives engineers, architects and light planers valuable information and ideas on how to design energy-efficient and comfortable electric lighting systems in office rooms with abundant access to daylight. (author)

Linhart, Friedrich; Scartezzini, Jean-Louis [Solar Energy and Building Physics Laboratory (LESO-PB), Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

2010-04-15T23:59:59.000Z

158

Crosscheck of different techniques for two dimensional power spectral density measurements of x-ray optics  

Science Conference Proceedings (OSTI)

The consistency of different instruments and methods for measuring two-dimensional (2D) power spectral density (PSD) distributions are investigated. The instruments are an interferometric microscope, an atomic force microscope (AFM) and the X-ray Reflectivity and Scattering experimental facility, all available at Lawrence Berkeley National Laboratory. The measurements were performed with a gold-coated mirror with a highly polished stainless steel substrate. It was shown that these three techniques provide essentially consistent results. For the stainless steel mirror, an envelope over all measured PSD distributions can be described with an inverse power-law PSD function. It is also shown that the measurements can be corrected for the specific spatial frequency dependent systematic errors of the instruments. The AFM and the X-ray scattering measurements were used to determine the modulation transfer function of the interferometric microscope. The corresponding correction procedure is discussed in detail. Lower frequency investigation of the 2D PSD distribution was also performed with a long trace profiler and a ZYGO GPI interferometer. These measurements are in some contradiction, suggesting that the reliability of the measurements has to be confirmed with additional investigation. Based on the crosscheck of the performance of all used methods, we discuss the ways for improving the 2D PSD characterization of X-ray optics.

Yashchuk, Valeriy V.; Irick, Steve C.; Gullikson, Eric M.; Howells, Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi, Farhad; Warwick, Tony

2005-07-12T23:59:59.000Z

159

The wind power probability density forecast problem can be formulated as: forecast the wind power pdf at time step t for each look-ahead time step t+k of a given time-horizon  

E-Print Network (OSTI)

The wind power probability density forecast problem can be formulated as: forecast the wind power forecasted for look-ahead time t+k, xt is a set of explanatory variables available at time step t, fP,x is the joint density function of the forecasted wind power and explanatory variables, fX is the density

Kemner, Ken

160

Composite Cathode for High-Power Density Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

Reduction of solid oxide fuel cell (SOFC) operating temperature will play a key role in reducing the stack cost by allowing the use of low-cost metallic interconnects and new approaches to sealing, while making applications such as transportation more feasible. Reported results for anode-supported SOFCs show that cathode polarization resistance is the primary barrier to achieving high power densities at operating temperatures of 700 C and lower. This project aims to identify and develop composite cathodes that could reduce SOFC operating temperatures below 700 C. This effort focuses on study and use of (La,Sr)(Co,Fe)O{sub 3} (LSCF) based composite cathodes, which have arguably the best potential to substantially improve on the currently-used, (La,Sr)MnO{sub 3}-Yttria-stabilized Zirconia. During this Phase I, it was successfully demonstrated that high performances can be achieved with LSCF/Gadolinium-Doped Ceria composite cathodes on Ni-based anode supported cells operating at 700 C or lower. We studied electrochemical reactions at LSCF/Yttria-stabilized Zirconia (YSZ) interfaces, and observed chemical reactions between LSCF and YSZ. By using ceria electrolytes or YSZ electrolytes with ceria diffusion barrier layers, the chemical reactions between LSCF and electrolytes were prevented under cathode firing conditions necessary for the optimal adhesion of the cathodes. The protection provided by ceria layer is expected to be adequate for stable long-term cathode performances, but more testing is needed to verify this. Using ceria-based barrier layers, high performance Ni-YSZ anode supported cells have been demonstrated with maximum power densities of 0.8W/cm2 at 700 C and 1.6W/cm{sup 2} at 800 C. Ni-SDC anode supported cells with SDC electrolytes yielded >1W/cm{sup 2} at 600 C. We speculate that the power output of Ni-YSZ anode supported cell at 700 C and lower, was limited by the quality of the Ceria and Ceria YSZ interface. Improvements in the low-temperature performances are expected based on further development of barrier layer fabrication processes and optimization of cathode microstructure.

Ilwon Kim; Scott Barnett; Yi Jiang; Manoj Pillai; Nikkia McDonald; Dan Gostovic; Zhongryang Zhan; Jiang Liu

2004-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Neutral beam shine-through power and its dependence on the line density of the DIII-D plasma  

SciTech Connect

Neutral beams are the primary source of auxiliary plasma heating in the DIII-D Tokamak. Part of the beam power passes through the plasma and is deposited on the wall of the tokamak (shine-through power) and does not contribute to plasma heating. It is therefore crucial to know the shine-through power in order to give an accurate account of the total power deposited in the plasma. The authors have recently remeasured the shine-through power using data taken from thermocouples embedded in the beam target tiles of the tokamak vessel. The tile temperature rise was correlated to the injected beam power. A dependence of the tile temperature rise don the initial tile temperature has been empirically measured and accounted for in order to obtain a more accurate determination of the shine-through beam power. Measurements of the shine-through beam power as a function of plasma density and beam energy confirm that shine-through power decreases exponentially with plasma density, and increases linearly with beam energy.

Riggs, S.; Hong, R.; Kessler, D.

1995-10-01T23:59:59.000Z

162

Fast-wave Power Flow Along SOL Field Lines In NSTX nd The Associated Power Deposition Profile Across The SOL In Front Of The Antenna  

SciTech Connect

Fast-wave heating and current drive efficiencies can be reduced by a number of processes in the vicinity of the antenna and in the scrape off layer (SOL). On NSTX from around 25% to more than 60% of the high-harmonic fast-wave power can be lost to the SOL regions, and a large part of this lost power flows along SOL magnetic field lines and is deposited in bright spirals on the divertor floor and ceiling. We show that field-line mapping matches the location of heat deposition on the lower divertor, albeit with a portion of the heat outside of the predictions. The field-line mapping can then be used to partially reconstruct the profile of lost fast-wave power at the midplane in front of the antenna, and the losses peak close to the last closed flux surface (LCFS) as well as the antenna. This profile suggests a radial standing-wave pattern formed by fast-wave propagation in the SOL, and this hypothesis will be tested on NSTX-U. Advanced RF codes must reproduce these results so that such codes can be used to understand this edge loss and to minimize RF heat deposition and erosion in the divertor region on ITER.

Perkins, Roy

2013-06-21T23:59:59.000Z

163

The Role of Upstream Waves and a Downstream Density Pool in the Growth of Lee Waves: Stratified Flow over the Knight Inlet Sill  

Science Conference Proceedings (OSTI)

Observations and modeling simulations are presented that illustrate the importance of a density contrast and the upstream response to the time dependence of stratified flow over the Knight Inlet sill. Repeated sections of velocity and density ...

Jody M. Klymak; Michael C. Gregg

2003-07-01T23:59:59.000Z

164

Analysis and Design of a High Power Density Axial Flux Permanent Magnet Linear Synchronous Machine Used for Stirling System  

Science Conference Proceedings (OSTI)

a high power density axial flux permanent magnet linear synchronous machine and the stirling system will be introduced. This machine is a tubular axial flux permanent magnet machine. It comprises two parts: stator and mover. With the 2D finite-element ... Keywords: permanent magnet, stirling engine, linear motor

Ping Zheng; Xuhui Gan; Lin Li

2010-09-01T23:59:59.000Z

165

Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption  

Science Conference Proceedings (OSTI)

Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.

Jha, Pankaj K.; Scully, Marlan O. [Texas A and M University, College Station, Texas 77843 (United States); Princeton University, Princeton, New Jersey 08544 (United States); Dorfman, Konstantin E. [Texas A and M University, College Station, Texas 77843 (United States); University of California, Irvine, Irvine, California 92697 (United States); Yi Zhenhuan; Yuan Luqi; Welch, George R. [Texas A and M University, College Station, Texas 77843 (United States); Sautenkov, Vladimir A. [Texas A and M University, College Station, Texas 77843 (United States); Joint Institute of High Temperature, RAS, Moscow 125412 (Russian Federation); Rostovtsev, Yuri V. [University of North Texas, Denton, Texas 76203 (United States); Zheltikov, Aleksei M. [Texas A and M University, College Station, Texas 77843 (United States); M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

2012-08-27T23:59:59.000Z

166

Spin-orbit Coupling Induced Magnetism in the d-density Wave Phase of La2-xBaxCuO4 Superconductors  

SciTech Connect

We study the effects of spin-orbit coupling in the d-density wave (DDW) phase. In the low-temperature orthorhombic phase of La{sub 2-x}Ba{sub x}CuO{sub 4}, we find that spin-orbit coupling induces ferromagnetic moments in the DDW phase, which are polarized along the [110] direction with a considerable magnitude. This effect does not exist in the superconducting phase. On the other hand, if the d-density wave order does not exist at zero field, a magnetic field along the [110] direction always induces such a staggered orbital current. We discuss experimental constraints on the DDW states in light of our theoretical predictions.

Wu, Congjun; /Stanford U., Phys. Dept. /Santa Barbara, KITP; Zaanen, Jan; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

2010-01-15T23:59:59.000Z

167

Scaling theory of the Peierls charge density wave in metal nanowires D. F. Urban,1 C. A. Stafford,2 and Hermann Grabert1  

E-Print Network (OSTI)

Scaling theory of the Peierls charge density wave in metal nanowires D. F. Urban,1 C. A. Stafford,2 URBAN, STAFFORD, AND GRABERT PHYSICAL REVIEW B 75, 205428 2007 205428-2 #12;Ekin = L q 0 m q,R0 R0 bq0=8kF -1 . URBAN, STAFFORD, AND GRABERT PHYSICAL REVIEW B 75, 205428 2007 205428-4 #12;scaling

Stafford, Charles

168

Measurements of the parametric decay of CO/sub 2/ laser radiation into plasma waves at quarter critical density using ruby laser Thomson scattering  

SciTech Connect

We report the results of small-angle ruby laser Thomson scattering measurements of the parametric excitation of plasma waves by CO/sub 2/ laser radiation at quarter-critical density in a laser-heated gas target plasma. From supplementary data obtained from interferometry and large-angle ruby laser scattering we infer that the threshold conditions for a convective decay are satisfied.

Schuss, J.J.; Chu, T.K.; Johnson, L.C.

1977-11-01T23:59:59.000Z

169

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid hydrocarbon fuels where reforming was achieved internally. Significant polarization losses also occur at the anode, especially at high fuel utilizations. An analysis of polarization losses requires that various contributions are isolated, and their dependence on pertinent parameters is quantitatively described. An investigation of fuel composition on gas transport through porous anodes was investigated and the role of fuel diluents was explored. This work showed that the molecular weight of the diluent has a significant effect on anode concentration polarization. This further showed that the presence of some molecular hydrogen is necessary to minimize polarization losses. Theoretical analysis has shown that the electrode microstructure has a profound effect on cell performance. In a series of experiments, cathode microstructural parameters were varied, without altering other parameters. Cathode microstructural parameters, especially three phase boundary (TPB) length, were estimated using techniques in quantitative stereology. Cell performance was quantitatively correlated with the relevant microstructural parameters, and charge transfer resistivity was explicitly evaluated. This is the first time that a fundamental parameter, which governs the activation polarization, has been quantitatively determined. An important parameter, which governs the cathodic activation polarization, and thus cell performance, is the ionic conductivity of the composite cathode. The traditional composite cathode is a mixture of LSM and YSZ. It is well known that Sr and Mg-doped LaGaO{sub 3} (LSGM), exhibits higher oxygen ion conductivity compared to YSZ. Cells were fabricated with composite cathodes comprising a mixture of LSM and LSGM. Studies demonstrated that LSGM-based composite cathodes exhibit excellent behavior. Studies have shown that Ni + YSZ is an excellent anode. In fact, in most cells, the principal polarization losses, at least at low fuel utilizations, are associated with the cathode. Theoretical analysis conducted in our group has also shown that anode-supported cells exhibi

Professor Anil V. Virkar

2003-05-23T23:59:59.000Z

170

Microwave and millimeter-wave rectifying circuit arrays and ultra-wideband antennas for wireless power transmission and communications  

E-Print Network (OSTI)

In the future, space solar power transmission and wireless power transmission will play an important role in gathering clean and infinite energy from space. The rectenna, i.e., a rectifying circuit combined with an antenna, is one of the most important components in the wireless power transmission system. To obtain high power and high output voltage, the use of a large rectenna array is necessary. Many novel rectennas and rectenna arrays for microwave and millimeter-wave wireless power transmission have been developed. Unlike the traditional rectifying circuit using a single diode, dual diodes are used to double the DC output voltage with the same circuit layout dimensions. The rectenna components are then combined to form rectenna arrays using different interconnections. The rectennas and the arrays are analyzed by using a linear circuit model. Furthermore, to precisely align the mainbeams of the transmitter and the receiver, a retrodirective array is developed to maintain high efficiency. The retrodirective array is able to track the incident wave and resend the signal to where it came from without any prior known information of the source location. The ultra-wideband radio has become one of the most important communication systems because of demand for high data-rate transmission. Hence, ultra-wideband antennas have received much attention in mobile wireless communications. Planar monopole ultra-wideband antennas for UHF, microwave, and millimeter-wave bands are developed, with many advantages such as simple structure, low cost, light weight, and ease of fabrication. Due to the planar structures, the ultra-wideband antennas can be easily integrated with other circuits. On the other hand, with an ultra-wide bandwidth, source power can be transmitted at different frequencies dependent on power availability. Furthermore, the ultra-wideband antenna can potentially handle wireless power transmission and data communications simultaneously. The technologies developed can also be applied to dual-frequency or the multi-frequency antennas. In this dissertation, many new rectenna arrays, retrodirective rectenna arrays, and ultra-wideband antennas are presented for microwave and millimeter-wave applications. The technologies are not only very useful for wireless power transmission and communication systems, but also they could have many applications in future radar, surveillance, and remote sensing systems.

Ren, Yu-Jiun

2007-05-01T23:59:59.000Z

171

Doped LiFePO? cathodes for high power density lithium ion batteries  

E-Print Network (OSTI)

Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode ...

Bloking, Jason T. (Jason Thompson), 1979-

2003-01-01T23:59:59.000Z

172

Wave Power for U.S. Coast Guard First District Lighthouses  

DOE Green Energy (OSTI)

Lighthouses and other navigational aids are situated near tumultuous seas and thus may be good candidates for early applications of wave energy conversion technologies. This paper describes gravity wave physics and the characteristics of mechanical radiation (growth, propagation, diffraction, and shoaling).

Walker, A.; Kandt, A.; Heimiller, D.

2006-01-01T23:59:59.000Z

173

The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves  

Science Conference Proceedings (OSTI)

Ocean wave energy is used to drive a buoyant instrument platform down a wire suspended from a surface float. At the lower terminus of the profiling range, the cam that rectifies wave vertical motion is released and the package, termed the ...

R. Pinkel; M. A. Goldin; J. A. Smith; O. M. Sun; A. A. Aja; M. N. Bui; T. Hughen

2011-03-01T23:59:59.000Z

174

Status of Wave and Tidal Power Technologies for the United States  

DOE Green Energy (OSTI)

This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

Musial, W.

2008-08-01T23:59:59.000Z

175

Quantum theory of stimulated Cerenkov radiation of transverse electromagnetic waves by a low-density electron beam in a medium  

Science Conference Proceedings (OSTI)

The quantum theory of stimulated Cerenkov radiation of transverse electromagnetic waves by an electron beam in an anisotropic medium is presented. Relativistic quantum nonlinear equations of the Cerenkov beam instability are obtained. In the linear approximation, the quantum dispersion equation is derived and the instability growth increments are determined. The nonlinear problem of the saturation of the quantum Cerenkov beam instability is solved. (cerenkov radiation)

Kuzelev, Mikhail V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2010-01-31T23:59:59.000Z

176

Microscopic evidence for a partially gapped density wave state in {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} in high magnetic fields.  

Science Conference Proceedings (OSTI)

We present NMR measurements on {alpha}-(BEDt-TTF){sub 2}KHg(SCN){sub 4}, in which the six inner carbon sites of BEDT-TTF are labeled with the {sup 13}C isotope, at low temperatures and in magnetic fields up to 28.8 T. We find, based on microscopic measurements which probe the center of the primary molecular orbital, that the density wave ground state of this system persists up to fields well above the so-called 'kink field', a hysteretic transition observed in transport near 23 T below 6 K. The main implication of this result is that in the low temperature limit, the ground state of this material is not fully metallic, but still partially gapped, even to 28.8 T. We obtain a BCS-like relationship between the transition temperature and the energy gap, as derived from the spin relaxation measurements using a simple model. Further, the {sup 13}C NMR spectrum is relatively insensitive to crossing the phase boundary, a result that does not support the notion that the ground state is a conventional spin density wave ground state.

Kuhns, P. L.; Brooks, J. S.; Caldwell, T.; Moulton, W. G.; Reyes, A. P.; Biskup, N.; Kini, A. M.; Schlueter, J. A.; Wang, H. H.; Geiser, U.; Williams, J. M.; Florida State Univ.

1999-02-01T23:59:59.000Z

177

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

Anode-supported solid oxide fuel cells with Ni + yttria-stabilized zirconia (YSZ) anode, YSZ-samaria-doped ceria (SDC) bi-layer electrolyte and Sr-doped LaCoO{sub 3} (LSC) + SDC cathode were fabricated. Fuel used consisted of H{sub 2} diluted with He, N{sub 2}, H{sub 2}O or CO{sub 2}, mixtures of H{sub 2} and CO, and mixtures of CO and CO{sub 2}. Cell performance was measured at 800 C with above-mentioned fuel gas mixtures and air as oxidant. For a given concentration of the diluent, the cell performance was higher with He as the diluent than with N{sub 2} as the diluent. Mass transport through porous Ni-YSZ anode for H{sub 2}-H{sub 2}O, CO-CO{sub 2} binary systems and H{sub 2}-H{sub 2}O-diluent gas ternary systems was analyzed using multicomponent gas diffusion theory. At high concentrations of the diluent, the maximum achievable current density was limited by the anodic concentration polarization. From this measured limiting current density, the corresponding effective gas diffusivity was estimated. Highest effective diffusivity was estimated for fuel gas mixtures containing H{sub 2}-H{sub 2}O-He mixtures ({approx}0.34 cm{sup 2}/s), and the lowest for CO-CO{sub 2} mixtures ({approx}0.07 cm{sup 2}/s). The lowest performance was observed with CO-CO{sub 2} mixture as a fuel, which in part was attributed to the lowest effective diffusivity of the fuels tested.

Anil V. Virkar

2001-09-26T23:59:59.000Z

178

PV water pumping with a peak-power tracker using a simple six-step square-wave inverter  

SciTech Connect

The application of photovoltaics (PVs) has been increasingly popular, especially in remote areas, where power from a utility is not available or is too costly to install. PV-powered water pumping is frequently used for agriculture and in households. Among many available schemes, the system under study consists of a PV array, a variable-frequency inverter, an induction motor, and a water pump. The inverter feeds the induction motor, which drives the water pump. To seek the optimum power output of the PV array, the inverter is operated at variable frequency, to vary the output of the water pump. The inverter is operated to generate a six-step quasi-square wave, instead of a pulsewidth modulated (PWM) voltage output, to reduce the switching losses. The inverter acts as both a variable-frequency source and a peak-power tracker of the system, thus, having the number of switches minimized. The system is a low-cost design, with a simple control strategy. The dc bus is supported by a dc capacitor; thus, a balance-of-power flow must be maintained to avoid the collapse of the dc-bus voltage. Another advantage of the system is that the current is limited to an upper limit of the PV-array current. Thus, in case a short circuit is developed, the motor winding and the power semiconductor switches can be protected against excessive current flow.

Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States)

1997-05-01T23:59:59.000Z

179

High throughput low power decoder architectures for low density parity check codes  

E-Print Network (OSTI)

A high throughput scalable decoder architecture, a tiling approach to reduce the complexity of the scalable architecture, and two low power decoding schemes have been proposed in this research. The proposed scalable design is generated from a serial architecture by scaling the combinational logic; memory partitioning and constructing a novel H matrix to make parallelization possible. The scalable architecture achieves a high throughput for higher values of the parallelization factor M. The switch logic used to route the bit nodes to the appropriate checks is an important constituent of the scalable architecture and its complexity is high with higher M. The proposed tiling approach is applied to the scalable architecture to simplify the switch logic and reduce gate complexity. The tiling approach generates patterns that are used to construct the H matrix by repeating a fixed number of those generated patterns. The advantages of the proposed approach are two-fold. First, the information stored about the H matrix is reduced by onethird. Second, the switch logic of the scalable architecture is simplified. The H matrix information is also embedded in the switch and no external memory is needed to store the H matrix. Scalable architecture and tiling approach are proposed at the architectural level of the LDPC decoder. We propose two low power decoding schemes that take advantage of the distribution of errors in the received packets. Both schemes use a hard iteration after a fixed number of soft iterations. The dynamic scheme performs X soft iterations, then a parity checker cHT that computes the number of parity checks in error. Based on cHT value, the decoder decides on performing either soft iterations or a hard iteration. The advantage of the hard iteration is so significant that the second low power scheme performs a fixed number of iterations followed by a hard iteration. To compensate the bit error rate performance, the number of soft iterations in this case is higher than that of those performed before cHT in the first scheme.

Selvarathinam, Anand Manivannan

2005-08-01T23:59:59.000Z

180

Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays  

E-Print Network (OSTI)

Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

Dabiri, John O

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

MHK Projects/Wave Powered Pumping of Seawater for On Shore Use...  

Open Energy Info (EERE)

Powered Pumping of Seawater for On Shore Use and Electrical Generation < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map......

182

From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power  

SciTech Connect

Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation, isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications.

Younger, S.M.; Fowler, C.M.; Lindemuth, I.; Chernyshev, V.K.; Mokhov, V.N.; Pavlovskii, A.I.

1999-03-15T23:59:59.000Z

183

Traveling Waves and Power Waves  

Science Conference Proceedings (OSTI)

... The first floor of this grand old structure houses the retail establishments. ... circuit simulators, which find it very upsetting when passive devices in the ...

2013-11-04T23:59:59.000Z

184

Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R= Y, La, Ce, Sm, Gd, Tb and Dy)  

SciTech Connect

We present a detailed ARPES investigation of the RTe{sub 3} family, which sets this system as an ideal 'textbook' example for the formation of a nesting driven Charge Density Wave (CDW). This family indeed exhibits the full range of phenomena that can be associated to CDW instabilities, from the opening of large gaps on the best nested parts of Fermi Surface (FS) (up to 0.4eV), to the existence of residual metallic pockets. ARPES is the best suited technique to characterize these features, thanks to its unique ability to resolve the electronic structure in k-space. An additional advantage of RTe{sub 3} is that the band structure can be very accurately described by a simple 2D tight-binding (TB) model, which allows one to understand and easily reproduce many characteristics of the CDW. In this paper, we first establish the main features of the electronic structure, by comparing our ARPES measurements with Linear Muffin-Tin Orbital band calculations. We use this to define the validity and limits of the TB model. We then present a complete description of the CDW properties and, for the first time, of their strong evolution as a function of R. Using simple models, we are able to reproduce perfectly the evolution of gaps in k-space, the evolution of the CDW wave vector with R and the shape of the residual metallic pockets. Finally, we give an estimation of the CDW interaction parameters and find that the change in the electronic density of states n(Ef), due to lattice expansion when different R ions are inserted, has the correct order of magnitude to explain the evolution of the CDW properties.

Brouet, V.; Yang, W.L.; Zhou, X.J.; Hussain, Z.; Moore, R.G.; He, R.; Lu, D.H.; Shen, Z.X.; Laverock, J.; Dugdale, S.; Ru, N.; Fisher, I.R.

2010-02-15T23:59:59.000Z

185

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

186

Self-interfering matter-wave patterns generated by a moving laser obstacle in a two-dimensional Bose-Einstein condensate inside a power trap cut off by box potential boundaries  

SciTech Connect

We report the observation of highly energetic self-interfering matter-wave (SIMW) patterns generated by a moving obstacle in a two-dimensional Bose-Einstein condensate (BEC) inside a power trap cut off by hard-wall box potential boundaries. The obstacle initially excites circular dispersive waves radiating away from the center of the trap which are reflected from hard-wall box boundaries at the edges of the trap. The resulting interference between outgoing waves from the center of the trap and reflected waves from the box boundaries institutes, to the best of our knowledge, unprecedented SIMW patterns. For this purpose we simulated the time-dependent Gross-Pitaevskii equation using the split-step Crank-Nicolson method and the obstacle was modelled by a moving impenetrable Gaussian potential barrier. Various trapping geometries are considered in which the dynamics of the spatial and momentum density, as well as the energy, are considered. The momentum dynamics reveal an oscillatory behavior for the condensate fraction, indicative of excitations out of and de-excitations back into the condensate state. An oscillatory pattern for the energy dynamics reveals the presence of solitons in the system. Some vortex features are also obtained.

Sakhel, Roger R. [Department of Basic Sciences, Faculty of Information Technology, Isra University, Amman 11622 (Jordan); Sakhel, Asaad R. [Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134 (Jordan); Ghassib, Humam B. [Department of Physics, The University of Jordan, Amman 11942 (Jordan)

2011-09-15T23:59:59.000Z

187

Ion beam driven ion-acoustic waves in a plasma cylinder with negatively charged dust grains  

SciTech Connect

An ion beam propagating through a magnetized potassium plasma cylinder having negatively charged dust grains drives electrostatic ion-acoustic waves to instability via Cerenkov interaction. The phase velocity of sound wave increases with the relative density of negatively charged dust grains. The unstable wave frequencies and the growth rate increase, with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales as one-third power of the beam density. The real part of frequency of the unstable mode increases with the beam energy and scales as almost the one-half power of the beam energy.

Sharma, Suresh C.; Walia, Ritu [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-1, Sector-22, Rohini, Delhi 110 086 (India); Sharma, Kavita [Department of Physics, Bhagwan Parshuram Institute of Technology, Sector-17, Rohini, New Delhi 110 089 (India)

2012-07-15T23:59:59.000Z

188

Observation of low magnetic field density peaks in helicon plasma  

SciTech Connect

Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peak value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.

Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2013-04-15T23:59:59.000Z

189

Parametric excitation of an ion-acoustic wave by an electron-cyclotron wave  

SciTech Connect

Parametric excitation of an ion-acoustic wave by a left circularly polarized wave of a frequency near the electron frequency in a high-density, quasi-isothermal plasma (T/sub i/-T/sub e/) has been studied. The instability may occur with realistic input power, and bulk ion heating is expected. It is also found that a higher ion temperature favors the instability.

Matsuda, K.

1986-10-01T23:59:59.000Z

190

Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants  

Science Conference Proceedings (OSTI)

Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

Buric, M.; Ohodnicky, P.; Duy, J.

2012-01-01T23:59:59.000Z

191

Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms  

E-Print Network (OSTI)

We present a new method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation travelling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of used linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: non-saturating dependence of refractive index on the dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation in the wavelength region of about ten micrometers (the range of CO_2 laser) or larger.

Gevorg Muradyan; A. Zh. Muradyan

2009-03-15T23:59:59.000Z

192

Mesoscale Temperature Fluctuations Induced by a Spectrum of Gravity Waves: A Comparison of Parameterizations and Their Impact on Stratospheric Microphysics  

Science Conference Proceedings (OSTI)

Power spectral densities (PSDs) of mesoscale fluctuations of temperature and rate of change of temperature (heating–cooling rate) due to a spectrum of stratospheric gravity waves are derived using canonical spectral forms based on observations ...

Julio T. Bacmeister; Stephen D. Eckermann; Athanasios Tsias; Kenneth S. Carslaw; Thomas Peter

1999-06-01T23:59:59.000Z

193

Program on Technology Innovation: Validation of CLASSI and SASSI Codes to Treat Seismic Wave Incoherence in Soil-Structure Interacti on (SSI) Analysis of Nuclear Power Plant Structures  

Science Conference Proceedings (OSTI)

The New Plant Seismic Issues Resolution Program was initiated to address emerging seismic issues as they relate to the design of new nuclear power plants. Task S2.1 of the program is a multi-phase research project to assess the effects of seismic wave incoherence on the response of foundations and structures similar to those being considered for advanced reactor designs. The initial phases of this task focused on the objective of systematically studying seismic wave incoherence effects on structures/fo...

2007-11-30T23:59:59.000Z

194

Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set  

Science Conference Proceedings (OSTI)

In this paper, an extension of the S22 data set of Jurecka et al. (Jure?ka, P.; Šponer, J.; ?erný, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985.), the data set of benchmark CCSD(T)/CBS interaction energies of twenty-two noncovalent complexes in equilibrium geometries, is presented. The S22 data set has been extended by including the stretched (one shortened and three elongated) complex geometries of the S22 data set along the main noncovalent interaction coordinate. The goal of this work is to assess the accuracy of the popular wave function methods (MP2-, MP3- and, CCSD-based) and density functional methods (with and without empirical correction for the dispersion energy) for noncovalent complexes based on a statistical evaluation not only in equilibrium, but also in nonequilibrium geometries. The results obtained in this work provide information on whether an accurate and balanced description of the different interaction types and complex geometry distortions can be expected from the tested methods. This information has an important implication in the calculation of large molecular complexes, where the number of distant interacting molecular fragments, often in far from equilibrium geometries, increases rapidly with the system size. The best performing WFT methods were found to be the SCS-CCSD (spin-component scaled CCSD, according to Takatani, T.; Hohenstein, E. G.; Sherrill, C. D. J. Chem. Phys. 2008, 128, 124111), MP2C (dispersion-corrected MP2, according to Hesselmann, A. J. Chem. Phys. 2008, 128, 144112), and MP2.5 (scaled MP3, according to Pito?ák, M.; Neogrády, P.; ?erný, J.; Grimme, S.; Hobza, P. ChemPhysChem 2009, 10, 282.). Since none of the DFT methods fulfilled the required statistical criteria proposed in this work, they cannot be generally recommended for large-scale calculations. The DFT methods still have the potential to deliver accurate results for large molecules, but most likely on the basis of an error cancellation.

Grafova, Lucie; Pitonak, Michal; Rezac, Jan; Hobza, Pavel

2010-08-10T23:59:59.000Z

195

Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba(Fe1-xCox)2As2 above the Spin Density Wave Transition  

SciTech Connect

Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors exhibit a tetragonal to orthorhombic structural transition (i.e. a broken C{sub 4} symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d{sub xz} and d{sub yz} character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T{sub S}) precedes the magnetic transition (T{sub SDW}), an anisotropic splitting is observed to develop above T{sub SDW}, indicating that it is specifically associated with T{sub S}. For unstressed crystals, the band splitting is observed close to T{sub S}, whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.

Yi, Ming

2011-08-19T23:59:59.000Z

196

Areal power density: A preliminary examination of underground heat transfer in a potential Yucca Mountain repository and recommendations for thermal design approaches; Yucca Mountain Site Characterization Project  

SciTech Connect

The design of the potential Yucca Mountain repository is subject to many thermal goals related to the compliance of the site with federal regulations. This report summarizes a series of sensitivity studies that determined the expected temperatures near the potential repository. These sensitivity studies were used to establish an efficient loading scheme for the spent fuel canisters and a maximum areal power density based strictly on thermal goals. Given the current knowledge of the site, a design-basis areal power density of 80 kW/acre can be justified based on thermal goals only. Further analyses to investigate the impacts of this design-basis APD on mechanical and operational aspects of the potential repository must be undertaken before a final decision is made.

Hertel, E.S. Jr.; Ryder, E.E.

1991-11-01T23:59:59.000Z

197

Designing materials for energy storage with high power and energy density : LiFePO? cathode material  

E-Print Network (OSTI)

LiFePO? has drawn a lot of attention as a cathode material in lithium rechargeable batteries because its structural and thermal stability, its inexpensive cost, and environmental friendliness meet the requirements of power ...

Kang, Byoungwoo

2010-01-01T23:59:59.000Z

198

Program on Technology Innovation: Redesign of the Alden/Concepts NREC Helical Turbine for Increased Power Density and Fish Survival  

Science Conference Proceedings (OSTI)

A pilot version of the Alden / Concepts NREC hydroturbine successfully reduced fish mortality, but did not produce enough power to be commercially competitive. This report describes the development of a new design for the scroll case of the turbine that doubles the flow without increasing the footprint of the scroll case. Increasing the flow through the turbine increases the power that may be extracted by the runner.

2007-03-29T23:59:59.000Z

199

RFI Comments - Wave Systems  

Science Conference Proceedings (OSTI)

... These attacks, such as those planted by rootkits ... PwC leveraged the power of TPMs to ... Wave EMBASSY® Remote Administration Server (ERAS) has ...

2013-04-09T23:59:59.000Z

200

Mapping and Assessment of the United States Ocean Wave Energy Resource  

SciTech Connect

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration�¢����s (NOAA�¢����s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

Paul T. Jacobson; George Hagerman; George Scott

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Journal of Power Sources 140 (2005) 331339 Numerical study of a flat-tube high power density solid oxide fuel cell  

E-Print Network (OSTI)

· Research and development in MCFC, SOFC, PEM and Fuels #12;FuelCell Energy, the FuelCell Energy logo, Direct Electrolyte Anode Cathode Electrolyte FCE SOFC Systems Background SOFC MW Module FCE utilizes VPS (Versa Power Systems) fuel cell technology in FCEs SOFC stack modules and systems. FCE/VPS team is engaged

202

A Comprehensive Study Of Fracture Patterns And Densities In The Geysers  

Open Energy Info (EERE)

Study Of Fracture Patterns And Densities In The Geysers Study Of Fracture Patterns And Densities In The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: A Comprehensive Study Of Fracture Patterns And Densities In The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography Details Activities (1) Areas (1) Regions (0) Abstract: In this project we developed a method for using seismic S-wave data to map the patterns and densities of sub-surface fractures in the NW Geysers Geothermal Field/ (1) This project adds to both the general methods needed to characterize the geothermal production fractures that supply steam for power generation and to the specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be

203

Cost-based optimizations of power density and target-blanket modularity for {sup 232}Th/{sup 233}U-based ADEP  

SciTech Connect

A cost-based parametric systems model is developed for an Accelerator-Driven Energy Production (ADEP) system based on a {sup 232}Th/{sup 233}U fuel cycle and a molten-salt (LiF/BeF{sub 2}/ThF{sub 3}) fluid-fuel primary system. Simplified neutron-balance, accelerator, reactor-core, chemical-processing, and balance-of-plant models are combined parametrically with a simplified costing model. The main focus of this model is to examine trade offs related to fission power density, reactor-core modularity, {sup 233}U breeding rate, and fission product transmutation capacity.

Krakowski, R.A.

1995-07-01T23:59:59.000Z

204

Mode coupling of electron plasma waves  

SciTech Connect

The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta$sup 2$/sub ko/k lambda/sub De/ less than 1 where eta$sup 2$/ sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at $omega$/sub ek/, the Bohn Gross frequency, and at $Omega$/sub k/, the ion acoustic frequency, subject to the damping rates $nu$/sub ek/ and $nu$/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, $omega$/sub pe/ the plasma frequency. (auth)

Harte, J.A.

1975-10-31T23:59:59.000Z

205

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography [Quarterly progress report 06/16/1998 - 09/15/1998  

DOE Green Energy (OSTI)

We completed the process of locating events and identifying shear-wave splitting in the mammoth area. A total of 2250 split shear wave observations were recorded in the four month period that our network was in place. Fast polarization direction map in Figure 1 shows that most of the stations in the mammoth area display consistent direction throughout the main field, between 300{degree} azimuth to 0{degree} azimuth. Some exemptions to the consistent crack alignment (fast polarization direction) can be seen in station M19, and some stations display inconsistent trend as can be observed in stations M25, M18, and M07. It is possible that station M19 was misaligned during installment. Figure 2 shows the cumulative rose diagram for all observations with a clear preferred direction. Figure 3 also shows that most of the observations of fast split shear wave are in the same direction and that those observation are distributed throughout the target area. If we treat measurements of polarization direction as a statistical process, same as deep of layer measurement, we can say that in the small area of the station we have aligned cracks. Figures 4 and 5 show results of the crack density inversion assuming regional crack azimuth of 340{degree}. Almost 2000 raypaths were used to perform this tomographic inversion. There is weak dependency of the results on the regional crack direction, but the main areas of high and low crack density are the same. The changes are mainly in the size of the anomalies. Since the amplitudes of those anomalies depend mainly on the damping parameter we use in the inversion, exact regional crack direction is not a critical parameter of the inversion. The map in figure 4 and cross-sections in Figure 5 show two areas of high crack density: one northeast of the Casa Diablo area at depth of 1 to 3 km, and one near the Mammoth airport and station 9 at depth of 2 to 3 km.

Malin, P.E.; Shalev, E.

1999-03-26T23:59:59.000Z

206

Sodium Nightglow and Gravity Waves  

Science Conference Proceedings (OSTI)

Oscillations in intensity of NaD nightglow attributed to mesospheric gravity waves have bean studied. Fractional atmospheric density perturbations have been obtained by means of the linear gravity waves theory of Hines. Values of other parameters ...

A. Molina

1983-10-01T23:59:59.000Z

207

Electron Beam Welding of a Depleted Uranium Alloy to Niobium Using a Calibrated Electron Beam Power Density Distribution  

SciTech Connect

Electron beam test welds were made joining flat plates of commercially pure niobium to a uranium-6wt%Nb (binary) alloy. The welding parameters and joint design were specifically developed to minimize mixing of the niobium with the U-6%Nb alloy. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the precise power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines and/or to other facilities.

Elmer, J.W.; Teruya, A.T.; Terrill, P.E.

2000-08-21T23:59:59.000Z

208

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography. [Quarterly progress report 03/16/1998 - 06/15/1998  

DOE Green Energy (OSTI)

We completed the process of identifying shear-wave splitting in the Geyser area. A total of 2700 observations were recorded with about 1700 observations from the 1988 data and about 1000 observations from 1994. Fast polarization direction map in Figure 1 shows that most of the stations in the Geyser area display consistent direction throughout the main field, between 0{degree} azimuth to 40{degree} azimuth. Some exemptions to the consistent crack alignment (fast polarization direction) can be seen in stations 9 and station 3, and also in stations 13 and 14 outside the field. Since the stations are in boreholes it is possible that some of the station orientations, calculated using P-wave arrivals from located events, are erroneous. If we treat measurements of polarization direction as a statistical process, same as deep of layer measurement, we can say that in the small area of the station we have aligned cracks. Figures 2 and 3 show results of the crack density inversion assuming regional crack azimuth of 20{degree}. Almost 2400 raypaths were used to perform this tomographic inversion. There is weak dependency of the results on the regional crack direction, but the main areas of high and low crack density are the same. The changes are mainly in the size of the anomalies. Since the amplitudes of those anomalies depend mainly on the damping parameter we use in the inversion, exact regional crack direction is not a critical parameter of the inversion. The map in figure 2 and cross-sections in Figure 3 show two areas of high crack density at the top 1 km one at station 8 and the other between stations 6 and 5. At greater depth of 1 to 2 km those two area converge to one high crack density anomaly between stations 3, 4, 11, and 10.

Malin, P.E.; Shalev, E.

1999-03-17T23:59:59.000Z

209

Continuous wave Nd:YAG laser cladding modeling: A physical study of track creation during low power processing  

SciTech Connect

This paper concerns the modeling of cladding using an Nd:YAG laser operating at low powers typically less than 800 W. Experimental observation of the evolution of the mass of the clads shows two power thresholds. The theoretical study relies on a calculation of the fluence provided to the substrate and on a model of heat transfer into the substrate. The authors suggest that the first threshold is the power required for substrate melting. The second power is the threshold when the powder is directly melted by the beam and is therefore a liquid when contacting the substrate.

Jouvard, J.M.; Grevey, D.F.; Lemoine, F. [IUT du Creusot, Le Creusot (France); Vannes, A.B. [ECL, Ecully (France)

1997-02-01T23:59:59.000Z

210

Cycloidal Wave Energy Converter  

SciTech Connect

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

211

A comprehensive study of fracture patterns and densities in the Geysers geothermal reservoir using microearthquake shear-wave splitting tomography. Quarterly report for Sep-Dec 1998  

DOE Green Energy (OSTI)

We start organizing the computer programs needed for crack density inversion into an easy to follow scripts. These programs were collection of bits and pieces from many sources and we want to organize those separate programs into coherent product. We also gave a presentation (enclosed) in the Twenty-Fourth Workshop on Geothermal Reservoir Engineering in Stanford University on our Geyser and Mammoth results.

Malin, Peter E.; Shalev, Eylon

1999-03-31T23:59:59.000Z

212

Coastal zone wind energy. Part I. Potential wind power density fields based on 3-D model simulations of the dominant wind regimes for three east and Gulf coast areas  

DOE Green Energy (OSTI)

The results of applying a numerical model of the atmosphere to the problem of locating areas of maximum wind power are presented. Three US coastal regions, of approximately 10/sup 5/ km/sup 2/ area each, are investigated. For each region the spatial distribution of daily average power density (W m/sup -2/) for the lowest 100 m of the atmosphere is given for the three most prevalent weather regimes. These distributions are then combined to form an estimate of the annual average power density for each region. Comparisons with long-term climatological data at stations within each region show good agreement between model estimated and observed wind power density for two of the three regions studied.

Garstang, M.; Pielke, R.A.; Snow, J.W.

1980-04-01T23:59:59.000Z

213

Theory of intense radio waves in an underdense ionosphere: application to solar power satellite transmissions. Final report  

DOE Green Energy (OSTI)

The instabilities in the F-region plasma are investigated that can be created by the passage of a solar power satellite beam (2.45 Ghz frequency, at a power flux of 23 mW/cm/sup 2/) at frequencies much higher than the cut-off plasma frequency of the ionosphere. The threshold geometry and frequency and intensity scaling laws are calculated for the thermal self-focusing instability, and its saturation level is estimated. The possibility is considered of scaled experiments at HF power to detect the thermal self-focusing instability for an underdense ionosphere. Other experimental possibilities are discussed in terms of the scaling laws. (LEW)

Goldman, M.V.

1980-11-01T23:59:59.000Z

214

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

215

Spectral Effects on Fast Wave Core Heating and Current Drive  

SciTech Connect

Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

C.K. Phillips, R.E. Bell, L.A. Berry, P.T. Bonoli, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, P.M. Ryan, G. Taylor, E.J. Valeo, J.R. Wilson, J.C. Wright, H. Yuh, and the NSTX Team

2009-05-11T23:59:59.000Z

216

VFL-HF heating of the lower ionosphere and ELF wave generation  

SciTech Connect

For incident wave power densities of 10{sup {minus}6} {minus} 10{sup {minus}2} W/m{sup 2} (at 30 km altitude), VLF heating of the D-region (< 90 km) is found to be 2-10 times more effective (depending on power) than HF heating, resulting in comparable perturbations of subionospheric VLF probe waves in spite of up to 10{sup 3} times larger power density utilized in HF heating and at least as efficient in ELF wave generation. In view of generally larger (100 {times} 100 km) area of the ionosphere illuminated by VLF transmitters, ELF wave generation by modulated VLF heating is estimated to produce ELF power levels of {approximately}100 mW, comparable with or larger than those produced in typical midlatitude ambient ionosphere occurs primarily via the modulation of Pedersen current whereas in a typical auroral ionosphere Hall current is dominant for pump wave frequencies up to {approximately}6 MHz. For 10-30 MHz and power densities > 10{sup {minus}4} W/m{sup 2}, Pedersen current modulation is again dominant, potentially providing up to 2-15 times higher ELF dipole moment than those found in recent experiments using 3-5 MHz heaters.

Taranenko, Y.N.; Inan, U.S.; Bell, T.F. (Stanford Univ., CA (United States))

1992-01-03T23:59:59.000Z

217

Mapping and Assessment of the United States Ocean Wave Energy Resource |  

Open Energy Info (EERE)

450 450 Varnish cache server Mapping and Assessment of the United States Ocean Wave Energy Resource Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices.

218

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Science Conference Proceedings (OSTI)

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and more accura...

2011-12-01T23:59:59.000Z

219

Wave Dragon  

NLE Websites -- All DOE Office Websites (Extended Search)

Overtopping Wave Devices Wave Dragon ApSLtd HWETTEI - Workshop October 26-28, 2005, Washington, DC Hydrokinetic Technologies Technical and Environmental Issues Workshop the Wave...

220

MEASUREMENT OF POWER PLANT EXHAUST ...  

Science Conference Proceedings (OSTI)

... by tracking propagation of acoustic plane waves in a ... of the robustness of plane wave propagation to ... for GHG monitoring in power plant stacks and ...

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Riding the Waves: Harnessing Ocean Wave Energy through ...  

Science Conference Proceedings (OSTI)

... The opportunities for ocean wave power to become a new, reliable and clean source of renewable energy will be discussed, as well as activities of ...

2012-04-04T23:59:59.000Z

222

Numerical investigation of the physical model of a high-power electromagnetic wave in a magnetically insulated transmission line  

SciTech Connect

An efficient numerical code for simulating the propagation of a high-power electromagnetic pulse in a vacuum transmission line is required to study the physical phenomena occurring in such a line, to analyze the operation of present-day megavolt generators at an {approx}10-TW power level, and to design such new devices. The main physical theoretical principles are presented, and the stability of flows in the near-threshold region at the boundary of the regime of magnetic self-insulation is investigated based on one-dimensional telegraph equations with electron losses. Numerical (difference) methods-specifically, a method of characteristics and a finite-difference scheme-are described and their properties and effectiveness are compared by analyzing the high-frequency modes.

Samokhin, A. A. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

2010-02-15T23:59:59.000Z

223

SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES  

SciTech Connect

Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

2012-07-10T23:59:59.000Z

224

Single-Nucleon Densities  

NLE Websites -- All DOE Office Websites (Extended Search)

Densities Densities This web page presents single-nucleon densities calculated for a variety of nuclei in the range A=2-10 with some preliminary results for A=11,12. These are from variational Monte Carlo calculations (VMC) using the Argonne v18 two-nucleon and Urbana X three-nucleon potentials (AV18+UX). (Urbana X is intermediate between the Urbana IX and Illinois-7 models; it has the form of UIX supplemented with a two-pion S-wave piece, while the strengths of its terms are taken from the IL7 model. It does NOT have the three-pion-ring term of IL7.) These VMC wave functions are the starting trial functions for a number of recent Green's function Monte Carlo (GFMC) calculations: Brida, et al., Phys. Rev. C 84, 024319 (2011); McCutchan, et al., Phys. Rev. C 86, 024315 (2012);

225

The characterization of flow regimes with power spectral density distributions of pressure fluctuations during condensation in smooth and micro-fin tubes  

Science Conference Proceedings (OSTI)

This paper presents an objective predictor of the prevailing flow regime during refrigerant condensation inside smooth-, micro-fin and herringbone tubes. The power spectral density (PSD) distribution of the fluctuating condensing pressure signal was used to predict the prevailing flow regime, as opposed to the traditional (and subjective) use of visual-only methods, and/or smooth-tube flow regime maps. The prevailing flow regime was observed by using digital cameras and was validated with the use of the conventional smooth-tube flow regime transition criteria, Froude rate criteria, as well as a new flow regime map that was developed for micro-fin tube condensation. Experimental work was conducted for condensing R-22, R-407C, and R-134a at an average saturation temperature of 40{sup o}C with mass fluxes ranging from 300 to 800kg/m{sup 2}s, and with vapour qualities ranging from 0.85-0.95 at condenser inlet to 0.05-0.15 at condenser outlet. Tests were conducted with one smooth-tube condenser and three micro-fin tube condensers (with helix angles of 10{sup o}, 18{sup o}, and 37{sup o}, respectively). It is shown that the micro-fin tubes cause a delay in the transition from annular to intermittent flow by at least 19% (compared to the smooth tube), thus significantly contributing to the enhancement of heat transfer. (author)

Liebenberg, Leon; Meyer, Josua P. [Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002 (South Africa)

2006-11-15T23:59:59.000Z

226

Energy Densities for LLNL EMB  

Summary of Projected Power and Energy Density Parameters for the “New Generation” LLNL Electromechanical Batteries R.F. Post June 24, 2013

227

Spectral effects on fast wave core heating and current drive  

Science Conference Proceedings (OSTI)

Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L-mode and H-mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit radio frequency (rf) power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of HHFW CD were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.

Phillips, Cynthia [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Berry, Lee [Oak Ridge National Laboratory (ORNL); Jaeger, Erwin Frederick [ORNL; Ryan, Philip Michael [ORNL; Wilgen, John B [ORNL

2009-01-01T23:59:59.000Z

228

Excitation of surface plasma waves by an electron beam in a magnetized dusty plasma  

Science Conference Proceedings (OSTI)

An electron beam drives surface plasma waves to instability on a vacuum magnetized dusty plasma interface and in a magnetized dusty plasma cylinder via Cerenkov and fast cyclotron interaction. The dispersion relation of a surface plasma wave has been derived and it has been shown that the phase velocity of waves increases with increase in relative density {delta}(=n{sub i0}/n{sub e0}), where n{sub i0} is the ion plasma density and n{sub e0} is the electron plasma density of negatively charged dust grains. The frequency and the growth rate of the unstable wave instability also increases with {delta}. The growth rate of the instability increases with beam density and scales as the one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in fast cyclotron interaction. The dispersion relation of surface plasma waves has been retrieved from the derived dispersion relation by considering that the beam is absent and there is no dust in the plasma cylinder.

Prakash, Ved; Sharma, Suresh C. [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No. 1, Sector 22, Rohini, Delhi 110086 (India)

2009-09-15T23:59:59.000Z

229

Electron Bernstein Wave Research on the National Spherical Torus Experiment  

Science Conference Proceedings (OSTI)

Off-axis electron Bernstein wave current drive (EBWCD) may be critical for sustaining non-inductive high ? NSTX plasmas. Numerical modeling results predict that the ~ 100 kA of offaxis current needed to stabilize a solenoid-free high ? NSTX plasma could be generated via Ohkawa CD with 3 MW of 28 GHz EBW power. In addition, synergy between EBWCD and bootstrap current may result in a 10% enhancement in CD efficiency with 4 MW of EBW power. Recent dualpolarization EBW radiometry measurements on NSTX confirm that efficient coupling to EBWs can be readily accomplished by launching elliptically polarized electromagnetic waves oblique to the confining magnetic field, in agreement with numerical modeling. Plans are being developed for implementing a 1 MW, 28 GHz proof-of-principle EBWCD system on NSTX to test the EBW coupling, heating and CD physics at high rf power densities.

Taylor, G. [Princeton Plasma Physics Laboratory (PPPL); Bers, A. [Massachusetts Institute of Technology (MIT); Bigelow, Tim S [ORNL; Carter, Mark Dwain [ORNL; Caughman, John B [ORNL; Decker, J. [Massachusetts Institute of Technology (MIT); Diem, S. [Princeton Plasma Physics Laboratory (PPPL); Efthimion, P. C. [Princeton Plasma Physics Laboratory (PPPL); Ershov, N. M. [Moscow State University; Fredd, E. [Princeton Plasma Physics Laboratory (PPPL); Harvey, R. W. [CompX, Del Mar, CA; Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Jaeger, F. [Oak Ridge National Laboratory (ORNL); Preinhaelter, J. [Institute of Plasma Physics, Prague, Czech Republic; Ram, A. K. [Massachusetts Institute of Technology (MIT); Rasmussen, David A [ORNL; Smirnov, A. [Moscow State University; Wilgen, John B [ORNL; Wilson, J. R. [Princeton Plasma Physics Laboratory (PPPL)

2005-01-01T23:59:59.000Z

230

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

231

Positional Analysis of Wave Power.  

E-Print Network (OSTI)

?? The energy transition has started. The key is to find an alternative to uneconomical and unsustainable energy production. In this sense it is a… (more)

Garcia Teran, Jessica

2013-01-01T23:59:59.000Z

232

Water Power Program: Resource Assessment and Characterization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the United States Ocean Wave Energy Resource This report, created by the Electric Power Research Institute, assesses ocean wave energy potential along the U.S. coasts....

233

Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities  

DOE Patents (OSTI)

A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

Harrison, Neil (Santa Fe, NM); Singleton, John (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

2008-08-05T23:59:59.000Z

234

Density | OpenEI  

Open Energy Info (EERE)

Density Density Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

235

Anomalous evolution of Ar metastable density with electron density in high density Ar discharge  

SciTech Connect

Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. On the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.

Park, Min; Chang, Hong-Young [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, Shin-Jae; Kim, Jung-Hyung [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon, 305-306 (Korea, Republic of); Shin, Yong-Hyeon

2011-10-15T23:59:59.000Z

236

Wave modeling in a cylindrical non-uniform helicon discharge  

Science Conference Proceedings (OSTI)

A radio frequency field solver based on Maxwell's equations and a cold plasma dielectric tensor is employed to describe wave phenomena observed in a cylindrical non-uniform helicon discharge. The experiment is carried out on a recently built linear plasma-material interaction machine: The magnetized plasma interaction experiment [Blackwell et al., Plasma Sources Sci. Technol. (submitted)], in which both plasma density and static magnetic field are functions of axial position. The field strength increases by a factor of 15 from source to target plate, and the plasma density and electron temperature are radially non-uniform. With an enhancement factor of 9.5 to the electron-ion Coulomb collision frequency, a 12% reduction in the antenna radius, and the same other conditions as employed in the experiment, the solver produces axial and radial profiles of wave amplitude and phase that are consistent with measurements. A numerical study on the effects of axial gradient in plasma density and static magnetic field on wave propagations is performed, revealing that the helicon wave has weaker attenuation away from the antenna in a focused field compared to a uniform field. This may be consistent with observations of increased ionization efficiency and plasma production in a non-uniform field. We find that the relationship between plasma density, static magnetic field strength, and axial wavelength agrees well with a simple theory developed previously. A numerical scan of the enhancement factor to the electron-ion Coulomb collision frequency from 1 to 15 shows that the wave amplitude is lowered and the power deposited into the core plasma decreases as the enhancement factor increases, possibly due to the stronger edge heating for higher collision frequencies.

Chang, L.; Hole, M. J.; Caneses, J. F.; Blackwell, B. D.; Corr, C. S. [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Chen, G. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2012-08-15T23:59:59.000Z

237

Compton Gamma Ray Observatory/BATSE observations of energetic electrons scattered by cyclotron resonance with waves from powerful VLF transmitters. Final report, 13 October 1992-12 February 1994  

SciTech Connect

To obtain a better understanding of the wave-particle mechanisms responsible for the loss of electrons from the radiation belts, energetic electron data from the Burst and Transient Source Experiment (BATSE) on the NASA's Compton Gamma Ray Observatory (GRO) was studied. Powerful ground-based VLF transmitters resonantly scatter electrons from the inner radiation belt onto trajectories from which they precipitate into the atmosphere as they drift eastward. 563 instances in which the satellite traversed a cloud of energetic electrons which had been scattered into quasi-trapped trajectories were identified. From the longitude distribution, it was concluded that waves from the VLF transmitter NWC at 114 deg E are the origin of 257 of the events, and waves from UMSat 44 deg E related to 45 more. In another 177 cases the electrons had drifted from the longitude of these transmitters to a location in the western hemisphere. The previously reported seasonal variation in the frequency of occurrence of cyclotron resonance interaction is confirmed with the continuous coverage provided by GRO. The frequency of occurrence of the cyclotron resonance interactions is largest before sunrise, which the authors attribute to the diurnal variations in the transmission VLF waves through the ionosphere. For the first time, unique very narrow sheets of electrons occurring in the aftermath of a large geomagnetic storm are reported.

Datlowe, D.W.; Imhof, W.L.

1994-02-01T23:59:59.000Z

238

Wave Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

239

Fast wave current drive on DIII-D  

SciTech Connect

The physics of electron heating and current drive with the fast magnetosonic wave has been demonstrated on DIII-D, in reasonable agreement with theoretical modeling. A recently completed upgrade to the fast wave capability should allow full noninductive current drive in steady state advanced confinement discharges and provide some current density profile control for the Advanced Tokamak Program. DIII-D now has three four-strap fast wave antennas and three transmitters, each with nominally 2 MW of generator power. Extensive experiments have been conducted with the first system, at 60 MHz, while the two newer systems have come into operation within the past year. The newer systems are configured for 60 to 120 MHz. The measured FWCD efficiency is found to increase linearly with electron temperature as {gamma} = 0.4 {times} 10{sup 18} T{sub eo} (keV) [A/m{sup 2}W], measured up to central electron temperature over 5 keV. A newly developed technique for determining the internal noninductive current density profile gives efficiencies in agreement with this scaling and profiles consistent with theoretical predictions. Full noninductive current drive at 170 kA was achieved in a discharge prepared by rampdown of the Ohmic current. Modulation of microwave reflectometry signals at the fast wave frequency is being used to investigate fast wave propagation and damping. Additionally, rf pick-up probes on the internal boundary of the vessel provide a comparison with ray tracing codes, with dear evidence for a toroidally directed wave with antenna phasing set for current drive. There is some experimental evidence for fast wave absorption by energetic beam ions at high cyclotron harmonic resonances.

deGrassie, J.S.; Petty, C.C.; Pinsker, R.I. [and others

1995-07-01T23:59:59.000Z

240

Wave Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gas Explosion Characterization, Wave Propagation  

E-Print Network (OSTI)

of nuclear power plants. However, an evi- dent lack of knowledge in the field had demanded for a detaileds & Dt^boooo^j Risø-R-525 Gas Explosion Characterization, Wave Propagation (Small-Scale Experiments EXPLOSION CHARACTERIZATION, WAVE PROPAGATION (Small-Scale Experiments) G.C. Larsen Abstract. A number

242

Traveling-wave photodetector  

DOE Patents (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

Hietala, V.M.; Vawter, G.A.

1993-12-14T23:59:59.000Z

243

Traveling-wave photodetector  

DOE Patents (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, V.M.; Vawter, G.A.

1992-12-31T23:59:59.000Z

244

Traveling-wave photodetector  

DOE Patents (OSTI)

The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

Hietala, Vincent M. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)

1993-01-01T23:59:59.000Z

245

Ship Waves and Lee Waves  

Science Conference Proceedings (OSTI)

Three-dimensional internal trapped lee wave modes produced by an isolated obstacle in a stratified fluid are shown to have dynamics analogous to surface ship waves on water of finite depth. Two models which allow for vertical trapping of wave ...

R. D. Sharman; M. G. Wurtele

1983-02-01T23:59:59.000Z

246

ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES  

Science Conference Proceedings (OSTI)

Langmuir waves (LWs) in the solar wind are generated by electron beams associated with solar flares, interplanetary shock fronts, planetary bow shocks, and magnetic holes. In principle, LWs localized as eigenmodes of density fluctuations can emit electromagnetic (EM) radiation by an antenna mechanism near the local plasma frequency f{sub p} and twice the local plasma frequency. In this work, analytic expressions are derived for the radiated electric and magnetic fields and power generated near f{sub p} by LW eigenmodes. The EM wave power emitted near f{sub p} is predicted as a function of the eigenmode length scale L, maximum electric field, driving electron beam speed, and the ambient plasma density and temperature. The escape to a distant observer of f{sub p} radiation from a localized Langmuir eigenmode is also briefly explored as a function of the plasma conditions.

Malaspina, David M. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Cairns, Iver H. [School of Physics, University of Sydney, New South Wales 2006 (Australia); Ergun, Robert E., E-mail: David.Malaspina@lasp.colorado.edu, E-mail: cairns@physics.usyd.edu.au, E-mail: ree@lasp.colorado.edu [Laboratory for Atmospheric and Space Physics, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80303 (United States)

2012-08-10T23:59:59.000Z

247

Thermodynamics of the Transformation of Gravitational Waves into Matter Quantums for a Vacuum Space Model  

E-Print Network (OSTI)

It is shown that the entropy of low density monochromatic gravitational waves, waves required for the stabilization of the crystalline structure of vacuum cosmic space, varies with the volume in the same manner as the entropy of an ideal gas formed by particles. This implies that close enough to the big-bang event the energy of all the 10 to the 120 power gravitational waves, under an adiabatic compression process, which stabilizes the crystalline structure of vacuum space behaves thermodynamically as though it is consisted of a number nB = 10 to the 80 power of independent energy or matter quanta (neutrons). PACS numbers: 03.50.De, 03.65.-w, 04.20.-q, 61.50.-f, 65.50.+m, 98.80.Ft, 97.60.Lf

J. A. Montemayor-Aldrete; M. Lopez de Haro; J. R. Morones-Ibarra; A. Morales-Mori; Mendoza-Allende; E. Cabrera-Bravo; A. Montemayor-Varela

2005-09-06T23:59:59.000Z

248

Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring  

Science Conference Proceedings (OSTI)

Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

2011-07-15T23:59:59.000Z

249

Laser light absorption with density profile modifications  

SciTech Connect

Two-dimensional computer simulations studied plasma heating by electron plasma waves. The results emphasize the importance of nonlinear steepening of the density profile near the critical density. A typical simulation result is presented in order to illustrate these profile modifications. It is shown that large dc magnetic field generation is an inherent property of the absorption of obliquely-incident light. (MOW)

Kruer, W.; Valeo, E.; Estabrook, K.; Langdon, B.; Lasinski, B.

1974-12-01T23:59:59.000Z

250

Effect of beam premodulation on excitation of surface plasma waves in a magnetized plasma  

SciTech Connect

A density modulated electron beam propagating through a vacuum magnetized plasma interface drives electromagnetic surface plasma waves (SPWs) to instability via Cerenkov and fast cyclotron interaction. Numerical calculations of the growth rate and unstable mode frequencies have been carried out for the typical parameters of the SPWs. The growth rate {gamma} of the unstable wave instability increases with the modulation index ({Delta}) and is maximized for {Delta}=1. For {Delta}=0, {gamma} turns out to be {approx}4.32x10{sup 10} rad/s for Cerenkov interaction and {approx}6.81x10{sup 10} rad/s for fast cyclotron interaction. The growth rate of the instability increases with the beam density and scales as one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in fast cyclotron interaction. In addition, the real frequency of the unstable wave increases with the beam-energy and scales as almost one-half power of the beam-energy.

Gupta, Ruby [Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110036 (India); Sharma, Suresh C. [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-l, Sector-22, Rohini, Delhi 110086 (India); Prakash, Ved [India Meteorological Department, Ministry of Earth Science, Lodi Road, New Delhi 110003 (India)

2010-11-15T23:59:59.000Z

251

Extratropical Rossby Waves in the Presence of Buoyancy Mixing  

Science Conference Proceedings (OSTI)

The propagation of Rossby waves on a midlatitude ? plane is investigated in the presence of density diffusion with the aid of linear hydrostatic theory. The search for wave solutions in a vertically bounded medium subject to horizontal (vertical) ...

Olivier Marchal

2009-11-01T23:59:59.000Z

252

Gravity Waves in the Sun  

E-Print Network (OSTI)

We present numerical simulations of penetrative convection and gravity wave excitation in the Sun. Gravity waves are self-consistently generated by a convective zone overlying a radiative interior. We produce power spectra for gravity waves in the radiative region as well as estimates for the energy flux of gravity waves below the convection zone. We calculate a peak energy flux in waves below the convection zone to be three orders of magnitude smaller than previous estimates for m=1. The simulations show that the linear dispersion relation is a good approximation only deep below the convective-radiative boundary. Both low frequency propagating gravity waves as well as higher frequency standing modes are generated; although we find that convection does not continually drive the standing g-mode frequencies.

Tamara M. Rogers; Gary A. Glatzmaier

2005-08-25T23:59:59.000Z

253

Upper Limits on a Stochastic Background of Gravitational Waves  

E-Print Network (OSTI)

The Laser Interferometer Gravitational Wave Observatory (LIGO) has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Omega_0<8.4e-4 in the 69-156 Hz band is ~10^5 times lower than the previous result in this frequency range.

Abbott, B; Adhikari, R; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J

2005-01-01T23:59:59.000Z

254

Experimental observation of left polarized wave absorption near electron cyclotron resonance frequency in helicon antenna produced plasma  

SciTech Connect

Asymmetry in density peaks on either side of an m = +1 half helical antenna is observed both in terms of peak position and its magnitude with respect to magnetic field variation in a linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. The plasma is produced by powering the m = +1 half helical antenna with a 2.5 kW, 13.56 MHz radio frequency source. During low magnetic field (B < 100 G) operation, plasma density peaks are observed at critical magnetic fields on either side of the antenna. However, the density peaks occurred at different critical magnetic fields on both sides of antenna. Depending upon the direction of the magnetic field, in the m = +1 propagation side, the main density peak has been observed around 30 G of magnetic field. On this side, the density peak around 5 G corresponding to electron cyclotron resonance (ECR) is not very pronounced, whereas in the m = -1 propagation side, very pronounced ECR peak has been observed around 5 G. Another prominent density peak around 12 G has also been observed in m = -1 side. However, no peak has been observed around 30 G on this m = -1 side. This asymmetry in the results on both sides is explained on the basis of polarization reversal of left hand polarized waves to right hand polarized waves and vice versa in a bounded plasma system. The density peaking phenomena are likely to be caused by obliquely propagating helicon waves at the resonance cone boundary.

Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2013-01-15T23:59:59.000Z

255

Fast magnetosonic wave propagation and absorption in Tokamaks  

DOE Green Energy (OSTI)

Fast magnetostatic wave propagation and absorption in a tokamak model consisting of an axially symmetric cylindrical plasma column with a radially varying density profile is considered.

Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

1985-07-01T23:59:59.000Z

256

Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters  

Science Conference Proceedings (OSTI)

The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radio transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.

Belov, A. S., E-mail: alexis-belov@yandex.ru; Markov, G. A.; Ryabov, A. O. [Lobachevsky Nizhni Novgorod State University (Russian Federation); Parrot, M. [Environment Physics and Chemistry Laboratory (France)

2012-12-15T23:59:59.000Z

257

Density fluctuation measurements via beam emission spectroscopy (invited)  

SciTech Connect

Previous studies of plasma microturbulence have indicated that the fluctuation power scales with radial wave number, {ital k}{sub {perpendicular}} , like {ital k}{sub {perpendicular}}{sup {minus}2}{r arrow}{ital k}{sub {perpendicular}}{sup {minus}3.5} for {ital k}{sub {perpendicular}} {ge}2 cm{sup {minus}1}. This implies that low {ital k} fluctuations may dominate the spectrum. Beam emission spectroscopy (BES) has been developed to provide spatially localized measurements of density fluctuations in this low {ital k} region of the spectrum ({ital k}{sub {perpendicular}} {le}2 cm{sup {minus}1}). A 20-channel system has been installed on TFTR which images one of the heating neutral beams (via fiber optics) onto a set of photoconductive photodiode detectors. Fluctuations in the fluorescent {ital D}{sub {alpha}} emission from the beam can be related to the local plasma density fluctuations via a model of the atomic excitation processes. The analysis of BES data utilizes many of the standard statistical analysis techniques such as power spectra, coherency and cross phase, and correlation analysis which are also used in the analysis of, for example, Langmuir probe data. In the case of BES however, these techniques require some special modifications to account for systematic effects such as photon statistics and fluctuations in the neutral beam density induced by the strong fluctuations near the plasma edge.

Durst, R.D.; Fonck, R.J.; Cosby, G.; Evensen, H. (University of Wisconsin/Madison, Madison, Wisconsin 53706 (United States)); Paul, S.F. (Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08541 (United States))

1992-10-01T23:59:59.000Z

258

E2I EPRI Assessment Offshore Wave Energy Conversion Devices  

E-Print Network (OSTI)

of offshore wave power to provide efficient, reliable, cost-effective, and environmentally friendly electrical definition study in CY 2004. This study will produce system designs for wave energy conversion device power plants, performance estimate and economic assessments for one site ­ wave energy conversion device per

259

Theory of heating of hot magnetized plasma by Alfven waves. Application for solar corona  

E-Print Network (OSTI)

The heating of magnetized plasma by propagation of Alfven waves is calculated as a function of the magnetic field spectral density. The results can be applied to evaluate the heating power of the solar corona at known data from satellites' magnetometers. This heating rate can be incorporated in global models for heating of the solar corona and creation of the solar wind. The final formula for the heating power is illustrated with a model spectral density of the magnetic field obtained by analysis of the Voyager 1 mission results. The influence of high frequency dissipative modes is also taken into account and it is concluded that for evaluation of the total coronal heating it is necessary to know the spectral density of the fluctuating component of the magnetic field up to the frequency of electron-proton collisions.

T. M. Mishonov; M. V. Stoev; Y. G. Maneva

2007-01-19T23:59:59.000Z

260

Optimal combination of signals from co-located gravitational wave interferometers for use in searches for a stochastic background  

E-Print Network (OSTI)

This article derives an optimal (i.e., unbiased, minimum variance) estimator for the pseudo-detector strain for a pair of co-located gravitational wave interferometers (such as the pair of LIGO interferometers at its Hanford Observatory), allowing for possible instrumental correlations between the two detectors. The technique is robust and does not involve any assumptions or approximations regarding the relative strength of gravitational wave signals in the detector pair with respect to other sources of correlated instrumental or environmental noise. An expression is given for the effective power spectral density of the combined noise in the pseudo-detector. This can then be introduced into the standard optimal Wiener filter used to cross-correlate detector data streams in order to obtain an optimal estimate of the stochastic gravitational wave background. In addition, a dual to the optimal estimate of strain is derived. This dual is constructed to contain no gravitational wave signature and can thus be used ...

Lazzarini, A; Fritschel, P; McHugh, M; Regimbau, T; Reilly, K; Romano, J D; Whelan, J T; Whitcomb, S; Whiting, B F

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High Energy Density Capacitors  

SciTech Connect

BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

None

2010-07-01T23:59:59.000Z

262

Ultra high vacuum broad band high power microwave window  

DOE Patents (OSTI)

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

1997-01-01T23:59:59.000Z

263

Ultra high vacuum broad band high power microwave window  

DOE Patents (OSTI)

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

Nguyen-Tuong, V.; Dylla, H.F. III

1997-11-04T23:59:59.000Z

264

Nonlinear inertial Alfven wave in dusty plasmas  

SciTech Connect

Solitary inertial Alfven wave in the presence of positively and negatively charged dust particles is studied. It is found that electron density dips are formed in the super Alfvenic region and wave amplitude is increased for the case of negatively charged dust particles in comparison with positively charged dust particles in electron-ion plasmas.

Mahmood, S. [Theoretical Plasma Physics Division, P.O. Nilore Islamabad 44000 (Pakistan); National Center for Physics, Shadra Valley, Quaid-i-Azam University Islamabad 44000 (Pakistan); Saleem, H. [National Center for Physics, Shadra Valley, Quaid-i-Azam University Islamabad 44000 (Pakistan)

2011-11-29T23:59:59.000Z

265

Measurement of electron density with the phase-resolved cut-off probe method  

Science Conference Proceedings (OSTI)

The phase resolved cut-off probe method, a precise measurement method for the electron density, was recently proposed [J. H. Kwon et al., Appl. Phys. Lett. 96, 081502 (2010)]. This paper presents the measurements of electron density using the method under various experimental conditions (different pressures, powers, chamber volumes, and discharge sources). The result shows that the method is not only in good agreement with the previous method using wave transmittance under various experimental conditions but it is also able to find the cut-off point clearly even under difficult conditions such as high pressure ({approx} 1 Torr), high discharge power, and small plasma volume. The details of the experimental setup, the operating mechanism of the probe method, and the data processing procedure (algorithm) are also addressed. Furthermore, the reliability of the measurement method is investigated by using an electromagnetic field simulation with cold plasma model (CST-Drude model, Computer Simulation Technology).

Kwon, J. H.; Kim, D. W.; Na, B. K. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea 305-701 (Korea, Republic of); You, S. J.; Kim, J. H.; Shin, Y. H. [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon, Korea 305-306 (Korea, Republic of)

2011-07-15T23:59:59.000Z

266

Regression Models for Outlier Identification (Hurricanes and Typhoons) in Wave Hindcast Databases  

Science Conference Proceedings (OSTI)

The development of numerical wave prediction models for hindcast applications allows a detailed description of wave climate in locations where long-term instrumental records are not available. Wave hindcast databases (WHDBs) have become a powerful ...

R. Mínguez; B. G. Reguero; A. Luceńo; F. J. Méndez

2012-02-01T23:59:59.000Z

267

The 1998 November 14 Occultation of GSC 0622-00345 by Saturn. II. Stratospheric Thermal Profile, Power Spectrum, and Gravity Waves  

E-Print Network (OSTI)

On 1998 November 14, Saturn and its rings occulted the star GSC 0622-00345. The occultation latitude was 55.5 degrees S. This paper analyzes the 2.3 {\\mu}m light curve derived by Harrington & French. A fixed-baseline isothermal fit to the light curve has a temperature of 140 +/- 3 K, assuming a mean molecular mass of 2.35 AMU. The thermal profile obtained by numerical inversion is valid between 1 and 60 {\\mu}bar. The vertical temperature gradient is >0.2 K/km more stable than the adiabatic lapse rate, but it still shows the alternating-rounded-spiked features seen in many temperature gradient profiles from other atmospheric occultations and usually attributed to breaking gravity (buoyancy) waves. We conduct a wavelet analysis of the thermal profile, and show that, even with our low level of noise, scintillation due to turbulence in Earth's atmosphere can produce large temperature swings in light-curve inversions. Spurious periodic features in the "reliable" region of a wavelet amplitude spectrum can excee...

Harrington, Joseph; Matcheva, Katia; 10.1088/0004-637X/716/1/404

2010-01-01T23:59:59.000Z

268

Utilizing upper hybrid resonance for high density plasma production and negative ion generation in a downstream region  

Science Conference Proceedings (OSTI)

Localized wave-induced resonances are created by microwaves launched directly into a multicusp (MC) plasma device in the k Up-Tack B mode, where k is the wave vector and B is the static magnetic field. The resonance zone is identified as upper hybrid resonance (UHR), and lies r = {approx}22 mm away from the MC boundary. Measurement of radial wave electric field intensity confirms the right hand cutoff of the wave (r = 22.5-32.1 mm) located near the UHR zone. A sharp rise in the corresponding electron temperature in the resonance region by {approx}13 eV from its value away from resonance at r = 0, is favorable for the generation of vibrationally excited molecules of hydrogen. A transverse magnetic filter allows cold electrons ({approx}1-2 eV) to pass into the downstream region where they generate negative ions by dissociative attachment. Measurements of electron energy distribution function (EEDF) support the viewpoint. H{sup -} current density of {approx}0.26 mA/cm{sup 2} is obtained at a wave power density of {approx}3 W/cm{sup 2} at 2.0 mTorr pressure, which agrees reasonably well with results obtained from a steady state model using particle balance equations.

Sahu, Debaprasad; Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

2012-09-15T23:59:59.000Z

269

MHK Technologies/New Knowledge Wind and Wave Renewable Mobile Wind and Wave  

Open Energy Info (EERE)

Wind and Wave Renewable Mobile Wind and Wave Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform.jpg Technology Profile Primary Organization Darrel Dammen Technology Resource Click here Wave Technology Description Buoyant vessel attached to a lever the lever being attached to a stationary source like near shore Oil Rigs docks or a vessel less affected by swells and waves like large ships floating Oil rigs or boats the levers going up and down creates a torque at the pivot point by the vessel being raised and lowered this works on all size levers making it possible to collect energy from all size Waves with enough levers with in reasonable size and numbers the force can be used hydraulically mechanically or to compress air to power generators Ten tons going up and down is a lot of force when connected to a 100 so connecting to 100 tons then to 50 tons then to 25 tons then to 10 tons to 5 tons to 2 tons continuing down in size and multiplying the levers from the less affected floating object or stationary object will mean We collect energy from 1 foot to 100 foot waves and swells This Wind and Wave with 120 oarsmen showing buoyant vessels are the oarsman in this picture with hund

270

The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves  

SciTech Connect

The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.

Jamil, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Crescent Model School Shadman, Lahore 54000 (Pakistan); Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salimullah, M. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh)

2010-07-15T23:59:59.000Z

271

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

Nero, jA.V.

2010-01-01T23:59:59.000Z

272

Electron Bernstein Wave Research on the National Spherical Torus Experiment  

SciTech Connect

Off-axis electron Bernstein wave current drive (EBWCD) may be critical for sustaining noninductive high-beta National Spherical Torus Experiment (NSTX) plasmas. Numerical modeling results predict that the {approx}100 kA of off-axis current needed to stabilize a solenoid-free high-beta NSTX plasma could be generated via Ohkawa current drive with 3 MW of 28 GHz EBW power. In addition, synergy between EBWCD and bootstrap current may result in a 10% enhancement in current-drive efficiency with 4 MW of EBW power. Recent dual-polarization EBW radiometry measurements on NSTX confirm that efficient coupling to EBWs can be readily accomplished by launching elliptically polarized electromagnetic waves oblique to the confining magnetic field, in agreement with numerical modeling. Plans are being developed for implementing a 1 MW, 28 GHz proof-of-principle EBWCD system on NSTX to test the EBW coupling, heating and current-drive physics at high radio-frequency power densities.

G. Taylor; A. Bers; T.S. Bigelow; M.D. Carter; J.B. Caughman; J. Decker; S. Diem; P.C. Efthimion; N.M. Ershov; E. Fredd; R.W. Harvey; J. Hosea; F. Jaeger; J. Preinhaelter; A.K. Ram; D.A. Rasmussen; A.P. Smirnov; J.B. Wilgen; J.R. Wilson

2005-04-21T23:59:59.000Z

273

Oceanic Internal Waves Are Not Weak Waves  

Science Conference Proceedings (OSTI)

It is shown that the oceanic internal wave field is too energetic by roughly two orders of magnitude to be treated theoretically as an assemblage of weakly interacting waves. This may be seen both from recent weak wave theoretical calculations ...

Greg Holloway

1980-06-01T23:59:59.000Z

274

Decays of electron Bernstein waves near plasma edge  

Science Conference Proceedings (OSTI)

Nonlinear wave-wave couplings near the upper hybrid resonance are studied via particle-in-cell simulations. It is found that the decay of an electron Bernstein wave (EBW) depends on the ratio of the incident frequency and electron cyclotron frequency. For ratios less than two, parametric decay into a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency is observed. For ratios larger than two, the daughter waves could be an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. For sufficiently high incident power, the former process may dominate. Because of the electron cyclotron quasi-mode, electrons can be strongly heated by nonlinear Landau damping. As a result, the bulk of the incident power can be absorbed near plasma edge at high power. The increase in number of decay channels with frequency implies that the allowable power into the plasma must decrease with frequency.

Xiang Nong [Institute of Plasma Physics, CAS, Hefei, Anhui 230031 (China); Center for Integrated Plasma Studies, University of Colorado at Boulder, Boulder, Colorado 80309 (United States); Cary, John R. [Center for Integrated Plasma Studies, University of Colorado at Boulder, Boulder, Colorado 80309 (United States); Tech-X Corporation, Boulder, Colorado 80303 (United States)

2011-12-15T23:59:59.000Z

275

Plasma beat-wave accelerator  

Science Conference Proceedings (OSTI)

We perform an analytic study of some quantities relevant to the plasma beat-wave accelerator (PBWA) concept. We obtain analytic expressions for the plasma frequency, longitudinal electron velocity, plasma density and longitudinal plasma electric field of a nonlinear longitudinal electron plasma oscillation with amplitude less than the wave-breaking limit and phase velocity approaching the speed of light. We also estimate the luminosity of a single-pass e/sup +/e/sup -/ linear PBWA collider assuming the energy and collision beamstrahlung are fixed parameters.

Noble, R.J.

1983-06-01T23:59:59.000Z

276

MHD Wave Propagation in the Neighbourhood of Two Null Points  

E-Print Network (OSTI)

The nature of fast magnetoacoustic and Alfv\\'en waves is investigated in a zero $\\beta$ plasma in the neighbourhood of a pair of two-dimensional null points. This gives an indication of wave propagation in the low $\\beta$ solar corona, for a more complicated magnetic configuration than that looked at by McLaughlin & Hood (2004). It is found that the fast wave is attracted to the null points and that the front of the wave slows down as it approaches the null point pair, with the wave splitting and part of the wave accumulating at one null and the rest at the other. Current density will then accumulate at these points and ohmic dissipation will then extract the energy in the wave at these points. This suggests locations where wave heating will occur in the corona. The Alfv\\'en wave behaves in a different manner in that the wave accumulates along the separatrices. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. However, the phenomenon of wave accumulation at a specific place is a feature of both wave types, and illustrates the importance of studying the topology of the corona when considering MHD wave propagation.

J. A. McLaughlin; A. W. Hood

2007-12-11T23:59:59.000Z

277

Fast-wave ion cyclotron resonance heating experiments on the Alcator C tokamak  

DOE Green Energy (OSTI)

In this paper, minority regime fast-wave ICRF (Ion cyclotron range of frequency) heating experiments conducted on the Alcator C tokamak (Nucl. Fusion {bold 26}, 1665 (1986)) are described. Up to 450 kW of rf (radio frequency) power at frequency {ital f}=180 MHz was injected into plasmas composed of deuterium majority and hydrogen minority ion species at magnetic fields of {ital B}{sub 0}{congruent}12 T, densities 0.8{le}{ital {bar n}}{sub {ital e}}{le}5{times}10{sup 20} m{sup {minus}3}, and minority concentrations 0.25{approx lt}{eta}{sub H}{le}8%. Typical ion temperatures were {ital T}{sub D}(0){similar to}1 keV, while, depending on density, typical electron temperatures were in the range {ital T}{sub {ital e}}(0){similar to}1.5--2.5 keV. Central deuterium ion temperature increases of {Delta}{ital T}{sub D}(0)=400 eV were observed at {ital {bar n}}{sub {ital e}}=1{times}10{sup 20} m{sup {minus}3}, while significantly smaller ion temperature increases were observed at higher densities. At the highest densities, ion heating became insignificant due in part to a limitation on power handling by the antenna that became more severe with increasing density. Significant electron heating was not observed at any density. Heating of the minority species at low densities indicated severe losses, but at higher densities it was consistent with efficient collisional coupling of the rf power from the hydrogen minority species to the deuterium majority species. Analysis of the deuterium power balance indicated no significant change in the deuterium thermal transport properties as a function of rf power. This may be consistent with the fact that the rf power never exceeded the Ohmic heating (OH) contribution. However, a very strong dependence of the deuterium transport properties on density was observed, and appears to be the dominant process limiting the effectiveness of ICRF heating at high density.

Shepard, T.D.; Fiore, C.L.; McDermott, F.S.; Parker, R.R.; Porkolab, M. (Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (USA))

1991-07-01T23:59:59.000Z

278

A KINETIC MODEL OF SOLAR WIND GENERATION BY OBLIQUE ION-CYCLOTRON WAVES  

Science Conference Proceedings (OSTI)

The fast solar wind is generated by extended perpendicular ion heating in coronal holes, but the kinetic mechanism responsible for this heating has not been determined. One long-standing possibility is the resonant-cyclotron dissipation of ion-cyclotron waves, replenished from a turbulent cascade of interacting counter-propagating Alfven waves. We present results of a kinetic model for proton heating by the quasilinear resonant-cyclotron wave-particle interaction in a coronal hole. The resonant wave spectrum is taken as a power law in wavenumber, uniformly distributed in propagation direction between 0 deg. and 60 deg. with respect to the large-scale radial magnetic field. We obtain the steady-state solution of the kinetic guiding-center equation for the proton distribution in an expanding coronal hole, including the effects of large-scale forces of gravity, charge-separation electric field, Alfven wave ponderomotive force, and mirror force, along with the small-scale scattering from the wave dissipation. We find that plausible wave intensities can yield reasonable flow speeds and temperatures in the heliocentric radial range between 2 and 6 solar radii. We address the claim in earlier work that dissipation of parallel-propagating ion-cyclotron waves cannot provide enough acceleration and show that claim to be incorrect. We find that the combined action of the large-scale forces and the resonant-cyclotron scattering produces proton distribution functions with a characteristic structure: compressed in the sunward half of velocity space with a high-density shell separate from the origin, and relatively expanded in the anti-sunward half of velocity space. We suggest that qualitatively similar proton distributions would result from the kinetic evolution of any sufficiently effective perpendicular heating mechanism operating in an expanding coronal hole.

Isenberg, Philip A.; Vasquez, Bernard J. [Institute for the Study of Earth, Oceans and Space and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)

2011-04-20T23:59:59.000Z

279

WindWaveFloat Final Report  

DOE Green Energy (OSTI)

capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

Alla Weinstein, Dominique Roddier, Kevin Banister

2012-03-30T23:59:59.000Z

280

WindWaveFloat Final Report  

Science Conference Proceedings (OSTI)

Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided that the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.

Alla Weinstein, Dominique Roddier, Kevin Banister

2012-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

IBW and fast wave launching and damping on TFTR  

Science Conference Proceedings (OSTI)

Antennas to provide direct IBW excitation and to improve the launched spectrum and power handling for mode converted (MC) IBW excitation have been installed on TFTR to support studies of transport barrier formation inside the TFTR plasma. Initial IBW launching/heating experiments have been performed at f{sub RF}{approx}76MHz and 50.6 MHz for several antenna and plasma positions, several magnetic fields (D, T, H, {sup 3}He resonances), and with and without neutral beam injection. Although the measured surface density profiles in front of the antenna should theoretically support IBW launching to the plasma core via EPW excitation, loading resistance parameter dependence and heating results suggest that the wave energy is being deposited mostly in the plasma periphery. The potential roles of surface fast wave and near field excitation/damping on the IBW performance are discussed. Also MC IBW damping of the fast wave has been significantly improved through the removal of lithium 7 from the plasma. {copyright} {ital 1997 American Institute of Physics.}

Hosea, J.C.; Bell, R.; Hill, K.; LeBlanc, B.; Majeski, R.; Nazikian, R.; Ono, M.; Phillips, C.K.; Rogers, J.H.; Schilling, G.; Wilson, J.R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); DIppolito, D.A.; Myra, J.R. [Lodestar Research Corporation, Boulder, Colorado 80301 (United States); Bush, C.E.; Hanson, G.R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

1997-04-01T23:59:59.000Z

282

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

is At the local level, the NRC Regulatory Staff has acceptedcriteria, if appropriate, NRC criteria for land use andPopulation Center Distance NRC Density Criteria Emergency

Nero, jA.V.

2010-01-01T23:59:59.000Z

283

Rotordynamics in alternative energy power generation.  

E-Print Network (OSTI)

??This thesis analyses and discusses the main alternative energy systems that work with rotordynamics machines to generate power. Hydropower systems, wave and ocean energy, geothermal,… (more)

Cortes-Zambrano, Ivan

2011-01-01T23:59:59.000Z

284

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... For energy dependent cross sections please go to ... The neutron scattering length density is defined ... To calculate scattering length densities enter a ...

285

Power outages often spur questions around burying power lines ...  

U.S. Energy Information Administration (EIA)

Despite the cost, underground power lines are often found in urban areas, where the density of the required overhead wire would cause significant obstructions.

286

The Response of an Open Stratospheric Balloon to the Presence of Inertio-Gravity Waves  

Science Conference Proceedings (OSTI)

Analytic solutions for the vertical response of an open stratospheric balloon to the presence of inertio-gravity waves during its descent are obtained. Monochromatic waves with simultaneous variations in density, velocity, and temperature are ...

P. Alexander; J. Cornejo; A. De la Torre

1996-01-01T23:59:59.000Z

287

Breakdown of Vertically Propagating Two-Dimensional Gravity Waves Forced by Orography  

Science Conference Proceedings (OSTI)

The propagation of orographic gravity waves into an atmosphere with exponentially decreasing density is simulated with a two-dimensional, nonlinear, time-dependent numerical model. After the stationary wave is established over the mountain, the ...

Julio T. Bacmeister; Mark R. Schoeberl

1989-07-01T23:59:59.000Z

288

Unstable Waves on Oceanic Fronts: Large Amplitude Behavior and Mean Flow Generation  

Science Conference Proceedings (OSTI)

A primitive equation numerical model is used to study the large amplitude behavior of unstable waves on an oceanic density front, concentrating on a single wave mode corresponding to the fastest growing linear solution. At Small amplitude the ...

Richard A. Wood

1988-05-01T23:59:59.000Z

289

POWER ESTIMATION FOR FIELD PROGRAMMABLE GATE ARRAYS  

E-Print Network (OSTI)

...........................................................................62 Figure 4.10 Power versus average input transition densities for a 4-Input LUT................................................63 Figure 4.11 Power versus different LUT sizes with an input transition density of 0........................................................64 Figure 4.13 Power versus different average input transition densities for a 16-Input Multiplexer

Wilton, Steve

290

SeWave | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » SeWave Jump to: navigation, search Name SeWave Place Denmark Zip FO-110 Product Denmark-based 50:50 JV between UK's Wavegen and Faroese electricity company SEV to to design and build a tunnelled demonstration wave power plant in the Faroes Islands. References SeWave[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. SeWave is a company located in Denmark . References ↑ "SeWave"

291

Refrigeration system having standing wave compressor  

DOE Patents (OSTI)

A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

Lucas, Timothy S. (Glen Allen, VA)

1992-01-01T23:59:59.000Z

292

Data Center Power Consumption  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Power Consumption Center Power Consumption A new look at a growing problem Fact - Data center power density up 10x in the last 10 years 2.1 kW/rack (1992); 14 kW/rack (2007) Racks are not fully populated due to power/cooling constraints Fact - Increasing processor power Moore's law Fact - Energy cost going up 3 yr. energy cost equivalent to acquisition cost Fact - Iterative power life cycle Takes as much energy to cool computers as it takes to power them. Fact - Over-provisioning Most data centers are over-provisioned with cooling and still have hot spots November 2007 SubZero Engineering An Industry at the Crossroads Conflict between scaling IT demands and energy efficiency Server Efficiency is improving year after year Performance/Watt doubles every 2 years Power Density is Going Up

293

Wave–Wave Interaction of Unstable Baroclinic Waves  

Science Conference Proceedings (OSTI)

Two slightly unstable baroclinic waves in the two-layer Phillips model are allowed to interact with each other as well as the mean flow. A theory for small dissipation rates is developed to examine the role of wave–wave interaction in the ...

Joseph Pedlosky; Lorenzo M. Polvani

1987-02-01T23:59:59.000Z

294

Role of plasma edge in the direct launch Ion Bernstein Wave experiment in TFTR  

Science Conference Proceedings (OSTI)

Two types of direct IBW launching, EPW{R_arrow}IBW and CESICW{R_arrow}IBW are investigated using two numerical codes, Full Hot Plasma Ray-Tracing Code and SEMAL Full Wave Slab Code, for the TFTR direct launch IBW experimental parameters. The measured density profiles (by microwave reflectometry) in TFTR appear to be satisfactory for IBW launching while the observed stored energy rise compared to the expected value (ray tracing+TRANSP) indicates only up to 50{percent} of launched power is reaching the plasma core. Possible causes of IBW inefficiency are also discussed. {copyright} {ital 1997 American Institute of Physics.}

Ono, M. [Princeton Plasma Physics Laboratory, Princeton University, New Jersey (United States); Bush, C.E. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States); Cesario, R. [C.R.E., Association EUR-ENEA, Frascati (Italy); Hanson, G.R. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States); Hosea, J.; LeBlanc, B.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton University, New Jersey (United States); Paoletti, F. [Department of Applied Physics, Columbia University, New York (United States); Phillips, C.K.; Rogers, J.H. [Princeton Plasma Physics Laboratory, Princeton University, New Jersey (United States); Sauter, O. [Association EURATOM-SUISSE, EPFL Lausanne (Switzerland); Schilling, G.; Wilson, J.R. [Princeton Plasma Physics Laboratory, Princeton University, New Jersey (United States)

1997-04-01T23:59:59.000Z

295

Role of plasma edge in the direct launch Ion Bernstein Wave experiment in TFTR  

SciTech Connect

Two types of direct IBW launching, EPW {R_arrow} IBW and CESICW {R_arrow} IBW are investigated using two numerical codes, Full Hot Plasma Ray-Tracing Code and SEMAL Full Wave Slab Code, for the TFTR direct launch IBW experimental parameters. The measured density profiles (by microwave reflectometry) in TFTR appear to be satisfactory for IBW launching while the observed stored energy rise compared to the expected value (ray tracing + TRANSP) indicates only up to 50% of launched power is reaching the plasma core. Possible causes of IBW inefficiency are also discussed.

Ono, M.; Cesario, R. [Oak Ridge National Lab., TN (United States); Bush, C.E. [Association EUR-ENEA, Frascati (Italy)] [and others

1997-06-01T23:59:59.000Z

296

External control of ion waves in a plasma by high frequency fields  

DOE Patents (OSTI)

An apparatus and method are described for stabilizing plasma instabilities, in a magnetically confined plasma column by transmitting into the plasma high frequency electromagnetic waves at a frequency close to the electron plasma frequency. The said frequencies, e.g., are between the plasma frequency and 1.5 times the plasma frequency at a power level below the level for producing parametric instabilities in a plasma having temperatures from below 10 eV to about 10 keV or more, at densities from below 10/sup 13/ to above 10/sup 18/ particles/cm/sup 3/. (Official Gazette)

Kaw, P.K.; Dawson, J.M.

1973-12-18T23:59:59.000Z

297

Superconducting Power Cables  

Science Conference Proceedings (OSTI)

Power cables constructed from superconducting materials are being realized in utility demonstrations within the United States. Cooled by liquid nitrogen, high temperature superconducting power cables can transfer large amounts of power through relatively small cross sections. The key to their high power capacity is the high current density inherent with superconductors; a superconducting wire can conduct several times as much current as copper or aluminum conductors of the same cross section. For the pas...

2006-11-30T23:59:59.000Z

298

Relativistic shock waves in viscous gluon matter  

E-Print Network (OSTI)

We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio $\\eta/s$ from zero to infinity. We show that an $\\eta/s$ ratio larger than 0.2 prevents the development of well-defined shock waves on timescales typical for ultrarelativistic heavy-ion collisions. Comparisons with viscous hydrodynamic calculations confirm our findings.

I. Bouras; E. Molnar; H. Niemi; Z. Xu; A. El; O. Fochler; C. Greiner; D. H. Rischke

2009-02-11T23:59:59.000Z

299

Shock wave propagation in vibrofluidized granular materials  

E-Print Network (OSTI)

Shock wave formation and propagation in two-dimensional granular materials under vertical vibration are studied by digital high speed photography. The steepen density and temperature wave fronts form near the plate as granular layer collides with vibrating plate and propagate upward through the layer. The temperature front is always in the transition region between the upward and downward granular flows. The effects of driving parameters and particle number on the shock are also explored.

Kai Huang; Guoqing Miao; Peng Zhang; Yi Yun; Rongjue Wei

2005-11-29T23:59:59.000Z

300

Parametric internal waves in a compressible fluid  

E-Print Network (OSTI)

We describe the effect of vibration on a confined volume of fluid which is density stratified due to its compressibility. We show that internal gravity-acoustic waves can be parametrically destabilized by the vibration. The resulting instability is similar to the classic Faraday instability of surface waves, albeit modified by the compressible nature of the fluid. It may be possible to observe experimentally near a gas-liquid critical point.

Kausik S. Das; Stephen W. Morris; A. Bhattacharyay

2007-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Parametric internal waves in a compressible fluid  

E-Print Network (OSTI)

We describe the effect of vibration on a confined volume of fluid which is density stratified due to its compressibility. We show that internal gravity-acoustic waves can be parametrically destabilized by the vibration. The resulting instability is similar to the classic Faraday instability of surface waves, albeit modified by the compressible nature of the fluid. It may be possible to observe experimentally near a gas-liquid critical point.

Das, Kausik S; Bhattacharyay, A

2007-01-01T23:59:59.000Z

302

MHK Technologies/bioWave | Open Energy Information  

Open Energy Info (EERE)

bioWave bioWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioWave.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Project(s) where this technology is utilized *MHK Projects/bioWAVE Pilot Plant Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description TThe bioWAVE is based on the swaying motion of sea plants in the presence of ocean waves. The hydrodynamic interaction of the buoyant blades with the oscillating flow field is designed for maximum energy absorption. Mooring Configuration Gravity base Optimum Marine/Riverline Conditions 30 to 50M depth 20kW m wave climate or greater

303

A Thunderstorm Bow Wave  

Science Conference Proceedings (OSTI)

The thunderstorm solitary gust or bow wave, observed by Doviak and Ge, is examined from the viewpoint of boundary layer wave theory. It is concluded that all its well defined characteristics are consistently modeled as a bow wave of ducted ...

G. Chimonas; Carmen J. Nappo

1987-02-01T23:59:59.000Z

304

The Sandia Wave Reflector  

The Sandia wave reflector is a magnetic conductor for wireless transmissions near 433 MHz. The device reflects perpendicular electromagnetic waves in-phase and suppresses surface waves resulting in improved gain performance and effective operation ...

305

Geostrophic Shock Waves  

Science Conference Proceedings (OSTI)

Organized depth discontinuities involving a balance between steepening and dissipation are usually referred to as shock waves. An analytical “educed gravity” model is used to examine a special kind of shock wave. The wave under study is a depth ...

Doron Nof

1986-05-01T23:59:59.000Z

306

Ion acoustic shock waves in degenerate plasmas  

SciTech Connect

Korteweg de Vries Burgers equation for negative ion degenerate dissipative plasma has been derived using reductive perturbation technique. The quantum hydrodynamic model is used to study the quantum ion acoustic shock waves. The effects of different parameters on quantum ion acoustic shock waves are studied. It is found that quantum parameter, electrons Fermi temperature, temperature of positive and negative ions, mass ratio of positive to negative ions, viscosity, and density ratio have significant impact on the shock wave structure in negative ion degenerate plasma.

Akhtar, N. [Theoretical Plasma Physics Division, PINSTECH, Nilore, Islamabad 44000 Pakistan (Pakistan); Hussain, S. [Theoretical Plasma Physics Division, PINSTECH, Nilore, Islamabad 44000 Pakistan (Pakistan); Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad 44000 Pakistan (Pakistan)

2011-07-15T23:59:59.000Z

307

Fusion power production from TFTR plasmas fueled with deuterium and tritium  

Science Conference Proceedings (OSTI)

Peak fusion power production of 6.2[plus minus]0.4 MW has been achieved in TFTR plasmas heated by deuterium and tritium neutral beams at a total power of 29.5 MW. These plasmas have an inferred central fusion alpha particle density of 1.2[times]10[sup 17] m[sup [minus]3] without the appearance of either disruptive magnetohydrodynamics events or detectable changes in Alfven wave activity. The measured loss rate of energetic alpha particles agreed with the approximately 5% losses expected from alpha particles which are born on unconfined orbits.

Strachan, J.D.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Ashcroft, D.; Barnes, C.W.; Barnes, G.; Batha, S.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N.L.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Cauffman, S.; Chang, Z.; Cheng, C.Z.; Collins, J.; Coward, G.; Darrow, D.S.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Fisher, R.; Fonck, R.J.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Gentile, C.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kugel, H.; Lam, N.T.; LaMarche, P.H.; Loughlin, M.J.; LeBlanc, B.; Leonard, M.; Levinton, F.M.; Machuzak, J.; Mansfield, D.K.; Martin, A.; Mazzucato, E.; Majeski, R.; Marmar, E.; McChesney, J.; McCormack, B.; McCune, D.C.; McGuire, K.M.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkels

1994-05-30T23:59:59.000Z

308

RESEARCH PAPER High-current density DC magenetohydrodynamics micropump  

E-Print Network (OSTI)

are used in fusion reactors, power plants, liquid metal processing, propulsion engines, and many other (1942) as electro- magnetic hydrodynamic wave. The main reasons for the significant interest in MHD

Kassegne, Samuel Kinde

309

d-/sup 3/He reaction measurements during fast wave minority heating in PLT  

SciTech Connect

Time- and energy-resolved d-/sup 3/He fusion reactions have been measured to infer the energy of the d/sup +/ or He/sup + +/ minority ions heated near their cyclotron frequency by the magnetosonic fast wave. The average energy of the reacting /sup 3/He ions during /sup 3/He minority heating is in the range of 100 to 400 keV, as deduced from the magnitude of the reaction rate, its decay time, and the energy spread of the proton reaction products. The observed reaction rate and its scaling with wave power and electron density and temperature are in qualitative agreement with a radial reaction rate model using the minority distribution predicted from quasilinear velocity space diffusion. Oscillations in the reaction rate are observed concurrent with sawtooth and m = 2 MHD activity in the plasma.

Chrien, R.E.; Strachan, J.D.

1983-01-01T23:59:59.000Z

310

Wave and Hydrokinetics Interest Group 1st Meeting of 2009/2010 Year  

E-Print Network (OSTI)

.S. wave power plant license issued by FERC for the 1-MW Makah Bay, WA project was surrendered by Finavera Status ­ Wave power plant projects are being permitted in Europe ­ The time, cost and complexity of the U five years . · Economic Status: The first U.S. commercial wave plant project in Reedsport, OR, was made

311

Ion Bernstein wave heating research  

SciTech Connect

Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW`s low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much_lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW`s that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW`s can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

Ono, Masayuki

1992-03-01T23:59:59.000Z

312

Ion Bernstein wave heating research  

Science Conference Proceedings (OSTI)

Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity ({omega}/k{sub {perpendicular}} {approx} V{sub Ti} {much lt} V{sub {alpha}}) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion {alpha}-particles. In addition, the property of IBW's that k{sub {perpendicular}} {rho}{sub i} {approx} 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research.

Ono, Masayuki.

1992-03-01T23:59:59.000Z

313

Navy Catching Waves in Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii Navy Catching Waves in Hawaii June 2, 2010 - 11:56am Addthis This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. This experimental power-generating buoy installed off the coast of Oahu can produce enough energy to power 25 homes under optimal conditions. | Photo courtesy of Ocean Power Technologies, Inc. To a casual observer, the buoy off the shore of Marine Corps Base Hawaii (MCBH) might look like nothing more than a bright yellow spot in a blue ocean. But this isn't an ordinary buoy - it's a small electrical generator, creating renewable electricity as it bobs up and down on the waves. It's also a test project by the U.S. Navy to see whether a wider

314

Shear-wave splitting and reservoir crack characterization: the...  

Open Energy Info (EERE)

of its geothermal potential and day-to-day production. To detect the geometry and density of fracture systems we applied the shear-wave splitting technique to a large number...

315

Spin and the Thermal Equilibrium Distribution of Wave Functions  

E-Print Network (OSTI)

Consider a quantum system $S$ weakly interacting with a very large but finite system $B$ called the heat bath, and suppose that the composite $S\\cup B$ is in a pure state $\\Psi$ with participating energies between $E$ and $E+\\delta$ with small $\\delta$. Then, it is known that for most $\\Psi$ the reduced density matrix of $S$ is (approximately) equal to the canonical density matrix. That is, the reduced density matrix is universal in the sense that it depends only on $S$'s Hamiltonian and the temperature but not on $B$'s Hamiltonian, on the interaction Hamiltonian, or on the details of $\\Psi$. It has also been pointed out that $S$ can also be attributed a random wave function $\\psi$ whose probability distribution is universal in the same sense. This distribution is known as the "Scrooge measure" or "Gaussian adjusted projected (GAP) measure"; we regard it as the thermal equilibrium distribution of wave functions. The relevant concept of the wave function of a subsystem is known as the "conditional wave function". In this paper, we develop analogous considerations for particles with spin. One can either use some kind of conditional wave function or, more naturally, the "conditional density matrix", which is in general different from the reduced density matrix. We ask what the thermal equilibrium distribution of the conditional density matrix is, and find the answer that for most $\\Psi$ the conditional density matrix is (approximately) deterministic, in fact (approximately) equal to the canonical density matrix.

Viraj Pandya; Roderich Tumulka

2013-06-07T23:59:59.000Z

316

Fundamental Guided Wave Metrology  

Science Conference Proceedings (OSTI)

Fundamental Guided Wave Metrology. Summary: ... The program is focused on fundamental measurement research for microwave parameters. ...

2010-10-05T23:59:59.000Z

317

LONGITUDINAL OSCILLATIONS IN DENSITY STRATIFIED AND EXPANDING SOLAR WAVEGUIDES  

Science Conference Proceedings (OSTI)

Waves and oscillations can provide vital information about the internal structure of waveguides in which they propagate. Here, we analytically investigate the effects of density and magnetic stratification on linear longitudinal magnetohydrodynamic (MHD) waves. The focus of this paper is to study the eigenmodes of these oscillations. It is our specific aim to understand what happens to these MHD waves generated in flux tubes with non-constant (e.g., expanding or magnetic bottle) cross-sectional area and density variations. The governing equation of the longitudinal mode is derived and solved analytically and numerically. In particular, the limit of the thin flux tube approximation is examined. The general solution describing the slow longitudinal MHD waves in an expanding magnetic flux tube with constant density is found. Longitudinal MHD waves in density stratified loops with constant magnetic field are also analyzed. From analytical solutions, the frequency ratio of the first overtone and fundamental mode is investigated in stratified waveguides. For small expansion, a linear dependence between the frequency ratio and the expansion factor is found. From numerical calculations it was found that the frequency ratio strongly depends on the density profile chosen and, in general, the numerical results are in agreement with the analytical results. The relevance of these results for solar magneto-seismology is discussed.

Luna-Cardozo, M. [Instituto de Astronomia y Fisica del Espacio, CONICET-UBA, CC. 67, Suc. 28, 1428 Buenos Aires (Argentina); Verth, G. [School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Erdelyi, R., E-mail: mluna@iafe.uba.ar, E-mail: robertus@sheffield.ac.uk, E-mail: gary.verth@northumbria.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

2012-04-01T23:59:59.000Z

318

Buoyancy waves in Pluto's high atmosphere: Implications for stellar occultations  

E-Print Network (OSTI)

We apply scintillation theory to stellar signal fluctuations in the high-resolution, high signal/noise, dual-wavelength data from the MMT observation of the 2007 March 18 occultation of P445.3 by Pluto. A well-defined high wavenumber cutoff in the fluctuations is consistent with viscous-thermal dissipation of buoyancy waves (internal gravity waves) in Pluto's high atmosphere, and provides strong evidence that the underlying density fluctuations are governed by the gravity-wave dispersion relation.

Hubbard, W B; Kulesa, C A; Benecchi, S D; Person, M J; Elliot, J L; Gulbis, A A S

2009-01-01T23:59:59.000Z

319

Microsoft PowerPoint - 0909_Prague_Steg  

National Nuclear Security Administration (NNSA)

Materials Science Prague, August 30 - September 4, 2009 Density Functional Theory ) ( N r r N-electron wave function ) (r n r One-electron density Hohenberg-Kohn theorem...

320

Kinematics of Turbulence Convected by a Random Wave Field  

Science Conference Proceedings (OSTI)

Turbulent velocity spectra measured beneath wind waves show a large enhancement about the central wave frequency. A “5/3" frequency dependence can be seen both above and below the central peak, but with an apparent increase in spectral density at ...

J. L. Lumley; E. A. Terray

1983-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DIELECTRIC-LOADED WAVE-GUIDES  

DOE Patents (OSTI)

This patent presents a particular arrangement for delectric loading of a wave-guide carrying an electromagnetic wave in the E or TM mode of at least the second order, to reduce the power dissipated as the result of conduction loss in the wave-guide walls. To achieve this desirabie result, the effective dielectric constants in the radial direction of adjacent coaxial tubular regions bounded approximateiy by successive nodai surfaces within the electromagnetic field are of two different values alternating in the radial direction, the intermost and outermost regions being of the lower value, and the dielectric constants between nodes are uniform.

Robertson-Shersby-Harvie, R.B.; Mullett, L.B.

1957-04-23T23:59:59.000Z

322

Production of high power femtosecond terahertz radiation  

SciTech Connect

The terahertz (THz) region of the electromagnetic spectrum is attracting interest for a broad range of applications ranging from diagnosing electron beams to biological imaging. Most sources of short pulse THz radiation utilize excitation of biased semiconductors or electro-optic crystals by high peak power lasers. For example, this was done by using an un-doped InAs wafer irradiated by a femtosecond free-electron laser (FEL) at the Thomas Jefferson National Accelerator Facility. Microwatt levels of THz radiation were detected when excited with FEL pulses at 1.06 mm wavelength and 10W average power. Recently substantially higher powers of femtosecond THz pulses produced by synchrotron emission were extracted from the electron beamline. Calculations and measurements confirm the production of coherent broadband THz radiation from relativistic electrons with an average power of nearly 20W, a world record in this wavelength range by a factor of 10,000. We describe the source, presenting theoretical calculations and their experimental verification. Potential applications of this exciting new source include driving new non-linear phenomena, performing pump-probe studies of dynamical properties of novel materials, and studying molecular vibrations and rotations, low frequency protein motions, phonons, superconductor band gaps, electronic scattering, collective electronic excitations (e.g., charge density waves), and spintronics.

Neil, George R.; Carr, G.L.; Gubeli III, Joseph F.; Jordan, K.; Martin, Michael C.; McKinney, Wayne R.; Shinn, Michelle; Tani, Masahiko; Williams, G.P.; Zhang, X.-C.

2003-07-11T23:59:59.000Z

323

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-and RelatedStandards for Fossil-Fuel and Geothermal Power

Nero, jA.V.

2010-01-01T23:59:59.000Z

324

Excitation of electrostatic ion-cyclotron waves by an ion beam in a two-ion component plasma  

SciTech Connect

An ion beam propagating through a magnetized plasma cylinder containing electrons, light positive potassium ions (K{sup +}), and heavy positive cesium ions (Cs{sup +}) drives electrostatic ion cyclotron (EIC) waves to instability via Cerenkov interaction. Two EIC wave modes are present, the K{sup +} and Cs{sup +} modes. The unstable wave frequencies and the growth rate of both the light positive ion and heavy positive ion modes increase with an increase in their relative ion concentrations. The growth rate of both the unstable modes (K{sup +} and Cs{sup +}) scales one-third power of the beam density. The real part of the frequency of both the unstable modes (K{sup +} and Cs{sup +}) increases with the beam energy and scales as almost one-half power of the beam energy. Numerical calculations of the growth rate and mode frequencies have been carried out for the parameters of the experiment of Suszcynsky et al. [J. Geophys. Res. 94, 8966 (1989)]. It is found that the unstable wave frequencies of both the light positive ion and heavy positive ion modes increase with the magnetic fields in accordance with the experimental observations.

Sharma, Jyotsna [Department of Physics, KIIT College of Engineering, Bhondsi Gurgaon 122102 (India); Sharma, Suresh C. [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-1, Sector-22, Rohini, Delhi 110086 (India)

2010-12-15T23:59:59.000Z

325

Suppression of stimulated Raman scattering due to localization of electron plasma wave in laser beam filaments  

Science Conference Proceedings (OSTI)

The filamentation of the high power laser beam by taking off-axial contribution is investigated when ponderomotive nonlinearity is taken into account. The splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. It is observed that the weak electron plasma wave (EPW) propagating in the z direction is nonlinearly coupled in the modified filamentary regions of the laser beam. The semianalytical solution of the nonlinear coupled EPW equation in the presence of laser beam filaments has been found and it is observed that the nonlinear coupling between these two waves leads to localization of the EPW. Stimulated Raman scattering (SRS) of this EPW is studied and backreflectivity has been calculated. Further, the localization of EPW affects the eigenfrequency and damping of plasma wave. As a result of this, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. For the typical laser beam and plasma parameters with wavelength ({lambda}=1064 nm), power flux ({approx_equal}10{sup 16} W cm{sup -2}), and plasma density (n/n{sub cr})=0.2; the backreflectivity was found to be suppressed by a factor of around 20%.

Sharma, Prerana; Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology, New Delhi 110016 (India)

2009-03-15T23:59:59.000Z

326

High Harmonic Fast Wave Heating Efficiency Enhancement and Current Drive at Longer Wavelength on the National Spherical Torus Experiment  

Science Conference Proceedings (OSTI)

High harmonic fast wave heating and current drive CD are being developed on the National Spherical Torus Experiment M. Ono et al., Nucl. Fusion 41, 1435 2001 for supporting startup and sustainment of the spherical torus plasma. Considerable enhancement of the core heating efficiency from 44% to 65% has been obtained for CD phasing of the antenna strap-to-strap = 90 , k= 8 m 1 by increasing the magnetic field from 4.5 to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation nonsetBk 2 / away from the antenna face and wall, and hence reducing the propagating surface wave fields. Radio frequency RF waves propagating close to the wall at lower B and k can enhance power losses from both the parametric decay instability PDI and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations.

Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B [Princeton Plasma Physics Laboratory (PPPL); Phillips, Cynthia [Princeton Plasma Physics Laboratory (PPPL); Taylor, G. [Princeton Plasma Physics Laboratory (PPPL); Valeo, Dr Ernest [Princeton Plasma Physics Laboratory (PPPL); Wilson, J. R. [Princeton Plasma Physics Laboratory (PPPL); Jaeger, Erwin Frederick [ORNL; Ryan, Philip Michael [ORNL; Wilgen, John B [ORNL; Yuh, H. [Nova Photonics; Levinton, F. [Fusion Physics and Technology; Sabbagh, S. A. [Columbia University; Tritz, K. [Johns Hopkins University; Parker, J. [Cornell University; Bonoli, P. [Massachusetts Institute of Technology (MIT); Harvey, R. W. [CompX, Del Mar, CA

2008-01-01T23:59:59.000Z

327

High Harmonic Fast Wave Heating Efficiency Enhancemen and Current Drive at Longer Wavelength on the National Spherical Torus Experiment  

SciTech Connect

High harmonic fast wave heating and current drive (CD) are being developed on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 41, 1435 (2001)] for supporting startup and sustainment of the ST plasma. Considerable enhancement of the core heating efficiency (?) from 44% to 65% has been obtained for CD phasing of the antenna (strap-to-strap ? = -90o, k? = -8 m-1) by increasing the magnetic field from 4.5 kG to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation (nonset ? ??× k|| 2/w) away from the antenna face and wall, and hence reducing the propagating surface wave fields. RF waves propagating close to the wall at lower B? and k|| can enhance power losses from both the parametric decay instability (PDI) and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations

J. Hosea, R. E. Bell, B.P. LeBlanc, C.K. Phillips, G. Taylor, E. Valeo, J.R. Wilson, E.F. Jaeger, P.M. Ryan, J. Wilgen, H. Yuh, F. Levinton, S. Sabbagh, K. Tritz, J. Parker, P.T. Bonoli, R. Harvey, and the NSTX Team

2008-01-14T23:59:59.000Z

328

Suppression Oceanic Rippies by Surfactant-Spectral Effects Deduced from Sun-Glitter, Wave-Staff and Microwave Measurements  

Science Conference Proceedings (OSTI)

Experimental results on suppression of fine sea-surface structures by surfactant in terms of the roughness length obtained from wind profiles and of the wave-energy density from sun-glitter photographs, wave-staff measurements, and microwave ...

Jin Wu

1989-02-01T23:59:59.000Z

329

Watching Gravitational Waves  

E-Print Network (OSTI)

In the vicinity of merging neutron strar binaries or supernova remnants, gravitational waves can interact with the prevailing strong magnetic fields. The resulting partial conversion of gravitational waves into electromagnetic (radio) waves might prove to be an indirect way of detecting gravitational waves from such sources. Another interesting interaction considered in this article is the excitation of magnetosonic plasma waves by a gravitational wave passing through the surrounding plasma. The transfer of gravitational wave energy into the plasma might help to fuel the `fireball' of electromagnetic radiation observed in gamma ray bursts. In the last section of the article, a dispersion relation is derived for such magnetosonic plasma waves driven by a gravitational wave.

Joachim Moortgat

2001-04-02T23:59:59.000Z

330

Stable operating regime for traveling wave devices  

DOE Patents (OSTI)

Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.

Carlsten, Bruce E. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

331

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE  

Open Energy Info (EERE)

TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TEMPORAL VARIATIONS OF FRACTURE DIRECTIONS AND FRACTURE DENSITIES IN THE COSO GEOTHERMAL FIELD FROM ANALYSES OF SHEAR-WAVE SPLITTING Details Activities (1) Areas (1) Regions (0) Abstract: This project aims to improve understanding of the subsurface fracture system in the Coso geothermal field, located in the east central California. We applied shear-wave splitting technique on a set of high quality, locally recorded microearthquake (MEQ) data. Four major fracture directions have been identified from the seismograms recorded by the permanent sixteen-station down-hole array: N10- 20W, NS, N20E, and N40-45E,

332

Nonlinear, stationary electrostatic ion cyclotron waves: Exact solutions for solitons, periodic waves, and wedge shaped waveforms  

Science Conference Proceedings (OSTI)

The theory of fully nonlinear stationary electrostatic ion cyclotron waves is further developed. The existence of two fundamental constants of motion; namely, momentum flux density parallel to the background magnetic field and energy density, facilitates the reduction of the wave structure equation to a first order differential equation. For subsonic waves propagating sufficiently obliquely to the magnetic field, soliton solutions can be constructed. Importantly, analytic expressions for the amplitude of the soliton show that it increases with decreasing wave Mach number and with increasing obliquity to the magnetic field. In the subsonic, quasi-parallel case, periodic waves exist whose compressive and rarefactive amplitudes are asymmetric about the 'initial' point. A critical 'driver' field exists that gives rise to a soliton-like structure which corresponds to infinite wavelength. If the wave speed is supersonic, periodic waves may also be constructed. The aforementioned asymmetry in the waveform arises from the flow being driven towards the local sonic point in the compressive phase and away from it in the rarefactive phase. As the initial driver field approaches the critical value, the end point of the compressive phase becomes sonic and the waveform develops a wedge shape. This feature and the amplitudes of the compressive and rarefactive portions of the periodic waves are illustrated through new analytic expressions that follow from the equilibrium points of a wave structure equation which includes a driver field. These expressions are illustrated with figures that illuminate the nature of the solitons. The presently described wedge-shaped waveforms also occur in water waves, for similar 'transonic' reasons, when a Coriolis force is included.

McKenzie, J. F. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Steve Biko Campus, Durban 4001 (South Africa); School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag: X54001, Durban 4001 (South Africa); Doyle, T. B. [Materials Research Division, iThemba LABS, P.O.Box 722, Somerset West, 7129, South Africa and School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag: X54001, Durban 4001 (South Africa); Rajah, S. S. [Department of Mathematics, Statistics and Physics, Durban University of Technology, Steve Biko Campus, Durban 4001 (South Africa)

2012-11-15T23:59:59.000Z

333

Shock-activated electrochemical power supplies  

DOE Patents (OSTI)

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

Benedick, W.B.; Graham, R.A.; Morosin, B.

1988-11-08T23:59:59.000Z

334

Shock-activated electrochemical power supplies  

DOE Patents (OSTI)

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active.

Benedick, William B. (Albuquerque, NM); Graham, Robert A. (Los Lunas, NM); Morosin, Bruno (Albuquerque, NM)

1988-01-01T23:59:59.000Z

335

Shock-activated electrochemical power supplies  

DOE Patents (OSTI)

A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

Benedick, W.B.; Graham, R.A.; Morosin, B.

1987-04-20T23:59:59.000Z

336

MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter MWEC | Open  

Open Energy Info (EERE)

Magnetohydrodynamic MHD Wave Energy Converter MWEC Magnetohydrodynamic MHD Wave Energy Converter MWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Magnetohydrodynamic MHD Wave Energy Converter MWEC.jpg Technology Profile Primary Organization Scientific Applications Research Associates Inc SARA Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Magnetohydrodynamic MHD Wave Energy Converter couples the up down motion of heave based systems A shaft transfers wave motion to the MHD generator which is deep underwater The shaft forces the conducting fluid through a set of powerful permanent magnets creating a low voltage high current electrical energy An electrical inverter converts the electrical energy to commercial quality 60 Hz AC power

337

Density-dependent covariant energy density functionals  

Science Conference Proceedings (OSTI)

Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

Lalazissis, G. A. [Physics Department, Aristotle University of Thessaloniki, GR-54124 (Greece)

2012-10-20T23:59:59.000Z

338

OPTIMAL OPERATION OF MULTI-TERMINAL VSC BASED MVDC SHIPBOARD POWER SYSTEM.  

E-Print Network (OSTI)

?? The Medium Voltage DC (MVDC) architecture of shipboard power system (SPS) with higher power density and enhanced power control is seen as a future… (more)

Yeleti, Sandeep

2011-01-01T23:59:59.000Z

339

Gravity Waves from Thunderstorms  

Science Conference Proceedings (OSTI)

Gravity waves generated by severe thunderstorms in the eastern Ohio-Pennsylvania area were recorded by an array of microbarovariographs at Palisades, New York and by standard microbarographs across northeastern United States. The waves were ...

Nambath K. Balachandran

1980-06-01T23:59:59.000Z

340

Continuous two-wave lasing in microchip Nd : YAG lasers  

Science Conference Proceedings (OSTI)

Simultaneous two-wave lasing was obtained in microchip end-pumped Nd:YAG lasers at the wavelengths of 1061.5 and 1064.17 nm at room temperature. Laser wave intensities were studied as functions of crystal temperature and pump power. The ranges of parameters were determined in which the two-wave lasing occurs and the reasons for such lasing were established. A model is suggested, which adequately describes the experimental results obtained. (control of radiation parameters)

Ievlev, Ivan V; Koryukin, Igor' V; Lebedeva, Yu S; Khandokhin, Pavel A [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation)

2011-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Manta Wings: Wave Energy Testing Floats to Puget Sound | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manta Wings: Wave Energy Testing Floats to Puget Sound Manta Wings: Wave Energy Testing Floats to Puget Sound Manta Wings: Wave Energy Testing Floats to Puget Sound August 6, 2010 - 11:27am Addthis The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power Lindsay Gsell Columbia Power Technologies plans to test an intermediate-scale version of its wave energy converter device in Puget Sound later this year. After the successful control tests, the company will move testing to open water in Puget Sound this fall. Columbia will test the intermediate 1:7

342

The Spectrum of High-Frequency Internal Waves in the Atmospheric Waveguide  

Science Conference Proceedings (OSTI)

The vertical structure and power spectrum of the field of internal waves generated in the atmospheric waveguide by random vertical displacements were considered in this paper.

I. P. Chunchuzov

1996-07-01T23:59:59.000Z

343

Millimeter-Wave Circuits for 60GHz and Beyond  

E-Print Network (OSTI)

devices, it is necessary to reduce the power consumption ofpower consumption of the mm-wave portion of the chip to save battery life of the devicepower consumption of the mm-wave chip, it is extremely important to fully characterize the active devices

Afshar, Bagher

2010-01-01T23:59:59.000Z

344

MHK Technologies/Wave Water Pump WWP | Open Energy Information  

Open Energy Info (EERE)

Pump WWP Pump WWP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Water Pump WWP.gif Technology Profile Primary Organization Renewable Energy Wave Pumps Technology Resource Click here Wave Technology Description The Water Wave Pump WWP is a point absorber that uses a submerged water pump to lift a small quantity of water to a higher head collect it in a piping network and feed it to a hydro turbine to produce power Mooring Configuration Gravity base installed at the sea bed Optimum Marine/Riverline Conditions The REWP can pump water to a hgih head fro waves ranging between 1 2 meters to waves in excess of 4 meters high It self adjusts to varyilng sea levels and wave hights It resists storms safe to navigation as red floats are clearly seen during the day and red flashing lights during the night It does not disturb marine life or shore line scenic view

345

Energy Flux and Wavelet Diagnostics of Secondary Mountain Waves  

Science Conference Proceedings (OSTI)

In recent years, aircraft data from mountain waves have been primarily analyzed using velocity and temperature power spectrum and momentum flux estimation. Herein it is argued that energy flux wavelets (i.e., pressure–velocity wavelet cross-...

Bryan K. Woods; Ronald B. Smith

2010-11-01T23:59:59.000Z

346

Case Studies of African Wave Disturbances in Gridded Analyses  

Science Conference Proceedings (OSTI)

African wave disturbances (AWDs), an important trigger of Sahel summer rainfall, are studied using ECMWF gridded datasets for July and August 1987 and 1988. Power spectra of time series of 700-mb meridional winds near Niamey taken from analyses ...

Leonard M. Druyan; Patrick Lonergan; Judah Cohen

1997-10-01T23:59:59.000Z

347

The Effect of Wave Breaking on the Wave Energy Spectrum  

Science Conference Proceedings (OSTI)

The effect of wave breaking on the wave energy spectral shape is examined. The Stokes wave-breaking criterion is first extended to random waves and a breaking wave model is established in which the elevation of breaking waves is expressed in ...

C. C. Tung; N. E. Huang

1987-08-01T23:59:59.000Z

348

Selection of Frequency, Power, and Duration of Heating  

Science Conference Proceedings (OSTI)

...the duration of heating and the power density (kilowatts per square inch of surface exposed to the

349

MHK Technologies/PowerBuoy | Open Energy Information  

Open Energy Info (EERE)

PowerBuoy PowerBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerBuoy.jpg Technology Profile Primary Organization Oregon Wave Energy Partners LLC Project(s) where this technology is utilized *MHK Projects/Coos Bay OPT Wave Park *MHK Projects/Cornwall Wave Hub *MHK Projects/Griffin Project *MHK Projects/NJBPU 1 5 MW Demonstration Program *MHK Projects/Orkney *MHK Projects/Reedsport OPT Wave Park *MHK Projects/Reedsport OPT Wave Park Expanded Project *MHK Projects/Santona Wave Energy Park *MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application

350

Development of critical surface diagnostic based on the ion acoustic decay instability in laser produced high density plasma  

SciTech Connect

We have developed a large angle, UV collective Thomson scattering (CTS) diagnostic for high density, hot plasma relevant to laser fusion. The CTS measured the basic parameters of the plasma waves (frequency, wave number), or the spectral density function for selected wave vectors of plasma waves, which were excited by the IADI (ion acoustic parametric decay instability). It is a good diagnostic tool for a local electron temperature measurement. The electron temperature was estimated by measuring either ion acoustic wave or electron plasma wave in the laser intensity window of 1waves in laser produced high density plasma.

Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

1994-12-31T23:59:59.000Z

351

The density of surface states as the total time delay  

E-Print Network (OSTI)

For a scattering problem of tight-binding Bloch electrons by a weak random surface potential, a generalized Levinson theorem is put forward showing the equality of the total density of surface states and the density of the total time delay. The proof uses explicit formulas for the wave operators in the new rescaled energy and interaction (REI) representation, as well as an index theorem for adequate associated operator algebras.

Hermann Schulz-Baldes

2013-05-09T23:59:59.000Z

352

Density Functional Theory with Dissipation: Transport through Single Molecules  

SciTech Connect

A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

Kieron Burke

2012-04-30T23:59:59.000Z

353

Energy Storage & Power Electronics 2008 Peer Review - Power Electronics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Power Electronics 2008 Peer Review - Power & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Power Electronics (PE) Systems presentations are available below. ESPE 2008 Peer Review - High Power Density Silicon Carbide Power Electronic

354

A Detailed Power Model for Field Programmable Gate Arrays  

E-Print Network (OSTI)

1998]. Therefore, the Transition Density Model is employed in this power model. The Transition Density, and are an important component of the total overall power. However, the original Transition Density model does and discharging of load and parasitic capacitances. Therefore, dynamic power is closely related to the transition

Wilton, Steve

355

Premium Power Corporation | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Zip 1845 Product Specialises in the design and manufacture of high-density energy storage, utility service management and power quality systems. References Premium...

356

Lossless Tapers, Gaussian Beams, Free-Space Modes Standing Waves Versus Through-Flowing Waves  

E-Print Network (OSTI)

It was noticed in the past that, to avoid physical inconsistencies, in Marcatili's lossless tapers through-flowing waves must be drastically different from standing waves. First, we reconfirm this by means of numerical results based on an extended BPM algorithm. Next, we show that this apparently surprising behavior is a straightforward fallout of Maxwell's equations. Very similar remarks apply to Gaussian beams in a homogeneous medium. As a consequence, Gaussian beams are shown to carry reactive powers, and their active power distributions depart slightly from their standard pictures. Similar conclusions hold for free-space modes expressed in terms of Bessel functions.

Capobianco, A D; Someda, C G; Curtarolo, S

1998-01-01T23:59:59.000Z

357

Policy Issues for Retail Beamed Power Transmission  

E-Print Network (OSTI)

it possible to deliver electric power to off-grid locations using millimeter-wave beams and compact, efficient of very large utility-scale power plants, serving given areas in a hub-and-spoke arrangement. GridPolicy Issues for Retail Beamed Power Transmission Girish Chowdhary, Rajeev Gadre, Narayanan

358

Hydrodynamic Optimisation of point wave-energy converter using laboratory experiments.  

E-Print Network (OSTI)

??Investment in renewable energy technology, such as wave power, is increasingly seen as a beneficial and economically-viable alternative to existing fossil-based power plants. New Zealand… (more)

Kelly, Scott John

359

A Numerical Modeling Study of the Propagation of Idealized Sea-Breeze Density Currents  

Science Conference Proceedings (OSTI)

Sea breezes are often modeled as a wave response to transient heating in a stratified environment. They occur, however, as density currents with well-defined fronts, the understanding of which rests primarily on experiments and theory that do not ...

F. J. Robinson; M. D. Patterson; S. C. Sherwood

2013-02-01T23:59:59.000Z

360

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Power Electronics International, Inc. Arkansas Power Electronics International, Inc. DOE Peer Review November 2-3, 2006 Marcelo Schupbach, Ph.D. Senior Engineer APEI, Inc. 535 Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: marcelo@apei.net Website: www.apei.net High Temperature and High Power Density SiC Power Electronic Converters Energy Storage Systems Program 2 Overview * APEI, Inc. Corporate Status * Broader Impact of SiC-based Power Converter * DOE Energy Storage System Program Phase I SBIR - SBIR Topic: Wide Band Gap Power Converter Application - APEI's Goals - Phase I Accomplishments * DOE Energy Storage System Program Phase II SBIR - APEI's Goals - Research Team and Partners - Project Status Energy Storage Systems Program 3 APEI, Inc. Mission Statement We are a small business dedicated to

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Power Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Operations Outage Coordination Standards of Conduct Transmission Planning You are here: SN Home page > Power Operations Power Operations Western's Sierra Nevada Region...

362

Oxides having high energy densities  

DOE Patents (OSTI)

Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

Ceder, Gerbrand; Kang, Kisuk

2013-09-10T23:59:59.000Z

363

MHK Technologies/hyWave | Open Energy Information  

Open Energy Info (EERE)

hyWave hyWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HyWave.png Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Project(s) where this technology is utilized *MHK Projects/Mutriku *MHK Projects/Wavegen Technology Resource Click here Wave Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The hyWave device rests directly on the seabed and is designed to operate in the near-shore environment in a nominal mean water depth of 15m. Optimum performance will be achieved when driven by a long ocean swell. The pneumatic power of the oscillating water column (OWC) is converted to electricity by a Wells generator and specially designed induction generators.

364

Argonne PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

- a E MVm MW 7.3 a P E Accelerating Gradient for Given Power 5 2 ty conductivi heat - capacity, heat - , resistance surface - density, mass - | ) ( | 2 1 ) ( 0 2 k c R...

365

Numerical Analysis for Controlling the Eigenmode Formation of Alfven Waves in the GAMMA 10 Tandem Mirror  

Science Conference Proceedings (OSTI)

The numerical analysis is performed with two dimensional wave code for controlling the eigenmode formation of fast Alfven waves in the GAMMA 10 central cell. The plasma production by fast waves depends on the wave excitation in the plasma. Eigenmodes are strongly formed when the boundary conditions in the axial and radial directions are satisfied. As the optimum density for the formation of eigenmode exists discretely, the density is clamped at the value where the eigenmode is strongly formed. For the higher density plasma production, the eigenmodes must be continuously excited as the density increases. It is found that the almost continuous excitation of eigenmodes can be realized by using two waves with different frequencies at the same time.

Yamaguchi, Y. [Plasma Research Center, University of Tsukuba (Japan); Ichimura, M. [Plasma Research Center, University of Tsukuba (Japan); Higaki, H. [Plasma Research Center, University of Tsukuba (Japan); Kakimoto, S. [Plasma Research Center, University of Tsukuba (Japan); Ide, K. [Plasma Research Center, University of Tsukuba (Japan); Inoue, D. [Plasma Research Center, University of Tsukuba (Japan); Nagai, H. [Plasma Research Center, University of Tsukuba (Japan); Nakagome, K. [Plasma Research Center, University of Tsukuba (Japan); Fukuyama, A. [Kyoto University (Japan); Cho, T. [Plasma Research Center, University of Tsukuba (Japan)

2005-01-15T23:59:59.000Z

366

Optimal combination of signals from co-located gravitational wave interferometers for use in searches for a stochastic background  

E-Print Network (OSTI)

This article derives an optimal (i.e., unbiased, minimum variance) estimator for the pseudo-detector strain for a pair of co-located gravitational wave interferometers (such as the pair of LIGO interferometers at its Hanford Observatory), allowing for possible instrumental correlations between the two detectors. The technique is robust and does not involve any assumptions or approximations regarding the relative strength of gravitational wave signals in the detector pair with respect to other sources of correlated instrumental or environmental noise. An expression is given for the effective power spectral density of the combined noise in the pseudo-detector. This can then be introduced into the standard optimal Wiener filter used to cross-correlate detector data streams in order to obtain an optimal estimate of the stochastic gravitational wave background. In addition, a dual to the optimal estimate of strain is derived. This dual is constructed to contain no gravitational wave signature and can thus be used as on "off-source" measurement to test algorithms used in the "on-source" observation.

A. Lazzarini; S. Bose; P. Fritschel; M. McHugh; T. Regimbau; K. Reilly; J. D. Romano; J. T. Whelan; S. Whitcomb; B. F. Whiting

2004-03-23T23:59:59.000Z

367

Magnetoacoustic shock waves in dissipative degenerate plasmas  

SciTech Connect

Quantum magnetoacoustic shock waves are studied in homogenous, magnetized, dissipative dense electron-ion plasma by using two fluid quantum magneto-hydrodynamic (QMHD) model. The weak dissipation effects in the system are taken into account through kinematic viscosity of the ions. The reductive perturbation method is employed to derive Korteweg-de Vries Burgers (KdVB) equation for magnetoacoustic wave propagating in the perpendicular direction to the external magnetic field in dense plasmas. The strength of magnetoacoustic shock is investigated with the variations in plasma density, magnetic field intensity, and ion kinematic viscosity of dense plasma system. The necessary condition for the existence of monotonic and oscillatory shock waves is also discussed. The numerical results are presented for illustration by using the data of astrophysical dense plasma situations such as neutron stars exist in the literature.

Hussain, S.; Mahmood, S. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P.O. Nilore Islamabad 44000 (Pakistan) and Department of Physics and Applied Mathematics (DPAM) PIEAS, P.O. Nilore Islamabad 44000 (Pakistan)

2011-11-15T23:59:59.000Z

368

Can dark energy be gravitational waves?  

E-Print Network (OSTI)

The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons) of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

Biermann, Peter L

2013-01-01T23:59:59.000Z

369

Quasi-optical mode converter for high power gyrotron  

Science Conference Proceedings (OSTI)

Gyrotrons are microwave / millimeter wave devices capable to deliver megawatt level continuous power at a frequency range up to 170GHz. The critical design issues for a high power gyrotrons are: (1) Magnetron injection Gun (2) Cavity with proper mode ...

B. K. Shukla; Dhiraj Bora

2011-02-01T23:59:59.000Z

370

RADIATION WAVE DETECTION  

DOE Patents (OSTI)

Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

Wouters, L.F.

1960-08-30T23:59:59.000Z

371

The Probability Density Function of Ocean Surface Slopes and Its Effects on Radar Backscatter  

Science Conference Proceedings (OSTI)

Based on Longuet-Higgins’s theory of the probability distribution of wave amplitude and wave period and on some observations, a new probability density function (PDF) of ocean surface slopes is derived. It is where ?x and ?y are the slope ...

Y. Liu; X-H. Yan; W. T. Liu; P. A. Hwang

1997-05-01T23:59:59.000Z

372

Ultralow-Power Four-Wave Mixing with Rb in a Hollow-Core Photonic Band-Gap Fiber Pablo Londero,* Vivek Venkataraman, Amar R. Bhagwat, Aaron D. Slepkov, and Alexander L. Gaeta  

E-Print Network (OSTI)

in an alkali-metal vapor system with a large ($30 MHz) ground state decoherence rate. DOI: 10.1103/Phys-resonance transmission, and is the excited-state radiative decay rate. Another critical feature is a long spin density matrix for the ensemble of atomic states, and transit-time broadening effects are added

Gaeta, Alexander L.

373

NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR  

DOE Patents (OSTI)

The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

Young, G.J.

1959-06-30T23:59:59.000Z

374

Power conditioning system for energy sources  

SciTech Connect

Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

Mazumder, Sudip K. (Chicago, IL); Burra, Rajni K. (Chicago, IL); Acharya, Kaustuva (Chicago, IL)

2008-05-13T23:59:59.000Z

375

WAVE REFLE TOR  

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. SAND # 2013-8893 P WAVE REFLE TOR

376

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

377

WAVE REFLE TOR  

electromagnetic wave travels through the rods along their axes it receives a 1/4 period of phase delay be- ... delay, creating positive interference that effectively

378

Trimodal steady water waves  

E-Print Network (OSTI)

We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves on finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave generically is a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.

Mats Ehrnström; Erik Wahlén

2013-10-31T23:59:59.000Z

379

Collapse of Alfven waves  

SciTech Connect

The growth rates are calculated for the collapse of Alfven waves in a low-..beta.. plasma. The relationship to rf heating is discussed.(AIP)

Erokhin, N.S.; Moiseev, S.S.; Mukhin, V.V.

1977-07-01T23:59:59.000Z

380

Dynamics Simulation in a Wave Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Coupled Dynamic Simulation in a Wave Coupled Dynamic Simulation in a Wave Environment (Navatek, AEGIR, and WECs) Marine and Hydrokinetics Instrumentation Workshop 9 July 2012 David Kring, Navatek Ltd. Presentation Overview * Introduction to Navatek * AEGIR brief: resistance, seakeeping, global and local loads a 3D, NURBS-based, high-order, Rankine boundary element method ... from same lab as at MIT as WAMIT and SWAN, with pFFT acceleration coupling with controls, structures, aerodynamics, power take-offs * Some WEC applications at Navatek 2 Honolulu, Hawaii, USA Company Background A "Research Shipyard" based in Honolulu, HI Combining simulation-based design with prototype construction

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wave-Driven Rotation In Centrifugal Mirrors  

SciTech Connect

Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-03-28T23:59:59.000Z

382

Experimental observation of the behaviour of cogenerated dusty plasma using a bipolar pulsed direct current power supply  

SciTech Connect

We have experimentally observed the behaviour of cogenerated dusts in unmagnetized plasma produced using a bipolar pulsed dc power supply. In this experiment, the dust particles have been generated through sputtering of graphite cathode and were stratified between two electrodes. This stratification of dust clouds has obtained at a typical range of plasma parameters, namely, 650 V (peak-to-peak) with 0.2 mbar pressure. In above condition, we detected the Taylor-like instability at the interface of two dusty clouds with different densities. A very less dust density (void like) region inside the lesser dust density portion is also noted. Again, it has been observed that a self excited dust density wave propagates towards the higher density dust fluid inside the system as well as a stationary band structure of thin multiple layers of dust particles when we apply a higher voltage (750 V peak-to-peak). The wavelength, phase velocity, and frequency of the excited wave have also been estimated.

Sarkar, Sanjib; Bose, M. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Pramanik, J. [Kharagpur College, Kharagpur 721305, West Bengal (India); Mukherjee, S. [FCIPT, Institute for Plasma Research, Gandhinagar 382428 (India)

2013-02-15T23:59:59.000Z

383

MHK Technologies/WaveSurfer | Open Energy Information  

Open Energy Info (EERE)

WaveSurfer WaveSurfer < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveSurfer.jpg Technology Profile Primary Organization Green Energy Industries Inc Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WaveSurfer s main power conversion and generation systems are either semi submerged protected by the floating pontoons or completely submerged at the depth of around 8 m 27 ft Mooring Configuration 3 point slack Technology Dimensions Device Testing Date Submitted 26:36.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/WaveSurfer&oldid=681708

384

MHK Technologies/Green Cat Wave Turbine | Open Energy Information  

Open Energy Info (EERE)

Wave Turbine Wave Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Cat Wave Turbine.jpg Technology Profile Primary Organization Green Cat Renewables Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Green Cat Wave Turbine employs an extremely novel yet simple mechanical coupling to drive a multi pole Direct Drive generator Recent advances in permanent magnet materials and power electronic converters have opened up this extremely straightforward conversion route Unlike a number of devices currently being investigated this configuration enables maximum energy capture from both vertical and horizontal sea motions swell and surge respectively

385

OpenEI - Density  

Open Energy Info (EERE)

en.openei.orgdatasetstaxonomyterm2820 en Land use requirements for ground-mounted solar power facilities. http:en.openei.orgdatasetsnode454

This dataset is part of...

386

Modeling the Distribution of Precipitation Forecasts from the Canadian Ensemble Prediction System Using Kernel Density Estimation  

Science Conference Proceedings (OSTI)

Kernel density estimation is employed to fit smooth probabilistic models to precipitation forecasts of the Canadian ensemble prediction system. An intuitive nonparametric technique, kernel density estimation has become a powerful tool widely used ...

Syd Peel; Laurence J. Wilson

2008-08-01T23:59:59.000Z

387

An Isofactorial Change-of-Scale Model for the Wind Speed Probability Density Function  

Science Conference Proceedings (OSTI)

The wind speed probability density function (PDF) is used in a variety of applications in meteorology, oceanography, and climatology usually as a dataset comparison tool of a function of a quantity such as momentum flux or wind power density. The ...

Mark L. Morrissey; Angie Albers; J. Scott Greene; Susan Postawko

2010-02-01T23:59:59.000Z

388

The power of weather  

Science Conference Proceedings (OSTI)

Weather information demonstrates predictive power in forecasting electricity prices in day-ahead markets in real time. In particular, next-day weather forecasts improve the forecast accuracy of Scandinavian day-ahead electricity prices in terms of point ... Keywords: Electricity prices, GARCH models, Point and density forecasts, Weather forecasts

Christian Huurman; Francesco Ravazzolo; Chen Zhou

2012-11-01T23:59:59.000Z

389

Analysis of pulsed high-density HBr and Cl{sub 2} plasmas: Impact of the pulsing parameters on the radical densities  

Science Conference Proceedings (OSTI)

The dynamic of charged particles in pulsed plasma is relatively well known since the 1990s. In contrast, works reporting on the impact of the plasma modulation frequency and duty cycle on the radicals' densities are scarce. In this work, we analyze the impact of these modulation parameters on the radicals' composition in Cl{sub 2} and HBr plasmas. The radicals' densities are measured by broad-band UV and vacuum-ultraviolet (VUV) absorption spectroscopy and modulated-beam mass spectrometry. We show that pulsing the rf power allows controlling the plasma chemistry and gives access to the plasma conditions that cannot be reached in continuous wave plasmas. In particular, we show that above 500 Hz, the pulsing frequency has no influence on the plasma chemistry, whereas in contrast the duty cycle is an excellent knob to control the fragmentation of the parent gas, thus the chemical reactivity of the discharge. At low duty cycle, a reduced gas fragmentation combined with a large ion flux leads to new etching conditions, compared to cw plasmas and the expected consequences on pulsed-etching processes are discussed.

Bodart, P.; Brihoum, M.; Cunge, G.; Joubert, O.; Sadeghi, N. [Laboratoire des Technologies de la Microelectronique, CNRS-LTM, 17 rue des Martyrs, Grenoble 38054 (France)

2011-12-01T23:59:59.000Z

390

The standing wave FEL/TBA: Realistic cavity geometry and energy extraction  

SciTech Connect

A set of parameters for standing wave free electron laser two beam accelerators (SWFEL/TBA) is evaluated for realistic cavity geometry taking into account beam-break-up and the sensitivity of output power to imperfections. Also given is a power extraction system using cavity coupled wave guides.

Kim, Jin-Soo, Henke, H.; Sessler, A.M.; Sharp, W.M.

1993-05-01T23:59:59.000Z

391

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

Alger, T.W.

1994-09-06T23:59:59.000Z

392

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

Alger, Terry W. (Tracy, CA)

1994-01-01T23:59:59.000Z

393

Free-Wave Energy Dissipation in Experimental Breaking Waves  

Science Conference Proceedings (OSTI)

Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using an energy focusing technique. Surface elevation measurements of each transient wave ...

Eustorgio Meza; Jun Zhang; Richard J. Seymour

2000-09-01T23:59:59.000Z

394

Resonantly Forced Rossby Waves  

Science Conference Proceedings (OSTI)

A shallow, rotating layer of fluid that supports Rossby waves is subjected to turbulent friction through an Ekman layer at the bottom and is driven by a wave that exerts a shear stress on the upper boundary and for which the phase approximate ...

John Miles

1985-04-01T23:59:59.000Z

395

ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES  

SciTech Connect

Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: tom.vandoorsselaere@wis.kuleuven.be [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)

2013-05-10T23:59:59.000Z

396

Harmonic launching of ion Bernstein waves via mode transformation  

DOE Green Energy (OSTI)

Ion Bernstein wave excitation and propagation via finite ion-Larmor-radium mode-transformation are investigated theoretically and experimentally. It is shown that in the ion cyclotron range of frequencies omega less than or equal to 4..cap omega../sub i/, with modest ion temperatures (T/sub i/ less than or equal to 10 eV), the finite-Larmor-radius effect removes the wave singularity at lower-hybrid resonance layer, enabling an externally initiated electron plasma wave to transform continuously into an ion Bernstein wave. In an ACT-1 hydrogen plasma (T/sub e/ approx. = 2.5 eV, T/sub i/ less than or equal to 2.0 eV), externally excited ion Bernstein waves have been observed for omega less than or equal to 2..cap omega../sub i/ as well as for omega less than or equal to 3..cap omega../sub i/. The finite ion-Larmor-radius mode transformation process resulting in strong ion Bernstein wave excitation has been experimentally verified. Detailed measurements of the wave dispersion relation and of the wave-packet trajectory show excellent agreement with theory. The dependence of the excited ion Bernstein wave on the antenna phasing, the plasma density, and on the neutral pressure (T/sub i/) is also investigated.

Ono, M.; Wong, K.L.; Wurden, G.A.

1982-06-01T23:59:59.000Z

397

Wave Mechanics without Probability  

E-Print Network (OSTI)

The behavior of monochromatic electromagnetic waves in stationary media is shown to be ruled by a frequency dependent function, which we call Wave Potential, encoded in the structure of the Helmholtz equation. Contrary to the common belief that the very concept of "ray trajectory" is reserved to the eikonal approximation, a general and exact ray-based Hamiltonian treatment, reducing to the eikonal approximation in the absence of Wave Potential, shows that its presence induces a mutual, perpendicular ray-coupling, which is the one and only cause of any typically wave-like phenomenon, such as diffraction and interference. Recalling, then, that the time-independent Schroedinger and Klein-Gordon equations (associating stationary "matter waves" to mono-energetic particles) are themselves Helmholtz-like equations, the exact, ray-based treatment developed for classical electromagnetic waves is extended - without resorting to statistical concepts - to the exact, trajectory-based Hamiltonian dynamics of mono-energetic point-like particles, both in the non-relativistic and in the relativistic case. The trajectories turn out to be perpendicularly coupled, once more, by an exact, stationary, energy-dependent Wave Potential, coinciding in the form, but not in the physical meaning, with the statistical, time-varying, energy-independent "Quantum Potential" of Bohm's theory, which views particles, just like the standard Copenhagen interpretation, as traveling wave-packets. These results, together with the connection which is shown to exist between Wave Potential and Uncertainty Principle, suggest a novel, non-probabilistic interpretation of Wave Mechanics.

Adriano Orefice; Raffaele Giovanelli; Domenico Ditto

2013-02-18T23:59:59.000Z

398

High-Energy-Density Plasmas, Fluids  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy-Density Plasmas, Fluids High-Energy-Density Plasmas, Fluids /science-innovation/_assets/images/icon-science.jpg High-Energy-Density Plasmas, Fluids National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. TRIDENT target chamber Sasi Palaniyappan, right, and Rahul Shah left inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin diamond- foil target, a fraction of a micrometer thick. The laser delivers a power on target of 150 Terawatts focused into a 7 micrometer spot, yielding laser brilliance over 100 times more intense than needed to make the target electrons fully relativistic. These experiments test novel methods of producing intense

399

Characterization of geothermal reservoir crack patterns using shear-wave  

Open Energy Info (EERE)

geothermal reservoir crack patterns using shear-wave geothermal reservoir crack patterns using shear-wave splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Characterization of geothermal reservoir crack patterns using shear-wave splitting Details Activities (1) Areas (1) Regions (0) Abstract: Microearthquakes recorded by a downhole, three-component seismic network deployed around the Coso, California, geothermal reservoir since 1992 display distinctive shear-wave splitting and clear polarization directions. From the polarizations the authors estimated three predominant subsurface fracture directions, and from the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Author(s): Lou, M.; Rial, J.A. Published: Geophysics, 3/1/1997

400

NREL: Water Power Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerial photo of ocean waves breaking as they near the shore. Aerial photo of ocean waves breaking as they near the shore. NREL's water power technologies research leverages 35 years of experience developing renewable energy technologies to support the U.S. Department of Energy Water Power Program's efforts to research, test, evaluate, develop and demonstrate deployment of innovative water power technologies. These include marine and hydrokinetic technologies, a suite of renewable technologies that harness the energy from untapped wave, tidal, current and ocean thermal resources, as well as technologies and processes to improve the efficiency, flexibility, and environmental performance of hydropower generation. The vision of the water power team at NREL is to be an essential partner for the technical development and deployment of water power technologies.

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gravity Waves in a Horizontal Shear Flow. Part II: Interaction between Gravity Waves and Potential Vorticity Perturbations  

E-Print Network (OSTI)

Interaction among potential vorticity perturbations and propagating internal gravity waves in a horizontally sheared zonal flow is investigated. In the strong stratification limit, an initial vorticity perturbation weakly excites two propagating gravity waves while the density component of the potential vorticity perturbation is significantly amplified, potentially leading to convective collapse. If stratification is sufficiently weak, a strong coupling between vorticity perturbations and gravity waves is found and spontaneous gravity wave generation occurs. This coupling can be traced to the nonnormal interaction between the potential vorticity and gravity wave manifolds in the weak stratification limit. Vorticity perturbations amplify in energy due to downgradient Reynolds stress when their phase lines tilt against the shear and the large growth attained is transferred to propagating gravity waves. When the flow geometry is such that the excited gravity waves are confined in the vicinity of the vorticity perturbation by their trapping levels, an overall convective collapse of this region can be anticipated. On the other hand, when the flow geometry permits wave propagation, significant gravity wave emission occurs. 1.

Nikolaos A. Bakas; Brian; F. Farrell

2007-01-01T23:59:59.000Z

402

Economic analyses of alpha channeling in tokamak power plants.  

SciTech Connect

The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T{sub i} somewhat larger than the electron temperature T{sub e}, which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small.

Ehst, D.A.

1998-09-17T23:59:59.000Z

403

Co-existence of whistler waves with kinetic Alfven wave turbulence for the high-beta solar wind plasma  

SciTech Connect

It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore, in the high-beta solar wind plasma, whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently, the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave (KAW) turbulence creates a plateau by quasilinear (QL) diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only {approx}10{sup -3} that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus, very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.

Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375-5346 (United States); Rudakov, Leonid [Icarus Research Inc., P.O. Box 30780, Bethesda, Maryland 20824-0780 (United States)

2012-10-15T23:59:59.000Z

404

Wave Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

turn, rotates a turbine. Specially built seagoing vessels can also capture the energy of offshore waves. These floating platforms create electricity by funneling waves through...

405

Wave Energy | Open Energy Information  

Open Energy Info (EERE)

TODO: Add description List of Wave Energy Incentives Retrieved from "http:en.openei.orgwindex.php?titleWaveEnergy&oldid267203" Category: Articles with outstanding TODO tasks...

406

High density photovoltaic  

DOE Green Energy (OSTI)

Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S. [Spire Corp., Bedford, MA (United States)

1997-10-14T23:59:59.000Z

407

Evaluation of a Wind-Wave System for Ensemble Tropical Cyclone Wave Forecasting. Part II: Waves  

Science Conference Proceedings (OSTI)

A wind-wave forecast system, designed with the intention of generating unbiased ensemble wave forecasts for extreme wind events, is assessed. Wave hindcasts for 12 tropical cyclones (TCs) are forced using a wind analysis produced from a ...

Steven M. Lazarus; Samuel T. Wilson; Michael E. Splitt; Gary A. Zarillo

2013-04-01T23:59:59.000Z

408

Definition: Wind power | Open Energy Information  

Open Energy Info (EERE)

Wind power Wind power Jump to: navigation, search Dictionary.png Wind power The amount of power available to a wind turbine depends on: air density, wind speed and the swept area of the rotor. While the power is proportional to air density and swept area, it varies with the cube of wind speed, so small changes in wind speed can have a relatively large impact on wind power.[1] View on Wikipedia Wikipedia Definition Wind power is the conversion of wind energy into a useful form of energy, such as using wind turbines to make electrical power, windmills for mechanical power, windpumps for water pumping or drainage, or sails to propel ships. Large wind farms consist of hundreds of individual wind turbines which are connected to the electric power transmission network. Offshore wind is steadier and stronger than on land, and offshore farms

409

Scattering of shock waves in QCD  

E-Print Network (OSTI)

The cross section of heavy-ion collisions is represented as a double functional integral with the saddle point being the classical solution of the Yang-Mills equations with boundary conditions/sources in the form of two shock waves corresponding to the two colliding ions. I develop the expansion of this classical solution in powers of the commutator of the Wilson lines describing the colliding particles and calculate the first two terms of the expansion.

Ian Balitsky

2004-09-27T23:59:59.000Z

410

Nondestructive Evaluation: Guided Wave Status Report  

Science Conference Proceedings (OSTI)

Recently, the Nuclear Strategic Issues Advisory Committee developed Guideline for the Management of Underground Piping and Tank Integrity (NEI 09-14, Revision 1). Managing the aging of buried piping, tanks, and containment liners is an important program for license renewal and plant life extension. Guided wave technology offers the ability to examine large sections of these inaccessible structures while they are in service. In 2007, the Electric Power Research Institute (EPRI) Nondestructive Evaluation I...

2011-11-17T23:59:59.000Z

411

Efficiency of caviton formation as a function of plasma density gradient  

SciTech Connect

The effect of a zeroth-order density gradient on the development of cavitons has been investigated experimentally and numerically. The cavitons were produced via excitation of electron plasma waves (EPW) with a modest ({ital E}{sup 2}/4{pi}{ital nT}{sub {ital e}}{much lt}1) resonant radio-frequency pump. The location of the resonance, on an inverse-parabolic density profile, was varied, with all other parameters being held constant. The depth of the caviton, and the strength of its associated trapped electric fields, are found to depend strongly on the density gradient scale length at the critical layer, with a maximum occurring when this length is infinite, at the flat top of the density profile. The results are accounted for by the dependence on the density gradient of the EPW convection rate and wave-breaking time. The study helps illuminate recent large-scale ionospheric density modification experiments.

Bauer, B.S.; Wong, A.Y.; Scurry, L.; Decyk, V.K. (Department of Physics, University of California, Los Angeles, Los Angeles, California 90024 (USA))

1990-08-01T23:59:59.000Z

412

Method of accelerating photons by a relativistic plasma wave  

DOE Patents (OSTI)

Photons of a laser pulse have their group velocity accelerated in a plasma as they are placed on a downward density gradient of a plasma wave of which the phase velocity nearly matches the group velocity of the photons. This acceleration results in a frequency upshift. If the unperturbed plasma has a slight density gradient in the direction of propagation, the photon frequencies can be continuously upshifted to significantly greater values.

Dawson, John M. (Pacific Palisades, CA); Wilks, Scott C. (Santa Monica, CA)

1990-01-01T23:59:59.000Z

413

MHK Technologies/Wave Catcher | Open Energy Information  

Open Energy Info (EERE)

Wave Catcher.png Wave Catcher.png Technology Profile Primary Organization Offshore Islands Ltd Technology Resource Click here Current Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Wave Catcher can be orientated to take advantage of the most numerous prevailing waves to generate power It is a long surface buoy cylinder that is lifted by each passing wave As the cylinder is lifted it pulls on its anchor lines which in turn pulls on a support pulley This support pulley turns the generator s rotor and flywheel The generator s flywheel keeps the rotor turning until the next wave lifts up the cylinder and the anchor line once again turns the pulley The cylinder will also be lifted by waves from all directions As a result the anchor cables at each end of the buoy may either pull together or at slightly different times The gears the pulleys the rotor and flywheel are turned when the anchor cable s tension is high The uni direction pulley s re coil spring re winds the anchor cable back around the pulley when the buoy moves down with the trough of the wave and the anchor cable tension is low The wave generator can be in a surface buoy or mounted sub

414

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

Triton Wave Triton Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Triton Wave.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Triton operates in the near-shore and consists of an axi-asymmetrical buoy attached to an A-frame piled into the sea bed. The axi-asymmetrical buoy is designed to generate a counter-phase upstream wave and a much reduced downstream wave, which maximizes capture from the wave and improves overall efficiency. In order to tune the buoy to the incident wave regime, the mass can be controlled by pumping sea water into and out of the hollow cavity inside the buoy. Power take-off is achieved via a piston and hydraulic arrangement.

415

Slow Wave Excitation in the ICRF and HHFW Regimes  

SciTech Connect

Theoretical considerations and high spatial resolution numerical simulations of radio frequency (rf) wave heating in tokamaks and in spherical toruses (ST) indicate that fast waves launched into tokamaks in the ion cyclotron range of frequencies (ICRF) or into spherical toruses in the high harmonic fast wave (HHFW) regime may excite a short wavelength slow mode inside of the plasma discharge due to the presence of hot electrons that satisfy the condition {omega}wave frequency, k{sub ||} is the local parallel component of the wave vector, and v{sub te} is the local electron thermal speed. This excited slow wave may be related to the electrostatic ion cyclotron wave that propagates for frequencies above the fundamental ion cyclotron frequency in warm plasmas or to a high frequency version of a kinetic Alfven wave. This slow wave, if physically real, would provide another path for rf power absorption in tokamaks and ST devices.

Phillips, C. K.; Valeo, E. J.; Hosea, J. C.; LeBlanc, B. P.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Jaeger, E. F. [XCEL Engineering, 1066 Commerce Park Dr., Oak Ridge, TN 37830 (United States); Berry, L. A.; Ryan, P. M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bonoli, P. T.; Wright, J. C. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Smithe, D. N. [Tech-X Corporation, 5621 Arapahoe Ave., Suite A, Boulder, CO 80303 (United States)

2011-12-23T23:59:59.000Z

416

Forced Trench Waves  

Science Conference Proceedings (OSTI)

A general theory for forced barotropic long trench waves in the presence of linear bottom friction is presented. Two specific forcing mechanisms are considered: (i) transverse fluctuations in a western boundary current as it flows across a trench,...

Lawrence A. Mysak; Andrew J. Willmott

1981-11-01T23:59:59.000Z

417

Scattering of Coastal-Trapped Waves by Irregularities in Coastline and Topography  

Science Conference Proceedings (OSTI)

The scattering of freely-propapting coastal-trapped waves (CTWs) by large variations in coastline and topography is studied using a numerical model which accomodates arbitrary density stratification, bathymetry and coastline. Particular attention ...

John L. Wilkin; David C. Chapman

1990-03-01T23:59:59.000Z

418

Is There Evidence of Multiple Equilibria in Planetary Wave Amplitude Statistics?  

Science Conference Proceedings (OSTI)

Results obtained by Hansen and Sutera concerning the occurrence of bimodal probability density functions (PDFs) in a wave amplitude index (WAI) calculated from large-scale atmospheric flow data are re-examined. The PDFs are found to be highly ...

Gregor Nitsche; John M. Wallace; Charles Kooperberg

1994-01-01T23:59:59.000Z

419

Linking Nonlinearity and Non-Gaussianity of Planetary Wave Behavior by the Fokker–Planck Equation  

Science Conference Proceedings (OSTI)

To link prominent nonlinearities in the dynamics of 500-hPa geopotential heights to non-Gaussian features in their probability density, a nonlinear stochastic model of atmospheric planetary wave behavior is developed. An analysis of geopotential ...

Judith Berner

2005-07-01T23:59:59.000Z

420

MHK Technologies/Floating wave Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Floating Wave Powered Generator is an attenuator that uses three pontoons that pivot on rigid arms as the wave passes driving gears that turn a generator Technology Dimensions Device Testing Date Submitted 45:12.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Floating_wave_Generator&oldid=681577"

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MHK Technologies/The DEXAWAVE wave energy converter | Open Energy  

Open Energy Info (EERE)

DEXAWAVE wave energy converter DEXAWAVE wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The DEXAWAVE wave energy converter.jpg Technology Profile Primary Organization Dexawave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The DEXAWAVE wave energy converter has a simple construction It consists of two rigid pontoons hinged together using a patented hinge The one pontoon can pivot relative to the other There is a hydraulic power take off system on top of the converter generating up to 250 kW Technology Dimensions Technology Nameplate Capacity (MW) 25 Device Testing Scale Test *At present our 1 to 5 scale model is working the waters outside the Danish port of Hanstholm collecting valuable data about the waves and currents that are constantly pounding the structure

422

Burgulence and Alfven waves heating mechanism of solar corona  

E-Print Network (OSTI)

Heating of magnetized turbulent plasma is calculated in the framework of Burgers turbulence [A.M. Polyakov, Phys. Rev. E. 52, 6183 (1995)]. Explicit formula for the energy flux of Alfven waves along the magnetic field is presented. The Alfven waves are considered as intermediary between the turbulent energy and the heat. The derived results are related to a wave channel of heating of the solar corona. If we incorporate amplification of Alfven waves by shear flow the suggested model of heating can be applied to analysis of the missing viscosity of accretion discs and to reveal why the quasars are the most powerful sources of light in the universe. We suppose that the Langevin-Burgers approach to turbulence we have applied in the current work can be also helpful for other systems where we have intensive interaction between a stochastic turbulent system and waves and can be used in many multidisciplinary researches in hydrodynamics and MHD.

T. M. Mishonov; Y. G. Maneva

2006-09-21T23:59:59.000Z

423

MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy  

Open Energy Info (EERE)

Activator WECA Activator WECA < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus Informatics Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The full scale WECA design is ideally fabricated with steel so as to be suitable for mounting on the run up wall of breakwaters or other rigid or floating structures The oscillating wave surge converter absorbs most of the energy of the impacting waves and turn it into compressed air which is subsequently converted into electric power or other forms of energy The device utilizes the Critical Momentum Wedge principle where the water rushing into the device resembles a virtual Wedge of kinetic energy

424

MHK Technologies/Wave Rider | Open Energy Information  

Open Energy Info (EERE)

Rider Rider < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rider.jpg Technology Profile Primary Organization Seavolt Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The company s Wave Rider system uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic fluid flow spinning the turbines to generate electricity Technology Dimensions Device Testing Date Submitted 19:42.1 << Return to the MHK database homepage

425

Relativistic shock waves and the excitation of plerions  

Science Conference Proceedings (OSTI)

The shock termination of a relativistic magnetohydrodynamic wind from a pulsar is the most interesting and viable model for the excitation of the synchrotron sources observed in plerionic supernova remnants. We have studied the structure of relativistic magnetosonic shock waves in plasmas composed purely of electrons and positrons, as well as those whose composition includes heavy ions as a minority constituent by number. We find that relativistic shocks in symmetric pair plasmas create fully thermalized distributions of particles and fields downstream. Therefore, such shocks are not good candidates for the mechanism which converts rotational energy lost from a pulsar into the nonthermal synchrotron emission observed in plerions. However, when the upstream wind contains heavy ions which are minority constituent by number density, but carry the bulk of the energy density, much of the energy of the shock goes into a downstream, nonthermal power law distribution of positrons with energy distribution N(E)dE {proportional to}E{sup {minus}s}. In a specific model presented in some detail, s = 3. These characteristics are close to those assumed for the pairs in macroscopic MHD wind models of plerion excitation. The essential mechanism is collective synchrotron emission of left-handed extraordinary modes by the ions in the shock front at high harmonics of the ion cyclotron frequency, with the downstream positrons preferentially absorbing almost all of this radiation, mostly at their fundamental (relativistic) cyclotron frequencies. Possible applications to models of plerions and to constraints on theories of energy loss from pulsars are briefly outlines. 27 refs., 5 figs.

Arons, J. (California Univ., Berkeley, CA (USA)); Gallant, Y.A. (California Univ., Berkeley, CA (USA). Dept. of Physics); Hoshino, Masahiro; Max, C.E. (California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics); Langdon, A.B. (Lawrence Livermore National Lab., CA (USA))

1991-01-07T23:59:59.000Z

426

The Wavy Ekman Layer: Langmuir Circulations, Breaking Waves, and Reynolds Stress  

Science Conference Proceedings (OSTI)

Large-eddy simulations are made for the canonical Ekman layer problem of a steady wind above a uniformly rotating, constant-density ocean. The focus is on the influence of surface gravity waves: namely, the wave-averaged Stokes-Coriolis and Stokes-...

James C. McWilliams; Edward Huckle; Jun-Hong Liang; Peter P. Sullivan

2012-11-01T23:59:59.000Z

427

On the Group-Velocity Property for Wave-Activity Conservation Laws  

Science Conference Proceedings (OSTI)

The density and the flux of wave-activity conservation laws are generally required to satisfy the group-velocity property: under the WKB approximation (i.e., for nearly monochromatic small-amplitude waves in a slowly varying medium), the flux ...

J. Vanneste; T. G. Shepherd

1998-03-01T23:59:59.000Z

428

High power gas transport laser  

SciTech Connect

Continuous wave output power from a gas transport laser is substantially increased by disposing a plurality of parallel cylindrically tubular cathodes in the main stream transversely of the direction of gas flow and spaced above a coextensive segmented anode in the opposite wall of the channel. Ballast resistors are connected between the cathodes, respectively, and the power supply to optimize the uniform arcless distribution of current passing between each cathode and the anode. Continuous output power greater than 3 kW is achieved with this electrode configuration.

Fahlen, T.S.; Kirk, R.F.

1978-02-28T23:59:59.000Z

429

Photon position eigenvectors lead to complete photon wave mechanics  

E-Print Network (OSTI)

We have recently constructed a photon position operator with commuting components. This was long thought to be impossible, but our position eigenvectors have a vortex structure like twisted light. Thus they are not spherically symmetric and the position operator does not transform as a vector, so that previous non-existence arguments do not apply. We find two classes of position eigenvectors and obtain photon wave functions by projection onto the bases of position eigenkets that they define, following the usual rules of quantum mechanics. The hermitian position operator, r0, leads to a Landau-Peierls wave function, while field-like eigenvectors of the nonhermitian position operator and its adjoint lead to a biorthonormal basis. These two bases are equivalent in the sense that they are related by a similarity transformation. The eigenvectors of the nonhermitian position operators lead to a field-potential wave function pair. These field-like positive frequency wave functions satisfy Maxwell's equations, and thus justify the supposition that MEs describe single photon wave mechanics. The expectation value of the number operator is photon density with undetected photons integrated over, consistent with Feynman's conclusion that the density of non-interacting particles can be interpreted as probability density.

Margaret Hawton

2007-11-01T23:59:59.000Z

430

Design of traveling wave windows for the PEP-II RF coupling network  

SciTech Connect

The waveguide windows in the PEP-II RF coupling network have to withstand high power of 500 kW. Traveling wave windows have lower power dissipation than conventional self-matched windows, thus rendering the possibility of less stringent mechanical design. The traveling wave behavior is achieved by providing a reflecting iris on each side of the window, and depending on the configuration of the irises, traveling wave windows are characterized as inductive or capacitive types. A numerical design procedure using MAFIA has been developed for traveling wave windows. The relative advantages of inductive and capacitive windows are discussed. Furthermore, the issues of bandwidth and multipactoring are also addressed.

Kroll, N.M.; Ng, C.K.; Judkins, J.; Neubauer, M.

1995-05-01T23:59:59.000Z

431

Scalar Wave Falloff in Asymptotically Anti-de Sitter Backgrounds  

E-Print Network (OSTI)

Conformally invariant scalar waves in black hole spacetimes which are asymptotically anti-de Sitter are investigated. We consider both the $(2+1)$-dimensional black hole and $(3+1)$-dimensional Schwarzschild-anti-de Sitter spacetime as backgrounds. Analytical and numerical methods show that the waves decay exponentially in the $(2+1)$ dimensional black hole background. However the falloff pattern of the conformal scalar waves in the Schwarzschild-anti-de Sitter background is generally neither exponential nor an inverse power rate, although the approximate falloff of the maximal peak is weakly exponential. We discuss the implications of these results for mass inflation.

S. F. J. Chan; R. B. Mann

1996-12-11T23:59:59.000Z

432

Small-scale density fluctuations in the adiabatic toroidal compressor  

SciTech Connect

A new class of density fluctuations has been observed in the ATC tokamak by using spectral analysis of scattered microwaves. The observed frequency spectrum is consistent with that of drift waves with amplitudes that are maximum in the wavelength range 0.5 to 1.0 cm where finite ion Larmor radius effects are important for plasma stability. The total density fluctuation is n tilde/sub e/ greater than or equal to 5 x 10$sup -3$ anti n/sub e/. It is estimated that these fluctuations could account for a large fraction of the electron energy losses of the ATC discharge. (auth)

Mazzucato, E.

1976-02-01T23:59:59.000Z

433

Nonlinear eigenvalue problems in Density Functional Theory calculations  

SciTech Connect

Developed in the 1960's by W. Kohn and coauthors, Density Functional Theory (DFT) is a very popular quantum model for First-Principles simulations in chemistry and material sciences. It allows calculations of systems made of hundreds of atoms. Indeed DFT reduces the 3N-dimensional Schroedinger electronic structure problem to the search for a ground state electronic density in 3D. In practice it leads to the search for N electronic wave functions solutions of an energy minimization problem in 3D, or equivalently the solution of an eigenvalue problem with a non-linear operator.

Fattebert, J

2009-08-28T23:59:59.000Z

434

MEMS Fuel Cells – Low Temp – High Power Density  

The miniature fuel-cell technology uses thin-film fuel ... Reduced life cycle cost in comparison to ... for the Department of Energy's National Nuclear Security ...

435

Optimization of Power and Energy Densities in Supercapacitors  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Energy Storage: Materials, Systems and Applications. Presentation Title ...

436

Cooling of high-power-density computer components  

E-Print Network (OSTI)

This report summarizes work carried out during the first two years of a research program sponsored by IBM Corporation. This study has elucidated a number of the heat-transfer characteristics of several fluorochemicals which ...

Bergles A. E.

1968-01-01T23:59:59.000Z

437

Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays  

SciTech Connect

This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed BuoysĂ?Â?Ă?Â?Ă?Â?Ă?Âť that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

2013-01-26T23:59:59.000Z

438

Low density microcellular foams  

DOE Patents (OSTI)

Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

LeMay, James D. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

439

Low density microcellular foams  

DOE Patents (OSTI)

Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

LeMay, James D. (Castro Valley, CA)

1991-01-01T23:59:59.000Z

440

Density Coordinate Mixed Layer Models  

Science Conference Proceedings (OSTI)

The development of mixed layer models in so-called density coordinates is discussed. Density coordinates, or isopycnal coordinates as they are sometimes called, are becoming increasingly popular for use in ocean models due to their highly ...

William K. Dewar

2001-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "wave power density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Statistics of Richardson Number and Instability in Oceanic Internal Waves  

Science Conference Proceedings (OSTI)

The probability density function (pdf) of Richardson number in a Gaussian internal-wave field is derived. It is found to compare well with available data. The pdf depends on only parameter ?, the rms stain in the field, which is very weakly ...

Yves Desaubies; Woollcott K. Smith

1982-11-01T23:59:59.000Z

442

Generation of Topographic Waves over the Continental Margin  

Science Conference Proceedings (OSTI)

Numerical experiments were carried out to simulate the generation of topographic waves by a Gulf Stream ring over the continental margin in a stratified ocean on an f-plane. The study was aimed at understanding the combined effect of density ...

Ping-Tung Shaw; S. Divakar

1991-07-01T23:59:59.000Z

443

Monopole gravitational waves from relativistic fireballs driving gamma-ray bursts  

E-Print Network (OSTI)

Einstein's general relativity predicts that pressure, in general stresses, play a similar role to energy density in generating gravity. The source of gravitational field, the active gravitational mass density, sometimes referred to as Whittaker's mass density, is not conserved, hence its changes can propagate as monopole gravitational waves. Such waves can be generated only by astrophysical sources with varying gravitational mass. Here we show that relativistic fireballs, considered in modelling gamma-ray burst phenomena, are likely to radiate monopole gravitational waves from high-pressure plasma with varying Whittaker's mass. Also, ejection of a significant amount of initial mass-energy of the progenitor contributes to the monopole gravitational radiation. We identify monopole waves with h^11+h^22 waves of Eddington's classification which propagate (in the z-direction) together with the energy carried by massless fields. We show that the monopole waves satisfy Einstein's equations, with a common stress-energy tensor for massless fields. The polarization mode of monopole waves is Phi_22, i.e. these are perpendicular waves which induce changes of the radius of a circle of test particles only (breathing mode). The astrophysical importance of monopole gravitational waves is discussed.

M. Kutschera

2003-09-16T23:59:59.000Z

444

Nuclear Power PROS -`No' greenhouse gas emissions  

E-Print Network (OSTI)

Nuclear Power PROS -`No' greenhouse gas emissions -Fuel is cheep -High energy density (1 ton U = 16 abundant elements found in natural crustal rocks) Nuclear Power CONS -High capital cost due to meeting if there is a movement towards electric cars? -What if the high capital costs of a nuclear power plant were invested

Toohey, Darin W.

445

Automatic Layout Design for Power Module  

SciTech Connect

The layout of power modules is one of the key points in power module design, especially for high power densities, where couplings are increased. In this paper, along with the design example, an automatic design processes by using a genetic algorithm are presented. Some practical considerations and implementations are introduced in the optimization of module layout design.

Ning, Puqi [ORNL; Wang, Fei [ORNL; Ngo, Khai [Virginia Polytechnic Institute and State University (Virginia Tech)

2013-01-01T23:59:59.000Z

446

The Massive Pulsar PSR J1614-2230: Linking Quantum Chromodynamics, Gamma-ray Bursts, and Gravitational Wave Astronomy  

E-Print Network (OSTI)

The recent measurement of the Shapiro delay in the radio pulsar PSR J1614-2230 yielded a mass of 1.97 +/- 0.04 M_sun, making it the most massive pulsar known to date. Its mass is high enough that, even without an accompanying measurement of the stellar radius, it has a strong impact on our understanding of nuclear matter, gamma-ray bursts, and the generation of gravitational waves from coalescing neutron stars. This single high mass value indicates that a transition to quark matter in neutron-star cores can occur at densities comparable to the nuclear saturation density only if the quarks are strongly interacting and are color superconducting. We further show that a high maximum neutron-star mass is required if short duration gamma-ray bursts are powered by coalescing neutron stars and, therefore, this mechanism becomes viable in the light of the recent measurement. Finally, we argue that the low-frequency (<= 500 Hz) gravitational waves emitted during the final stages of neutron-star coalescence encode the properties of the equation of state because neutron stars consistent with this measurement cannot be centrally condensed. This will facilitate the measurement of the neutron star equation of state with Advanced LIGO/Virgo.

Feryal Ozel; Dimitrios Psaltis; Scott Ransom; Paul Demorest; Mark Alford

2010-10-27T23:59:59.000Z

447

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

DOE Green Energy (OSTI)

(3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

448

Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona  

SciTech Connect

Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for ? ? (?L)1/3(?c/?) somewhat less than 1, contrary to previous ideas. Only o mode is produced for ? and somewhat greater than 1.5. Here ?c is the (angular) electron cyclotron frequency, ? the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as ? increases. (4) As ? increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as ? increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 ? 70%. (7) The interference effect and the disappearance of the x mode at ? somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion under these conditions might explain the weak total circular polarizations of type II and III solar radio bursts.

Eun-Hwa Kim, Iver H. Cairns, and Peter A. Robinson

2008-06-09T23:59:59.000Z

449

High Energy Density Laboratory Plasmas Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog High Energy Density Laboratory Plasmas Program Home > High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program Steady advances in increasing the energy, power, and brightness of lasers and particle beams and advances in pulsed power systems have made possible

450

Standing wave compressor  

DOE Green Energy (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

451

Standing wave compressor  

DOE Patents (OSTI)

A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

Lucas, Timothy S. (4614 River Mill Ct., Glen Allen, VA 23060)

1991-01-01T23:59:59.000Z

452

Piezoelectric wave motor  

DOE Patents (OSTI)

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee' s Summit, MO)

2001-07-17T23:59:59.000Z

453

Piezoelectric wave motor  

DOE Patents (OSTI)

A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

Yerganian, Simon Scott (Lee' s Summit, MO)

2003-02-11T23:59:59.000Z

454

TIMING OF SHOCK WAVES  

DOE Patents (OSTI)

This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

Tuck, J.L.

1955-03-01T23:59:59.000Z

455

Kinetics driving high-density chlorine plasmas  

Science Conference Proceedings (OSTI)

A simple fluid model was developed in order to investigate the driving kinetics of neutral and charged species in high-density chlorine plasmas. It was found that the dissociation degree of Cl{sub 2} molecules is directly linked to the power balance of the discharge which controls the electron density. The model was also used to identify those reactions that could be neglected in the particle balance of charged species and those that must be included. Our results further indicate that diffusion losses need to be considered up to a pressure that depends on magnetic-field intensity and reactor aspect ratio. Finally, it is shown that the dominant charged carriers are linked to the dissociation level of Cl{sub 2} molecules.

Stafford, L.; Margot, J.; Vidal, F.; Chaker, M.; Giroux, K.; Poirier, J.-S.; Quintal-Leonard, A.; Saussac, J. [Department de physique, Universite de Montreal, Montreal, Quebec (Canada); INRS-Energie, Materiaux et Telecommunications, Varennes, Quebec (Canada); Department de physique, Universite de Montreal, Montreal, Quebec (Canada)

2005-09-15T23:59:59.000Z

456

Shear-wave splitting and reservoir crack characterization: the Coso  

Open Energy Info (EERE)

Shear-wave splitting and reservoir crack characterization: the Coso Shear-wave splitting and reservoir crack characterization: the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Shear-wave splitting and reservoir crack characterization: the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: This paper aims to improve current understanding of the subsurface fracture system in the Coso geothermal field, located in east-central California. The Coso reservoir is in active economic development, so that knowledge of the subs